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Abstract
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ters that are used in the messages that are sent and received by the protocols. The
tools that are used to accomplish this model inference are LearnLib and ns-2.
The approach presented is demonstrated by learning models of the SIP and TCP
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Chapter 1

Introduction

Verification and validation of systems by means of model based verification tech-
niques [CE82] is becoming increasingly popular these days. Still in many software
life-cycles there is not much attention for formal verification of software. Usually
traditional testing techniques such as executing manually created test cases or code
inspection are used to find ’bugs’ in software. When using model based software
checking a formal model of the software must be specified. This is of course time
consuming and when do we know that a correct and complete model [Tre92] is de-
rived from the software that is developed? Especially when a model is derived from
black-box software components, where source code is not available.

In order to accelerate the usage of model based software checking, we want to have
a tool that generates models automatically from software. This thesis will describe
the process of learning a Mealy machine from a black box protocol implementation.
This Mealy machine is a model that can be used for model checking. Hopefully in this
way it will be easier to adopt model based verification techniques in real life situations.

When we want to learn a model from a black box implementation, some knowledge
about the interface of the black box must be given a priori. Also we must know some-
thing about the messages that the protocol sends and receives. The parameters or
arguments that are in these messages have a type and value which can have an effect
on the decisions the system makes. In case of protocols, information about messages
can be extracted from RFC documents.

In this thesis an approach is introduced that will infer a model from a black box pro-
tocol implementation. This model is a Mealy machine [Mea55] and is learned via
the L∗ algorithm [Ang87]. This algorithm is incorporated in the learning tool Learn-
Lib [RSB05]. This tool is used to learn from a model a protocol implementation run-
ning in the network simulator ns-2 [ns]. In between these components an abstraction
scheme is defined that links these two components together. In this thesis LearnLib
has produced models from the concrete protocols SIP [RSC+02] and TCP [Pos81].

Un-timed deterministic systems and models are considered is this thesis. The main rea-
son to restrain the scope of this thesis is the complexity of timed and non-deterministic
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1. INTRODUCTION

systems. The learning algorithm used in this thesis has to be adapted to handle these
types of systems or other learning techniques need to be used.

Organization In this thesis, the underlying theory of automata learning and practical
case studies are described. The first sections of the thesis will describe the notion of
Mealy machines and the learning algorithm. After that is explained how the learning
algorithm is ’connected’ to the protocol simulator. Furthermore this thesis repeats on
two case studies in which a protocol is learned from a protocol simulator. Finally
conclusions will be drawn and some possible further work will be proposed.

Related work Related work is this area of research is [Boh09]. A PhD thesis about
regular inference for Communication Protocol Entities describes the theory and prac-
tical applications of learning protocol entities. In this thesis a model has been inferred
from a protocol implementation. My thesis uses a different way of learning proto-
cols. In my thesis protocols are learned via an abstraction scheme. Also different case
studies are performed in my thesis. Another approach is described in [SLRF08]. In
this paper they have adapted the L∗ to use it with parameterize finite state machines.
Also in this thesis models of communications protocols are used. Another PhD thesis
discusses the learning of timed systems [Gri08]. If the techniques mentioned in this
thesis can be combined with the approach described in my thesis it should be possible
to infer timed systems. The notion of program abstraction, which is used in my thesis,
is described in [BCDR04].
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Chapter 2

Mealy machines

The notion of finite state machine that is used in this thesis is a Mealy machine. The
basic version of a Mealy machine is as follows [Mea55]: A Mealy Machine is a tuple

q1q0
a/a
a/b

b/ab/a

Figure 2.1: Mealy Machine

M = 〈ΣI,ΣO,Q,q0,δ,λ〉 where ΣI is a nonempty set of input symbols, ΣO is a finite
nonempty set of output symbols, ε is the empty input symbol or output symbol, Q is
a nonempty set of states, q0 ∈ Q is the initial state, δ : Q×ΣI → Q is the transition
function, and λ : Q×ΣI→ ΣO is the output function. Elements of Σ∗I and Σ∗O are (input
and output, respectively) strings. The sets of Q, ΣI and ΣO can be finite or infinite.

An intuitive interpretation of a Mealy machine is as follows. At any point in time,
the machine is in a certain state q ∈ Q. It is possible to give inputs to the machine,
by supplying an input symbol a ∈ ΣI . The machine then responds by producing an

output symbol λ(q,a) and transforming itself to the new state δ(q,a). Let q
a/b−→ q′ in

M denote that δ(q,a) = q′ and λ(q,a) = b.
We extend the transition and output functions from input symbols to input strings in
the standard way, by defining:

δ(q,ε) = q λ(q,ε) = ε

δ(q,ua) = δ(δ(q,u),a) λ(q,ua) = λ(q,u)λ(δ(q,u),a)

Finally we have to define a language over a Mealy machine, that is described by
L(M )

D
= {λ(q0,u)|u ∈ Σ∗I }. The Mealy machines that we consider are determinis-

tic, meaning that for each state q and input a exactly one next state δ(q,a) and output
symbol λ(q,a) is possible. An example Mealy machine where ΣI = ΣO = {a,b} is
depicted in figure 2.1.
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Chapter 3

Regular inference

In this section, we present the setting for inference of Mealy machines. In regular in-
ference we assume that we do not have access to the source code of the system that
is modeled. When using regular inference a so called Learner, who initially knows
nothing about the Mealy machine M , is trying to infer M , by asking queries to and
observing responses from a so called Oracle or Teacher. Regular inference means also
that we are dealing with regular languages. In this section an adaption of the original
L∗ algorithm [Ang87][Nie03] is presented. This adaptation makes it possible to infer
Mealy machines instead of ordinary DFAs. The following resources provide more in-
formation on this learning topic [Boh09, Gri08, AJU09]

When inferring a Mealy machine it is assumed that when a request is send, a response
from the system is returned or the system fails in some obvious way. Another prereq-
uisite is that the system can always be reset into its initial state. Given a finite set ΣI

of input symbols and ΣO of output symbols a Mealy machine M can be learned by
asking different types of questions. There are two types of questions that a Learner
can ask in the inference process

• A membership query1 is asking a Teacher which output string is returned, after
a string w ∈ Σ∗I is provided as input. The Teacher answers with an output string
o ∈ Σ∗O.

• An equivalence query consist of asking the Teacher whether a hypothesized
Mealy machine H is correct. So if L(M ) = L(H ). The Oracle answers yes
if H is correct, or else supplies a counterexample u, which is in L(M )\L(H )
or L(H )\L(M ).

Typical behavior of a Learner is to gradually build up the hypothesized Mealy machine
H using membership queries. When the Learner ’feels’ that it has built up a correct
automaton, it fires an equivalence query to the Teacher. If the Teacher answers yes
then the Learner is finished. If a counterexample is returned, then this answer is used
to construct new membership queries to improve automaton H until a equivalence
query succeeds.

1The term membership query is used in the original L∗ algorithm to describe membership of a string
in a language. This is not the case in the modification for Mealy machines, but still in literature [Nie03]
membership query is used.
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3. REGULAR INFERENCE

The L∗ algorithm was introduced by Angluin [Ang87], for learning a DFA from queries.
Niese [Nie03] has presented an modification of Angluin’s L∗ algorithm for inference of
Mealy machines. In this modification the membership queries and equivalence queries
consist of a finite collection of strings from Σ∗I and the answer to such a query is a string
Σ∗O. To organize this information, Angluin introduced an observation table, which is a
tuple OT = (S,E,T ), where

• S⊆ Σ∗I is a finite nonempty prefix-closed set of input strings

• E ⊆ Σ∗I is a finite nonempty suffix-closed set of input strings, and

• T : ((S∪S ·ΣI)×E)→ ΣO, maps a row s and column e, s∈ (S∪S ·ΣI) and e∈ E,
to a output symbol o ∈ ΣO.

Each entry in the OT consists of an output symbol in o ∈ ΣO. This entry is the last
output symbol produced when a certain input string s ∈ Σ∗I is given as membership
query. An entry of row s and column e is defined by T (s,e). The observation table is
divided into an upper part indexed by S, and a lower part index by all strings sa, where
s ∈ S and a ∈ ΣI and sa /∈ S. The table is index column wise by the finite set E. Figure
3.1 shows the layout of an observation table. To construct a Mealy machine from the

S∪ (S ·ΣI)


E

S ΣO

S ·ΣI ΣO

Table 3.1: Example of OT

observation table: it must fulfill two criteria. It has to be closed and consistent. In
order to define these properties the row function is introduced. This functions maps
for a certain s ∈ S each suffix in E to a output symbol ΣO. So the row outputs a string
in Σ∗O. An observation table OT is

• closed if for each w1 ∈ S ·ΣI there exists a word w2 ∈ S such that row(w1) =
row(w2) i.e. the lower part of the table contains no row which is different from
every row in the upper part of the table [Riv94]

• consistent, if for all w1,w2 ∈ S are such that row(w1) = row(w2), then for all
s ∈ ΣI we have a row(w1 · s) = row(w2 · s), i.e. whenever the upper part of
the table has two strings whose rows are identical then the successors of those
strings have rows which are also identical [Riv94].

When the closed and consistent properties hold a DFA M = (ΣI,ΣO,Q,δ,λ,qo) can be
constructed, as follows

• Q = {row(s)|s ∈ S}, this is the set of distinct rows.

• q0 = row(ε)

• δ(row(s),e) = row(se)

6



• λ(row(s),e) = T (s,e), where s ∈ S and e ∈ E

In the L∗ algorithm the Learner maintains the observation table. The set S is initialized
to {ε} and E is initialized to ΣI . In the next step the algorithm performs membership
queries for ε and for each a ∈ ΣI . This results in a symbol in ΣO for each membership
query. Now the algorithm must make sure that the OT is closed and consistent. If
OT is inconsistent, this is solved trough finding two strings s,s′ ∈ S, a ∈ ΣI and e ∈ E
such that row(s) = row(s′) but T (sa,e) 6= T (s′a,e) for all s′ ∈ S, and adds ae to E.
The missing entries in OT are filled in by membership queries. If OT is not closed
the algorithm finds s ∈ S and a ∈ Σ such that row(sa) 6= row(s′) for all s′ ∈ S, and
adds sa to S. Again the missing entries in OT are filled in by means of membership
queries. When OT is closed and consistent the hypothesis H = M (S,E,T ) can be
checked though an equivalence query, that is asked by the Learner to the Teacher. The
Teacher responds with either a counterexample w, such that w ∈ L(M )\L(H ) or w ∈
L(H )\L(M ), or responds with yes and the L∗ algorithm stops. If a counterexample
is produced by the Teacher, the Learner has to add the counterexample and all the
prefixes of it to S. How such a counterexample is found by a Teacher is left open
by Angluin. It is up to the implementation of the L∗ algorithm to come up with an
appropriate equivalence oracle. In section 5.1 an equivalence oracle is described. To
make things more clear, consider the following example, where ΣI = ΣO = {a,b}.

q1

q0 q2

b/a

b/a

a/b

b/a

a/b a/a

Figure 3.1: Mealy machine M

aε
a/b

a/a

b/ab/a

Figure 3.2: Hypothesized Mealy machine H1

Let M be the Mealy machine shown in figure 3.1. This is the Mealy machine that
we want to learn. The observation table is initialized by asking membership queries
for ε, a and b. This initial OT T1, where S = ε and E = ΣI is shown in table 3.3(a).
This table is consistent, but not closed, since row(ε) 6= row(a). The prefixes a is
added to S and membership queries for aa and ab are asked. This results in OT T2 as
shown in table 3.3(b). This table is closed and consistent. So Mealy machine H1 in
figure 3 is constructed and an equivalence query is sent to the Teacher. Now assume

7



3. REGULAR INFERENCE

T1 a b
ε b a
a a a
b b a
(a) Table T1

T2 a b
ε b a
a a a
aa b a
ab a a
b b a
(b) Table T2

T3 a b
ε b a
a a a
aa b a
aaa b a
aaaa a a
aaab b a
aab b a
ab a a
b b a

(c) Table T3

T4 a b aa ab
ε b a a a
a a a b a
aa b a b a
aaa b a a a
aaaa a a b a
aaab b a a a
aab b a b a
ab a a b a
b b a a a

(d) Table T4

Figure 3.3: Observation tables

the Teacher answers with counterexample aaa, which outputs a in H1 and b in M .
This counterexample and all prefixes of it are added to S and appropriate membership
queries are asked. To maintain property S∪ (S · ΣI) membership queries for aaaa,
aaab and aab are asked to construct OT T3 in table 3.3(c). This table is closed but
inconsistent because row(ε) = row(aa) but row(a) 6= row(aaa). Now aa and ab are
added to E and appropriate membership queries are asked. This information is now in
OT T4 in table 3.3(d). This table is closed and consistent. Now Mealy machine M in
figure 3.1 can be build from this observation table and an equivalence query is asked to
the Teacher. The Teacher answers yes and the L∗ terminates. Notice that as a result of
row(ε) = row(aaa) = {b,a,a,a} in table T4, the automaton M merges the ε and aaa
states. This is because Q contains a set of distinct rows.

8



Chapter 4

Symbolic Mealy machines

The previous section described the L∗ learning algorithm for Mealy machines. In
these Mealy machines simple input and output symbols ΣI/ΣO = {a,b,c, . . .} are used.
These symbols are represented differently in the communication protocols that we
want to learn. In practice, messages that are sent between two communicating protocol
entities have the structure msg(d1, . . . ,dn), where each di for 1 ≤ i ≤ n is a parameter
within a certain domain. These domains can be very large. Protocols also keep track of
certain state variables. In order to be able to learn Mealy machines for realistic com-
munication protocols, this structure needs to be made explicit. So Mealy machines
should be extended to handle parameters and state variables. The resulting structures
are called Symbolic Mealy machines in [AJU09, Boh09] and extend basic Mealy ma-
chines in that input symbols and output symbols are messages with parameters.

First the input and output symbols of the Symbolic Mealy machine are defined. Let
I and O be finite sets of input and output action types. Let α ∈ I and β ∈ O. These
actions types have a certain arity, which is a tuple of domains (a domain is a set of
allowed data values) D1, . . . ,Dn (where n depends on α). ΣI is the set of input symbols
of form α(d1, . . . ,dn), where di ∈ Di is a parameter value, for each i with 1 ≤ i ≤ n.
A domain can be, for example N, valid URLs or 0 . . .65535. A domain of value d1
is for example D1 = N. The set of output symbols is defined analogously. In some
examples, record notation will be used with named fields to denote symbols, e.g., as
Request(from-URI = 192.168.0.0 , seqno = 0) instead of just Request(192.168.0.0 , 0).

The following issue we have to think about is the representation of states. States are
represented by locations L and state variables V . This set V is ranged over by v1, . . . ,vk.
Each state variable v has a domain Dv of possible values, and a unique initial value.
A valuation function σ is a function from the set V of state variables to data values
in their domains. Let σ0 be the function that produces the initial value for each loca-
tion variable v. The set of states of a Mealy machine is the set of pairs 〈l,σ〉, where
l ∈ L is a location, and σ is a valuation. Finally, we have to describe the transition
and output functions. A finite set of formal parameters, ranged over by p1, . . . , pn is
used to serve as local variables in each guarded assignment statement. Some constants
and operators are used to form expressions, and extend the definition of valuations to
expressions over state variables in the natural way; for instance, if σ(v3) = 8, then

9



4. SYMBOLIC MEALY MACHINES

σ(2∗ v3 +4) = 20. A guarded assignment statement is a statement of form

l : α(p1, . . . , pn) : g / v1, . . . ,vk := e1, . . . ,ek ; β(eout
1 , . . . ,eout

m ) : l′

where

• l and l′ are locations from L,

• p1, . . . , pn is a tuple of distinct formal parameters, In what follows, we will use
d for d1, . . . ,dn and p for p1, . . . , pn,

• g is a boolean expression over p and the state variables in V , called the guard.
An example of guard g is [from-URI = 192.168.0.0 ∧ seqno > 0]

• v1, . . . ,vk := e1, . . . ,ek is a multiple assignment statement, in which some (dis-
tinct) state variables v1, . . . ,vk in V get assigned the values of the expressions
e1, . . . ,ek; here e1, . . . ,ek are expressions over p and state variables in V ,

• β(eout
1 , . . . ,eout

m ) is a tuple of expressions over p and state variables V , which
evaluate to data values d′1, . . . ,d′m so that β(d′1, . . . ,d′m) is an output symbol.

Intuitively, the above guarded assignment statement denotes a step of the Mealy ma-
chine in which some input symbol of form α(d1, . . . ,dn) is received and the values
d1, . . . ,dn are assigned to the corresponding formal parameters p1, . . . , pn. If the guard
g is satisfied, then state variables among v1, . . . ,vk are assigned new values via the
expressions e1, . . . ,ek and an output symbol β(d′1, . . . ,d′m), obtained by evaluating
β(eout

1 , . . . ,eout
m ). The statement does not denote any step in case g is not satisfied.

When we have a location l and an input symbol α(d) and if g is satisfied, then the
transition and output functions are defined as follows:

• δ(〈l,σ〉,α(d)) = 〈l′,σ′〉, where σ′ is the valuation such that

– σ′(v) = σ(ei[d/p]) if v is vi for some i with 1≤ i≤ k, and

– σ′(v) = σ(v) for all v ∈V which are not among v1, . . . ,vk,

• λ(〈l,σ〉,α(d)) = β(σ′(eout
1 , . . . ,eout

m ))

A symbolic Mealy machine can now be defined as follows.

Definition 1 (Symbolic Mealy machine) A Symbolic Mealy machine (SMM) is a tu-
ple SM = (I,O,L, l0,V,Φ), where

• I is a finite set of input action types,

• O is a finite set of output action types,

• L is a finite set of locations,

• l0 ∈ L is the initial location,

• V is a finite set of state variables,

• σ0 is the initial valuation of state variables V , and

10



q1q0
α(p1) : [p1 > v1]/v1 := d1;β(p1 = 1)

α(p1) : [p1 ≤ v1]/v1 := v1;β(p1 = 1)

Figure 4.1: Example of a Symbolic Mealy machine

• Φ is a finite set of guarded assignment statements, such that for each l ∈ L,
each valuation σ of the variables in V , and and each input symbol α(d), there is
exactly one guarded assignment statement of form

l : α(p1, . . . , pn) : g / v1, . . . ,vk := e1, . . . ,ek ; β(eout
1 , . . . ,eout

m ) : l′

which starts in l and has α as input action type, for which σ(g[d/p]) is true.

Continuing the above summary, an SMM SM = (I,O,L, l0,V,Φ) denotes the Mealy
machine MSM = 〈ΣI,ΣO,Q,q0,δ,λ〉, where

• ΣI is the set of input symbols,

• ΣO is the set of output symbols,

• Q is the set of pairs 〈l,σ〉, where l ∈ L is a location, and σ is a valuation function
for the state variables in V ,

• 〈l0,σ0〉 is the initial state, and

• δ and λ are defined as follows. For each guarded assignment statement of form

l : α(p1, . . . , pn) : g / v1, . . . ,vk := e1, . . . ,ek ; β(eout
1 , . . . ,eout

m ) : l′

δ and λ are redefined as:

– δ(〈l,σ〉,α(d)) = 〈l′,σ′〉 where σ′ is the valuation such that

∗ σ′(v) = σ(ei[d/p]) if v is vi for some i with 1≤ i≤ k, and
∗ σ′(v) = σ(v) for all v ∈V which are not among v1, . . . ,vk,

– λ(〈l,σ〉,α(d)) = β(σ′(eout
1 ), . . . ,σ′(eout

m ))

It is required that Symbolic Mealy machines are deterministic i.e., for each reachable l,
input symbol α(d) and guard g, there is exactly one transition 〈l;α(d);g/σ;β(eout

1 ), . . . ,eout
m ); l′〉.

So it is possible to have more transitions with the same α(d), but guards on these tran-
sitions have to be disjunct. An example of an Symbolic Mealy Machine is depicted in
figure 4.1
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Chapter 5

Architecture

This section describes the global overview of the components that work together to
infer a Mealy machine from a black box protocol implementation. In this section the
theory that is defined in the previous sections will be put together to infer a Mealy
machine from a black box protocol implementation. This section could also be seen as
a starting point for a tool that can learn models of communication protocols. The tool
will have a number of modules, that are explained in this section.

Figure 5.1: An overview of the architecture used to infer a Mealy machine from a
black box protocol implementation

5.1 Learner

In figure 5.1 on the left side is the Learner. This module should incorporate a learning
algorithm that can infer Mealy machines via membership and equivalence queries as
described in section 3. Different automata learning algorithms can be used. In this
thesis LearnLib [RSB05] is used as Learner. This tool is an implementation of the L∗

13
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Learner
Abstraction 

scheme

abstract message

SUT

abstract message concrete message

concrete message

output(VALID,INVALID)

input(1,10,20)

IL

output(2,10)

input(VALID,VALID,VALID)

Figure 5.2: A more detailed look at the abstraction scheme

algorithm. We use the LearnLib library, developed at the Technical University Dort-
mund as Learner in our framework. Amongst others, it employs an adaption of the L∗

algorithm to learn Mealy machines. Natively the L∗ algorithm only works with deter-
ministic finite automata. Niese has presented in [Nie03] a modification to the original
algorithm that can handle Mealy machines. LearnLib has also implemented this mod-
ification. Moreover, in this practical attempt of learning a given protocol entity, two
more issues have to be considered. First, the SUT needs to be reset after each mem-
bership query. Second, the equivalence queries can only be approximated, because the
SUT is viewed as a black box, where the internal states and transitions are not accessi-
ble. In practice this means that equivalence queries need to performed as membership
queries. Therefore, LearnLib provides a number of heuristics, based on techniques
adopted from the area of conformance testing, to approximate the equivalence queries.
In our case studies we used a random method, where the user can define a maximum
number of queries with a maximum length. If the hypothesis and the SUT respond
the same to all tests, then the learning algorithm stops, otherwise a counterexample
is found. In section 6.4 correctness and complexity of the L∗ algorithm is described.
How LearnLib is used in our case study and is described in [Aar09].

5.2 IL

This Intermediate Layer module acts as an interface between the abstract messages of
the Abstraction scheme module and the interface of the Learner. In the case of Learn-
Lib a signed integer number need to be converted to abstract symbols α(dA

1 , . . . ,d
A
n )

and vice versa, β(dA
1 , . . . ,d

A
n ) into signed integer numbers. This conversion is de-

scribed in [Aar09].

5.3 Abstraction Scheme

This module translates abstract to concrete symbols and the other way around as de-
fined in the abstraction scheme of section 6. This module translates abstract messages
α(d

A
) to concrete messages α(d) and also the concrete output messages back to ab-

stract messages, β(d) to β(d
A
). These translations are depicted in figure 5.2. When

using a real protocol embedded in an operating system for model inference the actual
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messages will thereafter be translated to actual bit-patterns for communication with an
actual protocol module.

5.4 SUT

This SUT or Learner is the black box protocol implementation from which a Mealy
machine needs to be learned. This module can be a protocol implemented in an op-
erating system or a protocol simulator. In this thesis the protocol simulator ns-2 [ns]
is used. This module must have some kind of interface description otherwise it is not
useable for our approach. The protocol simulator ns-2 [ns] is used for simulating net-
works. It is a discrete event simulator targeted at networking research. ns-2 supports
different protocols like TCP/IP, routing protocols and various wireless protocols. In
our approach ns-2 is used as a SUT were messages can be sent to and received from.
This kind of behavior is natively not supported by ns-2. The common used interface
in ns-2 is a Tcl script. We can not use this script in our approach. Direct C++ calls to
ns-2 are used in order to interact with it.

When using the network simulator ns-2 several issues needed to be overcome. One
of them is timing. Since ns-2 is a discrete event simulator, it uses time to schedule
events. We do not concern timing in our approach, so some modifications had to be
made. Timing statement that are used in ns-2 code needed to be removed. An ex-
ample of this is the instance answerTimer, this object should not be used otherwise
null pointer exceptions could occur. Another problem is the randomness that is used
in ns-2, this causes non-determinism and cannot be handled by L∗. An example of this
is the function Random::uniform(minAnsDel , maxAnsDel );. This function was
removed form ns-2 code in order to avoid non-determinism. Another issue in ns-2 is
that at some points the C++ statement exit() is used. If such a statement is encoun-
tered during the learning process, the learning process is stopped. This is unwanted
behavior so some ns-2 code had to be modified to omit this problem. One of the major
problems that has been encountered during this thesis project is the memory usage of
ns-2. Memory that is allocated by ns-2 is not freed properly. It is still not clear if the
problem is present in ns-2 when using the ’normal’ Tcl interface or it is due to the
way that it is used in this project. It is clear that the Tcl interface restricts the variety
of messages that can be sent to ns-2. Because LearnLib asks millions of membership
queries, memory grows until 4 GB. At this point the server could not address more
memory (32 bit machine) and the process is stopped. Code modifications have been
made but still the problem remains. This problem has put a boundary on the number
of membership queries that could be asked to the ns-2 protocol implementation.

These problems delayed the thesis project a few weeks. In the beginning was de-
cided to use ns-2 because of the uniform interface that could be used for different
protocols. But the problems that were encountered using ns-2 as SUT for the learning
process showed that ns-2 was not a good choice. In section 10 alternatives for ns-2 are
discussed. Also the development environment could have been better. Gcc and a text
editor are used to change and compile ns-2 source code. Debugging was done via text
outputs, it would be nice to have a graphical development environment with debugging
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facilities.
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Chapter 6

Abstraction scheme

Section 4 described the symbolic Mealy machines that are used to model communi-
cation protocols. These Mealy machines have parameters that could consist of large
domains. This results in many input and output symbols. It would take a long time
and consume a lot of memory to learn such a protocol via the L∗ algorithm directly. To
resolve this problem, an abstraction needs to be defined that decreases the number of
values that a domain can have. This abstraction has to be created externally, possibly
by humans. This can be done by reading the interface specification of the black box
protocol or gathering information from RFC documents of the specific protocol that
has to be learned. The goal of this abstraction is to find semantically equivalent classes
of values within these large domains. Further research, continuing [Gri08] will need
to explore if it is possible to learn the communication protocols with large parameter
domains without giving the abstraction on forehand.

6.1 Predicate abstraction

In this section, we will explain our abstraction scheme or mapping via a guiding ex-
ample. In section 7 and 8 these mappings are defined for real protocols. We assume
a protocol which sends and received messages with parameters which are from large
domains. In figure 6.1 a small Mealy machine is depicted which represents a simple
protocol. The input symbols ΣI have the structure α(d1), where d1 is a signed number.
The output symbols ΣO are defined by messages structured like β(d1), where parame-
ter d1 is a signed number. One symbols describes a single value in parameter d1. For
the sake a clarity, the symbols do not contain any predicates, just signed values. To
learn protocol behavior over large domains, the solution proposed in the thesis char-
acterizes these large parameter domains by equivalence classes. Values in such a class
have the same semantic meaning for a protocol. Predicates are used to define these
classes in a parameter domain D . The approach that is used, incorporates ideas from
a verification technique called predicate abstraction [LGS+95, CGJ+03]. These predi-
cates form now the domain DA , where one predicate is defined by dA . An equivalence
class can be history dependent. In figure 6.1 the equivalence classes are defined by the
following informal description. In message α(d1), d1 must be greater than the value d1
in the previous message α′(d1) to continue to the next state. This is achieved by using
state variables. The predicate that is used to define this equivalence class is d1 > v1,
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q1q0

α(v1 +1)/β(v1 +1)
. . .

α(v1 +n)/β(v1 +1)

. . .

α(v1)/β(v1 +1)

α(0)/β(v1 +1)

Figure 6.1: Example with parameter with large domain d1

where v1 is the previous value of d1. If this predicate holds then dA
1 = ”d1 > v1” oth-

erwise dA
1 = ”d1 ≤ v1”, which represents all the other values not covered by the first

predicate. The abstract domain of parameter dA
1 is DA

1 = {”d1 > v1”,”d1 ≤ v1”}. The
equivalence classes that are identified by DA

1 , are disjoint and fully cover the domain
D1. Also for the output symbols an abstraction need to be defined. In this case the
output symbol is divided into two equivalence classes. One class where d1 = v1 + 1
and the other d1 6= v1 +1. State variable valuations are not considered in figure 6.1.

This abstraction is organized in a mapping table M T . The mapping table for the
example in figure 6.1 is in table 6.1 for the input message α and table 6.2 for the out-
put message β. In the first column of this table contains the parameters that are used
in a certain input symbol α or output symbol β. The first row of the table contains the
descriptions of the abstract values, in this case VALID and INVALID. These descrip-
tions give an informal description of the equivalence class. It is also possible to use
these descriptions as abstract values. In the following example predicates are used as
abstract values. Each entry in these mapping tables contain the equivalence classes for
each parameter.

M T 1 VALID INVALID
d1 d1 > v1 d1 ≤ v1

Table 6.1: Mapping table input message

M T 2 VALID INVALID
d1 d1 = v1 +1 d1 6= v1 +1

Table 6.2: Mapping table output message

In symbol α(d1), parameter d1 has a large domain of signed numbers, so large
number of transitions are in the Mealy machine of figure 6.1. This behavior would
require a lot of time and space to be learned by L∗, so we use the predicates defined in
table 6.1 and 6.2 to make the Mealy machine in figure 6.2. This machine has the same
behavior as the machine in figure 6.1, only modeled with less input symbols, so more
easy to learn for the L∗ algorithm. Another thing that needs to be considered is how
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Abstraction used in learning

q1q0
α(d1 > v1)/β(d1 = 1)

α(d1 ≤ v1)/β(d1 = 1)

Figure 6.2: Abstraction from large domain of parameter d1

the state variables V are maintained. In the example of figure 6.1 we have introduced
v1. How this state variable is valued depends of a valuation function that has to be
provides externally. For every abstract value of a parameter a valuation function for
state variables needs to be defined. Section 6.3 will cover these valuations functions.

6.2 Abstraction used in learning

The abstraction defined in the previous section is used to make the learning process
more efficient. Recall that a Learner must have a small set of input symbols to effi-
ciently learn a Mealy machine. Because of this, input symbols ΣI need to be redefined
as abstract input symbols ΣA

I . They are structured as α(d
A
), where dA

i ∈ DA
α,i, where

DA
α,i should be a small domain of predicates. In the example DA

α,1 = {”d1 ≤ v1”,”d1 >
v1”}. Predicates of this domain are retrieved from mapping table 6.1. When the
Learner fires a membership query, it generates an abstract input symbol α(d

A
). This

symbol is sent to the Teacher (or protocol) in a concrete form α(d). Every concrete
value di in α(d) conforms to predicate dA

α,i. In addition the status variables v1, . . . ,vk
must be updated. This is done via expressions e1, . . . ,ek. These expressions have to be
provided by the user, see section 6.3.

When a Teacher sends a concrete output symbol β(d) back to the Learner, it needs
to be translated into an abstract form β(d

A
) in order to be processed by the Learner.

For each parameter value di in β(d) there are one or more predicates in DA
β,i, that define

the equivalence classes for this parameter. The only thing we have to find out in which
equivalence class, described by predicate dA

i , di is. This is a well-defined mapping
because the defined equivalence classes are disjoint and have to cover the full domain.
Now an expression eout is used to map the concrete value di to the right equivalence
class dA

i . In order to learn the example of figure 6.1, the abstract input symbols that
are used in membership queries need to be converted to concrete input symbols. As-
sume that the initial valuation for state variable v1 is v1 := 1. Now when an abstract
input symbol α(d1 > v1) is sent to the SUT it needs to be converted to concrete form,
so α(2). At the same time the state variable v1 is updated by v1 := d1. When the
SUT sends the symbol β(2), this needs to be mapped to the abstract output symbol
β(d1 6= v1 +1) in order to be used by the Learner.

As can be seen the mapping that is provided by the user must be correct with re-
spect to the protocol that is learned. If an inconsistent mapping is used, the model that
is learned will not be correct. An example of a flaw in a mapping can be found in
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[Aar09].

6.3 Mealy machine conversion

When a Learner has finshed the learning process i.e. the Teacher anwsered yes to an
equivalence query, the Learner can make a Mealy machine from the observeration ta-
ble. The resulting Mealy machine will be of an abstract form i.e. parameters in the
input and output symbols have predicates as values. An example is the Mealy machine
in figure 6.2. This section will describe the conversion from such a Mealy machine,
which is the output of the Learner to a Symbolic Mealy machine SM as described in
section 2.
In order to execute this transformation, aswell as the whole learning process, the fol-
lowing user input is needed.

• For every parameter di in an input message α(d) and output message β(d), the
user needs to supply the equivalence classes for these parameters. These equiv-
alence classes form then the abstract domain DA

α,i for input messages and DA
β,i

for output messages. This information is organized in mapping tables like table
6.1.

• To be able to learn history depended behavior, state variables V need to provided
by the user. Usually every paramater di has a corresponding vi as state variable.
It may occour that more or less state variables than the number of parameters
are needed. State variables are ranged over by v1, . . . ,vk.

• Expressions to update the state variables V on an input message. Such an ex-
pression is described by ei.

• The expressions eout use the equivalence classes DA
β

for the parameters d of the
output message β(d) to map a concerete parameter value di to an abstract value
dA

β,i and vice versa.

This is also a summary of items that the user of the learning process need to provide
in order to learn a Mealy machine with our approach. The conversion will now work
as follows

α(d
A
α )/β(d

A
β )→ α(p1, . . . , pn) : g / v1, . . . ,vk := e1, . . . ,ek ; β(eout

1, . . . ,eout
m)

The message α(p) contains the formal parameters p1, . . . , pn. Each pi where 0 < i≤ n
conforms to Dα,i. Assume that DA

α,i is a domain with equivalence classes defined as
predicates. A guard g can now be defined as g1 ∧ . . .∧ gn. Each gi, where 0 < i ≤ n
is in DA

α,i. When the guard is satisfied the state variables in v1, . . . ,vn ∈V are updated
by expressions e1, . . . ,ek. For every value in DA

i an expression ei must be provided
to update state variable vi. Finally we have to convert the abstract output parameters
d

A
β to dβ. This is done via the expressions eout

1, . . . ,eout
m. These expressions uses

the predicates defined in dA
i to generate a concrete value within an equivalence class.

Given the abstract Mealy machine in figure 6.2, the abstraction in mapping tables 6.1
and 6.2, initial valuation v1 := 1, valuation function v1 := d1 for equivalence class
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Complexity and correctness of our approach

q1q0
α(p1) : [p1 > v1]/v1 := d1;β(p1 = 1)

α(p1) : [p1 ≤ v1]/v1 := v1;β(p1 = 1)

Figure 6.3: Concrete model

”d1 > v1” and valuation function v1 := v1 for equivalence class α(d1 ≤ v1). Now the
abstract Mealy machine can be converted to a symbolic Mealy machine. The result is
depicted in figure 6.3.

6.4 Complexity and correctness of our approach

In order to prove correctness and termination of our approach, first the correctness
of Angluin’s L∗ algorithm with the Mealy machine modification of Niese needs to be
proved. Niese himself denoted this proof in [Nie03]. What left is to prove correctness
and termination of the abstraction scheme. We will propose this as further work.

The complexity of L∗ with the Mealy machine modification is described in [Boh09]
paragraph 2.4. The upperbound for this algorithm is described as O(max(n, |ΣI|)|ΣI|nm),
where n is the number of states in a minimal model of the SUT, m is the length of the
longest counterexample and |ΣI| is the size of the input alphabet. As can be seen the
Mealy machine algorithm has a polynomial complexity. The abstraction scheme does
not add any complexity to the algorithm because it maps a single abstract input symbol
to a single concrete input symbol.
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Chapter 7

Case study: SIP

To illustrate how the proposed approach is intended to work, this section describes a
case study where models from a implementation of a protocol is learned. The Session
Initiation Protocol (SIP) is used as a first case study. For this case study the protocol
simulator ns-2 [ns] is used as Teacher, also referred to as SUT. This simulator pro-
vides a controlled environment where Mealy machines can be learned. The LearnLib
package will provide an implementation of the L∗ algorithm and will therefore be the
Learner in this setting. As mentioned L∗ can only learn efficiently if the number of in-
put symbols is small. Therefore an abstraction scheme must be implemented in order
to handle messages with parameters that have large domains. A previous attempt to
systematically create a model from the SIP is described in [WFGH07].

7.1 SIP

SIP is an application layer protocol that can create and manage multimedia communi-
cation sessions, such as voice and video calls. This protocol is exhaustively described
by the Internet Engineering Task Force (IETF) in RFC documents [HSSR99, RSC+02,
RS02]. Although a lot of documentation is available, no proper reference model in the
form of a Mealy machine or similar is available. To get an first impression of the SIP
protocol a Mealy machine has been derived from the RFC documentation. This model
is shown in appendix A. An ideal task for our approach to see if a model could be
inferred from an implementation of the SIP protocol.

The first case study consists of the behavior of the SIP Server entity when setting
up and closing connections with a SIP Client. A message from the Client to the Server
has the form Request(Method,From,To,Contact,Call-Id,CSeq,Via) where

• Method defines the type of request, either INV IT E, PRACK or ACK.

• From contains the address of the originator of the request.

• To contains the address of the receiver of the request

• Call-Id is a unique session identifier

• CSeqNr is a sequence number that orders transactions in a session.
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• Contact is the address on which the UAC wants to receive Request messages.

• Via indicates the transport that is used for the transaction. The field identifies
via which nodes the response to this request need to be sent.

A response from the Server to the Client has the form
Response(Status-code,From,To,Call-Id,CSeq,Contact,Via), where Status-code is a
three digit code status that indicates the outcome of a previous request from the Client,
and the other parameters are as for a Request message.

7.2 Results

Two models of the SIP implementation are learned in ns-2 using LearnLib and the
abstraction schemes defined in [Aar09]. First, a model is learned using the partial
abstraction scheme, where only the valid messages are sent to the SUT. For input sym-
bols containing invalid parameter values, error symbols are created in the abstraction
scheme and returned directly to the Learner without sending them to the SUT. In fig-
ure B.1 of appendix B the reduced version of this abstract model is shown. LearnLib
produced a model with 7 states and 1799 transitions. By removing the transitions with
the error messages as output and merging transitions that have the same source state,
output and next state, we obtained a smaller model with 6 states and 19 transitions.
These reduction steps are described exhaustively in [Aar09]. In the model shown only
method type is shown as input symbol and status code as output symbol, because all
abstract values of the other parameters have the value VALID.

Second, a model has been generated where we sent both messages with valid and
invalid parameter values to the SUT. Due to restrictions in our environment mentioned
in section 5.4, it was only possible to learn 6 out of 7 parameters. This model has been
inferred using the complete abstraction scheme, mentioned in [Aar09]. The resulting
model has 29 states and 3741 transitions. By analyzing the structure of the model
and removing and merging states and transitions, the model could be reduced to seven
states and 41 transitions. These model reduction steps are exhaustively described in
[Aar09]. The resulting ’complete’ model is depicted in appendix C. In this model
the (>) behind the input and output symbols reflects one or more invalid parameter
values. Finally, this model is transformed to a Symbolic Mealy machine as described
in section 6.3, e.g. the abstract transition:
Request(ACK,VALID,VALID,VALID,VALID,VALID)/timeout
is translated to the symbolic representation
Request(ACK,From,To,CallId,CSeqNr,Contact)[From=Alice∧To=Bob∧CallId =
prev CallId ∧CSeqNr = invite CSeqNr∧Contact =Alice]/ prev CallId, prev CSeqNr :=
CallId,CSeqNr; : timeout.
Unfortunately this symbolic Mealy machine is to large to display in this thesis.
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Chapter 8

Case study: TCP

As a second case study, a model has been inferred from an implementation of the
Transmission Control Protocol [Pos81]. This protocol is a transport layer protocol,
that provides reliable and ordered delivery of a byte stream from one computer appli-
cation to another. TCP is part of the Internet Protocol stack and moreover TCP is one
of the most widely used communication protocols. The connection establishment and
termination behavior of the TCP server entity is learned with a TCP Client, but data
exchange between these two nodes is left out. Again ns-2 is used to provide a stable
platform for model inference. In ns-2 various TCP implementations could be chosen.
The TCP full implementation is chosen because it is the most complete implementa-
tion.

For the TCP the following messages with parameters are defined
Request/Response(SYN,ACK,FIN,SeqNr,AckNr)
where

• SYN is a flag that defines what type of message is sent. It means that a sequence
number has to be synchronized.

• ACK is a flag that defines what type of message is sent. It indicates that the
previous SeqNr is acknowledged.

• FIN is a flag that defines what type of message is sent. It starts the termination
of a connection indicating that there is no more data to sent.

• SeqNr is a number that needs to be synchronized on both sides of the connection.

• AckNr is a number that acknowledges the SeqNr that was sent in the previous
message.

Both client and server can sent messages with the same parameters as defined above.
We distinguish these messages by using Request for messages that are sent to the SUT
and Response for messages the are received from the SUT.

8.1 Abstraction scheme

To be able to learn a model of the TCP, an abstraction scheme must be specified in
order to learn the large parameter domains of SeqNr and AckNr. Like the SIP case
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SYN SYN+ACK ACK ACK+FIN
type SYN=1 SYN+ACK=1 ACK=1 ACK+FIN=1

VALID INVALID
SeqNr SeqNr = prev SeqNr SeqNr 6= prev SeqNr
AckNr AckNr = prev AckNr+1 AckNr 6= prev AckNr+1

Table 8.1: Mapping tables translating abstract parameter values to concrete values for
the partial abstraction

VALID INVALID
SY N SY N = 1 SY N = 0
ACK ACK = 1 ACK = 0
FIN FIN = 1 FIN = 0
SeqNr SeqNr = prev SeqNr SeqNr 6= prev SeqNr
AckNr AckNr = prev AckNr+1 AckNr 6= prev AckNr+1

Table 8.2: Mapping table translating abstract parameter values to concrete values for
the complete abstraction

VALID INVALID
SY N SY N = 1 SY N = 0
ACK ACK = 1 ACK = 0
FIN FIN = 1 FIN = 0
SeqNr SeqNr 6=−1 SeqNr =−1
AckNr AckNr = lastSeqSendSeqNr+1 AckNr 6= prev SeqNr+1

Table 8.3: Mapping table translating concrete parameter values to abstract values

study, two different abstractions for input symbols are defined. One where only VALID
symbols are sent to the SUT, called the ’partial’ abstraction. In the other both VALID
and INVALID symbols are sent to the SUT, called the ’complete’ abstraction. In this
setting a VALID symbol means that all parameters in this symbol are VALID. An
INVALID symbol means that one or more parameters are INVALID. The partial ab-
straction is defined in table 8.1. In this table the INVALID transitions are still specified
but not sent to the SUT. In this partial abstraction more knowledge of the protocol is
included because we assume to know which messages are VALID and which are not.
The only thing that needs to be learned is in which order the different types of mes-
sages need to be sent to establish and terminate a TCP connection. As can be seen
the state variables prev SeqNr and prev AckNr are introduced in order to learn history
dependent behavior. This abstraction is a good start to get some feeling what is hap-
pening in the protocol. The abstraction in table 8.2 defines both VALID and INVALID
equivalence classes and both are sent to the SUT. This complete abstraction is more
sophisticated and complicated than the partial mapping to learn. For output messages
the abstraction is defined in table 8.3. This output symbol abstraction is used for both
the partial and complete input symbol abstraction.
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8.2 Results

This section will show the resulting models of the ns-2 TCP implementation that are
learned by LearnLib. Both the models learned with the partial and complete abstrac-
tion will be shown. The partial model that is learned by LearnLib has 10 states and
170 transitions. This model is reduced to 6 states and 19 transitions by means of the
following steps

• Because input symbols with invalid parameters are still generated by LearnLib
they need to be ’short-circuited’ by our abstraction module. Therefore one out-
put symbol is reserved for this. This output symbol is also in the learned model,
so these transitions can be removed.

• Because of the modifications needed to simulate a empty input symbol (ε) men-
tioned in [Aar09]. For every state in the model an empty input transition is made.
If a transition is displayed as ε/empty, so a empty input and empty output, the
transition can be removed.

• The transitions with an invalid parameter in a output symbol are removed

• The last step removes the inaccessible states from the model.

These transformation steps result in the model of appendix D.1. In this Mealy machine
the parameters in the input and output symbols are not shown because they always have
a VALID value. It took LearnLib 5814 membership queries to learn the model. The
correct model was produced after one equivalence query. Given the following state
variable valuation, a concrete model can be constructed which is depicted in appendix
D.2.
σ0(prevSeqNr) = 0, σ0(prevAckNr) := 0, σ0(lastSeqSent) = 0.
The following equivalence classes have a state variable valuation.
SY N = 1→ prevSeqNr := prevSeqNr+1
SeqNr = prev SeqNr→ lastSeqSent := prevSeqNr
SeqNr 6=−1→ prevAckNr := seqNr
AckNr = lastSeqSendSeqNr+1→ prevSeqNr := AckNr

When using the complete abstraction for model inference, a model is generated with
41 states and 1353 transitions. It took Learnlib 130587 membership queries and three
equivalence queries to learn the correct Mealy machine. The model is reduced to 33
states and 223 transitions by means of the following conversion steps

• The protocols simulator ns-2 outputs messages where none of the flags SYN,
ACK or FIN is enabled. When considering table 8.3 both the SYN, ACK and
FIN parameters are INVALID. These messages are considered meaningless and
therefore removed from the model.

• The SUT did not respond to an input symbol of that was sent by LearnLib. These
transitions are removed.

• The last step removes the inaccessible states from the model.
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Unfortunately, due to the size of the concrete model, only the raw LearnLib model
can be shown in this thesis. In this model only numbers are shown on the transitions.
These numbers represent abstract input and abstract output symbols and these numbers
can be converted to input symbols via the conversion method defined in [Aar09]. This
raw LearnLib model is depicted in Appendix E. The state variable valuation is can be
used as defined, on this model to make a symbolic Mealy machine.

8.3 Evaluation

This second case-study a model is learned from a TCP implementation. In figure 8.1
reference model of TCP is shown. Unfortunately this model cannot easily be compared

CLOSED(Start)

LISTEN/-
CLOSE/-

LISTEN

SYN

RECEIVED

SYN

SENT

CONNECT/ (Step 1 of the 3-way-handshake)SYN

SYN/SYN+ACK(Step 2 of the 3-way-handshake)

unusual event
client/receiver path

server/sender path

RST/-

SYN/SYN+ACK (simultaneous open)

SYN+ACK/ACK

(Step 3 of the 3-way-handshake)

Data exchange occurs

ESTABLISHED

FIN/ACK

ACK/-

CLOSE/-

SEND/SYN

CLOSE/FIN

CLOSE/FIN

CLOSING

TIME WAIT

CLOSED

FIN WAIT 1

FIN WAIT 2

CLOSE WAIT

LAST ACK

CLOSE/FIN

FIN/ACK

FIN+ACK/ACK

ACK/-

FIN/ACK

Timeout

(Go back to start)

Active CLOSE Passive CLOSE

Figure 8.1: Reference model of TCP [Wik09]

to the Mealy machine that are learned by LearnLib. Outside triggers like CONNECT,
SEND, LISTEN and CLOSE are not modeled in our approach. Also a RST message
is not modeled. In this reference model the transitions are defined differently; message
from SUT OR outside trigger / message to SUT (output symbol / input symbol). In the
Mealy machines that are learned, transitions are defined as α(d)/β(d). Also both the
client and server side are modeled in the reference model. As mentioned it is not easy
to compare this model to the reference implementation in figure 8.1. But still some
similarities and differences can be noticed. First the model learned with the partial
abstraction in figure D.1 is compared to the reference model.
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Evaluation

• The LISTEN state in the reference model corresponds to q0 in the learned model.
SYN RECEIVED corresponds to q1 and ESTABLISHED corresponds to q4.
The transitions between these states correspond in both models.

• In the reference model FIN messages are used but in the learned model only
FIN+ACK is accepted.

• For the connection termination part of the model the state CLOSE WAIT cor-
responds to q5 and state LAST ACK is analogous to q8. Finally the CLOSED
state resembles state q9

• The transition from LAST ACK to CLOSED has no transition label. In the
learned model this transition has a label ACK / ε

The model learned with the complete abstraction will have the same differences
and similarities as the ’partial’ model. The complete model will have even more tran-
sitions that are not in the reference model.
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Chapter 9

Conclusions

In this thesis an approach has been presented to infer Mealy machines from black box
protocol implementations. Both in theory as applied in case studies demonstrated that
it is possible to infer a model from network protocol implementations. Still human
intervention is needed to be able to learn a Mealy machine. Abstraction schemes, state
variables and state variable valuations must be given a priori in order to learn a Mealy
machine correctly from a black box implementation. Also timing issues have not been
considered in this thesis.

The abstraction scheme described in this thesis has been the core of this master thesis
project. Predicate abstraction techniques have been used to reduce the number of in
and output symbols in a Mealy machine in order to learn it efficiently. In this abstrac-
tion parameters have been divided in equivalence classes. All values in such a class
have the same semantic meaning for a protocol. This approach is different from any
previous approaches. The results that have been obtained using this abstraction are
promising but still lots of improvements can be done. When continuing this approach
it would be useful to learn this abstraction scheme automatically.

Correctness, termination and complexity of our approach has not been proved or ana-
lyzed in this thesis. Correctness proofs of the used algorithm are described in [Nie03].
What is left to prove is the abstraction scheme. The abstraction scheme does not affect
the complexity of the used L∗ algorithm. Complexity of this algorithm is denoted in
[Boh09]. The approach presented in this thesis runs in polynomial time.

The LearnLib package from University of Dortmund has proven itself to be a very
useful tool in this thesis. Adjustments had to be made in order to make this tool work
in the thesis project. These modifications include usage of the empty input symbol.

The network simulation platform ns-2 is not meant to be used in the way that in this
project is done. Many problems had to be overcome, but as shown models could be
generated from the protocols implementations that were provided by ns-2. Also a few
inconsistencies in protocol implementations with respect to a reference model were
discovered during the learning process.
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9. CONCLUSIONS

The resulting models of TCP and SIP from LearnLib are in general very large models
when compared to reference models of these protocols. This is caused by the imple-
mentations that have been used, they do not expect the variety messages that LearnLib
generates. This variety includes symbols with invalid parameters. Also the LearnLib
models that are generated are input enabled, meaning that in every state every input
symbol is present on the outgoing transitions. The result of this behavior is that the
models that have been generated are more sophisticated than the reference models.
The models depicted in this thesis are simplified via some transformations, to make
them more understandable and presentable in this thesis.
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Chapter 10

Future work

As a continuation of this master thesis project the following future work can be pro-
posed.

Find alternatives for the protocol simulator ns-2. An alternative could be using a net-
work packet generator and a network packet analyzer. These tools need to be con-
nected to LearnLib via an abstraction scheme. The protocol implementation of the
operating system is used to learn a model from. It might be that timing issues will
pop-up.

The automatic discovery of the equivalence classes of the parameters in the input and
output symbols. In the approach described in this thesis the equivalence classes are
given by a user of the learning process before the learning starts. Ideally these have to
be discovered automatically.

Prove correctness and termination of the approach described in this paper. A good
start has been made in [Nie03], by proving the Mealy machine modification of L∗.
What is left to prove is the abstraction scheme that is described in this thesis.

Many real-life protocols and other software modules have non-deterministic behavior.
This behavior cannot be learn by the currently used L∗ algorithm. Other algorithms
like in [DLT04] should be used to learn non-deterministic behavior.

In real-life communication protocols timing needs to be considered. In this thesis
project timing in communication protocols is not considered. The L∗ learning algo-
rithm must be adapted to handle timing. This future work can be a continuation of
[Gri08].
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Appendix A

SIP RFC model

Idle

Trying

Request(Method, Request-URI, SIP-Version, 

From, To, Call-Id, CSeq.Nr, CSeq.Method, 

Contact, Via, Max-Forwards)[Method==INVITE]/

Response(SIP-Version, Status-Code==1xx, 

Reason-Phrase, Via, From, To, 

Call-Id, CSeq.Nr, CSeq.Method, Contact, RSeq)

Request(Method, Request-URI, SIP-Version, From, To, 

Call-Id, CSeq.Nr, CSeq.Method, Contact, Via, Max-Forwards, RAck)

[Method==PRACK]

/ Response(SIP-Version, 

Status-Code==2xx, Reason-Phrase, Via, From, To, 

Call-Id, CSeq.Nr, CSeq.Method)

Completed

OK

Request(Method, Request-URI, SIP-Version, From, To, 

Call-Id, CSeq.Nr, CSeq.Method, Contact, Via, Max-Forwards)

[Method==ACK] /-

-/ 

Response(SIP-Version, Status-Code==1xx, 

Reason-Phrase, Via, From, To, 

Call-Id, CSeq.Nr, CSeq.Method, Contact,

 RSeq)

Completed

Request(Method, Request-URI, 

SIP-Version, From, To, Call-Id, CSeq.Nr, 

CSeq.Method, Contact, Via, Max-Forwards)

[Method==ACK]/-

-/

Response(SIP-Version, Status-Code==3xx-6xx, 

Reason-Phrase, Via, From, To, 

Call-Id, CSeq.Nr, CSeq.Method, Contact)

-/Response(SIP-Version, Status-Code==3xx-6xx, 

Reason-Phrase, Via, From, To, 

Call-Id, CSeq.Nr, CSeq.Method, Contact)

Request(Method, Request-URI, SIP-Version, 

From, To, Call-Id, CSeq.Nr, CSeq.Method, 

Contact, Via, Max-Forwards)[Method==INVITE] / 

Response(SIP-Version, Status-Code==3xx-6xx, 

Reason-Phrase, Via, From, To, 

Call-Id, CSeq.Nr, CSeq.Method, Contact)

Figure A.1: SIP Model derived from the informal specification in [RS02]
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Appendix B

SIP partial model

1

0

3

5

4

6

INV IT E/1xx

PRACK|ACK/timeout ε/3xx−6xx

PRACK/2xx

ACK/timeout ε/1xx

INV IT E/1xx

INV IT E/1xx

PRACK/2xx

ACK/timeout

PRACK/2xx ACK/timeout ε/3xx−6xx

INV IT E/1xxPRACK|ACK/timeout ε/1xx

INV IT E/1xx

PRACK|ACK/timeout

INV IT E/1xx

Figure B.1: Abstract model of SIP learned with partial abstraction
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Appendix C

SIP complete model

1

0

3

5

7

6

9

INV IT E(>)/1xx(>)

INV IT E(>)/1xx(>) ACK/timeout ε/1xx

INV IT E/1xx

INV IT E/1xxPRACK(>)/3xx−6xx(>)

INV IT E(>)/1xx(>) ACK/timeout ε/3xx−6xx

PRACK(>)/3xx−6xx(>)

ACK/timeout ε/1xx

INV IT E/1xx

INV IT E/1xx

PRACK/2xx PRACK(>)/2xx(>)

PRACK/2xx PRACK(>)/2xx(>)

ACK/timeout

INV IT E(>)/1xx(>)

PRACK/2xx PRACK(>)/2xx(>)

INV IT E/1xx

PRACK(>)/3xx−6xx PRACK(>)/3xx−6xx(>)

PRACK/2xxPRACK(>)/2xx(>)

INV IT E(>)/1xx(>) ACK/timeout

INV IT E(>)/1xx(>) ACK/timeoutε/3xx−6xx

INV IT E/1xx

INV IT E/1xx

PRACK(>)/3xx−6xx PRACK(>)/3xx−6xx(>)

INV IT E(>)/1xx(>) ACK/timeout

Figure C.1: Abstract SIP model learned using complete abstraction
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Appendix D

TCP partial model

D.1 Abstract model

con jecture

q1

q0

q5

q4

q9

q8

FIN +ACK/ACK

SY N +ACK/ε

SY N +ACK/εFIN +ACK/ε ε/FIN +ACK

SY N +ACK/ε

ACK/ε

ACK/ε

SY N +ACK/ε FIN +ACK/ε

SY N/ε SY N +ACK/ε

FIN +ACK/ε

ACK/ε

FIN +ACK/ACK

SY N/SY N +ACK

SY N +ACK/ε ACK/ε FIN +ACK/ε

Figure D.1: Abstract model learned with the partial abstraction
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D. TCP PARTIAL MODEL

D.2 Concrete model

q1

q0

q5

q4

q9

q8

FIN +ACK(SeqNr,AckNr) : [SeqNr = prev SeqNr∧AckNr = prev AckNr+1]/lastSeqSent := prevSeqNr;ACK(SeqNr,AckNr)

SY N +ACK(SeqNr,AckNr) : [SeqNr = prev SeqNr∧AckNr = prev AckNr+1]/prevSeqNr, lastSeqSent := prevSeqNr+1, prevSeqNr;ε

SY N +ACK(SeqNr,AckNr) : [SeqNr = prev SeqNr∧AckNr = prev AckNr+1]/prevSeqNr, lastSeqSent := prevSeqNr+1, prevSeqNr;εFIN +ACK(SeqNr,AckNr) : [SeqNr = prev SeqNr∧AckNr = prev AckNr+1]/lastSeqSent := prevSeqNr;ε ε/FIN +ACK(SeqNr,AckNr)

SY N +ACK(SeqNr,AckNr) : [SeqNr = prev SeqNr∧AckNr = prev AckNr+1]/prevSeqNr, lastSeqSent := prevSeqNr+1, prevSeqNr;ε

ACK(SeqNr,AckNr) : [SeqNr = prev SeqNr∧AckNr = prev AckNr+1]/
lastSeqSent := prevSeqNr;ε

ACK(SeqNr,AckNr) : [SeqNr = prev SeqNr∧AckNr = prev AckNr+1]/lastSeqSent := prevSeqNr;ε

SY N +ACK(SeqNr,AckNr) : [SeqNr = prev SeqNr∧AckNr = prev AckNr+1]/prevSeqNr, lastSeqSent := prevSeqNr+1, prevSeqNr;εFIN +ACK(SeqNr,AckNr) : [SeqNr = prev SeqNr∧AckNr = prev AckNr+1]/lastSeqSent := prevSeqNr;ε

SY N(SeqNr,AckNr) : [SeqNr = prev SeqNr∧AckNr = prev AckNr+1]/prevSeqNr, lastSeqSent := prevSeqNr+1, prevSeqNr;ε

SY N +ACK(SeqNr,AckNr) : [SeqNr = prev SeqNr∧AckNr = prev AckNr+1]/prevSeqNr, lastSeqSent := prevSeqNr+1, prevSeqNr;ε

FIN +ACK(SeqNr,AckNr) : [SeqNr = prev SeqNr∧AckNr = prev AckNr+1]/lastSeqSent := prevSeqNr;ε

ACK(SeqNr,AckNr) : [SeqNr = prev SeqNr∧AckNr = prev AckNr+1]/lastSeqSent := prevSeqNr;ε

FIN +ACK(SeqNr,AckNr) : [SeqNr = prev SeqNr∧AckNr = prev AckNr+1]/lastSeqSent := prevSeqNr;ACK(SeqNr,AckNr)

SY N(SeqNr,AckNr) : [SeqNr = prev SeqNr∧AckNr = prev AckNr+1]/prevSeqNr, lastSeqSent := prevSeqNr+1, prevSeqNr;SY N +ACK(SeqNr 6=−1,AckNr = lastSeqSendSeqNr+1)

SY N +ACK(SeqNr,AckNr) : [SeqNr = prev SeqNr∧AckNr = prev AckNr+1]/prevSeqNr, lastSeqSent := prevSeqNr+1, prevSeqNr;εACK(SeqNr,AckNr) : [SeqNr = prev SeqNr∧AckNr = prev AckNr+1]/lastSeqSent := prevSeqNr;ε

FIN +ACK(SeqNr,AckNr) : [SeqNr = prev SeqNr∧AckNr = prev AckNr+1]/ε

Figure D.2: Symbolic Mealy machine learned with the partial abstraction
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Appendix E

TCP complete model
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Figure E.1: The ’raw LearnLib’ model of the model learned with the complete abstrac-
tion
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