BACHELOR’S THESIS COMPUTING SCIENCE

RADBOUD UNIVERSITY NIJMEGEN

Deep Learning-based Side-Channel Attack: Mamba Approach

Author:
Beatrise Bertule
s1105119

Daily Supervisor:
Lizzy Grootjen

First Supervisor/Assessor:
Prof. Lejla Batina

Second Assessor:
Dr. Stjepan Picek

January 22, 2026

Abstract

Side Channel Attacks (SCAs) exploit unintentional physical leakages, such as power consumption or electro-
magnetic emissions, to recover secret cryptographic keys. Unlike attacks that target theoretical weaknesses
within cryptographic algorithms, SCAs focus on the physical signals emitted while a device performs en-
cryption or decryption. While traditional statistical approaches, such as Template Attacks (TA) for profiled
SCAs, have proven effective, deep learning-based approaches show greater potential due to their ability to
automatically learn complex patterns from raw power traces. Deep Learning-based Side-Channel Attacks
(DL-SCAs) deploy neural network architectures for side-channel attacks. Architectures designed to process
context-dependent data, such as multilayer perceptrons (MLP), convolution neural networks (CNNs) and
hybrid attention-based architectures, have been successful. In our study, we propose a hybrid neural network
architecture that deploys Mamba block architecture, a recently proposed selective state-space model, has
not yet been widely explored for this purpose. Our model utilizes bidirectional encoders based on stacked
Mamba blocks with residual connections which enables the model to capture temporal context in both
- forward and backward - directions within power traces. We target the first round of the AES algorithm,
concretely, we treat the output of the S-box function as the sensitive intermediate value and evaluate the
proposed approach under unprotected and protected attack scenarios. Experimental results demonstrate
that the Mamba-based model successfully recovers the secret key, achieving fast guessing entropy conver-
gence and effective key recovery. While the proposed approach is competitive with a baseline MLP, our
findings highlight the potential of selective state-space models for modeling temporal leakage patterns in
side-channel attacks.

s1105119 Beatrise Bertule

Contents

1 Introduction 3
1.1 Problem Statement e e e e 3
1.2 Research QUEeSHION e e e e e e 3
1.3 Contributions e e e e e e 4
Preliminaries 5
2.1 Embedded Devices e 5
2.2 Advanced Encryption Standard Algorithm L L .. 5
2.2.1 Execution Flowof AES 5
2.2.2 SubByte Transformation e 6

2.3 Side-Channels Attacks e 6
2.3.1 Side-ChannelData it e e e 6
2.3.2 LeakageModels e 7
2.3.3 Side-Channel Attacks e e e 8

2.4 DeepNeural Networks oo e e 8
2.4.1 MAMBAATIChIteCtUre i e e e e e e e e e 9

2.5 Deep-Learning based Side-ChannelAttack 11
2.5.1 ThreatModel e 11
2.5.2 DataAcquisition e e e 12
2.5.3 Label Preparation i i e e e e e 12
2.5.4 Feature Selection i i e e e e e e 12
2.5.5 Model Implementationt 13
2.5.6 Attack EXecution e e e e 13
2.5.7 AttackEvaluation L 14
Related Work 15
3.1 Background e e e e 15
3.2 DL Architecture Choiceand Design 15
3.3 Attentionfor DL-SCA e 15
3.4 Mambafor DL-SCA 16
Methodology 17
4.1 Research Objective e 17
4.2 Side-Channel Datasets v i i e e e e e e e e e e e e 17
4.2.1 CW-TargetDataset ittt e et e e e 18
4.2.2 ASCADvVIDataset o i i i it e e e e e e e e e e 18

4.3 Proposed Neural Network Architectures i 18
4.3.1 MLPModel e e e 19
432 MambaModel. 19
4.3.3 HyperparameterSearch 21

4.4 Experimental SEtup e e e e e 22
4.4.1 DataPreparation e e e e 22
442 ProfilePhaseSetup 23
4.4.3 AttackPhase Setup i e e e 23

s1105119 Beatrise Bertule

5 Results 24
5.1 Attack on ChipWhisperer Dataset ittt it e 24
5.2 Attackon ASCADVI Dataset o v vttt e e e e e e 25

6 Discussion 27
6.1 CW-Target Dataset e e e e 27
6.2 ASVADVI Dataset e e e e e e e e 27
6.3 Future Work e 28

7 Conclusions 29

A Appendix 32
A.1 Feature Selection with HW Leakage Model 32

s1105119 Beatrise Bertule

1 Introduction

Cryptographic algorithms such as the Advanced Encryption Standard (AES) are designed to guaranty strong
confidentiality through encryption and decryption. However, the physical application of these algorithms
can leak information through side channels - measurable physical phenomena such as power consumption
[15], electromagnetic emissions [25], or timing variations [14]. While cryptanalysis target the theoretical weak-
nesses within the cryptographic algorithms, side-channel attacks (SCAs) exploit the physical side-channel
leakages to recover secret information even when the algorithm is mathematically secure [26].

Classical SCA techniques are differential power analysis (DPA) [15] and template attacks (TA) [5]. Both
methods rely on statistical techniques to correlate measured physical leakages with secret-dependent inter-
mediate values processed by the device. In recent years, machine learning (ML), in particular, deep learning
(DL), have advanced the state of art of side-channel attacks [24]. DL models can learn complex patterns
from raw side-channel leakage data, reduce the need for feature extraction, and exhibit robustness against
misalignment and even some side-channel attack countermeasures [24]. Commonly used architectures
within the deep-learning based side-channel attack (DLSCA) domain are multilayer perceptrons (MLPs),
convolution neural networks (CNNs) [13, 18, 20, 30], as well as hybrid attention-based neural networks
(9,17, 12].

1.1 Problem Statement

Despite the extensive exploration of conventional deep-learning architectures, sequence-oriented models
specifically designed to capture contextual and long-range dependencies remain largely unexplored within
the side-channel attack (SCA) domain. Power consumption traces are inherently sequential signals, and in
practice the physical leakage caused by sensitive computations can be temporally spread across multiple
time samples [18]. Consequently, deep learning architectures that explicitly model temporal context and
long-range dependencies may offer advantages for side-channel analysis, as they can better capture dis-
tributed leakage patterns and correlate them with underlying cryptographic secrets.

Our study explores whether Mamba, a selective state-space model, can be effectively adapted for profiled
side-channel attacks on the AES algorithm. Mamba extends classical state-space models with a selectiv-
ity mechanism that allows the model to selectively retain informative components of a sequence while
suppressing noise.

1.2 Research Question

The central research question of our study is:

To what extent Mamba architecture’s ability to model temporal context can enable an effective
key recovery performance in deep learning—based side-channel attacks on AES algorithm?

In our study, we evaluate whether Mamba can learn meaningful patterns directly from the temporal leakage

s1105119 Beatrise Bertule

and successfully correlate these patterns with secret cryptographic variables. To achieve this, we design a
Mamba-based neural network. To effectively model temporal dependencies of power consumption leakage,
the proposed model employs bidirectional encoders composed of Mamba blocks. The forward Mamba en-
coder models dependencies in the forward temporal direction, while the backward Mamba encoder captures
dependencies in the reverse temporal direction. Then the model is trained to map side-channel leakage
with a sensitive intermediate value, the output of the AES S-box, which is subsequently used to recover the
secret key byte. The effectiveness of the proposed approach is evaluated with standard side-channel analysis
metrics - key rank and guessing entropy [24]. Finally, we discuss the effectiveness of the proposed model
based on the obtained evaluation results.

1.3 Contributions
The main contributions of this work to DL-SCA are as follows:

- We propose a hybrid neural network that utilizes bidirectional encoders based on stacked Mamba
blocks with residual connections. This design aims to capture temporal context in both forward and
backward directions of power traces.

- We explore the capacity of the Mamba architecture, specificaly, the selective-state space mechanism,
to explicitly model temporal context within power consumption traces.

- We assess the proposed Mamba-based model on unprotected and protected AES side-channel leakage
datasets, and benchmark its performance against an MLP model - a successful model proposed by
prior research.

s1105119 Beatrise Bertule

2 Preliminaries

This chapter provides the necessary background knowledge to understand the applied experimental method-
ology. It briefly introduces embedded devices and discusses the cryptographic algorithm used in this study,
namely the Advanced Encryption Standard (AES). The chapter then explains how such algorithms can leak
sensitive information through side-channel emissions and describes how deep learning methods can be
applied to map side-channel data to secret cryptographic values.

2.1 Embedded Devices

Embedded devices are specialized computer systems designed to perform dedicated tasks within larger
systems. Unlike general-purpose computers, embedded devices are optimized for efficiency, low power
consumption, and cost-effectiveness [8]. Embedded microcontrollers such as ARM Coretx-M and ATMega
frequently execute cryptographic algorithms. Hence, they handle highly sensitive data such as private keys
and credentials [3, 18]. As most of these devices ar largely deployed by Internet of Things (IoT), they have
become high-value target for attackers [11, 24]

2.2 Advanced Encryption Standard Algorithm

The Advanced Encryption Standard (AES) is a widely used symmetric block cipher standardized by NIST
[19]. It operates on fixed-size 128-bit data blocks and supports key sizes of 128, 192, or 256 bits. AES deploys
concepts of a substitution—-permutation network (SPN) where several operations of substitution boxes (S-box)
and permutations boxes (P-box) are applied to transform a plaintext into ciphertext.

2.2.1 Execution Flow of AES

AES execution consists of multiple transformation rounds. Algorithm 1 shows the general execution flow of
AES. The algorithm takes a State which represents an intermediate value and CipherKey which corresponds
to the cipher key. Before we apply the main transformation rounds, we apply ExpandKey operation to derive
the round keys from the cipher key. Then AddRoundKey operator combines the state with the round key with
the use of bitwise xor operator.

Algorithm 1: AES Encryption
Input: State, CipherKey
Output: Encrypted State
1 ExpandedKey — KeyExpansion(CipherKey);
2 AddRoundKey(State, ExpandedKey|[0]);
3 fori—1to Nrdo
4 t Round(State, ExpandedKey[i]);

5 FinalRound(State, ExpandedKey[Nr]);

Each AES round consists of four operations: SubBytes, ShiftRows, MixColumns, and AddRoundKey. The
number of rounds depends on the key size. Algorithm 2 illustrates the general execution flow of a single
AES round. The algorithm takes the current state as input along with the corresponding round key, and the
state is processed sequentially through the four operations. In this work, we focus in more detail only on the

s1105119 Beatrise Bertule

SubBytes operation.

Algorithm 2: AES Round Transformation
Input: State, RoundKey

1 SubBytes(State);

2 ShiftRows(State);

3 MixColumns(State);

4 AddRoundKey(State, RoundKey);

The final round of AES differs slightly as it excludes the MixColumns operation. Algorithm 3 shows the
execution flow of the final round.

Algorithm 3: AES Final Round Transformation

Input: State, RoundKey
1 SubBytes(State);
2 ShiftRows(State);
3 AddRoundKey(State, RoundKey);

These transformations ensure non-linearity, diffusion, and key dependency throughout the algorithm.

2.2.2 SubByte Transformation

The SubByte transformation is the first operation in each AES round. In this step, each byte a; ; of the state
array is replaced with a corresponding SubByte S(a;, ;) using an 8-bit substitution box (S-Box). Table 2.1
visualizes the S-Box lookup table in hexadecimal representation. For example, byte 0x00 will be mapped to
0x52, and byte 0x52 will be mapped back to 0x00. Such transformation introduces non-linearity into the
cipher. The AES S-Box is derived from the multiplicative inverse over the finite field GF(2®) which is known
for its strong non-linear properties.

2.3 Side-Channels Attacks

While cryptanalysis target the mathematical foundations of a cryptographic algorithm, Side-Channel Attacks
(SCA) exploit the physical implementation of them. These attacks rely on unintentional physical leakage that
occurs during the execution of cryptographic algorithms. Given the observable part of side channel leakage
such as power consumption [15], execution time [14], or electromagnetic emissions [25], the adversary can
extract secret information as the physical characteristics of a hardware device are statistically correlated with
the processed data [15, 26].

2.3.1 Side-Channel Data

Side-channel data are physical signals that reveal how a cryptographic device processes data internally. A
vulnerability arises because the device’s power consumption is not constant over time, but depends on
the intermediate values processed by the device [26]. In particular, these intermediate values are often
derived from secret information, such as cryptographic keys. For example, in an AES implementation, the
output of the S-box depends on a known plaintext byte and an unknown secret key byte [19]. As a result,
the corresponding power leakage is correlated with this secret-dependent value. With large number of side-
channel traces, this dependence can be exploited, and an attacker can distinguish correct key hypotheses
from the incorrect ones. This principle forms the basis of side-channel attacks, where physical measurements
are analyzed to recover secret keys without directly breaking the underlying cryptographic algorithm.

s1105119 Beatrise Bertule

0x0 1x0 2x0 3x0 4x0 5x0 6x0 7x0 8x0 9x0 Ax0 Bx0 Cx0O Dx0 Ex0 Fx0

0x0 | 0x63 0x7C 0x77 0x7B OxF2 0x6B 0x6F 0xC5 0x30 0x01 0x67 0x2B OxFE 0xD7 OxAB 0x76
1x0 |0xCA 0x82 0xC9 0x7D OxFA 0x59 0x47 OxFO OxAD 0xD4 OxA2 OxAF 0x9C 0xA4 0x72 0xCO
2x0 | 0xB7 OxFD 0x93 0x26 0x36 0x3F 0xF7 0xCC 0x34 OxA5 OxE5 OxF1 0x71 0xD8 0x31 0x15
3x0 [0x04 0xC7 0x23 0xC3 0x18 0x96 0x05 0x9A 0x07 0x12 0x80 OxE2 OxEB 0x27 0xB2 0x75
4x0 | 0x09 0x83 0x2C Ox1A 0x1B Ox6E 0x5A 0xAO 0x52 0x3B 0xD6 0xB3 0x29 OxE3 0x2F 0x84
5x0 |0x53 0xD1 0x00 OxED 0x20 OxFC 0xB1 0x5B 0x6A 0xCB OxBE 0x39 0x4A 0x4C 0x58 O0xCF
6x0 |0xDO OxEF OxAA OxFB 0x43 0x4D 0x33 0x85 0x45 OxF9 0x02 0x7F 0x50 0x3C 0x9F 0xA8
7x0 |0x51 OxA3 0x40 O0x8F 0x92 0x9D 0x38 OxF5 0xBC 0xB6 0xDA 0x21 0x10 OxFF 0xF3 0xD2
8x0 | 0xCD 0x0C 0x13 OxEC 0x5F 0x97 0x44 0x17 0xC4 OxA7 Ox7E 0x3D 0x64 0x5D 0x19 0x73
9x0 | 0x60 0x81 0x4F 0xDC 0x22 0x2A 0x90 0x88 0x46 OxEE 0xB8 0x14 O0xDE Ox5E 0xOB OxDB
Ax0 |OxEO 0x32 0x3A 0xO0A 0x49 0x06 0x24 0x5C 0xC2 0xD3 OxAC 0x62 0x91 0x95 OxE4 0x79
Bx0 | 0xE7 0xC8 0x37 0x6D 0x8D 0xD5 Ox4E 0xA9 0x6C 0x56 OxFB OxEA 0x65 0x7A OxAE 0x08
Cx0|0xBA 0x78 0x25 Ox2E 0x1C OxA6 0xB4 0xC6 OxE8 0xDD 0x74 Ox1F 0x4B OxBD 0x8B 0x8A
Dx0|0x70 0x3E 0xB5 0x66 0x48 0x03 OxF6 0xOE 0x61 0x35 0x57 0xB9 0x86 0xC1l 0x1D 0x9E

Ex0|0xE1 OxF8 0x98 0x11 0x69 0xD9 0x8E 0x94 0x9B Ox1E 0x87 OxE9 O0xCE 0x55 0x28 OxDF

Fx0 [0x8C OxA1l 0x89 0xOD OxBF OxE6 0x42 0x68 0x41 0x99 0x2D O0xOF 0xBO 0x54 0xBB 0x16

Table 2.1: AES S-box lookup table.

2.3.2 Leakage Models

To effectively deploy side-channel attack techniques, a sensitive intermediate value is typically mapped to an
estimated leakage value through a leakage model (3, 7, 20, 22, 30]. The actual physical leakage L produced by
a device is commonly modeled as the sum of a deterministic component and random noise [7]. Equation
(2.1) expresses the physical leakage mathematically where § denotes the unknown deterministic leakage
function, Vi corresponds to a sensitive intermediate value that depends on the secret key k, and B represents
additive noise. Since the true leakage function 4 is unknown to the attacker, a leakage model m is used as
an approximation of the physical behavior [7]. A leakage model is therefore a mathematical function that
predicts the physical leakage, such as power consumption or electromagnetic emissions, produced by a
cryptographic device when processing a specific sensitive value.

L=6V,)+B 2.1)

The main assumption of the proposed approach is that the leakage caused by a sensitive value is predictable
enough for a simple model to capture the statistical correlation between the secret-dependent computation
and the measured side-channel traces.

Commonly used leakage models include the Hamming Weight (HW) model and the Identity (ID) model.

- Hamming Weight leakage model.
The HW model assumes that the physical leakage is proportional to the number of bits in the sensitive
variable v that are set to 1. Equation (2.2) mathematically represents the HW leakage model function
mpyw for an n-bit value v = (b,,_1,..., b1, bg) where b; € {0, 1}.

n—1
muw W) =Y b; (2.2)
i=0

s1105119 Beatrise Bertule

- Identity leakage model.
The Identity model is a more flexible approach that makes no assumptions about the linear relationship
between bits. Instead, it treats each possible value of the sensitive variable as a distinct class with its
own unique physical signature. Equation (2.3) mathematically expresses the ID leakage model mi;p (v).

mip(v) =v 2.3)

2.3.3 Side-Channel Attacks

Side-channel attacks can be categorized into non-profiling (direct) and profiling (two-stage) attacks scenarios
[24]. In non-profiling attack scenarios, the attacker has no access to the target clone device. Consequently,
the adversary runs statistical analysis on the side-channel data directly to correlate the side-channel leakage
to a cryptographic secret, and obtain the best guess on the secret value [23]. In contrast, profiling attacks
assume access to a clone device. In the first phase, the attacker constructs a model that characterizes the
side-channel leakage behavior of the device. In the second phase, this model is used to exploit the leakage
observed from the target device in order to recover the secret key [11].

To build the link between the data processed by a device and the physical signals emitted during that
process, leakage models are applied. The application of leakage models for side-channel attacks usually
follow four distinct steps [7]: (1) collect a set of N physical leakage traces L while the target devices processes
known plaintexts or ciphertexts p;, (2) for every possible key candidate k, calculate the sensitive intermediate
value v;r = f(pi, k), where where f is a known cryptographic primitive such as the AES S-box function, (3)
apply a leakage model m to the derived intermediate values to obtain hypothetical leakage estimates, (4) use
a statistical distinguisher, such as the Pearson correlation coefficient (p), to evaluate the relationship between
the measured traces L and the estimates M. The predicted key k* is the one that maximizes the relationship
of Equation (2.4) where My = m(vy) stand for the hypothetical leakage estimates under a leakage model m.

k* = argmax;|p(L, My)| (2.4)

While side-channel data provide access to physical measurements, attackers do not observe the sensitive
intermediate values directly. Instead, they observe noisy physical signals that are dependent on these values.
To relate the measured leakage to the underlying secret-dependent computation, attackers rely on leakage
models that approximate how intermediate values are reflected in the physical domain.

Typically, for side-channel attacks on the AES encryption algorithm the sensitive variables are recovered in
parts with divide-and-conquer approach [24] which makes the attack computationally more feasible. To
recover the full key, the approach described above gets repeated for each sub-byte key until the full key is
recovered. For research purposes, one key-byte recovery sufficient to show effectiveness of an attack [24].

2.4 Deep Neural Networks

Deep neural networks (DNN) map a signal features N € F to a class label C = N. DNNs can be described
with a function fj : & — % where & <R and % < RN [24, 21]. Equation (2.5) shows the function where the
initial layer fj operates on the input x € & and the final layer f; produces the output y € %. Each layer f; is
typically parameterized by a subset of the parameters 6.

fo(x)= frofr-10---0 fi(x). (2.5)

Each layer f; consists of a set of neurons that apply a linear transformation followed by a nonlinear activation
function [3]. Equation (2.6) demonstrates such computation of the ¢-th layer where W, and b, denote the
trainable weight matrix and bias vector, respectively, and ¢, (-) represents a nonlinear activation function.

fe(x) = (Wpx +by), (2.6)

s1105119 Beatrise Bertule

The output of the network prior to normalization is referred to as the logits. To obtain a probability distribu-
tion over the target classes, the softmax function o (:) is applied to the logits [24]. The predicted class label for
an input x is then given by Equation (2.7) where |¢’| denotes the number of target classes.

= . 2.
y=arg _max o(fp(x); 2.7)

2.4.1 MAMBA Architecture

State Space Models

State Space Models (SSMs) are a class of sequence models that map one-dimensional input x(¢) € R to an
output y(¢) € R through an N-dimensional latent state h(t) € RY. The foundation of an SSM is a continuous
time system defined by two primary equations - the state equation h'(t) which describes how the latent
state h(t) evolves over time, and the output equation y(#) which maps the hidden state to the final output.

Equations (2.8) and (2.9) describes the state and the output equation respectively with parameters A € RV*V,
BeRM*! and Ce RN,
h' (1) = Ah(t) +Bx(1) (2.8)
y() =Ch(t) 2.9

To operate on discrete sequences, the continuous parameters A and B are transformed into discrete pa-
rameters A and B through a mathematical process called discretization [10]. Equation (2.10) expresses the
Zero-Order Hold (ZOH) discretization technique where A represents the step size, and exp denotes the matrix
exponential.

A =exp(AA) (2.10)
B=(AA)"l(exp(AA)-1)-AB (2.11)

Equation (2.12) described the new state space model with discretized parameters.

h;=Ah;_, +Bx; (2.12)
Yt = Cht (2.13)

Traditional SSMs are fundamentally time invariant, which means that the systems matrices A, B and C
remain static across all token, independent of the input data. This leads to major problems of lack of
content-awareness and fixed compression. Because the parameters are fixed, the model lacks a mechanism
to selectively prioritize salient information or suppress irrelevant noise within a sequence. As a result the
model compresses the entire sequence history into a latent state with uniform weights [10].

The Selection Mechanism

To address the limitations of traditional SSMs, selective state space models introduce input-dependent
dynamics by allowing the parameters B, C, and A to vary over time [10]. This input dependence enables
the model to selectively compress the sequence history, retaining relevant information while discarding noise.

Equation (2.18) defines the new parameterization of B, C, and A. Equations (2.14), (2.15) and (2.16) define
the specifics of each parametrization function. At each time step ¢, the model generates distinct parameters
B; and C; as functions of the current input token. The parameter B; controls how much of the current input
is written into the latent state, while C; determines how much of the latent state contributes to the current
output. In addition, the discretization step size A is made input-dependent. Mechanistically, A acts as a
memory control parameter: a large value of A, effectively resets the state, allowing the model to focus on the

s1105119 Beatrise Bertule

current input, whereas a small A; preserves the previous state and attenuates the influence of the current
input.

Together, these mechanisms provide selective SSMs with content-aware memory updates that are absent in
traditional time invariant models.

sp(x) = Linear(x) (2.14)

sc(x) = Linear(x) (2.15)

sa (x) = Broadcastp (Linear; (x)) (2.16)

T = softplus 2.17)
B;=sp(x;), Cr=sc(xs), Ar=71alSa(xs)) (2.18)

Together, these mechanisms provide selective SSMs with content-aware memory updates that are absent in
traditional time invariant models.
Hardware-Aware Computation

By making the model time-varying, selective SSMs lose the ability to be computed as fast convolutions.
Traditional state space models can be expressed as convolutions, which enables highly parallel training.
However, input-dependent parameters break this equivalence and require a recurrent formulation. To
maintain computational efficiency, Mamba employs a hardware-aware parallel algorithm based on three key
techniques: kernel fusion, selective scan and recomputation [10].

Mamba Block

The Mamba block is a sequence modeling unit that serves as the fundamental building block of the Mamba
architecture. It is designed to replace the standard "Attention + MLP" stack found in Transformer architec-
tures with a single layer that scales linearly with sequence length [10]. Figure 2.1 visualizes the Mamba block.

Q Linear projection
I:l Sequence transformation

_/ ' O Nonlineairty

Figure 2.1: Mamba block.

The Mamba block expands the embedded sequence with dimension D to a higher dimensional space
through a linear layer to create a higher dimensional hidden state. The expanded signal is the processed by
a 1D convolution to capture local dependencies. Following a SiLU/Swish activation, the signal enters the

10

s1105119 Beatrise Bertule

core Selective SSM (S6) layer where the model achieves context-awareness with the dynamically generated
transition parameters (A, B, C). In a parallel branch, the expanded sequence is passed through a separate
activation to act as a multiplicative gate, which is combined with the SSM output to modulate information
flow. Finally, the gated result is projected back to the original dimension D. This architecture allows multiple
Mamba blocks to be stacked with residual connections.

2.5 Deep-Learning based Side-Channel Attack

Figure 2.2 presents the general workflow of deep learning-based side-channel attack (DL-SCA) execution.

Data Preprocessing

Raw Data Feature Selection Data Normalization

i 'J.J.I\.lﬂw....\mn oL
“Jm.I..n..'.hﬂ.A....\Mn.u,....mh.A....l M A

oot — o — 0
|

Feature Selected & Normalized Traces }

Profile Phase Attack Phase

{ Xval } { YyallK* } Xattack Yattack/k*

Key Rank J(*
Guessing Entropy

Guessing Entropy
Convergance

Model(X,q1.v) { Model(Xackey.9) }
O—| eeo

M

A

A M g

Key Hypothesis Scored

Figure 2.2: General workflow of DL-SCA execution.

2.5.1 Threat Model

The DL-SCA workflow shown in Figure 2.2 follows a profiled side-channel attack execution flow [24]. Profiled
side-channel attacks are the most powerful class of side-channel attacks [3] with two-phase process: a
profiling phase and an attack phase. The attacker is assumed to have access to a clone device - a device that
is identical to the target device. This assumption allows the attacker to build a model of the clone device, and
use that model to attack the target device to retrieve sensitive information.

Profiled deep-learning based side-channel attacks consist of two phases:

- Profiling Phase.
In the profiling phase, the attacker collects a large number of side-channel traces from the clone device.
For each trace, the attacker controls the plaintexts and knows the corresponding key. This enables
the attacker to label each trace with the intermediate value of interest (the S-box output). With the
labeled data the attacker can train a deep-learning model to learn patterns in the raw power measure
that correspond to secret-dependent computations.

- Attack Phase.
In the attack phase, the attacker uses the previously trained model to recover the secret key from the

11

s1105119 Beatrise Bertule

target device. Unlike during profiling, the attacker now only observes traces from the real target device,
for which the key is unknown. For each new trace, the model evaluates how likely the measured leakage
corresponds to each possible value of the targeted intermediate variable (the S-box output). These
likelihoods are then combined across multiple attack traces to form a key hypothesis score, typically
by accumulating log-likelihoods. The correct key hypothesis gradually emerges as the one with the
highest aggregated score. Once the most likely key value is identified for the targeted byte, the attacker
repeats the process for the remaining key bytes until the full key is recovered. This phase requires far
fewer traces than non-profiled attacks because the model already captures the leakage characteristics
learned from the clone device.

2.5.2 Data Acquisition

We require side-channel leakage data to perform a profiled side-channel attack. In a profiled scenario, we
assume that the attacker has full control of a clone device of the target device. This allows the attacker to
collect leakage traces with known plaintexts and keys. Power consumption traces are typically captured with
an oscilloscope or a purpose-built acquisition platform such as ChipWhisperer [3, 11, 18]. The captured
traces are stored together with auxiliary information - most commonly plaintexts and keys — which is used
to label and organize the collected measurements.

Apart from collection of your own measurements, researchers commonly use publicly available side-channel
datasets [24]. These benchmark collections contain raw side-channel leakage traces with additional data such
as plaintexts and ciphertexts, which makes the experiments reproducible and allows for direct comparison
across studies. These dataset usually contain predefined profile/attack splits, target AES-128 (with or without
side-channel countermeasures), and employ either fixed or randomized keys across traces. Among these
resources, ASCAD dataset [3] is by far the most widely used benchmark to evaluate DL-SCA models.

2.5.3 Label Preparation

The most common place to attack the AES algorithm is the first round, right after the SubByte step, more
specifically, the output of the S-box function [3, 9, 18, 20, 22]. For deep learning-based side channel attacks,
each side-channel trace must be associated with a label derived from an assumed leakage model. Under the
identity-based leakage model, the leakage target corresponds directly to the S-box output value. Equation
(2.19) defines the label y; for the j-th trace and the i-th target byte, where p;; and k;; represent the i-th byte
of the j-th plaintext and key, respectively.

yj=S—box[pji®kj;| (2.19)

2.5.4 Feature Selection

Although raw side-channel traces can be passed directly to a neural network, previous research has shown
that such an approach can often be inefficient [20]. The dimensionality of the data can be extremely large,
which often causes high computational complexity. Moreover, the traces contain large amounts of noise -
points that do not hold much information - which can reduce the model efficiency [20] . To address this
problem, feature selection is applied - only Points of Interest (POls), i.e., time samples that carry the most
information about the leaked secret, are selected for profiling and attack.

We can distinguish between three types of POI selection:

- Refined Points of Interest (RPOI) Selection.
In RPOI selection, we choose features based on Signal to Noise Ratio (SNR) measure. The SNR at
a given time sample ¢ is defined as the ratio between the variance of the signal power s(f) and the
variance of the noise power s(n). The SNR formula can be viewed in Equation (2.20).

Var[s(?)]
SNR(t) = ———— (2.20)
Var([n(1)]

12

s1105119 Beatrise Bertule

The RPOI method selects Points of Interest (POIs) that correspond to the highest SNR values, as these
points carry the strongest correlation with the processed secret. However, since only the peaks are
retained, we disregard the broader computational context. This can be problematic as the leakage of a
target operation may be context dependent and rely on prior computations.

- Optimized Points of Interest (OPOI) Selection.
In OPOI selection, we choose an optimized window - a range of time sample points - from the full
execution of the algorithm that contains the relevant leakage. The window is defined based on the
main SNR peak: we include the peak itself along with its neighboring points to ensure that the selected
region not only captures the strongest leakage but also preserves the surrounding computational
context.

- Non-Optimized Points of Interest (NOPOI) Selection.
In NOPOI selection, we don't choose POIs explicitly. Instead we use the full trace directly for profiling
and attack. While this approach can result in high computational complexity, it eliminates the risk of
excluding potentially relevant regions of the trace - a limitation that may occur with OPOI selection.

Equation (2.21) mathematically represents the optimized window that contains these peak SNR values
where W, denotes the the window centered at time stamp ¢, and s denotes the chosen window size.

Wy={teZ|t—-s<t<t+s} (2.21)

2.5.5 Model Implementation

Once features are selected and labels are prepared, we can adapt and train a model to extract secret informa-
tion. Neural network models are adapted so that they can process side-channel traces and output a prediction
related to the secret key. Typically, models take a sequence of power or electromagnetic measurements, while
the output corresponds to a probability distribution over key-dependent classes defined by a chosen leakage
model. Then we train the model to map trace features with intermediate cryptographic values. Then these
learned representations are used to rank key hypotheses based on their likelihood. Consequently, the model
must be designed such that the input dimensionality matches the number of features (time samples), and
the output layer produces a valid probability distribution over the target classes.

2.5.6 Attack Execution

The trained model predicts a probability distribution over the S-box output values P; over the attack traces.
Given that the plaintexts p; are known for the attack traces, we can calculate the potential S-box output
values under a particular key candidate k. As the AES algorithm is byte-oriented, it's common to attack
one key byte at a time, denoted as the i-th byte. The target byte of a key contains 8 bits, which gives us a
total of 28 = 256 potential key byte values. For every key candidate byte value, we compute the hypothetical
labels. Under the scenario that the key candidate byte value is the correct one, these labels are the S-box
function output values. The computation of hypothetical labels for the i-th byte of the key candidate h(k)
can be viewed in Equation (2.22) where p ;; denotes the i-th byte of plaintext for all attack traces j = 0,... N—1.

h(ki) ZS—bOX[p]’,’@ki] (2.22)

To score a key candidate, we accumulate the model’s probabilities' assigned to those hypothetical labels
across all attack traces. The final vector contains the total (log-)likelihood probabilities for all key candidates,
referred to as the scores of the key candidates. The computation of the key candidate scores s(k;) can be
viewed in Equation (2.23) where (P;(h(k;)) denotes the model’s probability assigned to the hypothetical label
for trace j under key candidate byte k;.

N
s(ki) =) log(P;j(h(k:))) (2.23)
j=0

IWe convert to logarithmic space for numerical stability and add a small constant (¢ > 0) to avoid undefined values.

13

s1105119 Beatrise Bertule

We compute s(k;) for every key-byte candidate k; € {0,...,255}. Once we sort these scores in descending
order, we get a key guessing vector g where g[0] is the most likely candidate, g[1] the second most likely, and
so on. The vector therefore contains the 256 key-byte candidates ordered by their (log-)likelihood of being
the correct key byte. The computation of the key guessing vector g can be viewed in Equation (2.24) where
argsort function sorts an array elements in order of decreasing values of their probabilities.

g = argsort|{s(kp)} 2| (2.24)

In a real life attack scenario, the attacker uses the key guessing vector g to recover secret information by
brute-force trials. The attacker attempts to decrypt a captured cipher-text or verify a known plaintext for
each candidate until the correct key is found. The number of decryption trials required equals the rank of the
correct key. Even if the models top prediction is not correct, the key appears high in the rank and only a small
number of brute-force trials is required.

2.5.7 Attack Evaluation

We evaluate how well the trained model performs on the attack traces with SCA-specific metrics and the
known key [30]: key rank and guessing entropy (convergence).

- Key Rank.
Key rank is the index (position) of the correct key within the key guessing vector. The rank represents
how many keys the attacker has to brute-force to reach the correct key.

- Guessing Entropy.
Guessing entropy (GE) is the average key rank across multiple realizations of the attack, each computed
with a random subset of the attack traces. Guessing entropy therefore summarizes the expected effort
required to recover the key. The computation of guessing entropy is defined in Equation (2.25) where
rank;(g) is the key rank of the j-th trace and M is the total number of the random subset of the attack
traces.

1
GE= M{rankj(g)}j]vi o (2.25)

It is common to visualize guessing entropy convergence - how guessing entropy decreases as more
attack traces are processed. This illustrates both the rate at which the attack becomes effective and the
approximate rank the attack converges to. This metric is useful to evaluate the feasibility of the attack
in real-world scenarios with limited data access.

We use SCA-specific evaluation metrics because basic classification metrics such as accuracy are often too
binary - they only tell us whether the predicted label is correct or not. However, a model with lower accuracy
can still be valuable to an attacker if the correct key appears high enough in the rank [22].

14

s1105119 Beatrise Bertule

3 Related Work

Since 2016 [18], deep learning-based side-channel attacks have been extensively studied. Over the years,
researchers have explored various directions within this field. This chapter focuses specifically on prior work
related to hybrid architectural designs for deep learning models in the context of side-channel attacks.

3.1 Background

Deep learning-based side-channel attacks (DL-SCAs) have become an active research direction only within
the past decade. In 2016, Maghrebi et al. conducted the first systematic study of DL techniques for SCA
context [18]. Since then, the field has grown rapidly [24], driven by the ability of deep learning models
to automatically handle noisy measurements [13], operate directly on raw power traces [20], and remain
effective even against certain side-channel countermeasures [3]. Over time, researchers have explored the
DL-SCA problem from several complementary angles [24]. These angles cover (1) DL architecture choices,
where several DL architecture types - CNNs and MLPs [1, 13] along with some hybrid attention-based models
[9, 12, 17] - have been studied; (2) data acquisition and design, where several publicly available dataset
have been proposed to enable consistent evaluation across works [3]; (3) feature engineering, where feature
selection scenarios and dimensionality reduction methods have been explored to extract the side channel
leakage points [20, 21]; (4) model hyperparameter optimization, where different model hyperparameter
affect the attack performance [2, 29]; and (5) attack evaluations metrics where several measures have been
explored to assess the effectiveness of an attack [22].

3.2 DL Architecture Choice and Design

Among the various architectural approaches explored, CNNs and MLPs have been the most widely adapted.
Both architectures have been successfully applied to attacks on various AES implementations in profiled and
non-profiled scenarios [1, 13, 20, 27]. In previous studies, vanilla variants of these models - standard CNNs
and MLPs - are often used to explore general optimization properties of DL-SCA. These baseline architectures
are typically chosen to assess the performance of feature selection techniques [20] and to compare different
hyperparameter search approaches [2, 29]. Their architectural simplicity allows researchers to recognize the
impact of individual optimization choices.

3.3 Attention for DL-SCA

Recently, researchers have shifted their focus on more complex DL architecture designs - hybrid networks
that combine different complementary neural components. These models typically aim to exploit the ability
of CNNs to detect local patterns within power traces together with other mechanisms that are able to model
broader temporal dependencies within the trace. In practice, such architectures frequently embed attention
mechanisms to enhance the model’s ability to focus on informative segments of the trace.

Several models have been proposed that utilize modified attention mechanisms after convolution to capture
long-range context, enhance CNN-extracted features, and reduce overall noise. Attention mechanisms
and their variants [28] have been widely adopted in fields such as Natural Language Processing (NLP) and
Automatic Speech Recognition (ASR). In the context of side-channel attacks, attention has been used to
better extract relevant side-channel leakage features. Representative examples include the following models:

15

s1105119 Beatrise Bertule

- First, Lu et al. [17] proposed a model, composed of three main modules: an encoder that uses
locally connected layers or lightweight CNNs followed by bi-directional LSTMs to extract and combine
fine-grained features from long traces, an attention mechanism to identify and focus on the most
informative time steps, and a classifier to map the selected features to key predictions. This design
avoids heavy fully connected layers, reduces dimensionality early, and selectively combines features,
making it suitable for long, high-dimensional traces in practical SCA scenarios.

- Next, Feng et al. [9] proposed HACNN-SCA, a model that consists of three main modules; convolution
module that extracts local patterns from power traces, a hybrid attention module that combines
channel attention and spatial attention to enhance the representation of the relevant features of the
local patterns, and a classification module that uses a fully connected layers to make predictions [9].
This architecture emphasizes the relevant parts of side channel leakage and suppresses the overall
noise to boost the effectiveness of side-channel attacks.

- Finally, He et al. [12] proposed AMCNNet, a model that consists of three main components: a multi-
scale convolution module that captures features at different scales, a feature extraction module that
enhances important channels and uses self-attention to capture long-range dependencies, and a
classification module that makes prediction. Similarly to Feng et al. proposed model, this architecture
enhances the relevant features, and effectively captures both local and global dependencies within the
power traces as well.

3.4 Mamba for DL-SCA

While attention-based mechanisms represent a significant advance, these architectures still depend on
attention operations that become computationally expensive for long power traces and may fail to model
global temporal structure efficiently [10, 28]. Recent progress in sequence-based architectures, particularly
the emergence of Mamba blocks [10] that make use of selective state-space models, offers an alternative
that can capture long-range dependencies with linear-time complexity. To date, only one work has explored
Mamba block application. Zhaobin Li et al. proposed a CNN-Residual Mamba module hybrid architecture
[16]. Their model consists of four modules: convolution module, residual Mamba module, MLP module,
and a fully connected classification module. The Mamba module consist of three Mamba blocks stacked
with a residual connection. However, the authors do not clearly specify which ASCAD dataset variant was
used in their experiments. Based on the reported number of traces, it is likely that the dataset corresponds to
ASCADv1 dataset.

Compared to our approach, their model captures long-range dependencies only in one temporal direc-
tion. In contrast, our work explicitly models explores bidirectional long-range dependencies which allows
our network to exploit both past and future contextual information within power traces. To the best of our
knowledge, the authors do not explore a bidirectional Mamba configuration, nor do they analyze its potential
impact on side-channel attack performance.

16

s1105119 Beatrise Bertule

4 Methodology

This chapter describes the methodology used to conduct the experiments and address the research question.
We begin by briefly restating the research objective, followed by an introduction to the datasets used. Next,
we present the two models considered in our study - the baseline MLP and the Mamba model. Finally, we
outline the general experimental setup.

4.1 Research Objective

The objective of our research is to evaluate the effectiveness of the Mamba Block architecture for deep
learning-based side-channel attacks. Originally designed to model context-dependent sequential data,
Mamba can efficiently capture long-range dependencies. When applied to power consumption traces, these
properties may offer significant advantages as side-channel leakage can be temporally distributed across
multiple time samples, which creates complex contextual dependencies within the traces. In typical SCA
architectures, convolution layers are used to extract local leakage features, while attention mechanisms
are often added to model broader temporal context [12, 17, 9]. Mamba blocks may offer an alternative to
attention mechanism without the computational overhead of self-attention, which can potentially enable
more efficient extraction of global patterns from traces.

In our research, we follow a general workflow of deep learning-based side channel execution, described in
Section 2.5. We consider a baseline multilayer perceptron (MLP) model proposed by Perin et al. in their work
on feature-selection scenarios for deep-learning-based side-channel analysis [20]. The MLP represents a
commonly used architecture in deep learning-based side-channel analysis and serves as a reference for eval-
uating the performance gains offered by the Mamba model. We propose our own model with bidirectional
recurrent Mamba encoder blocks. Such bidirectional recurrent approach has been explored in context of
attention to model long-range dependencies along both temporal direction of sequence data [6, 4]. Both
models are trained to map feature-selected side-channel traces to key-dependent intermediate cryptographic
values. Then the output probabilities of the cryptographic values are used to rank key hypotheses and ulti-
mately recover the secret key. We execute DL-SCA on two separate datasets that contain power consumption
traces of AES on both - unprotected and protected - versions of the encryption algorithm. This experimental
setup enables a direct comparison between the Mamba-based model and the traditional baseline, which
allows us to assess Mamba’s ability to extract meaningful leakage information.

4.2 Side-Channel Datasets

We deployed two datasets to run our experiments. Both of the dataset cover two main side-channel attack
scenarios - attacks on unprotected and protected implementations of AES-128 encryption algorithm. Table
4.1 summarizes statistical information of all data sets.

Dataset Algorithm Profile Attack Features Platform Countermeasure Key Target Byte
CW-Target TinyAES 50’000 10’000 12’000 ARM Cortex-M4 None Fixed 0
ASCADv1 AES 50’000 10’000 700 ATMega8515 Masked Fixed 2

Table 4.1: Statistical summary of the side-channel datasets.

17

s1105119 Beatrise Bertule

4.2.1 CW-Target Dataset

These traces were already collected and provided to us by the Digital Security lab. We named the dataset
CW-Target. The side-channel traces were recorded with the ChipWhisperer platform and contain raw power
consumption measurements of an unprotected TinyAES-128 algorithm deployed on a 32-bit ARM Cortex-M4
microcontroller. Each trace was recorded together with a plaintext and a secret key, fixed across all samples.
The traces are pre-aligned and capture approximately the first four rounds of the algorithm execution. Figure
4.1 shows an example of a raw power traces, collected with ChipWhisperer.

Raw Power Trace

0.2 1

0.1 1

0.0 A

—0.11

Power Consumption (a.u.)

—0.3

0 2000 4000 6000 8000 10000 12000
Time Samples

Figure 4.1: Example of raw power traces, collected with ChipWhisperer.

4.2.2 ASCADv1 Dataset

These traces contain raw power consumption measurements from a first-order Boolean-masked AES-128
algorithm executed on a 8-bit ATMega8515 MCU microcontroller [3]. Each trace is provided by the corre-
sponding plaintext and a secret key. The secret key is fixed across samples. The traces are pre-aligned and
cropped to a window that approximately covers teh target leakage point [3]. Figure 4.2 shows an example of a
raw power traces, taken from ASCADv1 dataset.

Raw Power Trace ASCADv1 Fixed Key
40

201

Power Consumption (a.u.)

0 100 200 300 400 500 600 700
Time Samples

Figure 4.2: Example of raw power traces, ACSADv1.

4.3 Proposed Neural Network Architectures

To assess the attack efficiency of the Mamba model, we implement a baseline Multilayer Perceptron (MLP)
for comparison.

18

s1105119 Beatrise Bertule

Algorithm 4: MLP Forward Pass

Input: Input features x € RB*7T

Output: Logits y € RB*K

h — Linear(x; T, Npeurons; 01) h — SELU(h) ;

ot

N

for i — 1to Nyjgden do
L h — Linear(h; Npeurons» Nneurons 0i) ;

- W

h — SELU(h) ;

3]

Y~ Linear(n; Npeurons: K 0our)
return y

<2}

4.3.1 MLP Model

The architecture of our MLP classifier follows the design proposed by Perin et al. in their work on feature-
selection scenarios exploration [20]. Figure 4.3 visualizes the general schema of the MLP model deployed.
The proposed MLP model takes a pre-process side-channel traces and outputs a probability distribution over
all 256 S-box output values.

Algorithm 4 shows the forward pass of the proposed MLP model. The model takes a power traces of shape
RE*T where B correspond to batch size and T corresponds to the number of temporal features, and outputs
logits of shape RZ*K where K corresponds to the number of target classes. The model maps the features of a
power traces to a hidden representation of Nyeyrons Units, applies two layers of Nyeyrons Units, and finally
outputs a probability distribution over K target classes. The model applies SeLU activation function between
the first three layers, and uses cross-entropy loss function.

AT

Figure 4.3: Baseline MLP model architecture.

4.3.2 Mamba Model

Figure 4.4 visualizes the proposed Mamba architecture. The models processed a power trace, represented
as a one-dimensional sequence. The output layer produces a probability distribution over 256 classes that
correspond to all the possible values of the targeted AES S-box output under the Identity (ID) leakage model.

Our proposed model consists of three main modules: convolution module, bidirectional Mamba block
module and classification module.

- Convolution Module Design.
The convolution module converts a raw power trace into a latent feature representation. It consists of

19

s1105119 Beatrise Bertule

[Classification]
X
A
Forward Encoder Backward Encoder i >
3) o ‘_.\""U.. E
A
K] K]
= =]
he) he)
I 7]
< Q
o 14
RMS Normalization
[Convolution] Q Linear projection
ATV A

Figure 4.4: Mamba model architecture.

1D convolution layers applied along the temporal dimension of the trace. The output of the module is
a sequence of embedded feature vectors.

- Bidirectional Mamba Module Design.

The bidirectional Mamba module deploys Mamba blocks, to model long-range dependencies within
the embedded power traces. The module consists of two parallel encoders - a forward Mamba encoder
and a backward Mamba encoder, each composed of a stack of Mamba blocks followed by residual
connections and layer normalization. The forward Mamba encoder processes the embedded power
trace in the forward direction (from left to right) to capture dependencies in the original temporal
direction. To model context that may not be fully represented in the forward direction alone, the
backward Mamba encoder processes the sequence in reverse order - the embedded power trace is
flipped and passed through the backward Mamba encoder to model dependencies in the backwards
direction (from right to left). The combination of forward and backward Mamba encoder blocks
allow the Mamba module to model long-range dependencies in both temporal directions. The output
from both encoders are then concatenated along the the last feature dimension and passed to the
subsequent classification module.

- Classification Module Design.
The classification module consists of a single linear transformation layer that maps the high-dimensional
representations to the target class space.

Algorithm 5 demonstrates the forward pass of the proposed Mamba architecture. The model takes a power
traces of shape R®*T where B correspond to batch size and T corresponds to the number of temporal features,
and outputs logits of shape RB*X where K corresponds to the number of target classes. The convolution
layer embeds the power traces to D,,,4.; dimensions. The embedded trace is then processed in parallel by
forward and backward Mamba encoder blocks: the forward encoder receives the original trace, while the
backward encoder receives the reversed trace. Each trace passes through Ny aygrs Mamba encoder blocks,
for a total of 2 x Npjcks blocks. Since the Mamba blocks are connected through a residual connection, the
last token’s output from each encoder captures a compressed summary of the sequence. These last hidden

20

s1105119 Beatrise Bertule

Algorithm 5: Bidirectional Mamba Forward Pass

Input: Raw signal x € RB*T
Output: Logits y € RB*K

// Convolution Module

1 x — Reshape(x,[B,1,T]); // output shape € RB*1*L
2 z— Convld(x; Dmodet; Oconn) ; // output shape € RB*Dmoderx L
3 z < Reshape(z,[0,2,1]) ; // output shape € RB*[*Dmode

// Bidirectional Mamba Module
4 Zfpd — %
5 Zpwd — Flip(z,dim = 1);
6 fori —1to Nyjocis do
7 L zfwa — Block®) (zfwa) ; // forward Mamba blocks

Zhwd < BlOCkgzud(wad) ; // backward Mamba blcoks

// Classification Module
9 hfwd ‘_wad[:yL):] ’
10 hpwa — Zpwals L]

11 Reombined — Concat([hrya, hpwal, dim = —1) ; // output shape € RB*2Dmodel
12 y — Linear(hcompined; Oner) ; // output shape € RB*K
13 return y
states are concatenated to form a single feature vector of shape RB*2Dmodaet which contains information from

both temporal directions. The concatenation features are then passed to the classification module where
they are mapped to a probability distribution over K classes.

4.3.3 Hyperparameter Search

We conducted a hyperparameter search for the proposed Mamba model to identify a configuration of the
parameters that yields the best attack performance. Once we found such a configuration, we adjusted the
number of neurons per layer in the MLP model to approximately match the number of learnable parame-
ters of the Mamba model. Matching the parameter count helps eliminate size-related bias, as the Mamba
architecture is inherently more complex than a standard MLP and could otherwise outperform the MLP
simply due to higher model capacity. The controlled learnable parameter count help us isolate the effect
of the model architecture itself which allows us to attribute the performance differences to architectural
characteristics rather than to differences in model size.

We experimented with different combinations of kernel sizes k = {3,5} and stride s = {1,3,5}. The ker-
nel size of 3 together with stride of 3 showed the best results. Configurations where the stride was smaller
than the kernel size—for example, a kernel of 3 with stride 1 or a kernel of 5 with stride 3—did not perform
well, as the average Ge and GE convergence exceeded the final reported values. In addition, a kernel size and
stride of 5 led to even higher average GE and GE convergence. We then deployed the model with multiple
convolution layers followed by ReLu activation and batch normalization but that did not seem to improve the
current state of the model. Finally, we experimented with different model dimensions D,,4.; = {32,64} and
number of stacked Mamba block Nyjocis = {2,4}. The combination of model dimension of 64 and 2 Mamba
encoder blocks (4 Mamba blocks in total) showed the best results.

For the Mamba model, we selected a model dimension D,,,,4.; of 64, and number of Mamba block Ny;ocks
of 2. Hence, our proposed Mamba model expands the dimension of the embedded traces further to 64
dimensions and applies four Mamba encoder: two forward encoder blocks and two backward encoder blocks.
The convolution module consists of a single one-dimensional convolution layer with a kernel size and stride
of 3. To approximately match the number of learnable parameters of the Mamba model, we set the number
of neurons per hidden layer Ny¢yrons 0f 128 in the MLP model. Table 4.2 summarized the chosen model
hyper parameters.

21

s1105119 Beatrise Bertule

Model Learnable Parameters Hyperparameter Symbol Value

MLP Architecture 155’000 Number of Neurons Nyeurons 128
Number of Hidden Layers Nhidden 2

Mamba Architecture 148’000 Model Dimension Dodel 64
Number of Mamba Encoders Npjocks 2

Table 4.2: Hyperparameters and experimental setup used across all experiments.

4.4 Experimental Setup

4.4.1 DataPreparation

We targeted different bytes for each dataset, and we performed feature selection only on the unprotected
CW-Target dataset, as ASCADv1 contains already feature selected traces.

- CW-Target Traces.
We targeted the first byte (byte index i = 0) of the key. To label each side-channel trace (2.5.3), we
calculate the cryptographic intermediate value of the S-box function under the ID leakage model.
Equation (4.2) defines label y; for the j-th trace, where p; and k;.‘ represent the j-th plaintext and
correct key, respectively.

yj:S—box[peBk}k] (4.1)

To select features (2.5.4), we deployed the OPOI method. For this purpose, the SNR was computed
with the HW leakage model. Specifically, the original ID-based labels were converted to their HW
representations, and the traces were grouped accordingly. For each HW group, the mean of all traces
was taken as the signal, while the noise was defined as the difference between each trace and the mean
trace (signal). We then computed the variance of both signal and noise to calculate the signal-to-noise
ratio (SNR) for each time sample. Based on the computed SNR trace, the top 15 time samples with the
highest SNR values were selected as Points of Interest (POIs). These POIs were further visualized to
approximate their location within the full power trace to select the optimized window. Appendix A.1
visualizes the SNR trace for HW leakage model, and a sample trace with selected POIs.

The power traces were then standardized - we fitted the normalization parameters on the profile
set and applied the same transformation to the validation and attack sets. The labels for all splits were
converted into one-hot encoded vectors.

- ASCADv1 Traces.
We targeted the third byte of the key (byte index i = 2), as the first two bytes are not protected. We use
the provided labels for each trace under the ID leakage model. Equation (4.2) defines label y; for the
j-th trace, where p; and k;f represent the j-th plaintext and correct key, respectively.

yj:S—box[peak}‘] (4.2)
The power traces were standardized as well. We fitted the normalization parameters on the profile

set and applied the same transformation to the validation and attack sets. The labels for all splits are
converted into one-hot encoded vectors.

22

s1105119 Beatrise Bertule

4.4.2 Profile Phase Setup

To train our models, we split the original profile set further to a profile and a validation subset. The validation
set was used exclusively for model performance validation and selection. Table 4.4 summarizes the data splits.

Dataset Train Split Validation Split Test Split

CW-Target 40’000 10’000 10’000
ASCADv1 40’000 10’000 10’000

Table 4.3: Data split for training, validation and testing.

Both models were trained for a maximum of 100 epochs with batch size B of 768 and learning rate LR
of 5x 1073, We used Adam optimizer with weight decay enabled. Table summarizes the model training
configurations.

Model validation was performed with the average GE metric. Accuracy and loss were not used for validation,
as they are known to be poorly correlated with key-recovery performance [20]. The mean GE measures the
average rank of the correct key byte across 100 attack executions. During model training, the validation GE
was monitored over 100 epochs, and the model checkpoint that corresponded to the lowest validation GE -
beyond which no further improvement was observed - was selected for the final evaluation.

Parameter Symbol Value

Batch Size B 768

Learning Rate LR 5x 1073

Table 4.4: Model training parameters.

4.4.3 Attack Phase Setup

To obtain the most likely key-byte candidate, we constructed a key guessing vector (2.5.7). To assess the
effectiveness of key recovery, we applied three SCA metrics (2.5.7): key rank, guessing entropy (GE), and
guessing entropy convergence. The key rank was calculated on the entire test set of 10’000 traces. The key
rank represent the position of the correct key within a key score vector. To assess the model’s reliability, we
performed 100 independent attack simulations. For each simulation, a random subsample of 1’000 traces
was drawn from the test set. The Average GE represents the mean rank of the correct key across these 100
iterations. Finally, we analyzed the GE convergence over 1’000 traces. This metric illustrates the rate at which
the model’s uncertainty decreases as more traces are provided, which detects the minimum trace count
required for the correct key to reach the lower rank.

23

s1105119 Beatrise Bertule

5 Results

This chapter presents the experimental results obtained by applying the proposed Mamba-based model
and a baseline multilayer perceptron (MLP) to both unprotected and protected side-channel analysis (SCA)
scenarios. Additionally, the chapter shows the model validation process during training, using guessing
entropy as the primary evaluation metric.

5.1 Attack on ChipWhisperer Dataset

Table 5.1 summarizes the attack performance comparison of baseline MLP and Mamba models on the
unprotected side-channel traces, collected with ChipWhisperer. Both models achieve perfect key recovery
with rapid guessing entropy convergence. Figure 5.1 shows the validation metric of mean GE during model
training. Figure 5.2 displays the GE convergence of both models together with the lowest GE value.

Model KeyRank MedianGE MeanGE GE Convergence

MLP 0 0.0 0.0 0.0 with 3 traces

Mamba 0 0.0 0.0 0.0 with 3 traces

Table 5.1: Attack performance on CW-Target dataset.

Figure 5.1 presents the validation GE over 100 epochs of training. For both models, the validation GE reached
0.0 from the very first epoch and remained stable. As summarized in Table 5.1 and illustrated in Figure 5.2,
both models successfully broke the unprotected dataset, with a key rank of 0 and median and mean GE of
0.0. Notably, the GE converged to 0.0 after only three attack traces out of 1000, demonstrating extremely fast
attack convergence.

Validation GE during Training (CW-Target)

—— MLP (min GE = 0.00 at epoch 0)
Mamba (min GE = 0.00 at epoch 0)

w
'

N
L

Validation Guessing Entropy (GE)

o
!

Epoch

Figure 5.1: Validation GE of Mamba and MLP model.

24

s1105119 Beatrise Bertule

GE Convergence: MLP vs Mamba (CW-Target)

w
o
|

—— MLP (min GE = 0.00 with 3 traces)
—— Mamba (min GE = 0.00 with 3 traces)

N
w

g
o
L

g
o
L

Guessing Entropy (GE)
_(D -
w w

o
<)

0 200 400 600 800 1000
Number of Traces

Figure 5.2: GE convergence of Mamba and MLP model.

5.2 Attack on ASCADv1 Dataset

Table 5.2 summarizes the attack performance comparison of baseline MLP and Mamba models on the pro-
tected side-channel traces, ASCADvV1 dataset with fixed key. Both models break the dataset with successful
key recovery. Figure 5.3 shows the validation metric of mean GE during model training. Figure 5.4 displays
the GE convergence of both models together with the lowest GE value.

Model KeyRank MedianGE MeanGE GE Convergence

MLP 0 0.0 0.0 0.01 with 983 traces

Mamba 0 0.0 0.04 0.75 with 986 traces

Table 5.2: Attack performance on ASCADvI dataset.

The baseline MLP model converged to a stable validation GE of 0.0 at epoch 15. The model successfully
recovered the secret key with a key rank of 0 and median and mean GE values of 0.0, which reflects perfect key
recovery. With 1000 attack traces, the GE converged to 0.01 after 983 traces. The Mamba model converged to a
validation GE of 0.92 at epoch 14 and was also able to recover the secret key. However, the attack performance
did not match that of the baseline model. The Mamba model achieved a final key rank of 0 with median and
mean GE values of 0.0 and 0.04, respectively. When evaluated with 1000 attack traces, the GE converged to
0.75 after 986 traces, which is slightly slower convergence compared to the baseline model.

Validation GE during Training (ASCADv1)

N
o
o

—— MLP (min GE = 0.00 at epoch 15)
—— Mamba (min GE = 0.92 at epoch 14)

= =
u ~
o (6,

=
N
w

SN
o w
L L

Validation Guessing Entropy (GE)
N o
w o

o
!

0 20 40 60 80 100
Epoch

Figure 5.3: Validation GE of Mamba and MLP model.

25

s1105119 Beatrise Bertule

GE Convergence: MLP vs Mamba (ASCADv1)

120 - —— MLP (min GE = 0.01 with 983 traces)
—— Mamba (min GE = 0.75 with 986 traces)
100 A

80 A

Guessing Entropy (GE)

0 200 400 600 800 1000
Number of Traces

Figure 5.4: GE convergence of baseline MLP and Mamba model.

26

s1105119 Beatrise Bertule

6 Discussion

This chapter presents and analyzes the outcomes of our experiments. The aim of the discussion is to evaluate
whether the Mamba architecture provides practical benefits in terms of attack efficiency and convergence
characteristics when compared to a commonly used baseline model. In addition, we outline the limitations
of our experiments and suggest potential directions for future research to address them.

6.1 CW-Target Dataset

Both models reached a validation guessing entropy (GE) of 0.0 from the first epoch, and this remained
constant throughout the rest of training. In terms of attack performance, both models achieved a key rank of
0 and median and mean GE values of 0.0. GE convergence occurred with as few as three traces.

Overall, both models recover the correct key byte almost immediately, requiring only three traces. This
suggests that the dataset is relatively easy to attack, and as a result, both models provide limited insight into
potential architectural advantages.

6.2 ASVADv1 Dataset

Both models achieved a validation guessing entropy (GE) close to 0.0 around epoch 15. While Mamba
reached a GE of 0.92 at that point, the baseline MLP model plateaued at a GE of zero. From Figure 5.3, we
can observe that Mamba trained faster, reaching a low GE value around epoch 10, whereas MLP achieved
a similar value approximately five epochs later. During the training of the first 10 epochs, the GE of the
MLP model fluctuated more than that of Mamba model, but subsequently it decreased rapidly. Although
we selected checkpoints around epoch 15 for attack execution, we continued the training of both models
to monitor the behavior of the validation metric over later epochs. For the MLP model, the validation GE
remained consistently zero, while for Mamba it fluctuated slightly, with the fluctuations becoming more
pronounced toward the final epochs.

The Mamba model achieved a key rank of 0. This means that with the model predictions we were able
to compose a vector of key byte candidate scores such that the correct key byte was the first one within the
score vector. In real life attack scenario, the adversary would have to brute-force only one key byte to recover
the correct one. The key rank results are the same with baseline MLP model.

The median an the mean of GE was 0.0 and 0.04 respectively. The median GE reveals that the most common
rank of the correct key byte among all key byte candidates was 0.0 when the the attack was executed on a
random subsample of 1000 traces over 100 attack runs. The slightly higher mean GE suggests that a few attack
runs produced a GE greater than 0.0. In comparison, the baseline MLP achieved a mean GE of 0.0 which
reveals that all 100 attack runs consistently ranked the correct key byte first, with no deviation across runs.
This observation suggests that the MLP model exhibits a more consistent performance of attack simulations.

Guessing entropy (GE) convergence demonstrates the number of traces required before the correct key
byte emerges at the top of the key rank score vector. In our evaluation, GE convergence simulates an attack
scenario in which only 1000 traces are available to the adversary. As additional traces are processed, the
log-likelihoods accumulate across traces, which eventually allows the correct key byte candidate (signal) to
progressively dominate over the rest 255 incorrect candidates. The Mamba model achieves a GE of 0.75 with
986 traces, while the baseline MLP model reaches GE of 0.01 with 983 traces. From Figure 5.4 we can observe

27

s1105119 Beatrise Bertule

that Mamba model seems to converge faster than MLP model for approximately the first 50 traces but then
MLP converges faster reaching a plateau much faster. Even though both models achieve a minimum GE of
smaller than 1.0 around trace 985, the GE of MLP model converge faster and more stable.

Overall, both models achieve perfect key recovery, with a key rank of 0 and GE convergence below 1.0
using fewer than 1,000 attack traces. The Mamba model converges slightly slower than the baseline MLP
model.

6.3 Future Work

In real-world attack scenarios, side-channel traces often suffer from misalignment, and feature selection
may not be feasible if traces are collected without the knowledge of the secret key. Consequently, it would
be valuable to evaluate the Mamba model on raw traces without alignment or pre-selected features, as well
as with presence of noise. While both models demonstrated similar performance on the current dataset, it
would be valuable to investigate how well they can learn from more challenging traces that contain noise,
misalignment, and no selected features, making the attack task significantly harder. Although the ASCADv2
dataset is considered more difficult to attack due to stronger countermeasures (affine masking and shuffling),
we were unable to run our models on this dataset because of hardware limitations. ASCADvV2 traces have
1’400 features, compared to 700 features in ASCADv1, which we used for our study. We could not fit this large
input size on our GPU. Additionally, both datasets used - CW-Target and ASCADV1 - contain fixed keys, which
possibly contributed to the high performance of the models, as the models can simply memorize the fixed
key. The dataset becomes more challenging when keys vary across the profile traces. However, then GE can
no longer be used as a validation metric, a limitation noted by previous studies [24].

Beyond dataset difficulty, a more extensive hyperparameter search could further improve model performance.
Although we explored the effects of different hyperparameter of the convolution module and Mamba module,
we did not perform automated hyperparameter optimization as suggested by prior works [29]. An exhaustive
search could potentially offer models with even better performance.

Finally, our experiments were constrained by limited GPU resources (10GB), which prevented us from
scaling the models to larger numbers of learnable parameters. As a result, we could not fully explore the
effect of model size on attack performance or determine how larger models might improve key recovery.
Access to greater computational resources would allow us to explore more complex models.

28

s1105119 Beatrise Bertule

7 Conclusions

Mamba blocks, specifically the bidirectional Mamba encoder stacked with residual connections, demonstrate
that selective state space-based architectures can be effectively applied to the side-channel attack context.
The proposed Mamba-based model achieved successful key recovery with a key rank of zero and a fast
GE convergence. These results confirm that Mamba-based neural network architectures are able to learn
meaningful representations from side-channel traces and exploit temporal dependencies present within
power consumption traces.

Despite this, the Mamba model did not outperform the baseline MLP model. In our experiments, the
MLP model achieved faster GE convergence, and reached GE close to zero across repeated attack executions.
This suggests that, for relatively simple datasets such as ASCADv1 with fixed keys, straightforward MLP archi-
tecture may already be sufficient to fully capture the exploitable leakage. In such scenarios, the additional
architectural complexity of Mamba-based models offer no measurable attack effectiveness gains.

Nevertheless, the results provide valuable knowledge about the trade-offs between model complexity and
attack effectiveness. While MLP models appear to be more robust and consistent, Mamba-based models offer
a fundamentally different approach through its state-space formulation. This characteristic may become
more advantageous in attack scenarios with side-channel traces that contain longer traces, misalignment,
noise, and stronger countermeasures.

In conclusion, although the baseline MLP remains a strong and competitive approach for the datasets
considered in this work, Mamba blocks represents an alternative architecture for deep-learning-based side-
channel attacks. Future work should focus on evaluating Mamba under more challenging conditions where
its ability to model long-range dependencies may offer a clearer advantage.

29

s1105119 Beatrise Bertule

Bibliography

(1]

(2]

3]

(4]

[5]

6]

(7]

(8]

91

(10]

(11]

(12]

(13]

(14]

Amjed Abbas Ahmed and Mohammad Kamrul Hasan. Multi-layer perceptrons and convolutional
neural networks based side-channel attacks on AES encryption. In 2023 International Conference on
Engineering Technology and Technopreneurship (ICE2T), pages 69-73, 2023.

Amjed Abbas Ahmed, Mohammad Kamrul Hasan, Imran Memon, Azana Hafizah Mohd Aman, Shayla
Islam, Thippa Reddy Gadekallu, and Sufyan Ali Memon. Secure Al for 6G mobile devices: Deep learning
optimization against side-channel attacks. IEEE Transactions on Consumer Electronics, 70(1):3951-3959,
2024.

Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile Dumas. Deep learning for
side-channel analysis and introduction to ASCAD database. Journal of Cryptographic Engineering, 10,
06 2020.

Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. BRITS: Bidirectional recurrent imputation
for time series. NIPS, 2018.

Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Burton S. Kaliski, cetin K. Kog,
and Christof Paar, editors, Cryptographic Hardware and Embedded Systems - CHES 2002, pages 13-28,
Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

Armando Collado-Villaverde, Pablo Munoz, and Maria D. R-Moreno. BRATI: Bidirectional recurrent
attention for time-series imputation. 2025.

Julien Doget, Emmanuel Prouff, Matthieu Rivain, and Francois-Xavier Standaert. Univariate side
channel attacks and leakage modeling. Journal of Cryptographic Engineering, 1(2):123-144, 2011.

Sanjit Arunkumar Seshia Edward Ashford Lee. Introduction to embedded systems - a cyber-physical
systems approach. 2017.

T. Feng, H. Gao, X. Li, et al. Side-channel attacks on convolutional neural networks based on the hybrid
attention mechanism. Discover Applied Sciences, 7(390), 2025.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In First
Conference on Language Modeling, 2024.

E Hameed and H. Alkhzaimi. Deep learning-based profiling side-channel attacks in SPECK cipher.
Scientific Reports, 15(26149), 2025.

Pengfei He, Ying Zhang, Han Gan, Jianfei Ma, and Hongxin Zhang. Side-channel attacks based on atten-
tion mechanism and multi-scale convolutional neural network. Computers and Electrical Engineering,
119:109515, 2024.

J.H. Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan Hanjalic. Make some noise: Unleash-
ing the power of convolutional neural networks for profiled side-channel analysis. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2019(3):148-179, 2019.

Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other systems. In
Neal Koblitz, editor, Advances in Cryptology — CRYPTO '96, pages 104-113, Berlin, Heidelberg, 1996.
Springer Berlin Heidelberg.

30

s1105119 Beatrise Bertule

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Michael J. Wiener,
editor, Advances in Cryptology — CRYPTO '99, volume 1666 of Lecture Notes in Computer Science, pages
388-397, Santa Barbara, California, USA, August 15-19 1999. Springer.

Zhaobin Li, Chenchong Du, and Xiaoyi Duan. Efficient AES side-channel attacks based on residual
Mamba enhanced CNN. Entropy, 27(8), 2025.

Xiangjun Lu, Chi Zhang, Pei Cao, Dawu Gu, and Haining Lu. Pay attention to raw traces: A deep
learning architecture for end-to-end profiling attacks. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2021(3):235-274, Jul. 2021.

Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking cryptographic implementa-
tions using deep learning techniques. In Claude Carlet, M. Anwar Hasan, and Vishal Saraswat, editors,
Security, Privacy, and Applied Cryptography Engineering, pages 3-26, Cham, 2016. Springer International
Publishing.

National Institute of Standards, Technology (NIST), Morris J. Dworkin, Elaine Barker, James Nechvatal,
James Foti, Lawrence E. Bassham, E. Roback, and James Dray Jr. Advanced encryption standard (AES),
2001-11-26 00:11:00 2001.

Guilherme Perin, Lichao Wu, and Stjepan Picek. Exploring feature selection scenarios for deep learning-
based side-channel analysis. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2022(4):828-861, Aug. 2022.

Stjepan Picek, Annelie Heuser, Alan Jovic, and Lejla Batina. A systematic evaluation of profiling through
focused feature selection. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 27(12):2802—
2815, 2019.

Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco Regazzoni. The curse of
class imbalance and conflicting metrics with machine learning for side-channel evaluations. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2019(1):209-237, Nov. 2018.

Stjepan Picek, Annelie Heuser, Guilherme Perin, and Sylvain Guilley. Profiled side-channel analysis
in the efficient attacker framework. In Vincent Grosso and Thomas Péppelmann, editors, Smart Card
Research and Advanced Applications, pages 44-63, Cham, 2022. Springer International Publishing.

Stjepan Picek, Guilherme Perin, Luca Mariot, Lichao Wu, and Lejla Batina. Sok: Deep learning-based
physical side-channel analysis. ACM Comput. Surv., 55(11), February 2023.

Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (EMA): Measures and counter-
measures for smart cards. In Isabelle Attali and Thomas Jensen, editors, Smart Card Programming and
Security, pages 200-210, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

Francois-Xavier Standaert. Introduction to side-channel attacks. In Ingrid M.R. Verbauwhede, editor,
Secure Integrated Circuits and Systems, pages 27-42, Boston, MA, 2010. Springer US.

S. Swaminathan, L. Chmielewski, G. Perin, and S. Picek. Deep learning-based side-channel analysis
against AES inner rounds. In Applied Cryptography and Network Security Workshops (ACNS 2022),
volume 13285 of Lecture Notes in Computer Science, Cham, 2022. Springer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, NIPS’17, page 6000-6010, Red Hook, NY, USA, 2017. Curran
Associates Inc.

Lichao Wu, Guilherme Perin, and Stjepan Picek. I choose you: Automated hyperparameter tuning
for deep learning-based side-channel analysis. IEEE Transactions on Emerging Topics in Computing,
12(2):546-557, 2024.

Lichao Wu, Léo Weissbart, Marina Kr¢ek, Huimin Li, Guilherme Perin, Lejla Batina, and Stjepan Picek.
Label correlation in deep learning-based side-channel analysis. Trans. Info. For. Sec., 18:3849-3861,
January 2023.

31

s1105119 Beatrise Bertule

A Appendix

A.1 Feature Selection with HW Leakage Model

SNR trace for HW leakage model

20 1
15 4

Q
=)
©
>
o 101
=
(%]

5 B

0 I

0 2000 4000 6000 8000 10000 12000
Time Samples
Figure A.1: SNR trace for the Hamming Weight leakage model.
Power Trace with selected POls

0.2 A Power Trace
- e Selected POIs
3 014
c
o
2 00
€
3
2 -01
o
@)
g -02
o
a

_03 B

0 2000 4000 6000 8000 10000 12000
Time Samples

Figure A.2: Raw power trace sample with selected refined points of interest (POIs).

From Figures A.1 and A.2 we can observe that several POIs are selected not only around the main leakage
region at approximately time sample 1400, but also around time sample 2200. These secondary selections
are consistent with the signal-to-noise ratio (SNR) profile, which exhibits a very small peak near sample
2200. However, this peak is negligible compared to the dominant leakage peak observed around sample
1400. Consequently, we can confidently identify the leakage window centered at sample 1400 as the primary
source of information leakage. Occasionally, points outside the main leakage region may be included among
the selected POls, especially when a large number of POIs is selected. In such cases, a noise-dominated
sample may be added to the selected POIs along with the informative ones. This may occur, for example, if
the leakage corresponding to the target byte is weaker or overlaps with leakage from another key byte.

32

	Introduction
	Problem Statement
	Research Question
	Contributions

	Preliminaries
	Embedded Devices
	Advanced Encryption Standard Algorithm
	Execution Flow of AES
	SubByte Transformation

	Side-Channels Attacks
	Side-Channel Data
	Leakage Models
	Side-Channel Attacks

	Deep Neural Networks
	MAMBA Architecture

	Deep-Learning based Side-Channel Attack
	Threat Model
	Data Acquisition
	Label Preparation
	Feature Selection
	Model Implementation
	Attack Execution
	Attack Evaluation

	Related Work
	Background
	DL Architecture Choice and Design
	Attention for DL-SCA
	Mamba for DL-SCA

	Methodology
	Research Objective
	Side-Channel Datasets
	CW-Target Dataset
	ASCADv1 Dataset

	Proposed Neural Network Architectures
	MLP Model
	Mamba Model
	Hyperparameter Search

	Experimental Setup
	Data Preparation
	Profile Phase Setup
	Attack Phase Setup

	Results
	Attack on ChipWhisperer Dataset
	Attack on ASCADv1 Dataset

	Discussion
	CW-Target Dataset
	ASVADv1 Dataset
	Future Work

	Conclusions
	Appendix
	Feature Selection with HW Leakage Model

