

1

Master Thesis

How to use the CAcert infrastructure

within an OpenID context?

Auteurs: B.J. Derlagen (s0829692), O.M. Berfelo (s0756067)

Educational institution: Radboud University

Faculty: Faculty of Science

 Institute for Computing and Information Sciences

Education: Information Science

Thesis number:

Supervisors: Prof.dr. B.P.F. Jacobs, dr.ir. E. Poll

Date:

2

Preface

We wrote this master thesis for our education Information Science at the Radboud University

in Nijmegen. We have done a research of how we can use the CAcert infrastructure in an

OpenID context. This is the result of our research.

We would like to thank some people who have made a contribution to this master thesis that

led us to the final result. We would like to thank our supervisors Prof.dr. B.P.F. Jacobs and

dr.ir. E. Poll for their feedback, knowledge, ideas and advice. We also would like to thank

Esther Makaay and Marco Davids of SIDN for the conversation we had with them. Finally we

would like to thank Bernard van Gastel and Marc Overmeer for the ideas and advice they

gave us.

Barthold Derlagen & Onno Berfelo. Warnsveld, 3 September 2010.

3

Abstract

These days more and more people have access to an internet connection. These people spend

an increasing amount of time on the web. On the web you'll encounter many websites on

which you'll need to authenticate yourself. In many cases you'll do this with a username and

password combination. Using the same combination on every site is unwise. This is where

Single Sign On (SSO) (section 2.3.1) gets into the picture. SSO is an Identity Management

system (section 2.3). SSO allows users to use a single account on one site to gain access to

multiple other websites. Even in the scenario of SSO there are still some pitfalls in using a

username and password combination. An attacker has several options to gain access to your

account. He could use a keylogger to log your credentials. He could also attempt to guess

your password or use brute force. Using a certificate from a Certificate Authority (CA) based

on the Public Key Infrastructure (PKI) (section 2.2) would resolve the security issues of logon

credentials.

OpenID is a SSO solution but it has several security problems. Most of these problems would

be solved by requiring the usage of Secure Sockets Layer (SSL). The usage of a username and

password as logon credentials is common in OpenID implementations and it could be a

problem if an attacker were to obtain these credentials. This might be resolved by using

different login credentials.

CAcert is a CA that issues certificates based on a Web of Trust (WoT). CAcert failed a

management audit and because of this its root certificate has not been included in any of the

major browsers. This results in error and warning messages whenever someone visits a

website with a certificate that has been signed by CAcert. This has halted the deployment of

CAcert certificates. Using CAcert client certificates as a logon credential would give it more

purpose. Perhaps it could even stimulate the growth of CAcert.

OpenID (chapter 3) is an open standard, it is open source. It is a software framework which

means that apart from the core code most of the code can be altered. There are therefore many

different implementations of the OpenID protocol. OpenID is decentralized which means that

authentication doesn't need to take place on the site that offers the service. Within OpenID

there are three parties, the User, Identity Provider (IdP) and Relaying Party (RP). The IdP

provides the user with an identity and an identifier. The user can provide his identifier to the

RP. The RP will then redirect the user to the IdP. The user will authenticate himself to the

IdP. The IdP redirects the user back to the RP. The RP then accepts that the user has identified

himself. OpenID has some security and trust problems (section 3.2).

CAcert (chapter 5) is not unlike a common CA (section 2.2). It does, however, use a WoT to

verify the identy of their users. CAcert has assurers which are users with 100 or more

assurance points who have successfully taken an assurer test. Assurers can grant users from

ten up to thirty-five points depending on their rank. Their rank is determined by the amount of

people they have assured or being active during the start-up process of CAcert. A user needs

to print a verification form. He then needs to provide this form and show his identification

papers to an assurer. The assurer can then grant the user points. Once a user has 50 or more

points he is deemed assured which will unlock various options in generating certificates. User

can then obtain class 3 certificates and include his name in his certificates.

During the creation of this thesis an idea arose to develop a proof of concept (chapter 6). This

proof of concept was to use a CAcert client certificate as a logon credential on an IdP. The

4

proof of concept is based on a package named SimpleID. This package was selected after

comparing it with several other packages. Some of the scripts of the SimpleID were altered to

enable user login with a CAcert client certificate. The credentials of users are stored in a

database.

5

Table of Contents

1 Introduction ... 8

1.1 Problem statement ... 8

1.1.1 Research questions ... 9

1.2 Method ... 9

1.3 Thesis structure .. 10

2 Theoretical framework .. 11

2.1 Security Goals .. 11

2.1.1 Confidentiality .. 11

2.1.2 Integrity .. 11

2.1.3 Availability ... 12

2.1.4 Authentication .. 12

2.1.5 Accountability .. 13

2.2 Public Key Infrastructure (PKI) .. 13

2.2.1 X.509 (Public-key certificate) .. 15

2.3 Identity Management ... 16

2.3.1 Single Sign On (SSO) .. 16

3 OpenID .. 17

3.1 Protocol .. 17

3.1.1 Enter OpenID identifier .. 20

3.1.2 Discovery ... 22

3.1.3 Association request .. 23

3.1.4 Association response .. 24

3.1.5 Authentication request .. 25

3.1.6 Request authentication and authorization .. 25

3.1.7 Authenticate and authorize ... 26

3.1.8 Positive assertion .. 27

3.1.9 Verification ... 28

3.2 Problems .. 29

3.2.1 Trust problems .. 31

3.3 Alternative OpenID solutions .. 31

3.3.1 OpenID Plus ... 31

3.3.2 Personal Identity Portal .. 32

3.3.3 MyOpenID ... 32

3.4 Protocol in other research .. 32

4 Single Sign On comparison .. 34

6

4.1 Kerberos ... 34

4.1.1 Protocol .. 35

4.1.2 Comparison with OpenID .. 39

4.2 DigiD ... 41

4.2.1 Protocol .. 41

4.2.2 Comparison with OpenID .. 44

4.3 Microsoft Windows LiveID ... 45

4.3.1 Protocol .. 46

4.3.2 Comparison with OpenID .. 47

4.4 Google Federated Login .. 48

4.4.1 Protocol .. 49

4.4.2 Comparison with OpenID .. 50

5 CAcert ... 52

5.1 What is CAcert .. 52

5.1.1 Certification Authority ... 52

5.1.2 Web of Trust ... 57

5.2 How to use CAcert .. 57

5.2.1 Client Certificate .. 58

5.2.2 Server Certificate .. 58

6 Proof of Concept ... 62

6.1 Motivation for our solution .. 62

6.2 Design Decisions ... 63

6.2.1 Database ... 63

6.2.2 Script .. 64

6.3 Package selection ... 65

6.3.1 OpenID Implementations ... 65

6.3.2 Chosen package .. 67

6.4 CAcertID ... 68

6.4.1 Credential Database .. 68

6.4.2 Background .. 69

6.5 Results ... 69

6.5.1 Advantages ... 70

6.5.2 Disadvantages ... 70

6.5.3 Notes ... 70

6.5.4 Future work .. 70

7 Conclusion .. 71

7.1 OpenID .. 71

7.2 CAcert .. 71

7

7.3 Proof of Concept .. 72

7.4 Future Work ... 72

Bibliography ... 73

Attachment A: Setting up a Webserver with SSL enabled .. 75

Attachment B: Database ... 83

Attachment C: Proof of Concept Code .. 92

8

1 Introduction

More and more people are using the Internet. The usage of the Internet and websites is

growing by the day. Websites are getting more personalized. This asks for the need to

authenticate users. The problem with this is that users need to register on many websites.

Another problem that occurs is that a lot of times the username that you want to choose is

already in use, so you need to come up with another username. So users need to remember a

lot of usernames and password combinations. For this problem there is a solution that is called

Identity management systems. Identity Management Systems allow users to use a single

identity on multiple websites. One example of an Identity management system is OpenID.

CAcert is a Certificate Authority that allows people to register certificates for free. They sign

server certificates and generate client certificates for people that request them. People that join

CAcert need to be assured by assurers. When an assurer assures an assuree, he signs the client

certificate of the assuree. Assurers can grant from 10 to 35 points depending on their status.

The status of an assurer is determined by the amount of people they have assured and in some

cases being active in the startup process of CAcert. Once an assuree has received 100 points,

he can become an assurer after taking a test. Services like signing a server certificate do not

require an assuree to have 100 points.

1.1 Problem statement

Various sources take note of the security issues that exist within the OpenID protocol.

[TSY07], [OH08], [MOS09] and [MCD08] all mention several security flaws in the OpenID

protocol. The issue that is mentioned most is its susceptibility to phishing attacks, followed by

man in the middle attacks. The problem underlying is that the use of SSL is not required by

the protocol. This problem is, however, noticeably not the highest priority in this thesis. Most

OpenID identity providers use a username and password combination as login credentials.

This means that when an attacker obtains these, he will have access to all the websites that

were accessed by the user with this OpenID. Our aim is to see whether it is prudent to replace

the username and password combo with a more secure credential in the form of a certificate.

CAcert has an entirely different problem which frustrates its deployment. The root certificate

of CAcert is not included in the bigger browsers. This is due to issues in the management

structure which made it fail an audit [MOZI07]. This failure leads to the abandonment of the

inclusion request in the Mozilla browser (Firefox, Seamonkey). Therefore certificates that are

handed out by CAcert can be used but will generate a warning in most applications. In short

our aim is to give the CAcert certificates another purpose. This purpose will be a logon

credential for OpenID.

9

1.1.1 Research questions

Our main research question is:

How to use the CAcert infrastructure within an OpenID context?

We also have some sub research questions to help to achieve our main goal:

1. How does OpenID work?

a. What are the differences and similarities between DigiD and OpenID?

b. What are the differences and similarities between Kerberos and OpenID?

c. What are the differences and similarities between Windows LiveID and OpenID?

d. What are the differences and similarities between Googles ID and OpenID?

2. How does CAcert work?

3. How can OpenID and CAcert complement each other?

a. What are the advantages and disadvantages of authentication with CAcert?

1.2 Method

In essence our thesis is mostly based on a literature study. We started by searching and

studying literature about CAcert, OpenID and the security problems with OpenID. When we

had written the chapters about these subjects we continued by studying literature about

protocols that we were planning to compare with OpenID. We also developed a proof of

concept to show how people would able to login on an OpenID Provider with the use of a

CAcert client certificate. We have written down how to setup a webserver to be able to

accomplish this in Attachement A. We selected a package to base our proof of concept on by

comparing a few packages. We then modified the selected package to make it possible to sign

in with a CAcert client certificate. We have done this by editing files and added some new

scripts. To be able to do this we have searched for information about how this can be done.

10

1.3 Thesis structure

This thesis contains the following chapters:

1. Introduction

2. Theoretical framework

3. OpenID

4. Single Sign On comparison

5. CAcert

6. Proof of Concept

7. Conclusion

8. Reflections

9. Bibliography

Chapter one is an introduction to our thesis. In the second chapter we discuss some general

theories and research behind our thesis. The third chapter describes the OpenID protocol and

some of its flaws. The fourth chapter describes some other Single Sign On protocols that are

compared with OpenID. The fifth chapter describes what CAcert is and how it can be used. In

the sixth chapter we describe our proof of concept. The seventh chapter contains the

conclusion of our thesis. In chapter eight you can find the bibliography.

11

2 Theoretical framework

In this chapter we will discuss some of the underlying theory behind our research. We will

start by describing general security aspects in the first section. In that section we will

elaborate on confidentiality, integrity, availability, authentication and accountability. In the

second section we will give a short summary of the Public Key Infrastructure (PKI). PKI and

specifically the X.509 protocol is what the CAcert protocol is based on. The third and last

paragraph of this chapter is about Identity Management. It will briefly explain Identity

Management and Single Sign-On (SSO). We will name some of the solutions available. These

solutions have their own chapter in which examples such as Kerberos and DigiD will be

described (chapter 4). OpenID based Alternatives for our own project, CAcertID are

mentioned in the OpenID chapter (chapter 3).

2.1 Security Goals

The most important goals of security are confidentiality (sometimes referred to as secrecy),

integrity (occasionally referred to as accuracy) and availability. These goals as well as other

goals, Authentication and Accountability, will be discussed further in the following

paragraphs. In this thesis we will in various chapters talk about the assurance level of a

protocol. By a high assurance level we mean that it is safe to be used in online banking and

other vital services. A low assurance level means that it is best to be used only for chatting,

blogging, etc.

2.1.1 Confidentiality

Confidentiality can be described as ensuring that only those authorized to have access have

access. It is one of the most important aspects of information security [GAN91]. In other

words, confidentiality is a restriction of access to information. It resembles the need-to-know

policy used in military organizations and by governments [GAN91]. Organizations have a lot

of confidential data from development plans to trade secrets. Disclosure of these data could be

disastrous [TAN03]. Organizations other than companies have confidential data as well.

Patient data is highly confidential and this is a factor in the development of the Electronic

Patient Dossier (EPD). Just think of the implications that would arise if your patient files were

visible for a future employer.

2.1.2 Integrity

Integrity is about the message not being altered along the way. In other words the message the

sender sent is equal to the message the receiver receives. An analogy would be that the letter

you sent is not altered along the way. Non-repudiation is stronger than Integrity as it means

that a sender can not deny sending the message. To the earlier analogy this would mean the

envelope is sealed with your personal seal or you hand your letter over in person. Online you

would be able to achieve this with the use of a hash function and digital signature.

12

2.1.3 Availability

The uptime of a computer shows how long it has been available for use. The availability in

information security is similar; it is the degree to which something is available for use, when

it needs to be up. You can even calculate this by dividing the uptime with the total time

passed. Availability is also one of the more pronounced aspects of information security.

In the OpenID protocol the Identity Provider (IdP) needs to be available to be able to logon to

a Relaying Party (RP). An analogy of this could be the copyright protection of new single

player games. Some of the recently released games like Command and Conquer 4 require

players to be online while playing. The game is authenticated by an authentication server.

When the authentication server is down you can't play. With both you are dependent on a

third party (authentication server/ IdP) to be able to use the service (game/ RP). In both cases

the service can no longer be used if the IdP/ authentication server shuts down permanently.

2.1.4 Authentication

Ensuring that someone is who he claims to be is in short the goal of authentication. During

our daily lives we authenticate ourselves often and not just when we go online. When we meet

an individual we know, in person or in a video conference, we can authenticate him by his

appearance and voice. The voice can also be used to identify someone whilst speaking on the

phone or when we use a voice over IP (VoIP) application. When we logon to our computer

we authenticate ourselves to the local system. When we logon to our Windows LiveID

account we authenticate ourselves to Microsoft‟s Windows LiveID servers. Whilst logging in

to gmail, youtube or any other google product we authenticate ourselves to one of Google‟s

servers. In [KAU02] authentication is defined as the manner in which you can trustworthily

identify a person‟s or object‟s identity. You can authenticate yourself with:

 Something you know (username and password)

 Something you are (biometrics)

 Something you have (key, certificate or smartcard)

 Someplace you are (location of payment, IP, etc.)

The username and password combination is perhaps the most used authentication method on

the web and it is also the simplest one to set up. It is however not a very secure authentication

method, even if the protocol setup for it is secure. Users tend to use the same password for

various uses. Some only have one password they use for all their accounts on the web. If an

attacker were to obtain your credentials he would be able to logon to any of the sites you use

them on. An attacker could create a malicious site in which you're actually giving up your

credentials freely. Another attack the attacker could employ would be a keylogger. A

keylogger logs all keys pressed so if you login to a site the keylogger will have your

credentials. A different issue is the man in the middle attack. The attacker intercepts your

message and sends it himself which makes it appear as if he is the one logging in. A replay

attack might also be possible. During a replay attack an attack resends a previously sent

message by the user. A replay attack can be prevented with the use of a nonce.

13

2.1.5 Accountability

Accountability means that actions made by some party (who is responsible for their actions)

can be traced back and those responsible can be found. Most often traceability is created by

logfiles or other forms of methods that can record actions. A stronger form of accountability

is non-repudiation. In this case the party cannot deny that he did not do it [TAN03].

Authorization is a tool that extends the execution of accountability and improves it. This

means that authorization in a way makes it possible to trace back the actions that have been

made by some party. Authorization can be described as the process which authorizes parties

to access resources.

2.2 Public Key Infrastructure (PKI)

Public key infrastructure (PKI) is a method for digital security. PKI makes it possible to

verify the identity of parties (sender and receiver) involved in electronic communication.

PKI provides the users with a public and private key. The difference between the two keys is

that the private key needs to be kept private and the public key needs to be made public.

These two keys match as a pair (mathematically). This means that if you use one key to create

an electronic message, it can be read by using the other key. An example of how PKI works in

practice (Figure 1): Alice (sender) wants to send an electronic message to Bob (receiver).

Alice creates an electronic message. To make sure that Bob knows that the message is from

Alice and hasn‟t changed she needs to do a few things. The first thing that Alice needs to do is

to create a hash value of the electronic message. When the hash value is created Alice needs

to encrypt the hash with her private key. By encrypting the hash Alice‟s identity or digital

signature is assigned to the message. The encryption makes it impossible for others to change

the message without raising red flags. Alice sends the signed message (plaintext electronic

message and digital signature) to Bob.

Bob receives the two messages. Now Bob needs to do a check to make sure that the received

message hasn‟t changed and does come from Alice. The first thing that Bob needs to do is to

decrypt the digital signature with the public key of Alice. The result of this action is a hash

value. The next step is that the Bob must create a hash value of the plaintext electronic

message. When this is done Bob can check if the two hashes values are the same. If this is the

case then Bob can be sure that the message is from Alice and hasn‟t been changed [LAN03].

14

Figure 1: Example signing and verifying electronic message

PKI in the sense of digital certificates is a way of structuring and defining standards for the

distribution and control of digital certificates. In a standard PKI setup certificates are used to

bind the public key of the user to the user‟s identity. An organization that does this is called a

Certification Authority (CA). The CA doesn‟t need to know the user‟s private key [BES06].

For example if a user wants to prove to another user that he is that certain person, the user can

go to the CA with his public key and passport and ask if he can be certified.

A commonly used component of PKI is Registration Authorities (RA). RA performs several

administrative tasks of a CA. One of the tasks that a RA performs is to verify the entity‟s

identity and determine if the entity is entitled to have a public key certificate issued. Another

task that the RA performs is to enforce all policies and procedures that are defined. Other

tasks could also be assigned to the RA, it differs from one CA to the next [WEI01].

Certificate directory is also a commonly used component of PKI just like RA. The purpose of

a certificate directory is publishing certificates in a directory that is controlled by the CA or

the RA. This could also be done by a different organization but that makes it more difficult. If

it is handled by the CA or RA, it is easier to keep it up to date. A requirement of a certificate

directory is that it must be publicly readable. In the certificate directory the Certificate

Revocation List (CRL) is also published. CRL is a list where the certificates of entities are

published that are no longer valid [WEI01].

15

The functions that are involved with PKI are:

 Public key cryptography: This is the creation, distribution, administration and control

of the cryptographic keys.

 Certificate issuance: Bind the public key to an entity or person. It could also be used to

bind a public key to an attribute [TAN03].

 Certificate validation: Validating that a trust relationship or binding exists and that the

certificate is valid.

 Certificate revocation: Canceling certificates and publish them on the CRL

Example of how PKI works when creating a certificate:

1. A user generates a public/private key pair. (this could be done by the user himself or

by the CA or the RA)

2. The user provides his public key, name and other information that is required to the

RA.

3. The RA checks if the credentials are valid and sends this information to the CA.

4. The CA will then generate a certificate for the user‟s public key and other information

and signs the certificate with the CA private key.

5. End result is that the user has a public and private key and a public key certificate.

2.2.1 X.509 (Public-key certificate)

X.509 is the standard for certificates (PKI for Single Sign On). The International

Telecommunication Union (ITU) and International Organization for Standardization (ISO)

published the standard in 1988 [JOO99]. Since the publishing of the standard there have been

three versions. The latest version V3 was released in 2008 (RFC 5280).

A public-key certificate is a certificate that is signed by a CA (a person or entity) to confirm

the identity or other information of the holder of the certificate [JOO99].

An X.509 certificate consist of the following elements:

 Version of certificate (version of the X.509 certificate V1,V2 or V3)

 Serial number certificate (unique to identify the certificate)

 Signature algorithm (the algorithm that is used to sign the certificate)

 Issuer‟s X.500 name (name of the certificate authority)

 Validity period (start and end date of the validity of the certificate)

 Subject name (the entity or person that is being certified)

 Subject‟s public key (the public key of the subject)

 (optional) Issuer ID (unique identifier of the CA issuer, option since version V2)

 (optional) Subject ID (unique identifier of the CA subject, option since version

V2)

 Extensions (there are many extensions defined in the certificate, possible since

version V3)

 Signature (the signature of the certificate authority)

Source: [TAN03], [JOO99], [NIS01].

The addition of extensions field (since version V3) makes the certificates more open. An

advantage of this is that the certificate issuers can add their own extension types [JOO99].

http://tools.ietf.org/html/rfc5280

16

2.3 Identity Management

On the web an identity is something one must have to perform certain tasks. Whether you are

tweeting, commenting on a Youtube video or replying to what your friend said on Facebook.

You will need to identify yourself. An identity should always point to a single user but a user

can have multiple identities [HEL09]. This is however not always the case as more and more

corporations have an identity which is handled by several employees. We disagree that an

identity should point to a single user. An identity should point to a single entity. This entity

could be a person, organization or a group.

The identity you claim must be authenticated in some way. Usually this is done by using a

username and password combination which was chosen by the user. This is in essence the

same as printing your own passport [HEL09]. You can create a Twitter or Facebook account

under the name of a VIP but this doesn't mean that you are this VIP. Identity Management is

in short the process of managing identities. To us this means from both the client side as well

as the server side.

2.3.1 Single Sign On (SSO)

These days people do more and more online and have a vast number of accounts. Each

account has logon credentials, which mostly consist of a password and username

combination. Most users use the same credentials for various accounts. Other users will find it

hard to avoid this as the number of accounts they have grows. This is where SSO comes in.

"SSO stands for Single Sign-On and in its simplest form means a way where a user can access

several applications using centrally managed account information and performing

authentication only once." [HEL09]

In other words SSO can help users to eliminate the reuse of logon credentials for various

accounts, thereby preventing that one maleficent site is able to use your logon credentials and

use them to access your other accounts. The SSO concept has been around for a few decades,

but it was usually a proprietary solution [VOL01]. It was first thought of as a way to reduce

cost as it was removing the identity management from all separate applications and let it be

handled by a dedicated application.

People already use several single sign-on accounts probably without realizing it. Notable

examples of this are OpenID, Windows LiveID, Google account, Kerberos and in the

Netherlands DigiD. OpenID will be described in the next chapter (chapter 3). The other

examples will be described in the Single Sign On comparison chapter (chapter 4).

17

3 OpenID

In this chapter OpenID will be described in some detail. First we will start with an

introduction to OpenID. In the first paragraph the OpenID protocol will be described. In the

second paragraph we will describe some of the problems of OpenID. In the third paragraph

we will briefly describe some OpenID implementations. The fourth and last paragraph looks

at the way the OpenID protocol has been described in other research.

OpenID is an open, decentralized, free framework for User-centric digital identity

management [OPEN10a]. OpenID is open because it is an open standard. It is decentralized

because there are numerous Identity providers (IdP). It is free because anyone can implement

or use it free of charge. OpenID is a software framework, which means that it allows for many

flavors of implementations. A framework has a core which all applications that are based on it

need to adhere to but the rest of the code can be altered and extended. User-centric digital

identity management means that it manages the identity data of a user [OPEN10a]. OpenID is

based on the SSO mechanism. SSO is a mechanism which enables a user to authenticate and

authorize to all participating systems where the user has access, without the need of having

more than one identity [OH08]. OpenID is being used by companies such as Google, Yahoo,

AOL, MySpace, Verisign, etc. Anyone who has an account on any of the sites of these

companies has an OpenID Identity.

OpenID uses an OpenID identifier to identify a user (for example: http://name.example.com

or http://example.com/name). There are some terms in OpenID that need to be explained to

understand the working of OpenID. The Relaying party (RP) is a website that requires users

to provide an OpenID identifier and uses OpenID as a method to authenticate users. Another

important term of OpenID is OpenID provider (OP) also called Identity provider (IdP). The

IdP is the authentication server within the OpenID protocol. An RP will contact the IdP to

check whether the identifier that the user provides is really his identifier. A user can choose

on which IdP he wants to register an account and will be able to use the corresponding

identifier on websites which allow OpenID logon.

3.1 Protocol

The architecture of the OpenID protocol is described in Figure 2 and 3. The description in this

thesis is based mainly on the OpenID specification [OPEN10c] as well as [HEL09], [LEE08],

[LIN09], [OH08] and [TSY07]. The way OpenID has been described differs greatly in these

papers. The last paragraph in this chapter has been dedicated to this variation in modelling.

OpenID is an open standard; parties have choices in how to set up their IdP or RP.

Implementations of IdPs and RPs therefore vary. Our description includes most of these

implementations.

http://name.example.com/
http://example.com/name

18

Figure 2: OpenID architecture

Figure 3: OpenID UML Sequence Diagram

The common variables that are sent in messages of the OpenID protocol are described in table

1. You will also be able to see in which steps these variables can be found.

19

Variable Description

Commonly found in

steps

1 2 3 4 5 6 7 8 9

ns

This value determines the version of the protocol the

sender is using. In the 2.0 version of OpenID this

value is always 'http://specs.openid.net/auth/2.0'

 X X X

mode

This value is used to determine the current step. If

mode is associate, the step is association request, if

it‟s checkid_setup, the current step is authentication

request, etc.

 X X X

assoc_type
The value of this field defines the key algorithm to

be used to sign subsequent messages [OPEN10c].
 X X

assoc_handle This value is used to refer to an association. X X X

session_type

In the association request message this value is the

preferred association type. In the association

response message it should be equal to the value the

IdP received.

 X X

mac_key The MAC key/ shared secret for an association. X

realm

In realm there needs to be a URL (of the RP) that

the IdP asks the user to trust, default value is the

return_to value [OPEN10c].

 X

claimed_id OpenID identifier claimed by the user X X

identity OpenID identifier or identity X X

expires_in The lifetime of an association in seconds X

return_to

The value needs to be a URL to which the IdP can

return the User with the response indicating the

status of the request. The return to URL is generated

by the RP. Parameters of this URL are not defined

within the OpenID specification.

 X X

signed
Comma-separated list of the signed fields

[OPEN10C]
 X

sig

Signature of the values of the signed fields. Sig is

equal to {signed.values}mac_key. The session key has

been used to encrypt the values of the fields

specified in signed.

 X

op_endpoint
Identity Provider endpoint URL, the website address

of the IdP
 X

response_nonce
A string of 255 or less characters that is unique to a

certain positive assertion
 X

invalidate_handle
If an RP sent an invalid association handle it should

be included in this value.
 X

Table 1: Common variables in the OpenID protocol

In the next couple of subsections (2.1.1 - 2.1.9) we describe and discuss the various steps of

figure 2 and 3. The numbers as well as the titles of the following subsections match the steps

as seen in Figure 2 and 3.

http://specs.openid.net/auth/2.0%27

20

In our reference example the IdP onno.uni.cc uses the SimpleID package which will be

discussed further in section 6.3.1.2. The RP we used to logon to in our running example is

livejournal.com.

3.1.1 Enter OpenID identifier

This subsection corresponds to step 1 of figure 2 and 3.

User -> Relaying Party: OpenID identifier

The user launches a web browser and types in a URL of a Relaying Party (RP) he wants to

visit. When the user has loaded the website, he will have the choice to login or register by

presenting an OpenID identifier to the RP. The first step in this protocol is input from the

user. The user enters his OpenID identifier in a designated field of the website of a Relaying

Party. This identifier can be a Uniform Resource Identifier (URI), which could be a name

(URN), a locator (URL) or both. By both we mean that a URI can be both a URN and a URL

as there is a slight overlap between the two.

Another identifier that can be used is an Extensible Resource Identifier (XRI). “The goal of

XRI is a standard syntax and discovery format for abstract, structured identifiers that are

domain-, location-, application-, and transport-independent, so they can be shared across any

number of domains, directories, and interaction protocols.” [WIKI10] The identifier that is

mostly used is undoubtedly the URL because it is used in most standards.

Websites that offer users the ability to sign in with an OpenID usually have a field similar to

the one in Figure 4. Some RP have implemented the Janrain Engage/ RPX software. This

package offers more than just OpenID logon. It also provides users with the ability to logon

with a Facebook, Twitter, Windows Live or LinkedIn account [ELLI10]. These accounts can

not be accessed with the OpenID protocol. The Janrain Engage package has included

proprietary protocols of the companies behind Facebook, Twitter, Windows Live and

LinkedIn. RP's that have implemented the Janrain Engage package have a login form similar

to the one in Figure 5. A user needs to click the button of an account he wishes to logon with.

An RP is able to add or remove buttons from the login form. The OpenID button can be

removed thereby disabling the ability of the user to enter an identifier. All IdP

implementations have identifiers but some IdPs have the same identifier for all users. For

example all Google users have the identifier (https://www.google.com/accounts/o8/id).

In our reference example we will logon to the RP http://www.livejournal.com with the

identifier http://onno.uni.cc on the IdP http://onno.uni.cc/id.

https://www.google.com/accounts/o8/id
http://www.livejournal.com/
http://onno.uni.cc/
http://onno.uni.cc/id

21

Figure 4: OpenID sign in on livejournal.com

Figure 5: OpenID sign in Janrain Engage

22

3.1.2 Discovery

This subsection corresponds to step 2 of figure 2 and 3.

Relaying Party -> Identity provider

The RP will normalize the User-Supplied Identifier (this is the OpenID identifer).

Normalization means in this context converting the input of the user to a normalized

identifier. If a user for example supplies an XRI identifier, the 'xri://' at the beginning will be

stripped off so it has the simplest form. The following table lists all normalization rules (Table

2).

User’s Input Identifier Type Discussion

example.com http://example.com/ URL
A URI with a missing scheme is

normalized to an http URI

http://example.com http://example.com/ URL
An empty path component is

normalized to a slash

https://example.com/ https://example.com/ URL https URIs remain https URIs

http://example.com/user http://example.com/user URL
No trailing slash is added to non-

empty path components

http://example.com/user/ http://example.com/user/ URL
Trailing slashes are preserved on

non-empty path components

http://example.com/ http://example.com/ URL
Trailing slashes are preserved when

the path is empty

=example =example XRI
Normalized XRIs start with a global

context symbol

xri://=example =example XRI
Normalized XRIs start with a global

context symbol

Table 2: Example user input to identifier normalization [OPEN10c]

If the RP wants to limit the use of certain IdP then this could be checked during

Normalization. The RP could for example check the identifier to see if the IdP is one that it

trusts.

After normalization of the identifier the RP performs a discovery process on the normalized

identifier to establish the IdP endpoint URL that the user uses for authentication. The IdP

endpoint URL is a URL of the IdP that accepts the OpenID authentication protocol messages.

The discovery process can be executed in various ways. HTML discovery is the last attempted

and most common method used by RP. When the identifier is an XRI, its resolution will result

in an eXtensible Resource Descriptor Sequence (XRDS) document. When the identifier is a

URL the Yadis protocol [YADI06] will be attempted and if successful, this too will result in

an XRDS document. If the Yadis protocol has failed to retrieve an XRDS document HTML

based discovery will be attempted to retrieve the endpoint URL and the OpenID protocol

version. The protocol version is important due to the differences in the OpenID protocols

versions 1.0, 1.1 and 2.0. Some RP will allow an IdP that makes use of the 2.0 version of the

OpenID protocol.

http://example.com/
http://example.com/
http://example.com/
https://example.com/
https://example.com/
http://example.com/user
http://example.com/user
http://example.com/user/
http://example.com/user/
http://example.com/
http://example.com/

23

In our running example the IdP server registers a GET request of the root directory from the

RP. The IdP server then responds with the content of the autoload file in that directory, in this

case 'index.html'. This file contains the information with regard to the directory of the IdP on

the server:

<html>

<head>

<link rel="openid2.provider" href="http://onno.uni.cc/id/" />

<link rel="openid2.local_id" href="user" />

</head>

<body></body>

</html>

The endpoint URL (http://onno.uni.cc/id/), the identity (user) as well as the version of the

protocol (openid2) has now been discovered by the RP. Older versions of the protocol use

different attributes on their identity page.

3.1.3 Association request

This subsection corresponds to step 3 of figure 2 and 3.

Relaying Party -> Identity Provider: ns, mode, assoc_type, session_type

The association steps are optional for the execution of the OpenID protocol [LIN09]. This is

mainly because these steps are not necessary when the communication takes place with the

use of the Secure Socket Layer (SSL) or rather HyperText Transfer Protocol Secure (HTTPS).

Nonetheless the specifications recommend that a shared secret is established between the RP

and IdP; if this step is not executed the protocol requires the execution of a different set of

verification steps. The association can be created with either no additional encryption (in case

of HTTPS), DH-SHA1 or DH-SHA256. The RP commonly sends the extension alias ns

(value: "http://specs.openid.net/auth/2.0"), OpenID mode (value: associate) and OpenID

session type. If the ns value is missing or set to a different value the protocol should be dealt

with using the 1.1 compatibility specification. If the association steps are skipped the ns

parameter will be sent with the Authentication Request. When the Diffie Hellman protocol

(DH) is used the RP also sends an OpenID association type (value: HMAC-SHA1/ HMAC-

SHA256).

In our running example the association steps were skipped. The RP did not initiate

association. But when it does take place, you will be able to see a POST message on the IdP

server from the RP requesting the endpoint that was obtained during the discovery step. The

following POST message is a different example of an association request which uses an older

version of the OpenID specification. Note that the ns variable is missing due to it being a new

parameter in the 2.0 specification of OpenID.

 assoc_type: The value of this field defines the algorithm to be used to sign

subsequent messages [OPEN10c].

 mode: The value for this field needs to be associate [OPEN10c].

POST http://example.com/op/index.php

openid.assoc_type=HMAC-SHA1&openid.mode=associate

http://onno.uni.cc/id/
http://specs.openid.net/auth/2.0

24

3.1.4 Association response

This subsection corresponds to step 4 of figure 2 and 3.

Identity Provider -> Relaying Party: ns, assoc_type, assoc_handle, session_type, expires_in,

mac_key

An Association response is a direct response to the Association request from the IdP to the

RP. The IdP responds with a lifetime of the association after which the association is no

longer valid and has to be renewed. This means that the association steps will have to be

executed again the next time the user logs onto this RP while using the same identifier.

In our running example the RP did not initiate association; the IdP therefore did not need to

send an association response. The following message is an example of an association

response. server:

assoc_type:HMAC-SHA1\n

expires_in:1440\n

assoc_handle:6rn55rlh449dm6dv77ngkoa6d3\n

mac_key:L//32JdjUJaZ+6gok1tRjhw7+OA=\n

 assoc_type: This is the value of the assoc_type of the association request message. Or

if the IdP is unwilling or unable to support this assoc_type, then the value of the

message will be an unsucessful response [OPEN10c].

 expires_in: The lifetime, in seconds, of this association. The RP must not use the

association response after the lifetime has passed [OPEN10c]. HTTP messages

themselves also contain a timestamp which is what is used by the RP to compare it

with the lifetime.

 assoc_handle: The value of this field is used as a key to refer to this association in

subsequent messages [OPEN10c].

 mac_key: The value is the MAC key (shared secret) for this association encoded

(BASE 64) [OPEN10c].

25

3.1.5 Authentication request

This subsection corresponds to step 5 of figure 2 and 3.

Relaying Party -> User -> Identity Provider: ns, mode, return_to (optional), claimed_id

(optional), identity (optional), realm (optional), assoc_handle (optional)

The RP will redirect the user to the IdP with an OpenID authentication request. The return to

value in our running example contained a number 1273495345 and a ciphertext

82ea675f7d08da6386b7. The number represents Unix Time or the time passed in seconds

since 01/01/1970. In this case this value is equal to the date Mon, 10 May 2010 12:42:25

GMT. The ciphertext is most likely a keyed hash of the Unix Time. These parameters are not

specified in the OpenID specification. The parameters in our example are unique to the

implementation of the RP. The HTTP redirect from our running example looks like this:

GET onno.uni.cc/id/?openid.ns=http://specs.openid.net/auth/2.0&

openid.return_to=http://www.livejournal.com/openid/login.bml%3Foic.time%3D1

273495345-82ea675f7d08da6386b7&

openid.claimed_id=http://onno.uni.cc/&

openid.identity=user&

openid.mode=checkid_setup&

openid.realm=http://www.livejournal.com/&

openid.assoc_handle=4be6aa61000646801eaffe45

 ns: The ns value determines the OpenID version that the RP uses. The value of this

parameter needs to be 'http://specs.openid.net/auth/2.0'. If the ns is missing or has

another value the IdP will treat the request in the OpenID 1.1 compatibility mode.

 return_to: The value needs to be a URL which the IdP can return the User to with the

response indicating the status of the request. The return to URL is generated by the RP.

Parameters of this URL are not defined within the OpenID specification.

 claimed_id: OpenID identifier claimed by the user

 identity: is the OpenID identity of the user (or claimed identifier).

 mode: The value checkid_setup in mode enables the end-user to interact with the IdP

 realm: In realm there needs to be a URL (of the RP) that the IdP asks the user to trust,

default value is the return to value [OPEN10c].

 assoc_handle:(optional) is used to establish the way responses need to be signed.

3.1.6 Request authentication and authorization

This subsection corresponds to step 6 of figure 2 and 3.

Identity Provider -> User

The IdP checks whether the user is authorized to perform OpenID authentication; the user

needs to enter his password (or other required information). And the user is asked if he wants

to proceed with the OpenID authentication and which data the user wants to send to the RP.

This is not always the case. Some implementations of IdPs don‟t support that. This means that

the user is not always asked which data is sent to the RP.

The way in which a user has to authenticate himself to the IdP is not specified in the OpenID

protocol and it therefore differs in many of the interpretations. The IdP gives the user the

opportunity to authenticate himself and authorize the RP. The IdP can use any sort of

authentication mechanism.

26

3.1.7 Authenticate and authorize

This subsection corresponds to step 7 of figure 2 and 3.

User -> Identity Provider

The user sends his login data and other user data the user chooses to send. The user is able to

choose which information (data) to send if the RP requests it. OpenID itself doesn‟t specify

any user information other than the identity. The user information is added to OpenID with an

extension like SREG. SREG stands for Simple Registration. It is an extension to the OpenID

protocol. It is made to exchange some profile information with an RP when a user registers a

new account. In Figure 6 you can see the authentication of a user in our running example.

Note that the user has been redirected to the website of IdP (Figure 7). In this case you logon

first (Figure 6) after that you get a request for authorizing the IdP to redirect you back to the

RP (Figure 7). In our running example the RP did not request any user information.

Figure 6: OpenID Authentication

27

Figure 7: OpenID Authorization

3.1.8 Positive assertion

This subsection corresponds to step 8 of figure 2 and 3.

Identity Provider -> User -> Relaying Party: mode, op_endpoint, response_nonce,

assoc_handle, return_to, signed, sig = {signed.values}mac_key, identity (optional), claimed_id

(optional), invalidate_handle (optional)

When the user has authenticated himself and authorized the IdP to pass on data to the RP, the

IdP redirects the user back to the RP with a positive assertion. This positive assertion is a

message in which the IdP states that it has authenticated the user. The positive assertion in our

running example looks like this:

"Location: http://www.livejournal.com/openid/login.bml?

oic.time=1273495345-82ea675f7d08da6386b7&

openid.mode=id_res&

openid.op_endpoint=http%3A%2F%2Fonno.uni.cc%2Fid%2F&

openid.response_nonce=2010-05-09T12%3A54%3A53Zcba9f18e&

openid.assoc_handle=4be6aa61000646801eaffe45&

openid.identity=user&

openid.return_to=http%3A%2F%2Fwww.livejournal.com%2Fopenid%2Flogin.bml%3Foi

c.time%3D1273495345-82ea675f7d08da6386b7&

openid.claimed_id=http%3A%2F%2Fonno.uni.cc%2F&openid.ns=http%3A%2F%2Fspecs.

openid.net%2Fauth%2F2.0&

openid.signed=op_endpoint%2Creturn_to%2Cresponse_nonce%2Cassoc_handle%2Cide

ntity%2Cclaimed_id&

openid.sig=GMABNRWg%2Bv2t92egBqgBSOzkuhI%3D"

28

 oic.time: RP Parameter resembling unix time and a ciphertext. This parameter is not

specified in the OpenID standard.

 mode: The value of mode needs to be id_res, there is no extra information about why

it should be id_res or what it means.

 op_endpoint: IdP endpoint URL.

 response_nonce: Is a string of 255 characters or less and has to be unique to this

particular positive assertion. There are also some other obligations the nonce must

start with the current time of the server and may contain ASCII characters

[OPEN10c].This nonce is used for the purpose that the RP doesn‟t accept the same

positive assertion from that certain IdP. It will be verified by the RP during the

verification step.

 assoc_handle: The value of this field is the algorithm that is used for signing the

assertion.

 identity: OpenID identifier or identity

 return_to: Is a verbatim copy of the return to value that is sent in the request.

 claimed_id: OpenID identifier claimed by the user

 signed: Is used to determine which fields need to be covered by the signature

(openid.sig), the fields need to be named without the “openid.”.

 sig: Is the calculated encoded (64) signature.

When the user has not authorized the RP, a negative assertion is sent as opposed to the

positive one. This will terminate the execution of the protocol.

3.1.9 Verification

This subsection corresponds to step 9 of figure 2 and 3.

Relaying Party -> Identity Provider

The last step is that the RP verifies the information received from the IdP:

 Check if the returned value of "openid.return_to" matches the URL of the current

assertion

 Check if the signature on the current assertion is valid and the fields that need to be

signed, are signed

 Check if the discovered information matches the information of the current assertion

 Check if the assertion has not yet been accepted from this IdP with the same value for

“openid.response_nonce”[OPEN10C]

If the association steps are not preformed during the process, the verification of the signature

needs to be done in a different way. The RP then sends a direct request to the IdP. To respond

to this message the IdP uses the private association that was generated when it issued the

positive assertion.

In our running example the RP did not initiate the association steps. Therefore it needed to

send a direct request; it requested the identity page. The IdP replied by sending the identity

page. When all the steps are done, the user has identified himself to the RP and the

authentication protocol is finished. The user will then be sent to a page that states that the

authentication was successful (Figure 8).

29

Figure 8: Logged on with OpenID

3.2 Problems

Ever since the release of the OpenID Authentication 2.0 in 2007 there have still been some

security problems. In this paragraph some of these security problems in OpenID will be

discussed in relation to the described OpenID protocol above. First the security goals of all

the involved parties (user, RP and IdP) are described. Secondly the security problems are

described. Thirdly some trust problems are described.

The security goals:

User:

 Login information needs to be kept confidential

 Login information must not be altered along the way

 Browsing history needs to be kept confidential

 IdP should redirect the user to the right RP

 RP should redirect the user to the right IdP

 IdP should be available when the user needs it

30

RP:

 The communication between the RP and the IdP needs to be confidential

 The communication between the RP and the IdP must not be altered along the way

 The communication between the RP and the user needs to be confidential

 The communication between the RP and the user must not be altered along the way

 The RP needs to protect itself against malicious identifiers.

IdP:

 The communication between the IdP and the RP needs to be confidential

 The communication between the IdP and the user needs to be confidential

 The communication between the IdP and the RP must not be altered along the way

 The communication between the IdP and the user must not be altered along the way

Now some problems (also linked to the steps of the protocol) are described which can occur

when using OpenID:

 When the RP performs discovery on an identifier, the RP needs to extract the

information to know which IdP it needs to establish a connection with. If an attacker

were to enter a malicious identifier, this could have some consequences for the RP. A

few example consequences are:

o Denial of Service

If the URL is a link to a large file, the RP server could become unavailable.

o Port Scan

If you add a port to the identifier (http://www.example.nl:11), the RP will Port

Scan that host [TSY07]. An RP can prevent this by checking whether the

identifier is a local address. Another measure needs to be reporting the same error

message for each of the failures that can occur during the discovery step. Thus an

attacker will not be able to tell if a port is open or closed.

 The association steps are used by the RP and IdP to negotiate a shared secret key using

the Diffie-Hellman Key Exchange (DH). The problem with DH is that it is vulnerable

to man-in-the-middle attack. A man-in-the-middle attack is an attack where the

attacker is eavesdropping the connection between RP and the IdP. The attacker

intercepts the messages between the RP and IdP and sends them himself. For the IdP

he will now seem to be the RP and the RP will think the attacker is the IdP. A solution

that OpenID gives is to use HTTPS instead of HTTP to avoid this problem but when

you use HTTPS, DH isn‟t necessary anymore because you can exchange information

securely over the SSL connection [TSY07].

 During the authentication request step the RP redirects the user to the IdP. The

problem that can occur in this situation is that the RP is malicious and redirects the

user to a fake IdP. This can be done because the RP can redirect a user to any website

it wants. This form of attack is called phishing (fake websites which look like the

original, and then steal the personal information of the user). With this attack the user

can lose his identity and an attacker can use this data to cause damage. This is the best

known attack against OpenID [TSY07].

 After the user is redirected to the IdP and has successfully been authenticated (step six

and seven) the user can automatically login on other RPs. The problem with this is that

an IdP (a malicious one) can track which websites the user visits. At the moment there

isn't a good solution for this problem [TSY07].

http://www.example.nl:11/

31

 When a user is already logged in, a malicious website is able to grab the user

information. This vulnerability is called clickjacking. Bart van Delft recently

demonstrated this problem during the Digital Security Lunch Colloquium on June

11th 2010. With clickjacking a page steals your click by hiding an iframe element on

another page. The page you see will request your OpenID identifier. Whilst you will

log on, the page will say it failed. The retry button on the page is actually the authorize

button on the IdP website. When you click the retry button the website will have

retrieved the information from your OpenID.

 During the positive assertion step the user is redirected back to the RP. The problem

with this it that if, for example, an attacker is eavesdropping and gets in possession of

the URL, the attacker will be able to replay that URL. When the attacker replays the

URL he will be logged in on the RP as the user. There is a solution for this and that is

that IdP uses a nonce (a random number used only once). With a nonce implemented

in the URL the attacker will not be able to replay the URL. If the attacker is the first

one to use the URL, he will still be logged in on the RP [TSY07].

3.2.1 Trust problems

Another big issue of OpenID is trust. Everyone can create an OpenID identifier and use it to

logon to websites (RP). In the context of OpenID the information sent by the IdP needs to be

trusted by the RPs. When there is no trust between those parties then the information that is

sent from the IdP to RP is of lesser value, only the identifier can be trusted. This leads to a

certain problem and that is that large IdPs such as Google, Microsoft, Yahoo and others only

act as IdPs and not as RPs, because they would not want to depend on another maybe less

trustworthy IdP to provide information. Another problem that could occur when you choose

an IdP which isn‟t reliable and goes down, is that you can‟t access your websites (RPs) where

you used that OpenID identity [HEL09]. So the trust between IdPs and RPs isn‟t always there

and the trust for the user, that the IdP is stable, isn‟t certain either.

3.3 Alternative OpenID solutions

There are some problems in the standard protocol of OpenID, as described above. To solve

these problems organizations are trying to create an improved version of OpenID. They are

adding extra security mechanisms and are adding conditions to parties to make OpenID more

secure. In this paragraph some of these solutions have been described.

3.3.1 OpenID Plus

OpenID plus (since 2009) is an initiative of ECP-EPN where potential IdPs and RPs can work

together to create a “trusted identity”. One of the great issues of standard OpenID is trust.

OpenID plus has as goal to create a trust layer on top of OpenID. They intend to have multiple

levels of assurance within OpenID. The plus in OpenID plus stands for agreements between

parties to preserve the interests of the customers (users) and to improve the quality of the

OpenID based identities. OpenID plus works like this: The RPs which are in the network of

OpenID plus must meet up to certain conditions. An example of a condition is that the RPs

don‟t abuse the information that they get of the IdP. If they do, there will be consequences for

them. All of these conditions are a contribution to user experience, so that users will be able to

trust a RP. This strays from the mission of OpenID and if implemented will resemble Security

Assertion Markup Language (SAML) rather than OpenID. OpenID is open and by putting up

boundaries it would not be as open as it is now.

32

3.3.2 Personal Identity Portal

Personal Identity Portal (PIP) is a VeriSign Labs product. It is not just an OpenID solution but

it does incorporate it. As an OpenID provider PIP allows users to logon with a username and

password combination, a client SSL certificate and an Information Card. The Information

Card logon is odd as in itself it is an alternative to OpenID. We have tried to generate a client

SSL certificate on the website with both Internet Explorer 8 and Firefox 3.6.3 but it simply

failed to work. With Internet Explorer we received a message that the browser wasn't

supported. This message stated that all versions of Internet Explorer 6 and newer and all

versions of Firefox 2 and newer were supported. In Firefox it took ages after which it crashed

the browser. The method used to generate the key appears graphically to be the same as the

one used by CAcert, the latter working in both of the browsers mentioned. While PIP adds

certificate logon, the information in this certificate has not been validated. This in contrast to

what we aim to achieve with our project.

PIP also contains a way for users to store logon credentials online, named One Click Sign-In.

This has some synergy with browser synchronization. In most browser synchronization

applications the data that is sent to the server is encrypted whilst in this scenario you may just

be handing your authentication credentials over to VeriSign. This seems odd to us as you

would not want your logon credentials for numerous sites in the hands of a third party.

3.3.3 MyOpenID

MyOpenID is an OpenID Identity provider that allows users to identify themselves with either

a username and password combination, an SSL client certificate or an Information Card. We

have not been able to generate an SSL Certificate on the site of MyOpenID. In Internet

Explorer 8 the option to create an SSL client certificate is not available. In Firefox 3.6.3 it

reports that an unknown error has occurred while generating a key. This leaves the

Information Card as the alternative for logging on. While this may be more secure, this still

leaves the need for the identity to be matched to an individual. The information in the

certificate or information card has not been validated.

3.4 Protocol in other research

The architecture of the OpenID protocol has been described in various sources such as

[HEL09], [LEE08], [LIN09], [OH08] and [TSY07]. The architectures in these scientific

articles all have similarities but also slight differences. The model in [LIN09] is very close to

the specifications of the OpenID 2.0 authentication protocol [OPEN10c] as mentioned on the

OpenID website. Most other models are more abstract and use terminology which is less

similar to the terminology used in the OpenID specifications. The models mostly start out the

same when the user enters an OpenID URL as the first step. The second step in most models

is the discovery of the OpenID URL, but for instance in [LEE08] this step has been merged

with the association step(s). In some models e.g. [LIN09], two steps are used for the

association process whilst others e.g. [TSY09] and [HEL09], use only one step for it. There is

even a model in [OH08] where the association steps are missing, which could be due to these

steps being optional according to [LIN09] and [OPEN10c].

The redirect steps can be found in most models, but they are named differently in [LIN09]. In

[LIN09] they are named „Authentication request‟ and „Positive assertion‟ which is in line with

the terminology used in the OpenID 2.0 specifications [OPEN10c]. For clarity we have

33

chosen to split the redirect step into two connected parts due to the fact that in a redirect three

parties are involved namely the forwarder, user and the target. This is not much unlike the

way it is modeled in [TSY07] or [LIN09].

The next few steps are about authenticating the User to the Identity Provider, but these steps

are not specified by the OpenID standard. This is mentioned in [LIN09] and obviously due to

it not mentioned in the OpenID specifications [OPEN10c]. Most literature assumes that a

username-password system is in place. It should not be surprising that the authentication steps

in the models vary a lot. In [TSY07] the only step mentioned is „Enter Password‟ followed by

„Authorize RP‟. The model in [LIN09] has three steps: the first is an authentication request

that is actually a redirect to the IdP, the second one is the actual authentication step whilst the

last one is the process of sending a positive assertion to the relaying party after the successful

authentication. The last step in [LIN09] is actually a redirect as well so you could say that the

authentication consists of just one step. The protocol described in [OH08] has two

authentication steps; they are divided into a request and response between the Identity

Provider and the User. In [HEL09] only one step has been mapped named „Authenticate‟.

When the authentication of the User to the Identity Provider is concluded the User will be

redirected back to the Relaying Party. This has been defined differently in the models

mentioned but it is apparent in all of them. Then the Relaying Party may proceed with

verification, during which it verifies the assertion from the User.

The papers [HEL09], [LEE08], [LIN09], [OH08] and [TSY07] all described the OpenID

protocol accurately but from a different level of abstraction or point of view. Some simplified

the protocol others merged some steps. With our interpretation we chose to be as close to the

specification as possible. This meant that the descriptions in the papers were quite brief while

ours is more extensive.

34

4 Single Sign On comparison

In this chapter we compare the OpenID protocol with other SSO mechanisms, such as

Kerberos, DigiD, Microsoft Windows LiveID and Google Federated Login. In each paragraph

we will first introduce the protocol. After the introduction a description of the protocol

follows. The last section that is described is a comparison with the OpenID protocol.

4.1 Kerberos

The Kerberos protocol is based on the Needham and Schroeder protocol. The Needham and

Schroeder protocol dates back to the end of the seventies. What has changed the least within

Kerberos compared to Needham and Schroeder is password control. In either protocol both

the client and the server share a secret password. Another similarity is the exchange of one-

time identifiers between clients and servers [ZHA03]. The identifier used in the Kerberos

protocol (timestamp) is stronger than the one used in Needham and Schroeder (nonce)

[ZHA03]. These one-time identifiers are used to prevent replay attacks. The timestamp used

in Kerberos is generalized time which is based on the UTC timezone [KOHL93].

KerberosTime does not keep track of fractional seconds [NEUM05]. KerberosTime is notated

as YYYYMMDDHHNNSST. The NN refers to minutes and T refers to timezone. July 12th,

2010, 12:10:22.41 (UTC) is notated as 20100712121022Z.

Kerberos is named after a Greek mythological three headed dog. These heads resemble the

Client, Service and the Key Distribution Center (KDC). The KDC consists of the

Authentication Server (AS) and the Ticket Granting Server (TGS). The KDC is responsible

for maintaining a database of secret keys. The KDC also generates keys for sessions between

parties. Since both the TGS and the AS require the same information such as the keys, they

usually run on the same system.

Many Unix and Linux distributions as well as Windows 2000 and later use Kerberos as the

default authentication method to identify the identity of the user or host.

35

4.1.1 Protocol

The Kerberos protocol can be divided into two parts: one part in which the identity of the user

is determined and one part in which a session is established. We will discuss both parts of the

protocol in the following two subsections. The abbreviations we use in our depictions of the

Kerberos protocol are described in table 3.

Abbreviation Description

U User / username

C Client

S Server

AS Authentication Server

TGS Ticket Granting Server

PX Password of X

h[X] Hash of X

KX Secret key of X

KX, Y Session key for X and Y

{Z}KX Data Z encrypted with the secret key of X

{Z}KX, Y Data Z encrypted with the session key of X and Y

AX Authenticator of X

TX, Y Ticket of X to use Y

Table 3: Kerberos abbreviations

Kerberos specifies two credentials: a ticket and an authenticator. Both credentials are

timestamped. A ticket is a record that can be used to authenticate yourself to a service. All

tickets have an encrypted part and an unencrypted part. The unencrypted part of a ticket

contains the Version number, Realm and PrincipalName. The encrypted part contains

TicketFlags, EncryptionKey, Realm, PrincipalName, TransitedEncoding, Authtime

(KerberosTime), Starttime(KerberosTime) (optional), Endtime(KerberosTime), Renew-

till(KerberosTime) (optional), HostAddresses (optional) and AuthorizationData (optional).

KerberosTime is Generalized time based on the UTC timezone (section 4.1.1). The attributes

of a ticket are described in table 4.

36

Variable Unencrypted Encrypted Optional Description

Version number X Version number of the protocol.

Realm X X

Realm of the ticket/ authenticator

issuer. Realm is equal to the uppercase

domain of the issuer.

PrincipalName X X The unique name of a user or service

TicketFlags X

TicketFlags are a set of flags that

indicate various attributes of the ticket.

An example is the 'initial' flag which, if

true, means that the ticket is an initial

ticket granting ticket (ticket sent in step

2 of figure 11).

EncryptionKey X Keytype and keyvalue

TransitedEncoding X

List of Realms that took part in

authenticating the user to whom this

this ticket was issued

Authtime X
Authtime specifies when the original

authentication took place

Starttime X X Start time of the ticket

Endtime X End time of the ticket

Renew-till X X

Renew-till time that specifies the latest

time the ticket can be renewed. A ticket

can only be renewed when the renew

flag is set to true.

HostAddresses X X

HostAddresses is array that contains

zero or more host addresses. These are

addressees from which the ticket can be

used. If the array is empty the ticket can

be used from any address.

AuthorizationData X X

"The authorization-data field is used to

pass authorization data from the

principal on whose behalf a ticket was

issued to the application service. If no

authorization data is included, this field

will be left out." [NEUM05]

Table 4: Kerberos ticket attributes

"An authenticator is a record sent with a ticket to a server to certify the client‟s knowledge of

the encryption key in the ticket, to help the server detect replays, and to reach an agreement

on a specific session key used with the particular session." [ZHA03]. An authenticator is fully

encrypted. An authenticator contains Version number, Realm, PrincipalName, Checksum

(optional), Microseconds, CurrentTime(KerberosTime), EncryptionKey (optional),

SequenceNumber (optional) and AuthorizationData (optional). The attributes of an

authenticator are described in table 5.

37

Variable Optional Description

Version number Version number of the protocol.

Realm
Realm of the ticket/ authenticator issuer. Realm is equal to the

uppercase domain of the issuer.

PrincipalName The unique name of a user or service

Checksum X Checksum of application data that accompanies the authenticator

Microseconds Microsecond addition to the CurrentTime attribute

CurrentTime The current time in the KerberosTime standard (section 4.1.1)

EncryptionKey X

Encryption key chosen by the client to be used for the

application session. If the field is empty the session key from

certificate will be used instead.

SequenceNumber X Sequence number that can be used to detect replays.

AuthorizationData X

"The authorization-data field is used to pass authorization data

from the principal on whose behalf a ticket was issued to the

application service. If no authorization data is included, this field

will be left out." [NEUM05]

Table 5: Kerberos authenticator attributes

4.1.1.1 Determining the identity

In Figure 9 a UML Sequence diagram of a Kerberos process has been depicted. In this case it

is the process that determines the identity of a user. In Table 4 you can see the messages that

are sent in the Kerberos protocol. The numbers in the description refer to the ones in figure 9

and table 6.

Figure 9: Kerberos UML Sequence diagram - Determining identity

Step Sender Receiver Message

A User Client U, PU

B Client Authentication Server U, {Current Time}KU

C Authentication Server Client {Current Time}KU

Table 6: Overview Kerberos Messages - Determining identity

* The hash of the password of a user is equal to the secret key of the user. h[PU] = KU

38

Before a user can gain access to services, he must be authenticated. In the Kerberos protocol

this is done with the use of a username and password combination. The hash of the password

is the secret key of the user. The user provides his username and password (A). The client

hashes the password; this hash is the secret key of the user. The client encrypts the current

time with the secret key of the user. The client sends his username together with the ciphertext

of the current time to the Authentication Server (AS) (B). The AS retrieves the secret key of

the user from the KDC database. The AS decrypts the ciphertext that was sent by the client

with the secret key of the user. If the plaintext matches the current time or is within a certain

margin of it, the AS can assume that the password is correct. If the password is correct the AS

will encrypt the current time with the secret key of the user and sends it to the Client (C). The

Client decrypts the received ciphertext if it matches the current time to a certain margin. If it

matches the Client and the AS will now have authenticated each other.

4.1.1.2 Session Setup

Setting up a session is something the user will do after he has authenticated himself to the AS.

In Figure 10 the main UML Sequence diagram of the Kerberos protocol has been depicted.

The names of these messages have been interpreted from the protocol. The names aren't used

in the specification itself. The specification uses 8 character codes for the messages. Some

literature only describes 3 party's [LIN09]. In that case they merge the AS and the TGS. In

Table 5 you can see the messages that are sent in the Kerberos protocol. Note that timestamp

is also part of a ticket and an authenticator. The numbers in the description refer to the ones in

figure 10 and table 5.

Figure 10: Kerberos UML Sequence diagram - Session Setup

Step Sender Receiver Message

1 Client Authentication Server U, TGS

2 Authentication Server Client {KU, TGS, {TU, TGS}KTGS}KU

3 Client Ticket Granting Server S, {TU, TGS}KTGS, {AU}KU, TGS

4 Ticket Granting Server Client {KU, S, {TU, S}KS}KU, TGS

5 Client Service {TU, S}KS, {AU}KU, S

6 Service Client {timestamp+1}KU, S

Table 5: Overview Kerberos Messages - Session Setup

The client sends the username of the user and the name of the TGS to the AS(1). The AS

responds by sending an initial ticket granting ticket to the user (2). The initial ticket granting

ticket is encrypted with the secret key of the User (KU). This initial ticket granting ticket

consists of a session key of the User and the TGS (KU, TGS) and ticket of the User to use the

39

TGS (TU, TGS) encrypted with the secret key of the TGS (KTGS). The User continues by

sending a request for service tickets (3). The user sends the address of the server, his

authenticator encrypted with the session key and the encrypted ticket he received from the

AS. The TGS responds with the service ticket which is encrypted with the session key of the

User and the TGS (4). This ciphertext consists of the ticket of the User to use the Service (TU,

S) encrypted with the secret key of the Service (KS) and the session key of the User and the

Server (KU, S). The User will now authenticate himself to the Server (5). He does this by

sending the ticket to use the Server encrypted with the secret key of the Server {TU, S}KS and

his authenticator encrypted with the session key {AU}KU, S. The server will acknowledge this

authentication by sending the timestamp from the authenticator incremented with 1 encrypted

with the session key.

4.1.2 Comparison with OpenID

While comparing OpenID with Kerberos we wondered what they had in common. Apart from

the fact that both are Identity Management systems, Single Sign On protocols and use Diffie-

Hellman to generate session keys they are distinctly different. Kerberos has a high assurance

level (section 2.1) while the assurance level of OpenID is low. Kerberos is a computer

network authentication protocol that authenticates users and clients while OpenID is an Open

Framework for User-Centric Identity Management that authenticates entities. In Kerberos all

parties involved are authenticated, OpenID only authenticates the user. Kerberos is pretty

much ironclad, its current version Kerberos V5 has existed since 1993 (RFC 1510). It was last

altered in 2005 (RFC 4120). OpenID on the other hand is a much newer protocol and the

current 2.0 version has been in existence since late 2007. Kerberos has no security problems

worth mentioning and OpenID has many.

In the Kerberos protocol you could compare the service with an RP in OpenID. Both the

service and the RP require the user to be authenticated. You could also compare the IdP in

OpenID with the KDC (AS + TGS) of Kerberos. Both the IdP and the KDC enable the user to

be authenticated towards the RP/ service. Kerberos has 4 parties (Server, User, Authentication

Server, Ticket Granting Server), OpenID has 3 parties (RP, User, IdP). You could argue that

Kerberos has 3 as well since both the AS as the TGS are part of the KDC.

You could say that step 2 (Respond with Ticket Granting Ticket) and step 3 (Request for

Service Tickets) combined are somewhat similar to the Authentication Request step (section

3.1.1.5) in the OpenID protocol. In the OpenID protocol the RP redirects the user to the IdP

with information with regard to what information is requested, RP address, user identity, etc.

In Kerberos during the second step the AS sends the user the session key for the user and TGS

and ticket of the user to be used with TGS encrypted with the secret key of TGS. During the

third step the user forwards the encrypted ticket to the TGS and includes his authenticator.

In the same manner you could compare steps 4 (Respond with Service Tickets) and 5

(Authenticate) with the Positive Assertion step (section 3.1.1.8) in OpenID. These steps have

in common that after these steps the user has been authenticated to the service/ RP. During the

positive assertion step the IdP forwards the user to the RP, thereby acknowledging that the

user is who he claims to be. During step 4 the TGS sends the Client the necessary information

(session key and ticket encrypted with the secret key of the service) for the user to

authenticate himself to the service. During step 5 the user uses this information to authenticate

himself.

http://tools.ietf.org/html/rfc1510
http://tools.ietf.org/html/rfc4120

40

From a low level of abstraction it is tough to look beyond the differences but from a higher

level of abstraction it is far more similar than it appeared at first sight. There is one thing that

remains very different in Kerberos from what is specified in OpenID, which is Authentication

of the User. In OpenID this is done about halfway during the process steps Request

authentication and authorization (section 3.1.1.6) and the Authenticate and authorize steps

(section 3.1.1.6). The manner in which these steps need to be executed is not specified. In the

Kerberos protocol authentication of the user towards the authentication server takes place

during steps A, B and C (section 4.1.1.1). These steps are specified and need to be executed

prior to any of the other steps (4.1.1.2).

4.1.2.1 Similarities

 Both are Indentity Management systems;

 Both are SSO protocols;

 Both Kerberos and OpenID use Diffie-Hellman to generate session keys;

 The Service in Kerberos has a role similar to the RP in OpenID;

 The KDC in Kerberos has a role similar to the IdP in OpenID;

 Step 2 (Respond with Ticket Granting Ticket) and step 3 (Request for Service Tickets)

combined from the Kerberos protocol are similar to the Authentication Request step

(section 3.1.1.5) from the OpenID protocol;

 Steps 4 (Respond with Service Tickets) and 5 (Authenticate) combined from the

Kerberos protocol are similar to the Positive Assertion step (section 3.1.1.8) in

OpenID.

4.1.2.2 Differences

 Kerberos has a high assurance level, OpenID has a low assurance level (section 2.1);

 Kerberos is a proven technology, OpenID on the other hand is a new protocol and has

yet to prove itself;

 Kerberos has no significant security problems, OpenID has several security problems;

 Kerberos does not allow many choices in the implementation of the protocol, OpenID

does allow many implementations;

 Kerberos has 4 parties (Server, User, Authentication Server, Ticket Granting Server),

OpenID has 3 parties (RP, User, IdP);

 Kerberos specifies how a user should logon, OpenID doesn't and allows freedom for

the IdP to implement its own solution;

 In Kerberos the Service, AS and TGS are authenticated to the user, in OpenID this is

not the case for neither the RP nor the IdP;

 In Kerberos the Authentication of the user towards the authentication happens prior to

any of the other steps, in OpenID these steps take place about halfway during the

process.

41

4.2 DigiD

DigiD is an authentication system that most if not all Dutch government departments use for

their electronic services. DigiD stands for digital identity. DigiD is based on the standard

product called A-select. A-select is an authentication system that is based on Kerberos

(section 4.1). The advantage of A-select is that the authentication mechanism (such as

username and password) is separate of the application (such as a website). This allows you to

change the authentication mechanism without having to change the application itself. This is

an advantage of SSO in general. Citizens can use electronic services with the help of DigiD.

The government departments can check the identity of the citizens with the DigiD protocol.

4.2.1 Protocol

There are three authentication levels within DigiD; basic, medium and high. The

authentication levels basic and medium are implemented. Authentication level high will be

available in the near future. Every authentication level uses its own set of authentication

methods. The basic level of DigiD uses a username and password. The medium level of

DigiD uses a username, password and a transaction code sent by SMS. A citizen can only use

the medium authentication level if his mobile telephone number is known to DigiD. This

mobile telephone number can only be used by one citizen. In the future the highest level of

DigiD will use the electronic Dutch identitycard (eNIK). This authentication level will be

going to use the PKIgovernment (PKIoverheid) certificates. Every government department

can choose which authentication level is required for their electronic services.

The assurance level (section 2.1) of the protocol depends on the authentication level that is

used. If the authentication level is high or medium, the assurance level is high and very high.

But when the basic authentication level is used, the assurance level is medium. A DigiD can

be matched to a unique citizen identifier, the Burgerservicenummer (an equivalent to the

American Social Security Number).

As you can see figure 11 represents the Sequence diagram of the DigiD protocol. The steps in

this protocol will be discussed in the description underneath. The numbers in the description

refer to the ones in the diagram.

42

Figure 11: DigiD UML Sequence diagram

The first step is that the user visits a website of a government institution (1). Then the service

concludes that the user has yet to identify himself. The A-select agent then sends a message to

the A-select server (DigiD server) that the user will contact the A-select server to authenticate

himself (1).

https://as.digid.nl/was/server?

request=authenticate&

app_url=https%3A%2F%2Fwww%2Ezutphen%2Enl%2Fsmartsite.dws&

app_id=zutphen_digid_portal&

shared_secret=123456-kd2s-s3kg-72kf-k2f3-mk2eaoe3&

a-select-server=DigiD1

 app_url: This is the URL of the service.

 app_id: This is the service id.

 shared_secret: This is a shared secret that the service and DigiD use to communicate

with each other.

 a-select-server: This is the DigiD identifier.

43

Another thing that the A-select agent does in this step is that it reserves a session called a

request identifier (rid) for the A-select server (2).

rid=A77C582B33C03912&

as_url=https://as.digid.nl/aselectserver/server?

request=login1&

aselect-server=DigiD1&

result_code=0000

 rid: This is a unique number.

 as_url: This is the URL of the DigiD server.

 a-select-server: This is the DigiD identifier.

The A-select agent will now redirect the user to the A-select server (3). The user sends the rid

to the A-select server (4).

https://as.digid.nl/aselectserver/server?

request=login1&

rid=A77C582B33C03912&

a-select-server=DigiD1

 as_url: The URL of the DigiD server.

 rid: The unique number for this session.

The A-select server will then send a message to the user, in which he asks for the user‟s

username (5). Then the user needs to send his username to the A-select server (6). When the

A-select server receives the username it will check in the database which authentication

mechanisms are available for that particular user (7). After this check has been done the A-

select server asks the user for his password (8). The user replies with his password (9). The A-

select server verifies the password in the database to verify whether it is the correct one (10).

If there is a mobile telephone number of the user available, steps 8 to 10 could be repeated to

use the medium level authentication (basic + SMS authentication). When the user is

authenticated the A-select server will redirect the user back to the service (11) (12). In this

step the A-select server sends a granting ticket to the service to confirm that the user really is

who he says he is (based on burgerservicenummer) and at what authentication level the user

has been authenticated.

https://www.zutphen.nl/smartsite.dws?aselect_credentials=X&

rid=A77C582B33C03912&

a-select-sever=DigiD1

 app_url: The URL of the service.

 aselect_credentials: Encrypted granting ticket.

 rid: The unique number for this session.

 a-select-server: This is the DigiD identifier.

44

After the service has received the granting ticket it will send it back through the A-select

agent to the A-select server (13).

https://as.digid.nl/was/server?

request=verify_credentials&

aselect_credentials=X&

rid=A77C582B33C03912&

shared_secret=123456-kd2s-s3kg-72kfk2f3-mk2e-aoe3&

a-select-server=DigiD1

 as_url: The URL of the DigiD server.

 aselect_credentials: Encrypted granting ticket.

 rid: The unique number for this session.

 shared_secret: The shared secret that the service and DigiD uses to communicate with

each other.

 a-select-server: This is the DigiD identifier.

The A-select server then checks the granting ticket if it is the same granting ticket that it had

sent to the service and if the granting ticket is valid and has the right authentication level. If

this is the case, the A-select server will send a confirm message to the service (14).

rid=A77C582B33C03912&

uid=190382582&

app_id= zutphen_digid_portal&

auth_level=10&

r_org=DigiD&

a-select-server=DigiD1&

result_code=0000

 rid: The unique number for this session.

 uid: The Burgerservicenummer of the user

 app_id: The service id.

 auth_level: Which authentication level is used.

 a-select-server: This is the DigiD identifier.

The final step is that the service sends the user an application ticket so that the user can use

the service (15) [JOC07]. We based our examples of the messages between the involved

parties on the following source [MON08].

4.2.2 Comparison with OpenID

OpenID and DigiD have some general things in common but there are also a lot of

differences. The A-select server has three authentication levels which the service can choose

to be used. In OpenID the authentication method (section 3.1.1.6) for the IdP isn‟t specified in

the protocol. This means that there is no guarantee for a certain security level on that part of

the OpenID protocol, because every IdP can choose which authentication method it wants to

use, a good one or a bad one. OpenID is an open framework so that could be one of the main

reasons why they didn‟t specify it, as an open framework means that it is open for people to

create their own version of it, so most of the time they don‟t specify all the things so that

people can creatively create their own version of it. But to give the users of OpenID a

guarantee that there is a certain basic level of security would be good. An other difference is

that in DigiD the service (sort of RP) makes in a certain way sure to the A-select server (sort

of IdP) that it is talking to the user that it was intent to. This is done by using a rid (session)

45

(see protocol steps 2 & 4). The main difference with OpenID is that DigiD is more detailed in

security aspects. One of the main reasons of that is that DigiD isn‟t an open framework; it is a

proprietary solution. Another reason is that DigiD is used for privacy sensitive purposes. And

misuse of this has more consequences than it has with OpenID. OpenID isn‟t used for privacy

sensitive purposes because those websites don‟t support login with OpenID. It is also up to

the user where he uses OpenID to login (more or less privacy sensitive). The OpenID

implementations use an identifier that looks like a URL. This is because most of the time the

username you want to choose has already been taken. In DigiD the identifier is a username.

OpenID gives people the opportunity to create an IdP. The result of this is that there are many

OpenID IdPs. DigiD only has one authentication server (A-select), but of course there are

some redundant A-select servers. These servers are there to make sure that there is enough

capacity available so that the authentication can be done and to see to it that, if one server

crashes, the whole system does not go down. DigiD and OpenID are both SSO protocols but

in practice the only SSO part of DigiD is that it uses one single username and password

combination. In OpenID there are more SSO features such as: if a user has authenticated and

authorized himself to the IdP, the user doesn‟t have to authenticate and authorize himself to

all the RPs which he has access to. This only works for as long as the session takes. In DigiD

this feature is blocked because all the services use „forced logon‟ of A-select. This means that

each time a user is forwarded to DigiD he needs to re-authenticate himself. Another reason

why this doesn‟t work is that DigiD doesn‟t create cookies in any form. So DigiD cannot

track the authentication state of its users [MON08]. OpenID supports user data, that is stored

on the IdP, to be sent to the RP. A-select also supports this feature but it is not implemented in

DigiD. The user data that is stored on the IdP could be fake so the RP cannot really trust the

information. With DigiD this is not the case. There the user data is adequate and valid so this

could be a big plus for the service [MON08]. DigiD and OpenID share the same security

attack that is possible and that is phishing.

4.2.2.1 Similarities

 Both are Identity Management systems;

 Both are SSO protocols;

 DigiD has 3 parties (A-select (Database, A-Select server, A-select agent) User,

Service), OpenID has 3 parties (IdP, User, RP);

 Phishing attack is possible.

4.2.2.2 Differences

 DigiD can be used by Dutch citizens, OpenID can be used by anyone;

 DigiD specifies which authentication mechanism is used, OpenID doesn't;

 DigiD has more security measures than OpenID;

 DigiD has a medium/ high/ very high assurance level, OpenID has a low assurance

level;

 DigiD has one authentication server, OpenID has many;

 DigiD is a proprietary solution, OpenID is an open framework.

4.3 Microsoft Windows LiveID

Microsoft Windows LiveID is an identity people use to logon to Windows Live Messenger,

Bing and many other services provided by Microsoft. The logon credentials of this identity

consist of an emailaddress and a password. The emailaddress does not necessarily need to be

46

a hotmail (*@hotmail.com) or live (*@live.com) address. Microsoft allows people to use

their own emailaddresses to register an account. Windows LiveID has existed for several

years and is relatively new compared to other single sign-on solutions. However, it was

formerly known as Microsoft .NET Passport which dates back to the mid nineties. Windows

LiveID as well as the .NET Passport before is a proprietary system [MYL06]. Proprietary

systems are not aimed at becoming web standards. Instead they service a selected set of

service providers [MYL06].

Microsoft is planning to become an OpenID Identity provider [MICR08]. Tests in the

Community Technology Preview (CTP) environment have been concluded. There is no

schedule for the the release of OpenID functionality but Microsoft is actively working on this

feature [MICR09].

4.3.1 Protocol

As you can see, figure 12 represents the Sequence diagram of the Windows LiveID protocol.

The steps in this protocol will be discussed in the description underneath. The numbers in the

description refer to the ones in the diagram.

Figure 12: Microsoft Windows LiveID UML Sequence diagram

The first step is that the user is connecting to a resource and decides to login (1). The resource

will then proceed by redirecting the user to one of Microsofts Authentication authorities (2).

The authentication authority will then request the authentication credentials (3). The user will

then logon with his emailaddress and password (4). When the credentials are correct the

authentication authority will send three cookies (ticket, profile and page) to the user (5). The

profile cookie stores all the pages the user is logged onto [LIN09]. The ticket cookie contains

a unique identifier and a timestamp which will be used to verify the user by the resource

[LIN09]. User information can be found in the profile cookie [LIN09]. The authentication

authority will then continue by redirecting the user back to the Resource (6). The resource

will now request the ticket and profile cookie from the user (7). The page cookie is only used

for signing of [LIN09]. The user will supply these tickets and after the resource has verified

them, the user will have logged on successfully (8).

47

4.3.2 Comparison with OpenID

The most easily recognizable similarity between Windows LiveID and OpenID is that both

are Identity Management Systems and SSO protocols. They also share a low assurance level

(section 2.1). Both are not supposed to be used to transmit important data. A Resource in

Windows LiveID resembles the Relaying Party (RP) in OpenID. Both the Resource and the

RP require a user to be authenticated. What in OpenID is called an Identity Provider (IdP) can

be compared with an Authentication Authority in Windows LiveID. Both the Authentication

authority and the IdP authenticate the user. The big difference between the two is that there is

only one type of Authentication Authority and all servers which play this role are owned and

managed by a single party, namely Microsoft. OpenID has many different Identity Providers

that are owned by numerous parties.

Windows LiveID is a proprietary solution whilst OpenID is an open framework which is free

to be used by anyone. Since Windows LiveID is a proprietary solution, the authentication

authority is known. This means that there is no need for a discovery step or entering an

identifier by a user. For Windows LiveID this also has the advantage that there is far less trust

needed between the Resource and Authentication Authority. Both are mostly controlled by the

same entity, namely Microsoft.

In OpenID the user needs to authorize the RP, but in Windows Live the Resource is

authorized by the Authentication Authority. When in Windows LiveID the user has

authenticated himself to the authentication authority, the user will receive a set of cookies and

will then be redirected to the resource. In OpenID, after successfully authenticating himself,

the user is redirected to the RP with the needed information inside this redirect link. The user

will not need to visit the Authentication Authority when logging in to other Resources. The

user will just send the ticket and profile cookies he received earlier. In OpenID the user will

need to revisit the IdP for each new RP he wishes to authorize.

Step 2 (Redirect to Authentication Authority) from the Windows LiveID protocol can be

compared with the Authentication Request step (section 3.1.1.5) of the OpenID protocol. Both

of these steps redirect the user to the Authentication Authority/ IdP.

The implementations of step 3 (Request Authentication) and step 4 (Authenticate) are in most

cases quite similar to the implementations of the Request Authentication and Authorization

step (section 3.1.1.6) and Authenticate and Authorize step (section 3.1.1.7) of the OpenID

protocol. OpenID does not specify how these steps should be implemented but in most

implementations of this the IdP requests a username and password. The user will then supply

his credentials after which he can authorize the RP. Authorization is missing in the Windows

LiveID counterpart steps. Both sequences of steps have the same goal which is to authenticate

the user towards the Authentication Authority/ IdP.

The Windows LiveID steps 5 (Send Cookies), 6 (Redirect to Resource), 7 (Request ticket and

profile cookie) and 8 (Send ticket and profile cookie) combined serve the same purpose as the

Positive Assertion step (section 3.1.1.8) of the OpenID protocol. During the Positive

Assertion the IdP sends the user back to the RP with redirect link. This redirect link contains

all the necessary information for the user to be authenticated towards the RP. After the

Positive Assertion step has been completed the user will have been authenticated towards the

user. Steps 5, 6, 7 and 8 of the Windows LiveID protocol accomplish the same as the Positive

Assertion step. The user first receives the necessary information to authenticate himself. The

user is then redirected to the Resource. The resource requests authentication and the user

48

proceeds by sending the data he received earlier. Now the user will have been authenticated

towards the Resource.

4.3.2.1 Similarities

 Both are Indentity Management systems;

 Both are SSO protocols;

 Both have a low Assurance Level;

 Resource and RP have similar roles;

 Authentication authority and IdP have similar roles;

 Windows LiveID step 2 (Redirect to Authentication Authority) is similar to the

Authentication Request step (section 3.1.1.5) of the OpenID protocol;

 Windows LiveID step 3 (Request Authentication) is somewhat similar to the

implementation of the Request Authentication and Authorization step (section 3.1.1.6)

of the OpenID protocol; 1

 Windows LiveID step 4 (Authenticate) is somewhat similar to the implementation of

the Authenticate and Authorize step (section 3.1.1.7) of the OpenID protocol; 1

 Windows LiveID steps 5 (Send Cookies), 6 (Redirect to Resource), 7 (Request ticket

and profile cookie) and 8 (Send ticket and profile cookie) combined have the same

goal as the Positive Assertion step (section 3.1.1.8) of the OpenID protocol.

1 OpenID does not specify how these steps take place but implementations are in most cases

quite similar apart from the authorization.

4.3.2.2 Differences

 Windows LiveID is a proprietary solution, OpenID is an open framework;

 Windows LiveID requires the use of cookies, OpenID does not;

 In Windows LiveID the resource is authorized by the authentication authority, in

OpenID the user authorizes the RP;

 After being logged on a user will not need to revisit the authentication authority when

he wants to use a different Resource. In OpenID a user needs to revisit the IdP for

each RP to authorize them.

4.4 Google Federated Login

Google offers users many services. Federated login is the authentication mechanism of

Google which is based on OpenID. Google works as an OpenID provider. Google supports

the OpenID 2.0 protocol but also other extensions such as:

 OpenID Attribute Exchange 1.0 (This allows web developers to access user

information (username and e-mail address) that is stored with Google. This can only

be done if the user allows it.)

 OpenID User Interface 1.0 (This makes it possible to change to an alternative user

experience for the authentication process. The default experience for the user is that he

is being redirected away from the web application site to the Google authentication

page. This extension makes it possible to stay on the web application site and create a

popup for the authentication page.)

49

 OpenID+OAuth Hybrid protocol (This extension can be used to combine OpenID and

OAuth (see [OAUT10] for more information) authentication request. This can be

useful for web developers who already use OAuth.)

Google provides the relaying party (web application) with an identifier that the web

application can use to recognize the user. This identifier stays the same. The advantage of this

is that the web application (RP) can recognize the user across multiple sessions.

4.4.1 Protocol

As you can see, figure 13 represents the Sequence diagram of the Google Federated Logon.

The steps in this protocol are based on [GOOG10] and will be discussed in the description

underneath. The numbers in the description refer to the ones in the diagram.

Figure 13: Google OpenID UML Sequence diagram

The federated login protocol is triggered when the user wants to use an option or function of a

web application that requires the user to be authenticated. The first step is that the web

application requests the user to login with his Google account (1). The next step is that the

user decides to login with his Google account (2). The web application sends a “discovery”

request to GoogleOpenID (IdP) to get information on the Google login authentication

endpoint URL (3). Google responds to the web application with an XRDS document (section

3.1.2) that contains the endpoint URL (4). When the web application has discovered the

endpoint URL in the XRDS document, it sends an authentication request to the endpoint URL

(5). The user is then redirected to the Google federated login page (either in popup window or

the same browser window) and is asked to login (6). The user logs in on the federated login

page with his email address and password. When the user has done this, the user gets a

message if he wants to proceed signing in to that web application (7). When the user chooses

to approve signing in he will be returned to the web application (8). The final step is that the

web application uses the Google-supplied identifier to recognize the user and allows this user

to have access to certain services (9)[GOOG10].

50

4.4.2 Comparison with OpenID

The federated login protocol is similar to the OpenID protocol because the federated login

protocol is based on the OpenID 2.0 protocol. There are some differences. One of the biggest

differences is that it is a proprietary solution. It will only accept Google OpenID identifiers.

This means that other OpenID identifiers from other IdP‟s don‟t work. Another great

difference is that the federated SSO solutions use the concept Circle of Trust (CoT) and

OpenID does not. There needs to be a trust relationship between the RP and the IdP. This has

to be there because the IdP is responsible for the authentication process. And the other way

around, the IdP needs to trust the information that it gets from the RP. In OpenID this

relationship isn‟t there because everyone can create an IdP or RP. The lack of a CoT in

OpenID has as a result that the level of trust moves from the application level to a social level

[HEL09]. As mentioned before, everyone could create a IdP or RP and they could make a

malicious one (section 3.2). This means that the user cannot trust the “application” but he

needs to trust the person or organization that has created it.

The discovery step in Google federated login is slightly different from the discovery step

(section 3.1.1.2) in OpenID. In the federated login protocol the RP sends a message directly to

the GoogleOpenID with a request to get information of the Google login authentication

endpoint URL. GoogleOpenID responds with an XRDS document which contains this Google

login authentication endpoint URL (location of the IdP). In the OpenID protocol the RP first

performs a normalization on the identifier before requesting information about the endpoint

URL. This difference is there because the RP's that use OpenID can receive a lot of different

types of identifiers. The federated login protocol only recognizes one.

As you can see in the federated login protocol, it misses the Association request (section

3.1.1.3) and response steps (section 3.1.1.4) that are present in the OpenID protocol. These

steps are optional in the OpenID protocol. This isn‟t an issue for security because the

federated login protocol uses HTTPS for communication. In the described documentation of

federated login protocol they don‟t state that they only use HTTPS for communication. But

since the Google login authentication endpoint URL is an HTTPS address

(https://www.google.com/accounts/o8/ud) we can assume that they use only HTTPS for

communication. We have also found HTTPS being used during our logging in in every

Google application (Gmail, Youtube, etc.).

Step 5 Request login auth in the Google Federated login protocol is similar to the

Authentication request step (section 3.1.1.5) from the OpenID protocol. In these steps the web

application/RP redirects the user to the authentication mechanism (GoogleOpenID/IdP). Step

6 Redirect to Google sign-in page and step 7 Login and approve in the Google Federated

login protocol are quite similar to the Request authentication and authorization step (section

3.1.1.6) and Authenticate and authorize step (section 3.1.1.7) from the OpenID protocol. A

difference in these steps is that the Google federated login protocol specifies which

authentication mechanism is used to login. The federated login protocol prescribes that a user

has to log on with an email address and password. The similarity these steps have is that they

have the same goal which is to authenticate the User. The OpenID protocol doesn‟t specify

which authentication mechanism (section 3.1.1.6) needs to be used. Step 8 Return user

identity of the Google federated login protocol is similar to the Positive Assertion step

(section 3.1.1.8) from the OpenID protocol. The similarity is that they redirect the user to the

RP, if the user has authenticated himself successfully. The difference is that in the Positive

Assertion step a message is sent to the RP with some information. Step 9 Allows user to have

access of the Google federated login protocol has some similarity with the Verification step

https://www.google.com/accounts/o8/ud

51

(section 3.1.1.9) from the OpenID protocol. In both these steps they provide the user with

access. A great difference between these steps is that in the OpenID protocol the information

(of the user) sent from the IdP to the RP is being checked by the RP if it is valid.

The federated login protocol also offers the users the possibility to use Open Authorization

(OAuth). OAuth can be used in the federated login protocol to exchange user-specific

(calendar, address book, etc) data with a Google service. In general the OAuth allows users to

share user-specific data from one website to another website without having to hand out their

username and password [OAUT10]. In the OpenID protocol step 6 Request authentication and

authorization (section 3.1.1.6) and step 7 Authenticate and authorize (section 3.1.1.7) it is

possible to send information of the user to the RP. But this isn‟t specified in the OpenID

specifications. There are some extensions for OpenID that handle this like the Simple

Registration Extension (SREG)(section 3.1.1.7) but they are not as elaborate as OAuth. The

steps of OAuth are integrated in the federated login protocol. In step 5 of the federated login

protocol the web application requests a token. GoogleOpenID responds in step 8 with a token

to the web application. In step 9 the web application uses the token to gain access to the user‟s

Google services.

4.4.2.1 Similarities

 Both are Indentity Management systems;

 Both are SSO protocols;

 Both have a low Assurance Level;

 Web application and RP have similar roles;

 GoogleOpenID and IdP have similar roles;

 Google Federated Login step 5 (Request login auth) is similar to the Authentication

Request step (section 3.1.1.5) of the OpenID protocol;

 Google Federated Login step 6 (Redirect to Google sign-in page) and step 7 (Login

and approve) is quite similar to the steps Request authentication and authorization step

(section 3.1.1.6) and Authenticate and authorize step (section 3.1.1.7) of the OpenID

protocol;

 Google Federated Login step 8 (Return user identity) is similar to the Positive

Assertion step (section 3.1.1.8) of the OpenID protocol.

4.4.2.2 Differences

 Google Federated Login uses the concept of Circle of Trust;

 Google Federated Login is a proprietary solution based on OpenID, OpenID is an

open framework;

 The discovery step in Google Federated Login is slightly different (no normalization);

 Google Federated Login has no Association steps, OpenID does have association steps

but they are optional;

 Google Federated Login specifies which authentication mechanism it uses (step 7);

 Google Federated Login doesn‟t have a check of validation of the information sent

from the IdP to the RP in step 8, which OpenID has in its Verification step (section

3.1.1.9).

52

5 CAcert

In this chapter CAcert will be described. First we will introduce CAcert. We will describe

how CAcert is different from other Certificate Authority or Certification Authority (CA) in

the first section. In the second section we will explain how you can use CAcert.

CAcert is a non-profit association that exists since July 2003 and has as a goal “promote

awareness and education on computer security through the use of encryption, specifically with

the X.509 family of standards“ [CACE10a]. CAcert gives users the option to create x.509

certificates on the basis of „web of trust‟ for free. CAcert signs server and client certificates

and generates client certificates for users that request them. Web of trust means that people

confirm that you are the person that you say you are. The more independent people confirm

that you are the person you claim to be the more likely it is that you are that person.

A problem of CAcert is that their root certificate is not by default included in any of the major

web browsers (section 1.1). This means that people that want to use CAcert certificates need

to manually install the root certificate into their web browser. It also means that everyone that

visits your website will be confronted with a warning if they haven't got the root certificate

installed.

5.1 What is CAcert

CAcert is a CA that uses a Web of Trust (WoT) to confirm the identities of parties it issues

certificates to. CAcert issues both client certificates and server certificates to users. The

features a user has access to grow in number as he gains more assurance points.

5.1.1 Certification Authority

A CA is a party that issues certificates to other parties. A CA is a trusted third party, it

facilitates between parties that trust it. CA is an integral part of a Public Key Infrastructure

(PKI). Descriptions of both the CA and the PKI can be found in section 2.2.

CAcert is different compared to most other CA due to the fact that CAcert makes use of a

WoT (section 5.1.2) to verify the identity of its users. Some CAs require their users to make a

physical appearance at an office of the CA. This method is costly because the CA will need to

have offices near their users. Some other CAs only require a copy of passport to be sent by

email or mail. This method is less costly but it doesn't authenticate (section 2.1.4) the user. All

the CA knows is that someone sent a copy of a passport of somebody. There is no way to

know if the sender and the owner of the passport are the same individual. With a WoT CAcert

reaps the benefits of both mentioned methods. A WoT is cost efficient because there is no

need for numerous offices. Authentication still happens face to face with an assurer.

5.1.1.1 Classification of certificates

Each CA can classify its certificates. CAcert uses two classes, class 1 and class 3. There are

two matching root certificates. If you create a client certificate which is signed by class 1 you

will need to have a root class 1 certificate installed in the browser. If you have a class 3

certificate you need to have either the class 1 or class 3 root certificate installed [CACE10b].

53

The class 3 root certificate was signed with the class 1 root certificate. The difference between

them is that class 3 is primarily used for certificates including the names of assured members

(and is for assured members only) and for class 1 this is not the case. In our proof of concept

CAcertID (chapter 6) we use class 1 certificates that include the owner‟s name. These

certificates that contain a name can only be owned by assured users.

5.1.1.2 Client Certificate

A client certificate is a certificate that a user can use to login on websites and to securely send

email (section 2.2). In the case of securely sending email the user will publish his certificate.

People will then be able to use the public key in the certificate to encrypt the message. The

user can then use his private key to decrypt it. In figure 14 you can see an example of a client

certificate as it is shown in a browser. The attributes of a client cert are the same as the ones

used in the server certificate (section 5.1.1.3).

Figure 14: Client certificate

If you have 50 or more CAcert assurance points you can choose if you want your name

included in the client certificate. This client certificate can also be used to logon to the CAcert

website (optional). It is also possible to add Single Sign On (SSO) ID information to your

client certificate, which could be useful if you use your certificate for SSO purposes. Our

solution CAcertID (chapter 6), however, does not use this information.

54

5.1.1.3 Server Certificate

A server certificate is a certificate that is installed on servers. Servers that have a certificate

installed, can use it to set up secure connections with clients. Servers, that have a certificate,

have had to generate a secure key pair. The responsibility for generating a secure key pair lies

in the hand of the server not the CA. This key pair can then be used to generate a Certificate

Signing Request (CSR). The CSR can then be sent to a CA which signs it and provides you

with your certificate. CAcert only includes the CommonName (web-address) and

SubjectAltName from your CSR in your certificate automatically. A user will need take an

extra step on top of having more than 50 assurance points to get more information in his

certificate. He will need to send a letter of incorporation to include the name of his

organization. View section 2.2.1. for more detailed information about certificates. The

following text block is an example of a server certificate.

-----BEGIN CERTIFICATE-----

MIIERTCCAi2gAwIBAgIDCIJXMA0GCSqGSIb3DQEBBQUAMHkxEDAOBgNVBAoTB1Jv

b3QgQ0ExHjAcBgNVBAsTFWh0dHA6Ly93d3cuY2FjZXJ0Lm9yZzEiMCAGA1UEAxMZ

Q0EgQ2VydCBTaWduaW5nIEF1dGhvcml0eTEhMB8GCSqGSIb3DQEJARYSc3VwcG9y

dEBjYWNlcnQub3JnMB4XDTEwMDQxNjAwNDIxNloXDTEwMTAxMzAwNDIxNlowFjEU

MBIGA1UEAxMLb25uby51bmkuY2MwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGB

AKWOCH1loIAuD/HhBdqolfHd7uist3GJMQ4FE8UhvSqhWVqo8NE3b/ccwKDmdMv4

1Xell8Mm2/S7xw9vDiu2eJwAbh4rhDjzCjj8QJHNz4sBnxv/PS4gTbs0p8pTtRbd

xkfTCd/Xa1EwCxaNU0JD85zuSe0H2YauXkUGVmI12j/BAgMBAAGjgbwwgbkwDAYD

VR0TAQH/BAIwADA0BgNVHSUELTArBggrBgEFBQcDAgYIKwYBBQUHAwEGCWCGSAGG

+EIEAQYKKwYBBAGCNwoDAzALBgNVHQ8EBAMCBaAwMwYIKwYBBQUHAQEEJzAlMCMG

CCsGAQUFBzABhhdodHRwOi8vb2NzcC5jYWNlcnQub3JnLzAxBgNVHREEKjAoggtv

bm5vLnVuaS5jY6AZBggrBgEFBQcIBaANDAtvbm5vLnVuaS5jYzANBgkqhkiG9w0B

AQUFAAOCAgEAOYRFQlJvq7g2zvSolQWUPcS8WM8O6ClI7r6OpMCUnriT3TyBkKOG

Y8SQ4A2QyVKpZgSIbdePQFxd3SWHh1LK8n45ZiORr6QmGxK6IOMjo+ZU6S0ymTD+

WMbEio7rg9gYIF4deHUnjaPZFfnybN4ExwMhVufc43921oHfRNajwNL8AblHpQbB

DURcqrbFpbQ3bxrCOCGV/v4IqyidpSDB6607MTop6eb49P7KqP7+DXWzcely97Sg

g6ZA8z1bJyWxed5ZThYePjrIDU5NGL6GoU0ax9XqUPrGzQpfYJm0tVLLXkESmy9K

s/R6JZmETXaKd5ui1xUGZijUpoiEnztacgd1mN8xpPI/Vfh2qVnLmWoiuc/jwGjZ

YMU6l9QrDkqAV7Pfn7KBBCjIKcl6aFxgGIM2sDV2tImXu3CSM3J+vA2DimHh19f+

vk1gNYqpuv7MYqJO1kmKq41y0KthadLjGXeJTtAg0CrbiN0N7mQ2pReCwuKjIl8m

mzVvyernBmIGDP5LT2tX9gC9CK09ngt1Lk9q3SE4OyBryVdvDvaM1oBgX3IRpDWG

PzNE4ztAlWbGY3Ge2gH2m3T0ReHqMz3lUi623+Xo/LAlaJYW7WagB3APvhz1xs5q

A3dYD7G/gLgYffJcPGGDT6Qu/jZTj8W/hrlNzX8pO1sdVWAqQc1iNok=

-----END CERTIFICATE-----

The certificate contains information about the issuer, validity and subject of the certificate. It

also lists the version, serial number, X509v3 extensions, key and signature.The version is a

reference to the version of the protocol X509v3. The serial number is a unique identifier

provided by the CA. The X509v3 extensions are an array of attributes that confine the usage

of the certificate. If you decoded the certificate, you would get a text block similar to the one

described underneath.

Certificate:

Data:

 Version: 3 (0x2)

 Serial Number: 557655 (0x88257)

 Signature Algorithm: sha1WithRSAEncryption

 Issuer:

 emailAddress = support@cacert.org

 commonName = CA Cert Signing Authority

 organizationalUnitName = http://www.cacert.org

 organizationName = Root CA

55

 Validity

 Not Before: Apr 16 00:42:16 2010 GMT

 Not After : Oct 13 00:42:16 2010 GMT

 Subject:

 commonName = onno.uni.cc

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 RSA Public Key: (1024 bit)

 Modulus (1024 bit):

 00:a5:8e:08:7d:65:a0:80:2e:0f:f1:e1:05:da:a8:

 95:f1:dd:ee:e8:ac:b7:71:89:31:0e:05:13:c5:21:

 bd:2a:a1:59:5a:a8:f0:d1:37:6f:f7:1c:c0:a0:e6:

 74:cb:f8:d5:77:a5:97:c3:26:db:f4:bb:c7:0f:6f:

 0e:2b:b6:78:9c:00:6e:1e:2b:84:38:f3:0a:38:fc:

 40:91:cd:cf:8b:01:9f:1b:ff:3d:2e:20:4d:bb:34:

 a7:ca:53:b5:16:dd:c6:47:d3:09:df:d7:6b:51:30:

 0b:16:8d:53:42:43:f3:9c:ee:49:ed:07:d9:86:ae:

 5e:45:06:56:62:35:da:3f:c1

 Exponent: 65537 (0x10001)

 X509v3 extensions:

 X509v3 Basic Constraints: critical

 CA:FALSE

 X509v3 Extended Key Usage:

 TLS Web Client Authentication, TLS Web Server

Authentication, Netscape Server Gated Crypto, Microsoft Server Gated Crypto

 X509v3 Key Usage:

 Digital Signature, Key Encipherment

 Authority Information Access:

 OCSP - URI:http://ocsp.cacert.org/

 X509v3 Subject Alternative Name:

 DNS:onno.uni.cc, othername:<unsupported>

Signature Algorithm: sha1WithRSAEncryption

 39:84:45:42:52:6f:ab:b8:36:ce:f4:a8:95:05:94:3d:c4:bc:

 58:cf:0e:e8:29:48:ee:be:8e:a4:c0:94:9e:b8:93:dd:3c:81:

 90:a3:86:63:c4:90:e0:0d:90:c9:52:a9:66:04:88:6d:d7:8f:

 40:5c:5d:dd:25:87:87:52:ca:f2:7e:39:66:23:91:af:a4:26:

 1b:12:ba:20:e3:23:a3:e6:54:e9:2d:32:99:30:fe:58:c6:c4:

 8a:8e:eb:83:d8:18:20:5e:1d:78:75:27:8d:a3:d9:15:f9:f2:

 6c:de:04:c7:03:21:56:e7:dc:e3:7f:76:d6:81:df:44:d6:a3:

 c0:d2:fc:01:b9:47:a5:06:c1:0d:44:5c:aa:b6:c5:a5:b4:37:

 6f:1a:c2:38:21:95:fe:fe:08:ab:28:9d:a5:20:c1:eb:ad:3b:

 31:3a:29:e9:e6:f8:f4:fe:ca:a8:fe:fe:0d:75:b3:71:e9:72:

 f7:b4:a0:83:a6:40:f3:3d:5b:27:25:b1:79:de:59:4e:16:1e:

 3e:3a:c8:0d:4e:4d:18:be:86:a1:4d:1a:c7:d5:ea:50:fa:c6:

 cd:0a:5f:60:99:b4:b5:52:cb:5e:41:12:9b:2f:4a:b3:f4:7a:

 25:99:84:4d:76:8a:77:9b:a2:d7:15:06:66:28:d4:a6:88:84:

 9f:3b:5a:72:07:75:98:df:31:a4:f2:3f:55:f8:76:a9:59:cb:

 99:6a:22:b9:cf:e3:c0:68:d9:60:c5:3a:97:d4:2b:0e:4a:80:

 57:b3:df:9f:b2:81:04:28:c8:29:c9:7a:68:5c:60:18:83:36:

 b0:35:76:b4:89:97:bb:70:92:33:72:7e:bc:0d:83:8a:61:e1:

 d7:d7:fe:be:4d:60:35:8a:a9:ba:fe:cc:62:a2:4e:d6:49:8a:

 ab:8d:72:d0:ab:61:69:d2:e3:19:77:89:4e:d0:20:d0:2a:db:

 88:dd:0d:ee:64:36:a5:17:82:c2:e2:a3:22:5f:26:9b:35:6f:

 c9:ea:e7:06:62:06:0c:fe:4b:4f:6b:57:f6:00:bd:08:ad:3d:

 9e:0b:75:2e:4f:6a:dd:21:38:3b:20:6b:c9:57:6f:0e:f6:8c:

 d6:80:60:5f:72:11:a4:35:86:3f:33:44:e3:3b:40:95:66:c6:

 63:71:9e:da:01:f6:9b:74:f4:45:e1:ea:33:3d:e5:52:2e:b6:

 df:e5:e8:fc:b0:25:68:96:16:ed:66:a0:07:70:0f:be:1c:f5:

 c6:ce:6a:03:77:58:0f:b1:bf:80:b8:18:7d:f2:5c:3c:61:83:

 4f:a4:2e:fe:36:53:8f:c5:bf:86:b9:4d:cd:7f:29:3b:5b:1d:

 55:60:2a:41:cd:62:36:89

56

5.1.1.3.1 Certificate Signing Request

A Certificate Signing Request (CSR) is a file that a user sends to request his certificate to be

signed by CA. The CSR is generated after the user has generated an asymmetric key pair. The

CSR contains the public key, emailaddress, web-address, the location information of the user

and a signature. The signature consists of the entire CSR apart from the signature itself. The

signature is created with the private key of the user. The following text block is an example of

a CSR.

-----BEGIN CERTIFICATE REQUEST-----

MIIC2zCCAcMCAQAwgZUxCzAJBgNVBAYTAk5MMRMwEQYDVQQIEwpHZWxkZXJsYW5k

MRIwEAYDVQQHEwlXYXJuc3ZlbGQxITAfBgNVBAoTGEludGVybmV0IFdpZGdpdHMg

UHR5IEx0ZDEUMBIGA1UEAxMLb25uby51bmkuY2MxJDAiBgkqhkiG9w0BCQEWFW9u

bm9iZXJmZWxvQHhzNGFsbC5ubDCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoC

ggEBANJ8j0hu5AtPPIc7+1H23AWxi2d0SieQh+vI+D2XvNpk6ZLJQL9U+5yjAqUm

C1VgDwvjACVR5chD4B6fSRKQhSTYDtozuaDmvEyWo/tpo9BdWg13wuqlmSD749Me

98OrKphGtpVzrDmrbYGeINNm+FKwOlG37NiczqCb4Vrc1CfH1m6y22I3pnw7Xjae

i+X4/vk85kqFTN2GexvD5FbehiFkTb8/HHHVdUQciNs1zcAohTDExd8C/2+rWXTF

HS7jrvDkFAF4EerYKuZ4hiXbjvPeUcEkpuwNoPyuVmRf4426724VXR4kRHhyQ0jj

eRf1V7KNP+qUJyAfVbsqdUVO/lUCAwEAAaAAMA0GCSqGSIb3DQEBBQUAA4IBAQBu

S+PVTonsQg1PeUgGklvHVRk6+mC9p1HLtdMABsgANkb/lq8jQRsDOElT+rKjqcEe

r6clFcKhxXz8vQczDc8vyfQK2MPeaSRqxB1YOV2yk7X+4F+6ErTr3prq2i4gwphY

1muQg77Mj9Cc0cZYVB/8fRzR5UuJf1O2vUx0JKDpaqlcqKd1qdNFiZM4lD8Ie18q

+L9H5sIgYSN6qa1W+KIw8w+Z+Ii1mqE/XUzM66/rBJHKxy2CwBoBoKBkVKmTr1Ba

SzTdRlqeODR7bKYuFNIj6djY70o6QL+2xF6OqNmGYXjflZ6npH8QVCXZaUvS/oGk

LSFMoy4FsR6ADX29A9Ps

-----END CERTIFICATE REQUEST-----

If you were to decode this CSR, you would get something similar to the following text block.

Certificate Request:

Data:

 Version: 0 (0x0)

 Subject:

 emailAddress = onnoberfelo@xs4all.nl

 commonName = onno.uni.cc

 organizationName = Internet Widgits Pty Ltd

 localityName = Warnsveld

 stateOrProvinceName = Gelderland

 countryName = NL

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 RSA Public Key: (2048 bit)

 Modulus (2048 bit):

 00:d2:7c:8f:48:6e:e4:0b:4f:3c:87:3b:fb:51:f6:

 dc:05:b1:8b:67:74:4a:27:90:87:eb:c8:f8:3d:97:

 bc:da:64:e9:92:c9:40:bf:54:fb:9c:a3:02:a5:26:

 0b:55:60:0f:0b:e3:00:25:51:e5:c8:43:e0:1e:9f:

 49:12:90:85:24:d8:0e:da:33:b9:a0:e6:bc:4c:96:

 a3:fb:69:a3:d0:5d:5a:0d:77:c2:ea:a5:99:20:fb:

 e3:d3:1e:f7:c3:ab:2a:98:46:b6:95:73:ac:39:ab:

 6d:81:9e:20:d3:66:f8:52:b0:3a:51:b7:ec:d8:9c:

 ce:a0:9b:e1:5a:dc:d4:27:c7:d6:6e:b2:db:62:37:

 a6:7c:3b:5e:36:9e:8b:e5:f8:fe:f9:3c:e6:4a:85:

 4c:dd:86:7b:1b:c3:e4:56:de:86:21:64:4d:bf:3f:

 1c:71:d5:75:44:1c:88:db:35:cd:c0:28:85:30:c4:

 c5:df:02:ff:6f:ab:59:74:c5:1d:2e:e3:ae:f0:e4:

 14:01:78:11:ea:d8:2a:e6:78:86:25:db:8e:f3:de:

 51:c1:24:a6:ec:0d:a0:fc:ae:56:64:5f:e3:8d:ba:

57

 ef:6e:15:5d:1e:24:44:78:72:43:48:e3:79:17:f5:

 57:b2:8d:3f:ea:94:27:20:1f:55:bb:2a:75:45:4e:

 fe:55

 Exponent: 65537 (0x10001)

 Attributes:

 a0:00

Signature Algorithm: sha1WithRSAEncryption

 6e:4b:e3:d5:4e:89:ec:42:0d:4f:79:48:06:92:5b:c7:55:19:

 3a:fa:60:bd:a7:51:cb:b5:d3:00:06:c8:00:36:46:ff:96:af:

 23:41:1b:03:38:49:53:fa:b2:a3:a9:c1:1e:af:a7:25:15:c2:

 a1:c5:7c:fc:bd:07:33:0d:cf:2f:c9:f4:0a:d8:c3:de:69:24:

 6a:c4:1d:58:39:5d:b2:93:b5:fe:e0:5f:ba:12:b4:eb:de:9a:

 ea:da:2e:20:c2:98:58:d6:6b:90:83:be:cc:8f:d0:9c:d1:c6:

 58:54:1f:fc:7d:1c:d1:e5:4b:89:7f:53:b6:bd:4c:74:24:a0:

 e9:6a:a9:5c:a8:a7:75:a9:d3:45:89:93:38:94:3f:08:7b:5f:

 2a:f8:bf:47:e6:c2:20:61:23:7a:a9:ad:56:f8:a2:30:f3:0f:

 99:f8:88:b5:9a:a1:3f:5d:4c:cc:eb:af:eb:04:91:ca:c7:2d:

 82:c0:1a:01:a0:a0:64:54:a9:93:af:50:5a:4b:34:dd:46:5a:

 9e:38:34:7b:6c:a6:2e:14:d2:23:e9:d8:d8:ef:4a:3a:40:bf:

 b6:c4:5e:8e:a8:d9:86:61:78:df:95:9e:a7:a4:7f:10:54:25:

 d9:69:4b:d2:fe:81:a4:2d:21:4c:a3:2e:05:b1:1e:80:0d:7d:

 bd:03:d3:ec

We do not know how or why the public key length was reduced from 2048 bit in the CSR to

1024 in the certificate.

5.1.2 Web of Trust

Web of trust (WoT), sometimes known as friend of a friend (FoaF), is a decentralized trust

model. To get people to confirm your identity CAcert works with assurers. This works as

follows: when an assurer assures a user, he signs the client certificate of the user. Assurers can

grant from 10 to 35 points depending on their status. The status of an assurer is determined by

the amount of people he has assured and is in some cases active in the startup process of

CAcert. To get your identity assured by an assurer you need to show your passport and give

an identity verification form to the assurer. You can find an assurer who lives nearby on the

website of CAcert and send a message to meet somewhere. Once an user has received 100

points, he can take a test to become an assurer. Services like signing a server certificate do not

require a user to have 100 points. Users that have 50 or more points have more functions at

their disposal. Assurers gain points for each person they assure and will be able to grant more

points when they have assured a certain amount of users.

5.2 How to use CAcert

The first thing that a new user needs to do is register on the CAcert website (www.cacert.org).

The next thing you need to do is install the root certificate of CAcert into your web browser.

You can find these root certificates on the website of CAcert. You will need to install these

root certificates to be able to generate a client certificate. Another purpose of these root

certificates is that you will not receive an error when visiting a website that has a CAcert

server certificate. If you generate a client or server certificate you can choose by which root

certificate it will be signed.

58

5.2.1 Client Certificate

When you are registered you can create a client certificate. If you have installed a root

certificate you can proceed by creating a client certificate. The section client certificates on

the website helps you step by step to create a client certificate. While creating a client

certificate you can you decide which email address you would like to use for the client

certificate. You can also choose by which root certificate class it needs to be signed. You can

choose whether or not you want to be able to use the certificate to logon to the CAcert

website. You can optionally choose to include SSO ID information.

Figure 15: Client certificate options

5.2.2 Server Certificate

Getting a server certificate takes a bit more effort than getting a client certificate. To be able

to have your certificate signed you must first generate one yourself. You can do this on either

a linux or windows based system, if your server installation includes OpenSSL. The examples

in the following paragraphs do not need to be followed to the letter but it is in line with

section 2 in Attachment A. You will need to have a certain emailaddress bound to your

domain to register your domain with CAcert. When you have obtained your server certificate

you can install it in the config file of your webserver (section Attachment A.2).

59

5.2.2.1 Registrating a domain

You can add domains of websites you own to create server certificates for it. CAcert will

verify if you own that domain by sending an email to a specific emailaddress account of that

domain. This e-mail contains a link which you need to go to, to confirm that you own that

specific domain.

Figure 16: Adding a domain on the CAcert website

Figure 17: Choosing an emailaddress to receive a confirmation email.

5.2.2.2 Generating a Server Certificate

When you have added your domain to your account and the domain has been verified, you

can have your server certificate signed by CAcert. The first thing that you need to do is to

generate a key pair and a Certificate Signing Request (CSR). You can also decide by which

root certificate the server certificate needs to be signed. There are two classes available 1 and

3, the same as with the client certificate.

5.2.2.2.1 Linux

On a linux system it is slightly less complicated to generate a key or certificate signing

request. Open the terminal and execute the following command:

openssl genrsa -out server.key 2048

You have generated your private key and with this you can create a certificate signing request

with the execution of the following command:

openssl req -new -key server.key -out server.csr

You can now find both the key as well as the certificate signing request in your local home

directory. Open server.csr and copy the contents to the textbox on cacert.org (see figure 18) to

get a signed certificate. Save this certificate as server.crt. Copy your certificate and key to

/etc/apache2.

60

5.2.2.2.2 Windows

On a Windows system generating the key takes some more effort than on a linux based

system. Create a batch file (*.bat) with the following content [SMIT10]. The directories

mentioned are the default ones, change them if necessary.

@echo off

if not defined apache_dir set apache_dir=C:\Program Files\Apache Software

Foundation\Apache2.2

if not defined apache_conf_dir set apache_conf_dir=%apache_dir%\conf

if not defined openssl_conf set openssl_conf=%apache_conf_dir%\openssl.cnf

if not defined openssl_opts set openssl_opts=-config "%openssl_conf%"

if not defined openssl set openssl=%apache_dir%\bin\openssl.exe

if not exist "%apache_dir%" (

 echo Directory not found: "%apache_dir%"

 goto :eof

)

if not exist "%apache_conf_dir%" (

 echo Directory not found: "%apache_conf_dir%"

 goto :eof

)

if not exist "%openssl_conf%" (

 echo File not found: "%openssl_conf%"

 goto :eof

)

if not exist "%openssl%" (

 echo File not found: "%openssl%"

 goto :eof

)

pushd "%apache_conf_dir%"

"%openssl%" req %openssl_opts% -new -out server.csr || goto :eof

"%openssl%" rsa -in privkey.pem -out server.key || goto :eof

"%openssl%" x509 -in server.csr -out server.crt -req -signkey server.key -

days 3650

popd

Source: [SMIT10]

Start command prompt and browse to the directory in which you have placed your batch file.

Execute the batch and answer the questions. If you have doubts on what you should answer to

each question, note that most are optional.

61

5.2.2.3 Getting your Server Certificate Signed

Now that you have generated your asymmetric keys and CSR you can get your public key

signed by supplying the certificate signing request file (server.csr) (Figure 18). On the CAcert

website you can copy the contents of this file into a text box. You can do this by opening it

with your favorite text editor. Rename the file you get back from the certificate signer and

rename it to server.crt. Copy the file to the Apache configuration directory.

Figure 18: Creating server certificate.

62

6 Proof of Concept

In this chapter our proof of concept is described. Our proof of concept is to ascertain whether

it is possible to develop an OpenID provider where you can sign-in with your CAcert client

certificate. In section 6.1 we describe the idea behind our solution. Section 6.2 describes the

design choices we have made. Section 6.3 describes which OpenID package we have chosen

and why. Section 6.4 describes which modifications we have made in the package, to enable

sign-in with your CAcert certificate. We end this chapter with section 6.5 in which we

describe the conclusion derived out of developing the proof of concept and future work that

needs to be done.

6.1 Motivation for our solution

We set out to find a solution for the problems described in the introduction (section 1.1) of

this master thesis; these are briefly described again underneath. There are a lot of security

problems in OpenID (section 3.2). We wanted to find a way to improve the security of

OpenID. The main advantage of OpenID is that it is an open framework. An open framework

is highly adaptable. This means that we can change a lot of the aspects of OpenID. This is the

main reason why we have chosen OpenID.

CAcert (chapter 5) has the advantage that it gives users the opportunity to create X.509

certificates (section 2.2.1) on the basis of a Web of Trust (WoT) (section 5.1.2) for free. There

are a lot of certificate authorities that charge a fee to users for providing a certificate. CAcert

offering certificates without charge is a great advantage. This is the main reason why we

chose CAcert. But, as mentioned before in the introduction of this master thesis, the root

certificate of CAcert isn‟t included in the biggest browsers.

By combining OpenID and CAcert we might solve some of the problems and take advantage

the strong points of both. Our idea is to improve security of the IdP by making use of CAcert

client certificates. Concretely this means that a user has to logon with his CAcert client

certificate on the IdP.

The advantage of this is that the CAcert client certificates are used for another purpose. The

CAcert client certificates are now mainly used for e-mail. So using CAcert client certificates

for another purpose could result in some publicity which could eventually result in brand

awareness. The advantage of OpenID is that the authentication mechanism for the IdP is more

secure. CAcert client certificates are based on a WoT, the IdP and RP can indirectly trust that

the user is who he claims to be.

We have developed a proof of concept to ascertain whether it was possible to develop an

OpenID provider where you can sign-in with your CAcert client certificate. We have done

this by first searching for standard OpenID implementation packages. Then we selected one

of the OpenID implementation packages which we figured was best for our proof of concept.

Our criteria for a good OpenID implementation package were:

 Easy to install

 Complete package

 Supports OpenID 2.0

 Easy to edit the code

63

After we selected the OpenID implementation package and installed it we browsed the

Internet for ways to allow sign-in with a X.509 certificate. We found some example scripts

and other information of how it can be done. After we had found the information, we started

to edit files and add scripts to the installed package, to make it possible to sign in with a

CAcert client certificate. We used trial and error to develop the installed package, until it

worked. For storing all the user data we created a database and implemented queries in the

installed package.

The goals of making a proof of concept are:

 Find out if it is possible to create the idea (show that it is possible)

 See what the advantages and disadvantages are

 Notice which problems can occur

 Find out how much effort it costs to create it

 Test if the idea works as you thought it would work

We had to setup a web server that allows login with an SSL client certificate; the description

of how we did it can be found in Attachment A.

6.2 Design Decisions

In this paragraph we will describe the design decisions that we have made during the

development of the proof of concept. First the design decisions of the database will be

described. After that the design decisions of the script will be described.

6.2.1 Database

The email address of a user is the primary key in the user table

We have chosen for the email address to be the primary key because the email address is

embedded in the client certificate. The email address is used to verify the identity of the user

when the user signs in with his certificate. This means that the email address in the client

certificate is checked if it matches the email address in de database of that particular user.

Nickname in the user table must be unique

The nickname is unique because if a user wants to login with username and password you

need to use the nickname and password. If the nickname isn‟t unique it cannot be used as the

identity. The nickname is used in the identifier (http://onno.uni.cc/~nickname).

Full name in the user table is not unique

The full name of a user isn‟t unique because there is a possibility that another user has the

same full name.

http://10.0.0.99/wiki/index.php/Attachment_A:_Setting_up_a_Webserver_with_SSL_enabled
http://onno.uni.cc/~nickname

64

Timezone, language, country, date of birth, gender and postcode are optional values

The values of these objects are optional in the OpenID SREG extension (section 3.1.1.7). This

is why we have made them optional.

Timezones, languages and countries all have their own table in the database.

The information in the tables of timezone, language and country are static. Because of the

amount of all the values it is useful to put them in the database. It reduces the amount of codes

necessary to have, users being able to select their country, timezone or language from

hundreds of lines of code to several lines of code. We could loop through all the languages

timezones and countries as opposed to having long static lists in our template like:

<select name="country" id="edit-country">

 <option value=""></option>

 <option value="AF">Afghanistan</option>

 <option value="AX">Aland Islands</option>

 <option value="AL">Albania</option>

 ...

 etc.

</select>

The timezone table contains a countrynumber column

Numerous countries have more than just one timezone. Some countries have more than

twenty timezones. We added numbers to these rows to be able to select one of these

timezones after a user has selected a country.

The country code does not match the language codes in the country and language tables.

The codes we used are not just random; we took them from the ISO639 and ISO3166

standards. These standards are used by the OpenID SREG extension (section 3.1.1.7)

specifically the two letter codes.

6.2.2 Script

Only CAcert client certificates are allowed.

The CAcert Web of Trust ensures that the name in a client certificate is accurate. If the same

can be said about other CA they can be added in the server (the IdP) settings. Another reason

for only accepting CAcert client certificates is that it was part of the formulated thesis

assignment.

Only class 1 client certificates are accepted.

At the moment we decided that for the proof of concept only class 1 certificates needed to be

accepted. This can be changed in the server settings. The script should not need to be altered

to allow class 3 client certificates.

65

Only client certificates with a full name in them are allowed.

Only users that have 50 or more assurance points can add their name to a client certificate.

The name in the client certificate has been verified by a Web of Trust. Therefore the name in

the client certificate adds something to this IdP. The name in the client certificate can safely

be considered to be true.

Only client certificates with one or more emailaddresses in them are allowed.

An emailaddress is the only information in the client certificate that is unique. Without one

we would be unable to tell apart individuals with the same name. The nickname is unique as

well but is not part of the client certificate.

The script checks whether a certificate is meant to be used for logging on to a website.

If it was not the intention of the user to use the generated certificate to use it to log on to a

website, why would we allow it to be used in such a way?

Some functions have names that no longer suit them.

We decided to leave function names as they were such that if a new version of SimpleID were

to be released, it would be easier to update our proof of concept. It also makes it easier to

compare our script to the original.

After a country has been selected the script automatically selects a timezone and language.

This is a usability feature that should make it a bit easier for a user. It is not perfect due to

mismatching country and language codes. For instance when someone picks the American

Virgin Islands as a country the language Vietnamese (VI) is selected. This is perhaps a feature

that should be improved at a later time.

6.3 Package selection

Before we started developing a proof of concept we first searched the web to find standard

OpenID packages. These are packages with OpenID implementations with almost the same

functionality. We quickly found a few of them and after examining them selected one to be

used.

6.3.1 OpenID Implementations

There are numerous packages which can provide you with the OpenID functionality. In this

paragraph we will look at three of them (Php-openid, SimpleID and PhpMyID) and asses

whether they are fit to be used in our proof of concept. We have tested these packages to a

certain extent. We also describe how these packages can be installed and what you should

look at. We only describe how it can be installed on Linux because we used a Linux server.

6.3.1.1 Php-openid

Php-openid is a library that can be used on a Linux/ Unix server that runs Apache as well as

PHP. Php-openid supports OpenID protocol version 1.1 and 2.0.This library is used by many

66

OpenID plugins, for instance the one for Wikipedia. Installing this library takes some effort as

opposed to the packages (SimpleID and PhpMyID) which were merely copy and paste work.

These additional packages are needed to be installed for this library to work:

 PEAR DB

 Crypt_HMAC2

 Crypt_DiffieHellman

 Services_YADIS

6.3.1.1.1 Installation

You can install these packages by executing the following lines of code in the terminal:

sudo pear install DB-1.7.14RC1

sudo pear install Crypt_HMAC2-1.0.0

sudo pear install Crypt_DiffieHellman-0.2.3

sudo pear install Services_Yadis-0.4.0

Download the latest version of the Php-openid library from http://www.openidenabled.com/.

In this compressed file you will find a readme as well various directories and documentation.

To get started you should move the Auth directory of the installation to one of the directories

in your include path. If you don't know where that is, use the phpinfo function. In our linux

system these directories are /usr/share/php and /usr/share/pear. The Auth directory is placed in

the include path so it can not be reached from the outside. In other words, files in the include

directory are in a secure area. Note that it should still work if the Auth directory is placed in

the web root of the IdP. If you want to look at the examples that came with the library you can

copy them to your document root.

The Php-openid library comes with some very limited examples of both an IdP and an RP.

Using this package in our proof of concept would have meant having to spend a lot of time on

getting basic functions to work.

6.3.1.2 SimpleID

SimpleID is an IdP package written in PHP and, as the name says, it is simple. SimpleID can

be used on any platform. On the server where you install the package Apache and PHP should

be running. SimpleID supports OpenID protocol version 1.1 and 2.0. Files of this package are

limited in size. Unlike PhpMyID, these files do not contain 2000 lines of code but contain

mostly just a few hundred lines.

6.3.1.2.1 Installation

To install SimpleID download the latest version from sourceforge.net. Extract the compressed

archive. Move the www directory from the archive to your web root on your server. Move the

cache and identities directories to a secure folder that is accessible by the webserver. On our

linux system these are include directories namely /usr/share/pear and /usr/share/php. But you

can find these directories with the use of the php function phpinfo. Make sure the cache

directory is writable by the server and identities directory readable. You could leave these

directories in the web root while developing but should realize that it would create security

issues. Rename the www directory in your web root if you like as it will be your OpenID

provider endpoint. Now to create your own identity you will need to alter the identity file that

http://www.openidenabled.com/
http://sourceforge.net/projects/simpleid/files/

67

came with the package. The file example.identity.dist can be found in the identities directory.

Rename the file to match your username and remove the .dist (username.identity). Open the

identity file and alter the identity and pass. The identity must match the username in the

filename. The pass is an MD5 hash of your password. Optionally you can alter the OpenID

SREG information in the file. You will now need to create an html file which will point to the

OpenID endpoint and will tell your identity. This file will need to look like this:

<html>

<head>

<link rel="openid2.provider" href="http://onno.uni.cc/id/" />

<link rel="openid2.local_id" href="username" />

</head>

<body></body>

</html>

Now you will able to logon with this OpenID. In this example the file is located in the web

root and is named index.html. So your identity URL is now http://onno.uni.cc.

6.3.1.3 PhpMyID/ PhpMyOpenID

PhpMyID is a lot like SimpleID, but it lacks support for version 2.0 of the OpenID protocol. It

is also easy to set up and platform independent. PhpMyID is less easy to modify due to the

way it is programmed. Some files of PhpMyID contain up to several thousand lines of code.

With PhpMyID it is easy to set up an IdP. PhpMyOpenID is based on phpMyID. The

difference between them is that phpMyOpenID contains a script for generating an identity

whilst you have to alter a textfile for phpMyID. They share all the other advantages and

disadvantages.

There is one big disadvantage to using this application and that is due to it using version 1.1

of the OpenID protocol. The other disadvantage of using PhpMyID is the way it is coded.

Most of the code is to be found in single file which doesn't make it any more legible.

6.3.1.3.1 Installation

You'll need a webserver with php installed, but it is not necessary to have it running on a

specific platform or webserver. Basically all that is needed is copying the files to the root of

your webserver. Then for your identity you will need to edit the identity file with a text editor.

After you've completed this, your IdP is ready for use and you can use it to log on to any RP.

6.3.2 Chosen package

It will not come as a surprise to find that we selected SimpleID as the basis for our proof of

concept. It is easier to modify than PhpMyID, supports OpenID 2.0 and is complete enough,

so we could get started quickly. In our opinion it was the best candidate (based on the criteria

we had drawn up) to base our proof of concept on.

http://onno.uni.cc/

68

6.4 CAcertID

We have called our proof of concept CAcertID because it‟s a combination of OpenID with

CAcert. With CAcertID it is possible to log in with a CAcert client certificate on the IdP

(CAcertID). Underneath we will describe what we have changed in SimpleID to make it

work.

We have modified several files of SimpleID to make it possible to sign in with a CAcert client

certificate. The modifications to the SimpleID files are described in Attachment C. We have

created a script (server side) that makes it possible to sign in with a CAcert client certificate.

We have also created a dynamic identity page which means that every user will have an

identity page without the need to manually create one. Normally you should make an identity

page for every user. The dynamic identity page is located in the CAcertID root directory (on

the IdP server) and contains the following code:

<html>

<head>

<link rel="openid2.provider" href="http://onno.uni.cc/id/" />

<link rel="openid2.local_id" href="<?php echo $_GET["user"];?>" />

</head>

<body></body>

</html>

File: idpage.php

Whenever the identity page is requested, the “user” variable (<?php echo $_GET["user"];?>)

will be the requested OpenID identity. So for example the result for Barthold would be:

<link rel="openid2.local_id" href="Barthold" />

In the .htaccess file that can be found or needs to be created in the web root (of the IdP) we

add the following lines:

RewriteEngine on

RewriteRule ^\~([^/]*)$ /id/idpage.php?user=$1 [L]

File: .htaccess

This rewrite rule will forward anyone that requests a page similar to

http://example.com/~username to http://example.com/id/idpage.php?user=username. In our

case this would mean that Barthold would need to use http://onno.uni.cc/~Barthold as his

OpenID identifier.

For storing the user credentials we have created a database. This database will be described in

the next section.

6.4.1 Credential Database

As described above we have created a database to store the credentials of the user. We have

created a database because otherwise all the user data will be stored in separate files. With a

database the user data is more manageable. All the data is being used by scripts and by the

user himself. We have created four tables: user, timezone, country and language. The table

user is created to store the data when a user creates an account on the IdP. The following user

data will be stored: Username, Password, E-mail, Fullname, Date of birth (optional), Gender

http://10.0.0.99/wiki/index.php/Attachment_C:_Proof_of_Concept_Code
http://example.com/~username
http://example.com/id/idpage.php?user=username
http://onno.uni.cc/~Barthold

69

(optional), Postcode (optional), Country (optional), Language (optional) and Timezone

(optional). The other three tables, timezone, country and language, have been created to use

predefined values. This is useful because some people, for example, write their country‟s

name with capital letters or in their native tongue. The advantage of this is that the values of

the same timezone, country and language are the same. More information about the database

is described in Attachment B: Database

6.4.2 Background

In this section we will shortly describe what happens in the background when you sign in with

a CAcert client certificate. The first thing that is done is that the client certificate is being

parsed and checked if it‟s a CAcert client certificate. This is done by checking some values

(Attachment C. Proof of Concept Code) of the client certificate. The next step is that the email

address that is included in the client certificate is being grabbed out of it. Then the email

address of the client certificate is used to look for a match with an email address in the

database. If there is a match, the user will be successfully logged on.

6.5 Results

Our goal was to create an IdP that allows the users to sign in with their CAcert client

certificate. We have reached our goal. We have modified SimpleID so that it is possible to

sign in with a CAcert client certificate. You can see a screenshot of what it looks like, if you

are signing in with a certificate in figure 18.

Figure 18: Signing in with a certificate.

70

6.5.1 Advantages

 Users can authenticate themselves with something they have as opposed to something

they know.

 RP will receive a full name and email address that have been validated by a Web of

Trust

 CAcert certificates have gained another purpose

 The trust problems between the involved parties could improve because of the Web of

Trust.

6.5.2 Disadvantages

 Assurance level (section 2.1) remains low. The reason for this is: that using a CAcert

client certificate to sign in doesn‟t solve the OpenID security problems. If only https

were used, most security problems of OpenID would be solved. A solution for this

could be to develop an IdP that only allows connections from RP through https.

6.5.3 Notes

 The server running the OpenID provider will require a server certificate that is signed

by a trusted party. This is needed so that the OpenID provider can setup secure

connections with the users.

 The full name of a user only matters when the RP requests the full name of the IdP

6.5.4 Future work

 Documentation: There needs to be documentation for the users to know how they can

use this product.

 Promotion: This solution needs to be promoted so that people are going to use it.

Promotion can be done by placing articles on community websites and in magazines.

 HTTPS: For security reasons only HTTPS should be used for communication not

HTTP. (section 3.2)

 Law: The credentials of the users are being stored in a database. When you store user

credentials then the law specifies some rules. In the Netherlands this law is called: Wet

bescherming persoonsgegevens. Every country has its own laws for this. If this

product is going to be used, the laws that are relevant need to be looked at.

 Protocol version: For security reasons only OpenID protocol version 2.0 should be

used. This version is more secure than older versions (section 3.2).

71

7 Conclusion

"How to use the CAcert infrastructure within an OpenID context?"

The CAcert infrastructure can be used as an authentication mechanism for the OpenID

identity provider (IdP). Concretely this means that a user will be able to authenticate himself

with his CAcert client certificate. The CAcert infrastucture adds a validated name and email

address to the OpenID identity. We have created a proof of concept to prove that it is possible

to use this authentication mechanism. We accomplished this by modifying a standard OpenID

package.

7.1 OpenID

"How does OpenID work?"

OpenID (chapter 3) is based on Single Sign On (SSO) (section 2.3.1). Concretely this means

that a user can authenticate and authorize himself with one identity to all participating systems

to which the user has access. There are three parties within OpenID: a user, Relaying Party

(RP) and Identity Provider (IdP). The IdP is the authentication server within OpenID. The IdP

provides the user with an OpenID identifier. The RP is a website that requires users to provide

an OpenID identifier and uses OpenID as a method to authenticate users. An RP will contact

the IdP to check whether the identifier that the user provides is really his identifier. In the

current version of OpenID there are some security problems. These attacks are possible man-

in-the-middle attack, phishing and clickjacking. There are also some trust problems between

the different parties.

We compared OpenID with other SSO mechanisms like Kerberos, DigiD, Microsoft

Windows LiveID and Google federated login (chapter 4). Windows LiveID and Google

Federated Login are most similar to OpenID. Google Federated Login is based on OpenID

and Windows LiveID has a similar purpose as OpenID. The roles that are played in Kerberos,

Microsoft Windows LiveID and Google federated login are similar to the roles in OpenID.

Microsoft Windows LiveID, Google Federated Login and OpenID have a low assurance level,

the others have a higher assurance level because most of them have better or more security

measures. OpenID has not specified which authentication mechanism is used for the user to

authenticate himself. The other SSO mechanisms have specified which authentication

mechanism they use. DigiD, Microsoft Windows LiveID and Google federated login are

proprietary solutions, Kerberos is a standard and OpenID is an open framework.

7.2 CAcert

"How does CAcert work?"

CAcert (chapter 5) is a non-profit association that promotes the awareness and education on

computer security through the use of encryption, specifically with the X.509 family of

standards. CAcert gives users the option to create x.509 client certificates on the basis of „web

of trust‟ for free. CAcert signs server and client certificates and generates client certificates

for users that request them. Web of trust means that people confirm that you are the person

that you say you are. CAcert uses a network of assurers to assure the identity of new users. A

user will need to print a verification paper. This paper has to be filled in by an assurer after he

72

verified your identity by your identification papers (passport, driver‟s license, etc.). An

assurer can grant a user 10-35 points depending on his rank. Once a user has 50 points he can

be considered assured. When a user gets 100 points he can take a test to become an assurer.

7.3 Proof of Concept

"How can OpenID and CAcert complement each other?"

OpenID does not specify how a user should be authenticated. CAcert on the other hand issues

client certificates that can be used by users to authenticate themselves. CAcert client

certificates can be used by an IdP to authenticate users. We developed a proof of concept

(chapter 6) to test this hypothesis.

To be able to develop a proof of concept we set to work by setting up a webserver. We

installed Linux on the server with the following packages installed: Apache 2, MySQL and

PHP 5. We then searched for standard OpenID packages that we could modify to become our

proof of concept CAcertID. We found several standard OpenID packages which we looked at

and tested. We chose the package SimpleID and installed it on the server. We modified the

package to make it possible to sign in with a CAcert client certificate.

7.4 Future Work

Future work may include any project with research questions similar to:

 How can CAcertID become more beneficial to users?

 How should the security issues in OpenID be addressed?

 etc.

73

Bibliography

Scientific literature

 [BES06] Bessie, C. Hu; Duncan, S. Wong; Zhenfeng, Zhang; Xiaotie, Deng,

Certificateless signature: a new security model and an improved generic Construction,

Paper, Springer Science and Business Media, 2006

 [GAN91] Gangemi G.T., Computer Security Basics, Sebastopol (California, USA),

O'Reilly & Associates, ISBN: 0937175714, 2010

 [HEL09] Helenius, Kari, OpenID and identity management in consumer services on

the Internet, Paper, Helsinki University of Technology, 2009

 [JOC07] Jochems, Marc, DigiD and Privacy, Master Thesis, Radboud University

Nijmegen, 2007

 [JOO99] Joon, S. Park; Ravi, Sandhu, Smart Certificates: Extending X.509 for Secure

Attribute Services on the Web, paper, The Laboratory for Information Security

Technology Information and Software Engineering Department George Mason

University, 1999

 [KAU02] Charlie Kaufman, Radia Perlman, and Mike Spencer, Network Security

Private Communication in a Public World, Second Edition ed. New Jersy, USA:

Prentice Hall, 2002, ISBN: 0-13-046019-2

 [LAN03] Lancaster, Sean; Yen, C. David; Huang, Shi-Ming, Public key

infrastructure: a micro and macro analysis, Paper, Elsevier Science , 2003

 [LEE08] Lee, HwanJin; Jeun, InKyung; Chun, Kilsoo; Song, Junghwan, A New Anti-

phishing Method in OpenID, Proceedings of the second International Conference on

Emerging Security Information, Systems and Technologies (Pages 243-247), 2008

 [LIN09] Lindholm, Alexander, Security Evaluation of the OpenID Protocol, Thesis

Paper, School of Computer Science and Engineering - Royal Institute of Technology,

2009.

 [MCD08] McDonald, Tony, Facilitating online integrity using OpenID, Proceedings

ascilite Melbourne 2008, Faculty of Medical Sciences - The Medical School -

Newcastle University - United Kingdom, 2008

 [MOS09] Mostarda, Michele; Palmisano, Davide; Zani, Federico; Tripoldi, Simone,

Towards an OpenID-based solution to the Social Network Interoperability problem,

Position paper for the W3C Workshop on the Future of Social Networking, 2009

 [MON08] Moniava, Giorgi, Extending DigiD to the Private Sector (DigiD-2), Master

Thesis, Technische Universiteit Eindhoven, 2008

 [MYL06] Myllyniemi, Annu, Identity Management Systems A Comparison of Current

Solutions, Paper, Helsinki University of Technology, 2006

 [NIS01] NIST (National Institute of Standards and Technology), Introduction to

Public Key Technology and the Federal PKI Infrastructure, SP 800-32, U.S.

Government publication, 2001

 [OH08] Oh, Hyun-Kyung; Jin, Seung-Hun, The Security Limitations of SSO in

OpenID, Research Paper, Information Security Engineering, Korea University of

Science and Technology(KUST); Digital ID Security Research Team - Electronics and

Telecommunication Research Institute(ETRI), 2008

 [TAN03] Tanenbaum, Andrew S., Computer Networks 4th Edition, Upper Saddle

River (New Jersey, USA), Pearson Education Inc., ISBN: 0-13-066102-3, 2003

 [TSY07] Tsyrklevich, Eugene; Tsyrklevich, Vlad, Single Sign-On for the Internet: A

Security Story, Whitepaper, BlackHat USA - Las Vegas, 2007

74

 [VOL01] Volchkov, A., Revisiting single sign-on: A pragmatic approach in a new

context, IT Professional, Volume 3, Issue 1, Pages 39–45, 2001

 [WEI01] Weise, Joele, Public Key Infrastructure Overview, Sun BluePrints™ OnLine,

2001

 [ZHA03] Zhang, Xiaolan, A Comprehensive Study on Kerberos, Paper, University of

Illinois at Urbana-Champaign, 2003

Other sources

 [CACE10a] CAcert, CAcert, 2010 (http://www.cacert.org) [accessed February 2nd

2010]

 [CACE10b] CAcert, CAcert wiki, 2010 (http://wiki.cacert.org) [accessed February

2nd 2010]

 [ELLI10] Ellin, Brian, OpenID Technology Summit 2010; Challenges faced

implementing OpenID in RPX (http://wiki.openid.net/f/Janrain+-+RPX-OpenID-

Tech-Summit-2010.pdf) [accessed June 25th 2010]

 [GOOG10] Google, Federated Login for Google Account Users, 2010

(http://code.google.com/intl/nl/apis/accounts/docs/OpenID.html) [accessed May 23th

2010]

 [KOHL93] Kohl, J. (Digital Equipment Corporation); Neuman, C. (ISI), RFC1510 -

The Kerberos Network Authentication Service (V5), 1993

(http://www.ietf.org/rfc/rfc1510.txt) [accessed July 12th 2010]

 [MICR08] Microsoft, Windows Live ID Becomes an OpenID Provider, October 2008,

(http://winliveid.spaces.live.com/Blog/cns!AEE1BB0D86E23AAC!1791.entry?wa=w

signin1.0&sa=159627916) [accessed 19 April 2010]

 [MICR09] Microsoft, Windows Live ID OpenID CTP Status Update, August 2009,

(http://winliveid.spaces.live.com/Blog/cns!AEE1BB0D86E23AAC!1791.entry)

[accessed 19 April 2010]

 [MOZI07] Mozilla, Bugtracker - CAcert root cert inclusion into browser, 2010

(https://bugzilla.mozilla.org/show_bug.cgi?id=215243) [accessed February 1st 2010]

 [NEUM05] Neuman, C. (USC-ISI); Yu, T.; Hartman, S.; Raeburn, K. (MIT),

RFC4120 - The Kerberos Network Authentication Service (V5), 2005

(http://tools.ietf.org/html/rfc4120) [accessed July 12th 2010]

 [OPEN10a] OpenID, OpenID (http://openid.net) [accessed February 5th 2010]

 [OPEN10c] OpenID, OpenID authentication 2.0 specifications

(http://openid.net/specs/openid-authentication-2_0.html) [accessed March 9th 2010]

 [OAUT10] OAuth, OAuth documentation (http://oauth.net/) [accessed June 21st

2010]

 [SMIT10] Smittii.com, How to generate OpenSSL keys for Apache for Windows

(http://smithii.com/node/117) [accessed April 29th 2010]

 [WIKI10] Wikimedia, Extensible Resource Identifier, 2010

(http://en.wikipedia.org/wiki/Extensible_Resource_Identifier) [accessed March 23rd

2010]

 [YADI06] Yadis, Specifications 1.0, 2006

(http://yadis.org/wiki/Yadis_1.0_%28HTML%29) [accessed March 26th 2010]

http://www.cacert.org/
http://wiki.cacert.org/
http://wiki.openid.net/f/Janrain+-+RPX-OpenID-Tech-Summit-2010.pdf
http://wiki.openid.net/f/Janrain+-+RPX-OpenID-Tech-Summit-2010.pdf
http://code.google.com/intl/nl/apis/accounts/docs/OpenID.html
http://www.ietf.org/rfc/rfc1510.txt
http://winliveid.spaces.live.com/Blog/cns%21AEE1BB0D86E23AAC%211791.entry?wa=wsignin1.0&sa=159627916
http://winliveid.spaces.live.com/Blog/cns%21AEE1BB0D86E23AAC%211791.entry?wa=wsignin1.0&sa=159627916
http://winliveid.spaces.live.com/Blog/cns%21AEE1BB0D86E23AAC%211791.entry
https://bugzilla.mozilla.org/show_bug.cgi?id=215243
http://tools.ietf.org/html/rfc4120
http://openid.net/
http://openid.net/specs/openid-authentication-2_0.html
http://oauth.net/
http://smithii.com/node/117
http://en.wikipedia.org/wiki/Extensible_Resource_Identifier
http://yadis.org/wiki/Yadis_1.0_%28HTML%29

75

Attachment A: Setting up a Webserver with

SSL enabled

In this attachment we describe how to se tup a server that is capable of running as an OpenID

provider. In the first paragraph we explain how to set up a webserver and in the second

paragraph we describe how you can enable SSL on your webserver.

Setting up a Webserver

When running a webserver you can pick either a Windows based Operating System or a

Linux/ Unix based one, the latter being freely available whilst the first requires a licence.

We'd recommend using the Apache 2 webserver on either system.

Linux

On a Linux distribution that is based on the Debian distribution like Ubuntu you can use the

'apt-get install' command from the terminal to install applications. You can either launch the

terminal from applications/ accessories/ Terminal or by pressing Ctrl + Alt + F1/ F2/ F3/ F4/

F5/ F6. In the latter case you can return to your desktop by pressing Ctrl + Alt + F7. In the

terminal you will see the following line 'User@servername:~$'. You can type after this line.

To install Apache 2.x type:

sudo apt-get install apache2

The 'sudo' means that you are executing the script with elevated permissions. You will be

asked for logon credentials, if you have not supplied them already. When you have logged on,

Apache 2.x will be installed. This seems like a lot of work but most packages can be installed

with this method.

We should proceed by installing and configuring PHP. Open the terminal and execute the

following lines:

sudo apt-get install php5

sudo apt-get install libapache2-mod-php5

You've now installed PHP 5 and configured it to work with Apache 2. The changes will take

effect after you have restarted Apache. You can restart Apache by entering the following line

in the terminal:

sudo /etc/init.d/apache2 restart

This will restart Apache and notify you of any startup errors, warnings and notices.

If you are considering storing data in an SQL database, it could prove to be wise to install

MySQL and configure PHP to work with mysql. This can easilly be achieved by executing

the following commands in the terminal.

76

sudo apt-get install mysql-server

sudo apt-get install php5-mysql

sudo /etc/init.d/apache2 restart

We have now installed MySQL and configured PHP to inquire data from it. Due to restarting

the server all these changes have now been applied. You could also install the MySQL

Workbench 5.2 despite it being beta at the time of writing. Version 5.1 also exists but it lacks

a lot of functionality. MySQL Workbench is a graphical interface that can be used to

administrate a MySQL server. If you want to install this application run the following line in

the terminal.

sudo apt-get install mysql-workbench-oss

This should install the latest stable version of the application. Alternatively you could

download a version from the MySQL website.

Windows

On a Windows system you can visit http://httpd.apache.org to download the latest version.

This is a binary which you can execute. If you go through all the steps it will successfully

install Apache on your server.

Now that Apache has been installed we should proceed to installing and configuring PHP.

Visit http://www.php.net/downloads.php to download one of the newest versions of PHP.

You could try to use the binary installer but we'd recommend downloading the zip and

configure it yourself. Make sure the version you download supports OpenSSL. Most versions

have native support for OpenSSL but some of the older versions lack it. The zip file comes

with documentation on how to configure PHP to work with your webserver. If you follow the

documentation it should not prove to be hard to get PHP to work.

You may also want to install MySQL for data storage. Point your browser at

http://www.mysql.com/downloads/. Download the latest MySQL Community Server and

optionally the MySQL Workbench (version 5.2 or later). Execute the installer to install

MySQL. You will then need to have another look at the php.ini document that is loaded by

Apache. If you are not sure where this file is, create a php file with the following contents:

<?php phpinfo() ?>

Place this file within your webroot and use your browser to browse to its location. On the

page shown to you the value of 'Loaded Configuration File' is the file you need to modify to

get PHP to work with MySQL. If you are unsure what to modify, take another peek at the

documentation that came with PHP.

Enabling SSL

To be able to check client certificates the connection must take place over a secure

connection. The user will then be able to access the page through https://domain.extension

instead of http://domain.extension. It is still possible to access the site with http. This

paragraph describes how you can get your website to use a server certificate and accept class

1 client certificates. To enable SSL you must generate a certificate. This certificate can then

be signed by a CA like CAcert. This has been described in the CAcert chapter.

http://httpd.apache.org/
http://www.php.net/downloads.php
http://www.mysql.com/downloads/
https://domain.extension/
http://domain.extension/

77

Linux

Download the class 1 and class 3 root certificates from CAcert and name them cacert1.pem

and cacert3.pem. Copy your certificate and key as well as the root certificates of CAcert to

/etc/apache2. Browse to the directory /etc/apach2/sites-enabled and open default-ssl. As

opposed to the configuration on a windows platform this file already contains a great deal of

ssl related settings. The file is also very well documented and you might want to put the lines

of code with their corresponding documentation. Set the ServerAdmin to your email adress

and docroot to /var/www. Make sure the 'Directory /var/www' brackets consist of at least the

following lines:

Options Indexes FollowSymLinks MultiViews

AllowOverride None

Order allow,deny

allow from all

SSLOptions +StdEnvVars

SSLOptions +ExportCertData

Make sure the following lines are contained within the 'VirtualHost _dedault_:443' brackets:

SSLVerifyClient require

SSLVerifyDepth 1

SSLCACertificateFile /etc/apache2/cacert1.pem

SSLCertificateChainFile /etc/apache2/cacert3.pem

SSLCertificateFile /etc/apache2/server.crt

SSLCertificateKeyFile /etc/apache2/server.key

Your file should be close to this:

<IfModule mod_ssl.c>

<VirtualHost _default_:443>

 ServerAdmin username@domain.com

 DocumentRoot /var/www

 <Directory />

 Options FollowSymLinks

 AllowOverride None

 </Directory>

 <Directory /var/www/>

 Options Indexes FollowSymLinks MultiViews

 AllowOverride All

 Order allow,deny

 allow from all

 </Directory>

 ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/

 <Directory "/usr/lib/cgi-bin">

 AllowOverride None

 Options +ExecCGI -MultiViews +SymLinksIfOwnerMatch

 Order allow,deny

 Allow from all

 </Directory>

 ErrorLog /var/log/apache2/error.log

 # Possible values include: debug, info, notice, warn, error, crit,

78

 # alert, emerg.

 LogLevel warn

 CustomLog /var/log/apache2/ssl_access.log combined

 Alias /doc/ "/usr/share/doc/"

 <Directory "/usr/share/doc/">

 Options Indexes MultiViews FollowSymLinks

 AllowOverride None

 Order deny,allow

 Deny from all

 Allow from 127.0.0.0/255.0.0.0 ::1/128

 </Directory>

 # SSL Engine Switch:

 # Enable/Disable SSL for this virtual host.

 SSLEngine on

 # A self-signed (snakeoil) certificate can be created by installing

 # the ssl-cert package. See

 # /usr/share/doc/apache2.2-common/README.Debian.gz for more info.

 # If both key and certificate are stored in the same file, only the

 # SSLCertificateFile directive is needed.

 SSLCertificateFile /etc/apache2/server.crt

 SSLCertificateKeyFile /etc/apache2/server.key

 # Server Certificate Chain:

 # Point SSLCertificateChainFile at a file containing the

 # concatenation of PEM encoded CA certificates which form the

 # certificate chain for the server certificate. Alternatively

 # the referenced file can be the same as SSLCertificateFile

 # when the CA certificates are directly appended to the server

 # certificate for convinience.

 SSLCertificateChainFile /etc/apache2/cacert3.pem

 # Certificate Authority (CA):

 # Set the CA certificate verification path where to find CA

 # certificates for client authentication or alternatively one

 # huge file containing all of them (file must be PEM encoded)

 # Note: Inside SSLCACertificatePath you need hash symlinks

 # to point to the certificate files. Use the provided

 # Makefile to update the hash symlinks after changes.

 #SSLCACertificatePath /etc/ssl/certs/

 SSLCACertificateFile /etc/apache2/cacert1.pem

 # Certificate Revocation Lists (CRL):

 # Set the CA revocation path where to find CA CRLs for client

 # authentication or alternatively one huge file containing all

 # of them (file must be PEM encoded)

 # Note: Inside SSLCARevocationPath you need hash symlinks

 # to point to the certificate files. Use the provided

 # Makefile to update the hash symlinks after changes.

 #SSLCARevocationPath /etc/apache2/ssl.crl/

 #SSLCARevocationFile /etc/apache2/ssl.crl/ca-bundle.crl

 # Client Authentication (Type):

 # Client certificate verification type and depth. Types are

 # none, optional, require and optional_no_ca. Depth is a

 # number which specifies how deeply to verify the certificate

 # issuer chain before deciding the certificate is not valid.

 SSLVerifyClient require

 SSLVerifyDepth 1

79

 # Access Control:

 # With SSLRequire you can do per-directory access control based

 # on arbitrary complex boolean expressions containing server

 # variable checks and other lookup directives. The syntax is a

 # mixture between C and Perl. See the mod_ssl documentation

 # for more details.

 #<Location />

 #SSLRequire (%{SSL_CIPHER} !~ m/^(EXP|NULL)/ \

 # and %{SSL_CLIENT_S_DN_O} eq "Snake Oil, Ltd." \

 # and %{SSL_CLIENT_S_DN_OU} in {"Staff", "CA", "Dev"} \

 # and %{TIME_WDAY} >= 1 and %{TIME_WDAY} <= 5 \

 # and %{TIME_HOUR} >= 8 and %{TIME_HOUR} <= 20) \

 # or %{REMOTE_ADDR} =~ m/^192\.76\.162\.[0-9]+$/

 #</Location>

 # SSL Engine Options:

 # Set various options for the SSL engine.

 # o FakeBasicAuth:

 # Translate the client X.509 into a Basic Authorisation. This

means that

 # the standard Auth/DBMAuth methods can be used for access control.

The

 # user name is the `one line' version of the client's X.509

certificate.

 # Note that no password is obtained from the user. Every entry in

the user

 # file needs this password: `xxj31ZMTZzkVA'.

 # o ExportCertData:

 # This exports two additional environment variables:

SSL_CLIENT_CERT and

 # SSL_SERVER_CERT. These contain the PEM-encoded certificates of

the

 # server (always existing) and the client (only existing when

client

 # authentication is used). This can be used to import the

certificates

 # into CGI scripts.

 # o StdEnvVars:

 # This exports the standard SSL/TLS related `SSL_*' environment

variables.

 # Per default this exportation is switched off for performance

reasons,

 # because the extraction step is an expensive operation and is

usually

 # useless for serving static content. So one usually enables the

 # exportation for CGI and SSI requests only.

 # o StrictRequire:

 # This denies access when "SSLRequireSSL" or "SSLRequire" applied

even

 # under a "Satisfy any" situation, i.e. when it applies access is

denied

 # and no other module can change it.

 # o OptRenegotiate:

 # This enables optimized SSL connection renegotiation handling when

SSL

 # directives are used in per-directory context.

 #SSLOptions +FakeBasicAuth +ExportCertData +StrictRequire

 <FilesMatch "\.(cgi|shtml|phtml|php)$">

 SSLOptions +StdEnvVars

 SSLOptions +ExportCertData

 </FilesMatch>

80

 <Directory /usr/lib/cgi-bin>

 SSLOptions +StdEnvVars

 SSLOptions +ExportCertData

 </Directory>

 # SSL Protocol Adjustments:

 # The safe and default but still SSL/TLS standard compliant shutdown

 # approach is that mod_ssl sends the close notify alert but doesn't

wait for

 # the close notify alert from client. When you need a different

shutdown

 # approach you can use one of the following variables:

 # o ssl-unclean-shutdown:

 # This forces an unclean shutdown when the connection is closed,

i.e. no

 # SSL close notify alert is send or allowed to received. This

violates

 # the SSL/TLS standard but is needed for some brain-dead browsers.

Use

 # this when you receive I/O errors because of the standard approach

where

 # mod_ssl sends the close notify alert.

 # o ssl-accurate-shutdown:

 # This forces an accurate shutdown when the connection is closed,

i.e. a

 # SSL close notify alert is send and mod_ssl waits for the close

notify

 # alert of the client. This is 100% SSL/TLS standard compliant, but

in

 # practice often causes hanging connections with brain-dead

browsers. Use

 # this only for browsers where you know that their SSL

implementation

 # works correctly.

 # Notice: Most problems of broken clients are also related to the

HTTP

 # keep-alive facility, so you usually additionally want to disable

 # keep-alive for those clients, too. Use variable "nokeepalive" for

this.

 # Similarly, one has to force some clients to use HTTP/1.0 to

workaround

 # their broken HTTP/1.1 implementation. Use variables "downgrade-

1.0" and

 # "force-response-1.0" for this.

 BrowserMatch "MSIE [2-6]" \

 nokeepalive ssl-unclean-shutdown \

 downgrade-1.0 force-response-1.0

 # MSIE 7 and newer should be able to use keepalive

 BrowserMatch "MSIE [17-9]" ssl-unclean-shutdown

</VirtualHost>

</IfModule>

Save the the file. If you want to be able to rewrite requests (for example

http://example.com/news/104 -> http://example.com/news.php?id=104) you can enable a

module to do so. Open /etc/apache2/httpd.conf and copy paste the following line into it:

LoadModule rewrite_module /usr/lib/apache2/modules/mod_rewrite.so

After you have restarted Apache you should now have Apache running with support for SSL

client certificates.

http://example.com/news/104
http://example.com/news.php?id=104

81

Windows

You will need to change the Apache configuration so it will use your certificate. But first

download the class 1 and class 3 root certificates of CAcert and save them as cacert1.pem and

cacert3.pem in the Apache configuration directory. Open httpd.conf from the configuration

directory in a text or hex editor. Look for the following code:

<IfModule ssl_module>

*

</IfModule>

The contents may seem different with each version of Apache but alter the contents to make

them seem more similar to the following example. Take special note of the data between the

VirtualHost brackets mentioning the keys (SSLCACertificateFile, SSLCertificateChainFile,

SSLCertificateFile, SSLCertificateKeyFile).

<IfModule ssl_module>

 Listen 443

 NameVirtualHost *:443

 SSLRandomSeed startup builtin

 SSLRandomSeed connect builtin

 AddType application/x-x509-ca-cert .crt

 AddType application/x-pkcs7-crl .crl

 SSLPassPhraseDialog builtin

 SSLSessionCache "shmcb:C:/Program Files/Apache Software

Foundation/Apache2.2/logs/ssl_scache(512000)"

 SSLSessionCacheTimeout 300

 SSLMutex default

 SSLCACertificateFile "C:/Program Files/Apache Software

Foundation/Apache2.2/conf/cacert1.pem"

 SSLCertificateChainFile "C:/Program Files/Apache Software

Foundation/Apache2.2/conf/cacert3.pem"

 SSLCertificateFile "C:/Program Files/Apache Software

Foundation/Apache2.2/conf/server.crt"

 SSLCertificateKeyFile "C:/Program Files/Apache Software

Foundation/Apache2.2/conf/server.key"

 SSLCipherSuite

ALL:!ADH:!EXPORT56:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP:+eNULL

 BrowserMatch ".*MSIE.*" \

 nokeepalive ssl-unclean-shutdown \

 downgrade-1.0 force-response-1.0

 CustomLog "C:/Program Files/Apache Software

Foundation/Apache2.2/logs/ssl_request_log" \

 "%t %h %{SSL_PROTOCOL}x %{SSL_CIPHER}x \"%r\" %b"

 <VirtualHost *:443>

 SSLEngine on

 <FilesMatch "\.(cgi|shtml|phtml|php)$">

 SSLOptions +StdEnvVars +ExportCertData

 SSLVerifyClient require

 SSLVerifyDepth

 </FilesMatch>

 </VirtualHost>

</IfModule>

82

When you restart Apache it should now use the certificate you specified and request a client

certificate, when someone accesses the server over https.

83

Attachment B: Database

In this attachment there will be a description of how we have set up the database structure

behind the IdP (of the proof of concept). First there will be a description of which tables we

have created and why. After that there will be a description of every table and the code will be

displayed.

We have created four tables: user, timezone, country and language. The table user is created

to store the data when a user creates an account on the IdP. The other three tables, timezone,

country and language, have been created to use predefined values. This is useful because

some people write for example their country name with capital letters or in their native

language. The advantage of this is that the values of the same timezone, country and language

are the same.

Table: user

The table user consists of the following columns:

 nickname (the user‟s nickname, the value of the field needs to be filled, the user‟s

nickname needs to be unique)

 pass (the user‟s password, the value of the field needs to be filled)

 email (the user‟s e-mail address, the value of the field needs to be filled, this is the

primary key of the table)

 fullname (this is the user‟s first and last name, the value of the field needs to be filled)

 dob (the user‟s date of birth, this does not have to be filled, default value is NULL)

 gender (the user‟s gender, this does not have to be filled, default value is NULL)

 postcode (the user‟s postcode, this does not have to be filled, default value is NULL)

 country (the country where the user lives, this does not have to be filled, default value

is NULL, is a foreign key of the table)

 language (the language of the website that the user prefers, this does not have to be

filled, default value is NULL, is a foreign key of the table)

 timezone (the timezone of where the user lives, this does not have to be filled, default

value is NULL, is a foreign key of the table)

84

Figure B.1: Table user

Code:

CREATE TABLE `user` (

 `nickname` varchar(60) NOT NULL,

 `pass` varchar(60) NOT NULL,

 `email` varchar(60) NOT NULL,

 `fullname` varchar(60) NOT NULL,

 `dob` varchar(10) DEFAULT NULL,

 `gender` varchar(1) DEFAULT NULL,

 `postcode` varchar(10) DEFAULT NULL,

 `country` varchar(2) DEFAULT NULL,

 `language` varchar(2) DEFAULT NULL,

 `timezone` varchar(45) DEFAULT NULL,

 PRIMARY KEY (`email`),

 UNIQUE KEY `nickname_UNIQUE` (`nickname`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

Table: timezone

The table timezone consists of the following columns:

 country (the id of the country, the value of the field needs to be filled, this is a foreiqn

key of the table)

 timezone (the options of all the timezones, this is the primary key of the table, the

value of the field needs to be filled)

 countrynr (nr of the country, the value of the field needs to be filled, default value is

„1‟)

Constraints:

 The foreign key 'country' references to 'id' in the country table.

85

Figure B.2: Table timezone

Code:

CREATE TABLE `timezone` (

 `country` varchar(2) NOT NULL,

 `timezone` varchar(45) NOT NULL,

 `countrynr` int(11) NOT NULL DEFAULT '1',

 PRIMARY KEY (`timezone`),

 UNIQUE KEY `index3` (`country`,`countrynr`),

 CONSTRAINT `fk_timezone` FOREIGN KEY (`country`) REFERENCES `country`

(`id`) ON DELETE CASCADE ON UPDATE CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

INSERT INTO `timezone` VALUES

('AD','Europe/Andorra',1),('AE','Asia/Dubai',1),('AF','Asia/Kabul',1),('AG'

,'America/Antigua',1),('AI','America/Anguilla',1),('AL','Europe/Tirane',1),

('AM','Asia/Yerevan',1),('AN','America/Curacao',1),('AO','Africa/Luanda',1)

,('AQ','Antarctica/Casey',1),('AQ','Antarctica/Davis',2),('AQ','Antarctica/

DumontDUrville',3),('AQ','Antarctica/Mawson',4),('AQ','Antarctica/McMurdo',

5),('AQ','Antarctica/Palmer',6),('AQ','Antarctica/Rothera',7),('AQ','Antarc

tica/South_Pole',8),('AQ','Antarctica/Syowa',9),('AQ','Antarctica/Vostok',1

0),('AR','America/Argentina/Buenos_Aires',1),('AR','America/Argentina/Catam

arca',2),('AR','America/Argentina/Cordoba',3),('AR','America/Argentina/Juju

y',4),('AR','America/Argentina/La_Rioja',5),('AR','America/Argentina/Mendoz

a',6),('AR','America/Argentina/Rio_Gallegos',7),('AR','America/Argentina/Sa

lta',8),('AR','America/Argentina/San_Juan',9),('AR','America/Argentina/San_

Luis',10),('AR','America/Argentina/Tucuman',11),('AR','America/Argentina/Us

huaia',12),('AS','Pacific/Pago_Pago',1),('AT','Europe/Vienna',1),('AU','Aus

tralia/Adelaide',1),('AU','Australia/Brisbane',2),('AU','Australia/Broken_H

ill',3),('AU','Australia/Currie',4),('AU','Australia/Darwin',5),('AU','Aust

ralia/Eucla',6),('AU','Australia/Hobart',7),('AU','Australia/Lindeman',8),(

'AU','Australia/Lord_Howe',9),('AU','Australia/Melbourne',10),('AU','Austra

lia/Perth',11),('AU','Australia/Sydney',12),('AW','America/Aruba',1),('AX',

'Europe/Mariehamn',1),('AZ','Asia/Baku',1),('BA','Europe/Sarajevo',1),('BB'

,'America/Barbados',1),('BD','Asia/Dhaka',1),('BE','Europe/Brussels',1),('B

F','Africa/Ouagadougou',1),('BG','Europe/Sofia',1),('BH','Asia/Bahrain',1),

86

('BI','Africa/Bujumbura',1),('BJ','Africa/Porto-

Novo',1),('BL','America/St_Barthelemy',1),('BM','Atlantic/Bermuda',1),('BN'

,'Asia/Brunei',1),('BO','America/La_Paz',1),('BR','America/Araguaina',1),('

BR','America/Bahia',2),('BR','America/Belem',3),('BR','America/Boa_Vista',4

),('BR','America/Campo_Grande',5),('BR','America/Cuiaba',6),('BR','America/

Eirunepe',7),('BR','America/Fortaleza',8),('BR','America/Maceio',9),('BR','

America/Manaus',10),('BR','America/Noronha',11),('BR','America/Porto_Velho'

,12),('BR','America/Recife',13),('BR','America/Rio_Branco',14),('BR','Ameri

ca/Santarem',15),('BR','America/Sao_Paulo',16),('BS','America/Nassau',1),('

BT','Asia/Thimphu',1),('BW','Africa/Gaborone',1),('BY','Europe/Minsk',1),('

BZ','America/Belize',1),('CA','America/Atikokan',1),('CA','America/Blanc-

Sablon',2),('CA','America/Cambridge_Bay',3),('CA','America/Dawson',4),('CA'

,'America/Dawson_Creek',5),('CA','America/Edmonton',6),('CA','America/Glace

_Bay',7),('CA','America/Goose_Bay',8),('CA','America/Halifax',9),('CA','Ame

rica/Inuvik',10),('CA','America/Iqaluit',11),('CA','America/Moncton',12),('

CA','America/Montreal',13),('CA','America/Nipigon',14),('CA','America/Pangn

irtung',15),('CA','America/Rainy_River',16),('CA','America/Rankin_Inlet',17

),('CA','America/Regina',18),('CA','America/Resolute',19),('CA','America/St

_Johns',20),('CA','America/Swift_Current',21),('CA','America/Thunder_Bay',2

2),('CA','America/Toronto',23),('CA','America/Vancouver',24),('CA','America

/Whitehorse',25),('CA','America/Winnipeg',26),('CA','America/Yellowknife',2

7),('CC','Indian/Cocos',1),('CD','Africa/Kinshasa',1),('CD','Africa/Lubumba

shi',2),('CF','Africa/Bangui',1),('CG','Africa/Brazzaville',1),('CH','Europ

e/Zurich',1),('CI','Africa/Abidjan',1),('CK','Pacific/Rarotonga',1),('CL','

America/Santiago',1),('CL','Pacific/Easter',2),('CM','Africa/Douala',1),('C

N','Asia/Chongqing',1),('CN','Asia/Harbin',2),('CN','Asia/Kashgar',3),('CN'

,'Asia/Shanghai',4),('CN','Asia/Urumqi',5),('CO','America/Bogota',1),('CR',

'America/Costa_Rica',1),('CU','America/Havana',1),('CV','Atlantic/Cape_Verd

e',1),('CX','Indian/Christmas',1),('CY','Asia/Nicosia',1),('CZ','Europe/Pra

gue',1),('DE','Europe/Berlin',1),('DJ','Africa/Djibouti',1),('DK','Europe/C

openhagen',1),('DM','America/Dominica',1),('DO','America/Santo_Domingo',1),

('DZ','Africa/Algiers',1),('EC','America/Guayaquil',1),('EC','Pacific/Galap

agos',2),('EE','Europe/Tallinn',1),('EG','Africa/Cairo',1),('EH','Africa/El

_Aaiun',1),('ER','Africa/Asmara',1),('ES','Europe/Madrid',1),('ES','Atlanti

c/Canary',2),('ES','Africa/Ceuta',3),('ET','Africa/Addis_Ababa',1),('FI','E

urope/Helsinki',1),('FJ','Pacific/Fiji',1),('FK','Atlantic/Stanley',1),('FM

','Pacific/Kosrae',1),('FM','Pacific/Ponape',2),('FM','Pacific/Truk',3),('F

O','Atlantic/Faroe',1),('FR','Europe/Paris',1),('GA','Africa/Libreville',1)

,('GB','Europe/London',1),('GD','America/Grenada',1),('GE','Asia/Tbilisi',1

),('GF','America/Cayenne',1),('GG','Europe/Guernsey',1),('GH','Africa/Accra

',1),('GI','Europe/Gibraltar',1),('GL','America/Danmarkshavn',1),('GL','Ame

rica/Godthab',2),('GL','America/Scoresbysund',3),('GL','America/Thule',4),(

'GM','Africa/Banjul',1),('GN','Africa/Conakry',1),('GP','America/Guadeloupe

',1),('GQ','Africa/Malabo',1),('GR','Europe/Athens',1),('GS','Atlantic/Sout

h_Georgia',1),('GT','America/Guatemala',1),('GU','Pacific/Guam',1),('GW','A

frica/Bissau',1),('GY','America/Guyana',1),('HK','Asia/Hong_Kong',1),('HN',

'America/Tegucigalpa',1),('HR','Europe/Zagreb',1),('HT','America/Port-au-

Prince',1),('HU','Europe/Budapest',1),('ID','Asia/Jakarta',1),('ID','Asia/J

ayapura',2),('ID','Asia/Makassar',3),('ID','Asia/Pontianak',4),('IE','Europ

e/Dublin',1),('IL','Asia/Jerusalem',1),('IM','Europe/Isle_of_Man',1),('IN',

'Asia/Kolkata',1),('IO','Indian/Chagos',1),('IQ','Asia/Baghdad',1),('IR','A

sia/Tehran',1),('IS','Atlantic/Reykjavik',1),('IT','Europe/Rome',1),('JE','

Europe/Jersey',1),('JM','America/Jamaica',1),('JO','Asia/Amman',1),('JP','A

sia/Tokyo',1),('KE','Africa/Nairobi',1),('KG','Asia/Bishkek',1),('KH','Asia

/Phnom_Penh',1),('KI','Pacific/Enderbury',1),('KI','Pacific/Kiritimati',2),

('KI','Pacific/Tarawa',3),('KM','Indian/Comoro',1),('KN','America/St_Kitts'

,1),('KP','Asia/Pyongyang',1),('KR','Asia/Seoul',1),('KW','Asia/Kuwait',1),

('KY','America/Cayman',1),('KZ','Asia/Almaty',1),('KZ','Asia/Aqtau',2),('KZ

','Asia/Aqtobe',3),('KZ','Asia/Oral',4),('KZ','Asia/Qyzylorda',5),('LA','As

ia/Vientiane',1),('LB','Asia/Beirut',1),('LC','America/St_Lucia',1),('LI','

Europe/Vaduz',1),('LK','Asia/Colombo',1),('LR','Africa/Monrovia',1),('LS','

Africa/Maseru',1),('LT','Europe/Vilnius',1),('LU','Europe/Luxembourg',1),('

87

LV','Europe/Riga',1),('LY','Africa/Tripoli',1),('MA','Africa/Casablanca',1)

,('MC','Europe/Monaco',1),('MD','Europe/Chisinau',1),('ME','Europe/Podgoric

a',1),('MF','America/Marigot',1),('MG','Indian/Antananarivo',1),('MH','Paci

fic/Kwajalein',1),('MH','Pacific/Majuro',2),('MK','Europe/Skopje',1),('ML',

'Africa/Bamako',1),('MM','Asia/Rangoon',1),('MN','Asia/Choibalsan',1),('MN'

,'Asia/Hovd',2),('MN','Asia/Ulaanbaatar',3),('MO','Asia/Macau',1),('MP','Pa

cific/Saipan',1),('MQ','America/Martinique',1),('MR','Africa/Nouakchott',1)

,('MS','America/Montserrat',1),('MT','Europe/Malta',1),('MU','Indian/Maurit

ius',1),('MV','Indian/Maldives',1),('MW','Africa/Blantyre',1),('MX','Americ

a/Mexico_City',1),('MX','America/Merida',2),('MX','America/Mazatlan',3),('M

X','America/Matamoros',4),('MX','America/Hermosillo',5),('MX','America/Chih

uahua',6),('MX','America/Cancun',7),('MX','America/Monterrey',8),('MX','Ame

rica/Ojinaga',9),('MX','America/Santa_Isabel',10),('MX','America/Tijuana',1

1),('MY','Asia/Kuala_Lumpur',1),('MY','Asia/Kuching',2),('MZ','Africa/Maput

o',1),('NA','Africa/Windhoek',1),('NC','Pacific/Noumea',1),('NE','Africa/Ni

amey',1),('NF','Pacific/Norfolk',1),('NG','Africa/Lagos',1),('NI','America/

Managua',1),('NL','Europe/Amsterdam',1),('NO','Europe/Oslo',1),('NP','Asia/

Kathmandu',1),('NR','Pacific/Nauru',1),('NU','Pacific/Niue',1),('NZ','Pacif

ic/Auckland',1),('NZ','Pacific/Chatham',2),('OM','Asia/Muscat',1),('PA','Am

erica/Panama',1),('PE','America/Lima',1),('PF','Pacific/Tahiti',1),('PF','P

acific/Marquesas',2),('PF','Pacific/Gambier',3),('PG','Pacific/Port_Moresby

',1),('PH','Asia/Manila',1),('PK','Asia/Karachi',1),('PL','Europe/Warsaw',1

),('PM','America/Miquelon',1),('PN','Pacific/Pitcairn',1),('PR','America/Pu

erto_Rico',1),('PS','Asia/Gaza',1),('PT','Europe/Lisbon',1),('PT','Atlantic

/Madeira',2),('PT','Atlantic/Azores',3),('PW','Pacific/Palau',1),('PY','Ame

rica/Asuncion',1),('QA','Asia/Qatar',1),('RE','Indian/Reunion',1),('RO','Eu

rope/Bucharest',1),('RS','Europe/Belgrade',1),('RU','Europe/Moscow',1),('RU

','Asia/Anadyr',2),('RU','Asia/Irkutsk',3),('RU','Asia/Kamchatka',4),('RU',

'Asia/Krasnoyarsk',5),('RU','Asia/Magadan',6),('RU','Asia/Novokuznetsk',7),

('RU','Asia/Novosibirsk',8),('RU','Asia/Omsk',9),('RU','Asia/Sakhalin',10),

('RU','Asia/Vladivostok',11),('RU','Asia/Yakutsk',12),('RU','Asia/Yekaterin

burg',13),('RU','Europe/Kaliningrad',14),('RU','Europe/Samara',15),('RU','E

urope/Volgograd',16),('RW','Africa/Kigali',1),('SA','Asia/Riyadh',1),('SB',

'Pacific/Guadalcanal',1),('SC','Indian/Mahe',1),('SD','Africa/Khartoum',1),

('SE','Europe/Stockholm',1),('SG','Asia/Singapore',1),('SH','Atlantic/St_He

lena',1),('SI','Europe/Ljubljana',1),('SJ','Arctic/Longyearbyen',1),('SK','

Europe/Bratislava',1),('SL','Africa/Freetown',1),('SM','Europe/San_Marino',

1),('SN','Africa/Dakar',1),('SO','Africa/Mogadishu',1),('SR','America/Param

aribo',1),('ST','Africa/Sao_Tome',1),('SV','America/El_Salvador',1),('SY','

Asia/Damascus',1),('SZ','Africa/Mbabane',1),('TC','America/Grand_Turk',1),(

'TD','Africa/Ndjamena',1),('TF','Indian/Kerguelen',1),('TG','Africa/Lome',1

),('TH','Asia/Bangkok',1),('TJ','Asia/Dushanbe',1),('TK','Pacific/Fakaofo',

1),('TL','Asia/Dili',1),('TM','Asia/Ashgabat',1),('TN','Africa/Tunis',1),('

TO','Pacific/Tongatapu',1),('TR','Europe/Istanbul',1),('TT','America/Port_o

f_Spain',1),('TV','Pacific/Funafuti',1),('TW','Asia/Taipei',1),('TZ','Afric

a/Dar_es_Salaam',1),('UA','Europe/Kiev',1),('UA','Europe/Simferopol',2),('U

A','Europe/Uzhgorod',3),('UA','Europe/Zaporozhye',4),('UG','Africa/Kampala'

,1),('UM','Pacific/Johnston',1),('UM','Pacific/Midway',2),('UM','Pacific/Wa

ke',3),('US','America/Adak',1),('US','America/Anchorage',2),('US','America/

Boise',3),('US','America/Chicago',4),('US','America/Denver',5),('US','Ameri

ca/Detroit',6),('US','America/Indiana/Indianapolis',7),('US','America/India

na/Knox',8),('US','America/Indiana/Marengo',9),('US','America/Indiana/Peter

sburg',10),('US','America/Indiana/Tell_City',11),('US','America/Indiana/Vev

ay',12),('US','America/Indiana/Vincennes',13),('US','America/Indiana/Winama

c',14),('US','America/Juneau',15),('US','America/Kentucky/Louisville',16),(

'US','America/Kentucky/Monticello',17),('US','America/Los_Angeles',18),('US

','America/Menominee',19),('US','America/New_York',20),('US','America/Nome'

,21),('US','America/North_Dakota/Center',22),('US','America/North_Dakota/Ne

w_Salem',23),('US','America/Phoenix',24),('US','America/Shiprock',25),('US'

,'America/Yakutat',26),('US','Pacific/Honolulu',27),('UY','America/Montevid

eo',1),('UZ','Asia/Samarkand',1),('UZ','Asia/Tashkent',2),('VA','Europe/Vat

ican',1),('VC','America/St_Vincent',1),('VE','America/Caracas',1),('VG','Am

88

erica/Tortola',1),('VI','America/St_Thomas',1),('VN','Asia/Ho_Chi_Minh',1),

('VU','Pacific/Efate',1),('WF','Pacific/Wallis',1),('WS','Pacific/Apia',1),

('YE','Asia/Aden',1),('YT','Indian/Mayotte',1),('ZA','Africa/Johannesburg',

1),('ZM','Africa/Lusaka',1),('ZW','Africa/Harare',1);

Table: country

The table country consists of the following columns:

 id (the id of the country, this is the primary key of the table, the value of the field

needs to be filled)

 name (the name of the country, the name of the country needs to be unique, default

value is NULL)

Figure B.3: Table country

Code:

CREATE TABLE `country` (

 `id` varchar(2) NOT NULL,

 `name` varchar(45) DEFAULT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `name_UNIQUE` (`name`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

INSERT INTO `country` VALUES ('AF','Afghanistan'),('AX','Aland

Islands'),('AL','Albania'),('DZ','Algeria'),('AS','American

Samoa'),('AD','Andorra'),('AO','Angola'),('AI','Anguilla'),('AQ','Antarctic

a'),('AG','Antigua and

Barbuda'),('AR','Argentina'),('AM','Armenia'),('AW','Aruba'),('AU','Austral

ia'),('AT','Austria'),('AZ','Azerbaijan'),('BS','Bahamas'),('BH','Bahrain')

,('BD','Bangladesh'),('BB','Barbados'),('BY','Belarus'),('BE','Belgium'),('

BZ','Belize'),('BJ','Benin'),('BM','Bermuda'),('BT','Bhutan'),('BO','Bolivi

a'),('BA','Bosnia and Herzegovina'),('BW','Botswana'),('BV','Bouvet

Island'),('BR','Brazil'),('IO','British Indian Ocean

89

Territory'),('BN','Brunei Darussalam'),('BG','Bulgaria'),('BF','Burkina

Faso'),('BI','Burundi'),('KH','Cambodia'),('CM','Cameroon'),('CA','Canada')

,('CV','Cape Verde'),('KY','Cayman Islands'),('CF','Central African

Republic'),('TD','Chad'),('CL','Chile'),('CN','China'),('CX','Christmas

Island'),('CC','Cocos (Keeling)

Islands'),('CO','Colombia'),('KM','Comoros'),('CG','Congo'),('CD','Congo,

The Democratic Republic of The'),('CK','Cook Islands'),('CR','Costa

Rica'),('CI','Cote

D\'ivoire'),('HR','Croatia'),('CU','Cuba'),('CY','Cyprus'),('CZ','Czech

Republic'),('DK','Denmark'),('DJ','Djibouti'),('DM','Dominica'),('DO','Domi

nican Republic'),('EC','Ecuador'),('EG','Egypt'),('SV','El

Salvador'),('GQ','Equatorial

Guinea'),('ER','Eritrea'),('EE','Estonia'),('ET','Ethiopia'),('FK','Falklan

d Islands (Malvinas)'),('FO','Faroe

Islands'),('FJ','Fiji'),('FI','Finland'),('FR','France'),('GF','French

Guiana'),('PF','French Polynesia'),('TF','French Southern

Territories'),('GA','Gabon'),('GM','Gambia'),('GE','Georgia'),('DE','German

y'),('GH','Ghana'),('GI','Gibraltar'),('GR','Greece'),('GL','Greenland'),('

GD','Grenada'),('GP','Guadeloupe'),('GU','Guam'),('GT','Guatemala'),('GG','

Guernsey'),('GN','Guinea'),('GW','Guinea-

bissau'),('GY','Guyana'),('HT','Haiti'),('HM','Heard Island and Mcdonald

Islands'),('VA','Holy See (Vatican City

State)'),('HN','Honduras'),('HK','Hong

Kong'),('HU','Hungary'),('IS','Iceland'),('IN','India'),('ID','Indonesia'),

('IR','Iran, Islamic Republic

of'),('IQ','Iraq'),('IE','Ireland'),('IM','Isle of

Man'),('IL','Israel'),('IT','Italy'),('JM','Jamaica'),('JP','Japan'),('JE',

'Jersey'),('JO','Jordan'),('KZ','Kazakhstan'),('KE','Kenya'),('KI','Kiribat

i'),('KP','Korea, Democratic People\'s Republic of'),('KR','Korea, Republic

of'),('KW','Kuwait'),('KG','Kyrgyzstan'),('LA','Lao People\'s Democratic

Republic'),('LV','Latvia'),('LB','Lebanon'),('LS','Lesotho'),('LR','Liberia

'),('LY','Libyan Arab

Jamahiriya'),('LI','Liechtenstein'),('LT','Lithuania'),('LU','Luxembourg'),

('MO','Macao'),('MK','Macedonia, The Former Yugoslav Republic

of'),('MG','Madagascar'),('MW','Malawi'),('MY','Malaysia'),('MV','Maldives'

),('ML','Mali'),('MT','Malta'),('MH','Marshall

Islands'),('MQ','Martinique'),('MR','Mauritania'),('MU','Mauritius'),('YT',

'Mayotte'),('MX','Mexico'),('FM','Micronesia, Federated States

of'),('MD','Moldova, Republic

of'),('MC','Monaco'),('MN','Mongolia'),('ME','Montenegro'),('MS','Montserra

t'),('MA','Morocco'),('MZ','Mozambique'),('MM','Myanmar'),('NA','Namibia'),

('NR','Nauru'),('NP','Nepal'),('NL','Netherlands'),('AN','Netherlands

Antilles'),('NC','New Caledonia'),('NZ','New

Zealand'),('NI','Nicaragua'),('NE','Niger'),('NG','Nigeria'),('NU','Niue'),

('NF','Norfolk Island'),('MP','Northern Mariana

Islands'),('NO','Norway'),('OM','Oman'),('PK','Pakistan'),('PW','Palau'),('

PS','Palestinian Territory, Occupied'),('PA','Panama'),('PG','Papua New

Guinea'),('PY','Paraguay'),('PE','Peru'),('PH','Philippines'),('PN','Pitcai

rn'),('PL','Poland'),('PT','Portugal'),('PR','Puerto

Rico'),('QA','Qatar'),('RE','Reunion'),('RO','Romania'),('RU','Russian

Federation'),('RW','Rwanda'),('BL','Saint Barthélemy'),('SH','Saint

Helena'),('KN','Saint Kitts and Nevis'),('LC','Saint Lucia'),('MF','Saint

Martin'),('PM','Saint Pierre and Miquelon'),('VC','Saint Vincent and The

Grenadines'),('WS','Samoa'),('SM','San Marino'),('ST','Sao Tome and

Principe'),('SA','Saudi

Arabia'),('SN','Senegal'),('RS','Serbia'),('SC','Seychelles'),('SL','Sierra

Leone'),('SG','Singapore'),('SK','Slovakia'),('SI','Slovenia'),('SB','Solom

on Islands'),('SO','Somalia'),('ZA','South Africa'),('GS','South Georgia

and The South Sandwich Islands'),('ES','Spain'),('LK','Sri

Lanka'),('SD','Sudan'),('SR','Suriname'),('SJ','Svalbard and Jan

Mayen'),('SZ','Swaziland'),('SE','Sweden'),('CH','Switzerland'),('SY','Syri

an Arab Republic'),('TW','Taiwan, Province of

90

China'),('TJ','Tajikistan'),('TZ','Tanzania, United Republic

of'),('TH','Thailand'),('TL','Timor-

leste'),('TG','Togo'),('TK','Tokelau'),('TO','Tonga'),('TT','Trinidad and

Tobago'),('TN','Tunisia'),('TR','Turkey'),('TM','Turkmenistan'),('TC','Turk

s and Caicos

Islands'),('TV','Tuvalu'),('UG','Uganda'),('UA','Ukraine'),('AE','United

Arab Emirates'),('GB','United Kingdom'),('US','United

States'),('UM','United States Minor Outlying

Islands'),('UY','Uruguay'),('UZ','Uzbekistan'),('VU','Vanuatu'),('VE','Vene

zuela'),('VN','Viet Nam'),('VG','Virgin Islands, British'),('VI','Virgin

Islands, U.S.'),('WF','Wallis and Futuna'),('EH','Western

Sahara'),('YE','Yemen'),('ZM','Zambia'),('ZW','Zimbabwe');

Table: language

The table language consists of the following columns:

 id (the id of the language, this is the primary key of the table, the value of the field

needs to be filled)

 name (the name of the language, the name of the language needs to be unique, default

value is NULL)

Figure B.4: Table language

Code:

CREATE TABLE `language` (

 `id` varchar(2) NOT NULL,

 `name` varchar(45) DEFAULT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `name_UNIQUE` (`name`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

INSERT INTO `language` VALUES

('AB','Abkhazian'),('AA','Afar'),('AF','Afrikaans'),('AL','Albanian'),('AM'

91

,'Amharic'),('AR','Arabic'),('HY','Armenian'),('AS','Assamese'),('AY','Ayma

ra'),('AZ','Azerbaijani'),('BA','Bashkir'),('EU','Basque'),('BN','Bengali/

Bangla'),('DZ','Bhutani'),('BH','Bihari'),('BI','Bislama'),('BR','Breton'),

('BG','Bulgarian'),('MY','Burmese'),('BE','Byelorussian'),('KM','Cambodian'

),('CA','Catalan'),('CN','Chinese'),('CO','Corsican'),('HR','Croatian'),('E

Z','Czech'),('DA','Danish'),('NL','Dutch'),('EN','English/ American

English'),('EO','Esperanto'),('ET','Estonian'),('FO','Faeroese'),('FJ','Fij

i'),('FI','Finnish'),('FR','French'),('FY','Frisian'),('GD','Gaelic/ Scots

Gaelic'),('GL','Galician'),('GG','Georgian'),('DE','German'),('GR','Greek')

,('KL','Greenlandic'),('GN','Guarani'),('GU','Gujarati'),('HA','Hausa'),('I

W','Hebrew'),('HI','Hindi'),('HU','Hungarian'),('IS','Icelandic'),('IN','In

donesian'),('IA','Interlingua'),('IE','Interlingue'),('IK','Inupiak'),('GA'

,'Irish'),('IT','Italian'),('JA','Japanese'),('JW','Javanese'),('KN','Kanna

da'),('KS','Kashmiri'),('KK','Kazakh'),('RW','Kinyarwanda'),('KY','Kirghiz'

),('RN','Kirundi'),('KO','Korean'),('KU','Kurdish'),('LO','Laothian'),('LA'

,'Latin'),('LV','Latvian/

Lettish'),('LN','Lingala'),('LT','Lithuanian'),('MK','Macedonian'),('MG','M

alagasy'),('MS','Malay'),('ML','Malayalam'),('MT','Maltese'),('MI','Maori')

,('MR','Marathi'),('MO','Moldavian'),('MN','Mongolian'),('NA','Nauru'),('NE

','Nepali'),('NO','Norwegian'),('OC','Occitan'),('OR','Oriya'),('OM','Oromo

/ Afan'),('PS','Pashto/

Pushto'),('FA','Persian'),('PL','Polish'),('PT','Portuguese'),('PA','Punjab

i'),('QU','Quechua'),('RM','Rhaeto-

Romance'),('RO','Romanian'),('RU','Russian'),('SM','Samoan'),('SG','Sangro'

),('SA','Sanskrit'),('SR','Serbian'),('SH','Serbo-

Croatian'),('ST','Sesotho'),('TN','Setswana'),('SN','Shona'),('SD','Sindhi'

),('SI','Singhalese'),('SS','Siswati'),('SK','Slovak'),('SL','Slovenian'),(

'SO','Somali'),('ES','Spanish'),('SU','Sudanese'),('SW','Swahili'),('SV','S

wedish'),('TL','Tagalog'),('TG','Tajik'),('TA','Tamil'),('TT','Tatar'),('TE

','Tegulu'),('TH','Thai'),('BO','Tibetan'),('TI','Tigrinya'),('TO','Tonga')

,('TS','Tsonga'),('TR','Turkish'),('TK','Turkmen'),('TW','Twi'),('UK','Ukra

inian'),('UR','Urdu'),('UZ','Uzbek'),('VI','Vietnamese'),('VO','Volapuk'),(

'CY','Welsh'),('WO','Wolof'),('XH','Xhosa'),('JI','Yiddish'),('YO','Yoruba'

),('ZU','Zulu');

92

Attachment C: Proof of Concept Code

Altered Files

index.php

We added the following lines to include files that contain new functions.

/* Added several additional functions for logging on with a certificate */

include_once "cacert.inc";

/* Added MySQL scripts and added database functionality */

include_once "mysql.inc";

We modified the routes array. The routes array is used to call a function when a certain page

is requested.

 /* Added "'modifyuser' => 'user_modify', 'updateuser' =>

'user_update','createuser' => 'user_create',

 'deleteuser' => 'user_delete'," to the $routes array */

 $routes = array(

 'continue' => 'simpleid_continue',

 'send' => 'simpleid_send',

 'autorelease' => 'simpleid_autorelease',

 'modifyuser' => 'user_modify',

 'updateuser' => 'user_update',

 'createuser' => 'user_create',

 'deleteuser' => 'user_delete',

 'login' => 'user_login',

 'logout' => 'user_logout',

 'my/dashboard' => 'page_dashboard',

 'my/sites' => 'page_sites',

 'my/profile' => 'page_profile',

 'user' => 'user_public_page',

 'user/(.+)' => 'user_public_page',

 'xrds/(.*)' => 'user_xrds',

 'xrds' => 'simpleid_xrds',

 '.*' => 'simpleid_index'

);

config.inc

We added the MySQL parameter to the config file. The config file is the only one that

contains variables that need to be changed when the application is moved to another website.

/**

 * MySQL parameters.

 *

 * You can specify MySQL parameters that will be used to logon to the

mysql database

 *

 * Examples:

 * <code>

 * define('CACERTID_MYSQL_SERVER', 'localhost');

 * define('CACERTID_MYSQL_DATABASE', 'db');

 * define('CACERTID_MYSQL_USER', 'username');

93

 * define('CACERTID_MYSQL_PASSWORD', 'password');

 * </code>

 *

 */

define('CACERTID_MYSQL_SERVER', 'localhost');

define('CACERTID_MYSQL_DATABASE', 'cacertid');

define('CACERTID_MYSQL_USER', 'root');

define('CACERTID_MYSQL_PASSWORD', 'klomp21');

We also added the Identity URL, better known as the OpenID identifier to the config.inc file.

This value is only displayed to users to help them see what their Identity is. It has no influence

on the identity url itself.

/**

 * CAcert identity URL.

 *

 * You can specify the URL of the OpenID identifiers.

 * This value is only displayed in create and modify user forms

 *

 * Examples:

 * <code>

 * define('CACERTID_IDENTITY_URL', 'http://onno.uni.cc/~identity');

 * define('CACERTID_IDENTITY_URL', 'http://onno.uni.cc/~username');

 * define('CACERTID_IDENTITY_URL', 'http://onno.uni.cc/~nickname');

 * </code>

 *

 */

define('CACERTID_IDENTITY_URL', 'http://onno.uni.cc/~nickname');

filesystem.store.inc

The changes that have been made are such that it uses our database instead of an identity file.

The names of these functions have remained the same.

Altered Functions

store_user_exists($uid)
/**

 * Returns whether the user name exists in the user store.

 *

 * @param string $uid the name of the user to check

 * @param bool whether the user name exists

 */

function store_user_exists($uid) {

 // Start database connection

 dbconnect();

 // Checking if there is an account with the respective nickname.

 $userexists=false;

 $result = mysql_query("SELECT * FROM user WHERE nickname =

'".$uid."'") or die(mysql_error());

 while($row = mysql_fetch_array($result))

 {

 $userexists=true;

 }

 // Closing the database connection

 dbdisconnect();

 return ($userexists);

}

94

store_user_load($uid)
/**

 * Loads user data for a specified user name.

 *

 * The user name must exist. You should check whether the user name

exists with

 * the {@link store_user_exists()} function

 *

 * @param string $uid the name of the user to load

 * @return mixed data for the specified user

 */

function store_user_load($uid) {

 $store_file = SIMPLEID_STORE_DIR . "/$uid.usrstore";

 if (file_exists($store_file)) {

 $data = unserialize(file_get_contents($store_file));

 } else {

 $data = array();

 }

 // Start database connection

 dbconnect();

 // Creating an array with al the user data

 global $uidinfo;

 $result = mysql_query("SELECT * FROM user WHERE nickname =

'".$uid."'") or die(mysql_error());

 while($row = mysql_fetch_array($result))

 {

 $uidinfo["identity"] = $row['nickname'];

 $uidinfo["pass"] = $row['pass'];

 $uidinfo["sreg"]["nickname"] = $row['nickname'];

 $uidinfo["sreg"]["email"] = $row['email'];

 $uidinfo["sreg"]["fullname"] = $row['fullname'];

 $uidinfo["sreg"]["dob"] = $row['dob'];

 $uidinfo["sreg"]["gender"] = $row['gender'];

 $uidinfo["sreg"]["postcode"] = $row['postcode'];

 $uidinfo["sreg"]["country"] = $row['country'];

 $uidinfo["sreg"]["language"] = $row['language'];

 $uidinfo["sreg"]["timezone"] = $row['timezone'];

 }

 // Closing the database connection

 dbdisconnect();

 // Merging the array (standard functionality)

 $data = array_merge($data, $uidinfo);

 return $data;

}

user.inc

Altered Functions

user_login()
/**

 * Attempts to log in a user, using the user name and password specified

in the

 * HTTP request.

 */

95

function user_login()

{

 global $user, $GETPOST;

 //If the user is already logged in, return

 if (isset($user["uid"]))

openid_indirect_response_redirect(simpleid_url(), '');

 $destination = $GETPOST['destination'];

 $state = (isset($GETPOST['s'])) ? $GETPOST['s'] : '';

 $query = 'q=' . $destination;

 $query .= ($state) ? '&s=' . rawurlencode($state) : '';

 if ($_POST['op'] == 'Cancel') {

 global $version;

 $request = unpickle($state);

 $version = openid_get_version($request);

 if (isset($request['openid.return_to'])) {

 $return_to = $request['openid.return_to'];

 $response = simpleid_checkid_error(FALSE);

 redirect_form($return_to, $response);

 } else {

 indirect_fatal_error('Login cancelled without a proper

OpenID request.');

 }

 return;

 }

 // We allow legacy login if the connection is via HTTPS or if

SIMPLEID_ALLOW_LEGACY_LOGIN is true

 $allow_legacy_login = (is_https() || SIMPLEID_ALLOW_LEGACY_LOGIN);

 if (!isset($_POST['name'])) $_POST['name'] = '';

 if (!isset($_POST['pass'])) $_POST['pass'] = '';

 if (!isset($_POST['digest'])) $_POST['digest'] = '';

/*

 Start of addition to the login script

*/

 // This sets the account name when logging in with the certificate

 if (isset($_SERVER['HTTPS']))

 {

 // Start database connection

 dbconnect();

 // Parsing the client certificate.

 $cert_data = openssl_x509_parse($_SERVER['SSL_CLIENT_CERT']);

 // Grabbing the emailaddress(es) from the certificate

 If (isset($cert_data['subject']['emailAddress']) &&

is_array($cert_data['subject']['emailAddress']))

 {

 global $email, $nr;

 $emails = count($cert_data['subject']['emailAddress']);

 $nr = 0;

 for ($i=0; $i<=($emails-1); $i++)

 {

 If

(substr_count($cert_data['subject']['emailAddress'][$i],"@")==1 &&

substr_count($cert_data['subject']['emailAddress'][$i],".")>=1)

 {

96

 $email[$nr] =

$cert_data['subject']['emailAddress'][$i];

 $nr = $nr + 1;

 }

 }

 If (count($email) == 0)

 {$emails = 0;}

 ElseIf (count($email) == 1)

 {$emails = 1;}

 Else

 {$emails = count($email);}

 }

 elseif (isset($cert_data['subject']['emailAddress']))

 {

 $email[0] = $cert_data['subject']['emailAddress'];

 If (substr_count($email[0],"@")==1 &&

substr_count($email[0],".")>=1)

 {$emails = 1;}

 Else

 {$emails = 0;}

 }

 Else

 {$emails = 0;}

 global $emailquery, $name;

 //Building part of the SQL query, the WHERE part.

 If ($emails == 0)

 {

 // Each certificate needs to contain at least one

emailaddress

 set_message('The certificate you supplied does not contain

an emailaddress');

 cache_delete('user-nonce', $_POST['nonce']);

 user_login_form($destination, $state);

 return;

 }

 ElseIf ($emails == 1)

 {

 $emailquery = "email = '".$email[0]."'";

 }

 Else

 {

 $emailquery = "";

 for ($i=0; $i<=(count($email)-1); $i++)

 {

 If ($emailquery==""){$emailquery=" email =

'".$email[$i]."'";}

 Else {$emailquery = $emailquery." OR email =

'".$email[$i]."'";}

 }

 }

 // Checking if there is an account on the database linked with

any of the emailaddresses from the certificate

 If ($emails > 0)

 {

 // Checking if there is an account with any of the emails in

the certificate.

 $result = mysql_query("SELECT nickname, pass FROM user WHERE

".$emailquery) or die(mysql_error());

 while($row = mysql_fetch_array($result))

 {

97

 $name = $row['nickname'];

 }

 }

 // Setting $_POST('name')

 If ($name != ''){$_POST['name'] = $name;}

 Else

 {

 set_message('None of the emails found in your certificate

can be matched to an account which is stored on the server.');

 cache_delete('user-nonce', $_POST['nonce']);

 user_login_form($destination, $state);

 return;

 }

 }

/*

 End of addition to the login script

*/

 // Added !isset($_SERVER['HTTPS']) && to prevent failure due to

missing password while loggin in with a certificate

 if (

 ($_POST['name'] == '')

 || !isset($_SERVER['HTTPS']) && (

 ($allow_legacy_login && ($_POST['pass'] == '') &&

($_POST['digest'] == ''))

 || (!$allow_legacy_login && ($_POST['digest'] == ''))

)

) {

 if (isset($_POST['destination'])) {

 // User came from a log in form.

 set_message('You need to supply the user name and the

password in order to log in.');

 }

 cache_delete('user-nonce', $_POST['nonce']);

 user_login_form($destination, $state);

 return;

 }

 if (!isset($_POST['nonce'])) {

 if (isset($_POST['destination']))

 {

 // User came from a log in form.

 set_message('You seem to be attempting to log in from

another web page. You must use this page to log in.');

 }

 user_login_form($destination, $state);

 return;

 }

 $time = strtotime(substr($_POST['nonce'], 0, 20));

 // Some old versions of PHP does not recognise the T in the ISO 8601

date. We may need to convert the T to a space

 if (($time == -1) || ($time === FALSE)) $time =

strtotime(strtr(substr($_POST['nonce'], 0, 20), 'T', ' '));

 if (!cache_get('user-nonce', $_POST['nonce'])) {

 log_warn('Login attempt: Nonce ' . $_POST['nonce'] . ' not issued

or is being reused.');

 set_message('SimpleID detected a potential security attack on

your log in. Please log in again.');

 user_login_form($destination, $state);

98

 return;

 } elseif ($time < time() - SIMPLEID_LOGIN_NONCE_EXPIRES_IN) {

 log_notice('Login attempt: Nonce ' . $_POST['nonce'] . '

expired.');

 set_message('The log in page has expired. Please log in

again.');

 user_login_form($destination, $state);

 return;

 } else {

 cache_delete('user-nonce', $_POST['nonce']);

 }

 $test_user = user_load($_POST['name']);

 if ($test_user == NULL) {

 set_message('The user name or password is not correct.');

 user_login_form($destination, $state);

 return;

 }

/*

 Start of altered login script

*/

 // Checks if a client certificate has been set

 if (isset($_SERVER['SSL_CLIENT_CERT']))

 {

 // You can add more unauthorized common names (CN) if that is

necessary. it is also possible to remove this clause altogether

 /* Normally the CN should be the name of the certificate owner.

Some CAcert certificate have CAcert WoT User as CN */

 $unauthorized_cn = array("CAcert WoT User");

 // Checks whether the cn is in the list of unauthorized cn if the

variable has been set.

 // The certificate must contain the name of the person.

 if (isset($unauthorized_cn) &&

in_array($cert_data['subject']['CN'], $unauthorized_cn))

 {

 // The user is forwarded back to the http website

 header('Location: '.httplocation().'/index.php?nn=1');

 exit;

 }

 else

 {

 // Checks whether the certificate is intended to be used on

the client side of an SSL connection.

 If (!openssl_x509_checkpurpose($_SERVER['SSL_CLIENT_CERT'],

X509_PURPOSE_SSL_CLIENT) == 1)

 {

 // The user is forwarded back to the http website

 header('Location: '.httplocation().'/index.php?nn=2');

 exit;

 }

 }

 }

 // standard username and password logon

 else

 {

 if ($_POST['digest'] && !_user_verify_digest($_POST['digest'],

$_POST['nonce'], $test_user))

 {

 set_message('The user name or password is not correct');

 user_login_form($destination, $state);

 return;

99

 }

 elseif ($allow_legacy_login && !$_POST['digest'] &&

(md5($_POST['pass']) != $test_user['pass']))

 {

 set_message('The user name or password is not correct.');

 user_login_form($destination, $state);

 return;

 }

 }

 // Closing the database connection

 dbdisconnect();

/*

 End of altered login script

*/

 log_info('Login successful: ' . $test_user['uid']);

 _user_login($test_user);

 if (isset($_POST['autologin']) && ($_POST['autologin'] == 1))

user_autologin_create();

 openid_indirect_response_redirect(simpleid_url(), $query);

}

user_login_form ()

/**

 * Displays a user login form.

 *

 * @param string $destination the SimpleID location to which the user is

directed

 * if login is successful

 * @param string $state the current SimpleID state, if required by the

location

 */

function user_login_form($destination = '', $state = NULL) {

 global $xtpl;

 if ($state) {

 $xtpl->assign('state', htmlspecialchars($state, ENT_QUOTES, 'UTF-

8'));

 $xtpl->parse('main.login.state');

 }

 cache_gc(SIMPLEID_LOGIN_NONCE_EXPIRES_IN, 'user-nonce');

 $nonce = openid_nonce();

 cache_set('user-nonce', $nonce, 1);

 $xtpl->assign('javascript', '<script src="html/md5.js"

type="text/javascript"></script><script src="html/user-login.js"

type="text/javascript"></script>');

 // Checking if the user came from a failed certificate logon

 If (isset($_GET['nn']))

 {

 If ($_GET['nn']==1)

 {

 set_message('The certificate you attempted to logon with

does not contain your name.');

 }

 ElseIf ($_GET['nn']==2)

 {

 set_message('The certificate you used to logon with is not

intended to be used as a client certificate.');

 }

100

 Else

 {

 set_message('Something went wrong while logging on with your

certificate');

 }

 }

 if (is_https()) {

 $xtpl->assign('security_class', 'secure');

 $xtpl->assign('security_message', 'Secure login using

HTTPS.');

 } else {

 if (!SIMPLEID_ALLOW_LEGACY_LOGIN) {

 $xtpl->assign('security_class', 'unsecure login-digest');

 $xtpl->assign('security_message', 'Your SimpleID

configuration does not allow you to log in unsecurely. Please enable

JavaScript and try again, or see <a

href="http://simpleid.sourceforge.net/documentation/using-

simpleid/logging-simpleid">the SimpleID documentation for more

details.');

 $xtpl->assign('security_disabled', 'disabled="disabled"');

 } else {

 $xtpl->assign('security_class', 'unsecure login-digest');

 $xtpl->assign('security_message', 'WARNING:

Your password will be sent to SimpleID as plain text.');

 }

 }

/*

 Start of addition to the script

 The following addition to the script enforces that the user keeps on

using the secure https connection.

*/

 // If a user is not accessing the page through https he must be forced

to do so while logging on with a certificate.

 $xtpl->assign('rootdir', httplocation());

 $xtpl->assign('srootdir', httpslocation());

/*

 End of addition to the script

 The following addition to the script enforces that the user keeps on

using the secure https connection.

*/

 extension_invoke_all('user_login_form', $destination, $state);

 $xtpl->assign('title', 'Log In');

 $xtpl->assign('page_class', 'dialog-page');

 $xtpl->assign('destination', htmlspecialchars($destination,

ENT_QUOTES, 'UTF-8'));

 $xtpl->assign('nonce', htmlspecialchars($nonce, ENT_QUOTES, 'UTF-8'));

 $xtpl->parse('main.login');

 $xtpl->parse('main.framekiller');

 $xtpl->parse('main');

 $xtpl->out('main');

}

101

New functions

user_modify()
// Create a form in which a user can create, modify or delete his account.

function user_modify() {

 global $xtpl;

 cache_gc(SIMPLEID_LOGIN_NONCE_EXPIRES_IN, 'user-nonce');

 $nonce = openid_nonce();

 cache_set('user-nonce', $nonce, 1);

 $xtpl->assign('javascript', '<script src="html/md5.js"

type="text/javascript"></script><script src="html/user-login.js"

type="text/javascript"></script>');

 // Forcing usage of https

 If (!is_https())

 {

 header('Location: '.httpslocation().'/index.php?q=modifyuser');

 }

 Else

 {

 $xtpl->assign('security_class', 'secure');

 $xtpl->assign('security_message', 'Connection uses HTTPS');

 }

 // Start database connection

 dbconnect();

 // Parsing the client certificate.

 $cert_data = openssl_x509_parse($_SERVER['SSL_CLIENT_CERT']);

 $fullname = $cert_data['subject']['CN'];

 If ($fullname == "CAcert WoT User")

 {

 $xtpl->assign('security_class', 'secure');

 $xtpl->assign('security_message', 'Your name needs to be in your

client certidficate');

 $xtpl->assign('security_disabled', 'disabled="disabled"');

 }

 // Grabbing the emailaddress(es) from the certificate

 If (isset($cert_data['subject']['emailAddress']) &&

is_array($cert_data['subject']['emailAddress']))

 {

 global $email, $nr;

 $emails = count($cert_data['subject']['emailAddress']);

 $nr = 0;

 for ($i=0; $i<=($emails-1); $i++)

 {

 If

(substr_count($cert_data['subject']['emailAddress'][$i],"@")==1 &&

substr_count($cert_data['subject']['emailAddress'][$i],".")>=1)

 {

 $email[$nr] = $cert_data['subject']['emailAddress'][$i];

 $nr = $nr + 1;

 }

 }

 If (count($email) == 0)

 {$emails = 0;}

 ElseIf (count($email) == 1)

 {$emails = 1;}

 Else

 {$emails = count($email);}

102

 }

 elseif (isset($cert_data['subject']['emailAddress']))

 {

 $email[0] = $cert_data['subject']['emailAddress'];

 If (substr_count($email[0],"@")==1 &&

substr_count($email[0],".")>=1)

 {$emails = 1;}

 Else

 {$emails = 0;}

 }

 Else

 {$emails = 0;}

 global $emailquery;

 If ($emails == 0)

 {

 $xtpl->parse('main.modifyuser.oneemail');

 $xtpl->assign('security_class', 'secure');

 $xtpl->assign('security_message', 'The certificate you selected

does not contain an emailadres');

 $xtpl->assign('security_disabled', 'disabled="disabled"');

 }

 ElseIf ($emails == 1)

 {

 $emailquery = "email = '".$email[0]."'";

 $xtpl->assign('email', $email[0]);

 $xtpl->parse('main.modifyuser.oneemail');

 }

 Else

 {

 $emailquery = "";

 for ($i=0; $i<=(count($email)-1); $i++)

 {

 If ($emailquery==""){$emailquery=" email =

'".$email[$i]."'";}

 Else {$emailquery = $emailquery." OR email =

'".$email[$i]."'";}

 }

 }

 $status = "createuser";

 $title = "Create an account";

 $pass = "*";

 global $usercountry, $userlanguage, $usertimezone, $usernickname,

$nicknames, $emailid;

 If ($emails > 0)

 {

 // Checking if there is already an account with any of the emails

in the certificate.

 $result = mysql_query("SELECT * FROM user WHERE ".$emailquery) or

die(mysql_error());

 while($row = mysql_fetch_array($result))

 {

 $status = "updateuser";

 $title = "Modify your account";

 $pass = "";

 $fullname = $row['fullname'];

 If (isset($row['nickname'])){$usernickname =

$row['nickname']; $xtpl->assign('nickname', $row['nickname']);}

 If (isset($row['gender']) && $row['gender'] =='M'){$xtpl-

>assign('gendermselected', ' selected="true"');}

 ElseIf (isset($row['gender']) && $row['gender']

=='F'){$xtpl->assign('genderfselected', ' selected="true"');}

103

 Else {$xtpl->assign('nogenderselected', '

selected="true"');}

 If (isset($row['email']) && $row['email']

<>''){$emailid=$row['email']; $xtpl->assign('emailid', $row['email']);}

 If (isset($row['dob']) && $row['dob'] <>''){$xtpl-

>assign('dob', $row['dob']);}

 If (isset($row['postcode']) && $row['postcode'] <>''){$xtpl-

>assign('postcode', $row['postcode']);}

 If (isset($row['country'])){$usercountry = $row['country'];}

 If (isset($row['language'])){$userlanguage =

$row['language'];}

 If (isset($row['timezone'])){$usertimezone =

$row['timezone'];}

 $xtpl->parse('main.modifyuser.delete');

 }

 }

 If (!isset($usernickname) || $usernickname == ''){$query = '';}

 Else {$query = " WHERE nickname != '".$usernickname."'";}

 $result = mysql_query("SELECT nickname FROM user ".$query);

 while($row = mysql_fetch_array($result))

 {

 If

($nicknames==''){$nicknames="'".strtolower($row['nickname'])."'";}

 Else

{$nicknames=$nicknames.",'".strtolower($row['nickname'])."'";}

 }

 $nicknames = '"'.$nicknames.'"';

 $xtpl->assign('nicknames', $nicknames);

 If ($emails > 1)

 {

 for ($i=0; $i<=(count($email)-1); $i++)

 {

 $xtpl->assign('email', $email[$i]);

 $xtpl->assign('emailnr', $i);

 If ($email[$i] == $emailid){$xtpl->assign('emailselected', '

selected=true');}

 Else {$xtpl->assign('emailselected', '');}

 $xtpl->parse('main.modifyuser.multiemail.selectemail');

 }

 $xtpl->parse('main.modifyuser.multiemail');

 }

 // Setting $notime and $nolanguage variables as globals

 global $notime, $nolanguage;

 $counter = 0;

 // Retrieving countrycodes that can not be found in the list of

timezones

 $result = mysql_query("SELECT * FROM country WHERE id NOT IN (SELECT

country FROM timezone)");

 while($row = mysql_fetch_array($result))

 {

 $notime[$counter]=$row['id'];

 $counter = $counter + 1;

 }

 $counter = 0;

 // Retrieving countrycodes that can not be found in the list of

languages

 $result = mysql_query("SELECT * FROM country WHERE id NOT IN (SELECT

id FROM language)");

 while($row = mysql_fetch_array($result))

104

 {

 $nolanguage[$counter]=$row['id'];

 $counter = $counter + 1;

 }

 // Retrieving and parsing the list of countries

 $result = mysql_query("SELECT * FROM country");

 while($row = mysql_fetch_array($result))

 {

 If (isset($usercountry) && $usercountry == $row['id']){$xtpl-

>assign('countryselected', ' selected=true');}

 Else {$xtpl->assign('countryselected', '');}

 $xtpl->assign('country', $row['id']);

 $xtpl->assign('countryname', $row['name']);

 $xtpl->assign('countryupdate', checkcountry($row['id'], $notime,

$nolanguage));

 $xtpl->parse('main.modifyuser.selectcountry');

 $xtpl->parse('main.modifyuser.selectedcountry');

 }

 If (!isset($usercountry) || $usercountry == ''){$xtpl-

>assign('nocountryselected', ' selected=true');}

 Else {$xtpl->assign('nocountryselected', '');}

 // Retrieving and parsing the list of languages

 $result = mysql_query("SELECT * FROM language");

 while($row = mysql_fetch_array($result))

 {

 If (isset($userlanguage) && $userlanguage == $row['id']){$xtpl-

>assign('languageselected', ' selected=true');}

 Else {$xtpl->assign('languageselected', '');}

 $xtpl->assign('language', $row['id']);

 $xtpl->assign('languagename', $row['name']);

 $xtpl->parse('main.modifyuser.selectlanguage');

 }

 If (!isset($usercountry) || $usercountry == ''){$xtpl-

>assign('nocountryselected', ' selected=true');}

 Else {$xtpl->assign('nocountryselected', '');}

 // Retrieving and parsing the list of timezones

 $result = mysql_query("SELECT * FROM timezone ORDER BY timezone");

 while($row = mysql_fetch_array($result))

 {

 If (isset($usertimezone) && $usertimezone ==

$row['timezone']){$xtpl->assign('timezoneselected', ' selected=true');}

 Else {$xtpl->assign('timezoneselected', '');}

 $xtpl->assign('timezone', $row['timezone']);

 $xtpl->assign('tcountry', $row['country']);

 $xtpl->assign('tcountrynr', $row['countrynr']);

 $xtpl->parse('main.modifyuser.selecttimezone');

 }

 If (!isset($usertimezone) || $usertimezone == ''){$xtpl-

>assign('notimezoneselected', ' selected=true');}

 Else {$xtpl->assign('notimezoneselected', '');}

 If (!isset($destination)){$destination="";}

 If (!isset($state)){$state="";}

 extension_invoke_all('user_modify', $destination, $state);

 // If a user is not accessing the page through https he must be forced

to do so while logging on with a certificate.

 $xtpl->assign('rootdir', httplocation());

 $xtpl->assign('srootdir', httpslocation());

 $xtpl->assign('status', $status);

105

 $xtpl->assign('fullname', $fullname);

 $xtpl->assign('title', $title);

 $xtpl->assign('enterpass', $pass);

 $xtpl->assign('identityurl', CACERTID_IDENTITY_URL);

 $xtpl->assign('page_class', 'dialog-page');

 $xtpl->assign('nonce', htmlspecialchars($nonce, ENT_QUOTES, 'UTF-8'));

 $xtpl->parse('main.modifyuser');

 $xtpl->parse('main.framekiller');

 $xtpl->parse('main');

 $xtpl->out('main');

 // Closing the database connection

 dbdisconnect();

}

user_create ()

// Insert a row in the user table

function user_create()

{

 // Start database connection

 dbconnect();

 // Checking if there is a name amongst the post data

 If (!isset($_POST['nickname']) || $_POST['nickname'] == '')

 {

 user_modify();

 exit("No nickname has been received");

 }

 // Checking if there is as emailaddress amongst the post data

 If (!isset($_POST['email']) || $_POST['email'] == '')

 {

 user_modify();

 exit("No emailaddress has been received");

 }

 // hashing the password if set to MD5

 If (isset($_POST['pass']) && $_POST['pass'] <>

''){$_POST['pass']=MD5($_POST['pass']);}

 $values = "('".$_POST['nickname']."',

'".$_POST['pass']."','".$_POST['email']."','".$_POST['name']."','".$_POST['

dob']."','".$_POST['gender']."','".$_POST['postcode']."','".$_POST['country

']."','".$_POST['language']."','".$_POST['timezone']."')";

 mysql_query("INSERT INTO user (nickname, pass, email, fullname, dob,

gender, postcode, country, language, timezone) VALUES ".$values) or

die(mysql_error());

 header('Location: '.httplocation().'index.php');

 // Closing the database connection

 dbdisconnect();

}

user_update ()

// Updating the row in the user table

function user_update()

{

 // Start database connection

 dbconnect();

 global $nr, $update;

 $nr = 0;

 // Validating post variables

 If (isset($_POST['nickname']) && !$_POST['nickname'] == ''){$update =

"nickname ='".$_POST['nickname']."'";}

 Else {user_modify();exit("No nickname has been received");}

 If (isset($_POST['email']) && $_POST['email'] <>

106

''){$update=$update.", email ='".$_POST['email']."'";}

 If (isset($_POST['pass']) && $_POST['pass'] <> ''){$update=$update.",

pass ='".MD5($_POST['pass'])."'";}

 If (isset($_POST['name']) && $_POST['name'] <> ''){$update=$update.",

fullname ='".$_POST['name']."'";}

 $update=$update.", dob ='".$_POST['dob']."'";

 $update=$update.", gender ='".$_POST['gender']."'";

 $update=$update.", postcode ='".$_POST['postcode']."'";

 $update=$update.", country ='".$_POST['country']."'";

 $update=$update.", language ='".$_POST['language']."'";

 $update=$update.", timezone ='".$_POST['timezone']."'";

 mysql_query("UPDATE user SET ".$update." WHERE email =

'".$_POST['account']."'");

 header('Location: '.httplocation().'/index.php');

 // Closing the database connection

 dbdisconnect();

}

user_delete ()

// Delete a user from the database

function user_delete()

{

 // Start database connection

 dbconnect();

 If (isset($_POST['account']) || $_POST['account'] != '')

 {

 mysql_query("DELETE FROM user WHERE

email='".$_POST['account']."'");

 header('Location: '.httplocation().'index.php');

 }

 Else

 {

 header('Location: '.httpslocation().'index.php?q=modifyuser');

 }

 // Closing the database connection

 dbdisconnect();

}

template.xtpl

Altered Functions

We have added a few scripts that verify form data. We've placed these scripts in a separate

file which we filled with the following line of code.

<!-- Added javascript for logging on with certificate -->

 <script src="html/cacert.js" type="text/javascript"></script>

107

Login

We have modified the login part of the website template. We created a button for logging on

with a certificate. We also added a link to create or modify an account.

Figure C.1: Added button and link

<!-- Start of alteration to the template for account login -->

 <!-- BEGIN: login -->

 <div class="login-security {security_class}">

 <p>{security_message}</p>

 </div>

 <form action="{rootdir}/index.php" method="post"

enctype="application/x-www-form-urlencoded" id="login-form" name="login-

form">

 <input type="hidden" name="q" value="login"/><input

name="destination" type="hidden" value="{destination}"/>

 <input type="hidden" name="nonce" id="edit-nonce"

value="{nonce}" />

 <input type="hidden" name="digest" id="edit-digest" value=""

/>

 <div class="form-item">

 <label for="edit-name">User name:</label>

 <input type="text" maxlength="60" name="name" id="edit-

name" size="60" value="" class="form-text required" {security_disabled}

/>

 </div>

 <div class="form-item">

 <label for="edit-pass">Password:</label>

 <input type="password" name="pass" id="edit-pass"

size="60" class="form-text required" {security_disabled} />

 </div>

 <div class="form-item">

 <label class="option">

 <input type="checkbox" name="autologin" value="1" />

108

 Remember me on this computer for two weeks.

 </label>

 </div>

 <input type="submit" name="op" id="edit-submit" value="Log

in" class="form-submit" {security_disabled} />

 <!-- BEGIN: state -->

 <input type="submit" name="op" id="edit-cancel"

value="Cancel" class="form-submit" />

 <input type="hidden" name="s" value="{state}"/>

 <!-- END: state -->

 <!-- Added button for logging on with a certificate -->

 <input type="submit" name="op" value="Login with an SSL

Certificate" onclick="ssllogin('{srootdir}');" {security_disabled} >

 <!-- Added link for modifying and creating an account --

>

 Create/ Modify

Account

 </form>

 <!-- END: login -->

<!-- End of alteration to the template for account login -->

New Functions

Modify user

As described above, we have added a link on the login page to "Create/Modify Account". We

have created a page that makes it possible to create or modify your account. The code that we

have created, is described after a screenshot of the "Modify your account" page.

109

Figure C.2: Modify your account

<!-- Start of addition to the template for modifying/ creating an account

-->

 <!-- BEGIN: modifyuser -->

 <div class="login-security {security_class}">

 <p>{security_message}</p>

 </div>

 <form action="{srootdir}/index.php" method="post"

enctype="application/x-www-form-urlencoded" id="user-form" name="user-

form">

 <input type="hidden" name="q" id="q" value="{status}"/>

 <input type="hidden" name="nonce" id="edit-nonce"

value="{nonce}" />

 <input type="hidden" name="digest" id="edit-digest"

value="" />

 <input type="hidden" name="account" id="account"

value="{emailid}" />

 <div class="form-item">

 <label for="edit-nickname">Nickname: *

{identityurl}</label>

 <input type="text" name="nickname" id="edit-

nickname" maxlength="60" size="60" value="{nickname}"

onchange="checknickname();" class="form-text required" {security_disabled}

110

/>

 </div>

 <div class="form-item">

 <label for="edit-pass">Password:

{enterpass}</label>

 <input type="password" name="pass" id="edit-pass"

maxlength="60" size="60" class="form-text required" {security_disabled} />

 </div>

 <div class="form-item">

 <label for="edit-name">Full name: *</label>

 <input type="hidden" name="name" id="edit-name"

value="{fullname}" />

 <input type="text" maxlength="60" size="60"

value="{fullname}" class="form-text required" disabled="disabled"/>

 </div>

 <div class="form-item">

 <label for="edit-email">Email: *</label>

 <!-- BEGIN: oneemail -->

 <input type="hidden" name="email" id="edit-email"

value="{email}" />

 <input type="text" value="{email}" maxlength="60"

size="60" class="form-text required" disabled="disabled"/>

 <!-- END: oneemail -->

 <!-- BEGIN: multiemail -->

 <select name="email" id="edit-email"

{security_disabled}>

 <!-- BEGIN: selectemail -->

 <option id="e_{emailnr}" name="e_{emailnr}"

value="{email}"{emailselected}>{email}</option>

 <!-- END: selectemail -->

 </select>

 <!-- END: multiemail -->

 </div>

 <div class="form-item">

 <label for="edit-dob">Date of birth (dd-mm-

yyyy):</label>

 <input type="text" name="dob" id="edit-dob"

maxlength="10" size="60" value="{dob}" onchange="checkdob();" class="form-

text required" {security_disabled} />

 </div>

 <div class="form-item">

 <label for="edit-gender">Gender:</label>

 <select name="gender" id="edit-gender"

{security_disabled}>

 <option value=""{nogenderselected}></option>

 <option

value="M"{gendermselected}>Male</option>

 <option

value="F"{genderfselected}>Female</option>

 </select>

 </div>

 <div class="form-item">

 <label for="edit-postcode">ZIP/ Postcode:</label>

 <input type="text" name="postcode" id="edit-

postcode" maxlength="10" size="60" value="{postcode}" class="form-text

required" {security_disabled} />

 </div>

 <div class="form-item">

 <label for="edit-country">Country:</label>

 <select name="country" id="edit-country"

onchange="countryupdate();" {security_disabled}>

 <option id="c_00" name="c_00"

111

value=""{nocountryselected}></option>

 <!-- BEGIN: selectcountry -->

 <option id="c_{country}" name="c_{country}"

value="{country}"{countryselected}>{countryname}</option>

 <!-- END: selectcountry -->

 </select>

 </div>

 <div class="form-item">

 <label for="edit-language">Language:</label>

 <select name="language" id="edit-language"

{security_disabled}>

 <option id="l_00"

value=""{nolanguageselected}></option>

 <!-- BEGIN: selectlanguage -->

 <option id="l_{language}"

value="{language}"{languageselected}>{languagename}</option>

 <!-- END: selectlanguage -->

 </select>

 </div>

 <div class="form-item">

 <label for="edit-timezone">timezone:</label>

 <select name="timezone" id="edit-timezone"

{security_disabled}>

 <option id="t_00"

value=""{notimezoneselected}></option>

 <!-- BEGIN: selecttimezone -->

 <option id="t_{tcountry}{tcountrynr}"

value="{timezone}"{timezoneselected}>{timezone}</option>

 <!-- END: selecttimezone -->

 </select>

 </div>

 <input type="button" name="op" id="edit-submit"

value="{title}" class="form-submit" onclick="return validateuserform();"

{security_disabled} />

 <!-- BEGIN: delete -->

 <input type="submit" name="op" id="edit-submit"

value="Delete your account" class="form-submit" onclick="return

deleteuser();" {security_disabled} />

 <!-- END: delete -->

 </form>

 <input type="hidden" name="nicknames" id="nicknames"

value={nicknames} />

 <input type="hidden" name="cu_00" id="cu_00" value="" />

 <!-- BEGIN: selectedcountry -->

 <input type="hidden" name="cu_{country}" id="cu_{country}"

value="{countryupdate}" />

 <!-- END: selectedcountry -->

 <!-- END: modifyuser -->

<!-- End of addition to the template for modifying/ creating an account --

>

112

New Files

cacert.js

This file contains the functions that are used to verify form data when a user creates or

modifies his account.

ssllogin (x)

If the user clicks on the button “Login with an SSL Certificate” on the login page, the

function ssllogin(x) will be triggerd.

// login with a certificate

function ssllogin(x)

{

 document.forms["login-form"].action = x;

}

countryupdate ()

When a user selects his country the timezone and language for that country will be

automatically selected. There are exceptions due to countries not having their own language

or having multiple timezones.

// Select timezone and language automatically after the user selected his

country

function countryupdate()

{

 var x = document.getElementById("edit-country").value;

 var y = document.getElementById("cu_"+x).value;

 if (y=="a")

 {

 document.getElementById("l_00").selected=true;

 document.getElementById("t_00").selected=true;

 }

 else if (y=="b")

 {

 document.getElementById("l_"+x).selected=true;

 document.getElementById("t_00").selected=true;

 }

 else if (y=="c")

 {

 document.getElementById("l_00").selected=true;

 document.getElementById("t_"+x+"1").selected=true;

 }

 else if (y=="d")

 {

 document.getElementById("l_"+x).selected=true;

 document.getElementById("t_"+x+"1").selected=true;

 }

}

113

checknickname ()

This function checks if the nickname is unique. It also checks if there are illegal characters or

a space in the nickname.

// Check if nickname is unique

function checknickname()

{

 var x = document.getElementById("edit-nickname").value;

 var y = document.getElementById("nicknames").value;

 x = x.toLowerCase();

 y = y.toLowerCase();

 if (y.indexOf("'"+x+"'")>=0)

 {

 document.getElementById("edit-nickname").value = '';

 alert('The nickname you have chosen is already in use');

 }

 else if ((x.indexOf("'")>=0) || (x.indexOf('"')>=0) ||

(x.indexOf("+")>=0) || (x.indexOf("=")>=0) || (x.indexOf("(")>=0) ||

(x.indexOf(")")>=0) || (x.indexOf("\\")>=0) || (x.indexOf("/")>=0) ||

(x.indexOf(",")>=0) || (x.indexOf(".")>=0) || (x.indexOf("!")>=0) ||

(x.indexOf("@")>=0) || (x.indexOf("#")>=0) || (x.indexOf("$")>=0) ||

(x.indexOf("%")>=0) || (x.indexOf("^")>=0) || (x.indexOf("&")>=0) ||

(x.indexOf("*")>=0) || (x.indexOf("{")>=0) || (x.indexOf("}")>=0) ||

(x.indexOf("[")>=0) || (x.indexOf("]")>=0) || (x.indexOf("|")>=0) ||

(x.indexOf("`")>=0))

 {

 document.getElementById("edit-nickname").value = '';

 alert('The nickname you chose contains illegal characters. (\' \"

+ = ! @ # $ % ^ * () { } [] | \ / . , `)');

 }

 else if ((x.indexOf(" ")>=0))

 {

 document.getElementById("edit-nickname").value = '';

 alert('Please do not use spaces in your nick name. You can use -

and _ instead');

 }

}

checkdob ()

This function checks if the date of birth is valid. We use the following date of birth

registration “dd-mm-yyyy”. So this means that if a user enters “mm-dd-yyyy”, it isn‟t valid

when the month is bigger than 12.

// Checking if the date of birth is valid

function checkdob()

{

 var x = document.getElementById("edit-dob").value;

 if (isDate(x))

 {

 }

 else

 {

 document.getElementById("edit-dob").value = '';

 }

}

114

isDate (dateStr)

This function checks if the given date is valid.

// Checking if the date is valid

function isDate(dateStr)

{

 var datePat = /^(\d{1,2})(-)(\d{1,2})(-)(\d{4})$/;

 var matchArray = dateStr.match(datePat); // is the format ok?

 if (matchArray == null)

 {

 alert("Please enter date as dd-mm-yyyy.");

 return false;

 }

 month = matchArray[3]; // p@rse date into variables

 day = matchArray[1];

 year = matchArray[5];

 if (month < 1 || month > 12) // check month range

 {

 alert("Month must be between 1 and 12.");

 return false;

 }

 if (day < 1 || day > 31)

 {

 alert("Day must be between 1 and 31.");

 return false;

 }

 if ((month==4 || month==6 || month==9 || month==11) && day==31)

 {

 alert("Month "+month+" doesn`t have 31 days!")

 return false;

 }

 if (month == 2) // check for february 29th

 {

 var isleap = (year % 4 == 0 && (year % 100 != 0 || year % 400 ==

0));

 if (day > 29 || (day==29 && !isleap))

 {

 alert("February " + year + " doesn`t have " + day + "

days!");

 return false;

 }

 }

 return true; // date is valid

}

115

deleteuser ()

If the user wants to delete his account and clicks on the button “Delete your account” on the

“Modify your account” page, this function will trigger the function.

// Alter the form query so the user will be deleted

function deleteuser()

{

 var r=confirm("Are you sure you want to delete your account?");

 if (r==true)

 {

 document.getElementById("q").value = 'deleteuser';

 return true;

 }

 else

 {return false;}

}

validateuserform ()

When the user clicks to modify, this script will validate the required fields.

// Validate the attributes that were filled in by the user

function validateuserform()

{

 var user = document.getElementById("edit-nickname").value;

 var pass = document.getElementById("edit-pass").value;

 var action = document.getElementById("q").value;

 if (user=='')

 {

 alert("Please enter a nickname before continuing");

 return false;

 }

 else if(pass=='')

 {

 if(action=='createuser')

 {

 alert("Please enter a password before continuing");

 return false;

 }

 }

 else

 {return true;}

}

116

cacert.inc

httplocation ()

SIMPLEID_BASE_URL is a superglobal that is set in config.inc

// Retrieve HTTP location

function httplocation()

{

 // The default http location

 return(SIMPLEID_BASE_URL);

}

httpslocation ()

This function converts the SIMPLEID_BASE_URL superglobal from an http to an https

address.

// Retrieve HTTPS location

function httpslocation()

{

 return(substr_replace(SIMPLEID_BASE_URL,'s',4,0));

}

checkcountry ($x, $y, $z)

The returned values in this script are used in a javascript function that will automatically

select the language and timezone after selecting the country.

// Checks whether the the countrycode can be found in the list of

timezones and languages

function checkcountry($x, $y, $z)

{

 if ((isset($y) && in_array($x, $y)) && (isset($z) && in_array($x,

$z)))

 {

 $cu="a";

 }

 elseif (isset($y) && in_array($x, $y))

 {

 $cu="b";

 }

 elseif (isset($z) && in_array($x, $z))

 {

 $cu="c";

 }

 else

 {

 $cu="d";

 }

 return($cu);

}

117

mysql.inc

These are some standard functions for connecting and closing the connection to the database.

dbconnect ()

// Connecting to the mysql database

function dbconnect()

{

 $con = mysql_connect(CACERTID_MYSQL_SERVER, CACERTID_MYSQL_USER,

CACERTID_MYSQL_PASSWORD);

 if (!$con)

 {

 die('Could not connect: ' . mysql_error());

 }

 mysql_select_db(CACERTID_MYSQL_DATABASE, $con);

}

dbdisconnect ()

// Closing the mysql database connection if its still open.

function dbdisconnect()

{

 if (isset($con))

 {

 mysql_close($con);

 }}

	Introduction
	Problem statement
	Research questions

	Method
	Thesis structure

	Theoretical framework
	Security Goals
	Confidentiality
	Integrity
	Availability
	Authentication
	Accountability

	Public Key Infrastructure (PKI)
	X.509 (Public-key certificate)

	Identity Management
	Single Sign On (SSO)

	OpenID
	Protocol
	Enter OpenID identifier
	Discovery
	Association request
	Association response
	Authentication request
	Request authentication and authorization
	Authenticate and authorize
	Positive assertion
	Verification

	Problems
	Trust problems

	Alternative OpenID solutions
	OpenID Plus
	Personal Identity Portal
	MyOpenID

	Protocol in other research

	Single Sign On comparison
	Kerberos
	Protocol
	Determining the identity
	Session Setup

	Comparison with OpenID
	Similarities
	Differences

	DigiD
	Protocol
	Comparison with OpenID
	Similarities
	Differences

	Microsoft Windows LiveID
	Protocol
	Comparison with OpenID
	Similarities
	Differences

	Google Federated Login
	Protocol
	Comparison with OpenID
	Similarities
	Differences

	CAcert
	What is CAcert
	Certification Authority
	Classification of certificates
	Client Certificate
	Server Certificate
	Certificate Signing Request

	Web of Trust

	How to use CAcert
	Client Certificate
	Server Certificate
	Registrating a domain
	Generating a Server Certificate
	Linux
	Windows

	Getting your Server Certificate Signed

	Proof of Concept
	Motivation for our solution
	Design Decisions
	Database
	Script

	Package selection
	OpenID Implementations
	Php-openid
	Installation

	SimpleID
	Installation

	PhpMyID/ PhpMyOpenID
	Installation

	Chosen package

	CAcertID
	Credential Database
	Background

	Results
	Advantages
	Disadvantages
	Notes
	Future work

	Conclusion
	OpenID
	CAcert
	Proof of Concept
	Future Work

	Bibliography
	Attachment A: Setting up a Webserver with SSL enabled
	Attachment B: Database
	Attachment C: Proof of Concept Code
	Altered Functions
	store_user_exists($uid)
	store_user_load($uid)
	Altered Functions
	user_login()
	user_login_form ()
	New functions
	user_modify()
	user_create ()
	user_update ()
	user_delete ()
	Altered Functions
	Login
	New Functions
	Modify user
	ssllogin (x)
	countryupdate ()
	checknickname ()
	checkdob ()
	isDate (dateStr)
	deleteuser ()
	validateuserform ()
	httplocation ()
	httpslocation ()
	checkcountry ($x, $y, $z)
	dbconnect ()
	dbdisconnect ()

