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Abstract

Separation logic is widely used to reason about pointer programs. Code
synthesis through separation logic is therefore useful to generate pointer
programs. Watanabe et al. have created an automatic certification next
to existing synthesisers to certify a synthesisers capabilities. Soundness is
another property which can reason about the correctness of the synthesiser.
In this thesis we show that the language from Polikarpova and Sergey [2018]
is sound.
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Chapter 1

Introduction

There are many different forms of program synthesis, some are very well
known, but not under the name code synthesis. Generative AI can gener-
ate code from a text based description of the algorithm. This concept is
called code synthesis, generally, code synthesis is deriving code based on a
specification. Some different types of specifications include: Generative AI
[Chen et al., 2021], testcases [Perelman et al., 2014], pre- and postconditions
[Polikarpova and Sergey, 2018, Watanabe et al., 2021].

Each type of program synthesis has its own up- and downsides. As most
of you probably know, for generative AI, there is no formal testing used
to ensure that the code it generates is correct. For test-driven program
synthesis, this is also not the case, as the induction problem indicates that
there could be a test it will still fail.

However, using pre- and postconditions from Hoare logic [Hoare, 1969],
we can formally prove that the generated code holds for its specification.
This would have the weakness of not being able to generate pointer programs
and would only work with state-based programs.

Luckily, there exists an extension of Hoare logic, called separation logic
[Reynolds, 2002]. This extension introduces operators for heap manipulation
and disjunctive properties. The research of Polikarpova and Sergey [2018],
Watanabe et al. [2021] uses this concept to generate a proof script which
can be run in the Coq proof assistant.

However, for each time the program outputs code, you would need to
start the Coq proof assistant and check whether the proof holds. Another
property in Hoare logic is called soundness, which can be used to prove that
when the synthesiser gives an output program, that it automatically holds
that the code is valid for the given specification [Hoare, 1969, Reynolds,
2002].

Formal verification tools such as the Coq proof assistant are necessary
to show that the proof is complete without any doubt. The research done
by Watanabe et al. [2021], Polikarpova and Sergey [2018] does not include a
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proof of soundness. In this thesis, we will prove that this language is sound.
However, we do not implement the synthesiser in Coq, which leaves some
degree of uncertainty that the code generated will be correct.

The solution found uses the Coq proof assistant to prove the sound-
ness property for a simplified version of the language used by Watanabe
et al. [2021], Polikarpova and Sergey [2018]. The simplifications are that
we remove negative integers, loops, scopes, functions and thus recursion.
The proof script Bonten [2025] proves soundness for all the cases. However,
the frame rule is replaced with a frame lemma. This does not change the
soundness of the language as having a proven frame lemma has the same
functionality as a proven frame rule.

In this thesis, we will first discuss the prerequisite knowledge on sepa-
ration logic in chapter 2 using the language from Polikarpova and Sergey
[2018] and the separation logic style of Reynolds [2002]. We will then intro-
duce the necessary changes required for code synthesis to separation logic
in chapter 3 as defined in Polikarpova and Sergey [2018]. After which we
will then walk through some of my proof script in chapter 4 to introduce
the concepts which were required to prove soundness in Coq. We will then
continue to the related work in chapter 5 and continue to future work in
chapter 6.
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Chapter 2

Separation logic

This chapter will start with an introduction into separation logic in the
style of Reynolds [2002] for the language by Polikarpova and Sergey [2018],
the modifications needed for synthesis will be done in the next chapter.
First, we will introduce the basics of Hoare logic in section 2.1. Followed
by section 2.2, which will start with an example of why separation logic is
useful. Then, section 2.3 will explain the syntax and big-step of the language
used in this thesis. Then, section 2.4 will explain the assertions and their
semantics of the version of separation logic we use in this research. We
continue with the inference system in section 2.5 and validity in section 2.6.
Lastly, we will show the soundness lemma in section 2.7 and revisit the
example using the previous definitions in section 2.8. This chapter can be
skimmed if the reader is knowledgeable about separation logic.

2.1 Introduction to Hoare logic

Hoare logic is an inference based logic system Hoare [1969], this system is
designed s.t. we can see what is present on the state. Hoare logic uses
syntax called triples, these are denoted as follows:

{P} c {Q}

Here, the pre-condition is denoted as P . The post-condition is denoted with
Q and the commands run in between denoted with c. A Hoare triple can
be used to check the property valid. A Hoare triple is considered valid in
total correctness when the program is both correct and terminates in a finite
amount of steps. Formally, a program is correct if the precondition holds for
all states, the post condition there exists a state s.t. it holds. Let us take
a look at the following example of code which changes its post condition
based on specific pre-conditions:

(1) if y < x then z := y else z := x
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In this case, we can decide which branch will be calculated by the program
by using the state at the start. We can also include a precondition to include
extra information about the relation.

{w > x ∧ w > y}
if y < x then z := x else z := y

{x ≤ z ∧ y ≤ z ∧ w > z}

As we can see, depending on whether we pick x or y to be larger the answer
changes, z is the larger of the 2. So this if statement calculates which variable
is the maximum. If we started with any number bigger than x and y then
we know that any number we picked is bigger than the maximum.

2.2 Introduction example

Separation logic [Reynolds, 2002] is an extension to Hoare logic [Hoare,
1969]. Separation logic adds the separating conjunction operator, denoted as
*. The separating conjunction is based on the simple property of separation
on the heap. Separation is used to denote what is present on the heap,
similar to Hoare logic, which denotes what is present in the state. The 7→
operator specifically is used to indicate that a pointer points to either a
value or an array of values. In separation logic, we can create the following
property with the separating conjunction which does not hold for any heap,
l 7→ n ∗ l 7→ n′. The same property with the normal boolean conjunction
would give: l 7→ n ∧ l 7→ n′ which implies that n = n′.

The separating conjunction allows us to define properties which need ex-
clusion to properly work. An example of this is the function memcpy(x,y,n) of
the standard C library. The ‘man’ page states“ The memcpy(x,y,n) function
copies n bytes from memory area src to memory area dest. The memory
areas must not overlap. Use memmove(3) if the memory areas do overlap.”
Here, x is the area src and y is the area dest. We can use the * operator to
denote the property ’the memory areas must not overlap’:

Example 1.

{x 7→ ⟨x1..xn⟩ ∗ y 7→ ⟨y1..yn⟩} memcpy(x,y,n) {x 7→ ⟨x1..xn⟩ ∗ y 7→ ⟨x1..xn⟩}

To start with, x is a pointer, which points to values on the heap. The
values in the array from x1 to xn is what x points to. We then get the *
operator, meaning that whatever comes after this is disjoint from what came
before. For the pointer y and its values, it works in the same way as the
previously explained pointer x and its values. The command which is run
is the memcpy(x,y,n) function.

Now that we know what the variables are, we can interpret the exam-
ple:”before the execution of memcpy(x,y,n) , there are 2 pointers x and y
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which point to an array of length n, where x and y are disjoint (not over-
lapping). After execution of the code, the pointers will point to the same
content.”.

2.3 Language and big-step

In this section, we will start by explaining the language from Polikarpova
and Sergey [2018]. We will start with its syntax, then we will introduce
heaps and states and lastly, we will introduce its big-step rules.

2.3.1 Syntax

The language used is a simplified version from Polikarpova and Sergey [2018].
The expressions have been simplified by taking away complexity. This was
done by changing malloc(): to not take the size of the allocation, taking
away the function calls and thus recursion. Lastly, the expressions will
contain only non-negative integers.

a, a′ ∈ Aexp ::= n | a+ a′ | a− a′ | a · a′ | x
b, b′ ∈ Bexp ::= tt | ff | a = a′ | a != a′ | a < a′ | a > a | ¬b | b ∧ b′

c ∈ Com ::= x = ∗(x′) | ∗(x) = a | x := a | skip | error |
c1; c2 | if b then c1 else c2 | x = malloc() | free(x)

Here we let x ∈ Variable, n ∈ Nat

In this language, we have arithmetic expressions (Aexp), which can either
be a natural number, a binary operation on two arithmetic expressions or
a variable. There are also Boolean expressions (Bexp), containing tt as
boolean true and ff as false. Then there are basic comparisons, negations
and a boolean conjunction (∧).

There are also commands. The x = ∗(x′) command (load), which loads
the value of the heap at location x′ into the variable x. The ∗(x) = a
command (store), which stores the evaluation of a into the location at value
x in the heap. After which we have the assignment rule, this assigns a value
to a variable in the state. Then we have skip and error, error stops the
program abruptly when called. We also have seq and if commands. Lastly,
we have malloc() and free(). To make our proof of concept easier, the
command malloc(), allocates 1 location to the pointer x which can hold
any size data without requiring the bit or byte size of the data. The next
example will show how to calculate the square of 5 while using the syntax
of this language.
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Example 2.

(1) x = malloc();

(2) ∗ (x) = 5;

(3) y = ∗(x);
(4) y = y · y;
(5) if y > ∗(x) then
(6) skip

(7) else

(8) error;

(9) free(x)

In this example, we can see that we first allocate memory for the pointer
x. Then, on line 2 we initialize the value x points to 5. On line 3, we store
the value of the pointer x into y. Then through lines 5 to 8 we check whether
the value at the pointer y is bigger than the pointer x. If this is the case,
we skip and otherwise we throw error. Of course, we know that x2 is always
bigger than x so this should always be the case. Lastly, we free the variable
x.

2.3.2 Heaps and states

Our heaps and states are both functions where the heap is on a finite domain
and the state is a function from string to natural numbers:

st ∈ State ≜ String → Nat

h ∈ Heap ≜Nat
fin→ Nat

Where
fin→ is defined as follows:

A
fin→ B ≜{f : A → Option B | dom(f ) is finite}

In the rule [mallocNS ] in section 2.3.4, we need to get the next free location
to return for malloc(). To be able to do this, we will need the heaps to
be finite. This is due to the edge case which happens with an infinite heap
which maps all locations to some value. This map exists, but is unreachable
through code. The problem this creates is that we cannot request the next
free location any more, as this does not exist. We can also see from this
syntax, that we use natural numbers for locations on the heap as well as
their values.

The Option keyword can either be Some followed by a value or it can
beNone, meaning it has no value. We can use the option keyword for heaps,
heaps have values which are either pointing to nothing or to something. On
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the heap, we can then create pointers which point to pointers. We can do
this due to the return type of the heap being an optional Nat.

To see how the heap grows, we will check the heap in the previous ex-
ample. In this example, we first start with an empty heap. Then, we call
malloc(): once for x, thus, there is a pointer on the heap. Later, we call
free(x), returning to a heap with 0 values. Which means that for each
command we run, the most the heap can grow or shrink by is 1 per com-
mand. Which means that if we want to reach an infinite sized heap where
all locations point to some value, we would need to have infinitely many
commands. We can assume that this will not be the case and thus we will
not lose any important functionality by having finite heaps.

Update functions

We will also need the update function on the state and heap, which will
define how the state and heap can be updated. This is used in the big-step
semantics.

(st[x 7→ n]) y ≜ if (x = y) then n else st y

(h[l 7→ n?]) k ≜ if (l = k) then n? else h l

Here, n? is an element of Option Nat.

2.3.3 Evaluation functions

We will define the evaluation functions, which can be evaluated from Aexp
or Bexp to Nat and Bool, respectively.

AJ K :Aexp → State → Nat

AJnKst ≜ n

AJa+ a′Kst ≜AJaKst +AJa′Kst
AJa− a′Kst ≜AJaKst −AJa′Kst
AJa · a′Kst ≜AJaKst · AJa′Kst

AJxKst ≜ st x

In this evaluation function, we can see that the expression reduces each
time until reaching either a variable or a natural number, at which point it
evaluates to the value of this expression.
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BJ K :Bexp → State → Bool

BJttKst ≜ true

BJff Kst ≜ false

BJa = a′Kst ≜AJaKst = AJa′Kst
BJa != a′Kst ≜AJaKst ̸= AJa′Kst
BJa < a′Kst ≜AJaKst < AJa′Kst
BJa > a′Kst ≜AJaKst > AJa′Kst

BJ¬bKst ≜ ¬BJbKst
BJb ∧ b′Kst ≜ BJbKst ∧ BJb′Kst

The boolean evaluation function, much like the arithmetic evaluation func-
tion, recursively evaluates the expressions from values in syntax to values
we can use in semantics.

2.3.4 Big-step semantics

This thesis uses natural semantics, we will define a judgement using the
following syntax:

⟨c, st, h⟩ → ⟨st′, h′⟩

In this judgement, we have a c which is a command, a starting st, state and
h, heap. We imply that the command terminates, which then will reach the
final state and heap. By choosing the smallest relation which satisfies the
inference rules, we can define how the commands mutate the state and heap
implying that they terminate.
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loadNS

h (st x′) = Some n

⟨x = ∗(x′), st, h⟩ → ⟨st[x 7→ n], h⟩

storeNS

h (st x) = Some n

⟨∗(x) = a, st, h⟩ → ⟨st, h[st x 7→ SomeAJaKst]⟩

assignNS

⟨x := a, st, h⟩ → ⟨st[x 7→ AJaKst], h]⟩
skipNS

⟨skip, st, h⟩ → ⟨st, h⟩

seqNS

⟨c1, st, h⟩ → ⟨st′, h′⟩ ⟨c2, st′, h′⟩ → ⟨st′′, h′′⟩
⟨c1; c2, st, h⟩ → ⟨st′′, h′′⟩

ifttNS

⟨c1, st, h⟩ → ⟨st′, h′⟩ BJbKst = true

⟨if b then c1 else c2, st, h⟩ → ⟨st′, h′⟩

ifffNS

⟨c2, st, h⟩ → ⟨st′, h′⟩ BJbKst = false

⟨if b then c1 else c2, st, h⟩ → ⟨st′, h′⟩

mallocNS

h l = None

⟨x = malloc(), st, h⟩ → ⟨st[x 7→ l], h[l 7→ Some 0]⟩

freeNS

h (st x) = Some n

⟨free(x), st, h⟩ → ⟨st, h[st x 7→ None]⟩

Note that there is not an error rule, this is because when error is seen, the
program terminates abruptly.

In the load rule, the command updates the state to contain the value of
x′ at the variable x. For store, this happens on the heap, at the location of
the evaluation of x, instead of the string x. The skip rule does not edit the
heap or state. The seq and if rules are similar to other languages, seq uses
a semicolon to separate two consecutive commands. The if rule will branch
to c1 if the boolean evaluation of b is true. While it will branch to c2 if the
boolean evaluation of b is false.

The malloc rule does not contain any bit or bytesize as its argument, due
to a simplification. In this thesis we will assume that malloc will allocate
enough space automatically as this has a negligible influence on the code
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generated by the synthesizer. Here, we will also initialize the value of the
location that was given by malloc to be 1. The free rule will free the heap
of the value stored at the location ‘st x’.

2.4 Semantics of separation logic assertions

This section will introduce the separation logic assertions without any of the
necessary modifications for synthesis.

2.4.1 Syntax extended

The following syntax combines the state system from standard Hoare logic
with a new type of heap predicates such that it can express the state of the
heap and the boolean expressions at the same time. This is not a complete
version of separation logic as this does not contain the magic wand operator
as this is not necessary for this thesis.

P ,Q ∈ SymbolicHeap ::= b | emp | a 7→ a′ | P ∗Q

A separation logic triple in this syntax would then be defined as:

{P} c {Q}

Here, we have a symbolic heap (P ,Q), which can either be a boolean ex-
pression or an expression signifying what is present in the heap. The heap
expression can be empty. It can be an assignment, stating that at the loca-
tion which is at the value of the evaluation of the arithmetic expression a,
contains the value of the evaluation of the arithmetic expression a’. Lastly,
it can be a separating conjunction between two symbolic heaps. The as-
sertion is currently only syntactic sugar. In the next chapter we will split
the symbolic heap into parts and recombine the parts through the assertion
datatype.

2.4.2 Evaluation functions for separation logic

To be able to define the evaluation function for the symbolic heap, we will
now also use the heap in the evaluation call.

SJ K , : SymbolicHeap → State → Heap → Prop (2.1)

SJbKst,h ≜ BJbKst = true ∧ h = ∅ (2.2)

SJempKst,h ≜ h = ∅ (2.3)

SJa 7→ a′Kst,h ≜ h = (AJaKst,AJa′Kst) (2.4)

SJP ∗QKst,h ≜ ∃h1,h2 ,SJPKst,h1 ∧ SJQKst,h2 ∧ h = h1 ∪ h2 ∧ h1 ∩ h2 = ∅
(2.5)
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Here, we can see how the separating conjunction works. In the base cases,
we see that the heap should either be a boolean expression, empty or contain
a singleton. However, when we look at the recursive case, we see that the
recursive call contains two new sub heaps of the original heap. These heaps
are disjoint and their union is our original heap.

We can also note that we can now construct a symbolic heap while
keeping the functionality of the underlying Hoare logic. This is due to
us writing that the heap has to be empty in the case of b. If h was not
empty in b, we could not construct the following valid symbolic heap: {x =
n ∗ y 7→ a} This symbolic heap has a separating conjunction between the
Hoare expressions and the separation logic expressions. Due to (2.2) in the
evaluation of the symbolic heap, the conjunction transforms into the normal
boolean conjunction when we evaluate the separating conjunction where the
heap is empty in h1 and thus h2 = h.

2.5 Inference system

2.5.1 Substitution functions

To be able to define the inference system, we need to be able to substitute
variables into our SymbolicHeap. Which means that we need to be able
to substitute into Aexp and Bexp. We will first define the syntax for a
substitution and then we will define the substitution function for each of the
evaluation functions.

a[x 7→ a′]

In this evaluation function, we see that we want to substitute x to be the
value of the expression a′. Next, we will define how this will work semanti-
cally.

[ 7→ ] :Aexp → Variable → Aexp → Aexp

n[x 7→ a] ≜ n

(a+ a′)[x 7→ a′′] ≜ a[x 7→ a′′] + a′[x 7→ a′′]

(a− a′)[x 7→ a′′] ≜ a[x 7→ a′′]− a′[x 7→ a′′]

(a · a′)[x 7→ a′′] ≜ a[x 7→ a′′] · a′[x 7→ a′′]

x[y 7→ a] ≜

a if x = y

x otherwise
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Next, the Boolean Expression substitution function:

[ 7→ ] :Bexp → Variable → Aexp → Bexp

tt [x 7→ a′] ≜ tt

ff [x 7→ a′] ≜ ff

(a = a′)[x 7→ a′′] ≜ a[x 7→ a′′] = a′[x 7→ a′′]

(a != a′)[x 7→ a′′] ≜ a[x 7→ a′′] != a′[x 7→ a′′]

(a < a′)[x 7→ a′′] ≜ a[x 7→ a′′] < a′[x 7→ a′′]

(a > a′)[x 7→ a′′] ≜ a[x 7→ a′′] > a′[x 7→ a′′]

(¬b)[x 7→ a] ≜ ¬b[x 7→ a]

(b ∧ b′)[x 7→ a] ≜ b[x 7→ a] ∧ b′[x 7→ a]

Lastly, the substitution function for SymbolicHeap:

[ 7→ ] : SymbolicHeap → Variable →
Aexp → SymbolicHeap

b[x 7→ a] ≜ b[x 7→ a]

emp[x 7→ a] ≜ emp

(a 7→ a′)[x 7→ a′′] ≜ a[x 7→ a′′] 7→ a′[x 7→ a′′]

(P ∗Q)[x 7→ a] ≜ P [x 7→ a] ∗Q [x 7→ a]

We can see that this function trickles down until it gets to the variables,
where it will substitute the value of x if it is the same variable name.

2.5.2 Entailment under assertions

We will also need to be able to define entailment on assertions, which we
can define as follows:

=⇒ : SymbolicHeap → SymbolicHeap → Prop

P =⇒ Q ≜ ∀st,h,SJPKst,h =⇒ SJQKst,h

2.5.3 Derivable

To define the inference system that states whether a triple is derivable,
we need to be able to get the variables in a symbolic heap to check if a
variable is being used. We will define a function vars and EV. The vars

function will return all the variables in a SymbolicHeap into a set. The
EV function, which stands for environment variables, will do the same but
for an Assertion, which will be used next chapter.
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load

⊢ {(y 7→ n ∗ P)[x 7→ n]} x = ∗(y) {y 7→ n ∗ P}

store

⊢ {x 7→ a ∗ P} ∗ (x) = a′ {x 7→ a′ ∗ P}
assign

⊢ {P [x 7→ a]} x := a {P}

skip

⊢ {P} skip {P}

inconsistency
P =⇒ ff

⊢ {P} error {Q}

if
⊢ {P ∗ b} c1 {Q} ⊢ {P ∗ ¬b} c2 {Q}

⊢ {P} if b then c1 else c2 {Q}

seq

⊢ {P} c1 {Q} ⊢ {Q} c2 {R}
⊢ {P} c1; c2 {R}

malloc
x /∈ vars(P)

⊢ {P} x = malloc() {P ∗ x 7→ 0}

free

⊢ {P ∗ x 7→ n} free(x) {P}

consequence

P =⇒ P ′ ⊢ {P ′} c {Q ′} Q ′ =⇒ Q

⊢ {P} c {Q}

frame
⊢ {P} c {Q} vars(c) ∩ vars(R) = ∅

⊢ {P ∗ R} c {Q ∗ R}

The rules assign, skip, inconsistency, if, seq and consequence are standard
Hoare logic rules Hoare [1969], while the others are standard separation
logic rules Reynolds [2002]. We will first explain the Hoare logic rules where
necessary and then all the separation logic rules.

The assign rule checks whether the precondition holds when the variable
is substituted by the command, it is standard in Hoare logic to do the
substitution on the precondition Hoare [1969]. The skip rule indicates that
the precondition does not change. The inconsistency rule ensures that the
precondition is entailed by ff , meaning the program terminates abruptly.
Note that the if rule only needs one rule as for both branches of the if rule
we get a derivable conclusion. This is due to either b or ¬b evaluating to
ff . The seq rule indicates that when we run 2 commands consecutively,
we need the postcondition of the first command to be the precondition of
the second command. Lastly, we have the consequence rule in the standard
Hoare logic rules. This rule is special as it does not require any specific
command to be present. This rule strengthens the precondition and weakens
the postcondition, which is useful to transform boolean expressions in the
pre- and postcondition.
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The separation logic rules also work with the same substitution into the
precondition as in Hoare logic [Hoare, 1969, Reynolds, 2002]. Which we can
see in the load rule, which if we recall from the big step semantics, loads a
value from a location on the heap into the state. In the store rule, we see
that the value of the heap changes from a to a′. For the malloc rule, we need
to know that the location is not yet used in the condition P, if this is the
case, then we will create this value on the heap and initialize it to 0. For the
free rule we do the opposite, we need to know in the precondition that there
is a value at location x and then we erase it. Lastly, we have the frame rule,
this rule states that if a condition is present in the pre- and postcondition
and the condition does not have any variables which are in the command,
we can safely remove this condition from both pre- and postcondition.

2.6 Validity and evaluation of a separation logic
triple

We will now introduce the valid function; it ensures that the rules and
reasoning methods you use in Hoare or separation logic accurately reflect
the behaviour of the program. We will go into this function in more detail
in the next chapter.

|= : SymbolicHeap → Com → SymbolicHeap → Prop

|= {P} c {Q} ≜ ∀st∈State,h∈Heap,SJPKst,h =⇒
∃st′∈State,h′∈Heap, ⟨c, st, h⟩ → ⟨st′, h′⟩ ∧ SJQKst′,h′

2.7 Soundness

Completeness and soundness are two possible properties that relate deriv-
ability and validity. Completeness is defined as: valid implies derivable.
However, soundness is its implication in the opposite direction. We will
prove that our inference system is sound, which can be used later to show
that our synthesizer is always correct when giving an output program.
Soundness in Hoare or separation logic means that if a triple is provably
true within the logic, then it is also true in the actual execution of the
program.

Theorem 1 (Soundness). For all commands (c), pre- and postconditions
(P ,Q), if a separation logic is derivable, then it is valid.

⊢ {P} c {Q} =⇒ |= {P} c {Q}

This property is very useful for synthesis, as this is a theorem required
to prove that we get valid code when the synthesizer gives code as output.
We will not prove soundness for this base language, as in the next chapter,
we will prove soundness for the full language.
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2.8 Example

We will now evaluate a variant of the program used in the Hoare introduc-
tion.

Example 3.

(1) x = malloc()

(2) ∗(x) = 17

(3) x1 = ∗(x)
(4) x2 = ∗(y)
(5) if x1 < x2 then z := x2 else z := x1

(6) free(x)

When we decorate this program, starting with the condition {y 7→ n}
we can see the following behaviour:

{y 7→ n}
(1) x = malloc()

{y 7→ n ∗ x 7→ 0}
(2) ∗(x) = 17

{y 7→ n ∗ x 7→ 17}
(3) x1 = ∗(x)
{x = 17 ∗ y 7→ n ∗ x 7→ 17}
(4) x2 = ∗(y)
{x1 = 17 ∗ x2 = n ∗ y 7→ n ∗ x 7→ 17}
(5) if x1 < x2 then z := x2 else z := x1

{z ≤ n ∗ z ≤ 17 ∗ y 7→ n ∗ x 7→ 17}
(6) free(x)

{z ≤ n ∗ z ≤ 17 ∗ y 7→ n}

A decorated program is much like a tree, but for Hoare or Separation logic.
We will use these to prove the validity of a program. Due to soundness,
when a triple is derivable, it is valid.
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Chapter 3

Separation logic for synthesis

In this chapter, we will change the syntax of assertions using the language
and a simplified version of the semantics of Polikarpova and Sergey [2018].
We do these modifications by separating the boolean expressions from the
symbolic heap in section 3.1. We will then change the required semantics in
section 3.2 and the inference system in section 3.3. We then show validity
and the soundness lemma again in section 3.4 after which we revisit the
example again with the new syntax in section 3.5.

3.1 Syntax

This syntax combines the state system from standard Hoare logic with a dif-
ferent symbolic heap that can express the state of the heap and the boolean
expressions separately. This is useful for synthesis as this splits the complex
expression from standard separation logic into the separate types.

P,Q ∈ SymbolicHeap ::= emp | a 7→ ⟨a′⟩ | P ∗Q
P,Q ∈ Assertion ::= b,P

A separation logic triple in the new syntax would then be defined as:

{P} c {Q}

In this definition, we first have the precondition (P), then we have the
command to be run (c) and then we have the postcondition (Q).

3.2 Semantics of separation logic assertions

In the semantics, we need to evaluate the assertions, as assertions are a new
data type. Which means we also change the evaluation for a SymbolicHeap
to not pattern match the boolean expression any more.

18



We start by changing the evaluation function of a SymbolicHeap:

SJ K , : SymbolicHeap → State → Heap → Prop

SJempKst,h ≜ h = ∅
SJa 7→ ⟨a′⟩Kst,h ≜ h = (AJaKst,AJa′Kst)

SJP ∗QKst,h ≜ ∃h1,h2 ,SJPKst,h1 ∧ SJQKst,h2 ∧ h = h1 ∪ h2 ∧ h1 ∩ h2 = ∅

We can see that the only difference from this and the previous chapter is
that the boolean expression is now handled outside of the symbolic heap.

ASJ K , :Assertion → State → Heap → Prop

ASJb,PKst,h ≜ BJbKst = true ∧ SJPKst,h

In the evaluation of Assertion, we now split off to the other evaluation
functions as this definition is here to split up the previous SymbolicHeap.

3.3 Inference system

For the inference system, we need to change entailment and derivable as
these both use the new syntax. We also need to add a substitution function
for the new Assertion type.

[ 7→ ] :Assertion → Variable → Aexp → Assertion

(b,P)[x 7→ a] ≜ b[x 7→ a],P [x 7→ a]

Just like the assertion evaluation function, this function calls the function
for its arguments.

Entailment also needs to be on assertions instead of just the symbolic
heaps.

=⇒ :Assertion → Assertion → Prop

P =⇒ Q ≜ ∀st,h,ASJPKst,h =⇒ ASJQKst,h

The previous definition of section 2.4.2 for SymbolicHeap is now also in-
troduced for Assertion. The only difference here is that we use Assertion
instead of SymbolicHeap.
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load

⊢ {(b, y 7→ n ∗ P)[x 7→ n]} x = ∗(y) {b, y 7→ n ∗ P}

store

⊢ {b, x 7→ a ∗ P} ∗ (x) = a′ {b, x 7→ a′ ∗ P}
assign

⊢ {P[x 7→ a]} x := a {P}

skip

⊢ {P} skip {P}

inconsistency
{b, emp} =⇒ {ff , emp}
⊢ {b,P} error {b,Q}

if
⊢ {b ∧ b′,P} c1 {b′′,Q} ⊢ {b ∧ ¬b′,P} c2 {b′′,Q}

⊢ {b,P} if b′ then c1 else c2 {b′′,Q}

seq

⊢ {P} c1 {Q} ⊢ {Q} c2 {R}
⊢ {P} c1; c2 {R}

malloc
x /∈ vars(P)

⊢ {b,P} x = malloc() {b,P ∗ x 7→ 0}

free

⊢ {b,P ∗ x 7→ n} free(x) {b,P}

consequence

P =⇒ P ′ ⊢ {P ′} c {Q′} Q′ =⇒ Q
⊢ {P} c {Q}

frame
⊢ {b,P} c {b′,Q} vars(c) ∩ vars(R) = ∅

⊢ {b,P ∗ R} c {b′,Q ∗ R}

Most rules are understandable from the previous explanation, there is only
the inconsistency rule which is significantly different. The inconsistency rule
can no longer use entailment on the entire SymbolicHeap like before, now
it creates a new Assertion by using b and emp. These are combined into
an Assertion and then we use the entailment function on this to get the
same functionality.

3.4 Valid and evaluation of separation logic triples

To be able to define when a triple is valid, we will need to evaluate the
assertion to a Prop. We can do this with all the evaluation functions we
have defined in previous sections and preliminaries. The separation logic
triple will be valid iff:
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|= :Assertion → Com → Assertion → Prop

|= {P} c {Q} ≜ ∀st∈State,h∈Heap,ASJPKst,h =⇒
∃st′∈State,h′∈Heap, ⟨c, st, h⟩ → ⟨st′, h′⟩ ∧ ASJQKst′,h′

3.4.1 Total vs. Partial example

There are two different ways to define valid for a triple, we call these ei-
ther partial or total correctness. We have defined total correctness. The
reason this is important for synthesis is due to termination. If we chose
partial correctness, the judgement would be allowed not to terminate. If we
then use a synthesizer for any pre- and postcondition, we can generate the
loop while true do skip. This is not possible in my language due to the
simplifications, but we should still account for it.

3.4.2 Soundness with new syntax

Due to the new definitions, we also need to restate our soundness with the
new syntax. This will be proven through Coq in the next chapter and we
will show parts of the code.

Theorem 2 (Soundness). For all commands (c), pre- and postconditions
(P,Q), if a separation logic is derivable, then it is valid.

⊢ {P} c {Q} =⇒ |= {P} c {Q}

3.5 Example with new syntax

(1) x = malloc()

(2) ∗(x) = 17

(3) x1 = ∗(x)
(4) x2 = ∗(y)
(5) if x1 < x2 then z := x2 else z := x1

(6) free(x)

In this program, we first use malloc for a variable x, we store a value on the
heap. We then assign 2 variables to be the value of 2 different locations on
the heap, after which we calculate the max of these 2 variables and store
the value in the variable z.
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{y 7→ n}
(1) x = malloc()

{y 7→ n ∗ x 7→ 0}
(2) ∗(x) = 17

{y 7→ n ∗ x 7→ 17}
(3) x1 = ∗(x)
{x = 17, y 7→ n ∗ x 7→ 17}
(4) x2 = ∗(y)
{x1 = 17 ∧ x2 = n, y 7→ n ∗ x 7→ 17}
(5) if x1 < x2 then z := x2 else z := x1

{z ≤ n ∧ z ≤ 17, y 7→ n ∗ x 7→ 17}
(6) free(x)

{z ≤ n ∧ z ≤ 17, y 7→ n}

This example applies all the inference rules for each step, we also use the
consequence rule between line 5 and 6, these steps are not shown. Note
that we leave out the boolean expression in the upper three conditions, this
means that the expression only consists of true.
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Chapter 4

Soundness for synthesis in
Coq

In this chapter, we will walk through the code written in Coq and explain
the concepts needed to understand the code. We will have a section for
the syntax, evaluation functions, semantics, the inference system, soundness
and our special frame rule. We will choose parts of the code which are using
new concepts and leave out the parts which repeat definitions.

4.1 functional

Coq is a functional language, like Haskell and Scala. But unlike Haskell and
Scala, Coq is a proof assistant. This is useful to us as this allows for easy
algebraic data types and pattern matching. A proof assistant can introduce
lemmas, inductive properties and prove lemmas, which Haskell and Scala
cannot Coq Development Team 1998.

4.2 Implementation

We will show our implementation of the language in Polikarpova and Sergey
[2018] and show parts of the proof for soundness to introduce the concepts
used in Coq.

4.2.1 Syntax

In Coq, you can introduce types and syntax definitions with an inductive
type. We use these for all the syntax and we will show an example of how
we used this to define Com. The required Aexp and Bexp are defined
similarly, while string is used to represent the variables.

Inductive Com :=

| Load : string -> string -> com
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| Store : string -> aexp -> com

| Assign : string -> aexp -> com

| Skip : com

| Error : com

| Seq : com -> com -> com

| If : bexp -> com -> com -> com

| Malloc : string -> com

| Free : string -> com.

As can be seen in the example above, the inductive type Com contains all
the commands as previously given in section 2.3.1. Next, we will use the
Definition command to define the types of the state and heap.

Definition state := StringMap.finmap nat.

Definition heap := NatMap.finmap nat.

Notably, we use a library of Krebbers and Jacobs [2024] for the finite maps
used for state and heap. These can be compared with the collection of finite
functions used for the heap in section 2.3.2. Due to also using the library
for the state, the state will also be returning an optional value. Which is
why we normalise the state’s return value and we create Notation for both
heaps and states s.t. this will not be an issue.

Notation "st ’//’ x" :=

match (StringMap.lookup st x) with

| Some y => y

| None => 0

end (at level 80).

Notation "h ’///’ x" := (NatMap.lookup h x) (at level 80).

The Notation command can create a notation for the user, for which the
definition under the notation can be unfolded during proofs same as before.
In this example, we have the notation for state and heap lookup. In the
state lookup, when we receive a None, we will map this to 0.

4.2.2 Evaluation

In Coq, for any non-recursive function, you have to use Definition. If the
function is recursive, then you have to use Fixpoint. One such example is the
evaluation of the arithmetic expression.

Fixpoint aeval (st : state) (a : aexp) : nat :=

match a with

| ANum n => n

| APlus a1 a2 => (aeval st a1) + (aeval st a2)

| AMinus a1 a2 => (aeval st a1) - (aeval st a2)

| AMult a1 a2 => (aeval st a1) * (aeval st a2)

| AVar s => st // s

end.

Definition bexp_true (b : bexp) : Prop :=

forall st, Is_true (beval st b).
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In the recursive definition aeval, we can see that we get the same evaluation
rules as in section 2.3.3. We have a type of expression denoted with the
names in the front and we match the expression a based on its form.

The non-recursive bexp true uses a similar definition for beval. It denotes
that for every state the boolean the function Is true holds. This means that
b evaluates to true for every state.

4.2.3 Semantics

There is another way of using inductive types, which is using them to denote
derivation rules. We use this construction to show both the bigstep rules
and the inference rules, derivable.

Inductive big_step : com -> heap -> state -> heap -> state ->

Prop :=

| E_Load : forall n st h x y ,

(h /// (st // y)) = Some n ->

big_step (Load x y) h st h (x !-> n;st)

| E_Store : forall n st h h’ x a,

(h /// (st // x)) = Some n ->

h’ = ((st // x) !->> (aeval st a);h) ->

big_step (Store x a) h st h’ st

| E_Assign : forall st st ’ h x a,

st’ = (x !-> (aeval st a);st) ->

big_step (Assign x a) h st h st’

| E_Skip : forall st h,

big_step Skip h st h st

| E_IfTrue : forall st st ’ h h’ b c1 c2 ,

beval st b = true ->

big_step c1 h st h’ st’ ->

big_step (If b c1 c2) h st h’ st’

| E_IfFalse :forall st st ’ h h’ b c1 c2 ,

beval st b = false ->

big_step c2 h st h’ st’ ->

big_step (If b c1 c2) h st h’ st’

| E_Seq : forall st st ’ st ’’ h h’ h’’ c1 c2 ,

big_step c1 h st h’ st’ ->

big_step c2 h’ st’ h’’ st’’ ->

big_step (Seq c1 c2) h st h’’ st’’

| E_Malloc : forall st st ’ h h’ l x,

l = NatMap.fresh h ->

h’ = (l !->> 0;h) ->

st ’ = (x !-> l;st) ->

big_step (Malloc x) h st h’ st’

| E_Free : forall n st h h’ x,

(h /// (st // x)) = Some n ->

h’ = NatMap.delete (st // x) h ->

big_step (Free x) h st h’ st.

Notation "’(’ st ’,’ h ’)’ ’=[’ c ’]=>’ ’(’ st’ ’,’ h’ ’) ’" :=

(big_step c h st h’ st ’).
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In this definition, we have translated the definitions from section 2.3.4. We
will look at the Malloc rule, in the rule it states that the variable x has to
not be present in the current heap. In the code, this can be seen as the
location assigned to x has to be fresh. The implementation of freshness is
taken from the library and ensures that l is the next free location.

4.2.4 Inference system

We then implement helper functions such as vars and substitution recur-
sively for each datatype. These are not shown as these are the same as in
section 2.5.1. Thus, we will show derivable and valid.

Inductive derivable : assertion -> com -> assertion -> Prop :=

| S_Load : forall x y b sh a,

(x =? y)%string = false ->

~elem_of x (vars_aexp a) ->

derivable

(subst

(Assert b (Separate (Points_to (AVar y) a)

sh))

x a)

(Load x y)

(Assert b (Separate (Points_to (AVar y) a) sh

))

| S_Store: forall x a a’ b sh ,

derivable

(Assert b (Separate (Points_to (AVar x) a) sh

))

(Store x a’)

(Assert b (Separate (Points_to (AVar x) a’)

sh))

| S_Assign : forall b sh x a,

derivable

(subst (Assert b sh) x a)

(Assign x a)

(Assert b sh)

| S_Skip : forall b b’ sh ,

bexp_imp b b’ ->

derivable (Assert b sh) Skip (Assert b’ sh)

| S_Error : forall P b sh ,

bexp_true (BNot b) ->

derivable (Assert b sh) Error P

| S_If : forall Q b sh c1 c2 b’,

derivable (Assert (BAnd b b’) sh) c1 Q ->

derivable (Assert (BAnd (BNot b) b’) sh) c2 Q ->

derivable (Assert b’ sh) (If b c1 c2) Q

| S_Seq : forall P c1 Q c2 R,

derivable P c1 Q ->

derivable Q c2 R ->

derivable P (Seq c1 c2) R

| S_Malloc: forall b x sh ,

is_free x (Assert b sh) ->
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derivable

(Assert b sh)

(Malloc x)

(Assert b (Separate (Points_to (AVar x) (ANum

0)) sh))

| S_Free : forall b x a sh ,

derivable

(Assert b (Separate (Points_to (AVar x) a) sh

))

(Free x)

(Assert b sh)

| S_Conseq : forall (P Q P’ Q’ :assertion) c,

derivable P’ c Q’ ->

P ->> P’ ->

Q’ ->> Q ->

derivable P c Q.

Note that we do not have a frame rule. This is due to the observation that
the frame rule can be proven as a lemma. This lemma will be shown in sec-
tion 4.3.1. Next to this, to be able to prove soundness, we needed to ensure
that the load function does not change heap while doing its substitution into
the state, which is why we have the two extra predicates. The other rules
are implemented in the same way as shown in section 2.5.3.

4.3 Soundness

We will need the valid function again. Which will be the exact definition of
valid as shown in section 3.4.

Definition valid (P : assertion) (c : com) (Q : assertion) :

Prop :=

forall st h,

interp st P h ->

exists st ’ h’, (st,h) =[ c ]=> (st’,h’) /\ interp st’ Q h’.

To prove soundness, we have created definitions for each sub-goal created
by the induction step in the soundness proof. This makes the proof a lot
more readable and we will show one of the sub lemmas as an explanation of
its correctness.

Theorem soundness : forall P c Q,

derivable P c Q ->

valid P c Q.

Proof.

intros. induction H.

- eapply sep_load.

- eapply sep_store.

(*More of the same*)

Qed.

This shows that for each case of the resulting goals, we have a definition

27



sep command which proves its own case. We will show sep store and the re-
quired lemma, interp heap sub, to prove it.

Lemma interp_heap_sub : forall st x a a’ h1 h2 sh ,

interp_heap st (Points_to (AVar x) a) h1 ->

interp_heap st sh h2 ->

NatMap.disjoint h1 h2 ->

interp_heap st (Separate (Points_to (AVar x) a’) sh)

(st // x !->> (aeval st a’);NatMap.union h1 h2).

Theorem sep_store : forall x a a’ b sh ,

valid

(Assert b (Separate (Points_to (AVar x) a) sh))

(Store x a’)

(Assert b (Separate (Points_to (AVar x) a’) sh)).

The lemma, interp heap sub, is required to add SymbolicHeap to Assertion
while keeping intact the command interp. The command interp is the evalu-
ation of an assertion, which is required to stay consistent with this change.
This holds because the value is separate from the original heap, and thus
does not change the evaluation.

4.3.1 Frame rule

Lemma S_Frame_help : forall sh c P Q,

vars_overlap sh c ->

derivable P c Q ->

derivable (add_sh P sh) c (add_sh Q sh).

Lemma S_Frame : forall b b’ sh sh ’ sh ’’ c,

vars_overlap sh ’’ c ->

derivable (Assert b sh) c (Assert b’ sh ’) ->

derivable (Assert b (Separate sh sh ’’)) c (Assert

b’ (Separate sh’ sh ’’)).

The frame rule has been defined as a lemma instead. The consequence of
this is that this is not part of the soundness proof and thus does not require
the traditional lemmas for its proof. The frame lemma, as seen above,
cleverly leverages the structure of our derivability rules. These rules are
very generalised. Thus, if a shared pre- and postcondition does not contain
variables used in the command, it can be taken out of the frame.

We prove the frame lemma by using a helper lemma, this helper lemma
was solved by using induction. Similar to the soundness proof, this proof is
quite large. However, this proof would be easier to follow than the proof if
this were the standard frame rule.

The helper lemma is using an extra definition add sh which adds a sym-
bolic heap to an assertion. The reason we needed the helper lemma is due
to the induction step. The induction hypothesis would be too weak in the
S Frame lemma.
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Chapter 5

Related Work

Separation logic

The seminal work by Reynolds [2002] has introduced the first framework
of separation logic. This framework was made to introduce a logic system
which handles shared mutable data structures. Other key insights given in
this framework is the magic wand operator (separating implication) which
can be used to generate the weakest precondition. The key differences in our
implementation and the implementation in Reynolds [2002] are the frame
rule and the looping constructions. The frame rule is proven through the
use of 4 different lemmas about the semantics and judgements. In our im-
plementation the frame rule is not a rule, but a lemma by itself. The looping
constructions are taken out in our implementation whilst this is present in
the work by Reynolds [2002].

Separation logic has been used for many different use cases. In Appel
and Blazy [2007] separation logic is used to formalize the language C minor.
C minor is a mid-level imperative programming language below C. What
is interesting in this paper is that the formalised semantics are shown to
be sound while containing the functions: break, continue and return.
These functions are not present in our implementation nor in what our
implementation is based on.

Another implementation difference happens in Brookes [2007], Jung et al.
[2018], where these both implement concurrency in their implementation
of separation logic. In both of these papers, soundness is proven, while
being capable of concurrency. These logic systems could be useful for code
synthesis as they introduce handling of shared variables.

Instead of proving soundness, it is also possible to prove completeness
of separation logic as was done in de Boer et al. [2023]. Completeness
is a property which would be useful, as this means that for every valid
program specification given to the synthesiser, a derivation can be made.
These derivations are sequences of commands. Which means that with both
soundness and completeness of the inference system, we know that every
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valid specification can derive a valid program and every valid derivation has
to be valid for the specification given.

Separation logic in Coq

Many different versions of separation logic have also been implemented in
the Coq proof assistant, for example Appel and Blazy [2007], Charguéraud
[2020], Chlipala [2011], de Boer et al. [2023], Jung et al. [2018]. These
versions all differ from our implementation. In Charguéraud [2020], one
of the key feature differences is that it focusses on sequential execution,
unlike in Brookes [2007]Jung et al. [2018]. These implementations all prove
soundness and there are some key differences in each implementation. One
of the big differences are the different types of correctness and a concept
called frame baking Birkedal et al. [2008][Schwinghammer et al., 2009][p.
12]. In our implementation, we have implemented total correctness because
we would need this for synthesis. Frame baking is a new technique which
bakes in the frame rule into each normal rule, which means it does not have
to be proven in the traditional way as done in Reynolds [2002]. All these
versions are very different from our own framework, these works all focus
one or a few different concepts to model. We have chosen the direction of
code synthesis, while most of these works did not have that in mind.

Another use for separation logic in coq is the automatic verification of
programs Chlipala [2011]. This paper mostly automates the verification
of low level programs. A similar tactic could be used to verify programs
produced by a synthesiser.

There are also tools made in Coq to introduce a standardised model for
Separation logic proofs in Jung et al. [2018], Krebbers et al. [2018, 2017].
These systems are very different from the implementation of separation logic
we have. The Iris implementation contains all the separation logic rules,
it can reason about higher order logic as well as concurrency. Another
implementation difference is that it cannot only do partial correctness, but
supports other types of reasoning as well Krebbers et al. [2017].

Synthesis through separation logic

Our research was based on the work in Polikarpova and Sergey [2018]. We
have made many simplifications to the language used in Polikarpova and
Sergey [2018]. We have removed function calls, scopes and negative integers
from the syntax. These simplifications have made it easier to model in Coq,
but are possible to be implemented in the future. Both Polikarpova and
Sergey [2018], Watanabe et al. [2021] use separation logic for synthesis and
Watanabe et al. [2021] then verifies that the synthesiser gives correct code
by giving a Coq proof script which has to be run afterwards by the user.

Verification and certification are then highly important to research for
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synthesisers. A synthesiser cannot be verified to work for every specification
given beforehand as there are specifications which exists that are mathemati-
cally correct but impossible to derive. Instead, we can certify our synthesiser
and develop a metric for how good the synthesiser has worked as done in
Watanabe et al. [2021].
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Chapter 6

Conclusion and Future work

In this thesis, we have implemented a simplified version of the language in
Polikarpova and Sergey [2018] and have proven this to be sound in the Coq
proof assistant.

In the future, we would like to implement a synthesiser into Coq and
certify the synthesiser for some number of general pointer programs. We
will have to do this by also implementing an SMT solver in Coq as this
does not exist in the standard library of Coq. We would like to implement
an SMT solver and synthesiser without all the simplifications made in this
thesis. If a synthesiser is implemented, it would be necessary to test over a
large set of pre- and postconditions to ensure functionality.
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de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser,
Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski
Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth
Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu

33

https://doi.org/10.1007/978-3-540-74591-4_3
https://doi.org/10.1007/978-3-540-74591-4_3
https://gitlab.science.ru.nl/abonten/coq-repo-thesis/-/tree/main?ref_type=heads
https://gitlab.science.ru.nl/abonten/coq-repo-thesis/-/tree/main?ref_type=heads
https://doi.org/10.1016/j.tcs.2006.12.034
https://doi.org/10.1145/3408998


Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike,
Joshua Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew
Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code. CoRR,
abs/2107.03374, 2021. URL https://arxiv.org/abs/2107.03374.

Adam Chlipala. Mostly-automated verification of low-level programs in com-
putational separation logic. In Mary W. Hall and David A. Padua, ed-
itors, Proceedings of the 32nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2011, San Jose, CA,
USA, June 4-8, 2011, pages 234–245. ACM, 2011. doi: 10.1145/1993498.
1993526. URL https://doi.org/10.1145/1993498.1993526.

Frank S. de Boer, Hans-Dieter A. Hiep, and Stijn de Gouw. Dynamic sepa-
ration logic. In Marie Kerjean and Paul Blain Levy, editors, Proceedings
of the 39th Conference on the Mathematical Foundations of Programming
Semantics, MFPS XXXIX, Indiana University, Bloomington, IN, USA,
June 21-23, 2023, volume 3 of EPTICS. EpiSciences, 2023. doi: 10.46298/
ENTICS.12297. URL https://doi.org/10.46298/entics.12297.

C A R Hoare. An axiomatic basis for computer programming. Commun.
ACM, 12:576–580, 1969. doi: 10.1145/363235.363259. URL https://

doi.org/10.1145/363235.363259.

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars
Birkedal, and Derek Dreyer. Iris from the ground up: A modular
foundation for higher-order concurrent separation logic. J. Funct. Pro-
gram., 28:e20, 2018. doi: 10.1017/S0956796818000151. URL https:

//doi.org/10.1017/S0956796818000151.

Robbert Krebbers and Jules Jacobs. A Coq library as part of
the course “Program verification with types and logic” at radboud
universiteit nijmegen. available at https://gitlab.science.ru.nl/

program-verification, 2024.

Robbert Krebbers, Amin Timany, and Lars Birkedal. Interactive proofs
in higher-order concurrent separation logic. In Giuseppe Castagna and
Andrew D. Gordon, editors, Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017, pages 205–217. ACM, 2017. doi: 10.1145/
3009837.3009855. URL https://doi.org/10.1145/3009837.3009855.

Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti,
Jan-Oliver Kaiser, Amin Timany, Arthur Charguéraud, and Derek Dreyer.
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