Investigating Domain Model Integration Processes

Arnoud Vermeij

Masters Thesis

Version 1.0

Index

1Index

4Overview of Figures

51.
Introduction

51.1
Introducing the problem

61.2
Main Question

61.2.1
Problem Area

61.2.2
Problem Definition

71.2.3
Research Questions

81.3
Method

91.3.1
Literature

91.3.2
Empirical Data

101.4
Structure of this thesis

112.
Theoretical Framework

112.1
Introduction

122.2
Game Theory

122.2.1
Components of a game

142.2.2
Game form

152.2.3
Types of Two Person-games

172.2.4
Strategies

202.2.5
Solutions and equilibriums

232.3
Negotiation

232.3.1
Negotiator’s profile

242.3.2
Negotiation strategies

282.3.3
Emotion

292.3.4
Studying negotiation

302.4
Domain Modeling and Digital Architecture

302.4.1
Systems, Models and the Application Landscape

312.4.2
Modeling Styles and Strategies

312.4.3
Modeling Processes

333.
Domain Description: Flow Measurement

333.1
Metering

333.2
Pressure

343.2.1
Pressure metering

353.3
Temperature

363.3.1
Temperature metering

373.3.2
Stream metering

373.4
Flow Units

383.4.1
Reynolds Number

383.5
Flow Meters

383.5.1
Differential producers

393.5.2
Linear Flow Meters

423.5.3
Calibration

433.6
Flow Computers

443.7
Supervisory Systems

453.7.1
Redundancy

463.8
Products

463.8.1
Gas

493.8.2
Liquids

514.
eXLerate - Modeling Oil and Gas Metering Systems

514.1
Introduction

524.2
Displays

564.3
Database and Communication

574.3.1
Query and Protocol Table

574.3.2
Tag Database

594.4
Animations and Graphics

594.4.1
Animations

604.4.2
Editing

604.4.3
Alarms

614.4.4
Events

614.4.5
Other Features

614.5
Calculations

634.6
Reports

644.7
Internal calculations

655.
Data Analysis

655.1
Introduction

655.2
Where not to start

665.3
How to get started

675.3.1
Analytical versus pragmatic

675.3.2
Creating a Family Tree

685.3.3
Early negotiations

695.3.4
No negotiation required?

705.3.5
Negotiation with an External Party

715.3.6
Concluding the first phase

725.4
The actual modeling process

735.4.1
Making Models

735.4.2
Testing Models

745.4.3
Communication

745.4.4
Concluding the process

755.5
Integrating Models

755.5.1
An iterative-incremental process

785.5.2
Techniques for integration

795.5.3
Communication and negotiation

815.6
Model Integration – Light Version

825.6.1
Begin

825.6.2
Middle

835.6.3
End

835.6.4
Communication

845.7
Integrating two equal models

855.8
Integration with higher/lower level models and systems

875.9
Additional Information

875.9.1
Easy elements

875.9.2
Difficult elements

895.9.3
Suggestions and observations

915.10
Wrap up

926.
Conclusions

926.1
Introduction

926.2
Answers to the support questions

926.2.1
How do the participants experience the process of model integration?

936.2.2
Which roles can be distinguished during the collaboration?

936.2.3
Does a general model really represent the described domain or does some significant part of the domain information get lost during the model integration?

946.2.4
What are the most difficult activities and bottlenecks in the process?

946.2.5
Is the chosen modeling method appropriate for model integration?

956.3
The Main Question

966.4
Suggestions for improvement and further research

98References

Overview of Figures

34Fig. 1: The principle of a manometer

35Fig. 2: Schematic overview of the functionality of a deadweight tester

39Fig. 3: The principle of an orifice plate

39Fig. 4: The principle of a venturi tube

40Fig. 5: The principle of a turbine flow meter

41Fig. 6: the principle of an ultrasonic time-of-flight meter

42Fig. 7: no obstacles in the meter cause no overall loss of pressure

44Fig. 8: the Flow-X/P by Spirit IT is the latest type of flow computer. It offers room for up to 4 stream modules. Each module itself is a small flow computer and represents one stream.

52Fig. 9; Architecture of a functional model made with eXLerate 2003

53Fig. 10: Example of a stream's overview in eXLerate 2003

54Fig. 11: System Overview in eXLerate

55Fig. 12: Trending overview

56Fig. 13: System settings example

57Fig. 14: An example of a Query and Protocol Table

58Fig. 15: An example of a Tag Database

60Fig. 16: An example of the xAnimations table

63Fig. 17: An example of a Calculation Sheet

64Fig. 18: An example of a (Daily) Report

96Fig. 19 Schematization of the model integration process

1. Introduction

In this chapter the problem is introduced, specified, cut down in pieces and expressed in terms of applicable questions that describe the problem. Furthermore, ideas of how to answer the main research question are raised via a description of the used methods. The structure of this thesis is also described here.

1.1 Introducing the problem

During the development of an information system, the domain in which the system is about to function should be investigated properly. This can be done in several ways, for example by interviewing or observing domain experts, by partaking in activities in the domain or by studying available sources. The result of this investigation may be that several visions on the domain, formulated from different perspectives, may be constructed. These visions, for example a technical vision or a business vision, may be expressed via a domain model. Domain models have, especially if represented via a graphical notation, a strong communicative function, which should make it less difficult for a systems architect to communicate about the specific domain with other people, related to either the system under construction, or the domain under investigation.

Domain models can be approached at basically four levels of ambition (Hoppenbrouwers et al. 2005). The first level is described as the singular level. At this level a domain can just be described as ‘domain’, which means from one perspective only. A domain is considered a non-problematic and static environment. At the second level, the elusive level, a domain modeler acknowledges that domain knowledge is not static, but dynamic, and that modeling is an iterative process, in which growing insight in a domain leads to an constantly changing and (hopefully) improving domain model. At the third level, the pluriform level, a domain modeler acknowledges that a domain is not just one entity, but something complex that should be described from several points of view to gain a more in-depth insight. This should lead to several domain models, written from several points of view. Finally, at the evolving level, a domain modeler also recognizes the fact that domains are evolving constantly, so that new concepts may be introduced and existing concepts may be changed or even cease to exist.

At this moment, all of the know domain modeling methods and techniques, like, for example, ORM (Halpin, 2001) and UML (Booch et al,. 1999) are to be positioned at the singular level. This does not mean that they are unusable for higher levels of ambition. It is very well possible to create several models of one domain, all from different perspectives.

Communication about a domain can be more difficult than it seems at first sight. This is especially caused by conflicting conceptions of a domain by different people. For mutual understanding between the stakeholders and to obtain their support for the system, it is necessary that some consensus about one general vision on a domain is reached. To achieve consensus about a domain, some negotiations are unavoidable. These negotiations should eventually lead to one general domain model.

The focus of this Master’s thesis lies with this process of model integration. To be more precise: the process of model integration as experienced by human actors. This excludes automated model integration. At this moment, it is quite unclear and not yet described what this process of integrating several models into one general model looks like, or if there is even such a thing as ‘the’ process. The purpose of this Master’s thesis is to observe some integration processes and to link these observations to knowledge about both modeling, negotiating and group collaboration.

Since these observations can be best made in a concrete environment with real models and systems, the thesis itself will focus on one specific case domain: the domain of oil and gas metering.

1.2 Main Question

In this area the problem area is introduced and the main question is set, as well as several supportive questions.

1.2.1 Problem Area

The problem area considered here is mainly the field of information modeling. It involves various types of actors, namely information system designers, domain modelers, domain experts and other relevant stakeholders who are involved in the information system development process of a certain system.

These actors may play different roles in different situations. At this point, two possible types of group are identified: the homogeneous group and the diverse group. The homogeneous group consist of just one type of actor. For example: if a group of architects gathers together in a meet to discuss the integration of several information models into one general model, this group can be considered as a heterogeneous group. This type of group may be considered as consisting of more or less equal individuals –when viewed from a higher level of abstraction-, judged on their position, perspective, concerns and modeling skills in the information system development process. The diverse group consist of several types of actors. For example: a group in which some domain experts and some architects are involved to integrate some models.

The core concepts involved in this thesis are thus domain model integration, domain modeling, negotiation, group behavior and collaboration and view integration.

1.2.2 Problem Definition

The problem investigated exists in all information system development projects and information modeling exercises in which two (or more) models are about to be (partially) integrated. The big advantage of investigating the model integration process during the information system development process is that, as soon as some particularities of this process are identified, (given that there is indeed such a thing as ‘the’ process,) these particularities can be used to improve the integration process, for example by creating rules and regulations to prevent mistakes, miscommunication and to smoothen and speed up the process. Such rules and regulations may result in faster and easier integrated domain models, which concern less errors and less loss of information.

In fact, probably every project and every actor who is involved in some domain model development has to deal with the model integration problem, be it implicitly or explicitly. It is therefore obvious that some insight in the process and possible suggestions for improvement may be welcome.

1.2.3 Research Questions

The main question in this Master’s thesis is:

What does ‘the’ process of integrating domain models look like?

Of course, this question is accompanied by some support questions:

1. How do the participants experience this process?

This question will be answered via interviews, in which the participants should write down their experiences and feelings throughout the integration process. Eventually, additional interviews can be held in order to gain some more in-depth insight in this matter. Also participating observation will take place.

2. Which roles can be distinguished during the collaboration?

This question will be answered through observation during some integration process (via a case). In order to do this properly, some literature on group collaboration will be studied in advance and some archetypical roles will be defined beforehand.

3. Does a general model really represent the described domain or does some significant part of the domain information get lost during the model integration?

If the final model appears to be significantly different than the sum of the initial models, then some more than ‘just’ the model integration process might have taken place. For example an extended modeling process or a redefinition of a domain. It may be important to recognize such events in order to clear up the results of the main research question.

In order to get an answer to this question, the initial models (which all describe about one aspect of the total model) will be compared to the integrated model. By means of a very close inspection, it should be made clear if every part of the initial models is placed in the integrated model. Eventually, if some information appears to be lost or if extra information is found, additional interviews with the model integrators can be held in order to learn why certain aspects are kept out of or put in the integrated model. Also the modelers will be interviewed about their view on the final model.

4. What are the most difficult activities and bottlenecks in the process?

During the integration of the models, the modelers are asked to maintain a log in which they should write down their thoughts and their experiences of the integration of the models. Beside that, the participants are asked to make a description of every phase of the integration process. This should lead to several snapshots of the process and can also point out some points which are hard to integrate. If necessary, additional interviews can be held in order to gain some more in-depth insight in the process.

5. Is the chosen modeling method appropriate for model integration?

An indication of an answer to this question can be derived from a) the level of satisfaction of the modelers after the completion of the integration process (are the modelers satisfied with the result?), the completeness of the integrated model (does the model really represent all aspects of the partial models?), and the time needed for each step of the integration process (a great amount of time per step may indicate that there are some difficulties).

1.3 Method

The conclusion of this thesis will be drawn based on two sources of information: a foundation of literature will be laid and empirical data will be gathered and interpreted.

First of all, four main variables are introduced which may be of a major influence on the process of domain model integration.

· The chosen modeling method.

· The roles people may play during the process
· The number of people involved
· The participants’ modeling skills and expertise in the field
These variables cover a diverse and significant view on domain modeling by hand (which excludes machine modeling). It includes aspects about the modeling process, the modeling method and the (inter)human factor. Other aspects may be included in a follow-up study, which can be more focused on certain aspects. For now, these variables will do.

In order to create some insight in this matter, three out of four variables are turned into constants:

· First of all, in order to control the first variable, the method, the experiments will be done using eXLerate, a method specifically designed for use in the field of oil and gas metering. This way, integration of models can be separated from integration of methods. Besides that, all the participants of the experiment (which will be described below) are at least in some way familiar with this method, so that difficulties with understanding the chosen method should not be an issue.

· Second, the number of roles played during the process of model integration is cut back as much as possible by attaching the role of ‘domain modeler’ all or almost all of the participants. It may be possible that one or two persons may be involved as domain experts. At least all persons have a large and thorough understanding of the field of oil and gas metering.

· The number of people involved in a modeling process will be set to one or two, where integrating with just one participant is chosen especially for referential reasons: pointing out differences between working alone and with more than one person. This way, group size variables may be cut out.

Because of the wide variety in background of the participants, and because of the difficulties of measuring social and negotiating experiences and skills, it is almost impossible to reduce the impact of this variable on the process. This should be taken into account when the experiments themselves, which are described below, take place and are being analyzed.

1.3.1 Literature

The literature required as a basis for this thesis can be found in four fields of research:

a. First of all, this thesis involves domain modeling. Some in depth background on domain modeling and modeling processes is required.

b. Second, this thesis involves group collaboration. It may thus turn out to be necessary to gain some knowledge on the field of group collaboration and related socio-psychological matters.

c. Third, this thesis involves negotiating as a prime issue. Some knowledge on negotiating skills and techniques may thus prove to be useful.

d. Finally, there is the field of digital architecture. Especially views and view integration might be useful here.

However, above all, the principles of game theory will be chosen as the main source of theoretical background. Game theory combines in some respect most fields above and provides useful and well-founded axioms to fund the whole.

Furthermore, a short introduction to the field of oil and gas metering is given, as well as a short introduction to eXLerate. This introduction is required for better understanding of the cases in this thesis.

1.3.2 Empirical Data

Empirical data required for answering the set questions in this thesis will be collected in three ways.

First of all, several interviews will be held with the domain modelers who are involved in modeling with eXLerate. This way useful information concerning their view on the modeling and model integration process will be obtained from the modelers. A questionnaire will be added as an appendix. The interviews involve five people, and are also a natural moment to ask more in depth questions to specific modelers about certain observations during the modeling integration process.

The second source of data will be observation of the modeling process. During this observation, the observant will only observe what is going on. He will not interfere with the process. There is also no time limit set. The environment in which the observation takes place is the regular office workspace, which is the natural habitat of the domain modeler. This way, the observer hopes to get an impression that is as close to the natural one as possible. He will, however, write down questions or place remarks as soon as the integration process is completed or halted for any reason. This way he hopes to get more information about the things he observed.

The third and final source will be experience based on participative observation by the author on model integration with eXLerate models gained by participating in a process of integration. These experiences will be described as such and the experiences will be compared to the data gathered via the interviews and the observations.

The gathered data will be connected to the literature-based foundation. Based on these connections, observations and reflections, conclusions concerning the domain model integration process will be made.

1.4 Structure of this thesis

This thesis will exist of the following chapters:

· Chapter one provides the introduction, main question and method.

· Chapter two will give an overview of foundations as found in the applicable literature.

· Chapter three will provide an introduction to the domain in which the case takes place.

· Chapter four gives an introduction to the used modeling method

· Chapter five describes the actual cases and the found empirical data.

· In chapter six, answers to the raised questions will be provided and conclusions will be drawn.

Furthermore, there will be a list of references.

Theoretical Framework

In this chapter background, theoretical framework and literature references will be provided. This chapter excludes the used modeling method, which will be described in chapter 4: a little more background in the field of oil and gas metering systems is required to better understand the method itself. This chapter therefore aims at describing the other variables, questions and issues as stated in chapter 1.

1.5 Introduction

The problem stated in this thesis focuses on an integration process. ‘The’ integration process (if there is really such a thing), of domain models, to be more precise. This process is highly dependant on a few key factors, namely:

1. People.
More specific:

a. the number of people

b. the role those people play

c. their professional skills

d. their behavior, especially during negotiations

2. A modeling method.
Which is described in chapter 4
3. A field of modeling.
Which is described in the next chapter, chapter 3
This chapter will thus be focused on people. In order to have an integration process, communication must take place. Inter-human communication implies that every person who interacts in such a process, plays one or more roles. The focus will be only on processes including two parties. This does not mean that the number of roles played by those parties is limited to two.

The roles people can play may come quite natural, but can also be chosen in order to get a certain result out of an inter-human interaction. These moments of interaction can be split in several key components which will be investigated more in depth in the rest of this chapter. These components are:

4. group collaboration

5. communication techniques

6. negotiation techniques

These components are all found in the field of game theory. Since game theory can be linked quite easily with constructive processes like domain modeling, this will be used as a common factor to bind the above.

Furthermore, a clear link may need to be established to two larger frameworks:

7. domain modeling

8. digital architecture

The link to those two larger frameworks will be made in the last part of this chapter.

1.6 Game Theory

Game theory is a field of applied social science. It is an attempt to capture social behavior in strategic situations in somehow mathematical or mathematically founded models. It is a way to describe goal achievement and interactions based on several criteria. These criteria depend on what game is played and who are involved. In other words: game theory offers a framework with which strategic interaction between players can be studied (Luce and Raiffa, 1957; Aumann, 1985)

There will only be a limited amount of types of games in game theory be taken into account since only model integration with two participants is observed. This means that multi-player games are left out, just as well as one player games. Also archetypical Game Theory-games, like the Monty Hall-problem
, Prisoner’s Dilemma
 and the Ultimatum Game
 are not discussed in this thesis.

Single player games are left out as well. It is even questionable according to some sources if single player game theory is a realistic entity, since one of the key components of game theory, an adversary who makes conscious choices and forces the other player to deal with them, exists. On the other hand, from a probabilistic point of view, single player games can be quite interesting, since they might address the internal complexity of a one player game (Dauben, 1999; McCain, 1999). What is a pity, since investigating domain modeling as a one player act from a game theory perspective would also be interesting.

The focus in this thesis will thus be on two player games. There are a few basic types of game theory which focus on two players which will be described below. These types may be recognized during observations made in the field.

A game, when viewed from a game theory point of view, consists of a few typical components. These are discussed in the next sections.

1.6.1 Components of a game

A game in game theory is typically a conflict of interest between n players. A player can be both an individual or a group. The purpose of the game is to find an outcome of the conflict. To achieve this outcome, a set of rules exist, in which possible moves of all parties are stated. A move might be the exchange or movement of information or pieces on the playfield. One game is therefore defined as the set of moves leading from the initial state to the outcome (Dauben, 1999; McCain, 1999).

A few key entities have been mentioned here. These are:

· Moves
Moves are the smallest identifiable ways in which a game can develop. Every move is in fact one state change caused by exchange of information or game pieces. Restrictions on moves are usually described in the rules of a game. Moves can be made on turn, or continuously for one player. The latter can be for example per move or until he or she reaches a certain state at which no more moves are possible or wanted.
The moves themselves may be defined as chances or choices: this depends on the amount of uncertainty involved. If someone asks for another card in blackjack, this can be seen as a choice. The outcome is controlled (a limited amount of states is available) but still uncertain: this is chance.

· Information
Information plays an important role within game theory. Information is the amount of what is known by a player about moves and possible moves.
Perfect information is reached when all moves and possible moves are known to all players. A game of blackjack is thus a game with imperfect information, while a game of draughts is a game with perfect information.
Less complete than perfect information is the information set, also known as imperfect information. An information set contains all the possible moves which could have been made throughout the game so far, as seen from the perspective of one player. For example: if a player plays the first pint in a game of tic-tac-toe, he has 9 possibilities. By placing the first pin, he limits his information set to the possible moves which can be made with the first pin in that specific position. This looks a bit like a decision tree in which only real options are displayed. An information set is bound to a player. The more information about a game and the moves is known to a player, the smaller an information set is. So, if there is a game with perfect information, there will only be information sets containing one node. In other words, an information set describes which information is not for sure known by a player (Shor, 2009). Usually the principle of information sets is applicable in games in extensive form (see next section).

· Strategy
A strategy can best be seen as a higher level plan for a game. It is a set of moves and best practices which a player follows throughout a game. Usually, a strategy is set on forehand and usually it can not be influenced much by developments during the game.

· Utility
Utility is best described as: that what is most likely to give most satisfaction to the person or group which has to take a certain decision. A disadvantage of using utility is that it usually can not or hardly be described in terms of “hard” variables. Utility might even rule out several formal calculations.

· Outcome
Outcome is also known as payoff. The outcome is the state of the game after the final move. This can be win or lose when playing a game like draughts or blackjack, but it can also be a number of points earned (for example: the computer game Space Invaders) or the money earned in a business game. Outcome is thus ‘touchable’, opposing utility, which is based on feelings and emotions.

1.6.2 Game form

Games can typically be divided in two so-called game forms. These are the extensive and normal form (Luce & Raiffa, 1957, chapter 3; Shor, 2009)

· Extensive Form games are defined by a set of rules which state which moves or move can be made by a player at which time. It can be seen as the representation of a sequential game. Usually, each possible move comes together with information on the payoff of the move and possible consequences for the followed strategy and final payoff.
A common representation of extensive games is via tree diagrams. In a tree diagram, each node represents the possibilities a player has at that moment. Each node is labeled with the final payoff if the game should end at that specific node. The root node represents the initial move.

· Normal Form games, on the other hand, already have a limited set of possible moves. In other words: the best possible move is at any situation known on forehand. It is thus possible to do complete calculations on the game on forehand.
Normal form games for two players can be represented via tables. In such a table, one player is represented by the rows, while the other is by the columns. Each column or row represents a possible strategy, while each cell in the table represents a possible outcome (payoff) of the game. It is quite common that a game like this ends with a so-called Nash Equilibrium. More information on Nash Equilibriums can be found in the section about strategies, outcomes and equilibriums below.
Besides regular games, game theory also includes the principle of subgames. A subgame is a part (subset) of a total game. The principle of subgames is usually only applicable to extensive form games. There are a few conditions applicable to the principle of subgames (Morrow, 1994, chapter 5 paragraph 2; Shor, 2009):

· The starting point is a single node which is the only node of that information set.

· It contains all successor nodes of the initial node and all of their successors

· If a node from an information set is part of the subgame, then the whole information set is part of the subgame.

In other words: when the players of a game enter a subgame, it is assumed that they all know the history and moves made in the game so far (i.e. they have perfect information on the game so far. If they do not have so, then the subgame will turn into a Bayesian game in which uncertainty plays an important role (more information on Bayesian games can be found further on). This information is required to determine who’s turn it is and what basic rules apply to the whole of the game. Furthermore, all strategies which are available to the players in the whole of the game should also be available in the subgame.

The subgame itself can be seen as a regular game to which regular game theoretic principles apply.

1.6.3 Types of Two Person-games

According to Luce and Raiffa (1957), there are three types of Two Person-games. Since the focus of this thesis is on Two Player-games, these game types will be discussed more in-depth below.

· (Two Player) Zero-Sum Games
Two Player Zero Sum games (also known as two player constant sum games) are games in which the net overall gain and loss is exactly zero. In other words, the benefits of one player are the losses of the other. For example, if two players make a bet for one Euro, one player will win and one will lose. In the end, at the outcome, both players will still have the same total amount of money. Zero-Sum games are therefore known to be strictly competitive.
These types of games are known to be Pareto optimal. This means that there cannot be made any improvements in the overall gain anymore. For example, if one player can increase his gains by participating in a game while others lose less or remain at a stable position, then a Pareto improvement takes place (Fudenberg & Tirole, 1983).
For finite two player Zero-Sum games, it should not really matter which game theoretic solution concept (Nash Equilibrium, minimax, et cetera) is used: all solutions should give the same outcome.
According to John von Neumann and Oskar Morgenstern, as described in their book Theory of Games and Economic Behavior (1944), n-player zero-sum games are in fact a generalization of two-player zero-sum games. Any zero sum game for n players can be transformed into a game for n + 1 players, in which ‘player n+1’ represents the global wins or losses.

· (Two Player) Cooperative Games
Cooperative games are games in which several players or groups of players may, up to a certain level, work together. There are basically two types of cooperation to be found in game theory (Tuomela, 2007, p.154).
The first type is the so-called selfish cooperation (or just ‘cooperation’, according to Zagal et al. (2006)). Selfish cooperation takes place when and as long as the benefits for a player are bigger then when not cooperating. The benefit of defection must thus be smaller than the benefit of cooperation.
The opposite of selfish cooperation is altruistic cooperation (or ‘collaboration’, according to Zagal et al. (2006)). This means that a player is willing to take some costs or losses in order to stay in a coalition and to help the other player achieve his goals. In some ways, a player thus makes it his or her new goal to satisfy the other player. This may go beyond collaboration: self-sacrifice is also possible.
These types can be found in clear implementations. There are two common types, which are discussed below.
The first implementation is cooperation via coalitions. This means that several players group up to play via cooperative behavior, in order to play against other individuals or coalitions. In that case, a game becomes a duel between groups of people. A soccer match is a perfect example of such cooperation: the two groups of eleven players form two coalitions.
The second implementation is via consensus-oriented cooperation. This means that all players or coalitions in a game, even minorities, are willing to agree on cooperating in a game, at least to a certain extent. Usually this form of cooperation can not be found in recreational games like board games, since this type of game usually lacks a finite and competitive element. Exceptions are for example the Lord of the Rings board game and a board game called Eagle Eye Agency (Zagal et al., 2006). However, in for example political games, this type of game can be found on a regular basis. A famous example is the Dutch “Polder Model”
.
Cooperation may be enabled by several influences. The following ones are the most common (Razin, 2009):
· external enforcement, which means that others (not necessarily other players) or factors outside the game force a player to cooperate.
· internalized values, which means that there is a need or will from inside to put effort in cooperation.
· rational cooperation, which is usually driven by non-direct factors of the game. For example knowing that future cooperation may be required.
All of the above is also applicable to two-person cooperative games. In addition, according to Luce and Raiffa (1953, p.114) three conditions must be met in order to have a successful two-player cooperative game:

· All preplay messages formulated by one player are transmitted without distortion to the other player.
· All agreements are binding, and they are enforceable by the rules of the game.
· A player’s evaluations of the outcomes of the game are not disturbed by these preplay negotiations.
· Two Player Non-Cooperative Non-Zero-Sum Games
This type of game is also known as non-strictly competitive games. For such games it is impossible to choose the utility functions of the players so that they sum to zero (Luce and Raiffa, 1953, p. 88).
Two Player Non-Cooperative Non-Zero-Sum games are usually long-term games. One can especially observe its peculiarities after a significant number of game rounds. It is quite common that aspects of a game change during the game. Consequently, it is quite common that, even without formal preplay communication, players end up with some form of collusion. At some point, strategic choices during a game may lead to an informal status quo agreement. This also implies that there are no strictly dominant strategies available or chosen during the game. More information about dominance can be found in the next section.
Based on the information above, one might expect the existence of a zero-sum cooperative game. However, all zero-sum games are strictly competitive, since they express a situation of pure conflict. Therefore, zero-sum cooperative games are non-existent (Luce and Raiffa, 1953, p.89).

1.6.4 Strategies

Most games are played based on a strategy (Springorum, 1993,
pp. 73 - 80). The outcome of such a game can be quite different, varying from pure win and defeat up to somewhere in between. The latter can in certain situations be considered as an equilibrium. In this section, strategies and outcomes are discussed more in depth. The goal here is to be able to recognize certain used strategies when observing information model integration.

Usually, only a limited amount of strategies is available for a player. These available strategies are called a strategy set. A player has a finite strategy set if the number of possible strategies is limited. For example, when tossing a coin, the only strategies are ‘head’ or ‘coin’.

Together, all strategies which are actually used in a game are called a strategy profile or strategy combination. A strategy profile exists of exactly one overall strategy per player. If there are four players in a game, the strategy profile will thus contain four strategies.

A strategy itself consists of moves. A move is a very concrete action taken, based on a strategy. A strategy can thus be seen as the algorithm by which the game is played, while the moves are the output of the algorithm. For example, an opening move in a chess game (like Dutch Defense or Benoni Defense) is a move, while it is part of the strategy of the chess player.

There are basically three types of strategies. These are briefly discussed below (Fudenberg & Tirole, 1983; Luce and Raiffa, 1957).

· Pure Strategy
A pure strategy is a total description of how a player will play a game. In a pure strategy a player has a move ready for every possible situation during the game.

· Mixed strategy

A mixed strategy is the possibility of using a mixture of several strategies. This concepts thus introduces the principle of probability to the choice of a pure strategy. Since probability may change during a game, the chosen strategy may as well. A strategy may even be chosen or changed at random. Consequently, an infinite number of strategies may come available now for a player, even if his or her strategy set is limited.

· Totally Mixed Strategy
Totally mixed strategy is the same as mixed strategy, except that the totally mixed strategy only allows moves with non-zero and strict positive probability. This sometimes forces the players to play a different strategy than they initially planned to play. This can especially be found in the so-called trembling hands equilibrium, which is described more in-depth below.

Best Practices

Besides the above strategies, some extra parameters or best practices can be added to the process of choosing the optimal strategy. Below some of the most common possibilities are being discussed. Please note that this is not an exhaustive collection.

· Backwards induction
Backwards induction is looking at a strategy from a solution’s point of view. A player usually reasons from a problem’s or game’s starting point of view. By reasoning from the wanted or optimal outcome of a game, a player might be able to generate a strategy which is applicable to the situation. By applying this principle several times, a player can determine the best possible strategies for most of the situations which are most likely to become reality. It is thus a form of anticipation.

· Collusion
When two or more players in a game secretly reach an agreement which influences the outcome in their favor and thus gives them an unfair advantage, then a case of collusion is set. In other words: collusion is fraud. It might involve misleading, gaining unfair advantage or defrauding people of their rights. This principle can for example be seen in bidding games, where some people agree not to bid on certain items in favor of someone else or by frustrating a bidding game by placing phantom bids (Fehr, 2005).

Example Strategies

Some strategies are well known and quite universally applicable throughout the domain of Game Theory. Below, some well-known strategies are named and explained.

· Mutual Assured Destruction
The Mutual Assured Destruction-strategy is a strategy which focuses on provoking the opponent, trying to destroy him, no matter if it leads to your own destruction too. This strategy is also known as the “death spiral”. People who adapt this strategy should be aware that the overall outcome of the game is a loss.
Mutual Assured destruction was also the strategy used by both the Soviets and the USA in the nuclear arms race during the cold war. The focus here was on preventing entering a game in which this strategy would be executed (the total destruction of the opponent, knowing the opponent will destroy you on their turn in the game (the “second strike”)).

· Grim Trigger
The Grim Trigger strategy is applicable to games with iterations (which means: the game consists of several rounds (iterations)). A player cooperates at first, until the other player satisfies the trigger condition. From that point on, the first player will defect for the rest of the game. This strategy is quite harsh and unforgiving. This strategy might seems useful at some points, but it might escalate and result in another strategy: the Mutual Assured Destruction-strategy (Axelrod, 2000)

· Tit for Tat
Tit for Tat is, like the Grim Trigger-strategy, a strategy which focuses on the behavior of the other player. It is also applicable on iterative games. However, the consequences faced after satisfying the trigger condition only last for one round. So if the other player is cooperative, then the player will be cooperative. If the other player is provoking one turn later, then the player will retaliate. And if the other player acts cooperative in the third round, then the player will cooperate again. This way, escalation like with the Grim Trigger-strategy can be prevented.
This strategy is also known as “an eye for an eye” or “quid pro quo”.

· Tit for Two Tats
A variant on the Tit for Tat-strategy is the Tit for Two Tat strategy. This variant has a larger tolerance for defective moves. A player who adapts the Tit for Two Tats-strategy will ‘ignore’ the first defective move by the other player, but will retaliate as soon as there is a second defective move. This might, depending on the player, be two times in a row or the second time in general.
The reason for adapting this strategy is to avoid the death spiral, which might lead to the Mutual Assured Destruction-strategy. A backdoor here is that it is quite easy to take advantage of someone who has adapted to this strategy, since it is so forgiving.

Dominance and Intransitivity

One aspect which can be determined for every strategy is the dominance of the strategy. Dominance is used to express the level at which one player’s strategy is unbeatable, indifferent of how the other player plays. Dominance is thus a way of expressing predictability in game outcomes.

Dominance is also used for a player to determine the strategy to be chosen. When a player should choose between two strategies to use in a game, then a strategy is dominant if the outcome is at least as good as the other.

There are basically two types of dominance.

· A strategy has a strict dominance if the strategy is at all points better than the other strategy.

· A strategy has a weak dominance if there is at least one set of moves in which the strategy has a higher payoff than another strategy, while the result in payoff is indifferent for other sets of moves, compared to the other strategy.

The opposite of dominance is intransitivity. If two strategies are intransitive, then they are neither dominating, nor being dominated by the other strategy. In that case, the outcome totally depends on how the players make their moves. Intransitivity thus leads to unpredictability (Fudenberg & Tirole, 1983).

1.6.5 Solutions and equilibriums

A Solution Concept is an overall game concept, predicting how a game will be played. An implementation of the concept is called a Solution. A Solution describes which strategy or strategies are chosen by the players of a game and thus contain a set of possible outcomes. In game theory jargon (especially when applied to game theory in economics), some solutions are referred to as equilibriums.

An equilibrium is a state in which a game has stabilized, in such a way that all the internal forces in the game balance each other out. A game can only exit such a state via intervention of exogenous forces (Ross, 2006). This thus means that both finite and infinite games (which basically means: games with and without an explicit ending) end up as an equilibrium. Since a solution concept may actually contain a set of solutions, several techniques have been developed to reduce this number.

Rationalizability

 The most widely used is that of Rationalizability. Rationalizability is used to attach weak constraints to players while these players still remain rational. This means that they will still look for the solution with the highest profit. However, by attaching these constraints, some strategies might become strictly dominated strategies, and consequently become unrealistic and unprofitable, resulting in removal from the set of possible solutions.

 There is, however, a slight difference in approach between two player games and multi-player games. All rationalizable strategies in two player games can be found by iterated elimination of all strictly dominated strategies. Multi player games, on the other hand, can contain strategies which are not strictly dominated, but can neither be the best response. So, for a rationalized result of all available strategies, these strategies should be (iteratively) eliminated as well (Fudenberg and Tirole, 1993).

 Sometimes a player is said to have perfect rationality. This means that a player is perfectly able to gain a maximum payoff or maximum utility, since he has the possibility to think through all possible outcomes.

Different Equlibriums

Several equilibriums appear quite often. Most common equilibriums are discussed below.

· Nash Equilibrium
The most famous equilibrium is the Nash Equilibrium. It is named after John Forbes Nash, a famous scientist in game theory. He based most of his work on that of Von Neumann and Morgenstern (Nash, 1950-2; Nash 1950). He generalized and expended their theories, especially those proposed in their book Theory of Games and Economic Behavior (1944).
The first appearance of the equilibrium was in his article Equilibrium Points in N-Person Games (1951).
The equilibrium itself is a solution concept for a game with at least two players. It is assumed that all players know the strategy of the other players and that no player gains any advantage by changing his or her strategy unilaterally. If all players have chosen a strategy and no player gains any benefit of a strategy change, then the current set of strategies and corresponding payoffs form a Nash Equilibrium.
Please note that the chosen strategies are not the de-facto best strategies, but the least bad ones. There is no direct relation between the chosen strategy and the maximum possible payoff. It is thus quite possible that the maximum feasible cumulative payoff is much higher than what is actually achieved via the Nash Equilibrium. In other words: it is possible that a Nash Equilibrium is not Pareto optimal.
Von Neumann and Morgenstern (1944) were the first to prove that a mixed strategy Nash Equilibrium exists for every zero-sum game with a finite set of possible moves. They also proved that for every such game, at least one Nash Equilibrium exists
.
However, further research showed that the equilibrium is not optimal for all situations: it leads to ‘misleading’ predictions in those cases. This conclusion resulted in the definition of a number of equilibriums based on the Nash Equilibrium, but refined for compatibility in certain situations (Fudenberg & Tirole, 1983). Some of the most important will be discussed more in-depth below.

· Subgame Perfect Nash Equilibrium
A subgame perfect Nash equilibrium is an equilibrium invented by Reinhard Selten. The principle is the same as with a Nash equilibrium, but with the exception that this equilibrium is focused on subgames. A game has a subgame perfect Nash equilibrium if every subgame of the game ends with a Nash equilibrium. To achieve this, the players of a game play at least one subgame during a game and these subgames have to result in a Nash Equilibrium.
The purpose of using subgame perfect Nash equilibriums is to eliminate non-credible threats from the set of possible equilibriums. Non-credible threats are threats which are –in theory– executable, but would never be executed if it was not a last resort for the player who stated the threat, although they are rational and do include a positive payoff. An example would be threats about using an atomic bomb.
Usually backward induction is used to eliminate non-credible threats in order to achieve a subgame perfect Nash equilibrium. Since backwards induction is used, the game has to be of perfect information (Shor, 2009).
· Trembling Hand Perfect Equilibrium
Reinhard Stelten also developed the Trembling Hand Perfect Equilibrium. This equilibrium takes into account the possibility of non-expected playing from an equilibrium point of view. Deviations from the intended strategy or strategies appear because of unintended moves by players. These deviations, although the chance that they actually happen is negligible, may be caused by ‘trembling’ of the hand, hence the name.
All games resulting in a trembling hand perfect equilibrium are played with a totally mixed strategy. In two player games, reaching trembling hand perfect equilibriums can only be achieved if both players use non-dominated strategies.
The Trembling Hand Perfect Equilibrium can be further refined to be applicable in even more specialized situations, for example via the Proper Equilibrium (Shor, 2009)

· Bayesian Equilibriums
A Bayesian equilibrium is usually used for games in which players have imperfect information. Regular Nash equilibriums are based on the assumption that all players have perfect information. This would exclude quite a lot of games from ending up with a Nash equilibrium. By using Bayes Theorem as a foundation for introducing probability in games, a framework for describing equilibriums for those kinds of games is given.
This concept has as a consequence that players are allowed to ‘learn’ throughout a game. Every player has a vision on its opponent or opponents, and this vision may change throughout the game, based on the information gathered by the playing and strategies used by the others. The vision a player has is called a ‘belief’. This type of game can be used to analyze imperfect information scenarios. However, since the Bayesian equilibrium does not require any restrictions in beliefs, a group of Game Theorists consider this equilibrium to be incomplete.
In a Bayesian game, players are considered risk-neutral by default. Still, all players are rational and thus trying to gain a maximum payoff. This is, however, only done based on those beliefs. Since there is no concrete information available to base calculations on, the maximum payoff is usually described as the maximum utility. This means that it is especially the strategy or solution that feels best which is preferred (Shor, 2009).

There are loads of other equilibriums available. Most of them are either just applicable to extremely specific situations or only applicable to certain fields of interest. Examples here are the Evolutionary Stable State equilibrium, which is usually just applied to ecology, biology and certain fields of psychology, and the Proper Equilibrium, which is a further refinement of the Trembling Hand Perfect Equilibrium and used in for example economics.

The next paragraph will focus on an element which plays a significant role in game theory: negotiation. Negotiation is, in most games, especially those in which communication between players is allowed, a key part of the game and has significant influence on the chosen or executed strategy and thus on the outcome of it.

1.7 Negotiation

Negotiation is a type of communication which is used specifically in situations of conflicting interests in order to reach agreement, to get a bargain or to create outcomes that satisfy certain interests. Negotiation is necessary when at least one party requires the other party's agreement to achieve its goals. Or, to use the words of Zartman, negotiation is "a process of combining conflicting positions into a common position under a decision rule of unanimity, a phenomenon in which the outcome is determined by the process." (Zartman, 2002)

Negotiation involves direct interaction between two or more parties. If a third (neutral) party is involved, the process is called mediation, although the techniques and principles involved are largely the same. If the third party even gets the final vote or the right to make the final decision in the negotiations, then the process is called arbitration.

Negotiation and negotiation techniques are mainly researched in the field of Negotiation Theory. Negotiation theory especially involves two fields of interest, namely decision theory and game theory. The latter is especially of interest for this thesis.

The focus will especially be on different negotiation techniques. These negotiation techniques can usually be matched to different strategies in a game. Some aspects of negotiation will be kept out of this thesis. For example cultural influences are kept out as much as possible. Although the influence of culture on negotiations is quite interesting and can be significant, cultural differences are irrelevant here. Even though the environment in which the research has taken place is internationally oriented, the population of people involved in this thesis is homogenous: all people involved are native Dutch males with a technical background.

The rest of this paragraph is therefore used to describe what negotiators are, a few common negotiation techniques and approaches and some circumstantial influences on negotiation.

1.7.1 Negotiator’s profile

According to Shell (2000), a negotiator’s profile is based on 5 parameters. Every negotiator can, up to some extent, have elements of these parameters in his personality. If one element is dominant, a negotiator can be classified as such a type of negotiator. No type is better or worse than another, it depends on the situation which type might be the most profitable one. These 5 elements are:

1. Accommodator
An accommodator is someone who tries to solve another’s problem in order to resolve conflict. It means that a negotiator is dependent on the other negotiator in order to get some payback. If the other negotiator is not an accommodator, then chances are that the negotiator will be left with empty hands. This type of negotiation can therefore be associated with altruistic cooperation.

2. Problem Solvers
Problem solvers are negotiators who think in terms of ‘create win/win situations’. They can be seen as very imaginative thinkers and opportunistic personalities who strive to ‘make the pie bigger’.

3. Compromiser
The compromiser is the kind of person who does everything to maintain a good relationship. Therefore he is willing to give in on his own demands, hoping the other one will do so as well, in order to reach agreement ‘somewhere in the middle’ and maintain a good relationship.

4. Competitor
The competitor sees a negotiation in terms of competition. According to a competitor, a person can win or lose negotiations. And, of course, there can only be one winner of the negotiations. These kind of people hate to lose or have the feeling they have lost. This kind of negotiator is useful in zero-sum games.

5. Avoider
The last type of negotiator can hardly be called a negotiator. The avoider will do everything to avoid conflict or situations in which negotiations are required. As a result, it might be quite problematic to reach an agreement with such a person.

Besides these five parameters, a good negotiator should, according to Shell, always try to honor the following four statements:

· Have a willingness to prepare in negotiations.

· Have high expectations on the outcome

· Have the patience to listen to others

· Have a strong commitment to personal integrity, thus respect the opponent’s personal ideas or beliefs.
These last four principles show high accordance with ‘positive affect’, which is discussed in section 2.3.3 (emotion and negotiation).

1.7.2 Negotiation strategies

According to Burgess (2004), there are traditionally two negotiation strategies. These strategies are called ‘interest-based’ and ‘positional’. Fisher and Uri (1981) argued that a third variant should be added: principled negotiation.

Furthermore, Fisher and Uri found that each negotiation strategy holds at least, to some extent, a bit of these parameters:

· Process
The process of negotiation describes how, according to game theoretical principles, a strategy is actually implemented. It describes the parties involved, their tactics, the context of the meeting and all the moves which are about to be made.

· Behavior
Behavior involves how the parties behave during the negotiations. It expresses their relationship toward each other, what their interactions with each other look like and what styles they adopt.

· Substance
Substance is what is being discussed, or what is put on the agenda of a meeting. For example, the problems or issues. On the other hand, also opinions, solutions or solution concepts and agreements (if any) which are reached at the end.

The tree different negotiation strategies are discussed below. Furthermore, a selection of the most commonly used negotiation techniques, which can be seen as implementations of the strategies, are presented. Sometimes a clear connection with a strategy in game theory can be made. If this is the case, this will be mentioned.

Interest-Based Negotiation

Interest based negotiation is also known as integrative negotiation, or “win-win”-negotiation. "Integrative refers to the potential for the parties' interests to be [combined] in ways that create joint value or enlarge the pie." (Watkins & Rosegrant, 2001) This strategy only works when more than one issue is being negotiated about. It requires trading of issues and solutions in order to create a win-win situation.

Integrative negotiation is not only important for finding overall satisfying solutions, it usually also means the found solutions are more accurate and they give the negotiator a better feeling at the end of the negotiation. Furthermore, successful interest-based negotiation leaves a good basis for future negotiations and cooperation.

What is really important in interest-based negotiation is the power to identify interests. Interest-based negotiation can only take place if interests are defined properly. This identifying usually is the hardest part: it should take place in the beginning of a negotiation, usually at a point at which the parties do not trust each other completely or are at least now willing to be fully open towards each other. The most important question at this identification process is ‘why?’. According to Spangler (2003), the answer will always be a description in terms of needs, hopes, fears or desires. Interest which cannot be described clearly are quite tricky and require further investigation: it may turn out that something else is wanted or that something is wanted for other reasons. This can for example be done by including a third party in the process.
Concluding, interest-based negotiation can be quite well matched with two-person cooperative games and the ‘problem solver’ profile.

Positional Negotiation

Positional Negotiation is a negotiation strategy in which just one issue is being discussed. In this discussion, the participants take their position, for which they will fight as good as they can, regardless of any underlying interest. Usually, each side starts at their extreme position. During the negotiations, parties may make concessions in order to reach a solution. The parties might eventually find each other somewhere halfway, thereby reaching a compromise. According to Fisher and Ury (1981), this kind of agreement will "probably reflect a mechanical splitting of the difference between final positions rather than a solution carefully crafted to meet the legitimate interests of the parties”.
Positional negotiation is quite an important strategy. Research has shown that this strategy tends to be the one people use by intuition when entering negotiations. Furthermore, research has shown that negotiators may actually become committed to the position they initially (and intuitively) took, thereby risking that they damage the whole of the negotiation process. This way, negotiating may work counterproductive(Spangler, 2003-2).

This does not mean that positional negotiation is a bad thing. In cases where the total profit cannot increase (so, no win-win situation may appear), positional negotiation may be the best choice. According to Helms (2003), "positional bargaining only works in the short term, during times of crisis, and when it meets the needs of the bargainers constituency. Hard positional bargaining beyond the system's perceived crisis timeframe damages relationships and alienates the bargainer."
Concluding, positional negotiation can be associated with the zero-sum game and the ‘competitor’ profile.

Principled Negotiation

Principled negotiation is negotiation based on four principles:

1. separate the people from the problem

2. focus on interests, not on position

3. invent options for mutual gain

4. insist on objective criteria

Negotiation via this approach is aiming for being constructive and objective, since its aim is to eliminate personal issues. According to Roger Fisher and William Ury (1981), a lot of negotiations and outcomes is influenced by personal and emotional issues. This was already discussed in the section ‘Utility’ (paragraph 2.2.1).

In their book Getting to Yes, Fisher and Ury also give seven rules of thumb in order to make principled negotiation work. These rules should especially help to handle ‘problems of perception’. In fact, they help making the first principle a bit more feasible. The seven rules of thumb are:

1. try to see the situation from your opponent's perspective

2. don't deduce your opponent's intentions from your own fears

3. avoid blaming your opponent for the problem

4. discuss each other's perceptions

5. seek opportunities to act inconsistently with your opponent’s misperceptions

6. give your opponent a stake in the outcome by making sure they participate in the negotiation process

7. make your proposals consistent with the principles and self-image of your opponent

Interest based negotiation and positional negotiation are usually seen as the extremes of one axis: interest based is seen as ‘soft’, while positional is seen as ‘hard’ (Burgess, 2004). On this axis, principled negotiation should be in the middle leaning a bit towards soft.

Negotiation Techniques

During the negotiation itself, several approaches and techniques may be applied in order to get the wanted result. Below, an overview of some of the most common ones is given. Although some approaches and techniques seem to tend more to either ‘soft’ or ‘hard’ strategies, they can be found as part of any used negotiation style: it is up to the negotiator to decide if he wants to use it or not.

· Advocate’s Approach
The advocate’s approach is a quite aggressive approach to negotiation. In it, a negotiator has only one mission: get most benefits for himself or the party he represents. In order to achieve this, the negotiator must find out what the limits are of the other party or parties. If he crosses the line of acceptability, the opponent or opponents may leave the negotiation and choose the ‘best alternative to a negotiated agreement’, BATNA. BATNA is the reference point in a negotiation. A party should never accept a solution that is worse than its BATNA.
This technique is regularly, but not exclusively, being used in zero sum games, since in zero-sum games one’s gain is another one’s loss and the target in such a game is usually to gain as much as possible.
In other words, the advocate’s approach is a typical approach which can be found in a ‘hard’ negotiation style.

· Cherry Picking
According to Fox & Hoch (2003), ”cherry picking means taking the best and leaving the rest”. Cherry Picking is an approach in negotiations in which a negotiator picks one specific case or set of data to refer to, which is applicable to his situation and has an outcome which is desired by him, while ignoring other data or cases which might provide contradicting information.
Cherry picking can be found in cases which suffer of logical fallacies. These fallacies may lead to false dilemmas. A false dilemma is a dilemma in which only a limited amount of options is considered, while in fact a larger amount is available.
Cherry picking can be considered a part of the ‘hard’ negotiation approach.

· Creative Approach
The Creative Approach, sometimes cited as New Creative Approach, stimulates negotiators to look for solutions and agreements ‘outside the box’. It stimulates people to use their creativity instead of just focusing on the initial problem, in order to find the best situation for both parties. This approach can be seen as a variant of the win-win approach.
According to Hernández Requejo and Graham (2008) this approach fits perfectly with their ten commandments on ‘the new negotiation’. Most of these are directly derived from Japanese principles of negotiation and include elements like “accept only creative outcomes”, “use techniques of creativity” and “continue creativity after negotiations”.
This approach can be associated with a ‘soft’ negotiation strategy.

· Salami Tactics
Salami tactics are a step-by-step approach in order to achieve a goal. A negotiator using salami tactics shall not present his final goal at once, but use small steps to achieve it. In other words: the salami is cut in slices and eaten per slice, until it’s too late for the opponent to interfere, because the salami is already gone.
This tactic has been used successfully in the political landscape. Hitler used it to gain absolute power and so did the Hungarian communist party after the Second World War. More recently, British politicians used this tactic to silence Euro-skeptical opponents in the 90’s (Huhne, 1992)
Salami tactics can especially be used or misused when the opponent plays tit-for-tat or tit-for-two-tats.
Salami tactics can be considered as part of the ‘hard’ strategy.

These techniques and approaches may be recognized during the process of model integration. Now, having the ‘technical’ elements of negotiation described, there is just one key component on the topic of negotiation to be described in this chapter. That component is emotion.

1.7.3 Emotion

No matter if all the tactics may be right and the negotiator is an experienced person who is suitable to do the job, in the end emotions will have a significant influence on the outcome of a negotiation process. Emotions may even lead to intense and irrational behavior and thus to irrational decisions. Part of negotiating is thus to create an atmosphere in which the right emotions are elicited in order to get the wanted result (Van Kleef et al., 2004)

Basically two emotional states can be recognized. These states are called affects. The ability to respond to situations in a stable or even predictable way is called dispositional affect. The level of dispositional affect a person has, has influence on his or her behavior in stressful situations, like negotiations can be. The two affects can be seen as two extremes on an axis. They are:

1. Positive affect
A positive affect represents a good mood. People who live their life as optimists, looking through so-called ‘pink lenses’, have a positive affect by default.
During negotiations a positive affect can usually be recognized by a high level of confidence of the negotiator, the tendency to use cooperative strategies and the overall lack of use of aggressive methods. They tend to work in with constructive methods.
Also in the follow up of the negotiations, negotiators with an overall positive affect tend to respect the final agreement more and are usually open to future negotiations.
Perhaps not surprisingly, negotiators with an overall positive affect do have a better feeling about the achieved results than negotiators with a negative or neutral affect.

2. Negative affect
A negative affect represents a ‘bad’ mood. People who have a negative affect in general are said to see life through ‘black’ lenses. A well-known example here is an angry negotiator.
Negotiators with am overall negative affect cooperate less, use more aggressive and competitive tactics. They are usually more focused on their own business than on possible common gains.
In general, negotiators with a negative affect get less good results, expressed in negative utility.
However, negative affect can also be extremely useful. Especially in zero-sum games or in showing commitment the use of negative affect may lead to less bad results.

Of course the use of certain emotions or a certain affect does have effect on the other negotiators. Several emotions have been researched, both of positive and negative affect. These emotions and their effects are (Van Kleef et al, 2006):

· Pride
Pride is a positive affect which leads to a generally more positive affect in negotiations. Negotiators who put some pride in their negotiations will find their opponents to become more cooperative and constructive during the negotiations.

· Regret
Regret can be seen as a constructive and thus positive affect. Negotiators who show some regret during negotiations will find that their opponents will, in general, get a better impression of them. However, using regret also makes the demands of the opponents increase. A side effect is that the use of regret leads to more personal satisfaction by the negotiator.

· Disappointment
Disappointment is intrinsically a negative affect, since it will lead to a bad impression of the negotiator by his opponents. However, it is a constructive affect, since opponents are usually willing to lower their demands if a negotiator shows well-founded disappointment.

· Anger
Anger is a negative affect. If a negotiator uses anger, chances are that a negotiation tends to become zero sum. The overall satisfaction level by the negotiators tends to drop and so does the profitability of the outcome. The use of anger does not automatically mean that opponents will lower their demands, but it is possible. On the other hand, the use of anger causes the use of more dominating and yielding behavior by the opponent.

1.7.4 Studying negotiation

Finally, some remarks have to be made about studying negotiation. Research has proven that studying negotiation is a quite difficult task, especially since setting up negotiations under laboratory conditions is a quite difficult or maybe even impossible task. The main reason is emotion. There are several reasons why studies of negotiations in laboratory conditions fail (Bazerman et al., 2000):

· In a real life situation, people do negotiate for real wins or to prevent real losses. This causes a certain emotional behavior. The need for this behavior and thus for these emotions is usually lacking in a laboratory. The emotions which are then experienced are known as ‘cold’ emotions, while those shown during real negotiations are known as ‘hot’ emotions. ‘Cold’ emotions are found to be more easy to manipulate.

· Negotiations in a laboratory are usually ‘guided’ up to a certain level, for example by theme, length of the discussion, number of participants, et cetera. This causes unnatural behavior by the participants.

· Studies in a laboratory are usually just focused on one or two aspects, leaving out a big range of influences.

· Lab studies usually involve observation by a third party. This may lead to misinterpretations in the expressed emotions by the observant. Interference of the third party during the negotiations might disturb the process, while using questionnaires and interviews afterwards give different results than when caught in the heat of the moment.

This also explains why in this thesis the current approach was chosen. Using a population of students to model and integrate models would be working under the conditions stated at the first dot. These students probably lack the intense binding with the result: they don’t have anything to win or loose by it. By using a real domain with real professionals who negotiate about real issues, this problem might be overcome. By asking them to be interviewed, these emotions can be captured. By active participation, this data can be verified up to a certain level, since there is no third party to observe.

1.8 Domain Modeling and Digital Architecture

To complete this chapter, some words on domain modeling and digital architecture in general are given. This paragraph is relatively short, since only references to existing work and ongoing research will be given. The purpose of this paragraph is not to describe this work again or to summarize it, but to situate it in this landscape.

1.8.1 Systems, Models and the Application Landscape

Regular domain modeling methods, like ORM (Halpin, 2001), UML (Booch et al, 1999), ER (Chen, 1976) and FCO-IM (Bakema, 1996) do not take the possibility of plurality into account. All these models have a one domain – one model approach. This approach may lead to several domain models of the same domain, all with a different focus. This may eventually lead to different systems, all describing a part of or one view on the total system. A full overview of the systems or of the full functionality of the domain is hard to get. This is also a typical situation that may exist in evolutionary domains: new systems or functionalities are added constantly and overview is lost.

From an architectural point of view, one can then state that the application landscape is cut up into little pieces. Unity and consistence will be hard to find. This will eventually lead to more difficult, more complex and more expensive maintenance on the application landscape (Rijsenbrij, 2004, ch. 2, pp. 12).

The first aim of the approach of systems modeling integration will be to get a more consistent view on the domain which may lead to more logical systems in the application landscape.

1.8.2 Modeling Styles and Strategies

Because models, made by different modelers, are being integrated, some aspects about the modeling itself may be noticed. First of all, there may be a difference in modeling style and strategy to be noticed in the different models. Even in this case, a case in which a mostly pattern-based domain is chosen, there is still quite some room left for the modelers to put their mark on the model (Batra & Wishart, 2004). A pattern-based domain is a domain in which some patterns (templates) for several objects already exist which can be included in the model.

For the record: modeling strategies are not to be confused with the game strategies discussed in previous paragraphs.

It is, however, questionable if pure modeling strategies as described in the Master’s thesis of Joris Reijbroek (Reijbroek, 2006) and styles are applicable to the process of model integration. In his thesis, Reijbroek describes how modelers approach a domain from scratch, thereby creating a new model, while in this case several models or parts of models already exist at the beginning of the process.

Reijbroek distinguishes between two types of modeling domains: a free form and a restricted form. The free form allows the modelers to use every possible approach to create domain models, while some rules on modeling exist in the restricted form. In this case, the free form is used.

1.8.3 Modeling Processes

Leonie Lindeman discussed modeling processes in her Master’s thesis (Lindeman, 2006). She found a way of working for creating domain models, a so-called ‘modeling process’. This process will be referred to as ‘domain modeling process’ from here on, to distinguish it from other (modeling) processes and for the convenience of the reader.

The domain modeling process Lindeman wrote about consists of the following elements:

1. provide the goal of the model

2. choose a modeling technique

3. gather information about the Universe of Discourse

4. scan the domain (to gain insight in its complexity and scope)

5. organizing several sessions to get clarification about the domain

6. deriving concepts, relations and constraints

7. perform checks on i.e. consistency and redundancy

Furthermore, four elements are part of the domain modeling process as well (but not a specific step in the process):

· identifying the problem owner

· handling issues during the clarification sessions

· setting a level of ambition

· creating documentation

This domain modeling process can, up to a certain extent, be adapted for the model integration process. There are, however, a few differences which should be taken into account. Again, since several models already exist at the start of this process, some steps may not be applicable. For example, choosing a modeling method is already done here. This might be an issue when several models made in different modeling languages are to be integrated. Selecting the goal of the model, gathering information about the universe of discourse and performing a domain scan are activities which should already have taken place during the construction of the initial models.

However, steps like deriving concepts, relations and constraints are mandatory. By joining two models new concepts, relations and constraints may appear and old ones might get lost or altered. Also performing checks on the consistency of the model and on redundancy are mandatory steps in the integration process. Redundancy and lack of consistency may appear or seem to appear quite frequently, especially of more then one model incorporates a certain concept.

In other words, especially the latter steps of the modeling process are to be executed with care, while the first steps should have already taken place.

Domain Description: Flow Measurement

The domain of flow metering, in this context being a sub-domain of the domain of the oil and gas industry, is quite a complex one. Many objects and entities form play a crucial role in the whole of the field. In the paragraphs below, some key factors of this field are explained and put in context.

1.9 Metering

The keyword in the field of flow metering is metering (Miller, 1996, ch. 1). This word indicates that something is being metered, in this case: flows of oil and gas. “Oil” and “gas” are more complex entities than it might look at first sight. They will be discussed more in-depth later on.

Metering is done via meters. In the field of flow metering, several types of meter exist, all with their own focus and purposes.

The first question to be answered in this field is “what is being metered?” Usually, this is some plant, like an FPSO, a pipeline or an oil platform. These entities form a closed domain which can be modeled. The metering itself is usually done via streams. A stream is usually a pipeline configuration with an inlet, some meters to measure the characteristics of the flow, some valves to direct the flow through the stream and an outlet. Of course, some key factors play a crucial role here. At least three factors must be known and thus metered to make proper flow calculations: calculations made based on flow properties. These calculations are usually made for administrative purposes: one needs to know how much oil or gas has been put through the pipeline to make sure the right bill is presented.

These three factors are pressure, temperature and either mass or volume (Benedict, 1984). These three factors should –ideally- be metered on the same point in the stream. Together they can be used to calculate the amount of flow and, if the composition of the flow is also know, they can be used to measure the amount of energy (expressed in Gigajoule) that is being passed on. Usually this is expressed in either a total or in a factor per time unit (like hours, days or months). These three key factors are explained more in-depth below.

1.10 Pressure

Pressure is defined as intensity of force and is usually expressed in Newton per square meter or in Pascal. Pressure itself is, however, to be defined in several ways (Miller, 1996, ch. 3):

· First of all, there is absolute zero pressure, which means the pressure in a total vacuum.

· Related to this is absolute pressure. This is the pressure above absolute zero.

· Third is atmospheric pressure, which is the regular pressure in the atmosphere above the absolute zero. For references in for example ISO-standards, 101.325 kPa is chosen.

· Gauge pressure is the difference in pressure between the inside of a pressure element and the pressure outside the element.

· Vacuums are gauge readings below atmospheric pressure

· Differential pressure is the difference between two pressures

· Statis pressure is the pressure exerted by a fluid either at rest or in motion.

· Dynamic pressure is the difference in pressure levels in a stream. A difference can be caused by for example a curve in the pipes.

· Total pressure is the sum of the static and dynamic pressure.

Pressure can be expressed in several units, each of them with their own characteristics. For example, for atmospheric pressure can be expressed in standard atmospheres (atm) or millimeters of mercury at 0˚C, while absolute pressure is expressed in pounds per square inch absolute (psia), Bars (bar) or Pascal (Pa) or Kilopascal (kPa). Differential pressure can also be expressed in Bar, Pascal and pounds per square inch differential (psid), but also in, for example inches of flowing fluid or inches of water at flowing temperature. Other types of pressure are usually expressed in for example pounds per square inch gauge (psig), Deciboyles or Torr.

1.10.1 Pressure metering

There are a few ways to measure pressure. The first one is by using a manometer, the other one is by using a deadweight tester (Miller, 1996, ch. 3).

The manometer is a quite simple device, shown in the figure below. It’s principle is based on a u-tube, filled with a liquid. One end of the tube is connected with high pressure, the other end with low pressure. The difference between the pressures is expressed in terms of height difference of the liquid between the two tube ends. The limits of most manometers are about 21 kPa as low limit and 690 kPa as high limit. The standard atmospheric pressure is 101,325 kPa (also known as 1 Bar). Most manometers can be highly accurate, depending on its exact design and the used liquid. Some manometers have an accuracy of about 0,003 percent of reading.

[image: image1.jpg]
Fig. 1: The principle of a manometer

A schematic overview of a deadweight tester is shown below. It’s principle is also quite simple: some mass is put upon a piston and cylinder, compressing some liquid (usually oil) or gas (usually air). The compressed oil or gas only has one way out: the meter at the other end of the bar can be pushed forward. The higher the pressure, the more the meter will be pushed and the higher the meter value will be. Most deadweight testers have operating limits from 0.07 kPa to 69,000 kPa with an accuracy range of about 0.01 to 0.15 percent, depending on design.

[image: image2.png]
Fig. 2: Schematic overview of the functionality of a deadweight tester

1.11 Temperature

Temperature is expressed in terms of average energy of microscopic motions of a substance. On a larger scale, temperature is a property that transports energy via heat from one object to another: if two objects have the same temperature, no heat is transmitted. Difference in temperature, usually experienced via ‘hot’ and ‘cold’, makes the energy of the hot object flow to the cold one, until the temperatures of both objects are equal (Miller, 1996, ch. 3)

Temperature is expressed in a few temperature scales. In 1968, the International Committee on Weights and Measures adopted the Kelvin (k) scale as the basic thermodynamic unit. The Kelvin scale has two main references: its base value 0 is also the absolute zero in temperature: the point in which no molecular activities can take place anymore. Another reference point is 273,15 k, being the melting point of water. The Kelvin scale is closely related to the Celsius scale, which was defined in 1742. That scale also uses two points of reference: 0 as the melting point of water and 100 as its boiling point. Kelvin and Celsius temperature scales map one on one, meaning that raising a temperature by one degree Celsius also means that it is raised by one degree Kelvin. The absolute zero in Celsius scale is thus defined as -273.15.

Another temperature scale is Fahrenheit (F). This scale uses three reference points: 0 is the stabilized temperature for a mixture of water, ice and ammonium chloride, 32 is the melting point of water and 96 is the common temperature of a healthy human body, measured at, for example, the arm pit. The absolute zero in Fahrenheit is -459,67°F. The difference between the boiling point and melting point of water is exactly 180°F. This makes recalculation from Fahrenheit to Celsius and Kelvin relatively easy: one degree Fahrenheit is 5/9 degree Celsius. Celsius and Fahrenheit meet at -40: -40°C is -40°F.

The last main scale is Rankine (R). This scale uses the absolute zero as starting point and the same scale as Fahrenheit. 0°R is 459.67°F.

1.11.1 Temperature metering

There are basically three ways to measure temperature (Miller, 1996, ch. 3):

· the thermal expansion of a solid, liquid or gas,

· thermally induced thermoelectric force (emf), and

· measurement of resistance change in a resistor or a thermistor.

These principles are made concrete in thermometers. Below is a small overview of the four types that are most commonly used:

· A mercury-in-glass thermometer is a well-known and widely used temperature metering device. It is widely used because of its simplicity: a bulb reservoir filled with mercury and a capillary as expansion for the mercury are needed to make the system work. When the mercury in the bulb is heated, it expands into the capillary. The relation between the expansion and the increase in temperature is linear, which makes scaling well possible.

· Gas or vapor expansion thermometers are thermometers based on the principle that a gas expands at a constant volume when its temperature is increased as long as its temperature is between -220°C and 760°C. The expanding gas in the thermometer causes a so-called force bar to move a bit, thereby changing the relay output pressure. This change also causes so-called feedback bellows to change a bit. The total of the change can be noticed as the output signal of the transmitter system, which is an indication of the temperature.

· The third widely used thermometer is based on thermocouples. A basic thermocouple consists of a pair of dissimilar conductors joined together at both ends. One of these two conductors holds a reference temperature, while the other one is raised or lowered to the temperature to be measured. This difference in temperature causes a so-called electromotive force. Via some polynomial functions the temperature can be derived from this force. The specific polynomial function depends on both the used materials for the pairs and the reference temperature.
These thermometers are cheap, easy to produce, easy to use, reliable and very accurate. This type of thermometer is therefore widely used in many industrial environments.

· The last type of thermometer that is being used is based on resistance. In this type of thermometer, the change of resistance in a metal or semiconductor (thermistor) is used to measure temperature. The most used metals are platinum, copper and nickel. Semiconductors are usually made of a metallic oxide. The resistance is usually compared to a reference point, usually the resistance at 0°C. Platinum has, for example, a resistance of exactly 100 Ohm at this temperature.
This type of thermometer is highly accurate, since temperature differences of 0.02°C are easily measurable. Besides, these types of thermometer have a wide operating range (from -184°C to 689°C). Furthermore, these thermometers are easy to produce and maintain. Therefore, they are widely used for several industrial applications.

Most thermometers are not exposed directly to the process material: this to prevent damage from corrosion, erosion abrasion or dangerous pressure levels. Instead, so-called wells are often used. Wells are no more than a contact surface for a thermometer, for example a metal pin. When a well is used, one might want to take into account that these wells might need some correction. For example, if a metal well is exposed to sunlight, the temperature may rise by two percent.

1.11.2 Stream metering

For the temperature of a moving stream, as is usually measured in the described domain in this case, two possible corrections have to be taken into account. Although these corrections are small and are often considered negligible, they still may cause errors in flow calculations (Miller, 1996, ch. 4).

First of all, the temperature that is measured in a stream is usually not the true (static) temperature. This temperature can only be measured if the stream has stopped moving or if the thermometer moves at the same speed as the stream. A stream flowing along the thermometer causes friction, which usually leads to increased heat. However, the difference is not significant: experiments with water at 93°C show that the difference between static and indicated temperature is only 0.001°C.
Second, the pressure of a gas has a direct relationship with its pressure. This is of influence when for example a flow meter like a orifice plate is used (a detailed view on types of flow meters is given in the section “flow meters”): the temperature of a stream increases if the pressure increases and the loss of substance is zero.

1.12 Flow Units

Flow units are either expressed in volume or in mass. Mass is only related to time factors: it is usually expressed in for example ton per hour, pound per second or kilo per minute or any combination of a mass unit and a time unit. Volume, however, is not only related to time units, but also to temperature: a certain volume at a certain temperature per certain time (Miller, 1996, ch. 2).

Sometimes flow is expressed in terms of base units per second instead of actual units per second. When calculating with actual units per second, the current operating temperature is adapted, while the flow rate is recalculated to a certain volume at a standard (base) temperature at base units per second. This base temperature is defined in ISO standard 5024 and is set at 15°C. In Europe, however, it is quite common to calculate with normal units instead of standard units. These normal units have a reference temperature of 0°C. Both standard and normal units have a reference pressure of 101.325 kPa.

Flow meters can be categorized in four classes, each having its own advantages and applications (Miller, 1996, ch. 6):

1. Velocity measuring (vortex, turbine, ultrasonic and magnetic)

2. Discrete volume measuring (positive displacement)

3. Velocity and density dependent (orifice, nozzle, venturi)

4. True mass flow meters

These meter types will be discussed more in-depth in the paragraph about flow meters.

1.12.1 Reynolds Number

The large number of variables used for flow calculation makes flow engineering quite hard: it is impossible to evaluate all conditions for all flow meters and all pipeline conditions. Therefore, a few key variables have been combined in a dimensionless number: Reynolds number. The number has been found to be an acceptable correlating parameter to combine the effects of viscosity, density and pipeline velocity.

1.13 Flow Meters

Flow meters might be the most important metering instruments in the field of oil and gas meters. However, there is no such thing as “the flow meter”. According to Hayward (1975), in 1975 already more than 100 different types were available and new ones are introduced continuously. For the British Standard BS 7405 (1991), flow meters were categorized in 10 major groups, all with different characteristics: 45 variables were defined as most important factors in selection. In this paper only the most commonly used flow meter types will be discussed. Therefore, two different types of flow meters are being distinguished:

· differential producers (also known as head class flow meters) and

· linear flow meters.

1.13.1 Differential producers

The most commonly used flowmeter type –for both gases and liquids- is the differential producer. Especially the orifice meter is widely used: ten years ago, more than 80 percent of all installed flowmeters was an orifice flowmeter.

The underlying principle of a differential producer is failry simple. It is based on Bernoulli’s streamline energy equation. This equation states that as soon as a stream is contracted, some of the available potential energy (static pressure) is turned into kinetic energy. By building a contraction into a pipe section, this principle can be applied. This can be measured, for example by introducing a pressure transmitter at the contraction.

The ISO 5167 standard describes calculations on the two types of meters described below. Or, to be more accurate, the standard describes “Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full”.

Orifice meters

The principle of an orifice meter is based on building such a contraction in the pipe section. This is usually a plate with an orifice somewhere in it. For accurate metering, the pipe/orifice-ratio (expresssed as a ratio of diameter), als known as the β-ratio, should be between 0.2 and 0.75. Besides, the pipe diamtere should be at least 50 mm. Although the accuracy level drops for a β-ratio larger than 0.75, it is sometimes used in systems where accuracy is unimportant.

Depending on Reynolds number, the shape of the orifice can be chosen. A Reynolds number greater than 10.000 might indicate the choice of a square edged orifice plate (the orifice plate has square edges at the orifice) while values lower than 10.000 might point towards a quadrant (rounded) or conic (45° angle edge) entrance.

Smaller line sizes (from about 12.7 to 50 mm) require different metering methods. In those pipelines, flow can become unpredictable because of the highly raised influence of for example pipe roughness, plate eccentricity and edge sharpness. For these pipelines, so-called corner pressure taps are preferred.

For the smallest pipelines (smaller than 12.7 mm) it is common to select an orifice integrally installed with a differential pressure transmitter. One requirement here is that the fluid (either liquid or gas) is clean.

[image: image3.png]
Fig. 3: The principle of an orifice plate
Venturi Tubes

Although based on the same principle as an orifice meter, a venturi tube has the advantage that it can be used to measure dirtier liquids and gases than is possible with an orifice plate, since dirt can not build up in front of a meter plate. A venturi tube is constructed by narrowing the pipe to a certain ratio of the original pipe width for a certain length. At the outlet of the narrow section the pipe regains its original diameter. This causes the flow to have a difference in pressure, both before, on and after the narrowed section. Based on this measurement, a calculation of the amount of flow can be made.

The venturi tube was initially designed for large applications (diameters from 150 mm and up), but they are nowadays also used for smaller applications. When used with a pipeline with a large Reynolds number (of over 100.000), the venturi tube becomes highly accurate.

[image: image4.png]
Fig. 4: The principle of a venturi tube
1.13.2 Linear Flow Meters

The reaction of a linear flow meter is, as the name predicts, linear with the increase or decrease in flow. For example, the spin of the rotors of a turbine flow meter will increase or decrease linearly with the increase or decrease of flow. The two most commonly used types of linear flow meters are described below: the turbine flow meter and the ultrasonic flow meter.

Turbine flow meter

A turbine flow meter has at least one rotor that rotates in line with the flow that is being sent through it. A turbine flow meter therefore includes moving parts inside the flow meter. These can cause deviations in the measured amount of flow. With proper calibrations and by using the characteristics of the meter, these influences can be reduced or even be neutralized. When all these influences are properly controlled, a turbine flow meter is very accurate: a precision of 0.05% is very well possible. Both gases and liquids can be measured with a turbine flow meter, as long as they are clean. For optimal performance, a turbine flow meter is either designed for gas or for liquid metering purposes. Metering with turbine flow meters is described in the AGA7 standard (1981, rev. 2002).

The biggest problem when using turbine meters for metering liquids is the steadiness of the stream: it should be as homogenous as possible. As soon as a deviation in the stream (for example: a bubble of gas) appears, and that is not uncommon, the rotor or rotors might suddenly show an effect called ‘overspeed’, meaning that the rotor blades are turning way faster for as long as the friction is lower. Experiments have shown that, for a mixture of up to 10% of gas in a liquid, the impact of the gas could not be reduced to less than 3% deviation on the measurement (Millington & King, 1986).

A turbine flow meter has an output in pulses. These pulses can be counted and used for calculations. When a turbine meter is being calibrated, the meter gets a so-called meter coefficient. This meter coefficient is either expressed as a K factor in units of pulses per cubic meter or as a meter factor in cubic meters per pulse.

Together with other measured values like pressure, density and temperature, an overall accuracy (uncertainty) can be set for the measurement of mass flow (in for example kilogram or ton) or standard volumetric units.

[image: image5.png]
Fig. 5: The principle of a turbine flow meter
Ultrasonic Flow Meters

Ultrasonic flow meters are based on the use of ultrasonic signals to determine several properties of the gas or liquid that is flowing through the meter. Ultrasonic meters are available for both gas and liquid metering. For the latter two types are available.

The first ultrasonic meter type that is available for liquid metering, the so-called time-of-flight meter, is based on sending a high frequency pressure wave at a certain determined acute angle through the liquid across the pipe. The time required for the wave to reach the opposite wall in the pipe depends on if it was send with or against the flow direction and on the speed of sound through the liquid. Flow-rate information is obtained via the measured time. Time-of-flight meters come in several configurations. The biggest difference comes with the number of paths used for metering. With a multi path meter, several pulses from several points are sent through the pipe section, making it possible to create a better view on the actual flow rate. The biggest difference between a single beam and multi-beam time-of-flight meter is the need for a velocity profile, which describes several properties of the liquid that flows through the pipe. A disadvantage of the time-of-flight meter is that the liquid itself should be as clean as possible. If the liquid is not completely clear, the gathered data might need to be checked for integrity (via interrogation and rejection). This raises uncertainty and includes much more calculation.

The second ultrasonic meter type that is available is known as the Doppler flow meter. Within this type of meter, the pulse is not terminated as soon as it has reached the other end of the pipe, but it is reflected back to a detector by particular matter moving with the flow. The difference between the reflected frequency and the fixed transmitted frequency implies the flow rate. However, in contrast to the time-of-flight meters, should a liquid that is flowing through a Doppler meter have some impurities: the difference in frequency is caused by such impurities.

Ultrasonic meters for gas flow are quite similar to the ones built for liquids. They are widely used on flare gas applications. Ultrasonic gas flow meters are either multi path or Doppler meters. Gas properties are calculated by flow computers either by the AGA8 standard or by the NX-19 standard, based on the input from the flow meter.

The biggest advantage of using ultrasonic flow meters is that those meters are not causing any overall pressure loss, as is the case with all other meter types. On the other hand, all ultrasonic meters are sensible for swirl in the flow.

[image: image6.jpg]
Fig. 6: the principle of an ultrasonic time-of-flight meter
[image: image7.jpg]
Fig. 7: no obstacles in the meter cause no overall loss of pressure
1.13.3 Calibration

A flow meter is only usable if it is very accurate, which means:

· a small bias error and

· a high precision level

Calibration is used to test and set the accuracy of a flow meter. Several methods of calibration are available for both gas and liquids.

Liquids

Liquid meters can be calibrated in two ways: via weighting (mass) and via volume. The weighting method is described in ISO 4185 and the volumetric method is described in ISO / DIS 8316.

Mass calibration can be split in two types: static and dynamic. Both require a liquid reservoir, a pipe from the reservoir to a weight receiver on a scale and a flow meter somewhere at the pipeline. With static calibration, a certain amount of liquid (usually water) is pumped through the pipeline during a certain amount of time. In the end, the weight that is put through the pipeline is calculated and compared to the data from the meter. Dynamic calibration requires a steady stream. The calibration run is started as soon as the stream is stable and stopped as soon as the receiver received a certain amount of weight. Since the weight in the receiver changes continuously, mass correction calculations have to be applied. Volumetric calibration works the same way, but then volume is metered instead of weight.

Another way of calibration is by using a so-called prover loop, using a ball prover. With ball prover calibration, a loop with a known volume and length is installed in the system. The loop has an entry and an exit. A ball is entered in the entry and pushed forward by the liquid to the exit. The number of pulses between the exit and the entry are measured and should –ideally- be the same as the predefined value. By repeating this test several times, the accuracy of a meter can be calculated.

Gases

Gas meter calibration is almost the same as liquid meter calibration. Calibration can also take place via weight or volume measuring. When using weight, the scale is replaced by a beam scale and when using volume, a tank with a known volume and a pressure meter are installed. Also bell provers can be used. With a bell prover, a calibrated amount of gas is processed over a measured time interval via some test meter. The same principle is applied for piston provers.

1.14 Flow Computers

A flow computer is basically, just like any other computer, a calculation device. In this case, a calculation device equipped with the algorithms to process incoming raw data from flow meters to values in standardized units and base conditions. Furthermore, the flow computer can indicate deviations between measured values and required values for optimal operation for each meter. These signals are known as alarms, and the limits for optimal performance of the flow meter are called alarm limits. These alarms usually come as high and low alarms, indicating which limit has been reached. This happens for example for pressure, temperature, loss of flow, et cetera. Other types of alarms are status alarms. They indicate the status of several key factors, like for example the loss of connection with the flow meter, gas chromatograph or the heartbeat of a redundant flow computer. For more information about redundancy, please read that section.

A flow computer is also a totalizer. It sums the pulses during one hour, one day or one month and stores them in its memory. These stored values can be used for a very important function that comes, up to some degree, with a flow computer: a report function. Most flow computers have the ability of producing some sort of rudimentary report of the amount of flow that passed the flow computer and the conditions by which it did so. These reports are important, since they can be used for billing purposes, given that the flow computer is certified for use with the matter, apply to the wide know and used standards, like AGA8, AGA10, ISO5167, et cetera and that the flow meters are calibrated. The API MPMS (1993, chapter 21) standard holds information on how flow computers should be configured. The standard describes:

· the ability to audit and verify the information produced by a flow computer,

· the data which a flow computer should retain,

· the items which should be audited if modified,

· the reports which the system will be capable of producing,

· the methodologies to follow.

A supervisory computer system or other electronic device, like a printer, should be connected to the flow computer to optimally use the data stored inside. These supervisory systems basically have three tasks: supervision, accounting and auditing.

Producers of flow computers are for example Spirit IT, Emerson, Omni and Yokogawa.

[image: image8.jpg]
Fig. 8: the Flow-X/P by Spirit IT is the latest type of flow computer. It offers room for up to 4 stream modules. Each module itself is a small flow computer and represents one stream.

1.15 Supervisory Systems

A supervisory system is basically a functional model of a stream or group of streams: a closed domain of streams. With a supervisory system, all the information of the domain is gathered produced and displayed, so the end user (usually referred to as operator) will have a clear overview of what the domain contains on information. One of the methods used for creating systems and models like this, is eXLerate, developed by Spirit IT. This method will be discussed more in-depth later on, since it will be used as the main method for the case in this thesis.

Supervisory systems usually only cover one specific small domain, like one FPSO (which is usually an old single-sided oil tanker what is been rebuilt into a mobile oil platform), one stream (for example at border crossings) or one small plant (for example the gas supply at an aluminium smelter). For even bigger overviews, overviews over several streams or a large plant, so-called DCS-systems can be used.

As described before, a supervisory system has three tasks: supervisory, accounting and auditing. This is done in several ways.

First of all, a supervisory system offers a clear overview at one point over what is going on in a certain domain, via indicators (for example alarm statuses) and meter values, which can be seen in one overview.

A second advantage is the data gathering: since all data is gathered in a centralized point, deviations in data are detected much easier and faster then without this centralization.

A third advantage is the possibility of generating complete reports. Most flow computers already gather the data needed for reports, but in case someone wants some more specific report or an overview of reports (in case of a redundant system, for example, with several flow computers involved), the user-specific reports can be generated much easier. Besides, most reports can be exported to popular data formats, like for example Excel sheets.

A fourth advantage is the possibility of controlling a system from one central point. For example valve control and line up, the start of a validation run, et cetera, can be done via one central point.

A fifth advantage is the central role the supervisory system plays: it is able to gather and translate data to and from all devices it is connected to. For example: A DCS system usually just requires a small amount of information from the SVC (Supervisory system) on specific indicators in that specific domain. The SVC is able to present those in the right format at the required time.

1.15.1 Redundancy

It is not uncommon that more than one flow meter is connected to on

flow computer or that one flow meter is connected to more than one flow computer, or even a combination of both. This all can be connected to one (or sometimes two) supervisory computers. The reason for using double equipment or connections is that it gives a backup in case of failure. This way the system can keep functioning while one of its elements is being serviced or replaced. Besides: it is easier to detect errors. This principle of using several devices as back up of each other is called redundancy.

Redundancy comes in basically four types. These are discussed below. Each type comes with a visualization. Of course, a combination of all of the above is also well possible.

	Device Redundancy

Device redundancy is making use of mirroring of one or more devices, for example flow computers, flow meters, gas chromatographs, et cetera, to prevent the whole system of being forced to go off line in case one device fails or shows errors.

	[image: image9.jpg]

	Communication Redundancy

In case of communication redundancy, all communication lines are backed up via a redundant second line. This prevents the system to fail on broken cables and several types of electrical problems.
	[image: image10.jpg]

	Server Redundancy

To prevent for errors caused by server failure, one or more backup servers can be installed to make sure the data sent from the devices is always gathered by the supervisory system. Most redundant servers work via the “duty/stand by” principle.
	[image: image11.jpg]

	Network Redundancy
This type of redundancy is the fourth type of redundancy. It involves the use of several network connections or even several networks to facilitate client server communication.
	[image: image12.jpg]

1.16 Products

Gas and oil have already been mentioned as fluids that can flow through a pipeline and as entities that can be metered. In this paragraph, some more information on both products will be given.

Oil and gas are basically known as portable and manageable carriers of energy. They appear in different shapes and have a wide variety of origins, although they have some common ones. In fact, when an oil rig is found (as fossil fuel), natural gas can come up as a natural side product: natural gas is a side product of the same process, it just contains lighter components than oil. Both oil and gas exist of a composition of elements. The composition of these elements gives important information about the value of the fluid: not all compositions represent the same amount of energy.

1.16.1 Gas

Gas can be won at several locations. Nowadays, more and more ways of producing gas are invented. For example, the so-called bio-gas, made of bio-mass (organic waste) is a new way of creating energy-containing gases. An old way of producing gas is via oil and gas fields, in which gas can be found as a fossil fuel.

These gases are not instantly ready for use. When they are mined (raw gas), they usually have several side products. For example, the raw gas as found in Groningen, The Netherlands, as being one of the largest gas fields in Europe, has a concentration of sand, water and heavier hydrocarbons. Also dangerous or unwanted side products like nitrogen gas, carbon dioxide, vapor mercury and hydrogen sulfide may appear in the gas. The latter one turns the gas into so-called “sour gas”. Most of these elements (but not all) can be filtered out by expanding the volume of a gas. By lowering the pressure of a gas, the temperature will drop (this can be easily tested by emptying a filled can of deodorant gas: the more deodorant is sprayed out, the colder the can becomes). Most elements (for example the heavier hydrocarbons) will condensate into a liquid or a solid because of the temperature drop. Some of the elements (like the sulfur) are sold as side products.

At locations where gas is won as a side product of oil and where gas distribution is either impossible or too expensive, the gas is instantly burned on the site. Although this might sound like an environmentally unfriendly solution, the alternative is even worse: the impact of methane gas (which is usually at least 80% of the gas composition) is about 21 times as big as the impact of carbon dioxide, which is one of the two main residues of fully burnt methane gas (besides water damp, which forms about 66% of the residue). The least bad part of this treatment is that natural gas is one of the cleanest of the fossil fuels when it’s fully burnt. For example: coal is usually almost wholly transformed into carbon dioxide.

Components

Natural gas is usually expressed as a composition of at maximum 34 elements. These elements are:

	Methane
	Ethane
	Propane

	2-Methylpropane
	n-Butane
	2-Methylbutane

	n-Pentane
	2,2-Dimethylpropane
	n-Hexane

	2-Methylpentane
	3-Methylpentane
	2,2-Dimethylbutane

	2,3-Dimethylbutane
	n-Heptane
	2-Methylhexane

	3-Methylhexane
	n-Octane
	2,2,4-Trimethylpentane

	Cyclopentane
	Cyclohexane
	Methylcyclohexane

	Benzene
	Toluene
	Hydrogen

	Carbon monoxide
	Hydrogen sulfide
	Helium

	Argon
	Carbon dioxide
	Oxygen

	Nitrogen
	Water
	n-Nonane

	n-Decane
	
	

Usually, for flow and gas calculation purposes, these elements are reduced to 21 components. These elements are:

	Methane
	Propane

	Nitrogen
	Water

	Carbon Dioxide
	Hydrogen Sulphide

	Ethane
	Hydrogen

	Carbon Monoxide
	Oxygen

	Argon
	Helium

	i-Butane, consisting of:

· 2-Methylpropane
	n-Butane

	i-Pentane, consisting of

· 2-Methylbutane

· 2,2-Dimethylpropane (*)
	n-Pentane, consisting of :

· n-Pentane

· Cyclopentane
· Benzene
· 2,2-Dimethylpropane (*)

	n-Hexane, consisting of:

· n-Hexane

· 2-Methylpentane
· 3-Methylpentane
· 2,2-Dimethylbutane
· 2,3-Dimethylbutane
· Cyclohexane
	n-Heptane, consisting of:

· n-Heptane

· 2-Methylhexane
· 3-Methylhexane
· Methylcyclohexane
· Toluene

	n-Decane
	n-Nonane

	n-Octane, consisting of:

· n-Octane

· 2,2,4-Trimethylpentane
	

2,2-Dimethylpropane, also known as neo-pentane, can be added to both I-pentane and n-pentane. This does, however, have some consequences on several gas characteristics, like compressibility, relative density, gross heating value and net heating value. The GPA 2172 standard (2000, new edition in 2003) describes how the calculations on neo-pentane handling should be done.

Another issue that may rise is the incompleteness of a gas specification: not all specifications do have higher values than n-hexane (C6), which means that information on n-heptane, n-octane, n-nonane and n-decane are missing. In that case, all elements bigger than n-pentane (C5) are added to n-hexane. To compensate this lack of information, a so-called C6-split may be applied. This means that the C6-component is split up based on theoretical values (for example gained from a previous gas analysis) into these larger components. The calculations are basically quite simple: each component has a certain weight and a certain appearance (for example: element C6 has weight 86,177 and contributes 70% to the component, while element C7 has a weight of 100,204 and a contribution of 30% of the composition. The weight factor of each component is gained by multiplying the weight and the contribution. The normalized weight factor is gained by dividing the weight factor by the sum of all weight factors. In this case, the weight factor for C6 is 60,324 and for C7 it is 30,061. The sum of the weight factor is 90,385. The normalized weight factor is now 66,741 for C6 and 33,259 for C7. So, if a gas composition has 1,000% C6 (not split), it will be split according to the normalized weight factors.

Calculations

Several calculations apply on working with gas. Below a few well-known ones are listed:

· AGA 8
This is a standard made by the American Gas Association for calculating compressibility.

· AGA NX 19
This is also a standard for calculating compressibility, based on given pressure, temperature, relative density, amount of Carbon Dioxide and Nitrogen.
· ISO 6976
This ISO standard is also used for calculating compressibility, but only under one standard condition. Besides, characteristics like gross heating value and standard density can be calculated.

· ISO12213 (SGERG 88)
This standard is also used for calculating compressibility

· AGA 10
This standard is used for several thermodynamic calculations, like molecular weight, entropy, internal energy and most of all the velocity of sound for a certain gas composition.

· AGA 5
This standard can be used for calculating the energy flow rate and the calorific value of a composition.

1.16.2 Liquids

Metering is usually done for different types of oil, but it is also applicable on other types of liquids, like water or even paint. The principles remain the same. Since for this thesis the focus is on oil and gas, only oil will be discussed more in depth here.

Petroleum, also known as crude oil, is a naturally occurring, flammable liquid that exists of sediments of organic material that has been formed in the past. Oil exists of several types of hydrocarbons and other organic components. It was first mentioned in a publication by George Bauer from 1546, called De Natura Fossilium (Bauer, 1546). Most crude oil can be found under certain layers of rock, deep in the ground, but sometimes it can be found on the surface as well, like on the Canadian oil sands. Crude oil has the same origin as natural gas: it just contains the heavier elements of the total composition. Crude oil is not only the basis for several types of fuel, it is also the basis for plastics and medicines.

Crude oil can be, when it is extracted from the earth, come in several compositions, which have influence on the looks (crude oil can be all shades from clear, yellow and brown to black), the viscosity (some types of crude oil are still liquid at -30°C, while others are already solid at +20°C), the smell (“sweet” crude oil has a low amount of sulfur, while “sour” oil has a high one) and thus its usability.

Composition

The composition of crude oil may differ quite a bit, just like with natural gas. Usually, at least 50% of the crude oil exists of several types of hydrocarbons. 50% is usually heavy liquids with very high viscosity, like bitumen. Percentages of up to 94% have also been registered.

From trade perspectives, this difference in composition has influence on the price as well. Every oil field delivers oil with a different composition. It is therefore not possible to make a statement about “the oil price” (always in terms of barrels, where a barrel has a standard volume of 159 liters), without naming the composition of the oil. In Europe, this is usually Brent Oil, named after the large oil field in the North Sea, while in the United States, West Texas Intermediate (WTI) is the standard. A barrel of WTI usually has a higher price than a barrel of Brent.

Although there is a huge variety in compositions and although the extremes (like for example some bitumen) differ a lot from more regular compositions, an indication of the composition of the chemical elements of crude oil can be seen as:

	Component
	Percentage

	Carbons
	83 – 87%

	Hydrogen
	10 – 14%

	Nitrogen
	0.1 – 2%

	Oxygen
	0.1 – 1.5%

	Sulfur
	0.5 – 6%

It is also possible that some traces of some metals are found, like iron, copper, nickel, et cetera. If they are found, their quantity is so low that the amount can be considered as insignificant.

The composition of the carbons can be split up in several other components. Below is a table with the percentages per element of the composition.

	Component
	Percentage

	Paraffins
	15 – 60%

	Naphthenes
	30 – 60%

	Aromatics
	3 – 30%

	Asphaltics
	Remainder

Paraffins, also known as alkanes, are simple molecular structures that exist of carbons and hydrogens. The common formula is CnH2n+2. In this formula n refers to the number of C-atoms.
Naphthenes are so-called cycloalcanes. This indicates that they do have the same composition as alkanes, but with rings formed by carbon molecules in their chemical structure. The common formula is CnH2(n+1-g). In this formula n refers to the number of C-atoms while g refers to the number of rings.

Aromatics are like cyclo-alkanes, but now with several unsaturated bonds. This usually results in more than one bond between two C-atoms. There is no common formula to describe these kinds of structures.

Asphalt is a highly viscous liquid or semi-solid. It exists of very heavy carbons. The ratio between C and H is usually about 1:1.2 (for example toluene: C6H5CH3.

Calculations

Like with gas compositions, several standards have been set on calculations

with liquids. The most important ones are discussed briefly.

· API 2540
This calculation, set by the API, is used for density calculations and conversions for several oil products.

· GPA TP-25
This standard is used for density calculations and converisions on LPG, Liquified Propane Gas.

eXLerate - Modeling Oil and Gas Metering Systems

An overview of the used modelling method is given in this chapter. All the different components are described as well as their integral consistency.

1.17 Introduction

eXLerate is a modelling method aiming at creating system models for the oil and gas metering industry. It is based on spreadsheet functionality as offered by Microsoft Excel 2003 at its core: flow calculations and simulations. However, eXLerate has more to offer: it also offers the possibility to create visual models for HMI/SCADA purposes. Together, this forms a strong combination for the creation of accurate and fast flow metering system models.

In this chapter the eXLerate environment is described more in depth as a means of creating functional models for the oil and gas industry. These models can be split in six components, categorized in groups, which together form a complete integrated functional model. These model components are:

· Displays (the yellow group)

· Database & Communication (the black group)

· Animations and Graphics (the blue group)

· (Flow) Calculations (the orange group)

· Reports (the green group)

· Internal calculations and memory (the red group)

These components, their functions and their relations to each other in the model will be discussed more in-depth below. To already give an indication of an architecture of the components, a schematic overview of the groups is given below (Kok et al., 2007; Kok & Rutjes, 2007; Rutjes, 2007)

[image: image13.jpg]
Fig. 9; Architecture of a functional model made with eXLerate 2003
1.18 Displays

Displays are the most interactive part of the model. The displays do display a lot of information about the displayed part of the system. An example stream is displayed on the next page.

[image: image14.jpg]
Fig. 10: Example of a stream's overview in eXLerate 2003
In this example, two streams (represented by the coloured lines) with a certain flow rate (FT), temperature (TT) and pressure (PT) are displayed. FT is the regular abbreviation for Flow Transmitter (in this case shown as an ultrasonic meter), the actual flow meter. TT and PT are abbreviations used for the Temperature Transmitter and the Pressure Transmitter.

The streams are connected via a so-called Z-configuration. A Z-configuration is used to line up the flow transmitters in a serial instead of a parallel configuration. This way, the flow transmitters can be tested and possibly calibrated: if a certain difference in measured flow is observed while the meters are placed in Z-configuration, an alarm might be triggered. The maximum allowable difference is either user-definable or configured via certain calculation standards. The process of testing is called “proving”.

To control which streams are to be used and in what configuration, valves are used. These valves can be found at the begin and end of each stream and in the middle of the Z. This valve is called a crossover valve. For accurate metering, only a certain number of possible configurations is applicable. It is highly unwanted to have a situation in which an amount of flow can float through the pipes without being measured. An example of a bad configuration is by opening the inlet valve of the lower stream, the crossover valve and the outlet valve of the upper stream. As soon as this situation occurs, an alarm is triggered and a warning signal is displayed.

Furthermore, some graphics are used to indicate the status of the several components. Every transmitter or valve is displayed by a circle with a certain coloured part. These colours are used to indicate the current status of the corresponding element in the system. For example: green usually indicates a healthy transmitter status or an open valve, while red indicates a closed valve or a measured value that is out of limits (so-called “low” and “high” limits), out of critical limits (so-called “lowlow” and “highhigh” limits). These colours might also indicate travelling valves (travelling from open to closed or vice versa), failed connections, et cetera.

Furthermore, some data about the measured values is displayed, sometimes in a table below the streams. This way an operator can see in one view what is going on in a system.

Other displays are for example used for overviews of other streams, more in-depth views on (parts of) a stream or a stream component, details on proving, details on sampling, details on fast loops, details on ultrasonic meters, details on gas chromatographs, a legend to explain the used symbols and colours, and a system overview screen. The latter is displayed below.

[image: image15.jpg]
Fig. 11: System Overview in eXLerate
This screen displays the position of the current system compared to other components, like flow computers, printers, programmable logical controllers, DCS-systems, et cetera. It might also be used to give an indication of which stream is connected to which flow computer, how the wiring is arranged, what type of wiring (usually RS-485, RS-232 or Ethernet). In other words: it is a schema used to show the physical systems architecture.

A frequently used display is the “totals” display. This display is used to give an overview of all key values that are arranged per meter and, if applicable, meter type.

Also trending and an overview of all active alarms are displayed via the display sheets. Trending is used to give an overview of the development of a certain parameter over a certain amount of time. See for example the screen below.

[image: image16.jpg]
Fig. 12: Trending overview
A final function, but definitely a key one, of the display sheets is to enable the user to alter the systems settings. This is usually done via one or more “settings”-displays. An example of such a display is given on the next page.

[image: image17.jpg]
Fig. 13: System settings example
On this display the keypad values of a gas are displayed, plus several other system settings like alarm limits. A user can enter his or her own preferred values in the white fields on the display and confirm them via one button click. If the user has enough rights to alter the settings (a maximum of 2000 different security levels is available), the values as given in the fields are copied by the system and placed in the correct position. These values are immediately applicable as soon as the button is clicked (sometimes the user is prompted to confirm his or her input). The user can see this, since the current values on the display (which are displayed to the left of the input fields) are altered. If these values are used on other displays (for example alarm limits), they are changed there as well.

Of course every developer is able to make his or her own display pages with the information he or she considers crucial for the system.

1.19 Database and Communication

The so-called “black group” represents all options for communications with other devices. In this group these devices are specified, the amount of exchangeable information is set and each value of this amount is described by itself. In this paragraph, each of the key components are described.

1.19.1 Query and Protocol Table
Together, the query and protocol table form the xComms-sheet. The purpose of these sheets is quite straightforward. An example of both sheets is provided below.

[image: image18.jpg]
Fig. 14: An example of a Query and Protocol Table
All devices with which the eXLerate system should communicate are described in the Protocol table. A system designer can specify how communication should take place per unit, in a very detailed way. For example, not only the specific address (be it a COM-port or an IP-address) is to be specified, but also the used protocol for data exchange (RTU, ASCII, et cetera). Also several options for connecting can be set. For example, the delay between each connection attempt, or the sequence in which the connection to the devices should be arranged.

The Query table is used to define each connection a bit further. A system modeller can specify a set of queries in which a range of data to be accessed is specified. It is not usual that someone needs all information from a flow computer (which can easily be over 10.000 data entries). Just connecting to a flow computer while using one query that covers the whole of the data registers is therefore not useful: it would slow down the system drastically (or, if old-fashioned RS-232 or RS-485 communication is used, even cause the system to crash). Each of the ranges with data registers is now accessible for use in the tag database.

1.19.2 Tag Database

At the very heart of each systems model is a database. This database is filled with tags. Each tag has a unique name and represents one single value in the whole of the system. Such a value can be any parameter: Boolean, string, integer, real, et cetera.

An example of a part of a tag database is shown below.

[image: image19.jpg]
Fig. 15: An example of a Tag Database
Each tag has several set parameters. First of all, it has a unique name. This name is usually given in a structured way. For example, S1_TT_CUR refers to stream 1, temperature transmitter, current value. Furthermore, each tag has a number, a description, an alias (used for trending and alarms, since they are better readable and thus more user friendly than tag names and shorter than descriptions). Each tag might also be attached to a location. For example, tags that are part of the parameters of a stream might be grouped as such.

The most important part of a tag is the value it represents. This is displayed in the “value” column. All other parameters in the tag are just used to describe this value and to indicate how this value should be interpreted, as for example units (the type of information that is represented by the value, for example kilograms or minutes) and format (describes the number of digits to be used).

Sometimes a “value2” and “value3” column can be found. These columns are only used in case of a redundant system: in that case the data enters via two different flow computers. Which of the value columns is used depends on which flow computer has master status. The redundant one is set to slave status and is only used in case the master fails.

The columns “query”, “address” and “data type” describe where the information can be found. The query refers to an entrance in the query table, which is discussed above. Address represents the specific location on which the value can be found. This can for example be a ModBus-address (which is used for example for communications with flow computers) or a PLC-address (which refers to a location in the memory of a programmable logical controller). Data type represents the type of data (Boolean, integer, real, string, et cetera) that should be received from the specific location.

Furthermore, some information about alarms caused by this value might be described. This might be a status alarm (which is only switched on or off, like for example when communications with a PLC are lost (alarm raised) or found (no alarm raised)) or a level alarm (for example, if a flow rate exceeds a certain level a high or low alarm might be raised). To prevent several cases of loose alarm (for example, a flow rate that is just a little too high for one second), a delay might be set for each alarm: this way, the alarm will only be activated if a certain value exceeds or meets certain limits for a certain amount of time.

A total system usually contains a few thousand tags. Values between 2000 and 8000 are not uncommon. The largest system ever built worldwide (not with eXLerate) even contains over 700.000 tags!

1.20 Animations and Graphics

A HMI/SCADA model would be quite useless if there would be no (graphical) indications of changes in a system. To achieve this feature, so-called animations and graphics sheets are defined. These sheets can be divided in a few categories: animation, editing, alarms, events and other features. These will be discussed in detail below.

1.20.1 Animations

The xAnimations-table is used for definition of all graphical animations in the system. Each animation is defined as an object with a name, to which can be referred via a tag in the xAnimatons table. Each animation can be defined for a whole object or for a part of an object, up to 1 sub-level. So, a sub-object of the whole object can have its own animation parameters, while a sub-object of a sub-object cannot.

Each animation is set based on a few parameters. The first one is the name. This name is unique and corresponds with one or more objects in the model. Another one is the animation ID, which is attached to an animation in order to be generated by the system. The visibility should also be set: sometimes an object should only be visible at a certain occasion. Besides pure visibility, also blinking might be defined: this feature allows an animation to blink at certain conditions. The line and fill colour of the object can be defined as well. These are usually the most important features: they allow the graphical indication of an object to be adapted to a current situation. For example: if a valve is closed, it should be red, and if a valve is opened, it should be green. The parameters and values that are required to define the fill colour are set in the animation sheet as well. Usually they are gathered directly from the TagDB or calculated via a calculation sheet.

An example of the xAnimation table is given below.

[image: image20.jpg]
Fig. 16: An example of the xAnimations table
1.20.2 Editing

Sometimes adding, inserting or adjusting several key values might be necessary. For example the override values for temperature, pressure, flow rate, et cetera might be set or changed while the system is already up and running. Even the used key pad gas composition, which is for example used on a failure of the gas chromatograph, might be set or adjusted while the system is already up and running.

To do so, eXLerate offers a so-called xEditing table in which all the adjustable values are described. Per value, an exact location is defined, as well as the type of data, the data group and the target of the newly gained values. These statements are usually triggered via a ‘confirm’-button or the like.

Only the locations defined in the xEditing table are editable by users, all other locations in the system are locked while the system is up and running.

1.20.3 Alarms

An overview of the four most recently generated alarms is displayed in the xAlarms table. The contents of this table can be used as a banner on each of the display pages (usually directly above the button bar) for comfort of the operator of the system.

The content of the alarms is generated based on values in the TagDB, either directly derived from flow computer values or generated based on limits set in the system model.

An overview of all alarms is given in two display pages: the CurrentAlarms page and the AlarmHistory page.

1.20.4 Events

The xEvents table is used to define all activities that should take place on set times. The most common example is the automatic generation of reports: this can for example be done on hourly, daily or monthly basis. Usually six types of events are defined: per second, per five seconds, per minute, per hour, per day and per month. Of course other time constants can be defined and used as well.

1.20.5 Other Features

Other features are gathered together in the xTables table. These features include:

· The definition of the used colour scheme throughout the model.
eXLerate allows the use of 64 different 16 bit colours in the model. Only the first 8 colours in the table are system defined, the rest is user definable.

· The definition of all button functions.
every single button in the system should be defined, for proper usage with the Button-wizard. This might lead up to a few hundred definitions in larger systems. These definitions are usually ordered by display sheet.

· The used reports
In this table an overview of the used report sheets is given. If a report is not defined in this table, it cannot be used for automatic report generation.
· The used displays
If a display page is not defined in this table, it will not be accessible by any system user. Also the range of editable values per page (if any) should be defined here.
· Users and user levels
eXLerate offers the use of up to 2000 different user levels. Per feature a minimum required user level can be set. By default, four different users are defined: Guest (level 0), Operator (level 500), Engineer (level 1000), Administrator (level 2000).
1.21 Calculations

Although a lot of calculations are already performed in the flow computer,

most data delivered by it is still to be considered “raw” data. Some flow

calculations have to be performed in order to make proper use of this data.

Besides: some calculations, like for example communication status of the

system, can only be performed by the system itself. All these calculations are

gathered in a group of sheets known as “Calculation sheets”. The most

common features of these sheets are discussed in this section.

Calculation sheets work quite simple: every calculation is defined by a

name and a result. One can easily refer to the result by referring to the name.

A description of every calculation can be added for engineering purposes.

Furthermore, all other necessary values, like subtotals, constants, et cetera can

be added right next to the calculation. This gives an easy overview of the

whole of the calculation. An example of a calculation sheet (the xCalc sheet, in

this case), is given on the next page.

The calculation sheets usually form a group of several sheets, all with its own specific calculations. The most commonly used sheets are discussed below.

· xCalc
This sheet is used for general calculations and is available in every system model. In this sheet some definitions are set (for example which colour is used for which type of data), as well as general parameters of the system, like system name, computer name, et cetera. Usually also communication statuses and communication alarms are defined here. Sometimes also names or unit values are defined. For example: flow rate is set in m/s.
· xCalcGC
This sheet is used in system models with any gas part in it. GC is in this case used as abbreviation for gas composition (not gas chromatograph). All calculations concerning the gas composition take place here
· xCalcProving
On this sheet all necessary calculations for proving take place. For example: the start date and time, the end data and time, the temperature and pressure at the start and end, et cetera. Most of these values are calculated for use on the proving report.

· xCalcMOV
All the possible statuses of the motor operated valves are defined in this calculation. The status of a run can be determined as well based on this calculation. Additionally, a user might get an indication about the possibility of starting proving (requires a certain valve configuration), or an erroneous valve configuration, which might lead to a raised alarm.

[image: image21.jpg]
Fig. 17: An example of a Calculation Sheet
1.22 Reports

Probably the most important feature of a system is the possibility to

generate reports. These reports are used for fiscal purposes. Erroneous reports

might lead to huge deviations in what is really delivered and what is

paid for. These differences might lead to millions of euros of damage.

Good and accurate reports are thus a valuable feature!

There are three types of reports: reports that are generated automatically after a certain period, reports that are generated automatically as soon as an activity is finished and reports that are generated manually. Automatically generated reports are, for example, generated every hour, day or month and give an indication of several key values for that amount of time, like gross/net/mass flow rate, pressure and temperature. These reports are triggered based on values in the xEvents table.

Reports that are generated automatically after finishing a certain activity are for example the reports used for batching and proving. As soon as a batch has finished loading, a report trigger is given, for example by some program code. The contents of one of these reports are usually not different from other reports.

Manually generated reports are usually used for two purposes. The first one is got get an overview of the current conditions of a stream or system, the other one is to reprint a certain report. Manually generated reports should explicitly be triggered by an authorized person (which means: someone with enough rights to do so).

Below an example of a report is given.

[image: image22.jpg]
Fig. 18: An example of a (Daily) Report
1.23 Internal calculations

The last type of sheets, gathered in the “red” group, is used for internal calculations. These calculations are used as internal memory of the system and to (temporarily) store certain values. These stored values won’t be lost as soon as the system crashes or is down for a certain amount of time.

Furthermore, this group is used for version indication of the system model.

Data Analysis
This chapter is dedicated to exploring the data gathered during the empirical part of the research. The intention is to link the data to the theoretical framework, the modelling method and the field of modelling in such a way that one consistent unity is created.

1.24 Introduction

A lot of empirical data has been gathered during this research. Several methods of data gathering have been used: interviews, observations and observation through participation. All relevant parts have been combined and structured in such a way that an overview can be given of the characteristics of the process of model integration.

In order to give a clear overview, this chapter has been divided into a few paragraphs. The first one concerns a false start, which can, nevertheless, be seen as a useful and relevant experience. The second part concerns the choice for a starting point for the process of model integration and the rest of the process. That section is followed by a section about interactions and roles as they are recognized during the integration process. Furthermore, a paragraph is included about difficulties found during the process and a possible explanation about why these difficulties occurred. Finally, a paragraph is filled with all sort of peculiarities as observed.

1.25 Where not to start

The first attempt to find out more about the model integration process involved research under laboratory circumstances. For this research, several students were invited to participate. These students were new in the field of modeling and had thus not much experience with modeling nor modeling techniques or languages. During the research, a small and artificial domain was split in two parts. Each of the students was asked to make a domain model using ORM of one half of this domain. Afterwards, every one was linked to someone who modeled the other half. Each couple was asked to integrate the models in order to create a model of the total domain.

This approach failed because of several reasons.

First of all, none of the students was motivated enough to fight for his or her case: there was no pressure from anyone to defend his or her own work. Most of the students just behaved like in a regular classroom: a teacher gives an assignment which the students try to complete. As a result, no negotiations took place.

Second, the domain was too small and not complicated enough to be a real challenge. The option to choose for a small domain seemed logical at first: the students were only asked to participate for a limited amount of time (a few hours), so giving them a large and complex domain would have discouraged them to participate or would have lead to incomplete models. As a result, not much negotiations took place and neither were there unclear situations or problems that arose.

Third, the students were too inexperienced in modeling to really be able to create their own models or to have their own modeling styles or strategies. As a result, most of the models looked the same and interesting discussions about complex constructs were absent. It can be compared to a beginner’s class in a natural language like, for example, Norwegian. If a researcher asks the students to have a conversation after three classes, he should not be surprised that most conversations are very much alike and that the vocabulary and grammatical knowledge of the students is too limited to have real conversations. Most will look like: “Hei!”,“Hei”,“Hvordan har du det?” “Jeg har det bra, takk. Hvordan har du det? ”, “Jeg har det også bra, takk!”, “Flott! Ha det bra!” “Ha det!”. While other ways of asking, like “Åssen går’e?”, remain excluded. Discussions about which construction to choose, which is most suitable for the situation and why the choice for one of these has been made, will not take place.

For short: after just one round of research like this, it became clear that modeling under lab conditions with a too small and uncomplicated domain and modelers who did not yet have the required skills would not lead to a useful outcome. This project was abandoned and an alternative was found: a case in a real and complex domain, featuring very experienced modelers who create huge and complex models. The rest of what is described in this chapter is based on the data gained during those observations.

1.26 How to get started

Now that the (hopefully) right setting is found (and described in the previous chapters), the time has come to begin at the beginning. The starting point of the process.

The initial start of a modeling process can be seen as the moment at which an order for a systems model has been accepted and a (group of) modeler(s) starts to work on it.

Analytical versus pragmatic

Basically, two types of starts can be distinguished. These can be seen as a pragmatic approach and an analytical approach.

The people who favor the pragmatic approach start with studying the P&ID (the piping and instrumentation diagram, a simplified schematic overview of what the hardware of a system will look like) and some information about the customer, followed by creating prototypes of the user interface (the ‘screens’). These prototypes can be used later on in the system and on short term as screenshots in a functional design specification. The advantage is that it becomes quite clear in an early stage what the systems model will look like. The disadvantage is that a lot of (time consuming) editing may be required if specifications change or happened to be incomplete at the time of creation, or if the implementation of the prototypes turns out to be unfeasible.

This is not an uncommon approach. According to Alain Houf (2006), the user interface has always been one of the ‘quick wins’ and main points of attention when developing a system.

The other approach can be seen as the more analytical approach. Instead of instantly starting with modeling, an investigation of the domain is made. This includes a lot of discussion with the other team member(s) about how this system model is to be made: who does what part (in case of more modelers working on the model), which parts are already (partially) developed in other models or systems, et cetera. The results are written down in a functional design specification. These specifications also include screenshots of a prototype, but this is usually taken as a manipulated screenshot from a previous project. The advantage is that a lot more about the system may become clear (what the system model will do and how it will do so), while the biggest disadvantage is that the time invested in making screenshots is basically lost time.

1.26.1 Creating a Family Tree

The really first step is to determine to which ‘family’ a system belongs. In a family tree, an existing model is used as a basis for new models. Those new models then become the ‘children’ of that archetypical model. Which model will serve as parent can usually already be derived from the customer and the type of system, so even before any system engineering is done. All systems do, up to a certain level, fit in a certain ‘family’ of systems. A few factors play a key role in determining to which family a system belongs.

First of all, the customer is important. All customers have their systems built according to ISO and AGA standards, but at some key points the preferences of the customer may differ. For example: some customers prefer the metric system (SI units), other customers want their system to function according to the imperial standards. Also the reporting module and flow computer configuration schemes may well be adapted to a customer. For example, Saudi Aramco, the national oil and gas company of Saudi Arabia and by far the largest in the world, has its own unique report layout and even made flow computer manufacturers deliver a specific flow computer software configuration scheme.

Second, the type of system that is being modeled plays an important role. For example: is it a system for gas or oil, or both? Is the system situated on land, on a drill platform or on a FPSO? Is the system situated upstream or downstream?

These two factors make that one or two parental systems are chosen, which will deliver guidelines and archetypical elements for the new system. Of course, these systems and elements have to be adjusted to the new situation. An example here is the delivery of a series of systems to the Oman Gas Company (OGC). The first system was called Barka and later systems, like Wadi Jizzi and Al-Ghubrah, were mainly based on this system. The family is therefore called ‘Barka’ (in the jargon used: “the system is like Barka”).

So, in the end several ‘family trees’ of systems are created. This can be considered a form of re-using models and code by making use of patterns. This turned out to have one big disadvantage and one big advantage. The disadvantage is that if an error is made in one of the patterns, it is most likely that all systems made according to this pattern will also contain the error. This does not happen often, but it happens. The advantage is that, because of the use of family trees, the possible ‘infected’ population of systems can be easily traced and checked. And it is quite easy to solve the problems in other existing systems, if the initial error has been fixed: it is usually no more than ‘copy-paste’.

As a consequence, some modelers get ‘specialized’ in certain families. This is especially useful when a question about a certain type of system comes in: it can instantly be passed on to the specialist. The danger is, of course, that the company gets too dependant on this one person for this one specific family.

1.26.2 Early negotiations

If several modelers are working on a system model, a planning has to be made. Since there is no ‘leader’ assigned to the project, all modelers can be treated as equals. However, due to company hierarchy or other factors like charisma or natural leadership, one of the team members will take the lead in making the planning.

 A regular approach here is to cut up the project in modules and to assign several modules to a specific system modeler. Most modules can, up to a certain level, be developed as stand-alone objects. Some of them can be seen as modeling patterns, as discussed in the previous paragraph. Several elements, however, especially common elements, are to be discussed and to be agreed upon before the first line of code is added to the model. These elements include:

· Color scheme
Not just the colors of the elements on the user interface, but also elements that change color (and are described in the color tables) need to be described on forehand, since changing all those entries is an inefficient and time consuming job.

· TagDB-integration
Each element has its own designated place in the tag database to enable correct data transmissions. It is therefore of the highest importance that every element is placed at the proper location and that the right communication devices are attached.

· Screen layouts
Creating screens is one of the most time consuming parts of the project. It is one of the parts that can be made almost instantly from the start (as long as the P&ID is known and other wanted functionalities are described) and is usually indeed one of the first parts to be completed. Consequently, a lot of work is lost if several screens have to be remade because of a lack of consistency.

· VB code
The code written in Visual Basic is quite large and complex and well-integrated. If two models are merged, merging this VB-code is one of the biggest challenges. Not just because of regular programming issues (using names for procedures twice), but also from the point of view of (shared) functionality.

Also several project specific elements may be included in this first agreement. These elements are usually based on specific wishes or standards used by the customer.

Remarkably enough, the customer is not included in these first negotiations. One reason for this can be that the focus of these negotiations is not about the systems specifications, but about implementing the systems specifications. This makes it more focused on the modeler than on the model or the requirements. A second reason may be that a lot of requirements engineering has already been done by the system integrator. So, if there is a question regarding the specifications, the system integrator is the first party to be contacted.

1.26.3 No negotiation required?

A lot of planning and distribution of work comes quite naturally and without any negotiations. Most modelers just accept their role in the group and the work that comes with that role. Most people are professional enough to know that it is their common goal to make a good systems model together and that everyone benefits from achieving this goal. The first round of negotiations is thus usually done based on a positive affect among all negotiators. The approach can be seen as a very soft one, totally interest based: everyone should do something he or she likes, or is good at, in order to get the best possible systems model. Most modelers play the role of compromisers or problem solvers: try to get the best result.

However, sometimes the first round of negotiations does not run so smoothly. For example because some modelers play the role of ‘avoider’. Popular excuses here are:

· that the modeler ‘is not specialized enough in a certain family of models to play a significant role. The time used to get comfortable with the models of that family can be used in a more profitable way.’

· that the modeler ‘is not granted enough capacity in the planning to play a significant role in the development of the new systems model.’

Usually, these excuses are used as a result of a lack of time or because of different priorities. They usually result in the specific modeler trying to get out of the whole development process. Questions asked may result in shrugging and avoiding answers like: ‘I have no idea, since I am not familiar with the system (or family).’ At first the colleagues will try to convince the person to participate. This may help, although not in all cases. In those cases a person higher in the hierarchy may have to play the role of accommodator. Those cases are to be avoided, since the accommodator usually had a negative affect. This is mainly caused by the disappointment (and sometimes anger) created by the failure to reach agreement by the project group. This may result in loss of face, sometimes regret and always some disappointment. It harms the positive affect in the group, no matter what the outcome is.

In some way, the individual is forced to fit into what the group thinks of as the solution with the highest utility. This is achieved via mutual consensus, which results in a classic Nash equilibrium. In the end, no individual will find a better solution (with a higher utility) than the chosen one. Neither will there be any truly unexpected moves which may lead to a trembling hand perfect equilibrium. All available information about a project is accessible to all participants, which makes a Bayesian equilibrium fairly unlikely to appear.

1.26.4 Negotiation with an External Party

Usually, some questions do arise during the first stages of the system’s development process. These are usually caused by unclear specifications as delivered by the system integrator. In a lot of cases just asking the system integrator to give clarification about the subject is sufficient. In those cases a little extra domain investigation is the solution to fill in some gaps in the domain description. Filling in the gaps does, in those cases, not lead to extra work.

However, in some cases more work is required to get things clear and set. Sometimes those gaps in the domain description turn out to be a lot of work to implement. In those cases negotiations start about how to fill it in.

An example here is the modeling of a prover loop. This can be done via a basic set of values which is displayed on-screen and a basic report including only a minimum of required values. On the other hand, some customers might want some additional information and a good graphical representation. This may make a difference of 3 to 5 days of full-time work.

The negotiations about these matters are usually quite complex and may be considered as two integrated two-player zero-sum games with imperfect information. The problem here is that the system integrator has to contact the customer and negotiate with him about the options, while on the other hand he should hear about the possibilities from the system modelers. The system integrator then becomes a strange kind of medium between the customer and the system modelers. Strange, since the integrator should also consider the stakes of the other parties involved (manufacturers of the flow computers, hardware, piping, meters, et cetera). Besides that, he or she also brings in his or her own expertise and supervises the whole construction process, and can thus be seen as an actively participating party.

The games played can be considered zero-sum since both parties can actually only win or lose: either a big amount of functionality does not get implemented the proper way, or a lot of extra work has to be done at low or no rate. That the game holds imperfect information is due to the constant influence of the third party in the ‘other’ game: the two games are played simultaneously by the integrator, and the results of a move in one game have direct influence on the other game.

This usually leads to a Bayesian equilibrium: a lot of uncertainty is involved and the players learn about each other during the game. The strategy used is usually tit for tat or tit for two tats. Grim trigger or mutual assured destruction are avoided if possible, since both the customer, the system integrator and the system modeler are dependant on each other, also in the future, to build the right system and to keep it running properly. A good relationship is thereby important and worth investing in. As a result, the affect is usually a positive one and the attitude of the negotiator lies usually between that of competitor and compromiser. This does, however, not mean that a lot of freebees are given. It’s still business, after all.

1.26.5 Concluding the first phase

So far a domain specification has been given by the system integrator, which has been investigated by the system modelers, either via the pragmatic or via the analytical way. Based on this, a planning is made by the project manager and other people (the modelers) involved. This planning is determining who fills in which part of the total system model. In other words: the domain is cut up in sub domains, usually based on objects and patterns in a domain. Some negotiations about unclear spots in the specification have taken place.

From a game theoretical viewpoint, mainly two types of game may take place. See also the schedules on the next page.

The first game is a consensus game between the project members, leading to a Nash equilibrium. The several team members try to reach agreement on planning and division of work during this game. Usually, the affect is positive and the roles played are compromiser or problem solver. In case a person with more authority needs to be contacted to solve an issue, this person plays the role of accommodator. However, this is avoided as much as possible.

The second type of game is a special game. The modelers and the customers try a negotiation play via the integrator. The integrator itself also plays an active role. He uses the output of one game as, sometimes manipulated to his own vision, sometimes pure, input for the other game. This way, two integrated two person zero-sum games are played as if it were a Siamese twin. The game itself can be seen as a Bayesian game, since all parties learn from each other during the game.

All of this results in a complete design specification of the system model to be built, being the result of the first phase of the total creative process. This specification contains a description of all items in the system model, contextual information and screenshots of the prototype of the model to be build. The design specification is usually sent, via the systems integrator, to the customer for approval. As soon as approval is given, the formal implementation of the system model can be started.

[image: image23.png]
Fig. 19: Modelers reaching agreement (with or without help of an authority)

[image: image24.png]
Fig. 20 The Siamese game with the integrator as medium and player

1.27 The actual modeling process

As soon as the plan for modeling is made, the team members are known, and the main requirements are set and clear, the actual modeling of the different components can start. The modeling itself does not differ much from a regular modeling process, as described in several books and articles (for example Lindeman (2006) described a generalized modeling process, including different techniques for domain modeling, like ORM, UML and ER). Other aspects of modeling, like using one or more modeling styles (as for example described in the Master’s thesis of Reijbroek (2006)) also apply here. This part is less interesting for this thesis and shall therefore not be described thouroghly. The modeling method used for observation here is described in chapter 4.

1.27.1 Making Models

The actual modeling is done by selecting an existing model that will serve as the basis for the model under construction. The modeling itself is divided in several parts, which can be seen as sub models. Usually, each modeler will model one sub model. In the end, the sub models will somehow be integrated in the whole model.

The creation of the sub models can be generalized to two model types.

The first type is developing a whole new model for a certain component. This is usually only required if a model for some new component is to be developed or if the existing model is, for some reason, no longer usable (for example because it is outdated after several software updates of the modeling software). Developing a whole new (subdomain) model or model of a component is quite a lot of work and requires many security checks, due to the complex structure of the models and the modeling technique.

The second option is to find a component or (subdomain) model that is very much like the required one. In that case, the specific project (usually a family member of the model under construction) is used to get the required parts. These parts have to be customized and adapted to the new situation. The big advantage is that a basis is already available, saving a lot of work on several fields. For example: communication addresses with a flow computer are usually already set, a graphical representation is usually already available, the necessary calculations are already available, and (if required) a report template is already made. Nevertheless, a modeler should really perform all kinds of checks to see if the right adaptions are made in the right way.

1.27.2 Testing Models

Besides creating models, testing is an integral part of the modeling process. Since the created models are not just static entities, but also contain some functionality, testing is a crucial and essential part. However, for proper testing, some extra functionality should be added to the model. This extra functionality is acutally an expansion of the domain of the sub-model and may lead to overlapping functionality with other sub-models. The extra functionality is needed to properly test the behaviour of the model under certain circumstances.

Testing itself is done in several ways. This includes matching functionality in the model with the functionality as described in the specification, as well as testing limits, input outside the specified ranges, et cetera. This way a fully functional sub-domain model is created and tested, before it is delivered.

Testing in this phase of the modeling process can already be seen as a small investment in the future. Testing during this phase is comparatively easy, since the domain and functionality are relatively small. Every error that is corrected now is left out of the final model. And, for commercial reasons, finding a bug or error in the model on-site can be seen as a disgrace, especially if the customer finds out first. First of all, it may damage the faith the customer has in the model and second, if the customer is a non-western one, he may judge those events different than western people, which may have impact on future relations.

1.27.3 Communication

Some communication between the modelers takes place during the period in which all the small models are made. This communication takes place mainly during weekly or bi-weekly meetings. Topics usually include the progress made by the different team members and the issues that have risen. These meetings do not look like any form of negotiation at all: they are just to inform and to get informed. Solving the issues that have risen do not involve negotiation (if any, then it is at least collaborative).

If some issues rise that cannot wait until the next meeting, some ad-hoc communication is set up. This is usually nothing more than directly asking a colleague who may have the required expertise for advise about the issue. Another solution is a broadcast to all colleagues, especially if a totally new issue rises. An example here is an organization which wanted a color scheme for day and night: it was a new feature and the person who was about to create such a thing asked colleagues for advice on how to make it.

However, sometimes an ad-hoc meeting is set up for issues involving common elements in a sub model. In that case, such a meeting can be seen as a two player (or in rare cases n player) non-zero sum game. The subject of such a meeting is usually an element that appears in more than one sub model and thus needs some alignment between the models and modelers. These games almost always have a positive affect, while the roles played are problem solver and compromiser. The outcome can be seen as a regular Nash equilibrium: it is always a solution which is considered best by the players.

Of course some issues may rise due to imperfections in the specifications. In that case, usually the system integrator is to be contacted. What happens then is described in paragraph 5.3.5. However, some exceptions to that protocol apply.

First of all, if the modeler makes contact with the integrator during this phase it is usually about (little) details, not about big design decisions. Furthermore, the result of the negotiation is directly applicable to the work of the person contacting, and only in rare cases to the work of others. An exception here is of course if someone calls on behalf of others. Third, the negotiations are a bit less tough, since a lot of things that were still an issue earlier on (amount of work, price for the systems model, et cetera) are already set. A fourth reason is that the systems integrator usually knows more about the system as well and thus can provide the required information. This excludes the customer from the negotiations and makes those a bit easier. These negotiations can thus usually be quite fast. The approach usually leans towards collaboration, since the parties have to deliver a product together anyway, according to the contract. The affect is thus usually very positive and the roles people play can in most cases be reduced to ‘problem solvers’ and sometimes ‘compromisers’.

1.27.4 Finishing the modeling process

As soon as the different models are delivered, the integration of all of them can be started. Formally, all models should be finished and delivered at a certain deadline. Sometimes, a model is not yet totally finished. This can have several reasons. First of all, the actual engineering took more time than expected, giving the modeler an insufficient amount of time to complete the job. Another reason can be that some parts of a model are to be modeled by someone else as part of their model, in which case the model depends on other components of the final, big model. A third reason can be that some parts of a model will be scrapped from the model as soon as the integration takes place. If that is already known on forehand, it would be considered a waste of time and resources to create it anyway. A fourth reason is that some parts, especially the parts which usually cause most trouble (like the VB code that runs in the background), are to be made afterwards by (usually) one person (since tracing new code in the amount of applicable code is quite a tough job). This has mainly to do with the modeling method, not with the models in general.

1.27.5 Concluding the modeling process

The actual modeling activities that take place during the model integration process have been described in this paragraph.

Please be aware that all of the communicative activities that are described in this paragraph take place on an ad-hoc basis. There is no standard procedure of when, how and where a certain communicative activity takes place. An attempt to visualize the above process would lead to an ‘activity cloud’.

From game theory point of view, some of these ad hoc meetings can be seen as two or n player non-zero-sum games. The roles played here are problem solver and compromiser, while the affect is positive. The outcome can be seen as a regular Nash-equilibrium.

In the end several sub models, components of the total model, are delivered. Then it is time to start the actual integration of the several components into one overall model. How that is done is described in the next sector.

1.28 Integrating Models

Finally, the process of model integration will be finished with the actual integration of several sub-domain or domain component models into one large model.

Like the other steps in this process, it all starts with a meeting during which the sub-domain models are being discussed. Also an engineer is assigned to the project in order to create the final model. This engineer is usually the expert of the specific family tree, given that the project manager determines that this person has enough time to do so. Otherwise someone with sufficient knowledge of that family and enough available time will be assigned.

1.28.1 An iterative-incremental process

The process itself starts –if this is not done yet in a previous stage– with adjusting the base model to the new situation. This usually means that all redundant elements (except of course redundancy as functionality, if this is part of the specification) are removed and that all global elements, like shapes on the screens and color schemes, are adjusted. Integration of the new elements and functionality happens with one sub-model at the time, for as long as unused sub-models are available. In other words: the process is an incremental- iterative one.

Usually the most simple and/or straightforward sub-models are chosen to start with. This is done to realize some ‘quick wins’. Adding one sub-model at the time has some advantages and some disadvantages. An advantage is that a modeler is better able to keep overview of what is done and what is left to be done when he can focus on smaller portions of integration. Another advantage is that, because the model is, especially at the beginning, quite small (and not so complex yet), finding spots where a new sub-model should be integrated is quite easy and these quick wins can indeed be made fairly easily. Another advantage is that the modeler is able to grow with the model: he has time to keep track of the model while it grows and becomes more and more complex.

Disadvantages are that, especially at the end of the integration process, integration of new sub-models becomes more difficult. First of all because usually the more complex ones are left for the time being, but also because the model in which they should be integrated has usually become quite complex as well. Besides, usually the modeler has already ‘shaped’ a lot of concepts in the model. With each iteration, it becomes more likely that a new sub-model does not fit, for example because of inconsistent definitions or functionality that is already implemented in a different way via a previously integrated sub-model. Especially at those moments the interpretation and the expertise of the main modeler become important. It is up to him to find an effective solution to make sure that all elements as described in the specification become implemented in the end. This is increasingly difficult with each iteration, since the model becomes more complex with each addition.

As soon as all the elements are integrated, one way or the other, a last iteration takes place. This is an iteration that can actually take more time than the whole process of integration of the sub-models. This iteration is about bringing consistency to the whole of the model, especially in those parts which are considered model-wide elements. Possibilities here are some screens, the color schemes, reports, the VB-code which runs in the background, the main menu, et cetera. Especially the VB-code causes a lot of problems, since there is quite much of it, and by copying and pasting code that comes with the sub-model, some typical programming-issues may appear. Examples here are several functions or variables with the same name, wrong use of global variables, references to the wrong calculations, references to functions that do no longer exist in the model, et cetera.

The more graphical part of the model, however, does usually not cause too many problems in this stage of the process. One typical problem that does occur is the naming of graphical objects. Microsoft Excel offers the possibility to name all the graphical objects on a sheet, and to group them, color them and customize them. Sometimes, several components get the same name. This causes some issues when an element with that name gets triggered from the animations table. The opposite may also appear: a copied object or grouped object suddenly loses its name when it gets copied to the main model and consequentially does not react any more to triggers from the animations table.

How the model parts are integrated is discussed in the next section.

Techniques for integration

The integration itself may be done in three ways:

· Copy/paste
Copy-paste means literally copying and pasting elements of one model into the other. This can, due to specific behavior of the modeling tool, only be done under certain circumstances. Two conditions that should be met here are that both models are created with the same version of the modeling tool and that both models are in some way related. The model may show irregular behavior if these conditions are not met, like suddenly changing colors, suddenly missing references to objects, et cetera. These errors may pop up no earlier than during tests under ‘production’ circumstances, meaning that the model itself is already in the field and should be performing adequately. This irregular behavior does not have to be caused by eXLerate itself, it may also be caused by the underlying engine: Microsoft Excel is a fantastic engine for performing calculations, it was not designed as a modeling tool, however.
With copy/paste, a modeler can integrate a certain sub-domain model into the larger model in a short period of time. This means that this way of working can be very time efficient. After the copying and pasting of the elements, it is up to the model integrator to make sure all the right connections in the model are set and that they are checked and tested. It is also up to the integrator to determine how much of the sub-domain model is actually required in the overall model: copying too much or too little may lead to unexpected errors.
If literal copy paste does not work, re-typing or re-drawing the model by hand (this means: copying by hand) may be a feasible option. This costs quite a bit more time and, for some reason, leads to more errors in the model. A few possible reasons here are that the copying itself leads to typographical errors, that some hidden functionality is overlooked or that, due to the slow pace, some functionality is just forgotten. Of course, these errors will show up as soon as the model is being tested.

· Modification
A second option is modification of an existing element. If, for example, a certain gas analyzer is already available in the initial model and if this one has most of the characteristics of the new one, which is the one that has to be integrated in the model, it may turn out to be more profitable to just make some modifications to the existing one. In that case, the sub-model is a guideline for the main model. It is used as reference material and to test if the large model with the modified element is indeed complete an behaving correctly.
An advantage of modifying an element is that it prevents the modeler from running the risk of adding strange behavior to the model, as can be caused by using copy and paste. Although the risk is small, there is still a risk and the consequences may be serious.

· Creating something completely new
A fantastic way to trigger a discussion is by discarding a sub-model and just build something totally new into the model. Despite the use of a pattern-based modeling environment, it does occur that a certain sub-model does not fit into the large overall model. Reasons may vary. Sometimes a lot of functionality that is already implemented in the overall model is not compatible with the sub-model that is to be integrated. Sometimes implementing the sub-model would make the total model less effective, efficient or clear. Sometimes even the look and feel may just seem wrong (so the utility of using the ready-made element may be lower than building a new one).
Although creating a new element may seem like a lot of work, it may still be less so than copying, pasting and adjusting some elements from an existing (sub) model.

1.28.2 Communication and negotiation

The techniques as described in the previous section are not just used ‘out of the blue’. Before any sub-model is integrated or used at all, the modeler responsible for the integration process has had at least one discussion with the modeler of that sub-model. During this discussion the modeler of the sub-model explains what he has made, how he has made it, where the core components can be found and which elements were added for testing purposes or for artistic reason (for example because the modeler wanted add a little extra “eye candy” to the model). That last possibility will occur less often than the first. The eye candy can, however, be used as loose change during negotiations.

The discussions initially have a informative character. It is, however, when the sub-model is actually being integrated in the main model that the real discussions start, possibly followed by some negotiations.

In the first case, the modelers discuss, if required, what every element is and how the model is constructed. The modeler may ask some questions about design decisions or the design or functionality of the model. In the end, the modeler of the main model accepts the model and tries to integrate it as well as possible. If anything happens to be unclear during the integration itself, the modeler of the main model contacts the other modeler. It is quite possible that only additional information is required, which will then be provided. In other cases, a negotiation may be started. Usually this is about whether and how some functionality should be included. This is a two player zero-sum game. Although the atmosphere is usually good and constructive (which means: positive affect), these negotiations can be quite tough. Usually players try to play the role of compromiser or problem solver, though. Several techniques for negotiation are used. Cherry picking can sometimes easily be recognized here. For example when a certain part of the sub-model is about to be scrapped from the main model, the modeler of the sub-model may find some examples in which that specific functionality is used and what the advantages were. Salami tactics may be used as well. Especially when the modeler of the main model does not want to use or can not use specific parts of a sub-model, he may try to slice off these components one piece at the time. Other approaches, like Devil’s Advocate or a new creative approach are usually not used. The first one because it may ruin the professional relation with that colleague, the second one because most people are too much down-to-earth and too much into science to use, or even to understand the value of, such approaches.

Usually the negotiation ends somewhere halfway, with a compromise. This can be seen as a Nash-equilibrium: in the end, the players will not reach a better agreement if they change their strategy or position. The extra added functionality can be seen as small change here: if some functionality is to be sliced out, at least some of the extras and eye candy can be used and implemented, making the additions of the modeler of the sub-model still visible and therefore appreciated by that modeler.

The second option is to have some initial meeting with the modeler of the sub model, ask the same questions about functionality and modeling decisions and then go to work, without further contact with that specific modeler about the model. In this case, either the sub-model was perfectly clear (for example because it was quite straightforward), or because the modeler of the main model sees that he will not use the sub-model in the main model, or just an almost insignificant part of it. In that case he can decide to just avoid all communication and negotiation about this issue and to implement his own solution in silence. When the model gets tested or when discussions about other parts of the model take place, the modeler will try to avoid that specific part of the model. Questions will usually not be answered in-depth. By playing the role of avoider the modeler may try to avoid hurting the feelings of someone else, keep the relations with colleagues in a good state or save time and frustrations on what may be seen as pointless and endless discussions. Sometimes modelers are just like programmers: they are not by default fond of each others work.

A third option is a rare one, but still occurs sometimes. In that case discussion and negotiations between the modelers of the main model and the sub-model are cut off or will not even take place. In that case someone at a higher position gets involved and decides how things should be done, overruling all ongoing processes. This does, however, not automatically mean that the quality of the main model improves or that the model will be finished sooner. Sometimes the decision may turn out to be not feasible, or feasible if extra time is invested. This third person may also get involved as soon as both modelers know they won’t reach agreement by themselves. The third person then has to play the role of accommodator.

Furthermore, all communication and negotiation which can be considered as ‘extra overhead’, meaning ‘without adding something to the process of modeling’, is avoided as much as possible, in order to avoid being distracted from the actual job.

1.28.3 Concluding the Integration Process

The integration process is not difficult – it is mainly a lot of work and it involves quite some communication and negotiation – or avoidance of it.

Three ways of actual integration have been found:

· copy / paste

· re-use and adapt an existing part

· start from scratch

Furthermore, quite some negotiation situation and quite a few games can be found. First of all, there are negotiations between the model integrator and the modeler. This can be seen as a two player zero sum game with a positive affect and with a Nash equilibrium as outcome: one player will ‘lose’ at the issues where the other player ‘wins’. In the end, both players will feel like they have done the best they could and have no reason to change strategies. When a game is about to end without agreement, a third person, usually someone with more authority, is asked as mediator. This person then plays the role of accommodator and will make the final decisions.

Even avoiding can be found. In some cases, the model integrator might consider negotiations harmful for the modeling process or the professional relationship with the colleagues and will therefore avoid all negotiations.

A third option is that a higher authority comes and either divides all the work, overruling all possible ongoing processes.

[image: image25.png]
Fig. 21Schematization of the integration step of the process
1.29 Model Integration – Light Version

Of course, the process as described in the previous paragraphs requires a lot of work, communication and effort in order to get the whole model integrated and correct (as in: according to the specifications). That process is actually only used in three cases:

· a huge model, or

· a model with a lot of new components, or

· a model that has to be delivered within a narrow time limit.
For regular (smaller) models, a light version of the described process exists. That process is, although very much alike the discussed version, described in this paragraph. However, this light version is more like an individual’s process than a group process. Consequentially, it involves significantly less elements of negotiation, game theoretical elements or model integration issues. Since this light version does appear quite often and since there is still a significant amount of data gathered from it, and for reasons of completeness, also this light version of the thesis is included. Just like with the ‘big’ process, the light version can be divided in three phases.

1.29.1 Begin

In this case, the modeling process starts with a confirmation of the order and the delivery of the P&ID by the systems integrator. As soon as they are received, the project coordinator (the person who is in control of the planning of the projects and the capacity) assigns the project to one person. Besides, at least one other person is involved as well.

One of these two starts with writing a specification of the model. This is the same as described in the previous paragraphs. Part of it is having some negotiations with the system integrator. This is exactly the same as described above: the system integrator is a medium between the systems modeler and the customer and has the ability of manipulating messages or proposals.

The task of the other person is to check the model: whether it is consistent with the P&ID, whether the specification is complete (and not incomplete or over complete), whether the planning and specification are feasible, whether the suggested implementation is correct (the right calculations, standards, units, etc. are used), et cetera.

Sometimes this specification checking requires some discussion between those two people. These discussions usually do not involve any negotiations. They are purely informative and used to get clarity on several points.

As soon as agreement is reached between those two, the specification is forwarded to the systems integrator, who forwards it to the customer for ratification.

When it comes back and clearance is given, the modeling process can continue.

1.29.2 Middle

Just like with the ‘large’ modeling process, the ‘light’ modeling process continues with the selection of a base model. This is usually done based on the ‘family tree’ principle. There is a good chance that a model will be a new branch in an existing family. It is usually well-known beforehand which family it will be, since many selection criteria, like the customer, the type of system, et cetera, are known in advance. Consequentially, a modeler is usually attached to a certain model: if the expert of a certain family tree has time to work on a model within his field of expertise, he will usually be assigned to it.

As soon as a ‘fitting’ base model is chosen, a model that is as much alike the new model as possible, the investigation of what elements are to be integrated is made. Usually a modeler tries to select these elements from his ‘own’ family tree. If these are not available or in some respect unusable, the modeler will ask colleagues for advice. Either he asks if anything like the wanted element is already designed and implemented in another model, or he asks advice on how to construct a new model of that specific element. However, in such conditions it is not likely that there is a separate sub-model of that element. In fact, those new elements are usually instantly built into the new model. This is of course more time-efficient for the time being, but it may also cause more work in case such an element is required in another model. In that case the element has to be extracted from the existing model before it can be implemented in the new one.

In the end the modeler has a raw base model, a selection of usable elements and a list of things to be built.

1.29.3 End

When a selection of usable elements is made, the actual construction of the new model begins. The first step here is to adjust the base model to the new requirements. This includes for example the adjustment of the existing screens, the deletion of all redundant materials, et cetera. As soon as this is done and the basis for the new model is ready, the integration of new elements into the model begins.

This integration of new elements can be done in several ways, as described in the corresponding paragraph about the ‘big’ process. Due to technical restrictions in the modeling language, not every technique can always be used.

A first one is copying and pasting all the components of an element to the model. This may have consequences for the behavior of the model, since the modeling method does not always handle copy/paste-activities well. For example, the chosen color scheme might be altered. If copying and pasting of the raw elements goes well, the element may be integrated by simply attaching the element to the domain model, for example by using the calculations, input data or output data to go via or to the new element.

The second option is modifying an existing element into a new one, possibly based on data in another model. This can for example be done if such an element represents an ‘old’ version of an entity and an updated version is required. Copying an element from an existing model usually requires more work and effort than conversing an existing element into a new one.

A third option is to build a new one. This can be done with the regular tools, based on the specifications of the element as delivered by the manufacturer and the actual international consensus on the use of symbols, representations, et cetera. This is a very time consuming activity and is therefore avoided as much as possible.

1.29.4 Communication

Communication during the light version of the model integration process takes place less often and less intensely than during the large version of the process. Communication during the light version can be split into three main components.

First of all, there are regular meetings. These usually take place bi-weekly. These meetings are held to inform colleagues about the progress on the model and to discuss small non-critical problems. Discussing these problems can be seen as a collaborative act. Main issue is to help a colleague, not to attack or achieve personal gain. The attitude of the attendees is therefore usually that of an accommodator: try to solve another’s problem without gaining personal win. The atmosphere during such meetings can usually be seen as: mainly positive affects. It can, however, not be considered as a game, since there is just one player who can win or loose: the outcome of the meeting does not have effect on the other people involved or their work.

The second option is via ad-hoc communication with a colleague. The main reasons to have such a meeting are expertise on a certain terrain or questions about a component made by the other person. In the first case, the meetings are usually just informative. In the second case, people might have discussions and even negotiations about how things should be done. An example here is how a certain piece of programming code that runs in the background should be written. Suppose the original piece is written error-based (“if error, do”). The new person dislikes this for several reasons. For example debugging gets more difficult and he thinks specifying what is required is nicer than specifying what is not. They start a discussion and negotiations about how this code should be written. Such a discussion can be seen as a two player zero-sum game: as soon as one gives in, he ‘loses’ the issue in the negotiation. The atmosphere is usually quite good (positive affect) and the colleagues usually try to be constructive. So either they try to be problem solvers or compromisers. In this specific case the modeler who questioned the existing code ‘won’ the discussion by reaching the following agreement: he was to rewrite the code and that code would be the new basis for further models in that family and for that component. The existing code, which proved to be working, would be maintained in the existing models.

A third option is communication with the system integrator. Communication with the system integrator may be either to get information or it can be to start negotiations. Since most of the requirements of the model are already clear when the modeling process starts, these negotiations are usually about details. It does not differ much from the description of communication with the system integrator as made in paragraph 5.4.2.

1.30 Integrating two equal models

Over 95% of all cases happen as described in the process above, be it the ‘heavy’ or the ‘light’ variant. In really rare cases other activities are required in order to get some models integrated.

A typical case here is the integration of two equal and ‘complete’ domain models. The main difference with the process described above is that there is no typical base model available: both models can serve as such. Furthermore, both models have complete functionality, meaning that -in a worst case scenario- a complete model has to be transplanted into the other to guarantee the right functionality. It is not clear at first sight which parts can be scrapped from the list, as can usually be done with the sub-models. Still the two models have to be integrated.

The first part here is communication, again. If both models are from the same family tree and created by the same modeler, that person is quite likely to be assigned to this new model integration project. He knows the models best (saving time on ‘getting to know the models’) and he may have the best insight in how the integration should take place. In this case, the whole project becomes very much like a one player game: only if the player gets stuck, he might want to ask help from colleagues. In those cases communication is about how the modeling should be done, not about what the model should look like. Trying to discuss the model would be like talking Norwegian to a Dutchman: he might understand some nouns and verbs, he will not understand the sentences or the conversation.

Things get more interesting when two different models from two different family trees and made by two different modelers have to be integrated. In that case, assigning the integration to one of the modelers who made one of those models may cause some friction in the team: it is certain that the modeler will pick his model as base model, picking only those elements he can use from the other model. This may lead to the management giving a wrong impression: that one of the models is considered superior to the other. Or even worse: that one of the modelers is superior to the other. In that case, the management would point out a ‘winner’ in a fictional ‘modeling competition’. So, for reasons of convenience, a third party is involved: a third modeler who has to make the new integrated model.

This modeler usually starts with studying both models. He has meetings with the initial modelers, which should enable them to answer any questions about their models and to give advice on modeling decisions as made for the model, and to create some sympathy for their work, of course.

The third modeler, the one who is chosen to integrate those models, will have to choose one of the models to serve as his base model. The reasons for his decision may be quite trivial: because it is the biggest model, because the structure of the model is less complex, or simply because the model feels better. Because these reasons are considered subjective and because the decision is now not made by someone with higher authority, this decision will, if some of the modelers even get to know it, not lead to tension or friction: it does not (or at least quite a bit less) feel like ‘losing’.

The physical integration takes place through one of the three techniques as described in paragraph 5.5.2.

When the model is finished, it has to be tested. This is usually done by a fourth person. This fourth person should not be involved in the creation or maintenance of any of the models, in order to maintain objectivity. Testing of the model proceeds as described in the above paragraphs.

Integrating these types of models can be seen rather as a ‘political’ game than as a modeling mission, especially since one step of the process as described above, the step in which sub-domain models are created, is scrapped. This just leaves two stages: a negotiation stage and an integration stage, and since there are fewer people involved, this is making the influence of the first stage relatively bigger.

1.31 Integration with higher/lower level models and systems

Beside integration with models which are at the same level of abstraction, integration with models or systems which perform at a higher level is likely to take place. Integration may take place with models and systems at a higher level, like a DCS, and some may be at a lower level, like a systems component: a gas chromatograph, for example.

[image: image26.png]
Fig. 22 Schematization of an example setting with higher / lower level components
The integration mainly takes place at a functional level. This means that the integration of those models is actually beyond pure modeling: it is more about adjusting some type of data exchange and about setting the hierarchy between the several entities. It is unlikely that models or systems at higher or lower levels of abstraction are built at the same location. These models or systems have different functions and are intended for different use than the models as discussed here. For example, a DCS is used to control a whole plant. It does not require a ‘modelised’ version of a certain domain within the plant. A DCS has a higher level of abstraction and can, usually, be considered superior to the models as described in this thesis, while these models can be considered superior to systems at a lower level.

Adjusting the data is mainly done by implementing a communication module in the model and making sure the right addresses are used in the communications module. This can only be tested on site, since there is no simulation available for this functionality. There is no negotiation possible about the addresses or the way of communicating: in lower level systems, the addresses and protocols are usually hard coded, while in higher level systems the communication addresses and protocols are determined by the creators of those systems and distributed towards the modelers of the lower level systems and models.

The hierarchy of models is based on functionality. If a system or model only passes on information to other (higher or lower level) systems, the hierarchy may be considered flat: the systems can exist next to each other. However, as soon as two-way communication is implemented, a hierarchy is created. By implementing two-way communication, a modeler allows his or her model to be ‘taken over’ in terms of functionality by the other model. Usually two way communication means that a domain can be controlled from a DCS as well as from the domain model system. In that case the DCS system is more powerful and thus higher in hierarchy. The hierarchy is always built from a high level of abstraction to a low level of abstraction, where the entity with the highest level of abstraction is on top. This does not imply that the number of DCS systems is lower than the number of domain model systems: there are known cases (for example project Pearl) where a domain model system should offer the possibility to be controlled by five different DCS systems!

1.32 Additional Information

The process descriptions as given above were mainly gathered through observation. Via interviews with the modelers, some background information on their way of working, their way of thinking and their way of making decisions was provided. This does, however, not imply that behind every decision as made, a structured process of decision making can be found. Many decisions as made and a lot of modeling as done is purely based on routine, instinct or advice from others. Nevertheless, the information as provided below might give some more insight in the minds of the modelers.

This section is cut in three pieces: one is about things that are considered easy, one is about things that are considered hard, and one is about suggestions and observations on the whole process.

1.32.1 Easy elements

In this section the elements that are considered easy in the integration process are described, and where possible additional information is given about why these elements or steps are considered easy. Please notice that there are not that many ‘easy’ elements!

The elements are:

· Screens
The first item mentioned by the modelers when asked what is most easy to integrate is ‘screens’, no exceptions made. Screens can be seen as easy since they are the most concrete part of the model. Besides, it is relatively easy to disconnect them from the rest of the model and the underlying functionality, making it easier to transport a screen from one model to another. Also, this makes it easier to modify screens for the design specification.

· DCS Integration
Remarkably enough, integration with a higher level model or system like a DCS is considered one of the easiest parts of the modeling and integration process. This may be caused by the modeling method, which has large support for these kinds of integrations. It may also be because everything about the integration with a DCS can be seen as fait accompli: there’s no discussion possible, all is arranged for the modeler. It is just up to them to properly implement the specs.

1.32.2 Difficult elements

Unlike the short list of easy elements during integration, the list of difficult elements is quite a bit longer. Again, as many reasons and arguments about why these elements are considered difficult is given.

The difficult elements are:

· VB-code
The Visual Basic code, which runs in the background of a model, is considered the most difficult element of the whole modeling process, and especially of the whole model integration process. This is recognized by all modelers. The reason is simple: it is considered a quite obscure element. It is not directly visible, there is a lot of it and it is not always clear what it does. Especially if code is written by one or more different modelers, finding out what it does and where in the model its functionality can be seen, is a difficult task. Consequentially, adjusting and debugging the VB-code in a modeling project takes most time of all elements of the process.

· Integrating with SQL database tables
Making stable and proper integrations with SQL database tables is considered quite difficult. First of all because it is not considered a priority for the modeling language. A second reason is that there are so many different ways of doing it and none of them is considered easy.

· The Modeling Method
It has already been mentioned a few times: the modeling language and tool are sometimes considered one of the restricting factors, especially when it comes to integrating models. The tool has some particular behavior, especially when importing or exporting (parts of) a model.
This may lead to unexpected behavior of the model or even to a crash of the tool (causing a loss of all unsaved work). Getting to know the language and the tool, as well as predicting their behavior, are considered quite difficult.
Furthermore, the impossibility of the modeling method to allow several people to work on one model simultaneously is sometimes considered a shortcoming. Due to technical reasons, a project file can only be opened by one person at the time.

· Debugging and testing
Debugging and testing are considered very difficult. There are a few reasons why:
The models are large. Having a few thousand entities defined in a model is common. Checking all of them securely and checking if their relations are correct is a tough job.
The models contain loads of different elements, modules and functionality.
The models have several layers.
Because of the enormous amount of freedom given to the modeler, and because several modelers have worked on a model, the models usually contain many different modeling styles. When testing or debugging, it may be required that understanding some particular style is necessary to make a good judgment of the specific component.

· Adjusting the model with colleagues
As soon as a model is about to be constructed, loads of arrangements have to be made. Even some basic adjustment like choosing the right screen resolution may already cause problems.

1.32.3 Suggestions and observations

Most modelers had their own opinion about how integration of models could be improved, about where things went wrong and about peculiarities of the whole modeling process. These remarks have been harvested, sorted and are presented below.

· All modelers accounted, in some way or the other, that the modeling itself is usually not the problem. All modelers know that their colleagues are capable of doing their job successfully. One thing that separates the rookies from the senior modelers is the way of handling the modeling language and modeling tool. These show a peculiar behavior, which might lead to unwanted side-effects in the model or even to a total crash of the modeling tool (and of course to a big loss of work and effort). In other words: modelers learn how to adapt themselves and their way of working to the modeling language and tool.

· All modelers acknowledge that it would be great to have one ‘base’ model, which includes only a framework as required for all models. These frameworks should then be expanded with model components and functionality according to the specification. This way models become better accessible to all modelers in case help or support is required on a model. This way, the whole ‘family tree’ will be taken out, making it easier for other models to understand the work of their colleagues. This means that a lot of time can be saved on activities like ‘getting to know a certain model (family)’.

· A few modelers point out that an object oriented way of working would improve the modeling process and speed it up more than just a bit. By considering every element of the model as an object, many integration problems might be prevented as well, especially when combined with the base model. This way every modeler can deliver a fully functional series of model components, which together form the basis of the model. The project leader then has to integrate these components and add overall functionality. This is working in the opposite direction of what is currently happening: right now, a lot of overall functionality is already available to which the components have to be adapted.

· A few modelers pointed out that it would be nice if there were agreements on how a calculation sheet is constructed. At the moment, it is up to the modeler to decide what is on a sheet and how elements are grouped and joined. This makes life quite difficult for other modelers who have to either check, test or do something else with those models.
Standardization of elements has already proven to be valuable in for example the TagDB. There are agreements on for example naming and construction of elements and groups in the TagDB, which made follow-up processes with those models much easier, faster and more productive.

· The majority of the modelers pointed out that working together, thinking together and even brainstorming together about new or specific functionality or ways of modeling are considered valuable elements of the whole modeling process. Helping each other out is considered to be highly appreciated. However, as soon as this principle should be applied to model integration, the enthusiasm for these elements drops instantly. This is mainly because then, at that point, negotiations might come in. So, instead of knowing everyone works together on an assured constructive basis, suddenly some form of conflict may slip in. This is somehow considered dangerous, or at least unwanted and is thus avoided as much as possible.

· Negotiating with third parties (including the systems integrator) is avoided as much as possible and passed on to the people who have sales, communication and/or public relations in their job description. The modelers consider themselves to be modelers in the first place: people who create models based on certain specifications. Eliciting specifications or requirements is not considered one of the core activities of the modelers by the modelers.

· During the interviews, it became clear that there are huge differences between the modelers when it comes to the definition of what a model is and when a model is ‘completed’. This sometimes leads to miscommunication between modelers and unexpected ‘surprises’ when one modeler has to work with the materials of another.
The extremes on the definition can be seen as:

· The model is completed when most of the components are there. The model itself is untested and it is already known that adjustments have to be made when the model gets in a fully functional testing environment with all other elements of the system in place.

· The model is completed when all of the components are there. The whole model has been tested thoroughly, and what cannot be tested physically, has been tested via simulation. When on site or in a functional testing environment, with all other elements of the system in place, just a few minor adaptations may have to be made: details only.

· Short communication lines work best. A significant amount of modelers agreed that the feeling is better when communication lines are short and communication is informal. This leads to better mutual understanding, a faster pace of working and thus to better models, according to them.

· One modeler points out that working together on a model actually can be very successful and pleasant. The only condition that should be met is that all parties really respect the agreements on the way of working and the scope of their part of the model. If this is not done properly, the quality of the model will decrease significantly and it will take much more time to complete it.

1.33 Wrap up

We have seen an overview of all gathered data, structured per category, in this chapter. The data has been matched with the theory as can be found in the second chapter. The next step is to take all the data, and match it with the questions as stated in the first chapter. This will be done in the next and final chapter of this thesis.

Conclusions

This chapter contains the conclusions that can be drawn based on the research as described in this thesis. Intended is to give a clear, to-the-point answer on all questions posted in the first chapter.

1.34 Introduction

The main purpose of this thesis is to find an answer to the question about model integration processes. In order to provide such an answer and to make sure the given answer is quite complete, a few support questions have also been formulated. This chapter is built as follows: an answer to the support questions is provided in the next paragraph, followed by an answer to the main question in paragraph 6.3. Some recommendations and suggestions for further research are provided in the last paragraph of this chapter.

1.35 Answers to the support questions

Each question will be answered in its own sub-paragraph.

1.35.1 How do the participants experience the process of model integration?

There may be just as many answers to this question as there are modelers working on model integration. Nevertheless, some common experiences or attitudes towards the process can be recognized. These differ a bit per role of the participant. In general, when looked at two archetypical roles in the process, that of modeler of a sub model and that of integrator of the models, the following observations can be made.

A general observation is that most modelers do not seem to realize the value of communication during an interactive modeling process. Communication is somehow observed as a pitiful event that has to take place. The actual modeling itself is valued and appreciated much more. Communicative sessions are kept as short as possible and involve as few people as possible.

For a modeler of a sub-model, most satisfaction is gained from the actual modeling. However, the actual integration can be quite frustrating, especially when the sub model is totally changed or even discarded when integrated in the model. That feels like “losing” the game, as if the model or the modeler is not good enough at modeling or as if the model itself was wrong. That is in fact not true: all modelers are skilled and experienced enough, it is just that their vision on the domain might not fit in the chosen vision for the whole model.

For model integrators (usually the (informal) project leaders), the experiences are slightly different. They also get most satisfaction of the actual modeling, but for them most of the modeling is either adapting or integrating models and components. People with this role usually get more satisfaction out of the final model: it is more in line with their vision. In other words: they create the solution which ensures the highest utility, according to them.

1.35.2 Which roles can be distinguished during collaboration?

There are several ways to look at roles during the model integration process. Below two main viewpoints are given: the modeler’s viewpoint and the game theory / negotiation viewpoint. These viewpoints can not be translated 1:1, but it is possible to recognize aspects of both in a modeler.

From the modeler’s viewpoint, three roles are being distinguished. The first role is that of a modeler of a sub model. This person is mainly concerned with modeling his part of the job, while not really being into interacting with fellow modelers. The main concern is to get the model done and to make sure it makes it into the final model. The second role is that of project leader and model integrator. Usually, the person in charge of the project is the one delivering the model. This person gets to interact a lot with colleagues to find out about their design decisions and their points of view. Furthermore, he has the job to integrate the small sub models into one large, consistent model. The third role is that of manager. The manager has to mediate in case of conflict and watch the process. In general, the person with the role of manager stays in the background.

From a game theory / negotiation theory viewpoint, especially three different roles can be distinguished. First of all, the role of accommodator. This role can especially be found when a manager has to resolve problems, and sometimes the model integrator has to adapt this role as well, for example in case a difference in vision on a model or domain has to be resolved. The second role from this viewpoint is that of the compromiser or problem solver. When two people disagree on a certain issue, they will always try to find a solution, preferably somewhere in between, or via a totally new point of view, in order to achieve the main goal: deliver a good model to the customer. A third role that is recognizable is that of the avoider. Quite a few modelers do not value communication and negotiation that much. They rather spend time on modeling, programming or ‘doing their job’. They try to avoid ‘fuzzy’ activities as much as they can. They will usually also try to just ‘pass the problem’ to someone else.

1.35.3 Does a general model really represent the described domain or does some significant part of the domain information get lost during the model integration?

The first answer to this question is yes: the general (or integrated) model represents the described domain. However, to answer the second part of the question: this is only done from one viewpoint, which is that of the model integrator. This implies that some information gets lost during the integration process. In fact, information gets lots in several ways.

First, the number of modelers working on the sub models is larger than the number of modelers working on the overall model. When integrating, modelers will work from their own viewpoint. Even if they are willing to adapt the viewpoint of the other modelers, it will just be an interpretation of it that gets integrated.

A second reason is that a model integrator will implement what he thinks is best or what he thinks is fitting, or just build upon existing layers, thereby disregarding whatever new material is offered from the sub models. In extreme situations, a whole sub model can be put aside and be replaced by an interpretation of the model integrator, if the sub model differs too much from the overall model.

As described before, the loss of information may sometimes be linked to the behavior of the modeler of the sub model. He may interpret the implemented interpretation of his work as losing in a win/lose game.

1.35.4 What are the most difficult activities and bottlenecks in the process?

There are several aspects which can be seen as difficult in the process of model integration. The major ones are listed below. All issues that are specific for the domains in which the research has taken place, are left out.

First of all, the chosen modeling method and tools are found to be a big constraint to the way of working. Not only does the tool show some peculiar behavior during regular modeling, also the impossibility to do real collaborative working (for example, working on one model with several modelers at the same time) can be seen as an aspect that makes work more difficult.

From a technical point of view, the actual integration, as in: putting all the sub models in the overall model, can be seen as quite difficult, especially if the overall model is already large and the to-be-integrated sub model is quite a complex one or significantly different from the other models.

A last one is the attitude of the modelers. Most modelers are focused too much on modeling and results to show much affinity with communication, negotiation and collaborative working. Most modelers like to see the model as a mathematical formula: there are only limited ways to solve it. That a model can actually be described from several viewpoints, which leads to different models, is something most modelers are quite skeptical about.

1.35.5 Is the chosen modeling method appropriate for model integration?

Put simply, the answer is no. There are several reasons why this method is not really appropriate for model integration.

A first reason is the toolset delivered with the method. There are still quite some unsolved bugs that restrict the freedom of the modeler. Furthermore, it lacks the support for any type of collaborative modeling: it is impossible to work with more than one person on a model at the same time, or, in a worst case scenario, it may even be impossible to work on a project from two different computers.

Furthermore, the models made with the modeling method are quite complex. The models exist of several layers, which makes it quite hard to really understand the models and most models consist of several hundreds or even thousands of entities. This makes it easier to make (crucial) mistakes when uniting two models: the chance that something is overlooked or interpreted wrong increases with more complex models.

1.36 The Main Question

Now it is time to answer the main question. What does ‘the’ process, if any at all, of model integration look like? An answer, as found on the research done for this thesis, is as follows:

The model integration process is a process which consists of three phases. The phases and the process are schematized and put on the next page.

The first phase is a preparation phase. During this phase all people involved get to know their roles and tasks in the process. This is also the phase in which exploration of the domain takes place. As a result of this phase several people will go and work on their part of the job. The project leader will choose a basis for the to-be-build overall model. There is relatively much communication and negotiation to be found during this phase.

Two types of game can be found in this phase. The first is a classic collaboration between the team members, leading to a Nash equilibrium, the second is a Siamese Bayesian game, between the modeler, the customer and the integrator, in which the integrator plays both a medium between the customer and the modelers and a player, actually dividing the game between those in two tightly bound games.

The second phase is the construction phase. During this phase the actual construction of the several sub-models and the preparation of the basis of the overall model takes place. These are mainly individual activities, so not much communication or collaboration takes place. It can be considered as regular modeling activities: one modeler making a domain model of one domain.

From a game theory point of view, these modeling activities can be seen as some sort of sub games. Furthermore, as soon as any (ad-hoc) communicative activities take place, a game may be started. These are usually two or n-player non-zero sum games, since the intention of the game is to create a benefit for all the players.

The last phase is the integration phase, in which the sub models and the base model actually get integrated. This phase requires a lot of negotiation and communication, especially with the project leader, the person who is about to integrate all the sub models in the base model. This means indeed that the actual integration is done by just one person. Due to his way of working, not all created sub models may be used and those that are being used are not necessarily totally used: sometimes just a little bit of them is sufficient.

From a game theory point of view, the games that can be found mainly have the character of two player zero-sum games. These games are between modeler and model integrator, and as soon as one gives in to something, that part may be considered ‘lost’ by that player and ‘won’ by the other.

[image: image27.png]
Fig. 23 Schematization of the model integration process
What does this all mean for the game theoretical viewpoint on the whole of the process?

Well, loads of small game occur during the several stages of the whole model integration process. Just think of the interaction between the model integrator and the modelers of the sub models. Or think of the modeler interacting with the customer via the system integrator. Those are all games that take place, even several times during one integration process. So, viewing the process of model integration from a game theory viewpoint is a good way to describe what is taking place during the process.

However, since the project leader is –under the current conditions– actually granted almost unlimited power during the integration phase, which places him above the other players (in other words: he takes the role of ‘dungeon master’ or ‘game leader’ instead of as team player), none of the mentioned equilibriums actually applies to the whole of the game. Those equilibriums are based on equality between the players and although formally all players are equal, it will be the project leader who always makes the final decision.

1.37 Suggestions for improvement and further research

Based on the research done in this thesis, some suggestions and recommendations can be given.

· First of all, it would be nice if a modeling method and tool become available which fully support collaborative modeling. One of the bottle necks during this research was the lack of possibilities in that respect, and there might be an enormous potential for easier modeling integration there.

· Furthermore, it might be useful to change the work procedure a bit. It would be helpful to take an empty model as base model, and then work in a fully ‘object oriented’ way towards the completion of the model. Object oriented can be seen like with programming: every object itself is an autonomous entity that interacts with other entities (the other sub-models), facilitated by some common infrastructure (the base model). Advantages here might be that there is less work done double, triple or even more times and that it is quite clear who did what in the end. It might therefore also give more satisfaction to the modelers of the sub models: their work will largely remain unchanged. It might also make the integration process more transparent and thus easier.

· Another suggestion would be to repeat this experiment in an environment with less complex models and a less complex modeling method. Where biologists like the relatively simple fruit flies for experiments, it would be wise to look for the fruit fly in information modeling and start there. The method chosen for this thesis was absolutely no fruit fly.

· It would also be nice if the ultimate power during the integration process was taken away from the project leader. It was quite clear that not everyone appreciates it and that sometimes the power was ‘abused’ by overruling the given content by replacing it with something the model integrator made himself (meaning: a solution that has higher utility according to him). That way model integration may really become a game between equals instead of a game with an omnipotent dungeon master.

The process itself can stay intact as it is now, with the three phases (exploring the domain and determining the jobs in the first one, making all the sub models in the second one and integrating all in the third one). However, for the current situation it seemed that some modelers were not yet convinced of the need for all the communication and negotiation. It happened more often than not that an issue rose during the modeling or integration process which could have been prevented or caused less damage if people had taken the time to talk about it in an earlier stage. It would be helpful for the value of and need for communication to be explained more intensely to those people.

References

AGA 5, 1996

American Gas Association Report no. 5, Fuel Gas Energy Metering, 1996

AGA 7, 1981

American Gas Association, Report 7: Measurement of Fuel Gas by Turbine Meters, Arlington, Virginia, 1981 (rev. 2002)

AGA 8, 1992

American Gas Association, Compressibility and Supercompressibility for Natural Gas and Other Hydrocarbon Gases, Transmission Measurement Committee Report no 8, 1992

AGA 10, 2003,
American Gas Association report no. 10, Speed of Sound in Natural Gas and Other Related Hydrocarbon Gases, 2003

AGA NX 19, 1962
American Gas Association, Par Research Project NX-19; "Manual for the determination of supercompressibility factors for natural gas", 1962

API MPMS, 1993
American Petroleum Institute, MPMS Manual of Petroleum Measurement Standards Chapter 21 - Flow Measurement Using Electronic Metering Systems, 1993
API 2540, 1980
American Petroleum Institute Standard 2540, Manual of Petroleum Measurement Standards, volume 11, chapter 11.1, Washington DC, 1980

Aumann, R

Robert Aumann, What is Game Theory trying to accomplish?, Published in: Frontiers of Economics, Basil Blackwell, Oxford, 1985

Axelrod, 2000
Robert Axelrod, On six Advantages in Cooperation Theory, School of Public Policy, University of Michigan, 2000

Bakema, 1996
Guido Bakema and Jan-Pieter Zwart, Volledig Communicatiegeoriënteerde Informatiemodellering (FCO-IM), SDU Uitgevers, 1996, ISBN 9026723164

Batra & Wishart, 2004
Dinesh Batra and Nicole A. Wishart, Comparing a rule-based approach with a pattern-based approach at different levels of complexity of conceptual data modelling tasks, International Journal of Human-Computer Studies, vol. 61, issue 4, pp. 397 - 419, 2004
Bauer, 1546

George Bauer, De Natura Fossilium, 1546, Translated in 1955 by Mark and Jean Bandy, published as The Geological Society of America Special Paper 63

Bazerman et al., 2000
Bazerman, M. H., Curhan, J. R., Moore, D. A., & Valley, K. L., Negotiation, Annual Review of Psychology, 51, pag. 279–314., 2000
Benedict, 1984
R.P. Benedict, Fundamentals of Temperature, Pressure and Flow Measurement, 2nd Edition, Wiley, New York, 1984

Booch et al. 1999
Booch, Rumbaugh , Jacobson… The Unified Modeling Language User Guide, ISBN 0-201-57168-4, 1999

BS 7405, 1991

British Standard 7405, Selection and Application of Flow Meters for the Selection for the Measurement of Fluid Flow in Closed Conduits, BSI, 1991

Burgess, 2004
Heidi Burgess, Negotiation Strategies. Beyond Intractability. Conflict Research Consortium, University of Colorado, Boulder. January 2004
Chen, 1976

Peter Pin-Shan S. Chen, The Entity-Relationship Model: Toward a Unified View of Data, ACM Transactions on Database Systems, vol. 1, nr. 1, pp. 9 – 36, 1976

Dauben, 1999
Joseph W. Dauben, Game Theory, Microsoft Encarta, Microsoft Corporation, 1999

Fehr, 2005

Nils-Henrik von der Fehr, Applied Game Theory Oligopoly: Lecture notes, Universitet i Oslo, November 17, 2005

Fisher & Ury, 1981
Roger Fisher and William Ury, Getting to Yes; Negotiating agreement without giving in, 1981, Penguin Books,
ISBN 978-0140157352

Fox & Hoch, 2003
Edward J. Fox & Stephen J. Hoch, Cherry Picking, initial release June 2003, revised May & August 2004, printed in Journal of Marketing, 2005.
Fudenberg & Tirole, 1983
Drew Fudenberg & Jean Tirole, Game Theory, 1983 (revised edition 1991) MIT Press, ISBN 0262061414

GPA TP-25, 1998
Gas Process Association, GPA Technical Publication 25: Temperature Correction for the Volume of Light Hydrocarbons, 1998

GPA 2172, 2000
Gas Process Association, Publication 2172: Method for Calculation of Gross Heating Value, Relative Density and Compressibility of Natural Gas Mixtures from Compositional Analysis, 2000 (revised in 2003)
Halpin, 2001

T.A. Halpin, Information Modeling and Relational Databases, ISBN 1-55860-672-6, 2001

Hayward, 1975
Hayward, A.T.J., How to choose a Flow Meter, The Chatered mechanical Engineer, reprinted from 1. Mech. E., 1975

Helms, 2003

Wesley S. Helms, Rubbing Your Nose Off At The Grindstone, February 2003
Hernández Requejo & Graham, 2008
William Hernández Requejo and John L. Graham, Global Negotiations, The New Rules, Palgrave Macmillan Publishers, 2008, ISBN 9781403984937
Hoppenbrouwers et. al., 2005
S.J.B.A. Hoppenbrouwers, A.I. Bleeker and

H.A. Proper, Facing the Conceptual Complexities in Business Domain

Modeling, Computing Letters, 1(2):59-68, 2005

Houf, 2006

Alain Houf, Websoftware: leren van het verleden, Computable, February 24, 2006

Huhne, 1992

Christopher Huhne, Salami tactics lend succour to the Euro-Sceptics, The Independent, July 30, 1992

ISO 4185, 2000
International organization for Standardization, Measurement of Liquid Flow in Closed Conduits – Weighing Method, Geneva, 1985 (revised 2000)

ISO 5024, 1981
International Organization for Standardization, Petroleum Liquids and Gases – Measurement – Standard Reference Conditions, Geneva, 1981

ISO 5167, 1991
International Organization for Standardization, Measurement of Fluid Flow by Means of Orifice Plates, Nozzles and Venturi Tubes in Circular Cross-Section Conduits Running Full, Geneva, 1991

ISO 6976, 1995
International Organization for Standardization, Natural Gas: Calculation of calorific values, density, relative density and Wobbe index from composition, Geneva, 1995 (cor 1: 1997, cor 2: 1997, cor 3: 1999)

ISO12213, 1997 International Organization for Standardization, Natural gas: Calculation of compression factor; Part 1: Introduction and guidelines, Part 2: Calculation using molar-composition analysis, Part 3: Calculation using physical properties, Geneva, 1997 (revised 2006)

ISO / DIS 8316, 1987
International Organization for Standardization, Measurement of Liquid Flow in Closed Conduits – Method of Collection of the Liquid in a Volumetric Tank, ISO TC30, Geneva, 1987
Kok et al., 2007
H.A.J. Kok, H.F.J. Rutjes, J.A.M. de Greef, eXLerate 2003

Application Reference Manual, revision A.10, May 2007

Kok & Rutjes, 2007
H.A.J. Kok, H.F.J. Rutjes, , eXLerate 2003 Advanced Topics Manual, revision A.8, May 2007

Lindeman, 2006
Leonie Lindeman, Modelleerprocesses, Master’s Thesis, Radboud University, 2006

Luce and Raiffa, 1957
R. Duncan Luce and Howard Raiffa, Games and Decisions: Introduction and Ciritical Survey, 1957 (renewed edition 1989), ISBN 0-486-65943-7, Dover Publications Inc., New York

McCain, 1999
Roger A. McCain, Game Theory, an introductory sketch, 1999

Miller, 1996

Richard W Miller, Flow Measurement Engineering Handbook Third Edition, ISBN 978-0-07-042366-4, McGraw-Hill, 1996

Millington & King, 1986
B.C. Millington & N.W. King, The Performance of a Turbine Meter in a Gas-Liquid Flow with an Upstream Flow Conditioning, Proc. Int. Conf. Flow Meas. In Mid 80’s, NEL, East Kilbride, Scotland, 1986

Morrow, 1994
James D. Morrow, Game Theory for Political Scientists, Cloth, 1994, ISBN 978-0-691-03430-0

Nash, 1950

John Forbes Nash jr., Equilibrium Points in N-Person Games, Proceedings of the National Academy of Sciences, Vol. 36, no. 1, pp. 48-49, January 15, 1950

Nash, 1950-2

John Forbes Nash jr., Non-Cooperative Games – A Dissertation, Princeton University, May 1950

Nash, 1951

John Forbes Nash jr., Non-Cooperative Games, The Annals of Mathematics, Second Series, Vol. 54, no. 2, pp. 286 – 295 September 1951

Neumann & Morgenstern, 1944
John von Neumann & Oskar Morgenstern, Theory of Games and Economic Behavior, 1944 (60th anniversary edition, 2004), ISBN 978-0-691-13061-3

Razin, 2009

Ronny Razin, Political Economy Syllabus, London School of Economics and Political Science, 2009

Reijbroek, 2006
Joris Reijbroek, Empirische Toetsing van modelleerstrategieën, Master’s Thesis, Radboud University, 2006

Rijsenbrij, 2004
Prof. Dr. Daan Rijsenbrij, Collegedictaat ‘Inleiding Digitale Architectuur’, Radboud University, 2004

Rutjes, 2007

H.F.J. Rutjes, eXLerate 2003 Functional Reference Guide, May 2007

Shell, 2000
G. Richard Shell, Bargaining for Advantage: negotiation Strategies for Reasonable People, Penguin Books, New York, 2000, ISBN 0140281916

Shor, 2009
Mikhael Shor, Dictionary of Game Theory Terms, gametheory.net, 2009

Spangler, 2003
Brad Spangler, Integrative or Interest-Based Bargaining. Beyond Intractability. Conflict Research Consortium, University of Colorado, Boulder. June 2003

Spangler, Brad. Positional Bargaining. Beyond Intractability. Conflict Research Consortium, University of Colorado, Boulder. June 2003
Springorum, 1993
Dick Springorum, Strategisch Communiceren, Interactiestrategieën in het taalverkeer, Uitgeverij Coutinho, 1993,
ISBN 90-6283-3322-2

Tuomela, 2007
Raimo Tuomela, The Philosophy of Sociality: the shared point of view, Oxford University Press, 2007, ISBN 0195313399

Van Kleef et al., 2004
G.A. van Kleef, C.K.W. de Dreu & A.S.R. Manstead, The interpersonal effects of emotions in negotiations: A motivated information processing approach, Journal of Personality and Social Psychology, 87, pag. 510 – 528, 2004

Van Kleef et al., 2006
Van Kleef, G. A., De Dreu, C. K. W., & Manstead, A. S. R., Supplication and appeasement in conflict and negotiation: The interpersonal effects of disappointment, worry, guilt, and regret. Journal of Personality and Social Psychology, 91, pag. 124-142, 2006

Watkins & Rosegrant, 2001
Michael Watkins and Susan Rosegrant, Breakthrough International Negotiation: How Great Negotiators Transformed the World's Toughest Post-Cold War Conflicts, Jossey-Bass, San Francisco, 2001

Zagal et al., 2006

José P. Zagal, Jochen Rick & Idris Hsi, Collaborative Games: Lessons Learned from Board Games, Simulation and Gaming 37:1, pag 24 – 40, 2006
Zartman, 2002
I. William Zartman, The Structure of Negotiation, Kremenyuk, 2002, pag. 71 – 84

� The Monty Hall problem is known as the problem with three doors. It involves one player with perfect knowledge and one player with incomplete knowledge.

� Prisoner’s Dilemma focuses on two players who should be able to gain information from each other to achieve a maximum result while they have no means to communicate with each other.

� In the ultimatum game, one player gets only one chance to make a bid to divide a sum of money. The other player can accept the bid or reject it, in which case no one gets anything.

� The Polder Model is a consensus based political model used by several Dutch governments in especially the 1980’s and 1990’s. The Polder Model is described as ‘a pragmatic approach of pluriformity’.

� The Bertrand Competition, an economic game about duopolies, is one of the clearest examples which includes collusion as one of its parameters. Since the Bertrand Competition-model is out of focus of this thesis, this model will not be discussed any further in this thesis.

� For the record: when Von Neumann and Morgenstern proved this equilibrium for the given conditions, it was of course not yet named after Nash.

PAGE
97

