
Optimal Deployment of
Distributed Systems

Martijn Moraal

Master’s Thesis Computer Science
Radboud University Nijmegen
Thesis No. 619, November 2009

Supervisors
prof.dr. F.W. Vaandrager (Radboud University)
dr. L.D. Michel (University of Connecticut)
dr. E. Marchiori (reader, Radboud University)

ii

Abstract

As our world becomes more interconnected, there is an increasingly important role for distributed
computer system. Designing these systems is not an easy task. Progress has been made in this
regard with the development of formal specification languages and verification tools. One area that
is usually not addressed is the deployment of a system. This is unfortunate as the deployment can
be critical to the performance. Placing components on slow, unreliable hosts will severely hinder the
system, while grouping components on the fastest hosts creates single points of failure.

This thesis investigates this deployment problem. The problem itself is a combinatorial opti-
mization problem; a type of problem that is challenging computationally, with many instances being
NP-hard. Many different techniques exist to solve these problems, however, what works best for
a specific problem is difficult to predict. Mixed integer programming and constraint programming
have been considered for the deployment problem in the past. This thesis extends on this work by
investigating the use of constraint-based local search and hybrid methods for solving the problem.

The deployment problem of two distributed system architectures in particular is considered, and
constraint-based local search and hybrid methods are developed to solve them. The developed meth-
ods perform very well. They strike different trade-offs between time that is spend searching for a
deployment, and guarantees that are made on the quality of the obtained solution. The new methods
are not superior to the existing methods in every way. Instead, they provide users more freedom in
choosing the tools that are best for a specific task.

iii

iv

Preface

This master’s thesis is the culmination and conclusion of my work as a student of computer science at
the Radboud University Nijmegen. The research contained herein was performed at the department
of Computer Science & Engineering of the University of Connecticut, CT, USA. Being able to per-
form this research in such an unfamiliar environment was an experience that was both intellectually
stimulating and culturally enriching. An opportunity for which I am very grateful.

This thesis would not have been possible without the support of some people, and I would like to
thank them. First of all I want to thank my advisor at the Radboud University, Frits Vaandrager, for
giving me the opportunity to perform this research and for his support, ideas and feedback. Secondly
I would like to thank my external advisor, Laurent Michel, for welcoming me at the University of
Connecticut and allowing me to perform my Master’s research there, and for his enthusiastic ideas,
support, and help whenever I got stuck. Last but not least I want to thank Elaine Sonderegger, for her
ideas, the insightful comments and her support whenever the work got frustrating or felt hopeless.

Martijn Moraal
Nijmegen, November 2009

v

vi

Contents

1 Introduction 1
1.1 Optimal Deployment . 2
1.2 Problem Definition . 2

1.2.1 Eventually-Serializable Data Services . 3
1.2.2 Reconfigurable Atomic Memory for Basic Objects 3

1.3 Approach . 4
1.3.1 Related Work . 5
1.3.2 Comet . 5
1.3.3 Document Structure . 5

2 Constraint Programming 7
2.1 What is Constraint Programming? . 7
2.2 Constrain Satisfaction Problems . 8
2.3 Solving Constraint Satisfaction Problems . 9
2.4 Constraint-Programming Languages . 11

3 Constraint-Based Local Search 13
3.1 Local Search . 13
3.2 Constraint-Based Local Search . 14

3.2.1 Modeling . 14
3.2.2 Searching . 15

3.3 Example: The N -Queens Problem . 16

4 Deployment of Eventually-Serializable Data Services 19
4.1 Eventually-Serializable Data Services . 19
4.2 Modeling Optimal ESDS Deployments . 20

4.2.1 Bandwidth extension . 22
4.3 Constraint Programming Model . 23
4.4 Constraint-Based Local Search Model . 25

4.4.1 The Model . 25
4.4.2 The Search . 26
4.4.3 Co-Location Preprocessing . 31

4.5 Hybrid Model . 32
4.5.1 Sequential Hybrid . 33
4.5.2 Parallel Hybrid . 33

4.6 Benchmarks . 34
4.7 Experimental Results . 35

4.7.1 Constraint Programming Model . 35
4.7.2 Constraint-Based Local Search Model . 36
4.7.3 Sequential Hybrid Model . 37
4.7.4 Parallel Hybrid Model . 38

vii

5 RAMBO Deployment 41
5.1 RAMBO . 41
5.2 Modeling RAMBO Configuration Selection . 42
5.3 Constraint Programming Model . 45
5.4 Hybrid CBLS/CP Master-Slave Algorithm . 47

5.4.1 The Model . 48
5.4.2 The Search . 49

5.5 Parallel Composition . 54
5.6 Benchmarks . 54
5.7 Experimental Results . 55

5.7.1 Constraint Programming Model . 55
5.7.2 Hybrid CBLS/CP Master-Slave Algorithm . 56
5.7.3 Parallel Composition . 58

6 Conclusion 61
6.1 Results . 61

6.1.1 Eventually-Serializable Data Services . 61
6.1.2 Reconfigurable Atomic Memory for Basic Objects 62

6.2 Discussion . 63
6.3 Future Work . 64

viii

1 Introduction

As our world becomes more and more interconnected, there is an increasingly important role for
distributed computer systems. With the internet as the most prominent example it is not difficult to
see the dominant role these systems play in our current society. That role is continuing to grow as new
systems are continuously introduced, as wireless sensor networks develop, or as cloud computing
emerges.

Distributed computing systems are appealing for a number of reasons. In the case of the inter-
net it allows us to efficiently communicate and share information with each other, while wireless
sensor networks enable the use of many autonomous devices to cooperatively monitor physical or
environmental conditions. In general distributed networks enable the use of many, spatially sepa-
rated, resources to work together to achieve a goal or perform a task, that each of the individual
participants could not do on their own. For instance, a distributed system can allow multiple devices
to co-operate by sharing cpu resources or storage space; it can enable more flexible access to, and
more efficient sharing of data, by centrally storing it; or it can provide robustness and fault tolerance
by eliminating single points of failure.

To achieve these tasks some underlying services and algorithms are needed. For fault tolerant
data storage and sharing, for instance, some replication of the data is usually required. Storing the
data on a single device would create a single point of failure and would place a great resource strain
on that particular device. Replication of the data, however, raises the issue of maintaining atomicity,
e.g. the service will need to guarantee that the same data is stored at each replication point. Design-
ing systems that effectively and efficiently deal with these issues is not an easy task. Systems often
consist of heterogeneous computing devices and are characterized by concurrent and asynchronous
operations. These complexities make them hard to reason about. This is further complicated when
the underlying logical network structure is dynamic, with hosts continuously joining and leaving,
often without warning.

Some of these difficulties can be tamed using formal specification frameworks. Frameworks such
as the Timed I/O Automata framework [17] and the associated Tempo Language and Toolkit [19]
are specifically aimed to aid in the design of distributed systems and prove their correctness. Creating
a correct specification is, however, only part of the problem. When a distributed system has been
specified, and after rigorous analysis has been deemed correct, it will still need to be implemented
and deployed. Implementing the system consists of generating the software components so that their
behavior corresponds to that of the model. The deployment then deals with mapping the software
components onto a distributed computing platform.

This deployment typically has a large impact on the performance of the system. For instance,
non-uniform communication costs between the various devices in the network give significance to
the placement of the different components, as placing a critical resource on a device with a slow
communication speed to the rest of the network will significantly impact the overall performance of
the system. Co-locating components on the same host allows for fast and cheap communication, but

1

2 CHAPTER 1 · Introduction

it also hinders reliability and robustness by creating single points of failure. Distributing the software
components among the hosts in the network allows more efficient use of processing and storage
resources and improves fault tolerance. However, it also induces communication delays between the
various components. The performance of the system can be optimized by placing the components
in such a way that the communication delays between the components are minimal. Achieving
such an optimal deployment, however, is a very challenging task. It is this task of creating optimal
deployments that this thesis focuses on.

1.1 Optimal Deployment

The problem of deploying a specified distributed system onto a network structure typically consists
of mapping the components of the system onto the hosts of the network. This mapping is subject
to certain constraints. For example, certain components will need to be separated to achieve fault
tolerance, while others will need to be placed together to function properly. Furthermore, not all
hosts might be able to support all components, or bandwidth constraints on the links between the
hosts might limit the amount of network traffic that can take place between them. Other properties
might need to be optimized. For instance, the goal of a certain deployment might be to minimize the
communication delays, or the total amount of network traffic.

Determining such an optimal deployment is a combinatorial optimization problem. Combinatorial
optimization problems are concerned with the efficient allocation of limited resources to meet desired
objectives. They are discrete problems with a set of discrete resources to allocate and a discrete set of
solutions. Constraints on the resources reduce the total set of possible solutions, however, for most
problems there is still a great number of feasible solutions. An overall objective determines which of
these feasible solutions is the best.

Combinatorial optimization problems are generally extremely challenging computationally. Typi-
cally they are NP-hard, and thus cannot be solved exactly in polynomial time (unless P = N P). From
a theoretical perspective it is difficult to get much traction on these problems. These problems are
however a reality and are in fact ubiquitous in our society. Companies continuously face the problem
of how to assign their limited resources, such as machines, vehicles and personnel, to perform certain
activities. Typical examples are the assignment of airline crews to flights so that the operating costs
are minimized [11], or the placement of warehouses so that transportation costs are minimized [33].

Many approaches have been developed to tackle these kinds of problems, and many tools have
been designed to aid in the process. However, it is often difficult to predict what will and what
will not work. It is unlikely that a single approach will be effective on all problems, or even on all
instances of a single problem. Some problems are better solved using mathematical programming,
some are more amenable to solutions by constraint programming, while local search is more effective
on others. This difficulty in predicting which methods will yield the best results makes solving
optimization problems a highly experimental endeavor.

1.2 Problem Definition

Not all distributed systems have the same deployment problem. The specifics of what needs to be
deployed and how it needs to be deployed will vary. However, some generalities can be established.
Typically there will be a set of software components with associated communication frequencies,
and a set of hosts with associated communication delays. The assignment of components to hosts is
restricted by constraints on sets of components or hosts which must or may not be assigned in certain
ways. The objective of the deployment is to minimize some objective function which is defined in
terms of certain properties of the components and the hosts.

SECTION 1.2 · Problem Definition 3

In this thesis the deployment problem of two distributed system architectures in particular will
be considered. These problems are interesting themselves and worth solving. However, they are
also representative of more general sets of problems. The first system, Eventually-Serializable Data
Services, provides a scalable fault-tolerant distributed data service. It operates in a static network
setting, and its deployment problem is an offline problem that only needs to be solved once. The
second system, Reconfigurable Atomic Memory for Basic Objects, provides shared atomic memory
in a dynamic network setting. In contrast to the first system its deployment problem is an online
problem that needs to be solved continuously while the services is running. Both types of systems
and their associated deployment problems will be described briefly below.

This thesis will investigate the use of combinatorial optimization techniques to solve these prob-
lems. In particular, techniques from the field of constraint programming will be used. Constraint
programming is very much a field in development and as such is constantly looking for new appli-
cations to test and extend its repertoire of techniques. The results of this thesis provide relevant
feedback to the constraint programming community in this regard.

1.2.1 Eventually-Serializable Data Services

Eventually-Serializable Data Services (ESDS) [12] is a distributed algorithm for providing scalable
fault-tolerant distributed data services. Providing distributed and concurrent access to data objects
is one of the fundamental concerns of distributed systems. The simplest implementation of such a
system uses a single centralized data object that can be accessed from multiple locations by multiple
clients. There are however two large problems with this simple approach: it has a single point of
failure, and due to congestion it does not scale well as the number of clients increases.

To solve these issues most distributed data services use some form of replication. The data ob-
ject is replicated at multiple locations, each of which can be accessed independently. This approach
eliminates the single point of failure and scales very well, since the number of replicas can be in-
creased and the load can be balanced among them. It however also introduces a new problem: the
problem of maintaining consistency of the replicated data object. The issue of consistency can be
solved in many different ways, but it typically comes at a high performance cost. ESDS reduces this
performance cost by trading off the immediate consistency guarantees, while ensuring the long-term
consistency of the data.

An ESDS system consists of three different types of software components, clients, front-ends,
and replicas. The deployment problem consists of assigning each component to a particular host
in a network. This assignment is subject to certain constraints. For instance, no two replicas can
be assigned to the same host to ensure fault tolerance. The goal of a deployment is to minimize
the total communication delays. The deployment problem is an offline problem; it only needs to
be solved once, before the system is actually deployed. The terms in which the ESDS deployment
problem is stated are very general, and the deployment of many other distributed systems can be
stated in similar terms.

1.2.2 Reconfigurable Atomic Memory for Basic Objects

The ESDS systems requires a static network to function properly. It allows for the failure of some
hosts, but it does not allow for continuous and large changes in the underlying network. Providing
consistent shared objects in such dynamic networks is another fundamental problem in distributed
computing. Reconfigurable Atomic Memory for Basic Objects (RAMBO) [13, 20] was developed for
this purpose. It makes guarantees about the consistency and availability of shared objects in a setting
where hosts can continuously join, leave, or fail. RAMBO achieves this by replicating the shared
object among hosts grouped in read- and write-quorums. The quorums enable the system to maintain
memory consistency in the presence of small and transient changes.

4 CHAPTER 1 · Introduction

The number of changes in the network that the quorum system is able to handle is, however,
still limited. As hosts continuously leave and new ones join, there may at some point be none of the
original hosts left. To be able to deal with these larger and more permanent changes RAMBO supports
dynamic reconfiguration. This reconfiguration modifies the assignment of replicated objects to host
and the associated quorum assignments. What exactly the new configuration should look like is a
problem that RAMBO does not solve. It is this deployment problem that is considered in this thesis.

In the ESDS case a deployment can be computed before the system is actually deployed, the prob-
lem is therefore inherently an offline problem. In the RAMBO case, however, the deployment will need
to be continuously adjusted to allow the system to keep functioning in the dynamic network setting
it is designed for. The deployment problem is therefore very much an online problem, which means
there is a tighter limit on the time available to compute the deployment. The RAMBO deployment
problem deals with finding an assignment of quorum members, who maintain a copy of the data
object, to hosts. This assignment is subject to the constraint that no two members can be placed on
the same host. The goal is twofold, firstly the fault tolerance of the system has to be ensured so the
most reliable hosts need to be chosen, secondly the performance needs to be optimized so that the
communication delays are minimized.

1.3 Approach

This thesis builds upon research that has been previously done in this area. Previous work on the
problems has considered the use of mathematical programming and constraint programming as solv-
ing techniques. The results have, however, left something to be desired. The problems proved ex-
tremely challenging computationally and solutions could often not be obtained within reasonable
time limits. A brief overview of the related work done on these problems will be given below. This
thesis investigates the use of constraint-based local search to tackle the problems. Constraint-based
local search has the ability to often deliver good solutions very quickly. This performance, how-
ever, comes at the cost of completeness. In addition to constraint-based local search this thesis will
investigate hybrid methods which combine multiple techniques.

Mastering techniques for combinatorial optimization is quite challenging. Fortunately, many tools
have been designed to aid in the process and automate many of the low-level details, leaving only
the high-level solving algorithm to be specified. This thesis uses the combinatorial optimization tool
COMET [1, 15, 23].

The results presented herein are novel algorithms for solving the ESDS and RAMBO deployment
problems. The developed constraint-based local search and hybrid algorithms offer sophisticated
integration of several techniques. They perform very well, and are able to deliver solutions for
realistic instances of these problems, in reasonable time. The developed methods strike different
trade-offs between time that is spend searching for a deployment, and guarantees that are made on
the quality of the obtained solution. The new methods are not superior to the existing methods in
every way. Instead, they provide users more freedom in choosing the tools that are best for a specific
task.

Results of this research have been published in two conference papers. The results that are
achieved on the ESDS deployment problem were presented at CPAIOR ’09 in “Bandwidth-Limited Op-
timal Deployment of Eventually-Serializable Data Services” [25], while the results that are obtained on
the RAMBO deployment problem were presented at CP ’09 in “Online Selection of Quorum Systems for
RAMBO Reconfiguration” [26]. The papers present both related work that was done on the constraint
programming method for these problems, and the constraint-based local search and hybrid methods
that have been developed as part of the research presented in this thesis. Chapters 4 and 5 of this
thesis provide an expansion on the relevant sections of these papers.

SECTION 1.3 · Approach 5

1.3.1 Related Work

The deployment problem was first considered in [4, 5, 6, 7], the results at the time were, however,
not satisfactory. The approach consisted of forms of mathematical programming, and many instances
of the problem could not be solved in reasonable time constraints. The Eventually-Serializable Data
Services deployment problem was revisited in [22], where two methods were used, mixed integer
programming (a form of mathematical programming) and constraint programming. The results were
much more satisfactory. The constraint programming approach was shown to be vastly superior to
the mixed integer approach, for this particular problem, and many instances could be solved in very
reasonable time. The ESDS deployment problem was then extended to include bandwidth constraints
in [27], with less dramatic results.

The RAMBO deployment problem was considered in [26], and a constraint programming solution
was developed for it. This solution was able to solve instances of the problem, however, some of
instances took a considerable amount of time. This left room for improvement, especially given the
tight time constraints in which the problem must be solved due to the online nature of the problem.

1.3.2 Comet

COMET is an award-winning tool for solving complex combinatorial optimization problems in areas
such as resource allocation and scheduling. One of its main innovations is Constraint-based Local
Search, a computational paradigm that combines the ideas of constraint programming and local
search. Few combinatorial optimization tools support the concept of constraint-based local search,
so the choice of COMET for this thesis seems a logical one. What makes COMET even more appealing is
its ability to support multiple solving methods. COMET features both a constraint-based local search
engine, a constraint-programming solver, and mathematical programming solver. A highly desirable
feature, since this thesis will compare the use of these method on the particular problems.

Comet is an object-oriented language and provides the traditional expressivity of constraint pro-
gramming with a very rich languages for expressing search algorithms. It adheres to the vision
that a combinatorial application is best described as a model and a search component. The model
specifies what the solutions are and their overall quality in terms of constraints and objectives. The
search expresses how to find solutions. As such it allows the specification of both the model and
the search component at a high abstraction level, achieving high reusability while maintaining high
performance.

1.3.3 Document Structure

Chapter 1 of this thesis gives an introduction into the problem this thesis attempts to solve and
the methods which are used. Chapter 2 gives a brief introduction into constraint programming,
which forms the basis of many of the techniques that are used in this thesis. Chapter 3 explains
the concept of constraint-based local search, and as such builds upon the principles of constraint
programming explained in the previous chapter. Chapter 4 explains the Eventually-Serializable Data
Services deployment problem, and describes the methods that were developed to solve it. Chapter 5
details the Reconfigurable Atomic Memory for Basic Objects deployment problem, and the methods
used to solve this problem. And finally, chapter 6 presents some conclusions.

6 CHAPTER 1 · Introduction

2 Constraint Programming

This chapter will give a short overview of constraint programming (CP). Parts of this chapter are
based on more complete introductions in [3, 24, 28, 31].

2.1 What is Constraint Programming?

Constraint programming is a programming paradigm where relations between variables are stated
in the form of constraints. Constraints essentially are relations over (sets of) unknowns. They are
present in nearly all problems we encounter in our day to day lives. When we say “Let’s plan a
meeting tomorrow in the afternoon” we constrain the unknown time of the meeting to a specific day
(tomorrow) and a specific time interval (12:00 am to 6:00 pm). Usually constraints come in sets
rather than alone, and they are rarely independent. The time of the meeting, for instance, is most
likely further constrained by any prior arrangements of the members of the meeting, making them
unavailable at certain time intervals.

Constraint programming has been applied to many different areas, such as computer graphics,
software engineering, databases, circuit design, finance, and of course combinatorial optimization.
Although the fundamental principals are the same, it is not surprising that the specifics of how con-
straint programming is applied can be of a very different nature, given the diversity of the application
domains. This chapter will focus on the use of constraint programming to solve combinatorial opti-
mization problems.

Constraints have a number of important characteristics that make them a natural and transparent
way of describing problems. The first important feature of constraints is that they are declarative.
They specify what relation must hold without specifying a computational procedure to enforce that
relation. Another key characteristic is that they are additive. The order of imposition of the con-
straints does not matter, all that matters at the end is that the conjunction of constraints is in effect.
Constraints will typically only specify partial information. They do not need to uniquely specify the
value of their variables; there can be multiple values that satisfy a constraint or possibly even none
(leaving the problem unsolvable). Usually there will be multiple solutions to set of constraints. How-
ever, there is no guarantee that there is any solution at all, even if all individual constraints have
local solutions.

Example: The N -Queens Problem A toy problem that can be stated using constraints is
the N -queens problem. This problem will be used throughout this chapter as en example to illustrate
the various aspects of constraint programming. The problem consists of placing N queens on a N xN
chessboard, with the constraint that no two queens should threaten each other, i.e. they cannot be
placed on the same column, row or diagonal. Figure 2.1 shows a possible solution to the 5-queens
problem

7

8 CHAPTER 2 · Constraint Programming

A B C D E

1

2

3

4

5

Figure 2.1: A Solution to the 5-Queens Problem

2.2 Constrain Satisfaction Problems

Problems for constraint programming are usually stated in the form of a Constraint Satisfaction
Problem (CSP). A CSP is composed of a finite set of variables, each of which is associated with a
finite domain, and a set of constraints that restricts the values the variables can simultaneously take.
Although most practical problems can be stated in these terms, some problems may require variables
with infinite domains or a dynamically changing set of variables. These problems require a different
set of specialized techniques to solve. Although these problems are important, they are beyond the
scope of this thesis and will not be further discussed.

More formally, a constraint satisfaction problem is defined as:

• A set of variables X = {X1, ..., Xn}.

• For each variable X i ∈ X a nonempty domain DX i
of possible values.

• A set of constraints C = {C1, ..., Cm}. A constraint Ci ∈ C is a formula in some appropriate
(predicate) logic, that involves some subset of the variables and specifies the allowable combi-
nations of values for that subset.

A solution to a constraint satisfaction problem is an assignment of a values to variables, {X1 =
v1, ..., Xn = vn}, with vi ∈ DX i

. If the solution satisfies all constraints Ci ∈ C it is called feasible. There
may be many feasible solutions to a particular problem, and the goal of an algorithm may be to find:

• One feasible solution, with no preference as to which one.

• All feasible solutions.

• An optimal feasible solution, which maximizes (or minimizes) some objective function defined
in terms of (a subset of) the variables. These problems are usually referred to as Constraint
Optimization Problems (COP).

This formal definition may seem limited, but many complex problems can be specified as CSP’s in a
natural and transparent way.

SECTION 2.3 · Solving Constraint Satisfaction Problems 9

Example: The N -Queens Problem To formalize the N -queens problem a set of variables,
a set of domains and a set of constraints have to be identified. One possible formalization could
be to use variables X = {Q1, ...,QN} to each denote the location of queen Q i on the N xN board,
with DQ i

= {1...N2}. However, by using a slightly different formalization the size of the problem can
be significantly reduced. Since no two queens can be placed on a single column each column will
contain exactly one queen. Each queen can therefore be associated with a column, leaving only the
row in that column to be assigned. This can be formalized by using each variable Q i ∈ X to denote
the row at which the queen in column i is located, thereby reducing the domain of each Q i ∈ X to
DQ i
= {1...N}.
This representation ensures that no two queens can be on the same column, this constraint there-

fore does not have to be formalized. The constraint that no two queens can be on the same row can
be expressed as follows:

C1 : ∀i, j ∈ N : i 6= j⇒Q i 6=Q j

The requirement that no two queens can be placed on the same diagonal can be expressed with the
following two constraints:

C2 : ∀i, j ∈ N : i 6= j⇒Q i − i 6=Q j − j

C3 : ∀i, j ∈ N : i 6= j⇒Q i + i 6=Q j + j

2.3 Solving Constraint Satisfaction Problems

From a theoretical perspective it is trivial to find a solution to a CSP. One can simply generate all
possible assignments of values to variables and test for each assignment whether it satisfies the set of
constraints. This naive approach may work for very simple problems but for larger problems it will
quickly take an enormous amount of time. Moreover, the typical application domain of CP consists
of NP-hard problems. For these problems the naive method is infeasible and more efficient methods
will have to be used. Research in the area of constraint programming therefore concentrates on
developing algorithms which solve problems faster and more effectively.

Backtracking Search The basis of most solving algorithms is a backtrack search algorithm.
This is a depth-first search that picks one variable at a time and chooses a value for this variable.
The choice for a variable or value is called a choice point and the assignment of a value to a variable
is called labeling. If labeling the current variable with the chosen value violates certain constraints
then the algorithm backtracks to the previous choice point, either choosing a new value or if none
are available going back to the previous variable. This process continues until all the variables are
labeled and a solution has thus been found, or until all combinations of labels have been tried and
have failed, in which case the problem is unsolvable.

This simple backtracking algorithm in itself is still quite naive, it makes minimal use of the con-
straints to limit and direct the search. One important technique to make the search more efficient
is the propagation of the consequences of an assignment on the other variables through the con-
straints. Another method of enhancing the search is by using heuristics to make smart decisions on
which variables and values to select.

Constraint Propagation Constraint propagation is the general term for propagating the impli-
cations of a constraint on one variable onto other variables. For instance, when a queen is assigned a
certain row in the N -queens problem we then know that row cannot be assigned to any other queen,
because of the constraint that no two queens can be assigned to the same row. Whenever a row is
assigned that row can therefore be removed from the domain of all remaining variables. Of course,
the same holds for the diagonals.

10 CHAPTER 2 · Constraint Programming

B

C

D

A

F

E

Figure 2.2: Graph Coloring Problem

A B C D E F

Initial RGB RGB RGB RGB RGB RGB
A = R R G B R G B R G B R G B G B
C = G R B G R B R G B B
E = B R B G R B

Figure 2.3: Constraint Propagation in the Graph Coloring
Problem

Figure 2.2 shows the graph coloring problem. The problem here is to color the vertices of the
graph red, green or blue in such a way that no two neighboring vertices share the same color. Fig-
ure 2.3 shows how the labeling of a variable affects the domain of the other variables. Each variable
starts with a domain consisting of red, green and blue. When vertex A is labeled red, this color is
removed from the domain of the neighboring vertices through constraint propagation. When in the
subsequent step vertex C is labeled green, vertex B and F have their domain reduced to a single
value, eliminating the need to branch on them completely. When vertex E is then labeled blue there
a no legal values left for vertex F .

The propagation of the effect of assignments through the constraints quickly eliminates choices
that are inconsistent with the current assignment, thereby greatly reducing the number of branching
options. Whenever a variables has no values left in its domain there is no possible solution with the
current assignments, eliminating the need to explore that subtree any further. In the graph coloring
example an inconsistency is in fact already introduced with the second assignment. Figure 2.3 shows
that after vertex C has been labeled green the only value left for both vertex B and F is blue, how-
ever, they cannot both have the same color. Detecting this inconsistency will cause the algorithm to
backtrack immediately without even considering the third assignment.

Variable and Value Ordering Another important element of the search is the order in which
variables and values are chosen for labeling. The order in which variables are picked can make a
significant difference. For instance, in the graph coloring example after the assignments A = red
and B = green there is only one possible value left for F . Therefore it makes sense to choose F
for the next assignment. The assignment F = blue in fact forces all further assignments. Choosing
the variable with the smallest remaining domain is called the minimum-remaining-values heuristic.
Another heuristic is to choose the variable that is involved in the largest number of constraints, this
is called the degree heuristic. In the graph coloring example it makes sense to choose F first because
labeling it will cause the largest reduction in the domains of the remaining variables. In fact, after F
has been assigned you can chose any consistent color at each choice point and arrive at the solution
without any backtracking.

Choosing which value to pick can be done using the least-constraining-value heuristic. This heuris-
tic selects the value that rules out the fewest choices for the neighboring variables. For instance,
assume the assignments A= red and B = green have been produced and now C has been selected for
labeling. Here it makes sense to choose red instead of blue, since choosing blue would leave no legal
values for F .

SECTION 2.4 · Constraint-Programming Languages 11

1 int N = 5;
2 range Size = 1..N;
3 Solver<CP> m();
4

5 var<CP>{int} queen[i in Size](m, Size);
6

7 solve<m> {
8 m.post(alldifferent(queen));
9 m.post(alldifferent(all(i in Size) queen[i] + i));

10 m.post(alldifferent(all(i in Size) queen[i] − i));
11 } using {
12 forall(i in Size) by (queen[i].getSize())
13 tryall<m>(v in Size : queen[i].memberOf(v))
14 label(queen[i], v);
15 }

Figure 2.4: The N -Queens Problem in COMET

2.4 Constraint-Programming Languages

Several constraint-programming languages and systems have been developed for solving combinato-
rial optimization problems. These constraint-programming platforms are typically characterized by
two main features:

• An expressive language, offering both a rich constraint language and the ability to specify
search procedures.

• A computational model for solving combinatorial optimization, which focuses on using con-
straints and feasibility information to reduce the search space.

The computational model typically employs the various constraint propagation techniques and
handles the backtracking, while the choice for variables and values is left to a user specified search
procedure. This ability to specify search procedures is critical to obtain reasonable efficiency on
complex combinatorial problems. It allows the use of many different sophisticated heuristics, that
can employ problem specific knowledge to explore the search tree more efficiently. The constraint
propagation techniques, on the other hand, are problem independent and can therefore be handled
by the computational model as efficiently as possible.

Example: The N -Queens Problem Figure 2.4 shows the N -queens problem in the constraint-
programming language COMET. It shows the typical structure of constraint programs. First the data
declarations on lines 1–3, the declaration of the decision variables on line 5, the statement of the
constraints on lines 8–10, and finally the search procedure on lines 12–14. There are N decision
variables queen[i] i ∈ N , each representing the row at which the queen in column i is located. Each
decision variable has domain 1..N . The alldifferent constraint on line 8 requires each each de-
cision variable to have a unique value, different from all others. This ensures that no two queens can
be placed on the same row. The constraints on line 9 and 10 require the same for each diagonal.

The idea of the search procedure is to consider each decision variable, ordered by their domain
size and assign them a value out of this domain in a nondeterministic way. It is important to note the
difference between the selection of variables and values. The selection of variables is done through
the forall instruction, which executes for each value i in Size. While values are selected using
the tryall instruction, which specifies a choice point with a number of alternatives and just one of
them must be selected.

12 CHAPTER 2 · Constraint Programming

A B C D E

1

2

3

4

5

Figure 2.5: First Step in the 5-Queens Problem

A B C D E

1

2

3

4

5

Figure 2.6: Second Step in the 5-Queens Prob-
lem

Figure 2.5 and 2.6 show the first two steps of the program. Initially all domains are equal so a
queen is selected randomly, here queen[1] is selected and assigned the value of 1. All inconsistent
values are then removed from the domains of the remaining queens as shown in figure 2.5. The
remaining queens now all have 3 values remaining in their domains, so one is selected randomly
again. In this case queen[2] is selected and assigned to row 3. This move leaves only one remaining
legal value for queen[3] and queen[4], as shown in figure 2.6. These values are immediately assigned,
after which only one legal value is left for queen[5]. A solution to the problem has thus been found
with only two choices and without backtracking.

3 Constraint-Based Local Search

This chapter provides an introduction into constraint-based local search. A more complete overview
can be found in [2, 15, 23, 24], on which parts of this chapter are based.

3.1 Local Search

Local search takes a fundamentally different approach to solving combinatorial optimization prob-
lems than the systematic tree search of constraint programming. Compared to Constraint Program-
ming it sacrifices quality guarantees for performance. Local search is, in contrast to constraint pro-
gramming, not complete. There is no guarantee that an optimal, or even high-quality solution will be
found. However, on many problems local search algorithms are able to find optimal or near-optimal
solutions within very reasonable time constraints. In essence local search explores a graph, moving
from solutions to neighboring solutions in the hope of improving the value of the objective function.

Unlike constraint programming, where a solution is build up one variable at a time, local search
starts with a (usually randomly generated) solution and moves to neighboring solutions in the hope
of improving a function f . This function f measures the quality of a given solution. Typically it
consists of either an objective function, in the case of optimization problems, or a measure of distance
from the current solution to a feasible solution, in the case of satisfiability problems. If the problem
is a combination of an optimization and a satisfiability problem, f may be defined as a combination
of both an objective function and a satisfiability measure.

Figure 3.1 shows a simple generic local search template. The search starts from an initial solution
(line 2), and performs a predefined number of iterations (line 4). The main operation of the algo-
rithm, the move from a solution to one of its neighboring solutions, is performed on line 5. The set of
neighboring solution is called the neighborhood, and is denoted by N(s). The neighboring solutions
may either be legal or they may be forbidden. The L operator identifies the set of legal neighbors and
the S operator selects one of them. The variable s∗ is used to track the best solution found so far. It
is updated each time a solution is found which is satisfiable and which represents an improvement
in f over the previously found best solution (line 6–8). When the predefined number of iterations
have been performed the best solution that has been encountered is returned (line 8).

Defining the neighborhood and selecting which solution to move to are the two main issues faced
when designing a local search algorithm, and most research focuses on these two areas. Local search
is particularly appropriate for problems where using systematic searches, such as used in constraint
programming, is not feasible. For example, large-scale problems that involve thousands of decision
variables, or online optimization problems where a (good) solution must be found within strict time
constraints. Local search is the current best approach for many practical problems, such as the
traveling tournament problem, vehicle routing, frequency allocation, and many resource-allocation
and scheduling problems.

13

14 CHAPTER 3 · Constraint-Based Local Search

1 function LocalSearch {
2 s := GenerateInitialSolution();
3 s∗ := s;
4 for k:= 1 to MaxIterations do
5 s := S(L(N(s), s), s)
6 if satisfiable(s) and f(s) < f(s∗) then
7 s∗ := s;
8 return s∗
9 }

Figure 3.1: Basic Local-Search Template

3.2 Constraint-Based Local Search

Constraint-based local search (CBLS) is a relatively recent addition to the field of combinatorial op-
timization. Historically most research in this area has focused on systematic search and has largely
ignored local search. However, the 1990s witnessed significant progress in solving satisfiability prob-
lems by local search, and saw the first modeling language for local search being introduced. At the
beginning of the 21st century, combinatorial constraints were recognized as beneficial in local search
and the idea of constraint-based local search emerged.

Constraint-based local search uses constraints to describe and control local search. Much like
in constraint programming, problems are typically separated into a declarative component which
describes the problem through the use of constraints, and a search component which details the
search procedure.

3.2.1 Modeling

Problems in constraint-based local search are modeled in much the same way as they are in constraint
programming. They are stated as Constraint Satisfaction Problems (CSP) or Constraint Optimization
Problems (COP). Although the constraints are the same, the way in which they are used is not.
Unlike in constraint programming, they are not used to prune the search space, instead they are
used to maintain a number of properties which in turn can be used to guide the local search.

Differentiable Objects In constraint-based local search constraints are used to guide the search
and determine where to move next. This is done by maintaining certain properties about them, such
as their satisfiability, their violation degree, and how much each of its underlying variables contribute
to the violations. Local search algorithms typically evaluate the properties of many different neigh-
boring solutions before selecting one. To create an efficient algorithm it is therefore essential to be
able to quickly and efficiently calculate these properties.

A neighboring solution typically only differs slightly from the current solution, therefore it is not
needed to calculate all properties completely every time. Instead, they can be maintained incremen-
tally, so that only the difference needs to be calculated. This concept of incremental variables is one
of the key elements for efficient local search algorithms. Incremental variables can be used to con-
struct differentiable objects. These object maintain properties about themselves and can be queried to
evaluate the effect of local moves.

For constraint-based local search it is of course essential to have constraints as differentiable
objects. But the concept can be extended to other types of objects, such as functions. This is essential
for optimization problems, where the effect of local moves on the objective function needs to be
evaluated. Similar the the additive property of constraints in CP the constraints in constraint-based
local search are compositional. They can be stated in any order, and can be added at any time.

SECTION 3.2 · Constraint-Based Local Search 15

Figure 3.2: A Move in the Graph Partitioning Problem

Furthermore, they can be combined with each other, and with functions, into constraint systems or
higher level functions. These in turn can also be used as differentiable objects, so that the effects of
moves on a set of constraints or on a combination of constraints and an objective function can be
evaluated.

3.2.2 Searching

The neighborhood graph and how it is explored is defined by the search procedure. As mentioned
before, the main operation of local search is moving from one solution to a neighboring solution.
What such a move consists of defines the neighborhood. Typically a move consists of a simple
reassignment of a value to a variable, but other moves are possible, such as multiple reassignments,
swapping the value of two or more variables, or even more complex structures. A search procedure
can even use multiple different moves, and thus neighborhoods, and alternate between them in
search of better solutions.

Figure 3.2 depicts a move in the graph partitioning problem. This problem consists of dividing a
graph into evenly balanced partitions so that the number of connections between the two partitions
is minimal. The initial solution, shown on the left side of figure 3.2, has 6 connections between the
two partitions. When two vertices are swapped only 4 connections remain in the new solution. The
move here consists of swapping two vertices between the two partitions. By using this particular
move the balancing constraint is implicitly maintained, as long as it is satisfied in the initial solution.
Another possible move could have been the reassignment of a vertex to a partition, in this case
the balancing constraint could be broken. For some problems allowing such infeasible solutions
might give an advantage. However, this means the search will not only have to be directed towards
solutions that minimize the number of connections but also towards feasible solutions. There are
many different ways to accomplish this. For instance, a feasibility measure could be included in the
objective function.

Not all of the neighboring solutions may be legal: some might be forbidden. For instance, an algo-
rithm might not allow moves that worsen the function f , i.e. moves that introduce more constraint
violations or have a worse objective value than the current solution. However, disallowing such
moves may cause the neighborhood to become disconnected. Connectivity is a fundamental property
of a neighborhood, and one of the main issues any local search algorithm faces. A neighborhood is
connected if a path exist from any solution s to an optimal solution s∗. To be able to find an optimal
solution it is essential that this property holds. However, there is a fundamental conflict between the
desire to select the best neighboring solution, and allowing enough moves to keep the neighborhood
connected. To be able to find the global optimum you need to select improving solutions, but at
the same time this may cause the neighborhood to become disconnected, as you get stuck in local
optima. Balancing between the two can be challenging. A commonly used technique to battle this
connectedness issue is to incorporate a diversification step in the algorithm. The idea is to move to a

16 CHAPTER 3 · Constraint-Based Local Search

1 int N = 8;
2 range Size = 1..N;
3 Solver<LS> m();
4 UniformDistribution distr(Size);
5

6 var{int} queen[i in Size](m, Size) := distr.get();
7

8 ConstraintSystem S(m);
9 S.post(alldifferent(queen));

10 S.post(alldifferent(all(i in Size) queen[i] + i));
11 S.post(alldifferent(all(i in Size) queen[i] − i));
12 m.close();
13

14 while (S.violations() > 0)
15 selectMax(q in Size)(S.violations(queen[q]))
16 selectMin(v in Size)(S.getAssignDelta(queen[q],v))
17 queen[q] := v;

Figure 3.3: The N -Queens Problem in COMET

random solution when no improvements have been found for a certain amount of time. This enables
the algorithm to move to areas of the search space which might otherwise have been disconnected.

The selection of which neighboring solution to move to, out of the legal neighbors, is closely
tied with the connectedness issue. A first idea might be to evaluate all of them and select the best
one. This is known as a greedy algorithm. While this may work well for some problems, it has a
high risk of getting stuck in local optima, one of the main problems of any local search algorithm.
To counter this, some nondeterminism is usually included in the algorithm. This can be as simple
as randomly selecting a neighbor out of the three best neighboring solutions, or it can be more
complex. In the simulated annealing metaheuristic, for instance, a neighbor is selected randomly and
the algorithm will move to this neighbor if it is of a better quality than the current solution. However,
even if the solution is of worse quality, the move is still performed with a certain probability, based
on the difference in quality between the current solution and the selected neighbor (the bigger the
difference the lower the probability of performing the move).

The search procedure of a constraint-based local search algorithm implements heuristics and
metaheuristics. A lot of research has focused on developing effective heuristics and metaheuristics.
However, which methods will yield the best results remains very problem dependent. Problem spe-
cific knowledge can often be incorporated to produce more efficient algorithms. What exactly will or
will not work remains hard to predict, making the development of effective local search algorithms
somewhat of an art form.

3.3 Example: The N -Queens Problem

Figure 3.3 shows a constraint-based local search program, in COMET, for the N -queens problem,
which was earlier described in chapter 2. The CBLS program shows many similarities to the earlier
presented constraint programming solution. The data and decision variable declarations are the
same, however, in the CBLS program the decision variables are initialized with a random value. This
random initialization is necessary because, unlike CP, CBLS starts with a solution.

Lines 8–12 declare the constraints. It important to note that, although the syntax for declaring
them is slightly different, these are the very same constraints as were used in the constraint program-
ming example of chapter 2. Line 8 declares a constraint system S, and the constraints are added to
S. Constraint systems are differentiable object similar to constraints. The allows the effects of local

SECTION 3.3 · Example: The N -Queens Problem 17

1 2 2 3 2 2 2 0

-2

0

-2

-1

0

-2

-2

-2

0 1 1 1 2 2 2 1

0

0

0

-1

0

-1

-1

0

0 1 1 2 1 1 2 2

0

2

1

1

2

0

0

0

0 2 1 1 1 1 1 1

0

-1

-1

0

0

0

0

-1

1 1 0 0 1 1 1 1

0

1

1

2

0

2

0

2

1 1 0 0 1 1 1 1

1

0

0

1

1

1

1

0

Figure 3.4: Six Steps of the Constraint-Based Local Search Algorithm for the 8-Queens Problem

moves on the set of constraints as a whole to be evaluated. The search procedure therefore does
not have to deal with the constraints individually, in fact constraints could be added or removed
without the need to modify the search procedure. Also note that, like in constraint programming,
this declarative part only specifies what the constraints are and not how to maintain the properties
or how to enforce them.

The search strategy for the N -queens problem is shown on lines 14–17. It iterates until the
violation degree of the constraint system is zero, meaning that all constraints are satisfied. At each
iteration line 15 selects the queen which contributes to the most violations. This is determined using
the instruction S.violations(queen[q]), which returns the number of violations that queen
q is involved in. When a queen is selected, line 16 selects the value for this queen which will
cause the largest decrease in the total amount of violations of the constraint system. The instruction
S.getAssignDelta(queen[q],v) evaluates the effect of the assignment of value v to variable
queen[q], on the constraint system S. It reports the decrease (or increase) in the amount of violations
of the constraint system as a result of that move. When both a queen and a value have been selected,
line 17 performs the assignment and thereby executes the actual move.

Figure 3.4 shows six steps of the algorithm for the 8-queens problem. Each board shows at the
bottom of each column the number of violations that the queen in that column is involved in. The
gray tab indicates which queen is selected to be moved. The numbers to the right of each row display
the gain that will result from moving the selected queen to that row. The gray tab indicates which
row will be selected to move the selected queen to. In the first step queen[4] is selected because this
queen is involved in the most violations. Moving this queen to row 1, 3, 6, 7 or 8 will reduce the
violations by two. Out of these, one is randomly selected, in this case 6. At the second step queens
5, 6 and 7 all are involved in two violations, queen[7] is selected and moved position 6. Note that at
step 5 the selected queen is not moved, its current position is one of the most optimal locally.

18 CHAPTER 3 · Constraint-Based Local Search

4 Deployment of Eventually-Serializable
Data Services

This chapter presents the Eventually-Serializable Data Services Deployment Problem (ESDSDP). First
Eventually-Serializable Data Services is described in section 4.1 and the deployment problem is de-
scribed in section 4.2. Section 4.3 discusses the constraint programming algorithm that was devel-
oped in [27]. Sections 4.4 and 4.5 present a constraint-based local search algorithm and a hybrid
CP-CBLS algorithm which were developed for the problem. The models were extensively tested on
various benchmarks, described in section 4.6, and the results are discussed and compared to the
existing CP model in section 4.7.

4.1 Eventually-Serializable Data Services

Data replication is a fundamental technique in distributed systems: it improves availability, increases
throughput, and eliminates single points of failure. There are however extra communication costs
associated with data replication in order to maintain consistency among the replicas. Eventually-
Serializable Data Services (ESDS) [12] were developed to reduce these extra communication costs.
ESDS reduces communication costs by allowing users to selectively relax the immediate consistency
requirements in exchange for improved performance, while still ensuring the long-term consistency
of the data. It maintains the requested operations in a partial order that gravitates over time towards
a total order, while providing clear and unambiguous guarantees about the immediate and long-term
behavior of the system.

An Eventually-Serializable Data Service consists of three types of components: clients, front-ends,
and replicas. The clients access the data by issuing requests and receiving responses from the data
service. With each operation a client requests it may specify a prev set, which contains operations
that must be done before the requested operation. The client may also specify a requested operation
to be strict. A strict operation is required to be stable at the time of response, i.e., all operations that
precede it must be totally ordered. Operations that are not strict may return a result faster, but these
operations may be reordered even after a response has been returned. The reordering, however,
must always adhere to the client-specified constraints.

Clients issue requests for operations on shared data and receive responses returning the results
of those operations. They do not communicate with replicas directly, instead they communicate
with front ends. The front-ends keep track of pending requests from the clients and handle the
communication with the replicas. They simply relay the requests they receive from the clients to
one or more replicas, and relay the responses they receive from the replicas back to the clients. The
replicas each maintain a complete copy of the shared data and they gossip all operations they have
received and processed to all other replicas. Each replica maintains three sets of operations: pending,

19

20 CHAPTER 4 · Deployment of Eventually-Serializable Data Services

Figure 4.1: A Simple ESDS Deployment Problem

done, and stable. An operation is pending when the replica has not processed it yet, done when the
operation has been processed by that replica, and stable when that replica knows that it is done at
every replica. Initially the operations are in a partial order, but they gravitate towards a total order
over time, as they become stable.

ESDS is well-suited for systems which need fault tolerance and a good response time, but do not
need immediate consistency of updates. Such systems are for example naming and directory services.
A directory service must be robust and have good response times for name lookup and translation re-
quests. Requests to the system are dominated by queries, with infrequent update requests. However,
it is unnecessary for the updates to be atomic in all cases. For such a system ESDS offers redundancy
to ensure fault tolerance, replication to provide fast responses to queries, and lazy propagation of
information for updates.

4.2 Modeling Optimal ESDS Deployments

The deployment of an Eventually-Serializable Data Service deals with the mapping of the clients,
front-ends, and replicas of the ESDS onto a set of hosts in a distributed computer network. This
deployment is optimized by minimizing the total network traffic in the distributed computer network.
Finding the optimal deployment can be challenging because of non-uniform communication costs
induced by the actual network interconnect, and because of widely varying communication patterns
of the various software components. Furthermore, there are certain constraints which put restrictions
on what is considered a feasible deployment. Three types of constraints limit the possible deployment
of components onto hosts. Firstly, to achieve fault tolerance no more than one replica should be
placed on a single host. Secondly, some components may require to be co-located on the same host.
And finally, not all hosts may be able to support all components, i.e., some hosts may only be able to
support clients while others are only able to support replicas.

Typical ESDS instances involve a handful of front-ends, a few replicas, and a few clients. They
may not be particularly large as the (potentially numerous) actual users are external to the system
and simply forward their requests to the internal clients. A simple ESDS deployment problem is
depicted in figure 4.1. The left side of the figure shows the target distributed computer network and
the right side depicts the abstract implementation of the ESDS.

The target network consists of 10 heavy-duty servers interconnected via a switch, and 4 light
servers connected via direct connections to the first four heavy-duty servers. For simplicity the cost
of sending messages in this network is defined as the number of network hops. For instance, sending
a message from Server5 to Server9 costs 1 hop (the switch is regarded as a direct connection) and
sending a message from PC1 to PC2 costs 3 hops. The ESDS consists of 4 clients (c1, ..., c4), 2 front-

SECTION 4.2 · Modeling Optimal ESDS Deployments 21

ends (fe1, fe2), and 6 replicas (s1, ..., s6). The connections and associated numbers in the ESDS model
of figure 4.1 depict the communication patterns and frequencies of the various components of the
ESDS. The four clients send their requests to the two front-ends, the front-ends forward the requests
to two replicas, and the replicas constantly gossip updates to each other. The deployment of the
software components onto the hosts of the network is subject to the following constraints: the first
three client modules (c1, c2, c3) must be hosted on the light servers (PC1, ..., PC4) while the remaining
components (c4, fe1, fe2, s1, ..., s6) must run on the ten heavy-duty servers (server1, ..., server10). Fur-
thermore, the replicas (s1, ..., s6) must each be hosted on distinct servers to achieve fault tolerance.
The deployment problem consists of finding an assignment of software components to hosts, so that
the constraints are satisfied and the total cost of network traffic is minimized.

A model for the ESDS deployment was formulated in [4, 6, 22]. The same approach will be followed
here. The input data of the deployment model consists of the following:

• The set of software components C .

• The set of hosts N .

• The subset of hosts to which a component can be assigned is denoted by booleans sc,n equal to
true when component c can be assigned to host n.

• The network cost is directly derived from its topology and expressed with a matrix h where hi, j
is the minimum number of hops required to send a message from host i to host j. Note that
hi,i = 0 (local messages are free).

• The communication frequency. In the following, fa,b denotes the average frequency of mes-
sages sent from component a to component b.

• The separation set Sep which specifies that the components in each S ∈ Sep must be hosted on
different servers.

• The co-location set Col which specifies that the components in each S ∈ Col must be hosted on
the same server.

A decision variable xc is associated with each software component c ∈ C , which denotes the host
n ∈ N on which component c is deployed.

An optimal deployment minimizes the following:
∑

a∈C

∑

b∈C

fa,b · hxa ,xb

The deployment is subject to the following constraints. Firstly, a components may only be assigned
to a host that supports it:

∀c ∈ C : xc ∈ {i ∈ N |sc,i = 1}

Secondly, for each separation constraint S ∈ Sep, all components in that constraint are required to
be deployed onto different hosts:

∀S ∈ Sep : ∀i, j ∈ S : i 6= j⇒ x i 6= x j

Finally, for each co-location constraint S ∈ Col, all components in that constraint are required to be
deployed onto the same host:

∀S ∈ Col : ∀i, j ∈ S : x i = x j

22 CHAPTER 4 · Deployment of Eventually-Serializable Data Services

4.2.1 Bandwidth extension

The connections between the hosts in a target network may have bandwidth restrictions due to
either limitations of the physical channel or because of QoS guarantees. For this reason the ESDS
deployment model was extended with bandwidth constraints in [27]. In this extended model a
connection between a set of hosts may have a bandwidth constraint. A connection in this case is a
network interconnect between a set of k machines. This can be, for example, a dedicated point-
to-point link between a pair of hosts, or a switched 802.11-wired Ethernet subnet. A deployment
platform then reduces to a set of connections with some hosts (e.g., routers or machines with several
network cards) appearing in several connections to establish bridges.

Formally, a deployment platform is a hypergraph H = (X , E) where X is the set of hosts and E is
a set of hyperedges, i.e. E ⊆ P (X)\{;} where P (X) is the power-set of X . Each hyperedge either
has a specific bandwidth limit, or is bandwidth-unlimited. In the extended model a connection c is
represented using two properties: a hyper edge, denoted by the set of vertices (or hosts) c.nSet where
c.nSet ⊆ N ; and the bandwidth capacity, denoted by c.bw where c.bw =∞ if there is no bandwidth
limitation.

Each pair of hosts i and j is connected by one or more paths, where a path is an ordered set of
connections from the source host i to the destination host j. In the ESDS deployment model without
the bandwidth extensions it was sufficient to only consider the shortest paths between any pair of
hosts. In the extended model, however, it might be needed to consider multiple paths as bandwidth
limitations might render the shortest path unusable. For this reason the two-dimensional matrix h
which captured the communication cost between a pair of hosts i and j, is replaced by a matrix
which captures the communication costs from host i to host j along a specific path p.

Not all possible paths have to be considered, however. It suffices to only consider for each pair of
hosts i and j the shortest bandwidth-unlimited path from host i to host j, and any shorter bandwidth-
limited path from i to j. Any other path can safely be ignored as it will be dominated by the shortest
bandwidth-unlimited path; the shortest bandwidth-unlimited path can always be used instead with-
out incurring a cost increase.

To reflect these added bandwidth limitations the ESDS deployment model was extended as fol-
lows [27]. First, the input data is extended with:

• The set of connections Conn.

• The set of paths P. In the following, Pi, j denotes the set of paths from host i to host j for
all i, j ∈ N . Since not all paths need to be considered the set consists of only the shortest
bandwidth-unlimited path from i to j (if one exists), and all shorter bandwidth-limited paths.
If i = j, Pi, j contains a single bandwidth-unlimited path of zero length.

• The communication cost of each path p ∈ P, denoted by hp.

• A boolean matrix hasC, where hasCp,c is true if path p uses connection c.

Furthermore, the model is extended with the decision variable patha,b for each communicating pair of
components a, b ∈ C . This decision variable denotes the path p ∈ Pa,b that is used to send messages
from host a to b. Note that each pair of components uses a single directed path to send all messages.
However, patha,b and pathb,a may be different.

SECTION 4.3 · Constraint Programming Model 23

An optimal deployment now minimizes:
∑

a∈C

∑

b∈C

fa,b · hpatha,b

In addition to the supporting, separation and co-location constraints of the original model a band-
width constraint is added. For each c ∈ Conn with c.bw <∞ the total used bandwidth must be less
or equal to the available bandwidth:

∑

a∈C

∑

b∈C

fa,b · hasCpatha,b ,c ≤ c.bw

4.3 Constraint Programming Model

A constraint programming (CP) model for the bandwidth-limited ESDS deployment problem was
presented in [27]. This model is shown in figure 4.2. Lines 2–11 show the data declarations, and the
decision variables are declared on lines 13–14. To simplify the implementation some details of the
CP program diverge slightly from the model described in section 4.2. Instead of the one-dimensional
array h a three-dimensional matrix is used, where hi, j,p denotes the length of path p from host i to
host j. Similarly, the two-dimensional matrix hasC is transformed into a four-dimensional matrix,
where hasCi, j,p,c denotes whether path p from host i to host j uses connection c. Analogous to the
model of section 4.2, the decision variable x[c] is used to specify the host onto which component
c is deployed, with its domain computed from the support matrix s. Finally, variable path[c1, c2]
specifies the path used to send messages from component c1 to component c2, expressed as the rank
of the selected path in the set P[x[c1], x[c2]].

Lines 16–20 specify the objective function, which minimizes communication costs. The CP for-
mulation uses the three-dimensional matrix h, which is indexed not only by variables for the two
hosts but also by the variable for the particular communication path used between them. The value
of the objective function is the summation of the communication frequencies, for each pair of hosts,
multiplied by the length of the path between those hosts.

Lines 21–26 contain the co-location and separation constraints. The constraint on lines 27-28
ensures that a path assigned to a pair of hosts is an actual path between those hosts. This con-
straint is needed because the path[c1, c2] variable only denotes the rank of the selected path in the
P[x[c1], x[c2]] set. Its type is therefore int, and its range needs to be reduced to the amount of
elements in that set. Lines 29–30 are the bandwidth constraints: for each connection c ∈ Conn, the
bandwidth c.bw must be greater than or equal to the sum of the communication frequencies of all
pairs of components with c in their chosen path. Note that for the sake of simplicity a bandwidth-
unlimited connection is denoted with c.bw = 0. The onDomains annotation on the various con-
straints indicate that arc-consistency must be enforced.

The search procedure, depicted in lines 32–46, operates in two phases. In the first phase (lines
32–41) all the components are assigned to hosts, beginning with the components that communicate
most heavily. The search must estimate the communication cost between components a and b’s
potential deployment sites along any given path. Line 33 picks the first site k for component b, and
the tryall instruction on line 34 considers the sites for component a in increasing order of path
length based on an estimation equal to the shortest path one could take between the choice n and
the selection k. The second phase (lines 42–46) labels the path variables, backtracking as needed
over the initial component assignments.

24 CHAPTER 4 · Deployment of Eventually-Serializable Data Services

1 Solver<CP> cp();
2 range C = ...; // The components
3 range N = ...; // The host nodes
4 int[,] s = ...; // The supports matrix
5 int[,] f = ...; // The frequency matrix
6 int[,,] h = ...; // The hops matrix
7 set{set{int}} Sep = ...; // The separation sets
8 set{set{int}} Col = ...; // The co−location sets
9 set{connection} Conn = ...; // The connections

10 set{connection}[,] P = ...; // The paths matrix
11 int[,,,] hasC = ...; // The path/connection matrix
12

13 var<CP>{N} x[c in C](cp, setof(n in N) (s[c,n] == 1));
14 var<CP>{int} path [a in C, b in C](cp,0..max(i in N, j in N) P[i,j].getSize()−1);
15

16 var<CP>{int} obj(cp, 0..1000);
17

18 minimize<cp> obj
19 subject to {
20 cp.post(obj == sum(a in C, b in C: f[a,b] != 0) f[a,b] ∗ h[x[a],x[b],path[a,b]], onDomains);
21 forall(S in Col)
22 select(c1 in S)
23 forall (c2 in S: c1 != c2)
24 cp.post(x[c1] == x[c2], onDomains);
25 forall(S in Sep)
26 cp.post(alldifferent(all(c in S) x[c]), onDomains);
27 forall (a in C, b in C : f[a,b] != 0)
28 cp.post (path[a,b] < P[x[a],x[b]].getSize(), onDomains);
29 forall (c in Conn: c.bw > 0)
30 cp.post (c.bw >= sum (a in C, b in C: f[a,b] != 0) hasC[x[a], x[b], path[a,b], c] ∗ f[a,b], onDomains);
31 } using {
32 while (sum(k in C) x[k].bound() < C.getSize()) {
33 selectMax(a in C: !x[a].bound(), b in C)(f[a,b]) {
34 int k = min(k in N: x[b].memberOf(k)) k;
35 tryall<cp>(n in N: x[a].memberOf(n))
36 by (min (i in 0..P[n,k].getSize()−1) h[n,k,i])
37 cp.post(x[a] == n);
38 onFailure
39 cp.post(x[a] != n);
40 }
41 }
42 forall (a in C,b in C: f[a,b] != 0 && !path[a,b].bound())
43 tryall<cp> (i in 0..P[x[a],x[b]].getSize()−1) by (h[x[a], x[b], i])
44 cp.post(path[a,b] == i);
45 onFailure
46 cp.post(path[a,b] != i);
47 }

Figure 4.2: A CP program for the Bandwidth-Limited ESDS Deployment Problem in COMET

SECTION 4.4 · Constraint-Based Local Search Model 25

1 class LSModel extends Model {
2 Solver<LS> ls;
3

4 WeightedConstraintSystem<LS> S;
5 FunctionSum<LS> O;
6 Function<LS> C;
7

8 var{int}[,] path;
9 var{int}[] x;

10

11 LSModel() : Model();
12 void stateModel();
13 var{int} mkWeight();
14 }

Figure 4.3: The ESDS Deployment Problem in COMET

4.4 Constraint-Based Local Search Model

The Constraint-Based Local Search program has the same input variables as the ESDS deployment
model described in section 4.2 As usual, it consists of a model component which defines the con-
straints and the objective, and a search component which defines the search procedure. Both com-
ponents will be described in detail in this section.

4.4.1 The Model

Figure 4.3 shows the class for the model component of the CBLS program. The class extends the
Model class (not shown here), which contains the same input data as the CP model of the previous
section. The LSModel class contains a solver (line 2), a constraint system (line 4), and objectives
(lines 5 and 6). A weighted constraint system is used here because all constraints will be given an
individual weight, which can be dynamically adjusted during the search. These weights are used to
guide the search towards feasible solutions. Two objectives are used, one for the communication cost
function, and the other for the combination of the cost function and the constraint satisfaction. The
model further contains decision variables for the component-to-host assignment x (line 8), and the
path assignment path (line 9).

The constructor for the LSModel class is shown in figure 4.4. The important part here is the
initialization of the two decision variables. The decision variable x (line 7) is defined as an array
where each element corresponds to a component of the ESDS model. The value of that element
corresponds to the host onto which that component is currently assigned. Each variable in the
array receives a domain corresponding with the subset of nodes onto which that component can
be deployed. This domain restriction acts as the supports constraint. The same restriction could
also have been achieved using a constraint, however, restricting the domain instead is slightly more
efficient and thus faster. The path decision variable is defined as a two-dimensional matrix (line 8),
where each path[a, b] element corresponds with the chosen path from component a to component
b. Here each element of the array receives a domain corresponding with the maximum amount of
paths available between any two hosts. The domain of each element of the path matrix can not be
restricted in the same way as was done for the x decision variable. The path variable deals with
the assignment of paths between components, wile the set of paths P deals with the available paths
between hosts. Which paths are available between a pair of components therefore changes as the
deployment of those components onto hosts changes. Since the domain can not be restricted, a
constraint will have to be formulated to ensure that the chosen path between a pair of components

26 CHAPTER 4 · Deployment of Eventually-Serializable Data Services

1 LSModel::LSModel() : Model() {
2 ls = new Solver<LS>();
3

4 S = new WeightedConstraintSystem<LS>(ls);
5 O = new FunctionSum<LS>(ls);
6

7 x = new var{int}[c in C] = new var{int}(ls, setof(n in N) (s[c,n]==1));
8 path = new var{int}[a in C, b in C](ls, 0..max(i in N, j in N) P[i,j].getSize()−1);
9

10 forall (c in C)
11 select(n in setof(n in N) (s[c,n]==1))
12 x[c] := n;
13 }

Figure 4.4: Initialization of the ESDS Deployment Problem in COMET

is an actual path between the hosts onto which these components are deployed.
The decision variable x is initialized with random values, on lines 10–12, to provide a nondeter-

ministic starting point for the search. The path decision variable uses the default initialization of 0. A
random assignment does not give a clear advantage here due to the very limited number of available
paths between a pair of hosts. Most component pairs will only have one possible path, leaving 0 the
only value which satisfies the constraints.

Figure 4.5 depicts the constraints for the CBLS program of the ESDS deployment problem. It first
states the separation constraint on line 2–3, using an alldifferent constraint for each element in
the Sep set. Each individual constraint receives its own weight. These weights act as a multiplication
factor for the number of violations of the constraint. They are used to increase or decrease the
importance that is placed on a constraint and its violation degree, their exact role will be further
explained in section 4.4.2. The weights are created using the mkWeight function which is depicted
in lines 29–32. They have an initial value of 1, which can be adjusted dynamically throughout the
search. Lines 5–8 state the co-location constraint. For each element in the Col set, the smallest
element in that set is chosen and all other elements in the set are required to be deployed on the
same location. Again each constraint is given its own unique dynamic weight. Lines 10–13 depict the
constraints that require the assigned path between any pair of components to be in the valid range
of paths that are available between the hosts onto which the components are deployed. The final
constraint, the bandwidth constraint, is stated on lines 15–19. For each connection with a bandwidth
limitation the total amount of traffic on that connection is required to be less or equal to the stated
bandwidth for that connection.

The objective functions are stated on lines 21–24. The first objective O is the communication cost
function (line 21–22). It is defined as the sum of the communication frequency between each pair
of components, multiplied by the length of the chosen path between those components. The second
objective C is defined as a combination of the feasibility constraint set S and the communication cost
function O.

4.4.2 The Search

The class for the search component of the ESDS deployment problem is depicted in figure 4.6. It
extends the in the previous section described LSModel class and contains variables that deal with
various aspects of the search. The function search (not shown) is a wrapper function that calls the
stateModel function of the LSModel class and the searchProcedure function. The actual search
is performed in the searchProcedure function, which is illustrated in figure 4.7. The various
aspects of this search procedure are described below.

SECTION 4.4 · Constraint-Based Local Search Model 27

1 void LSModel::stateModel() {
2 forall(s in Sep)
3 S.post(alldifferent(all(c in s) x[c]), mkWeight());
4

5 forall(s in Col)
6 selectMin(c1 in s) c1
7 forall (c2 in s : c1 != c2)
8 S.post(istrue(x[c1] == x[c2]), mkWeight());
9

10 ConstraintSystem<LS> S2(ls);
11 forall (c1 in C, c2 in C : f[c1, c2] != 0)
12 S2.post(path[c1, c2] < P[x[c1],x[c2]].getSize()−1);
13 S.post(S2, mkWeight());
14

15 ConstraintSystem<LS> S3(ls);
16 forall(c in Conn : c.bw > 0)
17 S3.post(c.bw >= sum(c1 in C, c2 in C : f[c1, c2] != 0)
18 (hasC[x[c1], x[c2], path[c1, c2], c] ∗ f[c1, c2]));
19 S.post(S3, mkWeight());
20

21 forall(c1 in C, c2 in C : f[c1, c2] != 0)
22 O.post(f[c1, c2] ∗ h[x[c1], x[c2], path[c1, c2]]);
23

24 C = S + O;
25

26 m.close();
27 }
28

29 var{int} LSModel::mkWeight() {
30 var{int} w(ls) := 1;
31 return w;
32 }

Figure 4.5: Constraints of the CBLS Model in COMET

28 CHAPTER 4 · Deployment of Eventually-Serializable Data Services

1 class LSSearchProcedure extends LSModel {
2 int startTime;
3

4 float objChance;
5 float divChance;
6

7 int it;
8 int stableIt;
9 int rounds;

10

11 int bestValue;
12 Solution bestSolution;
13 boolean feasible;
14

15 int tabuLen;
16 int tabuInc;
17 dict{int −> int} tabu;
18

19 UniformDistribution ud;
20 ZeroOneDistribution zo;
21

22 LSSearchProcedure() : LSModel();
23 void search(DeploymentSolution sol);
24 void searchProcedure(DeploymentSolution sol);
25 void updateBest(DeploymentSolution sol);
26 void updateWeights();
27 void diversify();
28 }

Figure 4.6: Search Component of the CBLS Model in COMET

SECTION 4.4 · Constraint-Based Local Search Model 29

Two Neighborhood Search The search procedure explores two different neighborhoods.
These two neighborhoods correspond to the two objectives of the search: minimizing the communi-
cation costs and satisfying the constraints. Both objectives can be captured in one objective function,
and in fact are in the objective function C . However, it is difficult to strike a good balance between
the two and ensure that the right amount of resources is spend on both, when a single neighborhood
is used to optimize this single objective. Using different neighborhoods for both objectives gives more
control in balancing them. Furthermore, it allows the use of different heuristics and meta-heuristics
for both objectives. Both these elements make the two neighborhood approach more efficient for this
problem than a single neighborhood approach would have been.

During each iteration of the search procedure one neighborhood is selected (line 3) with proba-
bility objChance (which has a default value of 70%). The first neighborhood (lines 4–10) optimizes
the objective function. The key idea here is to select the variable that is able to cause the biggest
decrease in the objective function, and assign that variable the value that achieves this biggest de-
crease. To do this, first all variables appearing in the objective function O are selected on line 4. Out
of these variables the variable which is able to achieve the largest decrease and which is non-tabu
is selected (line 5). If multiple variables share this largest decrease (and are non-tabu), one is se-
lected randomly. When a variable has been selected, a new value is chosen for this variable, out of
its domain. The value that is choosen is the one that achieves the largest decrease in the objective
function O (line 6). And finally, the variable is assigned this value (line 7), and is made tabu for
tabuLen iterations.

The second neighborhood (lines 12–20), aims at reducing the amount of violations in the con-
straint system S. This is done by first selecting the constraint in S with the highest violation degree
(line 12). This violation degree is defined as the number of violations of the constraint, multiplied by
its weight. On line 14 the variables that appear in this constraint are gathered, and out of these the
variable which contributes to the most violations is chosen (line 15). A new value is then selected
for this variable so that the objective C is minimized (line 16). And finally, on line 17 the variable is
assigned this new value. Note that the second neighborhood does not use a tabu list.

Tabu Search Tabu search [14] is a popular and effective metaheuristic. It is used in the explo-
ration of the first neighborhood. The main idea behind it is to prevent cycles and to get out of local
optima by marking previously visited solutions as tabu, i.e. forbidden. Tabu search encompasses a
great variety of techniques. What is used here is a simple list of variables which are tabu. This tabu
list is represented by a simple dictionary that records for each variable the iteration number from
which point onwards it may be reassigned. Initially this number is 0, meaning the variable may be
reassigned. The key idea here is to prevent the search from reassigning the same variable over and
over, and instead force the reassignment of many different variables in order to explore a greater
portion of the solution space.

Only the first neighborhood uses the tabu list. In this neighborhood the only variables considered
for reassignment are the non-tabu ones. This means that the tabu entry for those variables needs
to be an iteration number that is less or equal to the current iteration number. Once a variable is
reassigned its tabu entry is updated with the current iteration number plus tabuLen, thus making
the variable tabu for tabuLen iterations. This tabuLen value has to be chosen carefully, too high and
not enough moves will be allowed and the solution space may become disconnected. Too low and
it will lose its effectiveness and the search may still get stuck in cycles or local optima. Which value
is optimal is dependent on a great number of factors, making it hard to predict and unlikely that a
single value will be optimal for all instances.

A solution for this problem is to dynamically adjust the value based on information gathered
during the search. In [8] a method is described to adjust the value during the search based on
the frequency of re-occurrence of solutions. Of course, there is a trade-off here, as there is a large

30 CHAPTER 4 · Deployment of Eventually-Serializable Data Services

1 void LSSearchProcedure::searchProcedure(DeploymentSolution sol) {
2 while ((System.getCPUTime() − startTime) < 10000) {
3 if (zo.get() <= objChance) {
4 var{int}[] ox = O.getVariables();
5 selectMax(i in ox.getRange() : tabu{ox[i].getId()} <= it)(C.decrease(ox[i])) {
6 selectMin(v in ox[i].getDomain())(O.getAssignDelta(ox[i], v)) {
7 ox[i] := v;
8 tabu{ox[i].getId()} = it + tabuLen;
9 }

10 }
11 } else {
12 selectMax(k in S.getRange())(S.getConstraint(k).violations()) {
13 Constraint<LS> cls = S.getConstraint(k);
14 var{int}[] cx = cls.getVariables();
15 selectMax(i in cx.getRange())(cls.violations(cx[i])) {
16 selectMin(v in cx[i].getDomain())(C.getAssignDelta(cx[i],v)) {
17 cx[i] := v;
18 }
19 }
20 }
21 }
22 it++;
23 stableIt++;
24

25 if (!feasible && S.violations() == 0)
26 feasible = true;
27

28 if (S.violations() == 0 && O.value() < bestValue)
29 updateBest(sol);
30

31 if (stableIterations >= 100)
32 updateWeights();
33

34 if (rounds >= 200)
35 diversify();
36 }
37 bestSolution.restore();
38 }

Figure 4.7: Search Procedure of the CBLS Model in COMET

increase in memory cost to store the previously visited solutions. A simpler solution is used for the
ESDS deployment problem. After a certain number of iterations of the search algorithm the tabuLen
value is updated based on whether a feasible solution has been found during those iterations. If
a feasible solution has been found the value is increased, if no feasible solution has been found it
is decreased. The rationale behind this is that experimental results showed that a too large value
results in no feasible solutions being found anymore, and that the optimal tabuLen value lies right
next to this boundary.

The initial value is defined using the following statement.

1 tabuLen = (C.getSize() + sum(c1 in C, c2 in C : f[c1, c2] != 0) 1)/2;

This value is equal to half the number of variables that appear in the objective function. This
encapsulate the most important factor that influences the tabuLen value. Although this initial value
will not be equally good for all instances, it has shown good empirical behavior. In general the value
will be increased in the course of the search, thus pushing the search into new areas of the solution
space and away from previously found local optima.

SECTION 4.4 · Constraint-Based Local Search Model 31

1 void LSSearchProcedure::updateWeights() {
2 with atomic(m) {
3 forall(k in S.getRange() : S.getConstraint(k).violations() > 0) {
4 var{int} wk = S.getWeight(k);
5 wk := wk + S.getConstraint(k).violations();
6 }
7 }
8 stableIt = 0;
9 rounds++;

10 }

Figure 4.8: Guided Local Search in the CBLS Model

Guided Local Search As mentioned, each constraint has its own dynamic weight. These
weights are used to guide the search towards feasible solutions. This technique is called Guided
Local Search [32] and is another well know metaheuristic. Constraints that prove hard to satisfy
will have their weight increased so that the search will select them more often for reassignment, in
order to satisfy them. Constraints that are easily satisfied will have their weights unaltered. The
adjustment of the weight variables is done in the updateWeight function shown in figure 4.8. This
function is called after the solution has not been improved for at least 100 iterations. The function
selects all constraints that are not satisfied and increases their weights by the degree to which they
are violated.

Tracking the Best Solution On lines 28-29 of figure 4.7 the new solution is compared to
the best solution found so far. Only feasible solutions are considered here. If the new solution has a
better objective value then the previously found best solution, then the best solution is updated using
the updateBest function (not shown here). This function simply signals the DeploymentSolution
object to store the new solution and updates the various variables to reflect this.

Diversification One of the main challenges any local search algorithm faces is the tendency to
get stuck in local optima. When a local optimum has been located it can be hard to get away from,
since all surrounding solutions will worsen the objective. A commonly used technique to combat
this behavior is to carry out a diversification step when no improving solutions have been found for a
certain number of iterations. In this diversification step (some) of the decision variables are reset to
random values, so that a new area of the search space can be explored.

The search procedure performs such a diversification step, shown in figure 4.9, after updating
the constraint weights 200 times (200 rounds). During this step the previously described update of
the tabuLen variable is carried out (lines 2-5) and all the constraint weights are reset (lines 16-19).
The diversification (lines 10-15) consists of selecting all the variables that appear in the objective
function and reassigning them with probability divChance to a random value in their domain (line
13). This in essence acts as a reset, allowing the search to start from a new random starting point in
order to explore a new area of the solution space, possibly disconnected from the previously explored
area.

4.4.3 Co-Location Preprocessing

Initial testing showed the CBLS program to have problems with one constraint in particular: the
co-location constraint. The co-location constraint is represented by an equality constraint for each
element in each co-location set. Because of this formulation, whenever a component in a co-location
set is moved, all equality constraints are violated. This induces a bump in the optimization value,

32 CHAPTER 4 · Deployment of Eventually-Serializable Data Services

1 void LSSearchProcedure::diversify() {
2 if (feasible)
3 tabuLen += tabuInc;
4 else
5 tabuLen −= tabuInc;
6

7 feasible = false;
8

9 with atomic(m) {
10 var{int}[] av = C.getVariables();
11 forall(k in av.getRange()) {
12 if (zo.get() < divChance) {
13 av[k] := av[k].getDomain().getLow() + ud.get(av[k].getDomain().getSize());
14 }
15 }
16 forall(k in S.getRange()) {
17 var{int} wk = S.getWeight(k);
18 wk := 1;
19 }
20 }
21 rounds = 0;
22 }

Figure 4.9: Diversification in the CBLS Model

i.e. the amount of violations of the system is increased by the number of elements in the co-location
set. Because such moves break a potentially large number of constraints they are very undesirable.
The algorithm therefore has difficulty moving a set of components that are required to be co-located,
from one node to another.

To solve this problem an alternative representation was developed. This representation replaces
each set of components that are required to be co-located, with a single meta-component and
changes all constraints and variables which act on the components in the set to now act on the
meta-component which represents them. This avoids a large collection of equality constraints and
eliminates the problem since all the co-located components can now be moved as one, in a single
transition.

The original formulation can be recast into the new formulation with the meta-components using
simple preprocessing. Both the CP and CBLS models do not need to be altered for this at all. Post-
processing can then recast the solution in terms of the new formulation to the initial formulation, by
simply replacing the meta-components by the sets of components which they represent.

4.5 Hybrid Model

The key difference between constraint programming and constraint-based local search is that CP
is complete (it will always find the optimal solution), while CBLS sacrifices this completeness for
performance (it might not find the optimal solution, but it has a high chance of finding a high quality
solution fast). A hybrid of these two methods that has the best of both worlds, i.e. the performance
of CBLS with the completeness of CP, seems contradictory. It is precisely the need of searching the
whole solution space that makes CP relatively slow, and the sacrifice of this completeness that gives
CBLS its performance advantage. However, elements of CBLS can be used to augment the CP search,
and possibly speed it up. The key idea is that when the optimal solution is know, or even just a
“good” solution, then this information can be used as an upper bound in the search. This allows the
search algorithm to quickly discard subtrees of which it can determine that all solutions located in

SECTION 4.6 · Benchmarks 33

it will exceed the upper bound. Of course the CP algorithm already uses this technique. Whenever
a new solution is located the upper bound is tightened so that the search space can be pruned more
efficiently. The key advantage of CBLS is its ability to locate high quality solutions very fast, often
faster than the CP algorithm.

In essence this turns the problem of finding the optimal solution into proving the optimality
of a given solution, which can be a considerably easier problem in some instances. This idea of
hybridization of CP and CBLS can be implemented in two ways: either sequentially, or in parallel.
Both methods were investigated and are explained below.

4.5.1 Sequential Hybrid

A sequential hybrid runs a CBLS and CP model sequentially. First the CBLS model is run for a certain
amount of time. When it is done, the resulting solution is passed on to the CP model and is used as an
upper bound. This upper bound allows the CP search algorithm to discard subtrees that are provably
devoid of any solutions with an objective value lower than the upper bound. Of course there is a
trade off between the time spend on the CBLS component and time gained in the CP component.
There is only a net gain compared to the “pure” CP model if the gain achieved in the CP component
is greater than the time spend on the CBLS component.

Implementing this hybridization is straightforward, the CBLS part of the hybrid model is identical
to the “pure” CBLS model and the CP part only has one added constraint. This constraint requires
the objective to be less than the solution found by the CBLS algorithm.

4.5.2 Parallel Hybrid

A parallel hybrid runs the CBLS and CP models in parallel. Every time the CBLS model finds a new
solution the CP model is notified, and the upper bound is tightened. Here there is no trade off
between the run time of the CBLS model and the gain in the CP model, since both models are now
run in parallel. Worst case scenario is that the CBLS model does not find any solution and/or it is
not able to cause any improvement in the CP model. The CP model then still takes the same amount
of time as it would have when the CBLS model had not been run at all. This is, however, under
the assumption that the two models truly run in parallel and are not competing for the same cpu
resources. This of course means a dual cpu/core setup is needed. Furthermore, the parallel run will
induce some overhead costs which will slow down the search somewhat, but the delay caused by this
will be minimal.

With COMET, the implementation of this parallel hybrid is also straightforward. The models will
have to be run in two separate threads, and there needs to be some communication between the
two threads, so that each model is notified when a new solution has been found by the other. This
communication is achieved very easily in COMET through events. The instruction

1 c.updateSolution(solution);

is added to the CBLS model, and is called every time a new solution is found. The following snippet
is added to the CP model to update the upper bound each time a new solution is received from the
CBLS component.

1 whenever c@updateSolution(Solution s)
2 if (s.getObjectiveValue().compare(cp.getObjective().getPrimalBound()) < 0)
3 cp.setPrimalBound(s.getObjectiveValue());

34 CHAPTER 4 · Deployment of Eventually-Serializable Data Services

pc1 pc2

pc5

sr1 sr2

sr5 sr6

sr3 sr4

sr7 sr8

pc3

sr10

pc4

sr9
r4

r2

r3

r6

fe1

r5

fe2r1

55 5

5

5

5 5 55

5 55 5

5

15

20

15

fe4 fe31925

c8 c6c7

710 15 10

c5

2

10

c4

20

c3

55

c1

10

c2

5

Figure 4.10: Instance HYPER8: Deploying ESDS to a network with many equivalent paths.

1

26

5 3

4

10

20

515

r1

r3

r4

r5r6

r2

22 2

2

2

2 2 22

2 22 2

c2

c3

c1

40

8

5 5

10

10

Figure 4.11: Instance RING6: Deploying to a tightly coupled, bandwidth-limited network.

4.6 Benchmarks

To test the performance of a combinatorial optimization algorithm it is essential to use realistic bench-
marks. The problem with state-of-the-art systems like ESDS, however, is that not much information is
available on actual network configurations being used. The benchmarks described here are synthetic
benchmarks that are representative of realistic instances. One of the main characteristics of the used
benchmarks is the presence of non-uniform communication costs. While this may not be present in
small networks, consisting of machines connected in a small local area network. It is likely to be
the case for networks with high redundancy and response time requirements. To guarantee those
requirements such networks need to consist of machines located at multiple geographical locations,
typically inducing non-uniform communication costs. The communication costs of the benchmark
networks is represented by the number of hops. This may seem an unusual choice, but the hops
merely represent a measure for distance. They do not necessarily represent actual machines, but can
also be regarded as routers or simply long distances.

The benchmarks that are used here are the same ones that were used in [27]. They fall into
three categories: variants of the simple ESDS deployment problem depicted in figure 4.1, variants of
the HYPER8 ESDS deployment problem shown in figure 4.10, and variants of the RING6 deployment
problem shown in figure 4.11.

The HYPER8 and RING6 benchmarks are particularly interesting because they are simple repre-
sentations of networks with many equivalent alternative paths and networks with tightly coupled
hosts. To model the capabilities of the communication infrastructure of a distributed system more
realistically, all the benchmarks include, in addition to the components shown, one extra software
module between each pair of replicas (components r1, . . . , r6). These extra components are “drivers”
that manage the communication channels and are required to be co-located with their sending repli-
cas.

SECTION 4.7 · Experimental Results 35

Without co-location pp With co-location pp
Benchmark Opt Tend Topt #Chpt Tend Topt #Chpt

SIM2BW1 µ 214 0,32 0,01 168 0,09 0,05 159
σ 0,01 0,00 6 0,01 0,02 48

SIM2BW2 µ 234 0,48 0,03 161 0,27 0,09 354
σ 0,02 0,00 7 0,05 0,07 123

RING4 µ 54 0,39 0,36 393 0,09 0,08 120
σ 0,09 0,09 185 0,04 0,04 60

RING5 µ 88 10,43 9,95 22146 0,64 0,57 893
σ 3,83 3,83 9003 0,36 0,36 651

RING6 µ 120 107,72 105,49 244168 9,27 8,98 21730
σ 30,25 30,25 76673 5,87 5,88 15833

HYP8BW1 µ 522 131,79 18,93 39032 46,87 11,93 32258
σ 5,78 6,83 2637 1,85 7,85 2204

HYP8BW4 µ 526 2032,19 1329,03 105106 365,97 141,92 47822
σ 313,03 284,50 20540 64,05 94,18 36567

Table 4.1: Experimental Results for the CP Models

The benchmarks are as follows:

• SIM2BW1 is a variant of figure 4.1 with a bandwidth limit of 5 on the connection between PC2
and r2.

• SIM2BW2 is a variant of figure 4.1 with a bandwidth limit of 5 on the connection between PC2
and r2 and a bandwidth limit of 10 on the connection between PC3 and r3.

• RING4 is a variant of RING6 with only four gossiping replicas (and no messages from c3 to
r5).

• RING5 is a variant of RING6 with only five gossiping replicas.

• RING6 is illustrated in figure 4.11.

• HYP8BW1 is a variant of HYPER8 with a bandwidth limit of 10 on the connection between PC1
and r1.

• HYP8BW4 is a variant of HYPER8 with four bandwidth-limited connections.

4.7 Experimental Results

4.7.1 Constraint Programming Model

Table 4.1 reports the results for the CP model with COMET 1.1 (executing on an Intel Core 2 at
2.16Ghz with 1 gigabytes of RAM). The column Opt reports the objective value of the optimal solution
for each benchmark. The time to find the optimum and prove optimality is given by column Tend .
Column Topt reports the time to find to optimum. And finally, column #Chpt reports the number of
choice points that were needed to find the optimum and prove optimality. All results are in seconds,
and report the average and standard deviation over 50 runs of the algorithm. Both the results
for the representation without co-location preprocessing and the representation with co-location
preprocessing are given.

36 CHAPTER 4 · Deployment of Eventually-Serializable Data Services

Without co-location pp With co-location pp
Benchmark Best Tend Tbest Best Tend Tbest

SIM2BW1 µ 214,00 3,55 0,17 214,00 2,78 0,03
σ 0,00 0,03 0,10 0,00 0,04 0,00

SIM2BW2 µ 234,00 4,08 0,32 234,00 3,40 0,04
σ 0,00 0,03 0,18 0,00 0,01 0,01

RING4 µ 54,00 5,43 1,00 54,00 4,38 0,67
σ 0,00 0,03 0,81 0,00 0,03 0,48

RING5 µ 93,00 7,37 2,31 88,00 5,99 1,41
σ 4,86 0,08 2,29 0,00 0,03 0,65

RING6 µ 128,55 11,58 7,00 120,86 7,96 4,66
σ 6,99 0,15 2,60 1,14 0,04 1,96

HYP8BW1 µ 535,70 4,67 2,57 523,12 2,68 0,62
σ 12,57 0,37 1,42 1,81 0,02 0,65

HYP8BW4 µ 554,24 12,44 6,26 542,92 7,64 2,39
σ 19,50 0,47 3,71 16,20 0,47 2,18

Table 4.2: Experimental Results for the LS Models

The results show that the easiest benchmarks to solve are SIM2BW1 and SIM2BW2, followed
by the RING variants. The hardest benchmarks to solve are the HYP8 variants. All benchmarks
benefit from the co-location preprocessing. The improvement appears to be related to the fraction of
components that can be combined. The largest improvement is for RING6 where 45 components are
reduced to 8, and the smallest improvement is for HYP8BW1 and HYP8BW4 where 54 components are
reduced to 18.

It is also interesting to note that the algorithm finds the optimum relatively quickly for the
SIM2BW1, SIM2BW2, and HYP8BW1 benchmarks, where the majority of the total run-time of the
algorithm is spend on the optimality proof. While for the RING benchmarks the optimum is not
found until very late, after which the optimality proof only takes a small amount of time.

4.7.2 Constraint-Based Local Search Model

Table 4.2 reports the results for the CBLS models with COMET 1.1 (executing on an Intel Core 2 at
2.16Ghz with 1 gigabytes of RAM). The Best column gives the quality of the best solution found by
the algorithm. The total run-time of the algorithm is reported in the Tend column. The column Topt
reports the time at which the best solution was found. All values are in seconds, and report the
average and standard deviation over 50 runs of the algorithm. Again, both the results for the model
with and without co-location preprocessing is presented.

The experimental results indicate that CBLS delivers high-quality solutions in a few seconds. The
elimination of the co-location constraints is beneficial in several respects. First, it reduces the running
time significantly (both to termination and to the best solution), and it has a positive impact on the
average best solution found. Second, all the standard deviations improved significantly, indicating
that the algorithm is more robust. As the results show, the algorithm was able to find the optimal
solution on all 50 runs for the SIM2BW1, SIM2BW2 and RING4 benchmarks. And when co-location
preprocessing was used the optimum is also found every time for the RING5 benchmark, while
getting within 1% of the optimum on average on the RING6 benchmark.

The hardest benchmark to solve is clearly HYP8BW4, however, even here the average best solution
found is still within 5% of the optimum. Compared to the constraint programming model, the CBLS
model is able to find its best solution faster on all but the RING4 and RING5 benchmarks.

SECTION 4.7 · Experimental Results 37

Figure 4.12: Evolution of the objective over time of the RING6 benchmark using the CP model (left)
and CBLS model (right).

The graphs in figure 4.12 and 4.13 show the benefit of the constraint-based local search model
over the constraint programming model. The graphs show the evolution of the objective over time.
Each point in the graph represents a solution found by the algorithm, which is an improvement over
the previously found best solution. Each graph combines 50 runs of the algorithm. The black points
represent the best solution found during a run, while the gray points represent intermediary solutions
found during the run.

The curve in the graphs of the CBLS models is clearly steeper than the curve of the CP models.
This means the CBLS model is able to find high quality solutions much faster. This is most dramatic
on the RING6 benchmark, shown in figure 4.12 (note the difference on the time scale for both
graphs). Here the CBLS model finds a solution with an objective value of 150 or less on all runs of
the algorithm in under 1 second, while the CP model is able to do this on hardly any of its 50 runs.

Figure 4.13 shows that the CBLS model has more problems with the HYP8BW4 benchmark, but
the algorithm still finds high-quality solutions significantly faster than the CP model (again, note the
difference in time scale for both graphs). Even though the CBLS algorithm is not able to find the
optimal solution on many of its runs, it shows a clear advantages over the CP model in being able
to find high-quality solutions faster. This shows that the CP algorithm could potentially benefit from
the CBLS algorithm in a hybrid setting.

Another interesting characteristic of the CBLS graph of figure 4.13 are the spikes near the 2, 4
and 6 second mark. These are caused by the diversification step, and clearly show that the algorithm
benefits greatly from this. They show that after a certain amount of time the algorithm no longer
finds many new improvements, when the diversification is then carried out (essentially restarting the
algorithm from a new random starting point) new and better solution are often found very quickly.

4.7.3 Sequential Hybrid Model

Table 4.3 reports the results for the sequential hybrid model and compares them to the results for
the CP model, both obtained using COMET 1.1 (on an Intel Core 2 at 2.16Ghz with 1 gigabytes of
RAM). The column Opt again reports the optimum for each benchmark. Column Tend reports the
time to find the optimum and prove optimality. Column Topt reports the time to find to optimum.
And column #Chpt reports the number of choice points. All results are in seconds, and report the
average and standard deviation over 50 runs of the algorithm. Only the results with co-location

38 CHAPTER 4 · Deployment of Eventually-Serializable Data Services

Figure 4.13: Evolution of the objective over time of the HYP8BW4 benchmark using the CP model
(left) and CBLS model (right).

preprocessing were used here.
As the results show the sequential hybrid performs worse on the SIM2BW1, SIM2BW1, RING4

and RING5 benchmarks. This is not surprising, due to the already short run-time of the CP model
for these benchmarks the run-time of the hybrid will be dominated by the CBLS component. Even
though the CBLS model may find the optimal early on it will continue to run for its fixed amount of
iterations. The time to the optimum in fact shows that the hybrid finds the optimum slightly faster
on the SIM2BW1 and SIM2BW1 benchmarks. The hybrid shows an improvement in both the total
run-time and the time to optimum for the RING6, HYP8BW1 and HYP8BW2 benchmarks, although the
difference is not that great.

It is also interesting to note the difference in the number of choice points for the sequential hybrid
and CP models. Since the choice points are only present in the CP component of the hybrid, they
give a good indication of how much the CP component is able to benefit from the CBLS component.
Overall, the number of choice points is significantly lower for the hybrid models. The most dramatic
are perhaps benchmark RING4, where the number of choice points is reduced from 120 to only 4,
and benchmark RING4, where the number is reduced from 21730 to 78.

4.7.4 Parallel Hybrid Model

Table 4.4 reports the results for the parallel hybrid model and compares them to the results for the CP
model, both obtained using COMET 1.1 (on an Intel Core 2 at 2.16Ghz with 1 gigabytes of RAM). The
column Opt again reports the optimum for each benchmark. Column Tend reports the time to find
the optimum and prove optimality. Column Topt reports the time to find to optimum. And column
#Chpt reports the number of choice points. All results are in seconds, and report the average and
standard deviation over 50 runs of the algorithm with co-location preprocessing being used.

All benchmarks except for SIM2BW1 and SIM2BW2 show an improvement of the total run-time,
compared to the CP model. The time to optimal is equal or better for all benchmarks. The most
dramatic improvement can be found in benchmark RING6, which has its run-time reduced from 9,27
seconds to 0,95 seconds. Although the improvement in runtime is not as dramatic for benchmarks
HYP8BW1 and HYP8BW2, they do show a significant reduction in time to optimum, 11,93 to 1,74 and
141,92 to 61,87 respectively.

SECTION 4.7 · Experimental Results 39

CP Sequential Hybrid
Benchmark Opt Tend Topt #Chpt Tend Topt #Chpt

SIM2BW1 µ 214 0,09 0,05 159 2,71 0,03 71
σ 0,01 0,02 48 0,01 0,00 5

SIM2BW2 µ 234 0,27 0,09 354 3,70 0,04 244
σ 0,05 0,07 123 0,04 0,01 8

RING4 µ 54 0,09 0,08 120 4,50 0,73 4
σ 0,04 0,04 60 0,03 0,48 3

RING5 µ 88 0,64 0,57 893 6,33 1,33 21
σ 0,36 0,36 651 0,06 0,75 2

RING6 µ 120 9,27 8,98 21730 8,57 2,84 78
σ 5,87 5,88 15833 0,10 2,67 7

HYP8BW1 µ 522 46,87 11,93 32258 45,79 3,25 29677
σ 1,85 7,85 2204 4,42 5,71 443

HYP8BW4 µ 526 365,97 141,92 47822 343,96 91,69 30114
σ 64,05 94,18 36567 50,33 76,26 3709

Table 4.3: Experimental Results for the Sequential Hybrid Models

CP Parallel Hybrid
Benchmark Opt Tend Topt #Chpt Tend Topt #Chpt

SIM2BW1 µ 214 0,09 0,05 159 0,10 0,05 124
σ 0,01 0,02 48 0,01 0,01 20

SIM2BW2 µ 234 0,27 0,09 354 0,30 0,06 277
σ 0,05 0,07 123 0,02 0,01 14

RING4 µ 54 0,09 0,08 120 0,08 0,08 86
σ 0,04 0,04 60 0,02 0,02 23

RING5 µ 88 0,64 0,57 893 0,29 0,21 197
σ 0,36 0,36 651 0,06 0,06 89

RING6 µ 120 9,27 8,98 21730 0,95 0,63 840
σ 5,87 5,88 15833 0,26 0,26 572

HYP8BW1 µ 522 46,87 11,93 32258 42,52 1,74 29696
σ 1,85 7,85 2204 3,63 1,72 514

HYP8BW4 µ 526 365,97 141,92 47822 322,72 61,97 28577
σ 64,05 94,18 36567 31,90 70,26 2496

Table 4.4: Experimental Results for the Parallel Hybrid Models

40 CHAPTER 4 · Deployment of Eventually-Serializable Data Services

5 RAMBO Deployment

This chapter presents the RAMBO deployment problem and algorithms to solve it. First RAMBO is de-
scribed in section 5.1 and the deployment problem is described in section 5.2. Section 5.3 discusses
the constraint programming algorithm that was developed in [26]. Section 5.4 presents a hybrid
CBLS/CP algorithm that was developed for this problem, and section 5.5 presents a parallel compo-
sition of the CP and hybrid algorithms. The models were extensively tested on various benchmarks,
described in section 5.6, and the results are discussed and compared to the existing CP model in
section 5.7.

5.1 RAMBO

Providing consistent shared objects in dynamic networked systems is one of the fundamental prob-
lems in distributed computing. Shared object systems must be resilient to failures and guarantee con-
sistency despite the dynamically changing collections of hosts that maintain object replicas. RAMBO,
which stands for Reconfigurable Atomic Memory for Basic Objects [13, 20], is a formally specified
distributed algorithm designed to offer a solution for this problem. The algorithm provides avail-
ability and consistency guarantees in a dynamic network setting, where hosts can continuously join,
leave or fail. To achieve this, RAMBO uses reconfigurable quorum systems. Availability and fault toler-
ance are ensured by replicating the objects at hosts that are members of a quorum, while atomicity
is ensured through the use of sets of read- and write-quorums that intersect each other.

The quorum configurations enable the algorithm to maintain memory consistency in the presence
of small and transient changes. In order to accommodate larger and more permanent changes,
the algorithm supports dynamic reconfiguration, by which the quorum configurations are modified.
New configurations may be installed at any time, however, it is still important to install “good”
configurations. A poorly crafted configuration may affect RAMBO’s performance in negative ways. It
may deteriorate the response time if the quorum members are over-burdened and slow to respond,
or it may weaken fault-tolerance when failure-prone hosts are chosen to maintain object replicas. In
response, RAMBO may need to perform additional reconfigurations, in the hope of installing a better
quorum system, possibly thrashing between ill-chosen configurations.

RAMBO supports three activities, all concurrently: reading and writing objects, introducing new
configurations, and removing obsolete configurations. Atomicity is guaranteed in all executions. At
any time multiple quorum configurations can be active. Each of these configurations consists of
a set of members, a set of read-quorums, and a set of write-quorums. Members are hosts for the
replicated object, while quorums are subsets of members, with the requirement that every read-
quorum has a non-empty intersection with every write-quorum. The algorithm performs read and
write operations using a two-phase strategy. The first phase gathers information from at least one
read-quorum of every active configurations, and the second phase propagates information to at least

41

42 CHAPTER 5 · RAMBO Deployment

one write-quorum of every active configuration. The information propagates among the participants
by means of background gossip. Because every read-quorum and write-quorum intersect, atomicity
of the data object is maintained.

The production of a new configuration is an activity that occurs online while RAMBO is running.
Any member of the latest configuration may propose a new configuration at any time; different
proposals are reconciled by an execution of consensus among the members of the latest configuration.
The algorithm removes old configurations when their use is no longer necessary for maintaining
consistency. This is done by “writing” the information about the new configuration and the latest
object value to the new configuration. Exactly when to reconfigure and what new configuration to
choose is not specified by the RAMBO algorithm itself, but is left as decisions for an external service.
Given the dynamic nature of the deployment environments, it is neither feasible nor desirable to pre-
specify future configurations. The decision of what configuration to choose next ought to be made
dynamically in response to external stimuli and observations about the performance of the service.

Optimization techniques can be used to design and deploy sensible configurations that positively
affect the performance of read and write operations, while increasing the likelihood that the config-
uration will be long-lived. Participant ought to be able, based on historical observations, to propose
well-designed quorum configurations which are optimized with respect to relevant criteria, such as
being composed of members who have been communicating with low latency, and consisting of
quorums that will be well-balanced with respect to read and write operation loads. This chapter
investigates the use of combinatorial optimization techniques to solve the problem of what configu-
ration to reconfigure to. The problem of when to reconfigure is not addressed, this is considered to
be an application-level decision made on the basis of the observations about the performance of the
service and the suspected failures of object replicas.

5.2 Modeling RAMBO Configuration Selection

Designing a configuration can roughly be divided into two tasks: creating an abstract quorum system,
and mapping that abstract quorum system to a subset of hosts participating in the service. Although
the creation of an “optimal” abstract quorum system in itself is an interesting problem, it is not so
much a problem that needs to be solved online while the RAMBO service is running. Indeed, the
addition, departure or failure of some nodes is unlikely to cause significant changes in the “optimal-
ity” of a given quorum system. In contrast, mapping the abstract quorum system to the hosts of the
network is very much an online problem. The departure or failure of a host directly impacts the
mapping, as the host may need to be replaced by another. Furthermore, changes in the underlying
network setting can cause changes in communication delays between the hosts, greatly impacting
the “optimality” of a certain mapping.

The model described in this section therefore focuses on the problem of mapping an abstract
quorum system onto a set of hosts in a network. It assumes that the participants have a specification
of such an abstract quorum system, consisting of the members, the read-quorums, and the write-
quorums, at their disposal. The problem which then needs to be solved is to find an assignment of
members to hosts participating in the service, in such a way that communication delays for read and
write operations are minimized.

Figure 5.1 shows an abstract quorum system and physical network structure. The left side of
the figure shows the quorum system, with the horizontal groups, (m1, m2, m3) and (m4, m5, m6),
representing the read quorums, while the vertical groups, (m1, m4), (m2, m5), (m3, m6), represent
the write quorums. The right side of the figure shows the representation of a physical network
structure. The numbers associated with each host denote the average frequency of read and write
operations for that host. The deployment problem consists of assigning each member m1, ..., m6 to a
unique host in the network, in such a way that the resulting configuration is “optimal”.

SECTION 5.2 · Modeling RAMBO Configuration Selection 43

m1 m3

m4 m5 m6

m2

71 1

4

510

8

1

6

1

2

10

2

5

3

Figure 5.1: Abstract Quorum System and Physical Network Structure

Hosts in a dynamic network setting generally have no knowledge of the underlying network,
particularly as nodes join and leave. This leaves them very little basis on which to estimate the
reliability of other nodes in the network. The model described in this section assumes that the best
available estimate of the network connections and host performance is the measurement of average
round trip message delays. In particular, a measurement of round trip delay from host h1 to host h2
and back to h1 can be used as an assessment of:

• The communication “distances” between h1 and h2.

• The communication loads on h1 and h2.

• The processing loads at h1 and h2.

• The likelihood that host h2 is failing, or even failed.

The hosts can record delay measurements as running averages for the recent past, reasonably assum-
ing that the measurements are quickly impacted by failures or slowdowns. Each host also measures
the average frequency of read and write operations it initiates. The hosts share gathered operation
frequencies and messaging delays by adding them to the gossip messages of RAMBO. The overall
guiding principle is that observations of current behaviors are the best available predictors of future
behaviors.

To implement this the RAMBO algorithm requires only minimal changes. The sole modification is
the addition of local observations about system performance piggy-backed onto the gossip messages.
Upon receipt of a gossip message, a host updates its local knowledge using the piggy-backed infor-
mation and then delivers the message to RAMBO. Any participant can compute a new configuration
using only the local knowledge about the behavior of the participants and submit it directly to the
RAMBO reconfiguration service.

Once a mapping is computed, the resulting configurations may be augmented to include infor-
mation recommending the best read and write quorums for each host to use, where use of best
quorums will result in minimum delays for read and write operations and the most balanced load
on replica hosts (until failures occur in those best quorums). Of course the use of this information
is optional and a host can always use other quorums if it does not observe good responses from the
recommended quorums.

44 CHAPTER 5 · RAMBO Deployment

A more formal model for the RAMBO deployment problem was described in [26]. The input data of
this model consists of the following:

• The set of hosts H.

• For every host h ∈ H, the average frequency fh of its read and write requests.

• For every pair of hosts h1, h2 ∈ H, the average round trip delay dh1,h2
of messages from h1 to

h2.

• The abstract configuration c to be deployed on H, where c consists of:

– The set of members M , each of which maintains a replica of the data.

– The set of read quorums R⊆P (M).
– The set of write quorums W ⊆P (M).

• The load-balancing factor α, restricting the spread of loads on the configuration members,
assuming each host first tries to contact its fastest read and write quorums.

For each member m ∈ M a decision variable xm with domain H denotes onto which host h ∈ H
member m is deployed. Each host h ∈ H is also associated with two decision variables readQh and
writeQh (with domains R and W) denoting, respectively, one read and one write quorum from the
set of read (write) quorums with minimum average delay to h. Finally, an auxiliary variable loadm
represents the load of a configuration member m which is induced by the traffic between the hosts
and their chosen read/write quorums.

An optimal deployment minimizes:

∑

h∈H

fh ·
�

min
q∈R

�

max
m∈q

dh,xm

�

+min
q∈W

�

max
m∈q

dh,xm

��

Each term in the summation captures the time it takes in RAMBO for a host h to execute the read/write
phase of the protocol. A read requires the client to contact all the members of at least one read
quorum, before it can proceed to the write phase of the round of communication. Similarly, the write
phase requires the client to contact all the members of at least one write quorum to update the data
item. The maxm∈q dh,xm

term reflects the time it takes to contact all the members of quorum q. Since
one must wait for all members to respond, the wait time is equal to the response time of the slowest
member. The outer minq∈R term reflects the fact that RAMBO must hear back from one quorum before
it proceeds, therefore a reply from just the fastest quorum suffices.

A configuration is subject to the following constraints. First, all configuration members must be
deployed on separate hosts:

∀m, m′ ∈ M : m 6= m′⇒ xm 6= xm′

An implementation of RAMBO can use different strategies when contacting the read and write quo-
rums. A conforming implementation might simply contact all the read quorums in parallel. Naturally,
this does not affect the value of the objective, but it induces more traffic and work on the members of
the quorum system. Another strategy for RAMBO is to contact what it currently perceives as the fastest
read quorum first and fall back on the other read quorums if it does not receive a timely response.
It could even select a read quorum uniformly at random. These strategies strike different trade-offs

SECTION 5.3 · Constraint Programming Model 45

between the traffic they induce and the workload uniformity. The model described below captures
the greedy strategy, namely, RAMBO contacts its closest quorum first, and the model assumes that this
quorum replies (unless a failure has occurred).

The model uses the readQh and writeQh variables of host h to capture which read and write
quorum RAMBO contacts. Since the quorums with minimal delay are contacted, the value for readQh
and writeQh is restricted to these optimal quorums. Note however that several quorums might deliver
the same minimal delay, so this restriction alone does not determine the ideal read and write quorum.
More formally:

readQh = r ⇒max
m∈r

dh,xm
=min

q∈R

�

max
m∈q

dh,xm

�

writeQh = w⇒max
m∈w

dh,xm
=min

q∈W

�

max
m∈q

dh,xm

�

The load on a configuration member m depends on which read and write quorums are chosen among
those that induce minimal delays. It is defined as follows:

loadm =
∑

h∈H

∑

m∈readQh

fh+
∑

m∈writeQh

fh

Finally, the load-balancing constraint requires the maximum load on a member to be within a factor
α of the minimum load. In this α characterizes the width of the band between the maximum and
minimum loads. A lower value of α results in smaller band and a more restrictive constraint.

max
m∈M

loadm ≤ α ·
�

min
m∈M

loadm

�

5.3 Constraint Programming Model

A constraint programming model for the RAMBO deployment problem was presented in [26]. This
model is shown in figure 5.2. The data declarations on lines 2–8 correspond to the input data of
the RAMBO model of section 5.2. Line 9 declares an additional input used for breaking symmetries
among the members of the quorum configuration. Lines 10–15 define derived data. Specifically,
nbrQ[m] is the number of quorums in which m appears, and degree[h] is the number of neighbors of
host h in the logical network graph. RQ and WQ are the index sets of the read and write quorums,
respectively. The auxiliary matrices readQC and writeQC are encodings of the quorum membership,
e.g., readQC[i, j] = true⇔ j ∈ R[i].

Lines 17–22 declare the decision variables. Variable x[m] specifies the host of configuration
member m. Variables readD[h, r] and writeD[h, w] are the communication delays for host h to access
read quorum r and write quorum w. The variables readQ[h] and writeQ[h] represent the read and
write quorum selections for host h. Finally, the variable load[m] represents the communication load
on configuration member m, given the current deployment and quorum selections.

Line 25 specifies the objective function, which minimizes the total communication delay over all
operations. Line 27 specifies the fault tolerance requirement, namely, all members of the configu-
ration must be deployed to distinct hosts. Lines 28–29 break the variable symmetries among the
configuration members, similar to the method described in [29]. Lines 30–40 constrain the auxil-
iary delay variables and quorum selection variables needed in the load-balancing constraint. The
constraints on lines 31 and 33 capture the delays incurred by host h to use a read (write) quorum.

46 CHAPTER 5 · RAMBO Deployment

1 Solver<CP> cp();
2 range M = ...; // The members of the quorum configuration
3 set{int}[] R = ...; // An array storing all the read quorums in the configuration
4 set{int}[] W = ...; // An array storing all the write quorums in the configuration
5 range H = ...; // The host nodes
6 int[] f = ...; // The frequency matrix
7 int[,] d = ...; // The delays matrix
8 int alpha = ...; // The load factor
9 set{tuple{int low; int high}} Order = ...; // The order of quorum members

10 int nbrQ[m in M] = ; // The number of quorums for each member
11 int degree[H] = ...; // The degree of a host (number of neighbors)
12 range RQ = R.getRange();
13 range WQ = W.getRange();
14 boolean readQC[RQ, M] = ...;
15 boolean writeQC[WQ, M] = ...;
16

17 var<CP>{int} x[M](cp, H);
18 var<CP>{int} readD[H, RQ](cp, 0..10000);
19 var<CP>{int} writeD[H, WQ](cp, 0..10000);
20 var<CP>{int} readQ[H](cp, RQ);
21 var<CP>{int} writeQ[H](cp, WQ);
22 var<CP>{int} load[M](cp, 0..10000);
23

24 minimize <cp>
25 sum(h in H) f[h] ∗ (min(r in RQ) readD[h, r] + min(w in WQ) writeD[h, w])
26 subject to {
27 cp.post(alldifferent(x), onDomains);
28 forall (o in Order)
29 cp.post(x[o.low] < x[o.high]);
30 forall (h in H, r in RQ)
31 cp.post(readD[h, r] == max(m in R[r]) d[h, x[m]]);
32 forall (h in H, w in WQ)
33 cp.post(writeD[h, w] == max(m in W[w]) d[h, x[m]]);
34 forall (h in H) {
35 cp.post(readD[h, readQ[h]] == min(r in RQ) readD[h, r]);
36 cp.post(writeD[h, writeQ[h]] == min(w in WQ) writeD[h, w]);
37 }
38 forall (m in M)
39 cp.post(load[m] == sum(h in H) f[h] ∗ (readQC[readQ[h], m] + writeQC[writeQ[h], m])));
40 cp.post(max(m in M) load[m] <= alpha ∗ min(m in M) load[m]);
41 } using {
42 while (sum(k in M) x[k].bound() <M.getSize())
43 selectMax(m in M: !x[m].bound()) (nbrQ[m])
44 tryall<cp>(h in H : x[m].memberOf(h)) by (−degree[h])
45 cp.label(x[m], h);
46 onFailure
47 cp.diff(x[m], h);
48 once<cp> {
49 forall (h in H : !readQ[h].bound() || !writeQ[h].bound()) by (−f[h]) {
50 label(readQ[h]);
51 label(writeQ[h]);
52 }
53 }
54 }

Figure 5.2: Constraint Programming Model in COMET

SECTION 5.4 · Hybrid CBLS/CP Master-Slave Algorithm 47

Lines 34–37 require the quorums assigned to host h, namely readQ[h] and writeQ[h], to be among
the quorums with minimum delay for that host. Lines 38–39 specify the communication load on m
as the sum of the operation frequencies of each host for which m is a member of its assigned read
and/or write quorum. Line 40 is the load-balancing constraint and requires the load on the most
heavily loaded configuration member to be no more than alpha times the load on the most lightly
loaded configuration member.

The search procedure operates in two phases. The rational for using two phases is that the prob-
lem can be decomposed into two more or less independent sub-problems. Only the assignment of
configuration members to hosts impacts the objective; the decision variables which assign read and
write quorums to hosts do not appear in the objective function. Optimizing the objective function
can therefore be done without assigning read and write quorums. This assignment is only relevant
for determining whether an assignment of quorum members to hosts satisfies the load balancing con-
straint. Furthermore, the load balancing constraint provides little to no guidance on the assignment
of quorum members. The problem can therefore be effectively decomposed into a first phase which
optimizes the objective function by finding an optimal assignment of quorum members to hosts, and
a second phase which determines for each solution of the first phase whether there is an assignment
of read and write quorums to hosts that satisfies the load balancing constraint.

The first phase is shown on lines 42–47. The variable selection heuristic first focuses on variables
that appear in many quorums. The value selection heuristic first considers hosts that have many
neighbors ‘close by’ as these would be ideal locations for quorum members. The second phase is
depicted on line 48–53. Since the second phase does not affect the objective, only one assignment
of read and write quorums that satisfies the load balancing constraint is needed. This explains the
once<cp> annotation enclosing the second phase call. The phase two procedure considers the most
“talkative” hosts first (by decreasing frequencies) and attempts to assign one of the remaining legal
(minimal) quorums from its domain.

5.4 Hybrid CBLS/CP Master-Slave Algorithm

Determining a new configuration for RAMBO is, unarguably, an online problem. It must be solved
quickly so a new proposal can be submitted by RAMBO for consensus with the other participants.
While a constraint programming approach is appealing based on its ability to prove optimality, it
might not scale nicely or may take a long time to establish optimality. For this reason a constraint-
based local search solution is considered, based on the assumption that local search can deliver
high-quality solutions in short-order, a highly desirable property in an online setting.

A first natural attempt uses a search procedure with a neighborhood structure that re-assigns
either the deployment or the quorum selection variables. Unfortunately, this direct approach is un-
successful as load-balancing provides little to no guidance on the quorum selection until the deploy-
ment is fixed. The recognition of this difficulty suggests a second approach where a master local
search is first used to find a deployment that minimizes the communication volume. For each can-
didate solution produced in the master, a slave model focuses on finding a quorum selection. This
decomposes the problem in a similar fashion as the two phase search strategy of the CP model. Note
that the slave does not affect the objective. Instead, it handles the feasibility of the load-balancing
constraint. Finding a feasible quorum selection is typically quite hard in its own right and to solve
this sub-problem a constraint programming model is used. This master-slave approach is reminiscent
of Benders decompositions [9].

As usual, the CBLS/CP program is divided into a model and a search component, which will both
be described in detail in this section.

48 CHAPTER 5 · RAMBO Deployment

1 void RAMBO::stateModel() {
2 x = new var{int}[h in H](ls, H) := h;
3

4 UniformDistribution ud(H);
5 forall (h1 in H)
6 select (h2 in H)
7 x[h1] :=: x[h2];
8

9 readD = new var{int}[h in H, r in RQ](ls) <− max (m in R[r]) d[h, x[m]];
10 bestReadQ = new var{set{int}}[h in H](ls) <− argMin (r in RQ) readD[h, r];
11 readQMax = new var{int}[r in RQ](ls) <− sum(h in H : member(r, bestReadQ[h])) f[h];
12 readQMin = new var{int}[r in RQ](ls) <− sum(h in H : card(bestReadQ[h]) == 1 &&
13 member(q, bestReadQ[h])) f[h];
14 ...
15

16 loadMax = new var{int}[m in M](ls) <− sum (r in RQ : member(m, R[r])) readQMax[r] +
17 sum (w in WQ : member(m, W[w])) writeQMax[w];
18 loadMin = new var{int}[m in M](ls) <− sum (r in RQ : member(m, R[r])) readQMin[r] +
19 sum (w in WQ : member(m, W[w])) writeQMin[w];
20

21 S = new ConstraintSystem<LS>(ls);
22 S.post (max (m in M) loadMax[m] <= alpha ∗ min (m in M) loadMax[m]);
23

24 O = new FunctionSum<LS>(ls);
25 forall (h in H)
26 O.post(f[h] ∗ (min (r in RQ) (max (m in R[r]) d[h, x[m]]) + min (w in WQ) (max (m in W[w]) d[h, x[m]])));
27

28 violations = new var{int}(ls, 0..10000) := 10000;
29 weight = new var{float}(ls) := 0.01;
30 obj = new var{float}(ls) <− sqrt(O.value()^2 + (weight∗violations)^2);
31

32 ls.close();
33 }

Figure 5.3: Constraint-Based Local Search Model in COMET

5.4.1 The Model

Figure 5.3 shows the model component of the CBLS program, in COMET. It receives the same input
data as the model described in section 5.2 and the CP program of section 5.3. The input variables are
not shown here for brevity reasons. Line 2 declares the deployment decision variable x . The range of
x is extended from the range of members to the range of hosts. Although a deployment only requires
the assignment of hosts to members, it is useful to extend the number of deployment variables, so that
a neighborhood structure based on swaps can be used. With the number of x variables equal to the
number of hosts it is possible to create an initial assignment where each host is assigned to precisely
one x variable. The variables x[i] with i /∈ M do not represent an actual deployment, however, with
only the use of swaps as moves, the constraint that requires each member to be deployed on a unique
host is now implicitly enforced. The initial assignment is created on line 2, while lines 4–7 perform
a series of random swaps to create a non-deterministic starting point.

Lines 9-13 declare invariants which maintain a number of key properties related to the read
quorums: the invariant readD[h, r] maintains the communication delay from host h to access read
quorum r, BestReadQ[h] maintains the set of read quorums with a minimal delay to host h, while
invariants readQMax[r] and readQMin[h, r]maintain the maximum and minimum load, respectively,
on read quorum r given the current assignment. Determining the actual load on a quorum requires
the assignment of read and write quorums to each host. Since this assignment is not always available

SECTION 5.4 · Hybrid CBLS/CP Master-Slave Algorithm 49

it is useful to maintain these maximum and minimum loads. The maximum load is defined as the load
quorum r would have when all hosts for which r is among the quorums with minimal delay (which
represent the only legal choices) would choose r as their read quorum. Similarly, the minimum load
is defined as the load quorum r would have when all hosts which have an option of not choosing r
will indeed not choose r as their read quorum. Similar invariants are declared for the write quorums,
but are not shown here for brevity reasons.

The maximum and minimum loads for read and write quorums are used by the loadMax[m] and
loadMin[m] invariants to determine the maximum and minimum load on configuration members.
The true load, load[m], on configuration member m satisfies:

loadMin[m]≤ load[m]≤ loadMax[m]

The constraint stated on line 22 serves as an estimation of the actual load-balancing constraint. This
estimation compares the maximum loads on configuration members. The actual load-balancing con-
straint requires the assignment of read and write quorums to hosts. Determining this assignment is
a costly process, therefore the estimation will be used whenever possible. Note that the constraint is
neither an upper bound nor an lower bound, it is merely an approximation. Satisfaction of the esti-
mation constraint does not guarantee satisfaction of the true load-balancing constraint, and violation
of the estimation constraint does not guarantee violation of the true constraint.

Lines 24–26 declare the objective function O as the sum of frequencies multiplied by the commu-
nication delay. A variable representing the number of violations is declared on line 28, and a weight
is declared on line 29. These variables are used in the objective function obj, which combines the
earlier defined objective, with the amount of violations. The emphasis that is placed on the violations
can be varied using the weight.

5.4.2 The Search

As mentioned, the search algorithm is decomposed into a master and a slave search. The master
attempts to find an assignment of hosts to members which minimizes the communication volume.
For each assignment produced by the master, the slave attempts to find an assignment of read and
write quorums to hosts, so that the load-balancing constraint is satisfied.

Simulated Annealing The CBLS master is shown in figure 5.4. The search algorithm is based
on the simulated annealing metaheuristic. Simulated annealing (SA) is inspired by the physical
process of annealing in metallurgy, which described the manner in which a metal cools and freezes
into a minimum energy crystalline structure. It was first applied to combinatorial optimization in [18,
21].

In simulated annealing some “bad” moves, which deteriorate the objective, are accepted, in order
to allow the exploration of a greater portion of the search space. A move is accepted with probability:

e−∆O/T

Where ∆O is the difference in the objective function caused by the move, and T is a temperature.
If ∆O is negative (the objective was improved) the move is always accepted, if ∆O is small the
probability that the move is accepted is high, while that probability is low if ∆O is large. Similarly,
if the temperature T is high, “bad” moves have a high probability of being accepted, while that
probability becomes smaller as the temperature is lowered. By starting with a high temperature the
algorithm allows the exploration of a great portion of the search space, without getting stuck in local
minima, while converging onto a (global) minimum as the temperature cools down. In essence,

50 CHAPTER 5 · RAMBO Deployment

1 void RAMBO::search() {
2 int iterations, stableIterations, rounds = 0;
3 int bestFeasible, bestInfeasible, bf, bi = System.getMAXINT();
4 float temp = 15.0;
5 ExponentialDistribution distr();
6

7 while (iterations < 50000) {
8 select (m in M) {
9 select (n in H : n != m) {

10 float delta = lookahead(ls, obj) makeMove(m, n); − obj;
11

12 if (distr.accept(−delta/temp)) {
13 makeMove(m, n);
14

15 if (violations == 0)
16 bf = min(obj, bestFeasible);
17 else
18 bi = min(obj, bestInfeasible);
19 }
20 }
21 }
22 iterations++;
23 stableIterations++;
24 temp = temp∗0.9995;
25 weight := weight + 0.01;
26

27 if (bf < bestFeasible || bi < bestInfeasible) {
28 bestFeasible = bf;
29 bestInfeasible = bi;
30 stableIterations = 0;
31 if (violations == 0)
32 updateBest();
33 }
34

35 if (stableIterations >= 1000)
36 reheat();
37

38 if (rounds >= 10)
39 diversify();
40 }
41 }

Figure 5.4: CBLS Master Search in COMET

SECTION 5.4 · Hybrid CBLS/CP Master-Slave Algorithm 51

the method starts out as a random walk where almost all neighboring solutions are accepted, and
smoothly transitions more and more into a hill-climbing heuristic where only improving solutions
are accepted.

Moves are usually randomly selected in simulated annealing. In the algorithm of figure 5.4 a
move is randomly selected on lines 8–9, and the move is evaluated on line 10. The instruction
lookahead(ls, obj) makeMove(m, n); returns the value that objective obj will receive if the
move is performed, by subtracting the current value of objective obj the difference delta is obtained.
Line 12 accepts the move with probability e−delta/temp. If the move is accepted, it is performed on line
13, and variables bf and bi are updated to reflect the best feasible and best infeasible solution found
so far on lines 15–18.

After each iteration the temperature is lowered on line 24. In addition to lowering the tempera-
ture the weight is adjusted on line 25. This weight is used to vary the emphasis that the objective
function places on the violations of the load-balancing constraint. Initially the weight is low so that
the main focus is on minimizing the communication costs. By increasing the weight each iteration
the emphasis slowly shifts towards finding feasible solutions. The temperature and weight work in
tandem. They allow the search algorithm to first explore a large portion of the search space, without
paying much attention to the feasibility of the solutions, in order to find areas with low communi-
cation costs. As the temperature decreases and the weight simultaneously increases, the search will
converge onto feasible solutions with minimal communication costs.

Tracking the Best Solution The best solutions found during the search are recorded on lines
27–33. Although only feasible solutions are eventually stored on line 32, the algorithm also records
the best infeasible solution it encounters. These infeasible solutions are recorded so that improve-
ments in the communication cost function can be registered, even if the resulting solutions do not
satisfy the load-balancing constraint. This is done to prevent unnecessary and premature triggering
of the reheating and diversification functions, when improvements can still be found.

Reheating and Diversification When no improvements have been seen for 1000 iterations
a reheating step is carried out, on lines 35–36. This step consists of resetting the temperature and
weight to their initial value. This allows the search algorithm to move to other parts of the search
space with possibly higher quality solutions. After 10 reheating steps a diversification step is per-
formed on lines 38–39. This step replaces the current assignment of x with a random permutation
of hosts, effectively restarting the algorithm from a new non-deterministic starting point.

CP Slave Figure 5.5 shows the function that performs the actual moves of the CBLS master. It
consists of the swap (line 2) and the CP slave (lines 4–38). The function of the slave algorithm is to
determine whether the new solution satisfies the load-balancing constraint. Note that the slave does
not influence the communication cost objective. Instead, it attempts to find an assignment of read
and write quorums to hosts, given the current assignment of hosts to members, which satisfies the
load-balancing constraint.

Since a CBLS algorithm is used for the master, it seems logical to also use a CBLS algorithm for the
slave. However, initial testing showed a CP algorithm to be more effective. One of the main reasons
for this is that many of the problems considered by the slave will be infeasible. A CP algorithm is
better suited and more efficient for proving infeasibility in these cases. Indeed, a CBLS algorithm is
unable to prove infeasibility and can merely conclude that after spending a certain amount of time
trying to find a solution, no solutions have been found. Furthermore, if a solution does exist it is
typically found in only a couple of milliseconds using the CP algorithm, a CBLS algorithm is unable

52 CHAPTER 5 · RAMBO Deployment

to significantly improve on this already very fast method. The CP model that is used for the slave is
essentially the same as the second phase of the CP model of section 5.3.

Although solving the slave is typically quite fast, it is still costly to perform it each iteration. The
conditions on line 4 therefore distinguishes two cases where it is not necessary to perform the slave.
In these cases the earlier discussed estimation constraint can be used instead. The first condition
determines whether the new solution has a lower communication cost than the best known feasible
solution. Solutions with a higher communication cost can be useful to visit, as they can be part of a
path towards a solution of a better quality. However, it is not necessary to determine their feasibility
with absolute certainty. They do not make up the final solution in any case and are merely used as
intermediate solutions. The second condition determines whether there is any possibility the load-
balancing constraint can be satisfied, by comparing the upper and lower bounds on the loads. If the
scaled minimum of the upper bounds on the load is smaller than the maximum of the lower bounds
on the load, the load-balancing constraint is necessarily infeasible, leaving no need to perform the
slave model. If either of the conditions are not met, the estimation constraint is used. In these cases
line 37 will assign the violations variable the value of the estimation constraint incremented by one.
This increment is necessary to ensure that no solution which satisfies the estimation constraint is
automatically considered feasible. Remember that satisfaction of the estimation constraint does not
guarantee satisfaction of the real constraint.

If both conditions are met, the CP slave model shown on lines 5–35 will be executed. The decision
variables readQ[h] and writeQ[h], declared on lines 10–11, denote the chosen read and write quorum
for host h. Line 12 declares the load[m] variable, which denotes the load on configuration member
m, given the current assignment of read and write quorums to hosts. The constraints on lines 15–18
require the chosen read and write quorum for each host to be among the quorums with minimal
delay for that host. Lines 19–20 specify the communication load on m as the sum of the operation
frequencies of each host for which m is a member of its assigned read and/or write quorum. Finally,
line 22 states the actual load-balancing constraint.

The search procedure, shown on lines 24–27, considers the most “talkative” hosts first (by de-
creasing frequencies) and attempts to assign one of the remaining legal (minimal) quorums from its
domain. When an assignment of read and write quorums that satisfies all constraints has been found
the boolean feasible is set to true and the search is terminated. If a feasible solution was found, line
33 sets the violations variable to 0. When no feasible solution was found the violations variable is
set to the estimation incremented by one, again, to ensure that no solution is wrongfully considered
feasible.

The estimation is used to give an indication of the degree of violation of the load balancing con-
straint. This, in turn, can be used as a measure of distance from the current solution to a feasible
solution. The estimation gives solutions, with the same communication costs, which are closer to a
feasible solution a lower objective value than solutions which are farther. This guides the search to-
wards high-quality feasible solutions. Another approach would be to, instead of using the estimation
constraint, use a simple boolean to denote whether a solution satisfies the load-balancing constraint
or not. This approach simplifies the model considerably, but lacks the guiding ability of the distance
information. Both approaches were considered and evaluated. Their performance differences will be
discussed in section 5.7.

SECTION 5.4 · Hybrid CBLS/CP Master-Slave Algorithm 53

1 void RAMBO::makeMove(int m, int n){
2 x[m] :=: x[n];
3

4 if ((O.value() < bestFeasible) && (max (m in M) loadMin[m] <= alpha ∗ min (m in M) loadMax[m])) {
5 boolean feasible = false;
6

7 Solver<CP> cp ();
8 cp.limitFailures(1000);
9

10 var<CP>{int} readQ[H](cp, RQ);
11 var<CP>{int} writeQ[H](cp, WQ);
12 var<CP>{int} load[M](cp, 0..100000);
13

14 solve<cp> {
15 forall (h in H) {
16 cp.post(readD[h, readQ[h]] == min(r in RQ) readD[h,r]);
17 cp.post(writeD[h, writeQ[h]] == min(w in WQ) writeD[h,w]);
18 }
19 forall (m in M)
20 cp.post (load[m] == sum(h in H)(f[h] ∗ (readQC[readQ[h], m] + writeQC[writeQ[h], m])));
21

22 cp.post(max (m in M) load[m] <= alpha ∗ min (m in M) load[m]);
23 } using {
24 forall (h in H : !readQ[h].bound() || !writeQ[h].bound()) by (−f[h]) {
25 label(readQ[h]);
26 label(writeQ[h]);
27 }
28

29 feasible = true;
30 }
31

32 if (feasible)
33 violations := 0;
34 else
35 violations := S.violations() + 1;
36 } else {
37 violations := S.violations() + 1;
38 }
39 }

Figure 5.5: CP Slave Search in COMET

54 CHAPTER 5 · RAMBO Deployment

m1 m3

m4 m5

m2

m6

m1 m3

m4 m5 m6

m2

m7 m9m8

3Step 3x3

m1 m3

m4 m5 m6

m2

3x2

Figure 5.6: Quorum System Benchmarks 3x2, 3Step, and 3x3

5.5 Parallel Composition

As was discussed in section 4.5, a hybrid that unifies the CP and CBLS models has potential benefits.
The ability of the CBLS algorithm to deliver high-quality solutions quickly can be used to augment
the CP algorithm, and increase its performance. The model that is presented here is a parallel
composition of the CP model of section 5.3 and the CBLS/CP master-slave model of section 5.4. The
key idea is to run both models concurrently and use the solutions found by the CBLS model to tighten
the bound on the objective of the CP model, and thereby reduce the search space. Of course, there
will only be a benefit if: 1) the CBLS model is able to located high-quality solution more quickly than
the CP model, and 2) both models truly run in parallel.

The models are adapted to both run in separate threads and to communicate their progress to
each other. In particular, the CBLS model notifies the CP model each time it finds a new solution.
This communication is implemented in COMET through the use of events [16]. The instruction

1 c.tellNewSolution(new Solution(ls, MinimizeIntValue(O.value())));

is added to the CBLS model, to notify the CP model of a new solutions found by the CBLS model.
And the snippet

1 whenever c@newSolution(Solution s)
2 if (s.getObjectiveValue().compare(cp.getObjective().getPrimalBound()) < 0)
3 cp.setPrimalBound(s.getObjectiveValue());

is added to the CP model to update the bound on the objective every time a new solution, which
signifies an improvement over the current bound, is received. By tightening the bound the algorithm
is likely able to discard parts of the search tree earlier than it otherwise would have been able to,
thereby increasing its performance. Whenever the CP model terminates it will notify the CBLS model
in a similar fashion, so that is can be terminated too.

5.6 Benchmarks

To test the performance of the models a variety of benchmarks is used. Each benchmark consists of
the combination of an abstract quorum system and a network configuration. Six different network
configurations and four quorum systems are used, representing common networks and quorums.
This results in a total of 24 different benchmarks. Figure 5.6 shows the 3x2, 3Step, and 3x3 quorum
system. The horizontal groups form the read quorums, while the vertical groups form the write
quorums. The fourth quorum system, Maj, uses majority quorums [30]. This quorum system groups
six members into four read quorums and four write quorums, each consisting of four members. The

SECTION 5.7 · Experimental Results 55

1

10

17

23

5

2

1

86

410

5

1

1

10

3

7

1
5 2

10

6 1
2

4

8

5

1

1

6

8

5

3

4

10

1

7

5

2

1

3

1

10

2

Hyper16

Stars2

Stars2c3

30 3066 80 30

30

12 10

Switch

S
w
it
c
h

Figure 5.7: Network Configuration Benchmarks Stars2, Stars2c3, Hyper16, and Switch

3x2 3Step 3x3 Maj
Benchmark Opt Tend Topt Opt Tend Topt Opt Tend Topt Opt Tend Topt

Stars3 µ 261 0,98 0,41 285 0,37 0,09 284 42,12 10,95 340 5,30 0,03
σ 0,18 0,29 0,03 0,06 5,37 10,71 0,12 0,01

Stars2 µ 303 5,70 2,76 284 0,57 0,30 316 536,50 92,69 374 20,76 1,35
σ 9,71 9,67 0,24 0,21 203,53 197,01 3,62 3,71

Stars2c3 µ 238 1,16 0,21 239 1,52 1,37 268 1414,09 914,20 270 8,07 0,03
σ 0,15 0,14 1,79 1,79 402,47 609,09 0,17 0,01

Line µ 485 4,02 2,76 479 2,92 2,59 517 445,28 319,96 607 26,04 6,91
σ 0,57 0,80 1,88 2,02 109,01 155,78 0,87 0,48

Hyper16 µ 246 9,87 5,04 256 2,13 0,85 249 508,28 226,04 305 66,94 3,37
σ 1,24 2,27 0,16 0,60 82,37 153,78 0,89 0,24

Switch µ 610 1,59 0,71 620 0,46 0,30 620 59,03 45,06 620 0,23 0,08
σ 0,80 0,70 0,58 0,57 69,38 69,67 0,05 0,05

Table 5.1: Experimental Results for the CP Model with α= 2

quorum systems 3x2, 3Step, and Maj each consist of 6 members, while the 3x3 quorum system
consists of 9 members. The amount of read and write quorums varies, from the maximum of four
each for the Maj quorum system, to the minimum of two each for 3Step.

RAMBO is of course intended to be used in dynamic network setting. The network configurations
used for the benchmarks are, however, “static”, as they represent a certain network structure at
the time of reconfiguration. The six different networks that are used for the benchmarks are: the
Stars3 network, shown in figure 5.1; the Stars2, Stars2c3, Hyper16, and Switch networks
shown in figure 5.7; and the Line network, which consists of 15 hosts arranged in a single line (a
bus). Figure 5.1 and 5.7 give the average frequency of read and write operations for each host in
networks. The number of “hops” between a pair of hosts is used as the delay between those hosts.

5.7 Experimental Results

5.7.1 Constraint Programming Model

Table 5.1 reports the results for the CP model with COMET 1.1 (on a Core 2 @ 2.16 GHz) using a
load balancing factor of 2 (α= 2). The table provides two rows for each benchmark: the first reports
averages and the second reports standard deviations. Columns are grouped by quorum system type.
Within each group, column Opt gives the objective value of the optimal solution, Tend gives the time

56 CHAPTER 5 · RAMBO Deployment

3x2 3Step 3x3 Maj
Benchmark Tend Tbest #O Best Tend Tbest #O Best Tend Tbest #O Best Tend Tbest #O Best

Stars3 µ 10,34 0,54 50 261 8,21 1,63 50 285 10,84 2,80 46 284,3 20,81 0,34 50 340
σ 0,05 0,39 0 0,10 1,40 0 0,11 2,49 1,1 0,20 0,23 0

Stars2 µ 9,43 1,02 50 303 7,58 0,43 50 284 11,55 2,05 50 316 18,72 0,44 50 374
σ 0,22 1,16 0 0,11 0,41 0 1,60 1,64 0 0,61 0,61 0

Stars2c3 µ 8,80 0,10 50 238 7,14 0,34 50 239 96,26 32,88 50 268 18,71 0,31 50 270
σ 0,03 0,05 0 0,24 0,29 0 6,49 28,35 0 0,42 0,43 0

Line µ 11,14 0,56 50 485 9,14 1,05 50 479 11,55 0,89 50 517 22,35 0,65 50 607
σ 0,03 0,38 0 0,05 1,42 0 0,06 0,88 0 0,12 0,65 0

Hyper16 µ 12,83 2,90 38 246,2 9,46 2,45 36 257,0 14,03 3,85 0 252,2 24,51 7,53 42 305,2
σ 0,04 2,59 0,4 0,04 2,40 1,8 0,05 3,96 1,3 0,06 6,20 0,4

Switch µ 8,91 0,08 50 610 6,13 0,04 50 620 8,26 0,12 50 620 17,34 0,14 50 620
σ 0,16 0,07 0 0,02 0,02 0 0,13 0,11 0 0,09 0,09 0

Table 5.2: Experimental Results for the CBLS Model with the Estimation Constraint and α= 2

in seconds to find the optimum and prove optimality, and column Topt reports the time in seconds to
find the optimum. The results are the average and standard deviation over 50 runs.

The results show that in general the 3Step quorum system is the easiest to solve, followed by
3x2, Maj, and then 3x3. The 3x3 quorum system in particular seem to be significantly harder to
solve than the others. This is not entirely surprising as this quorum system has more members. In
addition to the results shown, results were obtained for load factors α = 3 and α = 4. In general
these results are similar, although in a few cases they differ significantly. In particular the runtime of
benchmark Stars2c3 with the 3x3 quorum system is dramatically reduced when a less restrictive
load balancing factor is used.

It is worth to note the variation in the time it takes to find the optimal solutions. With quorum
system Maj the optimum is found quickly, sometimes as soon as one percent into the run. In contrast,
benchmarks Stars2c3 and Line with 3Step do not find the optimum until the very end. The
standard deviations of the various benchmarks show further variations. While the Maj quorum
system induces small deviations, the 3x3 quorum system exhibits deviations that are often larger
than the averages. Closer examination of the runs reveals that these high standard deviations are
due to a few outliers with a significantly longer runtime.

5.7.2 Hybrid CBLS/CP Master-Slave Algorithm

Table 5.2 reports the results for the CBLS/CP master-slave model with the estimation constraint and
a load factor of 2 (α= 2), using COMET 1.1 (on a Core 2 @ 2.16 GHz). Column Tend reports the total
runtime in seconds, while Tbest gives the time to find the best solution. The #O column indicates
how often the best solution was found (out of 50 runs), and the Best column gives the quality of the
best solution that was found. All values are the average and standard deviation over 50 runs.

The results show that optimal solutions are found very reliable. Indeed, when the Hyper16
network configuration and the 3x3 quorum system are left out, the optimal solution is found on
every run of every benchmark. The Hyper16 network and 3x3 quorum system clearly are the
hardest to solve. For the benchmark which is a combination of the two, the algorithm is unable to
find the optimum in any of the runs. However, even on this benchmark the average best solution is
only one percent away from the optimum, with a standard deviation of only 1,3.

The standard deviations of the total runtime and time to best solution are consistently very low.
Furthermore, on average the time to the best solution is relatively short compared to the total run-

SECTION 5.7 · Experimental Results 57

3x2 3Step 3x3 Maj
Benchmark Tend Tbest #O Best Tend Tbest #O Best Tend Tbest #O Best Tend Tbest #O Best

Stars3 µ 10,02 0,74 50 261 8,18 1,43 50 285 10,48 1,61 50 284 19,99 0,36 50 340
σ 0,04 0,89 0 0,10 1,00 0 0,19 1,44 0 0,27 0,30 0

Stars2 µ 9,37 2,24 50 303 7,37 0,38 50 284 11,03 1,79 50 316 17,85 0,29 50 374
σ 0,23 1,72 0 0,11 0,29 0 1,95 1,98 0 0,56 0,58 0

Stars2c3 µ 8,74 0,11 50 238 7,07 0,32 50 239 33,12 17,10 13 269,8 18,71 0,25 50 270
σ 0,02 0,06 0 0,22 0,26 0 5,93 11,58 4,2 0,43 0,43 0

Line µ 10,83 1,24 50 485 8,52 2,23 48 479,2 11,25 5,57 16 523,8 22,53 0,70 50 607
σ 0,03 1,21 0 0,06 2,13 0,8 0,07 3,69 7,8 0,13 0,48 0

Hyper16 µ 12,46 2,97 48 246,0 9,69 2,80 46 256,2 13,35 2,98 3 251,6 23,61 8,37 48 305,0
σ 0,05 3,28 0,2 0,05 2,56 0,9 0,06 3,13 1,2 0,06 6,17 0,2

Switch µ 16,26 0,10 50 610 7,26 0,03 50 620 9,95 0,09 50 620 18,66 0,12 50 620
σ 0,63 0,06 0 0,03 0,02 0 0,08 0,08 0 0,09 0,06 0

Table 5.3: Experimental Results for the CBLS Model without the Estimation Constraint and α= 2

time. On many runs the best solution is found as little as 10% into the run. All in all this indicates a
very robust model. Results were also obtained for load factors α = 3 and α = 4. These results were
very similar to the results shown in table 5.2, with only minor variations in the frequency with which
the optimal solution was found. Some benchmarks peform slightly better when a less restrictive load
balancing constraint is used, while others perform slightly worse.

One particularly interesting benchmark is Stars2c3 with the 3x3 quorum system. This bench-
mark has a total runtime that is almost five times as long as any other benchmark. Closer inspection
reveals that the longer runtime is due to a relative large number of invocations of the slave search.
In the other benchmarks most of the slave searches are eliminated through the conditions described
in section 5.4. For this benchmark, however, this strategy is not as effective. In particular, the bench-
mark is characterized by a large number of infeasible solutions with a lower communication cost than
the optimum solution. The slave search can not be eliminated for these solutions.

The Stars2c3 benchmark with 3x3 quorum system also serves as a good example to illustrate
the difference between the model that uses an estimation of the violations of the load balancing
constraint and the model that uses a boolean. Table 5.3 shows the results of the model that uses a
boolean to denote whether the load balancing constraint is violated or not, instead of the estimation
of the degree of violation of the load balancing constraint. Most results are similar for the two models,
with some benchmarks performing slightly better in one, while others perform slightly better in the
other. The only benchmark where there is a significant difference is Stars2c3 with the 3x3 quorum
system. This benchmark is almost three times faster using the model without the estimation. This
might suggest that this model is more effective, however, closer inspection reveals that the benchmark
performs better due to a smaller number of invocations of the slave search. This, in turn, is due to the
fact that the model without the estimation visits fewer solutions with a communication cost lower
than the optimum. Although the model with the estimation has a longer runtime, it spends more
time exploring areas of the search space with higher quality solutions. Unfortunately these solutions
are infeasible, however, it does indicate a more effective search algorithm.

Figure 5.8 shows the evolution of the objective over time for the Stars2c3 benchmark with the
3x3 quorum system. The left side of the figure shows the objective over time for the CP model,
while the right side shows the same for the CBLS/CP master-slave model. Note the difference in
time scale for both graphs. Each point in the graph represents a solution found by the algorithm,
which is an improvement over the previously found best solution. Each graph combines 50 runs of
the algorithm. The black points represent the best solution found during a run, while the gray points

58 CHAPTER 5 · RAMBO Deployment

Figure 5.8: Evolution of the objective over time of the Stars2 benchmark with the 3x3 quorum
system using the CP model (left) and CBLS model (right)

represent intermediary solutions found during the run. Some ten outliers have been excluded from
the CP graph to allow a clearer picture of the more relevant areas of the graph.

The graph shows that the CBLS model is able to find high-quality solutions more quickly than the
CP model. Although distribution of points in the section < 10secs is not significantly different, the
CBLS model does not suffer from the same outliers as the CP model does. This indicates a potential
benefit for a hybrid model, which combines both the CP and CBLS models. Such a hybrid can
potentially eliminate the outliers by delivering high-quality solutions to the CP model more quickly
and allowing it to discard many solutions.

5.7.3 Parallel Composition

Tables 5.4 and 5.5 report the results for the parallel composition and compare them to the CP model.
The results were obtained using COMET 1.1 (on a Core 2 @ 2.16 GHz). The CBLS component of
the composite model uses the estimation constraint. The tables report the total runtime and time to
optimum for each benchmark, for both the CP model and the composite model. All values are the
average and standard deviation over 50 runs.

Table 5.4 shows the results for the benchmarks with the 3x2 and 3Step quorum systems. These
benchmarks show an average total runtime which is very similar for both the CP and the composite
model. In some instances the composite is slightly faster, while in others the CP model performs
slightly better. The composite shows more of an improvement in the time to find the optimum. The
biggest improvement is for the Line benchmark with the 3x2 quorum system, here the average time
to optimum is reduced from 2,76 to 0,57. Another notable improvement is the standard deviation of
benchmark Stars2 with the 3x2 quorum system, the standard deviation for both the total time and
time to optimum is reduced from over 9 seconds to under 1. Most of the benchmarks already show
reasonably low times, leaving not much room for improvement.

The results for the benchmarks with quorum systems 3x3 and Maj (table 5.5) show more sig-
nificant differences between the CP and composite model. The composite clearly benefits from its
local search component as it consistently delivers the optimum very early on and quite reliably. The
improvement in the time to optimum is most significant for the Stars2c3 benchmark with the 3x3
quorum system, here it is reduced from 914 seconds to 37 seconds. The time to complete the opti-
mality proof offers a mixed set of results. For some instances (e.g., instances based on Maj quorums),

SECTION 5.7 · Experimental Results 59

3x2 3Step
CP Composite CP Composite

Benchmark Tend Tbest Tend Tbest Tend Tbest Tend Tbest

Stars3 µ 0,98 0,41 1,06 0,46 0,37 0,09 0,46 0,17
σ 0,18 0,29 0,16 0,21 0,03 0,06 0,05 0,10

Stars2 µ 5,70 2,76 3,83 1,10 0,57 0,30 0,50 0,23
σ 9,71 9,67 0,33 0,69 0,24 0,21 0,18 0,17

Stars2c3 µ 1,16 0,21 1,20 0,11 1,52 1,37 0,48 0,30
σ 0,15 0,14 0,19 0,05 1,79 1,79 0,29 0,29

Line µ 4,02 2,76 3,39 0,57 2,92 2,59 1,17 0,74
σ 0,57 0,80 0,25 0,42 1,88 2,02 0,39 0,43

Hyper16 µ 9,87 5,04 10,17 3,80 2,13 0,85 2,22 0,83
σ 1,24 2,27 1,00 3,05 0,16 0,60 0,14 0,63

Switch µ 1,59 0,71 1,20 0,09 0,46 0,30 0,22 0,04
σ 0,80 0,70 0,29 0,07 0,58 0,57 0,07 0,02

Table 5.4: Experimental Results for the CP and Composite model with α= 2

3x3 Maj
CP Composite CP Composite

Benchmark Tend Tbest Tend Tbest Tend Tbest Tend Tbest

Stars3 µ 42,12 10,95 39,78 3,74 5,30 0,03 6,04 0,40
σ 5,37 10,71 4,09 5,50 0,12 0,01 0,23 0,24

Stars2 µ 536,50 92,69 494,37 2,14 20,76 1,35 21,37 0,38
σ 203,53 197,01 56,45 1,67 3,62 3,71 0,98 0,48

Stars2c3 µ 1414,09 914,20 778,96 37,00 8,07 0,03 9,13 0,26
σ 402,47 609,09 55,87 63,11 0,17 0,01 0,40 0,28

Line µ 445,28 319,96 247,73 1,07 26,04 6,91 27,26 0,76
σ 109,01 155,78 18,80 0,87 0,87 0,48 1,11 0,42

Hyper16 µ 508,28 226,04 513,29 214,23 66,94 3,37 71,85 7,11
σ 82,37 153,78 58,08 151,45 0,89 0,24 1,75 6,72

Switch µ 59,03 45,06 14,96 0,10 0,23 0,08 0,29 0,12
σ 69,38 69,67 2,99 0,10 0,05 0,05 0,07 0,07

Table 5.5: Experimental Results for the CP and Composite Model with α= 2

there are no benefits to speak of. For others, the availability of the optimum early on translates into
a shorter optimality proof and decreased standard deviation. The most dramatic instances in this re-
spect are, perhaps, Switch, Line, and Stars2c3 with 3x3 quorum systems. The composite model
further delivers consistently lower standard deviations.

60 CHAPTER 5 · RAMBO Deployment

6 Conclusion

The previous chapters have described the work that has been done on the ESDS and RAMBO de-
ployment problems, and the results that were obtained. It is useful to review these results and place
them in the broader context of the more general deployment problem, and reflect on what has been
accomplished as well as the specific contributions of this work.

6.1 Results

6.1.1 Eventually-Serializable Data Services

Previous work on the eventually-serializable data services deployment problem already resulted in
solutions for this problem in the form of mixed integer programming (MIP) and constraint program-
ming (CP) methods. The constraint programming method was shown to be vastly superior to the
mixed integer programming method for this particular problem. Many instances could be solved
in seconds, rather than the hours it took the MIP. However, larger instances of the problem, and in
particular those involving bandwidth constraints, still took a considerable amount of time to solve.
One particular instance took well over 30 minutes using constraint programming, leaving a lot of
room for improvement.

The constraint-based local search method, that was developed as part of this research project,
delivers excellent solutions very quickly. For the easier instances it is able to find the optimum almost
every time. On the harder instances it delivers the optimum less reliably, and on the hardest instance
it only finds to optimum very sporadically. However, even in these cases the algorithm still delivers
very high quality solutions, and it does so much faster that the CP method. Of course it is typical
for local search to not be able to always find the optimal solution. It is an incomplete method, and
thus there are no guarantees of finding optimal solutions, or any solutions at all for that matter. The
trade-off, however, is that efficient local search algorithms are very often able to locate high-quality
solutions very fast. For the ESDS deployment problem this is certainly the case. The graphs of the
evolution of the objective during the course of the search are especially telling in this regard. They
clearly show that the constraint-based local search method is able to find high-quality solutions much
faster than the constraint programming method.

Because local search can not prove optimality of a solution it does not have any “natural” exit
criteria. Instead, it is allowed to run for a predefined amount of time, or iterations. In the case
of the ESDS deployment problem the CBLS algorithm was allowed to run for a certain amount of
iterations, which corresponded to somewhere between 5 and 10 seconds for the various benchmarks.
This means the CBLS algorithm spends more time on the easy instances than it should, but it is a
considerable improvement over the up-to 30 minutes of run-time of the constraint programming
method for the hardest instances. Of course, this comes at the price of a potentially sub-optimal
solution. However, a user might not always need an optimal solution. In many situations it will be

61

62 CHAPTER 6 · Conclusion

much more desirable to have a good solution very fast. The constraint-based local search method is
clearly valuable in this regard.

The co-location preprocessing technique that was developed for the constraint-based local search
method is advantageous to this method as it increases its performance and makes it more robust.
However, it is perhaps even more advantageous to the constraint programming method. This slight
change in the problem representation results in a reduction of the run-time of the constraint pro-
gramming algorithm on the hardest benchmark from well over 30 minutes to a little over 6 minutes.
This closes the gap between the CBLS and CP methods considerably, although it remains significant,
especially on the harder instances.

The hybrid models offer a mixed set of results. The sequential hybrid performs worse than
the constraint programming method on the easier benchmarks, and slightly better on the harder
benchmarks. The parallel performs better in almost every regard, although the difference is not that
great. The hybrid models in a sense combine the advantages of both the local search and constraint
programming methods. Their main advantage over the CP method is a faster time to find “good”
and optimal solutions, while the main advantage over CBLS is their ability to prove optimality of
solutions. On the hardest benchmarks the parallel hybrid shows, on average, an improvement of
about 10% in total run-time over the CP method. The hybrid models can be particularly useful when
a user wants a quick solution to work with, while the algorithm continues to run in order to prove
optimality of the solution, or possibly improve on it.

All-in-all the developed constraint-based local search and hybrid solutions add new and useful
methods to solve the eventually-serializable data services deployment problem. They are perhaps not
superior to the constrain programming method in every way, but they provide different advantages
and give the user the ability to chose from a wider toolset and strike trade-offs between different
aspects.

6.1.2 Reconfigurable Atomic Memory for Basic Objects

The RAMBO deployment problem is particularly well suited for a local search based solution, due to
its online nature and the tight time constraints in which it must be solved. The existing constraint
programming solution for this problem performed well on the easier benchmarks, solving them in
mere seconds. The harder benchmarks, however, proved more challenging, with the hardest instance
taking well over 20 minutes to solve and prove optimality.

Reconfiguring to a new quorum configuration can be done while RAMBO is running, the service
does not have to be interrupted for it. The process of proposing a new configuration and reaching
consensus on it among the participants of the services takes time in and of itself. Because of these
factors there is a time window of some seconds available to compute a new configuration. Although
there is no hard time limit for computing the configuration it should ideally not take much more than
10 seconds. This means the constraint programming method is not practically usable for some of the
harder instances.

The constraint-based local search solution (CBLS/CP master-slave) that was developed for this
problem performs very well. As usual with local search the algorithm is allowed to run for a prede-
fined number of iterations. In this case corresponding to approximately 10 seconds of run-time. The
optimal solution is found very reliably, and very early on during the search. For the majority of the
benchmarks the best solution is found (on average) in under a second. On only two benchmarks it
takes more than five seconds (on average) before the best solution is located. This indicates that the
number of iterations, and subsequently the run-time, could perhaps be reduced further. The results
furthermore show the CBLS method to be very robust. On only on the hardest instances the optimal
solution is not found on every run of the algorithm, but even on these instances a very high-quality
solution is found very reliably and fast. Even on the hardest instance the average best solution that
is found is less than one percent away from the optimum, and it is found (on average) in under four

SECTION 6.2 · Discussion 63

seconds. Only one instance of the problem takes considerably longer to solve, as was discussed in
section 5.7 this is due to some specifics of this instance. Studying this instance more in depth could
perhaps reveal some characteristics that could be exploited to bring the performance more in line
with the rest.

The developed composite model does perhaps not deliver all of the desired performance gains.
The total run-time of the composite is generally similar to that of the constraint programming
method. Two of the hardest benchmarks have their average run-time halved, but for most bench-
marks the difference is negligible or even slightly in favor of the CP method. The time-to-optimum,
however, is dramatically reduced for almost all benchmarks. This shows the composite greatly ben-
efits from the CBLS component, by being able to find optimal solutions faster, but that it can not
sufficiently use this to shorten the optimality proof. However, the composite is still a very usable
solution to the RAMBO reconfiguration problem. For instance, it can be used to run within a certain
time frame. Even with a time frame as short as ten seconds it will: very often find the optimal so-
lution; on the easier instances prove optimality; and only in a very few cases return a sub-optimal
solution, which however will still be of very high-quality.

In summary, the developed local-search based method is particularly appealing for the RAMBO
reconfiguration/deployment problem, due to its ability to deliver high-quality solutions fast. The
composite model which combines this new solution with an already existing solution also has certain
advantages. The various methods that now exist strike different trade-offs in their ability to deliver
high-quality/optimal solution fast, and the ability to prove optimality of these solutions. This gives
the user more freedom to chose the tools which are best for any particular situation.

6.2 Discussion

The results discussed in the previous section show that significant progress has been made on these
particular problems. New methods have been developed to solve them, which strike different trade-
offs in time that is spend and the “quality” of the solution that is obtained. The developed methods
are useful as solutions for these particular deployment problems in itself. However, the problems
themselves were also chosen because they represent more general deployment problems.

The ESDS deployment problem is especially appealing in this regard. The terms in which the
problem is stated are very general, and can be applied to a great variety of deployment problems.
This characteristic has already been exploited. The methods that were developed for the ESDS
deployment problem have been generalized and added to the Tempo Toolkit [19] as deployment
optimization schemes [10]. Specific annotations were added to the Tempo language that allow the
formal specification of a deployment, along with the formal specification of a distributed system.
Based on these specifications the toolkit is able to automatically generate an optimization model
(and search) in the COMET language. This model then only needs to be run in COMET, without any
further input from the user, to obtain a solution. The generated optimization models are based on the
methods developed for the ESDS deployment problem. The user is able to specify whether constraint
programming, constraint-based local search, or either a sequential or parallel hybrid is to be used.

The RAMBO reconfiguration problem lends itself less to generalization. Although quorum sys-
tems are fairly common, the way in which they are used in RAMBO is rather specific. Furthermore,
the objective function is unlikely to apply to other deployment problems in exactly the same sense.
This, however, does not mean the results have no relevance outside of this single application do-
main. Up and foremost the results show that these kind of online problems can be solved using these
techniques. Furthermore, even though the exact methods that have been developed for the RAMBO
deployment problem might not be applicable to other deployment problems, many elements of them
most likely will be. The specifics of the deployment problems might differ, but many of the un-
derlying issues will be similar, allowing for certain parts of the methods to be reused. No actual

64 CHAPTER 6 · Conclusion

RAMBO implementation that uses the reconfiguration optimization methods has been developed so
far. However, plans in this direction do exist.

In addition to the progress made on the deployment problem there is also some significance in
this research for the field of constraint programming. Constraint programming is a developing field,
and as such is constantly looking for new applications to test and extend its repertoire of techniques.
Although the various techniques that were used in this thesis are not new, they are combined in
interesting and novel ways. Hybridization of different methods, for instance, is not a new concept,
but few real-world applications of it exist. Therefore it is valuable to test these concepts on real
problems and examine their performance. The results of this research provides relevant feedback to
the constraint programming community in this regard.

6.3 Future Work

This thesis has investigated the problem of optimally deploying distributed systems. Significant
progress has been made, but there is clearly more work to be done. This section will address some
of the directions future research can take.

Most research aims at eventually having a real world application, and this is certainly the case
here. The implementation of the deployment optimization methods in the Tempo Toolkit is a very
solid first step in this regard. Users are able to formally specify a system and deployment, and
have the toolkit automatically find an optimal deployment based on these specifications. This makes
the techniques much more accessible to non-expert users. However, more work is still needed.
The RAMBO reconfiguration optimization methods have not yet been applied in practice. A natural
extension of the work that has been done in on this problem is the development of an actual RAMBO

implementation that uses the developed optimization methods. Achieving this is not too complex as
all the needed elements are available, they merely need to be brought together. Plans in this direction
exist, so this may be realized in the future.

Another important element is of course the applicability of the developed methods on other de-
ployment problems. Although there is confidence that the methods which have been added to the
Tempo Toolkit are applicable to many other deployment problems, this remains somewhat untested.
The degree to which other deployment problems can be stated in the terms provided by the annota-
tions, and the efficiency with which the developed optimization methods can solve these problems,
needs further examination. More rigorous testing on a wider set of problems is needed. Furthermore,
the results on the RAMBO deployment problem show that this type of online optimization problem
can be solved using these techniques. However, to what degree these results can be generalized to
a broader set of problems is a question that needs further investigation. Investigating the extend to
which all of this is possible is an interesting direction for future research.

A major limit on the developed methods is the scale of the distributed systems on which they
are applied. Many real world system will be much larger and consist of many more hosts and
components than the systems used for the benchmarks in this thesis. Currently the methods do not
scale well enough to allow for such networks. As the number of hosts and components increases to
a certain size the computation time will explode. A challenging and interesting direction for future
research is to investigate the possibilities for improving scalability, including decomposition schemes.
Indeed, an option might be to divide larger system into smaller subsystems which can be deployed
optimally. To what extend this approach can lead to optimality of the whole system remains to be
investigated.

Bibliography

[1] The comet programming language and system. http://www.comet-online.org/.

[2] Emile Aarts and Jan K. Lenstra, editors. Local Search in Combinatorial Optimization. John Wiley
& Sons, Inc., New York, NY, USA, 1997.

[3] Roman Bartak. Constraint programming: In pursuit of the holy grail. In Proceedings of the 8th
Annual Conference of Doctoral Students (WDS’99), pages 555–564, 1999.

[4] M. Cecilia Bastarrica. Architectural Specification and Optimal Deployment of Distributed Systems.
PhD thesis, The University of Connecticut, 2000.

[5] M. Cecilia Bastarrica, Rodrigo E. Caballero, Steven A. Demurjian, and Alexander A. Shvarts-
man. Two optimization techniques for component-based systems deployment. In Proceedings of
the 13th International Conference on Software Engineering & Knowledge Engineering (SEKE’01),
pages 153–162, 2001.

[6] M. Cecilia Bastarrica, Steven A. Demurjian, and Alexander A. Shvartsman. Software archi-
tectural specification for optimal object distribution. In Proceedings of the 18th International
Conference of the Chilean Computer Science Society (SCCC’98), pages 25–31, 1998.

[7] M. Cecilia Bastarrica, Alexander A. Shvartsman, and Steven A. Demurjian. A binary integer
programming model for optimal object distribution. In Proceedings of the 2nd International
Conference on Principles Of Distributed Systems (OPODIS’98), pages 211–226, 1998.

[8] Roberto Battiti and Giampietro Tecchiolli. The reactive tabu search. ORSA Journal on Comput-
ing, 6(2):126–140, 1994.

[9] J. F. Benders. Partitioning procedures for solving mixed variables programming problems. Nu-
merische Mathematik, 4:238–252, 1962.

[10] Carleton Coffrin, Laurent D. Michel, Alexander A. Shvartsman, Elaine L. Sonderegger, and Pas-
cal Van Hentenryck. Optimizing network deployment of formally-specified distributed systems.
In Proceedings of the 18th International Conference on Software Engineering and Data Engineering
(SEDE’09), pages 230–237, 2009.

[11] Thomas Emden-Weinert and Mark Proksch. Best practice simulated annealing for the airline
crew scheduling problem. Journal of Heuristics, 5(4):419–436, 1999.

[12] Alan Fekete, David Gupta, Victor Luchangco, Nancy A. Lynch, and Alexander A. Shvartsman.
Eventually-serializable data services. In Proceedings of the 15th Annual ACM Symposium on
Principles of Distributed Computing (PODC’96), pages 300–309, 1996.

[13] Seth Gilbert, Nancy A. Lynch, and Alexander A. Shvartsman. Rambo ii: Rapidly reconfigurable
atomic memory for dynamic networks. In Proceedings of the 2003 International Conference on
Dependable Systems and Networks (DSN’03), pages 259–268, 2003.

65

66 BIBLIOGRAPHY

[14] Fred Glover and Manuel Laguna. Tabu search. In Modern heuristic techniques for combinatorial
problems, pages 70–150. John Wiley & Sons, Inc., New York, NY, USA, 1993.

[15] Pascal Van Hentenryck and Laurent Michel. Constraint-Based Local Search. The MIT Press,
2005.

[16] Pascal Van Hentenryck and Laurent D. Michel. Control abstractions for local search. Constraints,
10(2):137–157, 2005.

[17] Dilsun K. Kaynar, Nancy A. Lynch, Roberto Segala, and Frits Vaandrager. The Theory of Timed
I/O Automata. Synthesis Lectures in Computer Science. Morgan & Claypool Publishers, 2006.

[18] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. Optimization by simulated annealing. Science,
220:671–680, 1983.

[19] Nancy A. Lynch, Stephen J. Garland, Dilsun K. Kaynar, Laurent D. Michel, and Alexander A.
Shvartsman. The tempo language user guide and reference manual, 2008.

[20] Nancy A. Lynch and Alexander A. Shvartsman. Rambo: A reconfigurable atomic memory ser-
vice for dynamic networks. In Proceedings of the 16th International Conference on Distributed
Computing (DISC’02), pages 173–190, 2002.

[21] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and
Edward Teller. Equation of state calculations by fast computing machines. The Journal of
Chemical Physics, 21(6):1087–1092, 1953.

[22] Laurent Michel, Alexander A. Shvartsman, Elaine L. Sonderegger, and Pascal Van Hentenryck.
Optimal deployment of eventually-serializable data services. In Proceedings of the 5th Interna-
tional Conference on Integration of AI and OR Techniques in Constraint Programming for Combi-
natorial Optimization Problems (CPAIOR’08), pages 188–202, 2008.

[23] Laurent D. Michel and Pascal Van Hentenryck. A constraint-based architecture for local search.
ACM SIGPLAN Notices, 37(11):83–100, 2002.

[24] Laurent D. Michel and Pascal Van Hentenryck. Constraint languages for combinatorial op-
timization. In Tutorials on Emerging Methodologies and Applications in Operations Research.
Springer, New York, NY, USA, 2005.

[25] Laurent D. Michel, Pascal Van Hentenryck, Elaine L. Sonderegger, Alexander A. Shvartsman,
and Martijn Moraal. Bandwidth-limited optimal deployment of eventually-serializable data
services. In Proceedings of the 6th International Conference on Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems (CPAIOR’09), pages 193–
207, 2009.

[26] Laurent D. Michel, Martijn Moraal, Alexander A. Shvartsman, Elaine L. Sonderegger, and Pas-
cal Van Hentenryck. Online selection of quorum systems for rambo reconfiguration. In Proceed-
ings of the 15th International Conference On Principles and Practice of Constraint Programming
(CP’09), pages 88–103, 2009.

[27] Laurent D. Michel, Alexander A. Shvartsman, Elaine L. Sonderegger, and Pascal Van Henten-
ryck. Optimal deployment of eventually-serializable data services. Annals of Operations Resarch,
2008. Extended version of the CPAIOR’08 paper (accepted).

[28] Francesca Rossi, Peter Van Beek, and Toby Walsh, editors. Handbook of Constraint Program-
ming. Elsevier Science Inc., New York, NY, USA, 2006.

BIBLIOGRAPHY 67

[29] Barbara M. Smith. Sets of symmetry breaking constraints. In Proceedings of the 5th International
Workshop on Symmetry and Constraint Satisfaction Problems (SymCon’05), 2005.

[30] Robert H. Thomas. A majority consensus approach to concurrency control for multiple copy
databases. ACM Transactions on Database Systems, 4(2):180–209, 1979.

[31] Edward Tsang. Foundations of Constraint Satisfaction. Academic Press., London, 1993.

[32] Chris Voudouris and Edward Tsang. Guided local search. Technical Report CSM-247, Depart-
ment of Computer Science, University of Essex, 1995.

[33] Ling-Yun Wu, Xiang-Sun Zhang, and Ju-Liang Zhang. Capacitated facility location problem
with general setup cost. Computers and Operations Research, 33(5):1226–1241, 2006.

