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Abstract

Using String Diagrams as a means of modelling MDPs is a relatively new
concept. Currently, not a lot of tools exist that make it easy for researchers
or other users to work with String Diagrams of MDPs. We introduce a UI
which allows users to visualize, edit and export String Diagrams of MDPs.
Additionally, we propose two extensions to these String Diagrams. These
extensions increase the expressivity of String Diagrams and they make it
possible to represent the String Diagrams more compactly. We demonstrate
how these extensions work using our UI. Finally, we prove that Extended
String Diagrams are at least as expressive as Basic String Diagrams, by
showing that in any case an Extended String Diagram can be converted to
a Basic String Diagram.
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Chapter 1

Introduction

A well-known example of a decision problem of sequential decision making
is that of a robot traveling between so-called “rooms”. The robot starts in
some initial room from which it can reach a subset of other rooms.

Example 1. A very simple example is displayed in Figure 1.1. In this exam-
ple, the robot is a cleaning robot that can clean floors. The robot starts in
the “Storage” state. Based upon some condition the robot moves to either
the Living Room or the Kitchen. After cleaning the floor in the room it
reached, the robot returns to the Storage.

Storage

Living Room

Kitchen

Storage

Figure 1.1: Robot traveling between rooms

For more complicated models, it could be interesting to determine how the
robot can achieve the highest possible reward, in other cases it is more
interesting to calculate the reachability probability of a certain room. A
common way to model a problem like this is by using a Markov Decision
Process (MDP). An MDP is a type of stochastic sequential decision process
in which the cost and transition functions depend only on the current state
of the system and the current action [6].

In practice, models tend to be a lot more complicated than that of the
cleaning robot. Complicated real-world models may contain hundreds of
millions of states. In these more complicated models, it is often infeasible
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to calculate the reachability probabilities over a whole model. This can be
because the model no longer fits in memory, or because the algorithms used
for the calculations do not scale well enough for inputs this large. However,
in a lot of cases it is possible to calculate the reachability probabilities when
the model is partitioned into multiple subMDPs.

A String Diagram of MDPs is a type of model that consists of multiple
such subMDPs. In String Diagrams these subMDPs are combined through
sequential composition and by summing. Sequential composition can be seen
as combining two subMDPs horizontally, by connecting exits of one subMDP
with entrances of another subMDP. Summing can be seen as combining two
subMDPs vertically, with the resulting subMDP’s entrances/exits consisting
of the combination of the entrances/exits of the two original subMDPs. A
large MDP’s structure can be captured by repeatedly sequentially composing
and/or summing its subMDPs. In the next chapter, we formally define
sequential composition and summing.

Example 2 (Sequential composition & Sum ). We continue with our earlier
example. In this example, each room can be seen as a subMDP. Sequential
composition can be visualized as displayed in Figure 1.2. Summing can be
visualized as displayed in Figure 1.3.

Storage Kitchen

Figure 1.2: Sequential Composition

Living Room

Kitchen

Figure 1.3: Sum

String Diagrams can be very useful for computing best-case probabilities of
reaching a goal state for a given MDP, since they make it possible to perform
the necessary calculations on just the components of the String Diagram as
opposed to the entire state space [9]. Additionally, String Diagrams make it
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possible to visualize models with a huge amount of states in a compact way.
Large MDPs often have a lot of structure, and these structures can often
be captured well by String Diagrams. A compact visualization can make it
much easier for users to work with these large models.

Using String Diagrams to represent MDPs is a relatively new concept
[8], and not a lot of tools currently exist to make String Diagrams of MDPs
easy to work with. One of the tools that does exist is the probabilistic model
checker Storm [2]. Storm-compose [8] [9] is a branch of Storm that supports
the analysis of String Diagrams as we use them.

1.1 Problem Description

The current format of String Diagrams is limited. Additionally, no tool
exists that allows a user to visualize and/or edit String Diagrams.

In this thesis we look at the following research question:

• How can we extend String Diagrams of MDPs?

In order to answer this question, we explore the following sub-questions:

1. What types of new information do we want to store using Ex-
tended String Diagrams?

2. How can Extended String Diagrams be converted into Basic String
Diagrams without losing information?

We created a user interface that allows the user to import a String Diagram
and visualize it. The user has the option to edit the diagram, and the UI
allows the user to export the edited diagram once it is finished. The user
interface will make it a lot easier for researchers or other users to be able to
work with and analyze String Diagrams.

On top of this, we introduce two extensions to String Diagrams. The
repeat extension allows the user to easily repeat any subMDP in our UI.
Additionally, the repeat extension allows the JSON file that represents a
diagram with repeated subMDPs to be more compact than a JSON file of
the same diagram without the extension.

The switch extension allows the user to manually define how the sub-
MDPs of a String Diagram are connected.
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Example 3 (Switch). Figure 1.4 shows how Figure 1.1 can be edited using the
switch-extension. For example, let’s say the first exit of the initial storage
state is chosen when it is morning, and the second exit is chosen when it
is evening. If the user wanted to change the behavior of the model without
having to edit the internal subMDPs or the order of the subMDPs, he can
switch the destination of the outgoing transitions of the first storage state
such that now the kitchen will be cleaned when it is morning, and the living
room will be cleaned when it is evening.

Storage

Living Room

Kitchen

Storage

Figure 1.4: The switch-extension

We refer to String Diagrams that do not use these extensions as Basic String
Diagrams (BSDs), and we refer to String Diagrams that do use these exten-
sions as Extended String Diagrams (ESDs). We demonstrate the appicabil-
ity of these extensions using our UI.

Although ESDs are more user-friendly and more compact than BSDs,
they cannot be used as input for Storm. We therefore show that, if needed,
ESDs can always be converted back to BSDs without losing information.
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1.2 Related Work

String Diagrams have existed since the 1970’s [4]. Since then, they have
mostly been used in category theory [7]. As such, String Diagrams have
found many applications both in and outside the Computing Science field.
For example, String Diagrams have been used in Natural Language Process-
ing [5], and as a way to represent concurrent systems [1].

String Diagrams as a representation of MDPs have been introduced in
2023 as a means of compositional probabilistic model checking [8]. This is
very recent, and as a result there is not a very large amount of other related
work on this subject. An even more recent paper that makes use of String
Diagrams as a representation of MDPs is [9], where the authors use the
compositionality of String Diagrams to accurately approximate reachability
probabilities of sub-MDPs of the diagram. They then combine these inter-
mediate results to eventually approximate the reachability probabilities of
an entire String Diagram.

1.3 Outline

• Chapter 2 provides background information. In this chapter we define
String Diagrams and their semantics, and we define some equivalence
relations that are relevant for the operations on String Diagrams.

• Chapter 3 builds on Chapter 2 by defining our extensions of String Di-
agrams and the semantics of the resulting Extended String Diagrams.
We additionally show how these Extended String Diagrams can be
converted to Basic String Diagrams.

• In Chapter 4 we discuss everything related to the implementation
of our UI. We show how String Diagrams are represented in JSON-
format, and go over all the functionality we implemented.

• Chapters 5 and 6 wrap up the thesis, containing the related work and
conclusions respectively.
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Chapter 2

Preliminaries

String Diagrams originate from category theory. However, because this the-
sis is concerned with String Diagrams of MDPs, no knowledge of category
theory is required. From here on out, we refer to String Diagrams of MDPs
as simply String Diagrams for brevity.

In this chapter we explain what String Diagrams are, closely following
the way they are defined by Watanabe et al. [9].

String Diagrams consist of one or more open Markov Decision Processes.
We therefore introduce these oMDPs and define their semantics.

2.1 Notation

We go over some notation that will be used throughout this thesis.

• D(X): the set of distributions on X. A set of distributions refers to all
possible ways to assign probabilities to each element in X such that
these probabilities add up to 1.

• [m]: the sequence of numbers {1, 2, ...,m}

• ⊎: disjoint union. Let A and B be sets. The disjoint union A ⊎ B of
A and B is the set made up from the elements of A and B in which
each element is labeled with the name of the set from which it comes.
In some cases we leave the labeling implicit when there is no risk of
ambiguity.
For two functions f : x → y and g : a → b the disjoint union is defined
as:

(f ⊎ g)(k) =

y if k ∈ x

b if k ∈ a

• δc: a function which returns 1 when the condition c is true, and 0
otherwise
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2.2 Markov Decision Processes

Definition 1 (open MDP). An open MDP (oMDP) A = (S,A, P,E) is a
tuple with a finite set S of states, finite set A of actions, a partial transition
function P: S × A ⇀ D(S) +[nr+ml], and an entry function E: [mr+nl] →
S + [nr + ml], which maps each entrance in [mr + nl] to either a state in S
or to an exit in [nr + ml].

In the definition above, m = (mr,ml) and n = (nr, nl) refer to the oMDP’s
left- and right-arity. m and n are both pairs of natural numbers. Elements
of [mr + nl] are the oMDP’s entrances, and elements of [nr + ml] are its
exits.

Example 4 (Left- and right-arity). Figure 2.1 has two right-facing entrances
which are represented by mr, one left-facing exit which is represented by
ml, one right-facing exit which is represented by nr, and three left-facing
entrances which are represented by nl. The example’s left-arity m = (2, 1)
and the example’s right-arity n = (1, 3).

A

mr

ml

nr

nl

Figure 2.1: Left- and right-arity of an oMDP

The possible actions in a state s are A(s) = {a ∈ A | P (s, a) ̸= ⊥}. A
terminal state is a state s for which A(s) = ∅.
We think of the distribution of states P (s0, a0) as a function from states
to probabilities. In the rest of this paper we use the notation P (s0, a0, s1)
instead of P (s0, a0)(s1).

Example 5. An example oMDP is shown in Figure 2.2. In this figure:
S = {s0, s1, s2}, A = {a0},
P (s0, a0, s2) = 0.8, P (s0, a0, s1) = 0.2, P (s1, a0, s2) = 1,
E(0) = s0, and E(1) = s1
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s0

s1

s2
a0 0.8

0.2

a0 1

Figure 2.2: Example open MDP

Definition 2 (Path). A path π : s0 → a0 → s1 → a1 . . . is an (in)finite
sequence of alternating states and actions. For every index i it holds that
si ∈ S and P(si, ai, si+1) ̸= 0. Paths can be finite or infinite. The set of all
finite paths is written as FPathM and the set of all infinite paths is written
as IPathM .

Definition 3 (Markov Chain). A Markov Chain is an MDP for which
|A(S)| ≤ 1 for all s ∈ S.

Since a Markov Chain is a special type of MDP, we can define a Markov
Chain as an MDP by using a tuple (S, {⊥}, P ). If we want to use a Markov
Chain an sich we can simply define it using a tuple (S, P ).
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2.3 String Diagrams

Now, let’s consider MDPs which consist of a very large amount of states. For
models like this it is often computationally infeasible to solve a problem by
running the desired calculations over the entire model [9]. However, in many
cases it is possible to solve such a problem when the model is partitioned into
oMDPs. By using a divide-and-conquer approach, the desired calculations
can be run on the oMDPs individually, which requires far less computational
power. The results of the calculations on the oMDPs can then be combined
to calculate the final result of the entire model.
When visualizing an oMDP, we only show its entrances and exits. This
is because oMDPs become most useful when they make up a model that
contains a very large amount of states, so showing all the internal states in
the visualization would quickly become very unclear.

Example 6. Figure 2.3 shows how an oMDP is visualized when it is part of
a String Diagram. It is important to realize that the oMDP may contain
internal states even though they are not visualized. The whole aim of String
Diagrams is to make it easier to work with huge models, so in a lot of
practical settings, these oMDPs may contain a very large amount of internal
states.

A

Figure 2.3: oMDP as part of a String Diagram

Definition 4 (String Diagram). A String Diagram D of oMDPs is a term
adhering to the grammar

D := A | D # D | D⊕ D

where A can be any oMDP.

Intuitively, a String Diagram is a model that is entirely composed of oMDPs.
For any oMDP in the model, its input states are connected to the output
states of an oMDP in the previous layer, and its output states are connected
to the input states of an oMDP in the next layer.

oMDPs like the one in Figure 2.3 can be combined in two ways: through
sequential composition and by summing them.
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2.3.1 Sequential Composition

The first operation we will look at is sequential composition. Sequential
composition of two oMDPs A and B is depicted as follows:

A # B

Definition 5 (# operator). Let A,B be oMDPs, with matching arities and
the same action set A. Applying sequential composition results in an oMDP
(S, A, P, E), where: S := SA ⊎ SB, A := A, P := PA#B, E = EA#B and:

EA#B(i) = EA(i) if EA(i) ∈ SA and EA#B(i) = EB(EA(i)) if EA(i) ∈ [nr]
A,

and:

PA#B(sA, a, s′) =

PA(sA, a, s′) if s’ ∈ SA∑
i∈[k] P

A(sA, a, i) · δEB(i)=s′ otherwise

PA#B(sB, a, s′) =

PB(sB, a, s′) if s’ ∈ SB + [nr + ml]
B

0 otherwise

In this definition, k is any entrance in B that is reached from A, and [nr+ml]
is any exit originally in B.

Example 7 (Entry function combined with with sequential composition).
Figure 2.4 shows sequentially composed oMDPs A and B. In this example:
EA#B(0) = EA(0) = sA0 , since EA(0) ∈ SA.
EA#B(1) = EB(EA(1)) = EB(1) = sB0 , since EA(1) ∈ [nr]

A.

s0 s0
a0 1

1

A

a0 1

B

Figure 2.4: Sequential Composition example 1
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Example 8 (Transition probabilities in sequential composition). Figure 2.5
shows sequentially composed oMDPs A and B. In this example:
PA#B(sA0 , a0, s1) = PA(sA0 , a0, s1) = 0.2, since s1 ∈ SA.
PA#B(s1, a0, s

B
0 ) = PA(s1, a0, s

B
0 ) = 1, since EB(1) = sB0 .

PA#B(sB0 , a0, 0
B) = PB(sB0 , a0, 0

B) = 1, since 0B ∈ [nr]
B.

s0

s1

s0
a0

0.2

a0 1

0.8

A

a0 1

B

Figure 2.5: Sequential Composition example 2

2.3.2 Sum

The second operation on oMDPs is the sum operation. Summing oMDPs A
and B is written as:

A⊕ B

Definition 6 (⊕ operator). Let A,B be oMDPs with the same action set
A. Their sum A⊕ B is an oMDP (S, A, P, E), where:
S := SA ⊎ SB, A := A, E = EA ⊎ EB, and P is defined as:

P (s, a, s′) :=

PD(s, a, s′) if D ∈ {A,B}, s ∈ SD, a ∈ AD, s′ ∈ SD,

0 otherwise.

In this definition, E’ is the disjoint union of the entry functions of A and B.
The disjoint union of two functions has been defined in Section 2.1.
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Example 9. Summing two oMDPs results in one larger oMDP. Visually, this
means the oMDPs are stacked on top of each other. The sum’s entrances and
exits consist of the combination of the entrances and exits of the summed
oMDPs. An example of two summed oMDPs is displayed in Figure 2.6.

A

B

sum0

Figure 2.6: Sum of two oMDPs

A general term for an oMDP or a sum that is part of a sequence is a layer.
The reason why sums are so important is that it often happens that the
number of entrances and exits of adjacent layers do not match initially. In
such cases summing is necessary in order to be able to match the exit states
of one layer to the entrance states of the next layer. Figure 2.7 demonstrates
this by showing a full String Diagram containing multiple layers which are
combined through both sequential composition and sums.

B

C

A D

Figure 2.7: String Diagram constructed using both sequential composition
and sums
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2.4 Equivalence Relations

In this section we define some equivalence relations that are relevant for
sequential composition and summing.

2.4.1 Identity

Definition 7 (Identity). Let m and n be natural numbers. The identity Im
on m (over the action set A) is an oMDP defined as Im = (∅, A, !, E), where
E(i) = i for each i ∈ [m].

The “!” denotes that the transition probabilities for this oMDP are unde-
fined/not relevant. This is the case because the identity does not contain
any states, so the domain of P is empty.

Theorem 1 (Identity).
I # A = A = A # I

Proof. See Appendix A.1.1

Since the identity component does not have any states, it effectively extends
the outgoing arrows of a component. This is useful when creating or visu-
alizing a String Diagram, because it allows the user to change the length of
arrows.

2.4.2 Associativity

Theorem 2 (Associativity).

A # (B # C) = (A # B) # C (2.1)

A⊕ (B ⊕ C) = (A⊕ B) ⊕ C (2.2)

Proof. See Appendix A.1.2 and Appendix A.1.3

The associativity relation resolves any ambiguity that might occur when
parsing a file that represents a String Diagram. How this works will be
discussed in Section 4.2.1.
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2.4.3 Bifunctoriality

Theorem 3 (Bifunctoriality).

(A⊕ B) # (C ⊕ D) = (A # C) ⊕ (B # D)

Proof. See Appendix A.1.4

The bifunctoriality relation shows that a String Diagram consisting of two
sequentially composed layers of two summed oMDPs can be created in two
different ways, which both lead to the same result. This is demonstrated in
Figure 2.8. In the first approach, the top-left oMDP is summed with the
bottom-left oMDP, and the top-right oMDP is summed with the bottom-
right oMDP. Sequentially composing these layers leads to the same String
Diagram that is the result of the second approach. In the second approach,
the top-left oMDP is first sequentially composed with the top-right oMDP,
and the bottom-left oMDP is first sequentially composed with the bottom-
right oMDP. Summing these top and bottom oMDPs results in the same
String Diagram as the one resulting from the first approach.

The bifunctoriality relation is important in regards to our UI. In our UI
it is not possible to sum an entire sequence with another sequence at once.
However, knowing that the bifunctoriality relation holds, the user can sum
the oMDPs of the first sequence individually with each oMDP of the second
sequence. The bifunctoriality relation guarantees that despite the different
order of operations the resulting diagram will be the same.

A

⊕ #

B

C

⊕ =

D

A
#

B

C
=

D

A C

B D

A C

B D

A

⊕=

B

C

=

D

A

⊕ #

B

C

⊕

D

Figure 2.8: The bifunctoriality relation
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Chapter 3

Extended String Diagrams

In this chapter we introduce several extensions that can be made to Basic
String Diagrams (BSDs) in order to make it easier for users to work with
String Diagrams.

Definition 8 (Extended String Diagram). An Extended String Diagram
(ESD) D of oMDPs is a term adhering to the grammar

D := [m1]A[m2] | D # D | D⊕ D | R(D, n)

where A can be any oMDP and n is the number of times the component is
repeated. Left- and right-mapping m1 and m2 (formally defined in Section
3.2) are mappings between the exit states of A and the entrance states of the
layer before and after A.

An ESD is different from a BSD in two ways. ESDs include the repeat
component R(D, n) and the switch operation. These extensions improve
usability and allow for a more compact representation of String Diagrams.
Using these extensions does not decrease the expressivity of the diagrams,
since it is always possible to convert an ESD back to a BSD. In the following
sections we formally define the extensions and their semantics.
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3.1 Repeat

In some cases a user may want to sequentially compose the same component
multiple times in a row. A real-world example where this could happen is
a model of a network protocol with multiple rounds. In order to repeat
a layer in the basic format its name must be manually added to the file
representing the String Diagram for every repetition. This might not be
a problem if the layer is only repeated a few times. However, repeating
the layer many times using this method causes problems. For example, it
becomes inconvenient to determine the amount of repetitions. Additionally,
a large amount of repetitions may clutter the file, making the file unorganized
and less convenient to edit.

In order to make it easier to work with repeated layers, we propose the repeat
extension.

Definition 9 (Repeat). Let A be an oMDP. The repeat operation R(A, n),
where n ≥ 1, is defined as:

R(A, n) =

A if n = 1

R(A, n− 1) # A otherwise.

Example 10 (Repeat). Let’s say the cleaning robot from our example in the
introduction needs to clean the kitchen floor three times throughout the day
before returning to the storage. Without the repeat-extension, this example
would be modeled as displayed in Figure 3.1. With the repeat-extension,
however, the example can be visualized in a more compact way, as visualized
in Figure 3.2.

Storage Kitchen Kitchen Kitchen Storage

Figure 3.1: Example 10 without the repeat-extension

Introducing the repeat operation solves the problems we described earlier.
It is now very easy to determine how often a layer is repeated. The file
representing a String Diagram with repeat components will look a lot more
organized than one without repeat components, and it will be a lot easier
to edit layers around the repeated layers.
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Storage Kitchen Storage

R(Kitchen, 3)

Figure 3.2: Example 10 with the repeat-extension

3.2 Switch

Basic String Diagrams do not explicitly define how the exit states of a layer
are connected to the entrance states of the next layer. Instead, it is left
implicit that the first exit state of the first layer is connected to the first
entrance state of the second layer, that the second exit state of the first layer
is connected to the second entrance state of the second layer, and so forth.
While this sounds simple and efficient, it is problematic in cases where users
would want to specify themselves how the states between layers should be
connected.

The main problem is that in BSDs it is not possible in some cases to
connect two exit states from one component in a layer to two entrance states
in two separate components in the next layer. This is because components
cannot overlap within a layer and states are assumed to be connected as de-
scribed in the previous paragraph. At first glance, a solution for this could be
to allow the user to reorder the entrance/exit states of a component and/or
layer. Unfortunately, this simple solution is not possible, since components
can occur multiple times in the diagram. Reordering the entrance/exit states
of a component in the diagram’s JSON file would reorder the entrance/exit
states of all components with that name. This would change the behavior
of the diagram beyond the user’s intended changes, and is therefore not an
acceptable solution.

To allow users to connect states between layers in any way they want, we
introduce our second extension: the switch operation.

Definition 10 (Switch). Let A be an oMDP. Applying left mapping [m1]
and right mapping [m2] to A results in an oMDP [m1]A[m2] = (S,A, P,E),
where:
S := SA, A := AA, P := PA, E = E1 ⊎ E2,
E1 = m1(E

A(i)), E2 = m2(E
A(i)),

m1 : [ml]
A → [ml]

A is a mapping from each left-facing exit of A to a poten-
tially new position, and:
m2 : [nr]

A → [nr]
A is a mapping from each right-facing exit of A to a

potentially new position.

19



Example 11 (Switch). Figure 3.3 shows oMDPs A and B. In this example,
A is defined as:
m1 = [], since A has no left-facing exits,
m2 = [1, 0]
S = {s0, s1}, A = a0, P =!
E1 = !, since A has no left-facing entrances.
E2(0) = m2(E

A(0)) = m2(s0) = sB1
E2(1) = m2(E

A(1)) = m2(s1) = sB0

s0

s1

a0

1

a0
1

A

s0

s1

a0

a0

1

1

B

Figure 3.3: Switch example

By default, a mapping [m] is the identity mapping. From now on, we omit
[m] whenever it is an identity mapping. When both [m1] and [m2] are
the default mappings, A therefore behaves the same as if it were a BSD
component. By using custom mappings the user no longer experiences the
problems described earlier in this section.
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3.3 Converting ESDs to BSDs

While Extended String Diagrams are convenient and more expressive than
Basic String Diagrams, they cannot be used as input for Storm. It is es-
pecially important for a user to be able to check a model’s properties after
having edited said model. For this reason, this section discusses how ESDs
can be converted to BSDs such that newly created or edited models can be
used in the model checker.

3.3.1 Converting Repeat to BSD

Theorem 4. Let A be an oMDP. We write An when A is repeated n times
without using the repeat component. For any natural number n ≥ 1, it
holds that:

An = R(A, n)

Proof. See Appendix A.2.1

3.3.2 Converting Switch to BSD

Theorem 5. Let [m1]A[m2] be an oMDP with custom mappings m1 and m2.
It holds that:

[m1]A[m2] = S1 # A # S2

S1 = (S,A, P,E1) is an oMDP where:
S := ∅, A := AA, P :=!, E1(i) = m1(E

A(i)), and
S2 = (S,A, P,E2) is an oMDP where:
S := ∅, A := AA, P :=!, E2(i) = m2(E

A(i)).

Proof. See Appendix A.2.2

Example 12. Figure 3.5 shows how oMDP A with mapping m2 = [1, 0] from
Figure 3.4 is converted to the BSD format.

A

Figure 3.4: oMPD A with mapping m2 = [1, 0]
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A S2

Figure 3.5: Converting switch to BSD
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Chapter 4

Implementation

In this chapter we discuss everything related to the implementation of our
UI. The UI code has been uploaded to https://gitlab.science.ru.nl/

thesis-supplemental-material/wessel-vanderlans.
We start this chapter by explaining some of the practical decisions we made.
Next, we show how both BSDs and ESDs are represented in JSON format.
This is important because our tool imports and exports String Diagrams to
and from this JSON format. In the following section, we go over all the func-
tionality in our UI. The last section of this chapter is again about converting
ESDs to BSDs, only this time our solutions to this problem are presented
through a more practical perspective as opposed to the more theoretical
perspective from the previous chapter.

4.1 Design Decisions

In this section we go over some practical decisions we made regarding the
implementation of the user interface.

We chose to implement the UI in Python. We chose Python because this
is the programming language we were most familiar and comfortable with.
Within Python, we chose the GUI toolkit tkinter to develop our UI. Tkinter
is relatively simple, which was a big advantage, as we had little UI program-
ming experience. Nonetheless, tkinter has more than enough features to be
able to create an effective UI.
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4.2 String Diagrams in JSON Format

In this section we show what String Diagrams look like in JSON format
when they are imported by our UI. We start in subsection one by describ-
ing the existing format of (Basic) String Diagrams in JSON. In the second
subsection we show how our proposed extensions to String Diagrams can be
included in this existing format.

4.2.1 BSDs in JSON Format

Basic String Diagrams in JSON-format must adhere to a specific format.
The structure of this format is depicted in Figure 4.1.

{

"root": "root",

"components": {

"layer_0": {

(layer data)

},

"layer_1": {

(layer data)

},

...

"layer_n": {

(layer data)

},

"root": {

"type": "sequence",

"values": [

"layer_0",

"layer_1",

...

"layer_n"

]

}

}

}

Figure 4.1: JSON format of Basic String Diagrams
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Type Fields Notation

prism “path”, “ > |”, “ < |”, “| > ”, “| < ” A
sum “values” A1 ⊕A2 ⊕ · · · ⊕ An

sequence “values” A1 # A2 # · · · # An

Table 4.1: Types and fields of BSDs

A BSD in JSON format consists of a root component and a dictionary of
components. These components can have three possible types: “prism”,
“sum” or “sequence”. The types of BSD components in JSON format are
summarized in Table 4.1.

PRISM

The first type is “prism”. PRISM is a format with which MDPs are com-
monly defined [3]. Models in PRISM format are accepted by Storm.

Each PRISM component is an oMDP like the one in Figure 2.3. The
structure of PRISM components is depicted in Figure 4.2.

The “path” value specifies the filename of the PRISM file which the com-
ponent represents. The PRISM file should be in the same folder as the JSON
file. The four symbols below the path specify the right-facing entrances, the
left-facing exits, the right-facing exits and the left-facing entrances. Each of
these entrance/exit attributes contain a list of zero or more names of states,
which are the entrances/exits with which the component is connected to the
rest of the diagram.

Sum

The second type is “sum”. The sum type represents a sum of components
as we have described them in Chapter 2.

Sum components have an attribute called “values”, which contains the
names of all the components that make up the sum. All of these components
must be of the “prism” type.

Sums may contain more than two components. For the resulting dia-
gram, it does not matter whether the components are summed starting from
the left/top or from the right/bottom. This is because the sum operation is
associative (see Section 2.4.2).

25



"component_name": {

"type": "prism",

"path": "path.prism",

">|": [

"s_0",

"s_1",

...

],

"<|": [

"s_2",

"s_3",

...

],

"|>": [

"s_4",

"s_5",

...

],

"|<": [

"s_6",

"s_7",

...

]

}

Figure 4.2: PRISM component in JSON format

"sum_name": {

"type": "sum",

"values": [

"comp_0",

"comp_1",

...

"comp_n"

]

}

Figure 4.3: Sum component in JSON format
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"sequence_name": {

"type": "sequence",

"values": [

"layer_0",

"layer_1",

...

"layer_n"

]

}

Figure 4.4: Sequence in JSON format

Sequence

The last type is “sequence”. The sequence type represents a sequence of
sequentially composed components.

As with the sum type, the sequence type has an attribute called “values”,
which contains the names of all layers that make up the sequence. For
sequences it also holds that it does not matter if its layers are sequentially
composed from left to right or from right to left because of the associativity
of sequential composition (see Section 2.4.2).

Every String Diagram contains exactly one root sequence. The name of
this root sequence is defined by the value in the very first “root” attribute
in Figure 4.1.

Example 13. A complete example of a small diagram in JSON format is
shown in Figure 4.5. This example shows what the expression “A#(B⊕C)#A”
looks like in JSON format.
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{

"root: "root",

"components": {

"A": {

"type": "prism",

"path": "a.prism",

">|": ["s_0"],

"<|": ["s_1"],

"|>": ["s_2"],

"|<": ["s_4"]

},

"B": {

"type": "prism",

"path": "b.prism",

">|": ["s_5"],

"|>": ["s_6"],

},

"C": {

"type": "prism",

"path": "c.prism",

"<|": ["s_7"],

"|<": ["s_8"]

},

"sum_0": {

"type": "sum",

"values": [

"B",

"C"

]

}

"root": {

"type": "sequence",

"values": [

"A",

"sum_0",

"A"

]

}

}

}

Figure 4.5: The expression “A # (B ⊕ C) # A” in JSON format
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Type Fields Notation

prism “path”, “ > |”, “ < |”, “| > ”, “| < ”, “maps” A
sum “values”, “maps” A1 ⊕A2 ⊕ · · · ⊕ An

sequence “values” A1 # A2 # · · · # An

repeat “value”, “amount” R(A, n)

Table 4.2: Types and fields of ESDs. Extensions are highlighted in bold.

4.2.2 ESDs in JSON Format

In the previous chapter we introduced two extensions to BSDs: the repeat-
extension and the switch-extension. Table 4.2 summarizes the types of com-
ponents in ESDs.

Repeat

Repeat components in an Extended String Diagram are structured as de-
picted in Figure 4.6.

"name": {

"type": "repeat",

"value": "layer_name",

"amount": number

}

Figure 4.6: Repeat component in JSON format

In this structure, “name” is the name of all the repeated layers combined.
The “layer name” in the “value” attribute is the name of the layer that is
to be repeated. Of course, “number” denotes the amount of times the layer
should be repeated.

Switch

The switch extension does not introduce a new type of component. Instead,
it extends components of the “prism” and the “sum” type with a “maps”
field. Sequence- and repeat-components do not get a “maps” field. This is
because in every case both the first and the last component of a sequence
or a repeat is a PRISM- or sum-component. Therefore, if a mapping is
applied to a repeat or a sequence, this mapping is stored in the repeat’s or
sequence’s first or last layer, which is either a PRISM- or a sum-component.

The maps field contains four lists, one for each type of entrance/exit.
Each of these lists contains a list of indices, such that there is an index for
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every entrance/exit in the oMDP/sum. This index is the index in the previ-
ous or next layer to which the entrance/exit it belongs to maps. Essentially,
the mapping creates a permutation of each of the entrance/exit lists, where
the new order of the indices defines the new mapping.

Example 14. Figure 4.7 shows a simple example diagram where non-default
arrows have been used. The corresponding maps field of the “initial” com-
ponent is displayed in Figure 4.8.

Figure 4.7: Custom layer connections

"maps": [

[0],

[],

[1, 0],

[0, 1]

]

Figure 4.8: Custom “maps” field
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4.3 The UI

4.3.1 The Component Tree

In the previous section we discussed what String Diagrams look like in JSON
format. Upon starting the UI, the user is prompted with a pop-up window
asking him to select such a String Diagram in JSON format to import into
the program. When a file is selected, the program parses the JSON file
and draws the diagram that it represents on the canvas. It does not matter
whether the input file is an ESD or a BSD, because the BSD format is a
strict subset of the ESD format.

In order to be able to visualize the diagram and to allow the user to
make changes to the diagram, the program keeps an internal state of all
the components that are present in the diagram. We implemented this as
a “Component Tree”. In almost every case, the root of the tree is the root
sequence. The root component could also be a PRISM-, sum- or repeat-
component, but this would not result in a very interesting diagram. The
root sequence branches out into any number of nodes. Leaf nodes must
always be PRISM-components. It is not possible for a sum- or repeat-
component to have no children. If a user removes the last child of a Sum,
the program therefore also removes the entire Sum itself and adjusts the
visualization accordingly. If a Repeat with two children has its repeat count
decreased to one, the Repeat will be converted to a PRISM-component.

For every object we store its name, x and y coordinates and height in
order to be able to accurately display the diagram. Every component other
than the root sequence has a parent object, which also means that every
object other than PRISM-components have children objects. Additionally,
every object type has its own buttons, which allow the user to edit the
diagram in various ways. How exactly the diagram can be edited will be
discussed in the next subsection. An object’s name, rectangle, and buttons
each have their own IDs. These IDs are used by the program to update or
delete all parts of an object when this is necessary.
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Figure 4.9: PRISM component in the UI

4.3.2 Visualization and Editing

We have four different types of objects: PRISM-components, sums, repeats
and sequences. In this subsection we describe how each of these objects can
be edited in our UI.

PRISM-components

A PRISM-component is visualized as in Figure 4.9. The name of the compo-
nent is displayed in the top-middle. Its buttons are displayed in the top-left
and the top-right corners of the component. The entrances and exits of the
component are displayed on its left and right borders. The small arrowheads
indicate the direction of the entrance/exit.
Other than completely deleting a component, there are two possible ways to
change it. The component can be converted into either a Repeat or a Sum.

In order to convert a PRISM-component into a Repeat, the repeat-
button in the top-left corner of the component must be clicked. Upon
clicking the button, the user is prompted to enter the name of the new
Repeat object. After choosing a name, the PRISM-component is repeated
once and is then converted into a Repeat object.

Alternatively, the component can be converted into a Sum. This can be
done by clicking the plus-button in the top-right corner of the component.
Clicking this button opens up a drop-down menu containing the names of
all the components present in the diagram’s JSON-file. When a user selects
one of these components, he will again first be prompted to enter a name
for the new Sum. Once he has entered a name, the original component will
be summed with the component selected in the drop-down menu.
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Figure 4.10: Sum component in the UI

Sums

An example of how a Sum is visualized in the UI is shown in Figure 4.10.
Sums consist of two or more vertically stacked PRISM-components sur-
rounded by a blue border. The Sum’s name is displayed in the top-middle.
Components within a Sum are, of course, already part of a Sum, so as a re-
sult they do not contain buttons to convert them into another object. The
Sum itself contains a repeat-button in the top-left corner and a plus-button
and reorder-button in the top-right corner. The repeat-button functions
the same as the repeat-button for PRISM-components. The plus-button
can be used to add another PRISM-component to the Sum. Adding an-
other PRISM-component will insert the new component at the bottom of
the Sum. Components can be removed from the Sum by clicking the middle
mouse-button on the component’s border. The order of the components can
be changed by using the reorder-button. Clicking this button opens a popup
window containing the names of the Sum’s components. These names can
be reordered by dragging them. Upon confirmation of the changes the Sum
will be redrawn with its components in the new order.

Repeats

Both PRISM-components and Sums can be repeated. Figure 4.11 shows a
Repeat of a PRISM-component.

Repeat components consist of two or more Components or Sums. Repeat
components are visualized using a green border. The Repeat’s name is
displayed in its top-left corner. Its buttons are displayed above the top-
right side of its first component.
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Figure 4.11: Repeat component in the UI

Figure 4.12: Sequence in the UI

The first button with the magnifying glass symbol is used to switch the Re-
peat between compact and expanded view. Components could be repeated
a lot of times, and it is therefore not always practical to always visualize all
the repeated components. Switching the Repeat to compact view therefore
only visualizes its first component. The amount of times this component
is repeated can still be seen in the top-left corner next to the name of the
Repeat.

The plus- and minus-buttons can be used to add or remove a component
to or from the repeat. Of course, these buttons work when the Repeat is in
both compact and expanded view.

Sequences

A sequence consists of any number of sequentially composed PRISM com-
ponents, sums and/or repeats. A very short example sequence of just two
components is displayed in Figure 4.12.

The sequence’s name is displayed outside its border on the top-left side.
A sequence can be edited in three ways: layers can be removed, added and
reordered.

Removing a layer can be done by clicking the layer’s border with the
middle mouse button. Adding a component to the sequence can be done
by clicking the plus-button on the right-side border of the sequence. This
works similarly to adding a component to a Sum: clicking the button opens
up a drop-down menu allowing the user to select any component present in
the diagram’s JSON file. The selected component will be added as the last
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layer in the sequence.
The reorder button can be found under the plus-button. Again, reorder-

ing layers in a sequence is very similar to reordering components in a Sum.
Upon clicking the button, a popup window appears allowing the user to
reorder the sequence’s components by dragging them. Confirming the order
in the popup window results in the sequence being redrawn in the provided
order.

4.3.3 Connecting the Layers

When the user is done editing his diagram he can choose to create custom
connections between the diagram’s layers. As we discussed in the previous
chapter, layers are connected with straight arrows by default. However, we
do not display these default arrows in the editor, because it would be a
mess to redraw all arrows when a user is rearranging, adding or deleting
components, especially when a user is editing a diagram in multiple steps.

Therefore, when the user is done editing the components of the diagram,
he can select the “Edit Arrows” command in the editor menu. After having
selected this command, the user will be able to show the default arrows
and/or replace the default arrows with custom arrows. Custom arrows can
be created by right-clicking an exit and dragging the cursor over a valid
entrance.

4.3.4 Exporting

Once the user is satisfied with the changes to the diagram, the visualization
of the diagram can be finalized. This can be done from both the initial
editor and the arrow-editor by selecting the “Finalize” command in the
editor menu. The finalize-command visualizes the entire diagram, including
all arrows and without the visual clutter of the editor-buttons. At this point
the user can no longer edit the diagram. The user can, however, choose to
export his newly created diagram. He can choose to export the diagram to
both the Basic and the Extended String Diagram format, by selecting the
corresponding commands in the file-menu.
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4.4 Converting ESDs to BSDs

In the previous chapter we proved that ESDs can always be converted into
BSDs without losing expressivity. In our UI users can choose to export their
diagram to both the ESD- and BSD-format. If a user wants to export an
ESD diagram to BSD-format, our program therefore also needs to be able
to apply such a conversion. In this section we explain how we implemented
the conversions from ESDs to BSDs in our UI.

4.4.1 Converting Repeat to BSD

It is straightforward to convert repeat components. In the repeat compo-
nent’s parent sequence the repeat component simply has to be replaced by
the component that is repeated for the number of times in the “amount”
field of the repeat component. An example is shown in Figure 4.13.

"layer0-r": {

"type": "repeat",

"value": "layer0",

"amount": 3

}

"root": { "root": {

"type": "sequence", "type": "sequence",

"values": [ "values": [

"initial", --> "initial",

"layer0-r", "layer0",

"final" "layer0",

] "layer0",

} "final"

]

}

Figure 4.13: Converting a repeat component to BSD format
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4.4.2 Converting Switch to BSD

Converting switch components is a little more complicated. As we described
in the previous chapter, we insert a new PRISM-component before and after
each component with a custom map.

In our UI, we call these newly added components “switchx”, where x is a
number, starting with 0 for the first newly inserted component and going up
by one for each next component. The entrances of these new components
are the same as the exits of the component with the map. The exits of
these new components are a permutation of their entrances, such that their
new order now corresponds to the indices of the mapping of the original
component.

The new components are added to the dictionary of components in the
JSON file, and their names are inserted before or after the name of the
original component in the original component’s parent sequence, whichever
is applicable.
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Chapter 5

Conclusions

In this thesis we proposed two extensions to String Diagrams of MDPs.
The repeat extension makes it possible for String Diagrams to be more
compactly represented and makes it easier for users to include, remove, or
edit repetitions of components of the String Diagram. The switch extension
allows the user to change how the layers of String Diagrams are connected.
The extensions improve usability and allow the user to create the diagram
they want more easily. We have proven that applying these extensions to
a String Diagram does not decrease the diagram’s expressivity, by proving
that in any case an Extended String Diagram (ESD) can be converted to an
equivalent Basic String Diagram (BSD).

Additionally, we have created a user interface that allows the user to
import, edit, and export String Diagrams. This tool makes it easier for users
to work and experiment with both BSDs and ESDs. We have demonstrated
the applicability of our proposed extensions to String Diagrams using this
tool.

In future work more extensions to String Diagrams can be proposed. Fu-
ture work can also continue to expand the user interface. Additional features
could include implementing the “trace” type, enabling more elaborate nest-
ing and configurations of the diagram’s sequences, sums, and repeats, and
the implementation could be changed such that it can calculate and show
how changing the model affects the model’s reachability probabilities.
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Appendix A

Appendix

A.1 Proofs of Equivalence Relations

A.1.1 Identity

Proof. We need to prove the identity relation in two directions. That is, we
need to prove I # A = A and A # I = A.

I # A = A :

For I # A to be equal to A we need to show that:

1. SI#A = SA (their states are equal)

2. EI#A(i) = EA(i) (their entry functions are equal)

3. P I#A = PA (their transition functions are equal)

SI#A = SI ⊎ SA (by the definition of the #-operator)

= ∅ ⊎ SA (by the definition of the identity component)

= SA

This proves 1.

EI#A(i) = EA(EI(i)) (by the definition of the #-operator)

= EA(i) (by the definition of the identity component)
This proves 2.

P I#A(sI , a, s′) =

P I(sI , a, s′) if s’ ∈ SA∑
i∈[k] P

I(sI , a, i) · δEA(i)=s′ otherwise

= ! (by definition of P I)
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P I#A(sA, a, s′) =

PA(sA, a, s′) if s’ ∈ SA + [n]

0 otherwise
This proves 3.

1, 2, and 3 hold, so I # A = A

A # I = A :

For A # I to be equal to A we need to show that:

1. SA#I = SA

2. EA#I(i) = EA(i)

3. PA#I = PA

SA#I = SA ⊎ SI (by the definition of the #-operator)

= A ⊎ ∅ (by the definition of the identity component)

= SA

This proves 1.

EA#I(i) = EA(i) (by the definition of the identity component)
This proves 2.

PA#I(sA, a, s′) =

PA(sA, a, s′) if s’ ∈ SA∑
i∈[k] P

A(sA, a, i) · δEI(i)=s′ otherwise

=

PA(sA, a, s′) if s’ ∈ SA

0 otherwise

PA#I(sI , a, s′) =

P I(sI , a, s′) if s’ ∈ SI + [n]

0 otherwise

= ! by definition of P I

1, 2, and 3 hold, so A # I = A

We have proven that both I # A = A and A # I = A, which concludes our
proof of the identity relation.
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A.1.2 Associativity of Sequential Composition

Proof. We need to prove: A # (B # C) = (A # B) # C

For the above to hold we need to show that:

1. SA#(B#C) = S(A#B)#C

2. EA#(B#C)(i) = E(A#B)#C(i)

3. PA#(B#C) = P (A#B)#C

SA#(B#C) = SA ⊎ SB#C

= SA ⊎ SB ⊎ SC

= SA#B ⊎ SC

= S(A#B)#C

This proves 1.

EA#(B#C)(i) = EB#C(EA(i))

= EC(EB(EA(i)))

= EC(EA#B(i))

= E(A#B)#C(i)
This proves 2.

PA#(B#C)(sA, a, s′) =

PA(sA, a, s′) if s′ ∈ SA∑
i∈[k] P

A(sA, a, i) · δEB#C(i)=s′ if s′ ∈ SB#C + [n]

PA#(B#C)(sB#C , a, s′) =

PB#C(sB#C , a, s′) if s′ ∈ SB#C + [n]

0 otherwise

PA#(B#C)(sB, a, s′) =

PB(sB, a, s′) if s′ ∈ SB∑
i∈[k] P

B(sB, a, i) · δEC(i)=s′ if s′ ∈ SC + [n]

PA#(B#C)(sC , a, s′) =

P C(sC , a, s′) if s′ ∈ SC + [n]

0 otherwise
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P (A#B)#C(sA#B, a, s′) =

PA#B(sA#B, a, s′) if s′ ∈ SA#B∑
i∈[k] P

A#B(sA#B, a, i) · δEC(i)=s′ if s′ ∈ SC + [n]

P (A#B)#C(sA, a, s′) =

PA(sA, a, s′) if s′ ∈ SA∑
i∈[k] P

A(sA, a, i) · δEB#C(i)=s′ if s′ ∈ SB#C + [n]

P (A#B)#C(sB, a, s′) =

PB(sB, a, s′) if s′ ∈ SB∑
i∈[k] P

B(sB, a, i) · δEC(i)=s′ if s′ ∈ SC + [n]

P (A#B)#C(sC , a, s′) =

P C(sC , a, s′) if s′ ∈ SC + [n]

0 otherwise

From the above equations we can determine that:

PA#(B#C)(sA, a, s′) = P (A#B)#C(sA, a, s′)

PA#(B#C)(sB, a, s′) = P (A#B)#C(sB, a, s′)

PA#(B#C)(sC , a, s′) = P (A#B)#C(sC , a, s′)
This proves 3.

Since all three conditions are met, we can conclude that sequential compo-
sition is associative.

A.1.3 Associativity of Summing

Proof. We need to prove: A⊕ (B ⊕ C) = (A⊕ B) ⊕ C

For the above to hold we need to show that:

1. SA⊕ (B ⊕ C) = S(A⊕ B)⊕ C

2. EA⊕ (B ⊕ C)(i) = E(A⊕ B)⊕ C(i)

3. PA⊕ (B ⊕ C) = P (A⊕ B)⊕ C

SA⊕ (B ⊕ C) = SA ⊎ SB ⊕ C

= SA ⊎ SB ⊎ SC

= SA⊕ B ⊎ SC

= S(A⊕ B)⊕ C

This proves 1.
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EA⊕ (B ⊕ C)(i) = EA(i) ⊎ EB ⊕ C(i)

= EA(i) ⊎ EB(i) ⊎ EC(i)

= EA⊕ B(i) ⊎ EC(i)

= E(A⊕ B)⊕ C(i)
This proves 2.

PA⊕(B⊕C)(sA, a, s′) =

PA(sA, a, s′) if a ∈ AA and s′ ∈ SA

0 otherwise

PA⊕(B⊕C)(sB⊕C , a, s′) =

PB⊕C(s, a, s′) if s, s′ ∈ SB⊕C and a ∈ AB⊕C

0 otherwise

PA⊕(B⊕C)(sB, a, s′) =

PB(sB, a, s′) if a ∈ AB and s′ ∈ SB

0 otherwise

PA⊕(B⊕C)(sC , a, s′) =

P C(sC , a, s′) if a ∈ AC and s′ ∈ SC

0 otherwise

P (A⊕B)⊕C(sA⊕B, a, s′) =

PA⊕B(s, a, s′) if s, s′ ∈ SA⊕B and a ∈ AA⊕B

0 otherwise

P (A⊕B)⊕C(sA, a, s′) =

PA(sA, a, s′) if a ∈ AA and s′ ∈ SA

0 otherwise

P (A⊕B)⊕C(sB, a, s′) =

PB(sB, a, s′) if a ∈ AB and s′ ∈ SB

0 otherwise

P (A⊕B)⊕C(sC , a, s′) =

P C(sC , a, s′) if a ∈ AC and s′ ∈ SC

0 otherwise

From the above equations we can determine that:

PA⊕(B⊕C)(sA, a, s′) = P (A⊕B)⊕C(sA, a, s′)

PA⊕(B⊕C)(sB, a, s′) = P (A⊕B)⊕C(sB, a, s′)

PA⊕(B⊕C)(sC , a, s′) = P (A⊕B)⊕C(sC , a, s′)
This proves 3.

Since all three conditions are met, we can conclude that summing is asso-
ciative.
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A.1.4 Bifunctoriality

Proof. We need to prove: (A⊕ B) # (C ⊕ D) = (A # C) ⊕ (B # D)

For the above to hold we need to show that:

1. S(A⊕B)#(C⊕D) = S(A#C)⊕(B#D)

2. E(A⊕B)#(C⊕D)(i) = E(A#C)⊕(B#D)(i)

3. P (A⊕B)#(C⊕D) = P (A#C)⊕(B#D)

S(A⊕B)#(C⊕D) = SA⊕B ⊎ SC⊕D

= SA ⊎ SB ⊎ SC ⊎ SD

= SA ⊎ SC ⊎ SB ⊎ SD

= SA#C ⊎ SB#D

= S(A#C)⊕(B#D)

This proves 1.

If EA(i) ∈ SA and EB(i) ∈ SB:

E(A⊕B)#(C⊕D)(i) = EA⊕B(i)

= EA(i) ⊎ EB(i)

E(A#C)⊕(B#D)(i) = EA#C(i) ⊎ EB#D(i)

= EA(i) ⊎ EB(i)

Otherwise: (if EA(i) /∈ SA and EB(i) /∈ SB)

E(A⊕B)#(C⊕D)(i) = EC⊕D(EA⊕B(i))

= (EC(i) ⊎ ED(i))(EA(i) ⊎ EB(i))

= EC(EA(i)) ⊎ ED(EB(i))

E(A#C)⊕(B#D)(i) = E(A#C)(i) ⊎ EB#D(i)

= EC(EA(i)) ⊎ ED(EB(i))

In both cases E(A⊕B)#(C⊕D)(i) = E(A#C)⊕(B#D)(i), which proves 2.
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P (A⊕B)#(C⊕D)(sA⊕B, a, s′) =

PA⊕B(sA⊕B, a, s′) if s′ ∈ SA⊕B∑
i∈[k] P

A⊕B(sA⊕B, a, i) · δEC⊕D(i)=s′ if s′ ∈ SC⊕D + [n]

P (A⊕B)#(C⊕D)(sA, a, s′) =

PA(sA, a, s′) if s′ ∈ SA∑
i∈[k] P

A(sA, a, i) · δEC(i)=s′ if s′ ∈ SC + [n]

P (A⊕B)#(C⊕D)(sB, a, s′) =

PB(sB, a, s′) if s′ ∈ SB∑
i∈[k] P

B(sB, a, i) · δED(i)=s′ if s′ ∈ SD + [n]

P (A⊕B)#(C⊕D)(sC⊕D, a, s′) =

P C⊕D(sC⊕D, a, s′) if s′ ∈ SC⊕D + [n]

0 otherwise

P (A⊕B)#(C⊕D)(sC , a, s′) =

P C(sC , a, s′) if s′ ∈ SC + [n]

0 otherwise

P (A⊕B)#(C⊕D)(sD, a, s′) =

PD(sD, a, s′) if s′ ∈ SD + [n]

0 otherwise

P (A#C)⊕(B#D)(sA#C , a, s′) =

PA#C(sA#C , a, s′) if s′ ∈ SA#C

0 otherwise

P (A#C)⊕(B#D)(sA, a, s′) =

PA(sA, a, s′) if s′ ∈ SA∑
i∈[k] P

A(sA, a, i) · δEC(i)=s′ if s′ ∈ SC + [n]

P (A#C)⊕(B#D)(sC , a, s′) =

P C(sC , a, s′) if s′ ∈ SC + [n]

0 otherwise

P (A#C)⊕(B#D)(sB#D, a, s′) =

PB#D(sB#D, a, s′) if s′ ∈ SB#D + [n]

0 otherwise

P (A#C)⊕(B#D)(sB, a, s′) =

PB(sB, a, s′) if s′ ∈ SB∑
i∈[k] P

B(sB, a, i) · δED(i)=s′ if s′ ∈ SD + [n]

P (A#C)⊕(B#D)(sD, a, s′) =

PD(sD, a, s′) if s′ ∈ SD + [n]

0 otherwise

From the above equations we can determine that:
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P (A⊕B)#(C⊕D)(sA, a, s′) = P (A#C)⊕(B#D)(sA, a, s′)

P (A⊕B)#(C⊕D)(sB, a, s′) = P (A#C)⊕(B#D)(sB, a, s′)

P (A⊕B)#(C⊕D)(sC , a, s′) = P (A#C)⊕(B#D)(sC , a, s′)

P (A⊕B)#(C⊕D)(sD, a, s′) = P (A#C)⊕(B#D)(sD, a, s′)

This proves 3.

Since all three conditions are met, we can conclude that the bifunctoriality
relation holds.
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A.2 Proofs of Convertibility of Extensions

A.2.1 Repeat

Proof. We will prove by induction that for any n ≥ 1, it holds that:

An = R(A, n)

Base Case
In the base case, n = 1. We get:

A1 = R(A, 1)

A = A

Induction Hypothesis
We assume that for some k > 1 it holds that:

Ak = R(A, k)

Induction Step
We need to show that Ak+1 = R(A, k + 1)

Ak+1 = R(A, k + 1)

Ak # A = R(A, k) # A (by the definition of R)

= Ak # A (by the IH)

The above proves by induction that for any n ≥ 1, it holds that An =
R(A, n).

A.2.2 Switch

We need to prove: [m1]A[m2] = S1 # A # S2

For the above to hold we need to show that:

1. [m1]S
A[m2] = SS1#A#S2

2. EA(i)[m1] = EA#S1(i) and EA(i)[m2] = EA#S2(i)

3. [m1]P
A[m2] = PS1#A#S2

[m1]S
A[m2] = SA (mapping does not add/remove states)

SS1#A#S2 = SS1 ⊎ SA ⊎ SS2 (by the definition of #)

= ∅ ⊎ SA ⊎ ∅ (by the definition of switch)

= SA

This proves 1.
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EA(i)[m1] = m1(E
A(i)) (mapping is applied after applying E on each i)

EA#S1(i) = ES1(EA(i)) (by the definition of #)

= m1(E
A(i)) (by the definition of switch)

EA(i)[m2] = m2(E
A(i))

EA#S2 = ES2(EA(i))

= m2(E
A(i))

We have shown that EA(i)[m1] = EA#S1(i) and EA(i)[m2] = EA#S2 , which
proves 2.

[m1]P
A[m2](s

A, a, s′) =

PA(sA, a, s′) if s′ ∈ SA

0 otherwise

PS1#A#S2(sS1 , a, s′) = ! (by the definition of switch)

PS1#A#S2(sA#S2 , a, s′) =

PA#S2(sA#S2 , a, s′) if s′ ∈ SA#S2 + [n]

0 otherwise

PS1#A#S2(sA, a, s′) =

PA(sA, a, s′) if s′ ∈ SA∑
i∈[k] P

A(sA, a, i) · δES2 (i)=s′ if s′ ∈ SS2 + [n]

=

PA(sA, a, s′) if s′ ∈ SA

0 otherwise

(because delta is always zero since S2 has no states)

[m1]P
A[m2](s

A, a, s′) = PS1#A#S2(sA, a, s′), which proves 3.

We have shown that all three conditions hold, so we can conclude that
[m1]A[m2] = S1 # A # S2.
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