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Abstract

In this thesis, we explore a new use of entity triggers in named entity recog-
nition. Entity triggers are groups of words used by a NER model to efficiently
improve performance by informing context. Under normal use, entity triggers are
only used internally by the model and are not seen by a user of the model. We
extract information about the entity triggers in order to inform the user about the
process going on within the model during prediction. This makes the model more
transparent and easier to explain. Our research focuses on applying these explana-
tions in disaster risk management during the identification of locations mentioned
in posts on the social media website Twitter. The information which is extracted
from the model includes a trigger key and a distance. The trigger key is a textual
representation of the learned entity trigger which is deemed most similar to an
entire prediction sentence by the model. We find trigger keys not to be intuitive
in their relation to prediction sentences. Chosen trigger keys often have no lexical
overlap and little semantic relevance. This is the case even when among the uncho-
sen trigger keys exists a key with excellent similarity to the prediction sentence in
the eyes of a human user. The distance is defined as a numerical value describing
the semantic similarity of a prediction sentence to the most similar entity trigger
from the training data. We find that the distance can be used as a heuristic to de-
termine the semantic familiarity of a prediction sentence given the data the model
was trained on. This familiarity is particularly computed from the first and last
tokens of the sentence. We find that entity triggers offer little additional insight
on the labelling decisions made by the model. Trigger keys give results with no
relevance to the prediction sentence. The importance placed on the first and last
tokens by the distance correspond poorly to how humans would pick out named
entities from a sentence. Our findings suggest the model picks out named entities
using information that is different from information a human would use. Although
entity triggers improve performance of the NER model, these unintuitive expla-
nations may indicate faulty reasoning underneath the hood. Future work should
investigate explanations using other methods than trigger keys and distances. Ad-
ditionally, the internal reasoning using entity triggers should be closely examined
to determine flawed reasoning.
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1 Introduction

1.1 Motivation

The field of disaster risk management focuses on minimizing damage done by natural
disasters. In this pursuit, artificial intelligence is able to offer assistance through tech-
niques such as named entity recognition. Named entity recognition is used to identify
specific classifications of phrases in unstructured text. One such application is the de-
tection of locations mentioned in social media posts. This can be utilized in disaster
risk management to identify locations with vulnerabilities and requests for aid.

As this utilization of artificial intelligence plays a weighty role in vulnerable human
lives, it is of importance that the decisions made in response to the results of the artificial
intelligence model are well-informed and held to accountability. To help do so, the model
should be transparent in its decisions. By justifying each of the model’s results with an
explanation, a user can more easily interpret the decision-making process followed by
the model.

In this paper, we explore the possibility of generating additional explanations for
a specific named entity recognition model. We focus on location detection for disaster
events in posts on the social media site Twitter. The model we build off of is TriggerNER,
developed by B. Lin et al. in 2020 [1]. This model is designed to utilize a technique
proposed by B. Lin et al. which they dubbed “entity triggers.” Entity triggers are a
group of words which help to explain why humans consider a specific phrase in the same
sentence to belong to a particular class. In the case of this paper, that class would be a
location. Examples of entity triggers for a location may be the phrase “welcome to” or
“living in” preceding the location. The TriggerNER model uses these entity triggers to
efficiently improve its contextual awareness and performance.

While TriggerNER utilizes entity triggers to help improve the model, none of the
calculations or decision-making process are communicated to the user. The model only
informs the user of the final classification of each word determined in sentences pro-
vided by the user. We explore the possibility of using entity triggers to aid the user’s
understanding of the underlying process as well.

The explanations we extract from entity triggers are a trigger key kd and a distance
d for each prediction made by the NER model. A trigger key is a textual representation
of the entity trigger deemed by the model to be the most similar to the prediction
sentence. A distance is a numerical representation of how similar the chosen entity
trigger and the prediction sentence are to the model. Thus, the output of our extended
TriggerNER model when asked to predict locations in the sentence “Rohingya Refugees
extend helping hand to Kerala Flood Victims” may look like this:

Rohingya Refugees extend helping hand to Kerala Flood Victims
LOC

kt = donating

d = 0.7780

Where kt is the trigger key and d is the distance.

1.2 Research Questions

The main question addressed in this thesis is formulated as follows:

How can entity triggers add value as explanations for named entity recognition in
disaster risk management?

This question is answered with the aid of several sub-questions:
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1. What is the difference in performance between algorithms trained on Tweet data
annotated with entity triggers and trained without entity triggers?

2. What explanations are offered to justify tagging an entire Tweet as containing a
location entity?

3. Are the offered explanations intuitive?

4. What explanations are offered to justify tagging an entire Tweet as not containing
a location entity?

Answering the first sub-question will aid in the understanding of the value of entity
triggers in the training process. Identifying the cause for differences in performance
may further help to find the value of entity triggers as explanations.

The second sub-question’s answer will give the user insight to the model’s decision-
making process. By examining the explanations generated by the algorithm, the model’s
choices should become easier to interpret. Additionally, discovering which explanations
the model is able to offer tells us what information the model uses in its decision-making
process.

Answering the third sub-question will aid in improving the explainability. Intuitive
explanations offer better understanding of the model’s decision-making process. These
explanations are then more valuable to users as well. If some explanations are intuitive
while others are not, we may be able to identify logic errors in the model, which can
then be tweaked.

The fourth sub-question identifies why a false negative may occur, in addition to
true negatives. Together with the answers from the preceding sub-questions, the AI
model may be fine-tuned to avoid the circumstances in which false negatives occur and
promote those where locations are identified, such that location entities are identified
with greater accuracy. As our research focuses on the identification of locations in need
to support from disaster risk management services, we wish to minimize false negatives
such that no persons in need are missed by the algorithm.

In order to answer these questions, we explore the TriggerNER model and create our
own dataset to train it on in section 3. We run several experiments on a trained Trig-
gerNER model to evaluate our possibilities in section 4. The results to these experiments
will be analyzed in section 5 in order to determine our answers.

2 Literature Review

2.1 Disaster Risk Management

Natural disasters are responsible for thousands of casualties and billions of economic
losses [2]. The field of disaster risk management (DRM) strives to minimize such dam-
ages in four phases: mitigation, preparation, response and recovery [3]. Of these four
phases, response focuses on minimizing damage while a disaster is ongoing. A rapid
response allows for the swift identification and rescue of affected people, which can
save lives. Furthermore, first-aid and humanitarian assistance can be provided more
efficiently.

In recent years, artificial intelligence (AI) techniques have been utilized to improve
response rate [3]. One such application involves supervised machine learning (ML)
models which have been trained to detect likely areas of impact. As there has been a
trend in information critical to the disaster relief effort being posted to social media
websites, some models use social media sites such as Twitter in order to determine
affected areas [4, 5]. One technique utilizes geographical data embedded in the metadata
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of the online post to determine areas [6]. Locations may also be mentioned in the content
of the post itself. To efficiently extract mentioned locations from the content, AI uses
Information Extraction (IE) methods such as named entity recognition (NER).

2.2 Named Entity Recognition

NER has been defined as one of the fundamental sub-tasks of IE [7]. NER aims to
identify units of certain classes of information from unstructured text, such that they
can be extracted and utilized in structured applications. In the previously mentioned
use case, the class of information NER seeks to identify is locations. For instance, in
the Twitter post “Bangladesh donates US $500000 for Sri Lanka flood victims #news”
the AI should recognize the words “Bangladesh” and “Sri Lanka” as distinct locations
with the use of NER. These relevant phrases are referred to as named entities.

NER models are first trained on a large corpus of sentences, which has the de-
sired classes of information within it labelled by hand [7]. After encountering them
in the training data, the model learns to recognize relevant words and other sentence
components such as punctuation. A word, punctuation character, or another sentence
component is referred to as a token. The model can then efficiently pick out these tokens
from unlabelled sentences. This is referred to as supervised learning.

In some models, tokens which were not seen in the training data but still belong
to the same classes have their class inferred from contextual clues encountered in both
the training data and the unlabelled sentence. This is referred to as semi-supervised
(or weakly supervised) learning. However, false positive matches also become more
common.

Beside the training data, NER models can utilize a validation dataset during training.
Once the model is trained to recognize named entities, it may evaluate how well it
performs when trying to predict the named entities in its validation dataset. In order
to improve the model’s performance this is done several times, tweaking the model
slightly each time to try and improve accuracy. Datasets which are used to evaluate the
performance of the NER model after training is done are referred to as test datasets.
Test data is not used to tweak the model, merely to evaluate it.

It should be noted that NER annotation among datasets can follow different, conflict-
ing annotation guidelines. Additionally, annotation may not always follow the intended
guidelines. The behavior of a NER model is affected by the annotation patterns found
in its training data and verification data. The evaluated performance is affected by the
patterns found in the verification data and test data. Incorrectly tagged named enti-
ties in these datasets can produce false positives and false negatives. The annotation
patterns among the datasets used in our research will affect our results as well. We
acknowledge that the models evaluated in this paper are trained on crowdsourced data
intended to follow guidelines established by Suwaileh et al. [8].

Research into various methods to improve the accuracy of NER algorithms has been
done over the years [7, 9]. The work in this paper builds off of the methods developed by
B. Lin et al. for TriggerNER [1]. TriggerNER improves the semi-supervised technique
by utilizing “entity triggers.”

2.3 Entity Triggers

Entity triggers are defined by B. Lin et al. as groups of words which explain why a
named entity belongs to a specific class [1]. These entity triggers should be sufficient for
a human user to infer which class is being referred to without seeing the named entity.

By utilizing entity triggers in conjunction with standard named entities, the per-
formance of NER models is improved. Entity triggers give a model more context to
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work off of, enhancing its generalizability. Named entities which were not present in
the model’s training data may be classified more easily with the aid of the semantically
similar sentences surrounding them. In addition, entity triggers are more cost-effective
than training with just named entities. In the paper proposing entity triggers [1], exper-
iments showed that model performance using only 20% of trigger-enhanced sentences
was comparable to model performance using 50-70% of sentences with just named enti-
ties, while annotating entity triggers in addition to named entities for the training data
was estimated take only 1.5-2 times as long as only annotating named entities. Entity
triggers thus enable the training of a more generalizable and cost-effective NER model.

In this paper, we will represent named entities by underlining them once and placing
their class beneath this line. We represent associated entity triggers by underlining them
twice. One example of a sentence containing both a named entity and associated entity
triggers is:

We had a fantastic lunch at Rumble Fish yesterday, where the food is my favorite.

RES

Here, the words “had [. . . ] lunch at” and “where the food” help to infer the class of
Rumble Fish, in this case a restaurant (RES). This paper will focus on locations (LOC).

2.4 Explainable Artificial Intelligence

AI has its limitations. Training data is limited and may introduce bias, privacy and
security risks [10, 11]. The decision-making process of models is often not transparent
and explanations are difficult to interpret or incomplete [12]. Given the weighty role
DRM plays in human lives, it is of importance to be mindful of these limitations and
minimize risks when integrating AI into DRM.

Improving the explainability of AI helps to circumvent and minimize these risks.
By researching and adhering to explainable AI (XAI) design patterns, the decision-
making process of models becomes more transparent. With interpretable and complete
explanations for AI decisions, it becomes easier to identify risks for bias and security. In
addition, it is easier to identify the limitations of AI and mitigate inflated expectations
[11].

As entity triggers utilize human explanations in the NER training process itself, we
hypothesize that entity triggers can be used to enhance the explainability of NER mod-
els. We aim to generate explanations for the AI’s classification decisions by extracting
the semantically-related trigger phrases identified by the AI in its predictions.

3 Implementation

3.1 Style Guide

We define guidelines to assist in the decision whether to tag a token as a entity trigger.
The main purpose of entity triggers is to explain why their related named entity belongs
to the class it does. In the case of this paper, entity triggers explain why a named entity
is a location specifically. We aim to utilize entity triggers as explanation on their own
without further justification. Thus, when entity triggers are tagged for dataset creation,
a person examining the dataset should be able to understand why a entity trigger was
chosen without confusion or need for elaboration. This should allow us to take a step
towards being able to use entity triggers to improve the explainability of the system
trained on them.

No guidelines for annotating entity triggers exist yet, so we develop our own. These
guidelines were chosen based on the intuition of the author and common patterns noticed
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by the author in existing trigger-annotated datasets [1]. More research should be be done
in determining which patterns often make for good trigger explanations.

Entity triggers must be associated with a single named entity. These guidelines
assume that the sentence being annotated only has one named entity in it. If a sentence
has multiple named entities, the sentence should be duplicated for each named entity.
Each duplication should have one unique named entity each.

It should be noted that it is possible there are no tokens suitable for explanation in a
sentence. In this case, we simply do not tag any entity triggers. Additionally, should we
come across an entity in our dataset which was tagged as a location entity despite not
being a location, we do not tag any entity triggers as well. We write down the index of
these falsely-tagged entities so that we may choose to cull these entries at a later time.

1. Tag phrases which define the named entity. If such phrases are known to be a
location, it is easily inferred that the named entity is a location. Examples:

•
Local currency depreciated in countries such as Brazil, Chile and South Africa.

LOC

•
New York is a bustling city. It is nicknamed “The City That Never Sleeps.”

LOC

2. Tag phrases which describe features of the location. If a named entity is said to
contain municipalities or mountains, it is likely a location. Examples:

•
Office locations were reduced in the US and Mexico.

LOC

•
We eventually arrived in the indigenous community of Mechahuasca.

LOC

3. Tag phrases which the location describes as an attributive noun. In other words,
if the location acts like an adjective. Examples:

•
A Kansas woman bought the entire stock to donate to Nebraska flood victims.

LOC

•
A Kansas woman bought the entire stock to donate to Nebraska flood victims.

LOC

4. Tag verb phrases which describe events that imply a location. Verbs tend to refer
to specific classes of entities: the object following a phrase such as “travelled to”
is likely describing a location. Examples:

•
Celebrities quickly evacuate California as wildfires rage.

LOC

•
We eventually arrived in the indigenous community of Mechahuasca.

LOC

5. Tag prepositions referring to the location. Prepositions often denote a direction or
spatial relationship. This helps to infer locations, particularly together with verbs
from guideline 4. Examples:

•
A mountain biking race from Luxembourg to the Netherlands collects donations.

LOC

•
Begging 4 help in Canoa, pacific coast. There is no way to get there by road.

LOC
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6. Tag other locations in the same clause as the named entity. For instance, if a
named entity in among a list of locations, it is likely a location itself as well.
Examples:

•
Local currency depreciated in countries such as Brazil, Chile and South Africa.

LOC

•
Begging 4 help in Canoa, pacific coast. There is no way to get there by road.

LOC

7. Tag pronouns referring to the named entity. All types of pronouns may aid in
inferring the class of an entity, including but not limited to personal pronouns
like “it,” demonstrative pronouns like “that” and relative pronouns like “which.”
These pronouns may help distinguish inanimate locations from animate entities
with similar names, such as a person named “Virginia” being referred to by “she”
or “who” in the sentence. Examples:

•
New York is a bustling city. It is nicknamed “The City That Never Sleeps.”

LOC

•
Begging 4 help in Canoa, pacific coast. There is no way to get there by road.

LOC

8. Tag adjectives describing details of the location. Certain adjectives are often used
with locations specifically. Examples:

•
We went on a holiday to picturesque Florence for our honeymoon.

LOC

•
New York is a bustling city. It is nicknamed “The City That Never Sleeps.”

LOC

9. Tag punctuation tokens only if they are part of words which help to infer the
class of the named entity, such as periods or hyphens in words. Enclosing symbols
such as parentheses or quotation marks are not considered part of the words they
enclose. Examples:

•
70,000 tarps to the U.S. Virgin Islands and Puerto Rico since Hurricane Maria.

LOC

•
Storm Irma moving from Saint-Martin to Florida.

LOC

10. Do not tag adjectives describing things other than the location as in guideline 8.
Example:

• Celebrities����XXXXquickly evacuate California as wildfires rage.
LOC

11. Do not tag punctuation unless it fits guideline 9. Ignore other punctuation such
as parentheses, hashtags, commas, periods.

12. Do not tag parts of hashtag names. As hashtag names include no spaces, only
tag these if the entire hashtag name is the entity trigger. Do not tag the hashtag
symbol itself. Example:

•
Call if you wanna donate something #Amatrice #Accumoli #((((((hhhhhhPrayForItaly

LOC
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3.2 Dataset Creation

We construct a dataset of Twitter posts (Tweets) annotated with entity triggers and lo-
cation named entities. This dataset focuses on location mentions in Tweets surrounding
disasters in order to enhance applicability in DRM.

3.2.1 IDRISI-RE

We utilize an existing dataset on location mentions in disaster Tweets developed by
Suwaileh et al. for IDRISI-RE [8]. The IDRISI dataset includes Tweets on the topic
of 41 major disaster events ranging from 2016 to 2020, categorized by event. It covers
77,196 Tweets, of which 20,514 had their annotation crowdsourced through an online
crowdsourcing platform and 56,682 had their annotations automatically labelled by AI
trained on the crowdsourced Tweets. Each crowdsourced Tweet was labelled by three
to eight persons and the final labels were selected from spans which were labelled by
at least two persons. Annotators also had to maintain an accuracy above 70%. Tweets
cover a variety of countries and disaster types (hurricanes, earthquakes, floods, wildfires
and cyclones). Named entities have their location type specified (e.g. country, city,
neighborhood). The dataset includes Tweets in English and Arabic.

3.2.2 Extending to a Trigger Dataset

We extend the IDRISI-RE dataset to include entity triggers. Each entity trigger is
manually annotated by the author. Due to time constraints, we only annotate the
English training data of crowdsourced Tweets from flood events, covering Sri Lanka
(2017), Kerala (2018), Maryland (2018), and the midwestern U.S. (2019). This gives us
a dataset of 2,289 unique Tweets containing 3,129 named entities. In order to distinguish
which named entity groups of entity triggers belong to, we split each Tweet with multiple
named entities into multiple duplicate Tweets with only one unique named entity per
entry. This results in a dataset of 3,504 entries.

To tag the entity triggers in our dataset, we use the annotation software Doccano
v1.8.4 [13]. We convert the IDRISI-RE dataset to a format which can be imported
into Doccano with a simple Python program. We opt to keep each named entity as
the ambiguous “location” class rather than specific classes such as “country,” “city,” et
cetera. The Tweet contents are not modified. We manually go over each entry and tag
spans of text denoting entity triggers in accordance to the style guide defined in section
3.1. Our final result contains 5,119 entity triggers. Each entity is given as a span of
text, denoted with a starting and ending index as well as a string of text giving the class
(location or trigger).

Before annotating the dataset, an entry may look like this:

Spreading smile in #Kerala. Distributing relief material to the people of #Kerala.
LOC LOC

As previously mentioned, entries with multiple named entities are duplicated with only
one unique named entity preserved respectively. Triggers corresponding to the one
named entity are annotated. After annotation, an entry may look like this:

Spreading smile in #Kerala. Distributing relief material to the people of #Kerala.

LOC

Spreading smile in #Kerala. Distributing relief material to the people of #Kerala.

LOC

The resulting dataset and all used code is made publicly available in section 6.2.
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3.3 Adjusting TriggerNER

We extend the TriggerNER model to output information aiding us in determining the
explainability of NER decisions. The adjusted model will be used in section 4 to test
the dataset created in section 3.2.

3.3.1 TriggerNER

TriggerNER is a NER model developed by B. Lin et al. to improve the accuracy of NER
predictions in a cost-effective manner by utilizing triggers [1]. Before training, the text
data must have all entity triggers manually annotated for each respective named entity.
In the paper proposing TriggerNER by B. Lin et al., the authors crowdsourced this
task. They masked each named entity with their respective class and gave annotators
the instructions to mark “a group of words that would be helpful in typing and/or
detecting the occurrence of a particular entity in the sentence,” taking the intersection
of three annotators’ results to consolidate the final dataset. As detailed in section 3.2.2,
we do not mask entities and have a single annotator for our entire dataset.

During training, each entity from the dataset is paired with its sentence and a group
of its entity triggers. All tokens found across the sentence are encoded as numerical
vectors. This encoding utilizes a convolutional neural network (CNN) to encode infor-
mation on the characters of the token, which helps to pick out morphological information
such as the prefix or suffix of a word [14]. By applying a bidirectional LSTM (BLSTM)
neural network on these vectors, information on preceding and upcoming tokens are
encoded into a new intermediate set of token vector. This information on surrounding
tokens aids in considering context. Subsequently, these intermediate vectors are fed into
a layer of conditional random fields (CRF) which helps inform which labels are suitable
for each token. The resulting set of vectors are referred to as hidden states and are
joined into a matrix. This hidden state matrix is used to compute a weighted attention
vector using a self-attentive embedding developed by Z. Lin et al. [15]:

a⃗T = softmax
(
W2tanh

(
W1H

T
))

Where a⃗T is the attention vector, H is the hidden state matrix and W1 and W2 are
weight matrices which are dynamically updated during training to find the appropriate
weighting. The softmax function ensures the total weights sum up to 1. By multiply-
ing the weighted attention vector with the hidden state matrix, the final vector gTs

representing the weighted sum of the token vectors in the entire sentence is obtained.
The same process is repeated for just the tokens found in trigger groupings instead

of all tokens across the sentence. One small change is made to these trigger groupings
during encoding: all numerical characters are generalized by replacing them with a
generic “digit” character. This generic digit character is “0”. After this process is
complete, the final trigger vector gTt is obtained and fed into a multi-class classifier to
predict the classification of the associated named entity. Each vector gTt is associated
with a string of words to distinguish the vectors, known as the trigger key kt. This
string consists of the tokens in the original entity trigger. In the instance multiple entity
triggers end up mapping to the same gTt values, a randomly-picked vector is preserved
with its key while duplicate vectors are removed along with their keys.

After training is complete, these final vector spaces can be utilized in predicting the
classes of token groupings of unlabelled sentences. The unlabelled sentence is encoded
in the same way as during training in order to obtain gPs. TriggerNER then computes
the distance d between gPs and every learned trigger vector gTt to determine the closest
trigger vector, gPt. Then gPs and gPt are used to compute a weighted attention vector
using the formula:

a⃗P = softmax
(
tanh

(
W1g

T
Ps +W2g

T
Pt

)T)
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gPs is then multiplied with a⃗P to obtain g′Ps. This vector g′Ps can be used for con-
ventional NER prediction and is more likely to produce a correct prediction due to its
weighting with the aid of entity triggers.

3.3.2 Extending to Provide Explanations

We extend TriggerNER to output additional information on how the model makes the
decision to tag certain phrases as location entities. We build off of the TriggerNER
model training pipeline provided by Lee et al. for LEAN-LIFE, an annotation framework
utilizing entity triggers [16].

We modify the prediction process of TriggerNER such that two additional variables
are produced for each sentence to be predicted. These variables are kt and d, respectively
gPt’s trigger key and gPt’s distance to gPs. We explicitly call training sequence data
to the CPU to circumvent a programming bug related to a change in the software
underlying TriggerNER since the release of TriggerNER. We also patch a bug in the
LEAN-LIFE pipeline which interprets the first character of a sentence as its only token,
rather than each word and punctuation symbol. Finally, we patch a bug in TriggerNER
which causes trigger keys to index words from the global word list rather than from
the triggers’ respective source sentences, which had turned trigger keys into unrelated
strings of tokens.

We extract the distance d with the intent to use it as a hint to the confidence
of the trigger prediction, where a smaller distance would indicate greater confidence.
The trigger key kt gives a human-readable interpretation of which trigger vector is
most similar to the entire prediction sentence and consequently used by the model to
aid the prediction process. Note that d and kt relate to the entire sentence and not
specific tokens or predicted named entities. We determine whether these values are
useful explanations in section 5.

After training, the adjusted TriggerNER model produces output akin to the follow-
ing:

Rohingya Refugees extend helping hand to Kerala Flood Victims
LOC

kt = donating

d = 0.7780

The extended model and all used code is made publicly available in section 6.2.

4 Experiments

We perform several tests in order to evaluate the dataset and NER model created in
section 3. In these tests, we review whether a TriggerNER model trained with en-
tity triggers outperforms a comparable NER model trained without entity triggers, as
claimed in the TriggerNER proposal paper. In the process, we evaluate the utility of
our trigger-annotated IDRISI-RE floods dataset created in section 3.2.2. Additionally,
the usefulness of the explanations provided by our extended TriggerNER model created
in section 3.3.2 is determined.

4.1 Experiment Datasets

We train two NER models on our trigger-annotated floods dataset. The dataset in its
raw format describes entities as spans of text with starting and ending indices. The
NER models take tokenized strings of text as input, so the dataset is reformatted with
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a simple Python script and tokenized using the NLTK word tokenizer [17]. The utilized
Python script and tokenized dataset are made publicly available in section 6.2.

The NLTK word tokenizer splits tokens on whitespaces and punctuation symbols.
Punctuation symbols are preserved, whereas whitespaces are not. Certain punctuation
symbols including the period (‘.’) and hyphen (‘-’) are not split into separate tokens if
they are found before the end of a sentence. This is done in order to preserve abbreviated
and hyphenated phrases such as “U.S.” and “flood-hit” as distinct tokens. As a resulting
downside, a token at the end of a punctuated sentence which was not space-separated
from the first token of its following sentence will be combined with its following token.
For example, in the following sentence fragment, the two words and period “Palghat.All”
are seen as one single token.

train from Ratlam to Palghat.All 15 tanks are filled,

LOC LOC

↓ tokenization

train from Ratlam to Palghat.All 15 tanks are filled ,
O O LOC O O O O O O O

We make the decision that only tokens which wholly fit within the indexed span of text
will be tagged as entity, whether it be a named entity or entity trigger. As a result,
some entities may be lost during tokenization of sentences.

As entity triggers must be associated with a named entity, tokenized data which
contain entity triggers but no named entity due to such entity loss during tokenization
is culled from the training data. We find a total of 20 tokenized Tweets like this, bringing
the training data down from 3,504 entries to 3,484 entries.

Among these 3,484 entries, there are 529 unique named entities and 1,909 unique
entity triggers. As for tokens, there are 591 unique tokens among named entities and
1,409 unique tokens among entity triggers. We give the count of the most frequent
phrases and tokens in the training data in tables 2 and 3.

We acquire additional data to use as validation data during training and test data
during evaluation. The IDRISI-RE dataset includes validation data with annotated
named entities for each event. We combine the validation datasets for each of the four
flood disaster events present in the training data and split this combined data in half to
produce our validation dataset and a test dataset. We refer to the validation dataset as
the “dev” data.

To test the generalizability of our model, we also test on two recent events of different
disaster types. We create a cyclone test dataset by combining the training and validation
data of the Cyclone Idai (2019) event as well as a hurricane test dataset by combining
the training and validation data of the Hurricane Dorian (2019) event.

The statistics of each dataset we use during training, validation and testing is dis-
played in table 1.
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1a. Floods training data

Disaster Event Entries
Unique
Tweets

Named
Entities

Entity
Triggers

Sri Lanka (2017) 429 321 365 366
Midwestern U.S. (2019) 1,166 752 1,104 2,047

Kerala (2018) 1,395 907 1,164 1,761
Maryland (2018) 494 301 473 887

Total 3,848 2,281 3,106 5,061

1b. Floods dev data

Disaster Event
Entries /

Unique Tweets
Named Entities

Sri Lanka (2017) 45 55
Midwestern U.S. (2019) 107 164

Kerala (2018) 9 7
Maryland (2018) — —

Total 161 226

1c. Floods test data

Disaster Event
Entries /

Unique Tweets
Named Entities

Sri Lanka (2017) — —
Midwestern U.S. (2019) — —

Kerala (2018) 120 141
Maryland (2018) 42 95

Total 162 236

1d. Cyclone test data

Disaster Event
Entries /

Unique Tweets
Named Entities

Cyclone Idai (2019) 1,038 1,348

1e. Hurricane test data

Disaster Event
Entries /

Unique Tweets
Named Entities

Hurricane Dorian (2019) 1,038 1,011

Table 1: Entity statistics of the datasets used during evaluation.
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2a. Named entities 2b. Named tokens
Phrase Count Token Count

Nebraska 708 Nebraska 710
Kerala 549 Kerala 549
Maryland 258 Maryland 261
SriLanka 108 City 112
Ellicott City 99 SriLanka 109
Iowa 76 Ellicott 107
Sri Lanka 76 Sri 84
India 53 Iowa 78
kerala 42 Lanka 77
srilanka 32 India 53
Omaha 22 kerala 42
Baltimore 17 srilanka 32
Ernakulam 17 Omaha 23
Missouri 17 Missouri 20
Chengannur 16 Baltimore 18
Kansas 16 Dakota 18
Kodagu 13 Ernakulam 18
Alappuzha 12 Chengannur 16
South Dakota 12 Kansas 16
Karnataka 11 County 15

Table 2: Top 20 most frequent named entities and tokens in the floods training dataset
used during our experiments.

3a. Entity triggers 3b. Trigger tokens
Phrase Count Token Count

in 303 in 964
Nebraska 107 flood 277
Iowa 100 flooding 222
floods 89 of 204
Maryland 72 floods 179
flooding 67 to 156
flood victims 59 Nebraska 155
flood 57 Iowa 124
flooding in 57 relief 121
to 54 from 119
state 47 victims 93
from 46 City 89
flood relief 39 Flood 89
Flood relief 34 Maryland 88
floods in 31 flash 80
Missouri 29 state 74
people of 29 Ellicott 71
homes 28 across 57
South Dakota 28 Relief 57
roads 27 areas 55

Table 3: Top 20 most frequent entity triggers and tokens in the floods training dataset
used during our experiments.
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4.2 Experiment Models

We use our tokenized training dataset to train two models and compare their per-
formances. One model is the TriggerNER model we extended to provide additional
explanations in section 3.3.2. We describe how this model works in section 3.3.

The second model is trained on the same training data without entity triggers. We
use this model to compare the performance of our trigger-enhanced model to a standard
NER model trained without entity triggers. This allows us to test the hypothesis stating
that a trigger-enhanced NER model performs better than a standard NER model. This
can also show us whether the style guide we composed in section 3.1 produces a trigger-
enhanced training dataset which improves performance. We will refer to the NER model
trained without entity triggers as the “Standard” model.

The Standard model’s operation closely resembles the operation of the TriggerNER
model in order to effectively test the impact of entity triggers on the models’ perfor-
mances. As described for TriggerNER in section 3.3.1, the Standard model also encodes
tokens into vector representations using CNN, BLSTM, CRFs and attention weighing.
The difference in the implementation of the Standard model is that no entity triggers
are encoded nor play a role in weighing the resulting model.

The implementation of both models is built off of the model pipeline provided by
LEAN-LIFE [16]. Experiments are run in the web-based interactive Python development
environment of Jupyter notebook. The trained models and notebook are made publicly
available in section 6.2.

4.3 Evaluation Methods

Once both the extended TriggerNER model and Standard model have been trained, we
evaluate their respective performances on the same datasets. In order to quantify their
performance, we compute the F1 score. This score measures the true positives, false
positives and false negatives produced by the models. The formulae used to compute
these scores are:

Precision =
NTrue positives

NTrue positives +NFalse positives

Recall =
NTrue positives

NTrue positives +NFalse negatives

F1 score =
2× Precision× Recall

Precision + Recall

The resulting score is a value between 0% and 100%, where a greater percentage indicates
a greater accuracy of the model’s prediction.

We also evaluate the usefulness of the explanations extracted by our extended Trig-
gerNER model. The explanations provided for each predicted sentence consist of the
trigger key kt and distance d. The trigger key and distance are only computed for the
entire sentence and do not relate to specific tokens or predicted named entities.

The trigger key kt gives the string of tokens determined to be the most similar to the
prediction sentence. We analyze whether this information is useful and interpretable to
the user. We examine how often particular trigger keys show up in our predictions in
order to determine whether explanations are unique. Additionally, we evaluate whether
particular trigger keys are associated with greater accuracy than other trigger keys.

The distance d is the smallest distance found between all trained entity trigger vec-
tors and the prediction sentence’s vector. We gather the distance ranges, means and
medians found for each test dataset. Each interval of distance we find is evaluated for
its performance to determine what level of confidence a range of distances might offer.
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We also evaluate whether distances may provide a measure of familiarity and whether
particular trigger keys are closely associated with particular distances. In order to test
different degrees of familiarity, we evaluate the performance of the TriggerNER model
on a variety of additional test datasets: one built from all training data featuring entity
triggers (training test), one built from unique occurrences of each entity trigger (entity
trigger test), one built from all final trigger keys saved by the trained model (trigger
key test) and one built from randomly generated alphanumerical gibberish (gibberish
test). Note that the trigger key dataset is very similar to the entity trigger dataset.
The trigger key dataset is a subset of the entity trigger dataset with numerical symbols
converted to a generic digit represented by zero. The sizes of the datasets used to test
for familiarity are given in table 4.

Distance familiarity test datasets
Dataset Entries
Training test 1,742

Entity trigger test 1,909
Trigger key test 1,289
Gibberish test 2,000

Total 6,940

Table 4: Entity statistics of the datasets used to test the connection between distance
and familiarity.

4.4 Limitations and Obstacles

Our implementation and experiments run into several limitations and obstacles. To aid
future research, this section details these obstacles.

During implementation, we ran into several programming bugs left in the code which
affected the output of our model. One bug in the LEAN-LIFE pipeline caused each
sentence during prediction with TriggerNER to be reduced to its first character. Another
bug caused trigger keys to use the global list of tokens rather than the relevant training
sentence when converting key indices to strings. This in turn caused the training to
result in significantly less trigger keys and the keys’ strings to be nonsensical. These
bugs have been patched in section 3.3.2 while modifying TriggerNER. The LEAN-LIFE
code with these patched bugs have been made publicly available in section 6.2.

As described in section 4.1, the NLTK tokenization model we use may fail to split
multiple tokens due to the versatile grammar found within the dataset of Tweets. Entity
triggers may lose their associated named entity. As entity triggers must be associated
with a named entity, we opt to cull these entries.

Our original vision for explanations included generating entity triggers within the
prediction sentence itself. However, TriggerNER does not natively support this. Trig-
gerNER instead computes the entity trigger most similar to the prediction sentence
as approximation for efficiency. We extract the trigger key associated with this entity
trigger as an approximation of this explanation as well. Notably, trigger keys are not
associated with one specific named entity in a predicted sentence and a predicted sen-
tence may give multiple named entities, so trigger keys do not explain why one specific
named entity was tagged. A naive implementation to determine entity triggers within a
sentence during prediction was attempted, but this added a significant amount of time
to the prediction process and was abandoned due to time constraints. More research
may be able to find a less naive and more efficient implementation accomplishing this.

Finally, TriggerNER utilizes randomized shuffles during training which are not prop-
erly seeded. This reduces the reproducibility of our experiments. In order to make
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the results of our experiments reproducible, we make the trained models used during
evaluation publicly available in section 6.2. Future extensions of TriggerNER should
implement more deterministic randomization.

5 Results and Analysis

We run experiments using the setup described in section 4 and evaluate the results.

5.1 Overall Performance

In this section, we evaluate the overall performance of the Standard model and the Trig-
gerNER model. We find that the TriggerNER model outperforms the Standard model,
achieving a higher F1 score. This increased performance comes from a considerable
improvement in the TriggerNER’s recall compared to the Standard model, indicating
the TriggerNER model achieves less false negatives.

Table 5 displays the performance of the Standard NER model and our TriggerNER
model on the verification dataset and the various test datasets. The table has been sepa-
rated into multiple sub-tables (5a)–(5d) as the datasets have differences worth evaluating
separately. For instance, the floods datasets in (5a) and (5b) contain more familiar to-
kens seen during training than the cyclone dataset in (5c) and the hurricane dataset in
(5d). The best-performing scores of each column have been bolded for emphasis.

5a. Floods dev data
Model Precision Recall F1 score

Standard NER 98.75% 69.60% 81.65%
TriggerNER 91.83% 84.14% 87.82%

5b. Floods test data
Model Precision Recall F1 score

Standard NER 96.15% 52.97% 68.31%
TriggerNER 86.96% 84.75% 85.84%

5c. Cyclone test data
Model Precision Recall F1 score

Standard NER 91.27% 8.493% 15.54%
TriggerNER 82.60% 58.57% 68.54%

5d. Hurricane test data
Model Precision Recall F1 score

Standard NER 97.44% 18.68% 31.35%
TriggerNER 75.93% 49.95% 60.26%

Table 5: Evaluation of the dev and test datasets with and without entity triggers.

The TriggerNER model achieves a higher F1 score than the Standard model on
each dataset by 6.2–53%, indicating a more successful model. This performance in-
crease comes from an improvement on the recall score, where TriggerNER outperforms
the Standard model on each dataset by 15–50%. This indicates that TriggerNER pro-
duces less false negatives, finding more named entities. This improvement comes at
a slight cost of precision, as the Standard model achieves a 6.9–22% higher precision
score than TriggerNER on each dataset. This indicates that TriggerNER also produces
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more false positives, though to a lesser degree than it prevents false negatives at. The
significant performance increase on the recall and F1 score on the cyclone and hurri-
cane test datasets indicates the TriggerNER model achieves greater generalizability to
unseen entities. Overall, we conclude that the TriggerNER model trained on our trigger-
enhanced dataset outperforms the Standard model trained without entity triggers. The
TriggerNER model itself as well as our dataset enhanced with entity triggers as per our
style guide are considered useful for NER modelling.

5.2 Error Analysis

In this section, we evaluate the errors made by the Standard model and TriggerNER
model. We conclude that the TriggerNER model is better at inferring named entities
from surrounding context, whereas the Standard model performs better in sentence
fragments without context.

We evaluate the errors made by both models on the floods test dataset. In the pro-
cess, we find that a handful of errors are actually errors in the test dataset’s ground truth
where the prediction was correct. These errors in the ground truth are detailed in tables
6 and 7. Some prediction errors may also be counted as a correct prediction while the
ground truth was not incorrect either. One such example is a named entity “Alappuzha
district” which was predicted as just “Alappuzha.” We dub these errors “synonymous
errors.” These synonymous errors are further detailed in table 8. Altogether, 5 errors
from the Standard model can be considered correct predictions instead, of which 2 false
negatives, 3 false positives and no synonymous errors. The TriggerNER model finds 21
errors which can be considered correct predictions, of which 2 false negatives, 12 false
positives and 7 synonymous errors.

We further elaborate on the errors detailed in tables 6 – 8. Table 6’s error (1) is
annotated incorrectly in the ground truth as the “@” symbol should not be considered
part of the location entity. Error (2) is an error in the ground truth as the named entity
does not refer to a specific geographical entity.

For table 7, errors (1)–(10) are trivial. The named entities predicted by the NER
models are locations, whereas the ground truth did not annotate these as locations.
Errors (11) and (12) arise due to tokenization errors on account of grammatical errors
in the source text. Both of these errors contain a specific location and exist in a context
hinting at a location. However, these tokens also contain characters not part of their
respective locations. In case of error (11), the possessive “s” was not separated from
the location as its apostrophe is absent. In error (12), the period and “All” were not
tokenized separately as the space after the punctuation mark is absent. We consider
these as detected locations for completeness. As for error (13), two distinct locations
are given within the same token, connected by an underscore. We count this as a valid
location as well.

In table 8, errors (1)–(3) identify the specific location mentioned in the ground truth
but ignore the generic location words succeeding these. We consider these errors to
be valid synonyms of the ground truth’s named entity. Errors (4)–(7) are the inverse
situation, as both NER models label the generic location words succeeding the specific
location’s names whereas the ground truth opts not to. We consider these errors valid
synonyms as well.
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Erroneous false negatives in floods test predictions

# Sentence
Ground
Truth

Standard
NER

TriggerNER

(1)
Did @Cristiano Ronaldo Donate 77
Crore for @Kerala Flood? If yes,
everyone should #PROUD Of him.

@Kerala @Kerala

(2)

#KeralaFloods Relief Housing.
This technology is suitable for #re-
habilitation housing needed for
the lakhs of people displaced by
the floods. Fast, Solid, Low Cost.
#KeralaFloodRelief #affordable-
Housing #construction

KeralaFloods
Relief

Housing
—

Table 6: False negatives in the floods test data predictions coming from annotation
errors in the ground truth.

Erroneous false positives in floods test predictions

# Sentence
Ground
Truth

Standard
NER

TriggerNER

(1)

India has refused to accept over-
seas donations for flood relief in
Kerala, Thailands Ambassador to
India Chutintorn Sam Gongsakdi
has said.

— India

(2)

Comrade Saji Cherian,our MLA
from Chengannur constituency
who is participating in the flood
relief work in Kerala. Our re-
solve to build New Kerala is getting
strengthened by active support of
the people.

— — Chengannur

(3)

RT @dinesh rajini: Anyone
please help them. #Ker-
alaSOS, #KeralaFloods ,
#KeralaFloods,#Kerala , #Ker-
alaFloodRelief

— Kerala —

(4)

Requirement of things in DD
Global Village, #Aluva - 1.
Drinking Water - For 100 Oc-
cupants 2. Sanitary Napkins -
20Women 3. Baby Diapers 4. Rice
5. Cereals 6. Grains 7. Sugar 8.
Tea Powder 9. Skimmed Milk Pow-
der 10. Atta #KeralaFloodRelief
#WeAreKerala #SupportKerala

— — Aluva

Continued on the next page
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Continued from the previous page

# Sentence
Ground
Truth

Standard
NER

TriggerNER

(5)

A Family Need urgent Help.
contact number:8113889990,
Chattukulam Siva Temple
Rd, Kadungalloor, Aluva, Kerala
683511 #KeralaFloods

— —
Chattukulam
Siva Temple

(6)

Pamba river near chengannur
#Thiruvalla before and after ker-
ala floods #KeralaFloods #Ker-
alafloods2018

— — chengannur

(7)

Madhya Pradesh police donated
Rs 1.31 crore to Kerala Chief Min-
isters distress relief fund. All po-
lice personnel of state will donate
1 days salary for same: Madhya
Pradesh Director General of Po-
lice (ANI) Here’s how you can help
#KeralaFlood victims:

— —
Madhya
Pradesh

(8)

Madhya Pradesh police donated Rs
1.31 crore to Kerala Chief Minis-
ters distress relief fund. All po-
lice personnel of state will do-
nate 1 days salary for same:
Madhya Pradesh Director Gen-
eral of Police (ANI) Here’s how you
can help #KeralaFlood victims:

— —
Madhya
Pradesh

(9)

REST IN PEACE: Sgt. Eddison
Hermond, a member of the Mary-
land National Guard and an Air
Force veteran, was helping rescue a
woman and her cat when the rush-
ing waters swept him away during
Sundays flooding in Ellicott City,
MD

— — MD

(10)

RT @CAChirag: Should Central
Govt Accept Financial help of 700
Cr from UAE? #KeralaFloods
#UAE #Kerala

— — UAE

(11)

India has refused to accept overseas
donations for flood relief in Ker-
ala, Thailands Ambassador to In-
dia Chutintorn Sam Gongsakdi has
said.

— — Thailands

Continued on the next page
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Continued from the previous page

# Sentence
Ground
Truth

Standard
NER

TriggerNER

(12)

As a relief measure to the people
of severely flood hit Kerala, 9 lakhs
litres of filtered drinking water sent
to kerala by a water special train
from Ratlam to Palghat.All 15
tanks filled with potable water &
quality of water of each tank tested
#helpinghand #KeralaFloodRelief

— — Palghat.All

(13)

My brothers, aunt and
Grand-Parents are stuck in
Moozhikkakadavu pariyaram,
Chalakkudy. Location -
10.308208,76.351140. Phone -
+918075659446. Please RT so
some1 can help them. Grand-
parents health getting worse.
Havent had proper food in 2 days.
#KeralaFloods #KeralaSOS

—
Moozhikkakadavu

pariyaram

Table 7: False positives in the floods test data coming from annotation errors in the
ground truth.

Errors in floods test predictions considered valid synonyms

# Sentence
Ground
Truth

Standard
NER

TriggerNER

(1)

Pamba river near chengannur
#Thiruvalla before and after
kerala floods #KeralaFloods
#Keralafloods2018

Pamba river — Pamba river

(2)

#WATCH: Exclusive OTV on-
ground coverage from one of the
largest relief camps set up in a
school in Kanichukulangara of
Alappuzha district #Kerala.
The school is currently shelter-
ing around 5,500 people affected
in #KeralaFloods #OTVInKer-
ala #OTVExclusive

Alappuzha
district

—
Alappuzha
district

Continued on the next page
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Continued from the previous page

# Sentence
Ground
Truth

Standard
NER

TriggerNER

(3)

Generous gesture
:Maharashtra State Road
Transport Corporation headed
by Shiv Sena leader and trans-
port minister Diwakar Raote
donated Rs 10 crore to the CMs
Distress fund for #KeralaRe-
liefFund. This is 50% of what
Fadnavis announced as state aid
to Kerala. #KeralaFloods

Maharashtra
State

—
Maharashtra

State

(4)

Flash floods ravage Maryland
town: A state of emergency was
declared in Howard County,
as a massive storm drenched
the Baltimore region, triggering
flash floods in Ellicott City and
leaving one person missing.

Howard
County

—
Howard
County

(5)

Please pray for a brave vet who
is missing in Maryland in the
flooding. Ellicott City, Mary-
land flash floods leave National
Guard member missing, devas-
tate town recovering from 2016
deluge #FoxNews

Ellicott City — Ellicott City

(6)

Eddison Hermond, a National
Guard sergeant who is believed
to have been swept away while
helping a woman find her cat
during Ellicott City flooding,
is still missing

Ellicott City — Ellicott City

(7)

Howard County officials
are searching for a Maryland
National Guardsman reported
missing from Sunday’s devas-
tating floods. Police say he was
helping search for a missing cat
when he was last seen.

Howard
County

—
Howard
County

Table 8: Errors in the floods test data’s predictions which may actually be considered
valid synonyms of the ground truth’s named entities.

Among all errors, we find that the Standard model is better at picking out named
entities that have no surrounding context, such as hashtagged locations appended at
the end of a Tweet. The Standard model correctly predicted 6 hashtagged locations
outside context at the end of a Tweet which the TriggerNER model did not predict.
This includes 1 erroneous false positive from table 7. The TriggerNER model has not
found any locations like this which were missed by the Standard model.

TriggerNER meanwhile excels at picking out named entities within context, such as
locations following the word “in.” TriggerNER predicted 95 of these contextual entities
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which the Standard model did not detect, including 10 erroneous false positives from
table 7. The Standard model picked out 1 contextual entity missed by TriggerNER.

As a result of TriggerNER’s increased contextual generalizability, a few more errors
made by TriggerNER are false positives for words that follow context which resembles
context surrounding locations, such as “backdrop” in “they might cancel it in backdrop”
and “ur” in “teams active in ur location.” TriggerNER predicted a total of 10 false
positives like these while the Standard model predicted 1 false positive like this. These
exclude the erroneous false positives from table 7 and the synonymous errors from table
8.

5.3 Distances

In this section, we show that the distances given by the model are not a measure of
confidence. Instead, distances can be used as a measure of familiarity. In particular, a
distance tells us how similar the tokens closest to the outer edges of the sentence are to
the nearest trained trigger in the eyes of the model.

Each prediction made by our TriggerNER model also outputs the numerical value d,
which is the distance between the encoded prediction sentence vector and the nearest
encoded trigger vector learned during training. This distance is computed for the entire
prediction sentence and not any specific token or predicted named entity. Our hypothesis
states that this distance can be utilized as a measure of confidence in the produced entity
prediction. In order to test this hypothesis, we first evaluate the ranges, means and
medians of each dataset, categorized by predictions which were correct and incorrect.
The results are given in table 9. Table 9 has been separated into multiple sub-tables
(5a)–(5c) in order to evaluate differences between datasets containing more familiar
tokens seen during training and less familiar tokens.

9a. Floods test data

Data Count
Smallest
distance

Greatest
distance

Mean Median

All data 162 0.007318 1.539 0.5626 0.5307
Correct predictions 117 0.009083 1.532 0.5673 0.5147

Predictions with errors 45 0.007318 1.539 0.5506 0.5565

9b. Cyclone test data

Data Count
Smallest
distance

Greatest
distance

Mean Median

All data 1,038 0.01013 1.950 0.5829 0.5293
Correct predictions 553 0.01013 1.565 0.5856 0.5326

Predictions with errors 485 0.08894 1.950 0.5799 0.5203

9c. Hurricane test data

Data Count
Smallest
distance

Greatest
distance

Mean Median

All data 1,038 0.09380 1.577 0.5985 0.5394
Correct predictions 599 0.1024 1.577 0.5998 0.5398

Predictions with errors 539 0.09380 1.516 0.5967 0.5391

Table 9: Ranges and averages of prediction trigger distances found for the test datasets.

The results show no significant difference between distances found for correct and in-
correct predictions. Each dataset achieves a mean distance close to 0.59 and a median
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close to 0.53 regardless of whether correct or incorrect predictions are evaluated. We
note that the floods test dataset finds smaller lower bounds to its range and a lower
mean average, despite having less samples to achieve a lower bound with. As shown in
figure 1, the floods test dataset results in a notably higher proportion of predicted dis-
tances below 0.1 than the other two test datasets. This may indicate a relation between
lower distances and familiarity, as the floods test data resembles the training data more
closely.
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Figure 1: Frequency of prediction trigger distances in the test datasets.

In addition, we analyze the obtained range of distances between correct and incorrect
predictions using the Mann-Whitney U test. This helps determine whether the average
distances for correct and incorrect predictions are truly not statistically significant. The
Mann-Whitney U test can be performed as each prediction is independent and the
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distribution between correct and incorrect predictions is similar. A small p-value such
as 0.05 or lower would indicate a statistical significance between the distribution of
distances of correct and incorrect predictions. However, the floods test data achieves a
p-value of 0.90, cyclone test achieves 0.67 and hurricane test achieves 0.79. We conclude
that there is no significant difference between the distances of correct and incorrect
predictions.
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Figure 2: Evaluation of the cyclone and hurricane test datasets ordered by prediction
trigger distance with intervals occurring less than 20 times culled.

25



Next we evaluate the accuracy of the model’s predictions more closely across smaller
intervals of distance in order to determine whether smaller distances provide greater
accuracy and subsequently greater confidence. The amount of predictions made for each
distance interval can be found in figure 1. These performance scores of each interval
for the larger two datasets are plotted in figure 2. Intervals containing less than 20
predictions are culled from figure 2 in order to ensure a decent sample size for each data
point while determining a pattern.

The performance patterns seen in figures 2 show no significant correlation between
distances and performance either. We reject the hypothesis stating that the distance
offers a measure of confidence of the prediction’s accuracy.

We develop a new hypothesis. We hypothesize that the distance value offers a mea-
sure of familiarity. In other words, prediction sentences which resemble those seen
during training are expected to produce lower distance values than prediction sentences
built from unseen tokens. We use the datasets detailed in table 4. These datasets are
constructed as follows:

• Training test: 1,742 unique Tweets consisting of all training data which features
entity triggers.

• Entity trigger test: 1,909 unique entity triggers taken from the training data.

• Trigger key test: 1,289 unique trigger keys, composed from the final list of trigger
keys obtained during training.

• Gibberish test: 2,000 unique sentences consisting of randomly generated alphanu-
merical noise.

We define hypothesis (i) stating that the entity trigger test and trigger key test datasets
will achieve lower distances than the averages of around 0.53–0.59 found in table 9,
as these datasets contain entries closely resembling trained triggers. In addition, we
define hypothesis (ii) stating the gibberish test dataset will achieve greater distances
than average as its entries will generally not resemble those found in the training data.
Finally, we define hypothesis (iii) stating that the training test dataset will achieve lower
distances than average but greater than those found for the entity trigger test and trigger
key test datasets, as the tokens found in this dataset are familiar training data but not
as similar to the trained trigger keys. The ranges and averages we find for each dataset
are given in table 10.

Distance familiarity test datasets

Dataset
Smallest
distance

Greatest
distance

Mean Median

Training test 0.001613 1.799 0.3228 0.01958
Entity trigger test 0.1890 1.922 0.9324 0.9364
Trigger key test 0.2196 1.839 0.9166 0.9285
Gibberish test 0.2026 1.593 0.5365 0.5144

Table 10: Ranges and averages of prediction trigger distances found for familiarity tests.

The results of table 10 indicate a degree of familiarity with the training data affecting
the distances.

The test data identical to the trigger-annotated training data achieve much lower
average distances than the other test datasets in tables 9 and 10, including the entity
trigger test and trigger key datasets. Therefore, we reject hypothesis (iii). Additionally,
the test data containing entity triggers and trigger keys do achieve similar distances
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to each other, but much higher than the expected average of 0.53–0.59. We reject
hypothesis (i). Finally, the gibberish test data attains fairly average distances also
seen in table 9, rather than high distances. We reject hypothesis (ii). The notably
low distances attained by the training test dataset indicates that low distances indicate
similarity to the training data. However, the high distances obtained by the entity
trigger test and trigger key test datasets indicate that the training test dataset’s low
distances are not due to the similarity to the trained entity triggers.

We develop another hypothesis. As the gibberish test data consists of alphanumerical
noise, no punctuation symbols are found in it. If we place a period at the end of each
gibberish sentence, the gibberish data will more closely resemble the training data which
often has sentences ending in a period as well. Thus we hypothesize that the distances
found for the gibberish test dataset will lower if we append a period token at the end
of each prediction sentence. We find that the attained distances do indeed lower. The
smallest distance is 0.17, the greatest distance is 1.0, the mean is 0.46 and the median
is 0.46.

We hypothesize that all prediction distances move closer to a specific value when
each sentence ends in a period, again to make sentences resemble the training data.
We modify each test dataset by adding an additional period token at the end of each
sentence. We find that the mean for every modified test dataset is between 0.46–0.58
and the median is between 0.46–0.59. Experimenting further by placing a period token
at different parts of the sentence, we find that a similar effect occurs when prefixing each
sentence with a period token. Placing a period at the start and end of each sentence
produces a mean distance across all datasets of 0.36–0.50 and a median of 0.36–0.51.

We test the effect of tokens in the first or last position of the sentence further by using
different tokens than a period. We find that each token is associated with particular
distance values they are inclined to move the prediction towards. We exhibit this by
modifying all test datasets such that each prediction moves towards a very low value. We
also show that we can move each prediction to a very high value. First, we take each of
the preceding test datasets (floods test, cyclone test, hurricane test, training test, entity
trigger test, trigger key test and gibberish test). We look up which prediction sentences
achieved the smallest and greatest distance across all datasets and take note of their first
and last tokens, in this case respectively “Marylands” and “tictocnews” for the smallest
distance (0.001613) and “Flooding” and “>” for the largest distance (1.950). All test
datasets are modified by adjoining the tokens associated with the smallest distance to
the first and last positions of each sentence. Each modified dataset is evaluated on
achieved distances again and the results are given in table 11. The same evaluation is
performed by modifying all test datasets with the first and last tokens associated with
the greatest distance, with results given in table 12.

The results of these tests given in tables 11 and 12 show that the distance values are
strongly affected by the first and last token of a sentence. We show that any sentence can
be strongly coerced to a particular distance value by prefixing or suffixing a particular
token to it.
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“Marylands [ . . . ] tictocnews” familiarity datasets

Dataset
Smallest
distance

Greatest
distance

Mean Median

Modified floods test 0.03789 0.08386 0.05571 0.05477
Modified cyclone test 0.03523 0.1156 0.05890 0.05834

Modified hurricane test 0.03525 0.1064 0.05691 0.05588
Modified training test 0.01869 0.2715 0.06488 0.05537

Modified entity trigger test 0.01943 0.1125 0.04310 0.04094
Modified trigger key test 0.01943 0.1216 0.04422 0.04269
Modified gibberish test 0.03064 0.1658 0.04670 0.04555

Table 11: Ranges and averages of prediction trigger distances found by adjoining the
tokens “Marylands” and “tictocnews” to the first and last respective position of each
sentence.

“Flooding [ . . . ] >” familiarity datasets

Dataset
Smallest
distance

Greatest
distance

Mean Median

Modified floods test 1.657 1.778 1.680 1.679
Modified cyclone test 1.645 1.780 1.682 1.676

Modified hurricane test 1.652 1.779 1.681 1.679
Modified training test 0.8370 2.041 1.814 1.868

Modified entity trigger test 0.8137 2.030 1.671 1.734
Modified trigger key test 0.7446 2.030 1.656 1.728
Modified gibberish test 1.395 2.015 1.786 1.784

Table 12: Ranges and averages of prediction trigger distances found by adjoining the
tokens “Flooding” and “>” to the first and last respective position of each sentence.
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Distances against quantity of predictions without NEs
Cyclone test Hurricane test

Interval
With
NEs

Without
NEs

Total
With
NEs

Without
NEs

Total

0.0–0.1 1 2 3 1 0 1
0.1–0.2 11 13 24 4 12 16
0.2–0.3 33 26 59 29 33 62
0.3–0.4 76 62 138 67 75 142
0.4–0.5 107 114 221 87 127 214
0.5–0.6 132 108 240 95 109 204
0.6–0.7 74 36 110 63 56 119
0.7–0.8 46 28 74 32 49 81
0.8–0.9 31 23 54 17 38 55
0.9–1.0 18 12 30 18 31 49
1.0–1.1 17 7 24 9 18 27
1.1–1.2 10 8 18 12 16 28
1.2–1.3 13 5 18 10 9 19
1.3–1.4 4 7 11 4 7 11
1.4–1.5 2 5 7 1 7 8
1.5–1.6 3 1 4 1 1 2
1.6–1.7 0 1 1 0 0 0

Table 13: Distance intervals 0.0–1.7 with the corresponding quantity of predictions with
feature at least one named entity or zero named entities for the cyclone test and hurricane
test datasets.

0 0.25 0.5 0.75 1 1.25
0

25

50

75

100

Distance interval →

N
o
p
re
d
ic
te
d
N
E
s
[%

]
→ Distances against percentage of predictions without NEs

Hurricane test
Cyclone test

Figure 3: Distance intervals plotted against percentage of predictions without named
entities for the cyclone test and hurricane test datasets with intervals occurring less than
20 times culled.
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In addition, we test whether distances correlate to a tendency to predict no named
entities. Each predicted distance is categorized on intervals of size 0.1. We sum the
amount of predictions which feature zero named entities by their associated distance
interval in table 13. We statistically test if there is a correlation between the achieved
distance interval and whether or not a named entity was predicted by performing a
chi-squared test over the distance range 0.0–1.7 for the cyclone test and hurricane test
datasets. We define a null hypothesis stating that the distance intervals and quantity
of predictions with or without named entities are independent. A small p-value such
as 0.05 or lower may disprove this null hypothesis for a dataset. We compute the test
statistic for both test datasets using the values found in table 13. The test statistic for
the cyclone test dataset sums to 23.73 and the test statistic for the hurricane test dataset
sums to 20.55. The associated chi-squared distribution of these sums are respectively
16 and 15. Thus we compute a p-value for the cyclone test dataset of 0.023 and a p-
value for the hurricane test dataset of 0.035. As these p-values are both below 0.05, we
reject the null hypothesis and conclude that there is a correlation between the distance
intervals and the quantity of predictions with or without named entities.

We further examine this correlation by plotting the found distance intervals against
the percentage of predictions which feature no named entities. We only plot distance
intervals with at least 20 predictions in order to assure a decent sample size for each
data point when determining a pattern. See figure 3. The percentage of named entities
predicted for each data interval varies sporadically between intervals. There is no com-
mon pattern between the two datasets. Furthermore, the trend line for the cyclone test
dataset slowly decreases in the amount of predictions without named entities as distance
increases whereas the hurricane test dataset’s trend line increases. We conclude that
while the chi-squared test shows there exists a correlation between the distance interval
and whether or not named entities are predicted, it does not generalize to a consistent
relationship between datasets. This makes distances untenable as explanation as to why
no named entities may be predicted for a sentence.

From the results of tables 10, 11 and 12, we conclude that distances express the
familiarity between the training data and the bordering tokens of prediction sentences.
In the case of our trained models, a value below 0.53–0.59 indicates greater familiarity
while a value above 0.53–0.59 indicates greater unfamiliarity. Models trained on other
entity trigger data achieve a different trigger vector space and would find a different
threshold. No correlation is found between distances and accuracy. There may be a
correlation between distances and the prediction of zero named entities, but this does
not generalize to an effective explanation.

The familiarity being as dependent as it is on the bordering tokens of a prediction
sentence indicate a possible concern. For instance, a period inserted at the end of a
sentence would not affect the familiarity of a sentence in drastic ways to a human reader.
However, the distance of all sentences beginning or ending with a period token is strongly
coerced towards a specific value just below average. In addition, table 11 shows that
any sentence can seem incredibly familiar just by including the token “Marylands” at
the start and the token “tictocnews” at the end. This includes even sentences which
are complete gibberish. Similarly, table 12 shows that even training data can seem
wholly unfamiliar when the tokens “Flooding” and “¿” are appending to the ends of its
sentences. This behavior differs severely from how humans would interpret sentences.
The behavior may be indicative of an erroneous pattern of recognition having been
learned by the model.
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5.4 Trigger Keys

In this section, we evaluate how applicable trigger keys are as explanations. We find
that the string of text provided as a trigger key is not useful for human interpretation.

Our extended TriggerNER model outputs a trigger key kt with each prediction.
Trigger keys are predicted for the entire prediction sentence and not any particular token
or predicted named entity. This trigger key gives a human-readable representation of the
trained entity trigger whose encoding is deemed most similar to the encoded prediction
sentence. These most similar entity triggers from the training data are used by the model
as an approximation of the entity triggers in the prediction sentence without requiring
the model to pick out entity triggers for each named entity in the prediction sentence
itself. In this section, we analyze how useful these trigger keys are as explanations to the
given predicted named entities. We also analyze whether there is a correlation between
trigger keys’ attained distances, performance and amount of sentences predicted without
named entities.

The TriggerNER model trained on our dataset learns a total of 1,289 trigger keys.
During prediction, a total of 613 different trigger keys are found across all test datasets.
Of these, 134 are found in the floods test data, 398 are found in the cyclone test data
and 403 are found in the hurricane test data. The 20 most common trigger keys across
all three test datasets are found in table 14. Each trigger key is given with its respective
occurrence count, distance range and averages, performance evaluation and percentage
of sentences predicted to have no named entities.

The small sample size for each trigger key makes it difficult to determine any strong
relationship between trigger keys and distances, performance or predictions without
named entities. Analyzing the relationship between trigger keys across table 14 which
attain lower or higher distances, performances and predictions without named entities
reveals no obvious correlation between the three statistics among the most common
trigger keys either. The table shows that higher distances occur similarly between higher
or lower performances, higher performances occur between higher or lower percentages
of predictions without named entities, and so on. As an example, the trigger key “aid
for” achieves an average distance of 0.50 and one of the lowest observed performances
with an F1 score at 44%. However, the trigger key “Center” achieves a very similar
average distance of 0.51–0.52 and one of the highest observed F1 scores at 67%. No
patterns are identified.

We analyze the interpretability of the string of text given as the trigger key for
each prediction. A total of 613 out of 1,289 trigger keys occur in our predictions. One
example of a prediction:

Khalsa Aid to the forefront!!

kt = set up in

d = 0.7706

Trigger keys function as a label for which specific trained trigger vector was picked as
closest approximation of the prediction sentence, much like a form of identification. As
explanation for the decision itself, however, trigger keys offer little insight. Tokens found
in the trigger key are rarely found in the prediction sentence. In the previous example,
none of the tokens in the trigger key “set up in” appear in the sentence. Even when
the prediction sentence features tokens found in the trained trigger keys, a less-related
trigger key is often picked. For instance, the previous example’s trigger key “set up in”
appears in the following sentence:

#WATCH: Exclusive OTV on-ground coverage from one of the largest relief camps
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set up in a school in Kanichukulangara of Alappuzha district #Kerala. The school

LOC LOC LOC
is currently sheltering around 5,500 people affected in #KeralaFloods #OTVInKerala

#OTVExclusive

kt = at EDAYARANMULA

d = 0.5565

Although this prediction sentence includes the exact phrase “set up in,” the aforemen-
tioned trigger key “set up in” was not determined to be the closest approximation of
this sentence. Instead the trigger key “at EDAYARANMULA” is the closest approxima-
tion, despite having no tokens in common with the sentence. Any semantic relatedness
between the trigger key and sentence is difficult to determine.

Even when there is a trigger key that is a perfect match to a prediction sentence,
the closest approximation of the sentence is likely still an unrelated trigger key. Take
the following example:

People from South India
LOC

kt = counties in Maryland

d = 0.9478

The trigger key “counties in Maryland” is a perfect lexical and semantic match with the
identical sentence:

counties in Maryland

LOC

kt = PARTS OF SOUTHERN

d = 1.026

Yet its closest trigger key is determined to be a phrase with no tokens in common.
Ambiguous decisions like this are found repeatedly throughout the test data results.
Ultimately, we conclude that trigger keys offer little human insight to the decision of
which trained trigger is the best approximation for a sentence, nor which token groupings
are chosen as named entities.

The mystifying choice of trigger key may indicate erroneous reasoning from the
model. As shown, the model often picks trigger keys with no lexical or semantic sim-
ilarity to the prediction sentence even when more suitable trigger keys are available.
Human users would opt for notably different trigger keys than the model would. This
may indicate that the model has learned undesirable reasoning during its training.
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Table 14: Occurrence count, distance ranges and averages, performance and amount
of sentences predicted without named entities corresponding to the 20 most common
trigger keys found across the floods test, cyclone test and hurricane test datasets.
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6 Conclusion and Outlook

6.1 Conclusion

In this paper, we test the applicability of entity triggers in XAI.
By extracting information about the decisions made by the TriggerNER model during

the NER prediction process, more insight is gained into the process. The explanations
which can be extracted from the TriggerNER model consist of trigger keys and distances.
Trigger keys and distances relate to the entire prediction sentence rather than particular
tokens or predicted named entities. Trigger keys are strings of text representing trigger
vectors, aiding human interpretability. Distances indicate how similar the prediction
sentence is to the training data in the eyes of the model. Therefore, the answer we reach
to the second sub-question formulated in section 1.2, “What explanations are offered
to justify tagging an entire Tweet as containing a location entity?” is trigger keys and
distances.

The trigger keys describe text from the training data rather than the prediction data.
It is generally difficult to see the connection between the trigger key and the prediction
sentence. Trigger keys ultimately do not offer a cogent nor intuitive explanation for
prediction decisions. The distance value gives a sense of how similar the model considers
the prediction sentence to be to the predicted entity trigger. We find that this distance
has a focus on the first and last token of the sentence. We also find that this distance
is lower when these bordering tokens are similar to the border tokens found in training
data. The TriggerNER model trained on our training data achieves an average distance
of around 0.53–0.59, where distances below this average are considered more familiar
and larger distances are considered less familiar. This achieved average distance depends
on the entity trigger vector space learned from the training data and a model trained on
different training data will achieve a different range of distances. However, no connection
is found between distance size and performance of the model. Altogether, entity triggers
do not offer much additional explanation towards prediction choices or performance. The
third sub-question “Are the offered explanations intuitive?” is answered in the negative.

Trigger keys and distances offer little correlation to interpret why the model may
determine there are no named entities in a sentence. The answer to our fourth sub-
question, “What explanations are offered to justify tagging an entire Tweet as not
containing a location entity?” is none.

As part of this paper, we extended a floods disaster dataset by annotating entity
triggers in accordance to a style guide we composed. The overall performance of the NER
model improved with the inclusion of these entity triggers, boasting a higher F1 score by
6.2–53% and much higher recall score by 15–50%. False positive predictions were slightly
more common by 6.9–22%. The trigger-enhanced model improves the generalizability of
predictions. This answers the first sub-question, “What is the difference in performance
between algorithms trained on Tweet data annotated with entity triggers and trained
without entity triggers?”

Although overall performance and generalizability improves with the use of entity
triggers, the explanations found to be offered by the model are unsatisfactory. The
chosen trigger key often has no tokens in common with the sentence. Any semantic
relation is often distant. Distances could offer some explanation by determining that a
prediction sentence is similar to data seen before during training. However, the strong
weighting effected by the first and last tokens get in the way of this utility. For instance,
we find that placing a period at the start or end of the sentence reduces the distance
below average. In addition, we find that total gibberish is considered very familiar if
it respectively starts and ends with one specific token. Likewise, even sentences taken
directly from the training data are considered completely unfamiliar if they respectively
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start and end with a specific token. These results for trigger keys and distances alike
are notably different from how humans would evaluate sentences. As such, it may be
that the trigger-enhanced model has learned unsound reasoning in order to approximate
entity triggers.

In conclusion, we answer our main research question “How can entity triggers add
value as explanations for named entity recognition in disaster risk management?” We
extract the string representation of the entity trigger considered to be the most similar to
the prediction sentence, as well as a heuristic telling us how familiar the model considers
the sentence to be. These are the trigger key and distance, respectively. The trigger
key offers little value as an explanation for predicted named entities, having no obvious
relevance to the prediction sentence. Distances explain how familiar the model considers
a sentence to be from its training data, with a focus on the bordering tokens. This adds
some value in the interpretation of an unseen sentence’s familiarity. Altogether, not
much value is added by entity triggers in the area of user explanation.

6.2 Research Products

We present the style guide written in section 3.1, the trigger-annotated flood Tweets
dataset from section 3.2.2, the adjusted TriggerNER model from section 3.3.2, the
Jupyter notebook, the trained NER models and all code used throughout this paper
at the following GitHub page:

https://github.com/Yoriyari/Bachelor-Thesis-Trigger-Explanations/

6.3 Future Directions

The results of this paper offer new directions of research to explore. We find that
explanations for the trigger-enhanced NER process remain lacking. Possible avenues to
discover new explanations are offered. In addition, we opt that further research into the
reasoning done under the hood by the trigger-enhanced NER model is needed. Finally,
we recommend ways in which resources for trigger-enhanced NER may be improved.

6.3.1 Explanations Using Entity Triggers

More research must be done on producing interpretable explanations for the prediction
process. Currently, TriggerNER approximates the entity triggers present in the predic-
tion sentence by taking the trigger vector obtained during the training process which is
interpreted as the most similar to the prediction sentence as per the vector distances.
The ability to pick out entity triggers within the prediction sentence itself would offer
a more intuitive explanation for human readers. One possible avenue of research may
be to test if a NER model can be trained to efficiently predict entity triggers in the
prediction sentence. This research might train NER models using entity triggers as its
named entities. Each model would only train on entity triggers associated with one
specific class. With these models trained to pick out entity triggers from a prediction
sentence, research should test whether the results produced by these models perform
comparably to the approximations which TriggerNER uses. If they do, this approach
may be useful both in terms of accuracy and explainability.

The annotation style guide created for this paper produced a trigger-enhanced dataset
which improved the overall performance of the NER model. This indicates it is suitable
as a guideline for trigger annotation. However, this style guide is written based on the
intuition of the author. Further research will be able to produce trigger annotation
semantics which are more comprehensive and may lead to better model performance.
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6.3.2 Reasoning of Entity Triggers

We have found that trigger keys and distances provide unreasonable explanations. These
may indicate that the model has learned faulty reasoning during its training process.
Further investigation is warranted in regard to how the model computes trigger keys and
distances. Likely the optimal avenue to explore is the mathematical conversion of entity
trigger tokens and prediction sentence tokens into their respective vector representa-
tions. As even prediction sentences identical to trained entity triggers result in different
predicted entity triggers, the difference in their method of calculation is presumed to be
the primary reason trigger keys and distances are not intuitive to human interpretation.

6.3.3 Resources for Entity Triggers

The additional effort involved in annotating entity triggers in datasets, particularly
large datasets, may serve to dissuade the adoption of entity triggers in NER. It would
be fruitful to reduce the human effort in annotating entity triggers. One approach
already being explored by Lee et al. proposes training a model to classify entity triggers
automatically and using human-in-the-loop feedback to eliminate incorrect predictions,
streamlining the intermediate process [18]. Lee et al. has also proposed a framework
streamlining the debugging of models with human-in-the-loop techniques [19].

One additional direction to be explored is generalizing NER models for DRM further.
This paper explores English Tweets, but there are many non-English users on Twitter as
well. These languages often have significantly less training data available and may not
extend as effectively to the NER techniques we use, such as tokenization on whitespaces
as not every language uses space-separation. The collection of datasets from different
regions and languages as well as the exploration of TriggerNER’s utilizability in other
languages should be encouraged.
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