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Abstract

At the moment there exists no official tool for refactoring Erlang code.
To this end the Programming Languages and Compilers department of the
Eötvös Loránd University in Budapest is working on such a tool called
RefactorErl. It is of utter importance that this tool is correct, or it might
cause defects in critical systems, and should therefore be thoroughly ver-
ified (e.g. testing, formal proofs). To this end I have researched how to
more strictly define the system’s current natural language specification,
which decreases room for misinterpretation and enables for new means of
testing (e.g. formal proofs). Also, in order to check applicability of model
based testing, I defined a few model based tests using QuickCheck, which
have revealed a few minor problems. All-in-all the paper gives a struc-
tured and thorough testing approach that can be applied in the future to
increase the quality of the code.
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1 Preface

1.1 Thesis structure

This thesis was written as a part of my Computer Science study. Its focus is on
the functional programming language Erlang, and the technique of refactoring:
changing a source code’s structure, without changing its semantics (this will be
explained in more detail later).

There is also a smaller management aspect to this thesis, for this is my Minor
study. It consists of an introduction to the Ericsson company, the developer of
Erlang, and to (the development of) the language itself.

The thesis is divided in two parts, which can be read independently. The
first part addresses the management aspect of the research, and is followed by
the second part that is focused on the main (Computer Science) research.

1.2 Context of research

I conducted my research at the Eötvös Loránd University in Budapest, where
the department of Programming Languages and Compilers is working on Refac-
torErl, a refactoring tool for Erlang.

This research was started in 2006 and is sponsored by Ericsson. To my
knowledge, it is one of the three major projects (world-wide) that are trying
to achieve the same goal. The others are Wrangler and Tidier, on which I will
elaborate more in the Computer Science part of this thesis.

Elroy Jumpertz, a fellow student from the Radboud University accompa-
nied me in the research. But, even though we have both been working on the
same subject –testing correctness of RefactorErl– we both had our own way of
approaching the subject.[3]

1.3 Thanks

I would like to thank Rinus Plasmeijer and Ben Dankbaar for being my super-
visors and advisors; Zoltán Horváth and the RefactorErl project members for
having me over and helping me with my research; Bálint Fügi for arranging
excellent accommodation; and Pieter Koopman for being the second reader of
this thesis.

Also thanks to Emil Megyesi for helping a lot with arranging all the paper-
work, and being a great guide; Lajos Kalmár for being my translator on several
occasions; and Elroy Jumpertz for our collaboration in the research and for
being good company.
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Management Research
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2 Ericsson

2.1 Introduction

This first part of the thesis starts off with a short summary of what kind of
company Ericsson is today. It then proceeds by explaining how Ericsson became
this company, by describing the events in history that significantly influenced
the company in some way. Aside from background information on the company
itself, the markets it operates in are described to some extent.

A significant part of the introduction to Ericsson is courtesy to the Ericsson
History website,[4] especially section 2.3. I will therefore not explicitly refer to
this website again.

2.2 Company today

Ericsson is a world-leading provider of telecommunications equipment and re-
lated services to mobile and fixed network operators globally. Over 1.000 net-
works in more than 175 countries utilize Ericsson’s network equipment and 40
percent of all mobile calls are made through its systems. It is one of the few
companies worldwide that can offer end-to-end solutions for all major mobile
communication standards.[5]

These ‘end-to-end solutions’, are the products and services Ericsson deliv-
ers over the entire spectrum of the ‘communications’ market, which it divides
in networks, enabling new media through technology, global services and mobile
communications. A description of these categories will follow after the explana-
tion of the global organizational structure of Ericsson in the following section.

2.2.1 Organizational structure

Figure 1 shows the current organizational structure of Ericsson. This is divided
into several paragraphs, each describing one of the elements displayed in the
figure.

Group Functions Group Functions coordinate the Ericsson’s strategies, op-
erations and resource allocation and define the necessary directives, processes
and organization for the effective governance of the Group. The Group Func-
tions are: Communication, Finance, Human Resources & Organization, Legal
Affairs, Sales & Marketing, Strategy & Operational Excellence and Technology.
The Group Functions also manage common units like Ericsson Research, IT and
Shared Service Centers. The heads of Group Functions report to the CEO.[6]

Business Units Business units are innovators, developers and suppliers of
products, services and customer offerings. Business units define business and
product strategies. Business units are responsible for the profitable growth and
consolidated results within their respective areas. The business units reflect the

3



Figure 1: Ericsson’s organizational structure

product- and service structure of the business: Networks, Global Services and
Multimedia. Business unit heads report to the CEO.[6]

Regions Until 2009 Ericsson used to have 23 Market Units which where re-
organized into 10 Regions.[7] They are marketing and sales channels and the
company’s representatives in the local market environment. Regions define cus-
tomer strategies. They manage the complete customer relations ranging from
marketing to after-sales and support activities. Heads of market units report
to the CEO directly or via a selected member of the Group Management Team
(i.e. president, CEO and heads of the business units).[6]

Joint ventures In certain areas, Ericsson has chosen to work with joint ven-
ture partners. The mobile handset partnership with Sony Corporation in Sony
Ericsson Mobile Communications has been in operation since 2001.

In 2009, Ericsson signed a joint venture agreement with STMicroelectronics
for mobile platform technology and wireless semiconductors.[6]

2.2.2 Networks

Network infrastructure is what provides the fundamentals so that people can
communicate.[8] Its core network products are antennas, transmitters, switching
systems, and other gear used to build wireless networks.[9]

4



2.2.3 Enabling communication using new media

When the company started out in the 19th century as the supplier of telephone
equipment, communications basically consisted of voice conversations. Nowa-
days, communication is no longer limited to voice, but also includes the exchange
of media like photos, videos, and IPTV.[8] Ericsson develops products to bring
these latest forms of media to their customers.

Ericsson’s IPTV-solution for example includes (among others): video pro-
cessing (including advanced compression), media servers for on-demand content
distribution, CA/DRM, QoS monitoring, TV applications, IPTV Home Envi-
ronment (including set-top boxes).[10]

And Ericsson’s Personalized Greeting Service (PGS) is an example of how
the company innovates with the availability of new media on different platforms.
PGS gives users the ability to replace their traditional ringback tone –the tone
the calling party hears before the phone is answered or voicemail activates –
with a music or video clip, a picture or an advertisement.[11]

2.2.4 Global services

Ericsson not only develops the networks and provides the technology, it also
contributes with everything that is needed to get them up and keep them run-
ning. This includes consulting, systems integration and education & support
services.[8]

2.2.5 Mobile communications (Sony Ericsson)

Sony Ericsson Mobile Communications is a joint venture, combining Ericsson’s
technology leadership with Sony’s consumer electronics expertise.[8] The com-
pany was established in 2001, as a provider of multimedia devices such as mobile
phones, accessories and PC cards (Section 2.3.8).

As a result of this joint-venture Ericsson and Sony no longer individually
produce mobile phones.

2.3 Company’s history

2.3.1 Founding Ericsson

Ericsson was founded in Stockholm in 1876 by Lars Magnus Ericsson (LM Eric-
sson) as a telegraph equipment repair shop, with 5 employees. But in the same
year expanded its business into designing, manufacturing and selling its own
telephone equipment.

Even though it started out as such a small company, it served very big
customers right from the start, such as the Swedish PTT (Telegrafverket, or
Televerket as it was later known), the state railways and a number of private
railway companies. This was due to the expansion of the railway net and increase
of the use of the telegraph at that time.
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Ericsson’s first step into the manufacturing and selling business was the
deliverance of two signal telegraphs of its own design to the state railways, on
September 18th of its first year of existence. This also was the start of the
continuous expansion of the company, which resulted in Ericsson moving to
larger premises before the end of the year.

During this time, 1876 – 1877, the telephone was invented and patented
by Abraham Graham Bell. Soon early adopters, who connected their phones
directly (i.e. a direct cable rather than through a telephone network) would
bring their telephones to Ericsson for repair, which enabled LM to have a peek
inside. He would use this knowledge, improve upon it, and sell these phones of
his own design for a lower price than the originals. He was allowed to ‘copy’
Bell’s phones, because Bell did not patent the telephone in the Nordic countries;
a good fortune which would befall Ericsson more often throughout the years.

The company could however not get the maximum profit out of it, because
there was no telephone network in existence in Sweden at that time. And when
such network was finally introduced, Bell hastily took over the company that
introduced it, and only allowed its own equipment to be used on the network.

To compete with Bell, which now had a very strong position, Ericsson had
to stand out somehow. Therefore Ericsson improved upon the design of the
current Bell phones, which resulted in the ‘helical microphone’. These phones
proved to be of vital importance in a fight between Ericsson and Bell for who
was to build and operate a telephone network in the city of Gävle.

At the beginning of 1881 Bell offered to build this network, but in response,
J.W. Sundberg, a Gävle businessman, proposed the use of Ericsson products
rather than Bell’s. Therefore, several products of both companies were com-
pared, and the final verdict, as described in the local newspaper was that both
systems worked excellently. However Ericsson’s telephones were “simpler, more
robust and more handsome”, and last but not least its products were cheaper.
This resulted in the city of Gävle to do business with Ericsson instead of Bell.
Not only would Gävle use Ericsson’s phones, but also an Ericsson telephone
exchange. The word about this decision spread fast, and as a result not only
Sweden cities, but also Bergen (Norway) for example, decided to do business
with Ericsson rather than with Bell.

2.3.2 Stockholms Allmänna Telefon

In 1881 Henrik Thore Cedergren and LM Ericsson met each other for the first
time. Cedergren was a jeweler’s store owner with a an engineering degree and ‘a
nose for business’. He was also a Bell subscriber and worked out that the com-
pany was both overcharging and that it would be more successful if it charged
less. He contacted the Bell company to propose this change in business ap-
proach, but the company was not interested. Cedergren had since then been
looking for a way to start competing in the telephone business.

When the two met, Cedergren proposed his ideas to LM Ericsson, who was
a little hesitant at the beginning, but nonetheless decided to sign a partner-
ship agreement. This resulted in Cedergren establishing Stockholms Allmänna
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Telefonaktiebolag (SAT) in 1883, which offered “public telephone connections
at a lower price and the use of Swedish equipment” and “telephone lines in ev-
ery building and for all the tenants in them”. Ericsson was the sole supplier of
equipment to SAT, and was not allowed to supply equipment to other Stockholm
telephone companies.

This approach worked out very well, and the company would soon gather
more subscribers than Bell. Attempts by the latter company to take its position
back were in vain, and in 1891 Bell gave up and sold its network to SAT.

2.3.3 Going abroad

In 1896 Cedergren founded AB Telefonfabriken in which SAT was the main
shareholder. Its purpose was to compete with Ericsson, and to compete on
markets abroad. Therefore Ericsson needed a new partner, but other big com-
petitors already had their own production companies, and hence Ericsson’s mar-
ket declined immensely.

Therefore, LM Ericsson decided that it was time for his company to go
abroad as well. He employed several people who would make long journeys
abroad in order to expand the company, which resulted in Australia and South-
Africa becoming the most important markets for Ericsson for several decades.

Due to new strategy of focusing on abroad markets, Ericsson was considering
not only exporting products, but moving production to other countries as well.
Russia seemed like the most logical candidate, for Ericsson had been exporting
equipment there for years, and a lot of Swedish entrepreneurs were active there
at the time. So it happened that in 1896 LM Ericsson bought ground in St.
Petersburg for the erection of its first foreign a factory and accommodation. By
1900, exports accounted for about 90 percent of Ericsson’s total sales.[12]

In that same year, there was a big fight between several companies for who
would become the main supplier of equipment to big Russian cities such as
St. Petersburg, Moscow and Warsaw. Ericsson won, which made Cedergren
conclude that his factory, even if it expanded, would not have a reasonable
chance of supplying all the equipment required for the two cities. This resulted
in Ericsson and Cedergren rebuilding their relationship, and the former taking
over AB Telefonfabriken.

2.3.4 Lars Magnus resigns

Two weeks before the decisive events in St. Petersburg, Lars Magnus asked
the company’s board to relieve him of the post of managing director. One of
the reasons he offered was his health. The board agreed, but also offered LM
the right to change his mind: he could return to his previous post whenever he
liked. LM never did change his mind though, but instead resigned as chairman
of the board on February 26, 1901.

LM remained the principal shareholder for some time, but eventually sold
his shares. In 1903, LM left both the board and the company for good.

7



2.3.5 World War I and the October Revolution

During World War I Ericsson suffered as hostilities cut off most of its foreign
markets. The cost of raw materials was at record-high levels, and the war made
the transport of both raw materials and finished products difficult. Exports as a
proportion of total sales were decreasing and concentrated to neutral countries
plus Russia, while markets in Australia, South Africa, Egypt and China were
lost.

Russia alone accounted for 46 percent of the Stockholm plant’s sales. In ad-
dition, the Russia plant was running at full speed and succeeded in maintaining
satisfactory production levels despite problems with raw materials. Produc-
tion plants had been established in several countries. After the Russian plant,
the most important of these was in Great Britain. The plants in France and
Austria-Hungary were taken into operation for other purposes than telephone
manufacturing. The French plant produced war materials, while the plant in
Budapest was used as a military hospital. In Buffalo (US), magnetic ignition
equipment was now being produced instead of telephone equipment.

The Russian market dissolved in 1918 due to the October revolution – the
new Bolshevik government nationalized Ericsson’s Soviet operations, seizing all
of its Russian assets, without any compensation. Despite these setbacks, the
company’s sales continued to rise.[12]

2.3.6 Crisis and World War II

Ericsson’s most important markets fell when the full force of the 1930s depres-
sion was felt. There was a decline in world demand for telephones and switches,
and the company’s foreign operations saw their sales almost halved. In or-
der to survive this situation Ericsson sought for other products which could be
produced using the existing equipment and personnel.

A diversification of production was implemented and new markets found,
primarily within Sweden. This resulted in Ericsson producing among others:
electricity meters, measuring instruments, railway signaling equipment, light
bulbs and electronic tubes for telegraphy, telephony and radio.

Another reason for the decline in sales was that the war limited Ericsson’s
exporting capabilities. But then again, it produced new opportunities in the
domestic market. In order to equip the Swedish defenses at the height of the
war, the Swedish engineering industry was mobilized. Swedish defenses were
almost completely equipped with domestic materials, and nearly a quarter of
the Swedish engineering facilities’ capacity was used directly for the war effort.
The figure for Ericsson was approximately 20 percent during the years 1939-
1944.

After the war, Ericsson concentrated on its core telephone manufacturing
business, and export markets played their traditional leading roles. During the
war, domestic orders had accounted for a peak 80 percent of all sales, but this
began to decrease steadily in 1946. By 1973, the ratio would be reversed; exports
would account for about 75 percent of Ericsson’s sales, just as they had during

8



the early 1920s.[13]

2.3.7 Wireless communication1

Wireless communication is an important aspect of Ericsson’s business, and it has
been since the dawn of the 20th century when, driven by their interest of the
relatively new radio technology, Ericsson together with four other companies
founded SRA (Svenska Radioaktiebolaget) in 1919. The other most impor-
tant owners were African Stock Exchanges Association (ASEA), Aktiebolaget
Gasaccumulator (AGA) and Marconi. SRA produced radio-receivers under the
Radiola brand.

The field kept on evolving, resulting in the emergence of mobile transmitters
in the 1930s and Edwin Howard Armstrong demonstrating frequency modula-
tion (FM), which enabled digital data-transmission over radio. In the 1940s
the first interconnection of mobile users to public switched telephone network
(PSTN) took place. And in 1956 the world’s first fully automatic mobile phone
system, called Mobile Telephony A (MTA), was developed and introduced by
Ericsson. Requiring no manual control of any kind, users only had to dial num-
bers on a telephone to make a call.[15]

After the user-base of mobile communications grew over 1.4 million people
in the 1960s awareness grew at SRA that the company should focus on com-
munications radio. Ericsson, which was the principal owner since 1927, had
established a strategy that focused on telephony and communications. There-
fore radio and television production were sold to AGA, which also acquired the
Radiola brand.

During the 1970s, in Chicago, Bell Labs installed the first commercial cellular
network. A few years later, in 1981, Ericsson launched the first fully-automatic
mobile telephony system, Nordic Mobile Telephony (NMT). Ericsson was also
the driver of the GSM global standard, which was introduced in 1991 as a
Pan-European mobile system and later evolved into a global system.[15]

2.3.8 Sony Ericsson

Ericsson and Nokia (alongside Motorola) were the biggest mobile phone equip-
ment manufacturers of the nineties (Table 4), and competed fiercely. Both had
a contract with a Philips plant in Mexico, that added together counted for 40%
of its production.[16]

On March 17th, 2000 a lightning bolt caused a fire at a clean-room in the
Philips plant, which made millions of chips unusable. Philips told both Nokia
and Ericsson that it would take only a week before production could be taken
up again, and that they would get priority over other customers.

Unlike Ericsson, Nokia did not have faith that Philips would be able to make
such a quick recovery and immediately started to arrange other sources for the
production of these particular chips, and even modified some phone designs to
work with different chips.

1The bigger part of this section was taken from[14]
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It was the end of March when Ericsson started to realize the consequences
this disaster would have. And on July 20, 2000, Ericsson reported that the fire
and component shortages had caused a second-quarter operating loss of $200
million in its mobile phone division. Six months later, it reported divisional
annual losses of $1.68 billion, a 3% loss of market share, and corporate oper-
ating losses of $167 million. This resulted in Ericsson outsourcing of cellphone
manufacturing to Flextronics; Several thousand jobs were eliminated.[16]

After the reports in July Ericsson secretly started negotiating with Sony
about a joint-venture to make mobile phones. Sony had been trying to obtain
a market share in the mobile phone industry for several years, but remained a
marginal player with its share of about 1 percent in 2000. Therefore, in October
2001, Sony and Ericsson started their joint-venture and seized their individual
production of mobile phones.

2.4 Products and services throughout the years

2.4.1 Servicing and manufacturing equipment

Ericsson started out in the first year of its existence as an electronics repair
shop, but soon moved on to develop its own equipment. This was the result of
both the introduction of the telephone and inherent networks, and expansion of
the railway system. The first products manufactured by the company were two
telegraphs, which were sold to the state railways.

2.4.2 Switchboards and telephones

From 1884, Ericsson produced switching equipment, alarm telegraphs, wall- and
desk phones. Many of Ericsson’s products became very known for their design,
like switchboard phones innovatively equipped with a receiver that included
both the microphone and the ear piece in a single unit.

Famous is also the Ericofon (figure 2, or “Cobra” as it was more commonly
known due to its ‘snake-like’ appearance; it created demand Ericsson could not
fulfill. And yet another Ericsson product known for its design is the Dialog
telephone (figure 3), which was sold over several decades to millions of people
from its introduction in 1962.

2.4.3 Computer-controlled switching systems

In 1970 Ellemtel was founded, a Research & Development subsidiary of Ericsson
and Televerket. Its core assignment at that moment was to develop the AXE
(most sources agree that this means Automatic eXperimental Electronic) switch,
which would be the digital successor of the AKE analogue telephone exchange.

Both Ericsson and Televerket had different interests in the system. The
latter party desired a switch that was specially designed for and adapted to
the Swedish telephone network’s characteristics. Ericsson was more interested
in export markets, which demanded the system to suit as many international
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Figure 2: Ericofon (or Cobra)

telephone systems as possible. This resulted in a very modular system, which
was quite innovative for the time.

AXE was finished in 1978, and was used all around the world. It was the
most advanced and flexible switching system of the 1980s (mostly due to its
modularity), doubled the company’s market share and facilitated the company’s
entry into the important US market.

Moreover, it made Ericsson a major player in mobile telephony at an early
stage (nowadays mobile communications still are Ericsson’s core business). This
resulted in Ericsson by 1992 having received orders for nearly 400 AXE switching
stations for mobile telephony, corresponding to 40 percent of the global market.

2.5 Most significant products nowadays

This section explains what Ericsson’s most signification products are nowadays.
The section is split-up in several sections of which each addresses one of these
signification products.

2.5.1 Networks

Figure 4 describes the products Ericsson offers in the networks-segment. This
section is divided into the categories displayed in this figure.
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Figure 3: Ericsson Dialog with number disc

Customized services The Customized Services part of the network architec-
ture contains functions that provide services for consumer and business users,
based on a provider’s network and IT capabilities.

Standardized services Standardized Services enable a provider to offer stan-
dard user services such as telephony, SMS and MMS as well as IMS-based ser-
vices such as presence, messaging and multimedia telephony.

Multi-access edge Enables the ability to access all kinds of services on any
terminal, across multiple different fixed and mobile access networks (such as,
for example, video-telephony sessions between fixed and mobile terminals).[17]

Radio access/Mobile broadband By broadband in this respect, the use
of 3rd generation networks (3G) is referred to (e.g. UMTS,WCMDA/HSPA).
These networks contain a much broader frequency band than earlier generations
like GSM (2G) and NMT (1G), which most importantly increases data transfer
speed. About 50 percent of the operators with commercial mobile broadband
networks –of which Ericsson is the world’s principal supplier– use Ericsson prod-
ucts. The introduction of mobile broadband in the networks has substantially
enhanced the end-user experience, which explains the current massive uptake of
mobile broadband services around the world.

However, the majority of today’s mobile users are still served by GSM and
every month several million people join the GSM community. Ericsson is one
of the few vendors continuing to develop new technology for GSM. Fortunately,
Ericsson GSM and WCDMA/HSPA (3G) networks share a common core net-
work, indicating that previous investments are protected as operators shift from
voice- to multimedia centric networks.[18]

Wireline access/Fixed broadband Besides mobile networks, Ericsson tar-
gets the fixed broadband market. The acquisitions of Marconi, Redback Net-
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Figure 4: Ericsson network products and services

works and Entrisphere strengthened its offering in access, transport and Internet
Protocol (IP) networks.[18]

Transport Mobile transport solutions collectively provide comprehensive IP
(Internet Protocol) connectivity for all mobile traffic, from the radio base station
to the mobile interconnection with external networks.

Operation and business support Support for a provider’s operations and
business in the areas of network and resource management, service offerings,
revenue streams, and customers and partnerships.

Market In the 1980s large deliveries of mobile systems were made in the
US. Paging systems were another profitable product area in which several new
products were introduced. Back then its market share was about 45%.

With a share of 31.1% Ericsson still plays a prominent role in this market.
Its most important competitors in this market are Huawei Technologies Co.,
Ltd. (Huawei), Nokia Siemens and ZTE Corporation (ZTE), which respectively
account for 27%, 16% and 15% of the market (Figure 5).[2]

Networks account for about two-thirds of Ericsson’s net sales. Ericsson’s
network solutions include radio access network, (radio base stations for GSM,
WCDMA, HSPA, LTE) core network solutions, (like softswitch, IP infrastruc-
ture, IMS, media gateways), transport solutions (like microwave radio and op-
tical fiber solutions) and fixed access solutions for copper and fibre.[18]

13



Figure 5: GSM global market shares 2009[2]

2.5.2 Services

Sales of Ericsson’s services represent more than 22 percent of net sales. These
services include network roll-out, consulting and education, systems integration
and customer support.

Ericsson is the industry leader in managed services, managing networks that
serve more than 120 million subscribers.[18] These services include activities such
as designing, building, planning, operating and managing day-to-day operations
on behalf of a customer.[19]

2.5.3 Multimedia

Products in this category include service layer products, revenue management
systems, enterprise solutions and mobile platforms. Sales of multimedia repre-
sent about 8 percent of net sales.[18]
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3 Erlang

3.1 What is Erlang?

Erlang is a functional language with strict evaluation, single assignment, and
dynamic typing. The first version was developed by Joe Armstrong in 1986,
and it was designed for writing concurrent programs that “run forever.”;[20, 21]

It uses concurrent processes to structure the program in compliance with the
Actor model.

3.1.1 Basic language characteristics

Functional language There exist several programming paradigms which a
programming language can support. Well-known are the procedural and object-
oriented programming (OOP) paradigms; the first is a imperative programming
paradigm and the second is a structured programming paradigm.

Another, less-common, programming paradigm is the functional program-
ming paradigm, which in turn is a type of declarative programming paradigm.
In languages that support the declarative programming paradigm the program-
mer describes what the computer should do. This opposes the imperative pro-
graming paradigm, in which the programmer tells the computer how to do
something.

As an illustration imagine an algorithm which picks a particular fruit from
a virtual basket. In an imperative language a programmer would instruct the
computer what to do step-by-step:

• pick one fruit from fruit basket, if it is an apple put it in our apple basket,
otherwise discard the fruit; repeat until fruit basket is empty;

• pick apple from apple basket, if it is yellow, put it in our yellow apple
basket, otherwise discard; repeat until apple basket is empty.

The declarative variant doing the same thing would rather tell the computer
what to do:

• transfer all apples from fruit basket into apple basket;

• put all apples from apple basket that are yellow in the yellow apple basket

That is the general idea of declarative programming, of which functional pro-
gramming is one type. It treats computation as the evaluation of mathematical
functions –hence the name– and avoids state and mutable data. By avoiding
state a functional language guarantees that a every function always gives the
same output given a particular input (except functions with side-effects i.e. in-
put from the environment). And the immutable data property ensures that a
variable can only be assigned once (single-assignment). These properties makes
it easier to verify, and parallelize programs for example.
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Strict evaluation This property means that arguments to a function are
always evaluated completely before the function is applied, which happens in
most programming languages.

Haskell, another functional programming language, is known for its lazy
evaluation, which is the opposite of strict evaluation.

Lazy evaluation would cause problems with Erlang though, because with lazy
evaluation the compiler (the program translating the Erlang-code to machine-
code) determines the best evaluation order of Erlang expressions, regardless of
in what order the programmer wrote them. Because Erlang functions can have
side-effects (i.e. can influence other functions) reordering Erlang functions can
result in undesired results though.

3.1.2 Concurrent programming

What is concurrent programming? In a concurrent program, several
streams of operations may execute concurrently.[22] Each stream of operations
executes as it would in a sequential program. This enables the programmer to
split op large problems into smaller ones and to compute them simultaneously
on multiple processors, cores or pc’s for example.

Threads One common way of concurrent programming is called threading.
A single process might contain multiple threads; all threads within a process
share the same state and same memory space, and can communicate with each
other directly, because they share the same variables.[23]

Because threads can interfere so easily with each other, they can easily cause
a lot of difficult issues in a program.

Processes Processes are independent execution units that contain their own
state information, use their own address spaces, and only interact with each
other via interprocess communication mechanisms. They can be regarded as
separate programs.

Each separate process can compute a part of the larger problem at hand,
and they cannot (directly) interfere with each other due to the mentioned char-
acteristics.

Processes in Erlang conform to the Actor model, in which each process is
an actor. This is an entity that has a mailbox and a behavior. Messages can
be exchanged between actors, which will be buffered in the mailbox. Upon
receiving a message, the behavior of the actor is executed, upon which the actor
can: send a number of messages to other actors, create a number of actors and
assume new behavior for the next message to be received.[24]

3.1.3 Hot code swapping

Erlang allows a programmer to change the code of a program as it runs. This
enables bug fixing in a system without it having any down-time. In contrast,
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the majority of other languages requires a running program to be terminated
before it can be updated.

3.2 Why was Erlang developed?

Over the years Ericsson has developed several programming languages, among
others PLEX, a high-level programming language specifically designed for AXE
telephone systems.[21] It was based on Eriplex, a language previously developed
by Ericsson for its AKE switch. However, PLEX was designed to build applica-
tions specifically for the AXE switch, and it did not meet all demanded criteria
required in the 1980s (which will be described shortly).

Therefore, Ericsson started looking for alternatives, which resulted in the
initial development of Erlang in 1986 at the Ericsson Computer Science Lab-
oratory. Erlang was designed with a specific objective in mind: ”to provide a
better way of programming telephony applications.” At the time telephony ap-
plications were atypical of the kind of problems that conventional programming
languages were designed to solve.[21]

Telephony applications are by their nature highly concurrent: a single switch
must handle tens or hundreds of thousands of simultaneous transactions. Such
transactions are intrinsically distributed and the software is expected to be
highly fault-tolerant.

Telephony software must also be changed “on the fly,” that is, without loss of
service occurring in the application as code upgrade operations occur. Telephony
software must also operate in the “soft real-time” domain, with stringent timing
requirements for some operations, but with a more relaxed view of timing for
other classes of operation.

3.3 Development of the language

In order to solve the requirements mentioned in the previous section, the com-
pany experimented with > 20 languages through the years 1982 – 1985. The
conclusion was that the language must be a very high level symbolic language in
order to achieve productivity gains. This left only: Lisp, Prolog and Parlog.[25]

Through 1985 – 1986 Ericsson experimented with these languages, and con-
cluded that the language must contain primitives for concurrency and error re-
covery, and the execution model must not have back-tracking, which ruled out
Lisp and Prolog. It must also have a granularity of concurrency such that one
asynchronous telephony process is represented by one process in the language,
which ruled out Parlog. Therefore Ericsson had to develop its own language
with the desirable features of Lisp, Prolog and Parlog, but with concurrency
and error recovery built-in.[25]

In 1987 the first experiments were conducted with Erlang, after which it was
tried on a real-world problem in the ACS/Dunder project. This consisted of the
prototype construction of PABX functionality by external users.[21, 25]

The ACS/Dunder project produced its final report in 1989. The conclusion
of this report was that, even though Erlang increased programming productivity
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by a factor 10 in comparison to PLEX (section 3.2), it lacked performance and
needed to execute 40 times as fast, to be useful in practice.[21, 25]

In 1991, due to some clever rewritings of the virtual machine, a faster im-
plementation of Erlang is released to users, which also has more functionality.
This new version was 70 times as fast as the initial Erlang prototype, easily
bypassing the 40 times requirement. However, this requirement turned out to
be a miscalculation: it should have been 280 times as fast.[21, 25]

As a result Turbo Erlang (christened BEAM) was developed and released
in 1993, increasing the speed of the 1991 Erlang implementation about 3 to 10
times, practically complying with the speed requirement.[21]

Erlang was then used for a few years, but in 1998 banned certainly within
Ericsson Radio AB for new product development. A few months afterward,
Erlang was made Open Source by Ericsson. Following the ban the 60 Erlang
developers resigned from Ericsson to form the new company Bluetail AB.[21, 25]

This company was taken-over a few years later by Alteon Web sytems, which
was in turn taken-over by Nortel Networks.

3.4 Opening-up the source

The reason for banning Erlang for usage in new products was that: “[Using]
a proprietary language [implied] a continued effort to maintain and further de-
velop the support and the development environment. It further [implied] that
[Ericsson could not] easily benefit from, and find synergy with, the evolution
following the large scale deployment of globally used languages.”

Following the Erlang ban, interest shifted to the use of Erlang outside Er-
icsson. It was concluded however that, in these times of vast amounts of freely
available software, no-one would be interesting in buying Erlang. Therefore,
it was released as open source to the public, which stimulated the long-term
growth of Erlang.[21]

Ericsson makes money from selling a commercial variant of the language,
which is essentially the same as Open Source Erlang. Differences are that Com-
mercial Erlang comes with a support agreement and is more stable because it
is tested more thoroughly and all experimental code is excluded.[26]

3.5 Companies using Erlang
[27] The largest user of Erlang is Ericsson. Ericsson uses it to write software
used in telecommunications systems. Many (dozens) projects have used it, a
particularly large one is the extremely scalable AXD301 ATM switch. AXD301
has several hundred people working on it and the code volume has reached about
850 KLOC of Erlang (and 1 Mloc of C/C++).

Some of the other companies using Erlang are:

• Bluetail/Alteon/Nortel : Distributed, fault tolerant email system, SSL ac-
celerator;

• Facebook : Chat backend;
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• Finnish Meteorological Institute: Data acquisition and real-time monitor-
ing;

• T-Mobile: Advanced call control services.
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4 Tables

1992 1993 1994 1995 1996 1997 1998 1999 2000
Nokia
Sales ($ mil) 3,451 4,079 6368 8,400 8,446 9,702 15,553 19,954 28,608
Net Income ($ mil) (78) 132 632 509 745 1,154 2,043 2,601 3,709
Employees 26,700 25,800 28,600 31,948 31,723 36,647 44,543 51,777 60,000

Ericsson
Sales ($ mil) 6,644 7,622 11,342 14,902 18,291 21,219 22,760 25,267 29,026
Net Income ($ mil) 68 340 531 813 1,033 1,511 1,609 1,423 2,230
Employees 66,232 69,597 76,144 84,513 93,949 100,774 103,667 103,290 105,129

Motorola
Sales ($ mil) 13,303 16,963 22,245 27,037 27,973 29,794 29,398 30,931 37,580
Net Income ($ mil) 453 1,022 1,560 1,781 1,154 1,180 (962) 817 1,318
Employees 107,000 120,000 132,000 142,000 139,000 150,000 133,000 121,000 147,000

Table 1: Financial overview, major mobile telecommunication manufacturers during the
1990s (Excerpt from[1])
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Part II

Computer Science research
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5 Introduction

5.1 Subject and structure

This introduction section will give a quick impression of the main topics of
research and tools involved, as will it elaborate on the core problem this thesis
addresses, and the strategy applied to diminish it.

5.1.1 Core subject

Prevailing subject of this thesis is RefactorErl,[28] an instrument being developed
by the department of Programming Languages and Compilers at the Eötvös
Loránd University, for refactoring Erlang/OTP [29] (hereafter referred to as ‘Er-
lang’) source code.

An essential aspect of any refactoring tool is its correctness, which must
be proved as exhaustively as possible. Conventional means of achieving this
include: formal proofs, unit testing and Model Based Testing (MBT).

RefactorErl is being tested by means of unit tests, but this is considered
to be too concise by the project’s members. Hence, other means of testing
are required in order to achieve a more thorough confidence in the system’s
correctness and its refactoring transformations in particular.

To this end I explored the possibilities of the applicability of mentioned MBT
method in my research, in which the formalization of some of the transformation-
specifications of RefactorErl also has an important role. The desired result being
a possible approach for testing the system more thoroughly in the future.

Moreover, appendix A describes how to compare syntax of RefactorErl parse
trees to Erlang parse trees, which I researched as an introduction to the subjects
of refactoring and RefactorErl. This could form a basis for further research, but
is not an integral part of the thesis.

5.1.2 Research structure

My research is divided 3 closely related parts: specification formalization, MBT
and selecting interesting complex constructs.

Formalizing Foremost reason for formalizing the specifications, aside from
all other advantages it brings along (on which I will elaborate in section 7.3),
is that a test can only be as good as its specification. Hence, it is of utter
importance to have these specifications defined in an unambiguous manner.
Additionally it is desired –but not necessary– to formalize these specifications
using an independent notation, which the bigger part of the audience is familiar
with, in order to eliminate the overhead of learning a new notation. Therefore,
I considered QuickCheck notation not to be a suitable candidate for formalizing
specifications, if that is the only goal.

Alas, there did not exist such formalizations yet; only natural language
(edoc) comments. So, in order to get the best out of testing, formalization
was my first step in the research.
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MBT After specifying three of RefactorErl’s implemented refactoring’s speci-
fications, I defined some model-based properties, a concept which is discussed in
more detail in section 5.6.2. Using QuickCheck (also abbreviated as QC in this
thesis), an MBT instrument for Erlang, I tested these properties of RefactorErl
thoroughly.

Semi-random input MBT requires input to test against, for example bound-
ary values. I would like to test the implementation against semi-random data
though in order to generate obscure test cases, which require actual Erlang-code
as input. Yearning to both demonstrate the usefulness of defined properties and
to uncover as many defects as possible –given a time-window too small for writ-
ing a decent code-generator– I gathered a few hard-to-refactor constructs by
hand, to test against.

The intention of this structure is to demonstrate a possible, useful, approach
for MBT-ing all transformations of RefactorErl.

5.1.3 Document structure

IMRaD This part of the thesis elaborates on aforementioned matter some-
what along the lines of the IMRaD [30] (Introduction, Methods, Results, Dis-
cussion) structure conventions, though I have added a Background Information
section between the Introduction and Methods section where I explain about
the tools used in this research. The thesis abstains from in-depth background
information on Erlang and RefactorErl, which is documented extensively in the
Programming Erlang book[31] and the RefactorErl tutorial respectively.[32]

Upcoming sections The method-section that follows section with background
information explains in detail the methods, and reasoning behind their appli-
cation in this research. The results of the application of said methods in this
research, follow in the result-section that succeeds the method section.

The thesis ends with a discussion- and a conclusion section, which provide
some introspection on the research.

5.2 What is refactoring?

Introduction Since this thesis focuses on refactoring, a decent introduction
to the subject is desired, which is the purpose of this section.

To comprehend the subject of refactoring, it is important to realize that the
quality of a computer program can be measured –among a lot of aspects– by
the readability and maintainability of its source.[33] In order to write a good
program in terms of these measures, it is of utter importance to keep the code
well-structured (e.g. intuitive, concise, transparent). This makes the code more
readable, which reduces the chance of introducing new defects,[28] because it is
easier to understand the source.
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The problem refactoring addresses However, when writing code, espe-
cially at the beginning of a project when code-structure tends to evolve a lot
(in the case of agile software development methodologies like XP[34] it is even
supposed to evolve all the time), and a lot of ad-hoc code will be written, the
program’s source can easily become very messy.

Failing to rewrite this disorganized code will most probably result in a final
revision that contains severe amounts of ‘spaghetti code’, which the original
author cannot even understand anymore after one year.

Some of the common abominations that cause this problem include: rudi-
mentary functions (i.e. were used before, but are not referred to anymore);
multiple functions that basically perform the same trick (i.e. repetitive code,
which conflicts with the DRY (Don’t Repeat Yourself)[35] principle for exam-
ple); the situation where it makes more sense for a certain group of functions to
be grouped in a single separate module in stead of being scattered over multiple
modules; variables and functions that are assigned names which do not describe
their meaning or purpose sufficiently, or at all.

It is nearly inevitable that these problems are introduced, given that as the
project develops, programmers will learn and gain new insights all the time,
which will make them discover room for improvement. But these improvements
might conflict with, or overlap existing parts of the code, which can easily be
overlooked (e.g. a lot of large projects tend to have multiple developers, which
makes it impossible for a single programmer to know all the code). These con-
flicting parts in turn will provide room for improvement as well. This illustrates
how easily inefficient or conflicting code is introduced, and the inherent impor-
tance of continually improving ones code.

Definition of refactoring Whenever a point, where a programmer finds
room for improvement, is reached (e.g. simplification of a complex function,
restructuring of modules), he might consider refactoring the code: “the process
of changing a software system in such a way that it does not change the external
behavior of the code yet improves its internal structure”.[36]

An example of a refactoring is when one renames a function or variable and
all its references: the code is changed, but its semantics remain the same. Even
though this act does not change anything to the behavior, or performance of
the code, it may increase its readability and therefore improve its quality. More
concrete, a variable named LastName is much more clear than X, because it is
descriptive of its meaning.

A lot of refactorings are very commonly applied, which is why people devel-
oped a lot of refactoring tools for all kinds of programming languages that aid
in applying them. So, in previous example, instead of having to identify each
and every occurrence of a particular variable by hand, these tools will do that
for you and apply the refactoring.

Usefulness controversy In addition to the definition of refactoring stated
in the previous paragraph I would like to mention here that it is actually a
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significant point of discussion whether or not refactoring necessarily improves
code. First of all this issue relies heavily on the skills of the person operating the
refactoring tool. But mostly, it is a matter of opinion that it is well documented
on numerous Internet forums,[37–39] so I will not delve too deep into it and just
name a few common-heard arguments against refactoring and refute them.

Probably the most prominently heard argument against refactoring is ‘if
it ain’t broke, don’t fix it’, but this argument only holds from a functional-
ity perspective of ‘broken’. What about quality perspectives, like: readability,
modularity and style? If these do not comply with the project’s requirements,
then the code might be considered ‘broken’ too and therefore needs fixing, to
which end refactoring tools can be of great help.

Another common heard argument is: ‘the source code of the application to
be refactored is too big, and it would be to big an effort to make it noticeably
better’.[40] This problem can however easily be overcome by applying divide-
and-conquer –for example by functionality–, which is pretty much the way the
application was probably written in the first place.

These are just two of a long list of the arguments against refactoring, which
can be found on lots of forums and blogs on the Internet, and demonstrate
that the ‘improvement’ part of the definition of refactoring is rather subjective.
I therefore will not delve into this discussion any further, and consider the
definition of refactoring in this thesis as presented earlier.

5.3 Refactoring tools for Erlang

The generic nature of refactorings makes them very tedious and error-prone to
apply by hand,[41] but also very apt for automation. For this reason and because
refactoring is such common-practice for programmers, a lot of tools for all kinds
of programming languages are being developed for this sole purpose and often
even integrated into IDE’s.[28, 42–46]

Unfortunately though, mature refactoring tools are quite rare in the world
of functional programming languages.[43] Likewise for Erlang, which lacks any
official refactoring tool as for now. To my knowledge there currently exist three
official projects[44, 47] though that address this subject, one of them being Refac-
torErl, core subject of this thesis.

In the Wrangler project QuickCheck was also used as a means to verify the
correctness of refactoring transformations, which led to the revealing of several
bugs.[48] This is also very convenient for RefactorErl, because several of the
ideas and properties used to check Wrangler can be incorporated indirectly
in the testing of RefactorErl (section 7.4.1). For Tidier I could not find any
information on whether and how the tool is tested for correctness.

The rest of this section concisely discusses the capabilities and differences of
RefactorErl, Wrangler and Tidier.

25



5.3.1 RefactorErl

The RefactorErl research group has been working on this open source refactorer,
which will be IDE-independent, since 2006.[43] In their approach they use their
own Erlang parser, and the Mnesia DBMS for storing parse graphs. This enables
them to easily query and modify the graphs, and to write them back to the
original file preserving its formatting.[49]

RefactorErl currently counts 22 refactorings,[28] ranging from renaming nodes
(e.g. modules, functions and variables) to heavy restructuring (e.g. moving and
generalizing functions, eliminating variables and merging expressions). And it
is currently integrated with the Emacs and Eclipse IDE’s.[50]

Side-effects One Erlang-specific property that requires special attention in
the context of developing a refactoring tool for this language, is side-effect han-
dling. As opposed to a pure functional language like Haskell for example, which
secludes side-effects to monads, Erlang is an impure functional programming
language that allows every function to have side-effects. This design makes it
harder to detect if a certain function has side-effects than in pure languages,
and for this reason is harder to determine whether or not a particular node in
a function’s scope is apt for a certain refactoring.

Consider for example snippets 1 and 2 (before and after eliminating a vari-
able respectively) which presents a situation where a problem would occur as a
result of the side-effects of random:uniform/0, would the refactoring tool actu-
ally allow variable Y to be eliminated. Hence, a refactoring tool should prohibit
the elimination of variables with side-effects, which is relatively easy in Haskell
because all side-effect variables are ‘tagged’ with a particular type (e.g. IO) by
the monads.[51] This forces the a Haskell programmer to explicitly detect and
handle side-effects.

Erlang however does not entail such luxury and hence the presence of side-
effects has to be deduced by other means. Because Erlang handles side-effects
by secluding them to BIFs (Built-in Functions), RefactorErl detects whether
or not a function is dirty by searching the bodies of all functions it refers to
for calls to dirty BIF’s or the sending of messages (Erlang handles concurrent
programming through message-passing, which will be explained later in this
section). When such call is found, the function being analyzed is marked ‘dirty’
as well. And finally, calls to the function being analyzed will be analyzed as well,
because these calls may pass dirty functions (effectively making the analyzed
function dirty as well).

It will be no surprise that this approach of detecting the presence of side-
effects brings a few problems along, one of the most obvious being that it cannot
be predicted if and when new dirty BIF’s will be added to the language (or non-
dirty BIF’s become dirty), which will render RefactorErl unreliable for builds
where dirty BIF’s have been introduced, removed or renamed by Ericsson.

The significance of this problem is demonstrated by snippet 1, for Refac-
torErl actually allowed the elimination of the Y variable as a result of the
random:uniform/0 function falsely not being marked as being a dirty BIF by
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the function analyzer, and thus changing the code’s semantics.
It should be noted that at the time of writing the side-effect analysis was

not fully implemented and tested, and hence bugs were to be expected at this
point. Nonetheless this example proves that marking a non-built-in function
as being dirty depends on several human factors (e.g. correct marking of dirty
BIFs by the RefactorErl team), which is more error-prone than Haskell’s monad-
approach for example.

1 f() ->

2 %generate a random number (side -effect)

3 Y = random:uniform (),

4 X = Y,

5 {X,Y}.

Snippet 1: Before eliminating variable Y

1 f() ->

2 X = random:uniform (),

3 {X,random:uniform ()}.

Snippet 2: After eliminating variable Y

Concurrent programming Another point of interest is concurrent program-
ming [52] which Erlang handles in an uncommon manner: rather than invoking
threads the programmer spawns concurrent processes whom Erlang communi-
cates with through message-passing, much in the way a mail server and client
communicate.

This has some advantages over threads, for example because there is no
shared memory, and because it is easier to have concurrent processes running
simultaneously on different processors than threaded programs.

RefactorErl could incorporate refactorings that turn sequential processes
into parallel processes and vice-versa. It could for example automatically split
up maps of complex functions into smaller parts (smaller lists) which can then
be computed in their own separate and parallel processes.

Dynamic typing Yet another interesting aspect of Erlang in this context is
its dynamic typing system, which makes refactoring more troublesome, since it
cannot be verified if the refactored code makes sense from a typing-perspective.

An example of this issue is the renaming of a function f/1 as described in
snippet 3.
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1 f(X) when is_integer(X) ->

2 X*42;

3 f(X) when is_list(X) ->

4 X ++ "Hello World!";

5 f(_) ->

6 false;

7

8 % When applying the ‘rename function ’ refactoring to

9 % ‘f’ (in function g), it cannot be detected which

10 % clause is referred to, because the type of Y is

11 % unknown. Therefore the entire ‘f’-definition is

12 % renamed (i.e. all clauses), rather than a particular

13 % clause of ‘f ’. In a typed language it is possible to

14 % only rename the desired clause , whereas in Erlang

15 % this is impossible without requesting extra

16 % information from the user.

17

18 g(Y) ->

19 f(Y).

Snippet 3: Dynamic typing and refactoring problem example

For a typed system it would be clear to what type was referred since the type
of X would be known at compile-time. Therefore it could, for example, rename
only the f/1 function clause which applies to integers on application of the
rename function transformation. In Erlang type information is not available
before runtime though, and hence RefactorErl transforms the entire function
(another option would be to prohibit the transformation in this situation). The
same issue applies to the inline function transformation (i.e. substitutes the
selected application with the corresponding function body and executes com-
pensations[32]), which can introduce a lot of code repetition.

And as a final example RefactorErl will never be able to apply certain coding
conventions. A good example is Hungarian notation,[53] which requires prefixing
variable-names with an abbreviation of the type they represent. This convention
is relatively common and useful in untyped languages. Though, due to the lack
of typing, RefactorErl cannot determine the desired name, and hence cannot
apply this convention. This is in contradiction with refactoring tools for typed
languages.

5.3.2 Wrangler

This open source refactoring instrument is being developed at the university of
Kent. It aims to serve the same purpose as RefactorErl, but it has a different
implementation: instead of using a database and an own parser, it works directly
on the syntax tree that is parsed by Erlang’s own parser.

A few of the inherent advantages of the ‘Wrangler-approach’ are that there
exists only one syntax tree at every moment, it therefore needs no extra parser
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and hence the possible number of points on which the system can fail is reduced.
It is however less trivial for this approach to roll-back a refactoring, since that
requires storage of the previous tree in some form, something that RefactorErl
already does by design.[43] This means that Wrangler has to overcome this
problem in another way than RefactorErl does – for example by keeping track
of different files using a revision-control system (e.g. Subversion, CVS, custom-
made)–, which inherently introduces new possibilities for the introduction of
defects and might slow-down the system. This weakens the advantage the tool
has over RefactorErl somewhat.

5.3.3 Tidier

The last tool I mentioned is Tidier, which distinguishes itself from the afore-
mentioned tools by its (semi-)automatic approach. Rather than letting the user
identify a part of code which is apt for refactoring, it does so automatically. One
advantage is that it can identify refactorable code which the programmer failed
to do, something that is bound to happen in large modules (needle – haystack).
Snippet 4, which I copied from a paper[44] about Tidier, nicely illustrates this.

Snippet 4 is the original code, which comes from the reasonably big module
egd render written by the Erlang developers, and the code in snippet 5 after
Tidier had its way with it. A seasoned Erlang programmer (which I think is
safe to assume that Erlang programmers (mainly Ericsson employees) are) will
immediately see this code could be easily simplified. Nonetheless this particular
author and possible code reviewer(s) missed it.

1 if

2 Yp =:= Y -> true;

3 true -> false

4 end

Snippet 4: Automatic update example before Tidier

1 Yp =:= Y

Snippet 5: Automatic update example after Tidier

Hence, Tidier can be of great help in identifying refactoring possibilities
(despite its experimental state, it is already being used extensively in the devel-
opment of Erlang according to Git ’s commit comments[54]), but it will never be
able to fully replace the manual identification of refactorable code, which makes
it a nice extension to the mentioned manual refactoring tools, rather than a
replacement.

5.4 Refactoring other languages

As a comparison of the status of refactoring tools for Erlang, to that of other
programming languages, this section mentions a few of the latter along with
their most interesting properties. Note that it is infeasible to write about all
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available refactoring tools here, so I just mention two popular refactoring tools
here as an illustration (one Object Oriented and the other Functional).

5.4.1 ReSharper

ReSharper is a 3rd party commercial tool containing (among others) a refac-
torer which incorporates both the manual- (RefactorErl/Wrangler) and semi-
automatic (Tidier) approach, for the object oriented C# language and integrates
to the Visual Studio IDE. It is well out of the experimental phase and handles
over 30 refactorings.[45]

5.4.2 HaRe

Haskell Refactorer[46] is an open source manual refactoring tool developed by
the university of Kent, which covers the lazy, strongly-typed functional program-
ming language Haskell 98, and is integrated with two development environments:
Vim and (X)Emacs.

The tool is developed by Simon Thompson (Investigator) and Huiqing Li
(Research Assistant) among others; also the main developers of Wrangler (sup-
ported by John Derrick and others of the university of Sheffield).

By the third release of HaRe, it supports 24 refactorings, and also exposes
an API for defining refactorings or more general program transformations.[55]

5.5 Detailed problem description

An important property of a refactoring tool is that it should be very reliable,
for it is unacceptable that it will introduce defects to totally correct code, or to
any code for that matter. The problem here is that RefactorErl, at the moment
of writing, consists of a little under 33 KLOC2. This implies that according
to LOC-vs-defects estimates,[56] there exist between 2 to 70 errors per KLOC,
resulting in 66 errors in the best scenario and 2310 in the worst. This is a
problem, because it contradicts the reliability requirement of the tool.

Of course, these LOC-vs-defects approximations are to be considered merely
an indication, since the complexer the project is, the higher the probability of
defect-introduction is. This property is not incorporated very well in the LOC-
vs-defects approximations though. The code of a compiler for example is many
times more complex, and hence many times more likely to contain defects, than
a desktop application which shows a straightforward slide-show of the photos of
your latest family get-together.

Since RefactorErl involves a lot of parsing and rewriting of syntax-trees
–which leaves no room for mistakes, because that would alter a program’s
semantics– and given that RefactorErl must be able to handle every syntac-
tically correct Erlang program, this system can be classified as rather complex.

2determined using (on version 4009 of the tool’s root directory): grep -v
’ˆ[[:space:]]*\($\|%\)’ $(find . -name ”*rl”) | wc -l
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Therefore it probably contains a number of defects closer to (or even over) 2310
than to 66.

5.6 Plan of attack

The goal of my research is to propose an approach in diminishing the afore-
mentioned problem. This approach largely comes down to model based testing,
because there already exist a lot of (regular) unit tests for the project, and I
therefore considered a more thorough approach to be desired. Alternately I
could have decided to prove code correctness, which I decided not to do because
the definition of any interesting proofs would not fit in the time-window of this
research. I split-up my approach into multiple tightly connected steps, which I
will describe in this section. I defer the explanation of my motivations for the
use of particular tools to aid me in achieving my goal to section 7 though.

5.6.1 Formalization of transformation-specifications

Motivation for formalization Since MBT relies wholly on the quality of
the specification of the SUT, it is of utter importance to have it defined as clear
and concise as possible – without any room for misinterpretation. Given that
on embarking on this research the specifications were only defined in natural
language, which leaves lots of room for misinterpretation, formalizing them was a
logical first step. Additionally, a decent formal specification has the advantage of
having multiple other practical appliances, e.g.: automatic derivation of models
/ test-generation and theorem-proving.

Z-notation I consider convenient notation for a formalization, to be first of
all a notation that is easily understood by a great group of people. I found
Z-notation to be very apt for this goal, for it basically comes down to Zermelo-
Fraenkel set-theory, which is taught at universities world-wide.

Furthermore, Z-notation was designed for the purpose of defining specifi-
cations of (software) systems, and has been applied successfully in a variety
of (critical) systems in such fields as cryptography,[57] control mechanisms and
telecoms industry.[58]

A welcome additional benefit is that a lot of tools, mostly for checking Z
specifications in several ways, are freely available. These include type-checkers,
animators (which ‘execute’ the specifications against some test-data), and ab-
stract test-generators.

Its ‘familiar’ syntax and semantics, successful applications on several large
projects, and the rich set of tools available, convinced me that Z is an excellent
candidate for the specification of RefactorErl’s transformations.

Other means Another tactic of formalizing code would be to design a lan-
guage that is tailored to fit RefactorErl, much like the developers of HaRe
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did when they defined the λLetrec calculus to formalize some of their refactor-
ings[46, 55] and statically prove them to be correct in a very generic fashion (i.e.
focus on refactorings in general, rather than their implementations in HaRe).

As an illustration the formalization below was taken from the original pa-
per.[55] It shows the specification of the generalization of a definition transfor-
mation in the λLetrec calculus (definitions 5 and 6). The actual specification is
preceded by a few definitions that are used in the specification. These defini-
tions use = for semantic, and ≡ for syntactic equivalence.

Definition 1 Given two expressions E and E ′, E ′ is a sub-expression of E (no-
tation E ′ ⊆ E), if E ′ ∈ sub(E ), where sub(E), the collection of sub-expressions
of E, is defined inductively as follows:

sub(x ) = {x}
sub(λ x .E ) = {λ x .E} ∪ sub(E )
sub(E1 E2) = {E1 E2} ∪ sub(E1) ∪ sub(E2)
sub(letrec x1 = E1, ..., xn = En in E ) =
{letrec x1 = E1, ..., xn = En in E} ∪ sub(E ) ∪ sub(E1) ∪ ... ∪ sub(En)

Definition 2 FV (E ) is the set of free variables in expression E, and is defined
as:

FV (x ) = {x}
FV (λ x .E ) = FV (E )− {x}
FV (E1E2) = FV (E1) ∪ FV (E2)
FV (letrec x1 = E1, ..., xn = En in E ) =

(FV (E1) ∪ ... ∪ FV (En) ∪ FV (E ))− {x1, ..., xn}

Definition 3 A Context C [ ] is an expression with one hole in it; e.g. C [E ]
means that C is an expression in which sub-expression E occurs exactly once.

Definition 4 Given an expression E and a context C [ ], we define sub(E ,C ) as
those sub-expressions of C [E ] which contain the hole filled with the expression
E, that is: e ∈ sub(E ,C ) iff ∃C1[ ],C2[ ], such that e ≡ C2[E ] ∧C [ ] ≡ C1[C2[ ]].
Another way of explaining it would be: all sub-expressions of C which contain
the expression E.

Definition 5 Given an expression letrec x1 = E1, ..., xi = Ei , ..., xn = En inE0

Assume E ′ is a sub-expression of Ei , and Ei ≡ C [E ′]. Then the condition for
generalizing the definition xi = Ei on E ′ is:

xi /∈ FV (E ′) ∧ ∀ x , e : (x ∈ FV (E ′) ∧ e ∈ sub(Ei ,C )⇒ x ∈ FV (e))

Definition 6 After generalization, the original expression becomes:
letrec x1 = E1[xi := xiE

′], ..., xi = λ z .(C [z ][xi := xiz ]), ...,
xn = En [xi := xiE

′] in E0[xi := xiE
′], where z is a fresh variable.
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Definition 5 can be regarded as a property that should hold before the trans-
formation: all free variables in the context of E ′, the part for which Ei is gen-
eralized, should be free in all its sub-expressions as well. Otherwise the trans-
formation would change semantics of these sub-expressions. Also, E ′ cannot
contain xi as a free variable, because xi changes its semantics in this refactor-
ing (it becomes a lambda-expression), so the xi in E ′ would have a different
meaning after the transformation.

And definition 6 shows what actually happens when the preconditions are
satisfied: xi becomes a lambda expression, with one free variable z, that returns
C [z ]. All calls to xi are then replaced by xiE

′, because the meaning of xi has
changed from C [E ′] to λ z .C [z ]. Therefore xiE

′ will now result in the former
C [E ′], and hence semantics are preserved.

I could have applied this approach as well, but I found Z to have many
advantages over defining my own notation or using λletrec . Mainly I find Z to be
more readable; there is a huge collection of tools available for Z; many people are
‘familiar’ with set-builder notation and hence Z; Z has been applied in several
projects successfully.

Specification correctness In an effort to gain confidence in the correctness
of these specifications I defined using Z-notation I applied type-checking, and
animation using FUZZ and JAZA3 respectively, tools on which I will elaborate
in section 7.3.

Generating test cases Additionally, as an illustration of the usefulness of
Z-specifications I tried and failed, to derive abstract MBT-cases from the spec-
ifications using Fastest .[59] The problem was that the tool started working,
but seemed to stop responding. I could not find any documentation about the
problem, and decided to abandon the plan of generating test cases.

The authors of Fastest claim that the program can generate abstract test-
cases from Z specifications however, and that it can even compile them to
C-code. Also, compilers for other languages can be written. So, if the tool
would work, it demonstrates a very powerful advantage over natural language
of defining specifications in Z-notation, because QC tests could be automatically
generated from it for example.

5.6.2 Model based testing using QuickCheck

After formalizing the refactoring specifications I used them to define some actual
Model based tests[60, 61] in Erlang using QuickCheck, which is a MBT framework
for Erlang (among others).

3I used version 1.1, the stable version at the time, which contained a minor bug which
caused it not to compile against ghc 6.10.3. I fixed it, and sent Mark Utting (the author) a
patch which he will apply and publish as soon as possible.
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Model based testing This is a more thorough approach than unit-testing a
system, because not only its boundary-values, but its entire model is checked.

This model mimics the desired behavior of the system-under-test (SUT). On
a given input it calculates the expected output of the system-under-test when
fed the a particular input. It can either manually or automatically derived from
a system’s specification. Since, to my knowledge, there do not exist tools at the
moment that can do this automatically for Erlang, I have derived the models
manually.

QuickCheck The defined models are embedded in several properties (each
property contains its own model), which test the actual implementation against
the appropriate model. These properties are then tested by and against inputs
that are generated by QuickCheck.[62] To illustrate this, one property of the
standard list reversal function is defined in snippet 6:

1 prop_reverse () ->

2 ?FORALL({Xs ,Ys},

3 {list(int()),list(int())},

4 lists:reverse(Xs++Ys) == lists:reverse(Ys) ++

lists:reverse(Xs)).

Snippet 6: Reversal function in QC

Which is the QuickCheck’s equivalent of this set-builder notation (lists:reverse
using sets rather than lists):

∀Xs ⊂ Z,Ys ⊂ Z.
lists : reverse(Xs ∪Ys) = lists : reverse(Ys) ∪ lists : reverse(Xs)

As you might notice, a dedicated model is absent here. Instead the imple-
mentation itself is used as a model to test itself for certain behavior. A test
with an actual –example– model is displayed in snippet 7. In practice both
approaches are applied intertwined in MBT-ing RefactorErl’s transformations.

1 reverse_model([]) -> [];

2 reverse_model([X]) -> [X];

3 reverse_model([X:XS]) ->

4 reverse_model(XS) ++ [X].

5

6 prop_reverse_em () ->

7 ?FORALL({Xs ,Ys},

8 {list(int()),list(int())},

9 reverse_model(Xs++Ys) == lists:reverse(Ys) ++

lists:reverse(Xs)).

Snippet 7: Reversal function and example model in QC
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Generators and shrinking QC uses generators to generate input for the
test. In the example of snippet 7, list(int()) tells QC to generate a random
list of integers.

It is also possible to define your own generators, of which the correct function
name-generator created by István Bozó – one of RefactorErl’s team members –
is a practical example (snippet 8).

1 %% Function generates ‘NumNames ’ function names

2 %% length between 1 and 7 chars [a..zA..Z_].

3 %% Could be extended with support for numbers.

4 generate_funnames(NumNames) ->

5 Abc = lists:seq($a , $z) ++ lists:seq($A , $Z) ++ ?

Underscore ,

6 [io_lib:write(list_to_atom(refqc_common:get_n(

random:uniform (7), Abc)))

7 || _ <- lists:seq(0,NumNames)].

Snippet 8: QC Function name generator

When a defect is encountered, QuickCheck can be instructed to find the
smallest possible value on which the defect appears, which is called shrinking.

Validity dependant of implementation The validity of the properties I
defined depends a lot on RefactorErl’s implementation, since I heavily use parts
of it in calculating the output of a model on a particular input. Hence, it plays
a key role in the defined models.

The bigger part of the functions of the implementation on which the prop-
erties rely, is defined in the Querying-layer (figure 7.2). This layer is used in the
models to look-up subsets of corresponding nodes in the syntax-tree, on a given
input (as described in snippet 10 of section 6.2.1). The result is then used to
calculate the desired output of the model.

My properties assume this model to be correct, and compare the result of
the aspect they are testing to it, which results in the verdict of the test. This
verdict might either reveal an issue in the implementation or the model, which
are both desired outputs. It is up to the tester to trace which of both causes
the issue.

Of course, the assumption of this model which relies so much on the imple-
mentation to be correct – even though the implementation is exactly the subject
of the MBT – will raise some questions (e.g. how does this affect the validity of
the test results?). I will elaborate on this approach in section 7.4.

5.6.3 Selecting hard-to-refactor Erlang constructs

Model based testing requires input, which I would like to generate semi-randomly:
I would like to test at least some data that I classify as ‘interesting’, and com-
plement it with some randomly generated input.
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This generation of interesting ‘random’ data is possible,[63] but not too
straight-forward in RefactorErl’s case, because actual Erlang code is required as
input to the tests. Horpácsi Dániel –member of the research-group– is currently
working on such a generator.

Since there exists no good solution for generating semi-random Erlang mod-
ules at the moment, the next best thing to do is to select some complex con-
structs in an educated fashion (e.g.: nested expressions; ‘uncommon’ function
patterns; ‘special’ constructs of Erlang that are hardly used in a certain context)
in an effort to reveal defects using the defined tests. A set of modules can be
created from these complex constructs as well, which can eventually help build-
ing a strong regression test-set, and to identify defects in both RefacterErl’s and
the defined tests’ code.

6 Background information on tools used

6.1 Introduction to research basics

This part of the thesis gives a little background information on some of the
most important aspects of the thesis, e.g.: how to work with Z (and related
tools) and RefactorErl. To get a good understanding of the rest of the thesis,
it is important that the reader is familiar with the knowledge presented in this
section.

6.2 Instruments used in research

6.2.1 RefactorErl

Introduction The goal of this project is to develop a refactoring tool for the
Erlang functional programming language. The group is investigating implemen-
tation possibilities of refactoring using its experiences from previous research,
and building a refactoring framework that can be integrated with any develop-
ment environment.[28]

There is a manual on the RefactorErl website, explaining how to install the
environment on Emacs. This then displayed as a new menu (figure 6.2.1) in
the editor. When a transformation is selected, and the cursor is on a corre-
sponding node in the source code, RefactorErl asks for input required for the
transformation (e.g. new variable name or argument order).

RefactorErl is written in Erlang, and has its own Erlang parser. The parsed
source code is stored as a syntax/semantics graph in an MNesia database (this
database comes with Erlang). It enables easy lookup of nodes, and makes it
possible to support the ability to roll-back changes. The general structure of
the system is displayed in figure 7.2.

An example of a visual graph representation generated by RefactorErl (using
the referl draw graph module), is shown in figure 6, which represents the code
in snippet 9; the identity function. The hexagons represent the semantic nodes
of the code, whereas the rounded squares are syntactical. The former are nodes
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that contain the actual meaning of a variable or function for example (e.g. its
name, and arity for example). The syntactical nodes represent the occurrences of
a variable or function, and contain information like token position and whether
it is a reference or a definition.

Even though the example in snippet 9 only consists of a few lines of code,
the graph is rather big, but –even when considering a serious snippet of code–
the graph visualization can be very useful nevertheless in manually verifying the
correctness of relations between nodes.

1 -module(example).

2

3 id(X) ->

4 X.

Snippet 9: Identity function in an Erlang module

Querying the graph To provide easy access to the nodes of the parsed source
code in the database RefactorErl contains its own querying methods. If one
would like to retrieve a list of all variables in the function id of snippet 9 for
example, it can be seen in figure 6 that first the example.erl file needs to be
queried, followed by its 2nd form, after which the function clause should be
requested.

This query will return a clause node, from which a list of all its child variable
nodes can be queried. The code would look like something along the lines of
snippet 10.
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ROOT

example.erl

file/1

example

moddef/1
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function
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varref/1
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Figure 6: Syntactic / Semantic graph of Example

1 FileNode = ?Query:exec(?File:find("example.erl")),

2 FunNode = ?Query:exec(FileNode ,? Query:seq([

3 ?File:form (2) ,?Form:clause (1)])),

4 ?Query:exec(FunNode ,? Clause:variables ()).

Snippet 10: Example of a basic RefactorErl query

There are also querying actions available that can update nodes in the graph
in a similar fashion, which is how the system performs its refactorings. After
a refactoring the tree is read from the database, and written to the particular
file, keeping the actual file and Mnesia tree in sync. This subject was part of
the introductory research I did familiarize myself with Erlang and RefactorErl;
it is documented in section A.

6.2.2 QuickCheck

Quviq QuickCheck is a commercial Erlang-based library for the model based
testing of Erlang source code. It is inspired on a tool initially developed for
testing Haskell source code.[61]

In a nutshell this system is able to take a model, and feed it data, based
on information provided by the tester. When an error is found, the system will
automatically shrinks (that is: it finds the smallest possible input for which an
error occurs) the solution that results in an error.
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To use the system, a tester has to write an Erlang module, which will call
the quickcheck function (provided with a test-property) of the eqc library. De-
pending on the model that the tester made, he will have to provide a generator,
a function that generates data that is accepted by the model.

A concise example of a QuickCheck property, and how to test it is displayed
in snippet 11.[64]

1 % definition of a property that tests if a member of

2 % a list is correctly deleted.

3 prop_delete () ->

4 ?FORALL({I,L},

5 {int(),list(int())},

6 not lists:member(I,

7 lists:delete(I,L))).

8

9 eqc:quickcheck(examples:prop_delete ()).

Snippet 11: QC property test

More information on using QuickCheck can be found in several examples
and a manual that are available online. I found that extensive documentation
to the system is not very easily available though, but armed with the manual
and some time for trial and error, it is possible to understand the system pretty
well.

6.2.3 Z-notation

In this thesis Z notation is used to specify transformations of RefactorErl. It
is to be used with LATEX, and its syntax is quite comparable to that of the
math environment. Using this notation, which is based on Zermelo-Fraenkel set
theory, it is possible to define a system using sets and predicates.

Systems are specified using schemas, which represent states of the system
with signatures of predicates and functions, along with their definitions (all
defined in an adaptation of set-notation).

Several examples are included in this thesis, along with their explanation in
natural language, and I will therefore not elaborate further on it here. Better,
and more thorough examples are available though. A very good example is the
Birthday Book specification as included in the Z-Book.[65]

6.2.4 Fuzz

When compiling the specifications with LATEX though, they are only checked if
they comply with the LATEX syntax. Because the goal is to write very precise
specifications, more thorough verification is needed. It is important that the
types of the system are correct for example, or it will not make any sense.

This can be checked using fuzz, a command-line tool that was designed for
this purpose. After installation of fuzz, a specification can be tested on type-
correctness by entering the following command in the CLI:
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zfuzz <filename.tex>.
When an error is found, its location in the file and a description of the

problem is shown in CLI. When no problems are encountered, nothing shows
up.

6.2.5 JAZA

JAZA is an animator for Z specifications (i.e. this program makes it possible
to ‘execute’ specifications). The goal of this system is to enable the user to test
the specification for (un)desired behavior.

7 Approach

7.1 Introduction

This section starts off with a detailed description of the scope of my research,
followed by the methods I applied and my motivations for using them.

7.2 What is the scope of testing?

Model based testing My main approach in testing the implementation of
several refactorings in RefactorErl, will be to model based test them using
QuickCheck (section 7.4).

Models, which are very important to this type of testing, need to be defined.
Because of this significance, I will discuss my approach of defining my models
and issues inherent to this approach in the upcoming paragraphs.

Flawed models My goal is to write tests that are as complete and aim to re-
veal defects throughout the entire system. Unfortunately this goal is somewhat
complicated to achieve, because I use quite some functions of the implementa-
tion of RefactorErl to calculate outputs for my models, as I already mentioned
in the introduction section.

The obvious problem this introduces, is that my models cannot be considered
correct, after all I suspect that the implementation contains errors and hence
it’s output and therefore the model’s output is not fully reliable. One result of
this, is that false negatives will go unnoticed.

Creating models which do not use the implementation at all can theoreti-
cally solve this problem, but that will require lots of lines of code, which most
probably also contain defects, and hence are not fully reliable as well.

Results’ worth Given this information, what is the value of the test results
then? Given the unreliability of models, the results cannot be relied on as well.
Well, the results will be either: positives, negatives, false negatives or false
positives. Finding (false) negatives does not mean anything; this proves neither
the absence nor presence of defects, because the models cannot be fully relied on
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and the negative will have to be fully analyzed to determine whether it is a real
or false negative. The (false) positives are the true value of the results, these
ensure that there either is a defect in the defined property, in the model or the
implementation. A tester will have to analyze the results in order to determine
the exact whereabouts of the defect.

Also notice that there will be no completely false positives, for when an issue
is detected in a test, this is always the result of a flaw in the implementation
or the model. And when the model is fully correct, no false positives can occur
at all, because each positive is the result of the implementation conflicting with
its model and hence its specification.

To wrap it up: the properties, as thorough as they may be, might not return
all the flaws in the implementation, but neither will they return completely false
positives. Hence, each issue found by the property is a real issue, which is what
makes these tests valuable.

Increasing results value To improve upon these tests, it is of foremost im-
portance to notice that the implementation of RefactorErl consists of several
layers which fully rely on each other(figure 7.2). Layers are groups of libraries

UI

Querying

Parsing

DBMS

Emacs

Distel

Query

FileMan

ESG

Mnesia

RefErlParser

Analyzer

Figure 7: RefactorErl architecture

which together have a dedicated purpose, like querying the syntax graph, or
parsing the source code of a file for example. These layers depend on each other
for information gathering purposes (e.g. the Querying layer requires information
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it receives from the UI and DBMS layers, as can be seen in figure 7.2. Defects
can occur in each of them, and since I refrain in my tests to using only the
upper layer (querying-layer), defects on layers it is dependent of can be missed.

To illustrate this, consider the situation where one of the lower layers (a layer
that another layer is dependent of) consistently provides wrong information (e.g.
too many, too few, or the wrong nodes of a parsing-tree) to the querying-layer.
This results in both the model and the implementation outputting the same
incorrect information. From the perspective of the property, the implementation
conforms to the model, and hence it passes the tests: a false negative.

A concrete example of this situation is the model-testing of the
function rename transformation. In this particular case, which I will describe in
more detail in section 7.4.1, it is crucial that before and after the transformation
all nodes that refer to the particular function’s semantic node are correctly
updated.

Now consider that as a result of a defect in the querying-layer, it misses some
of the function’s references and hence returns just a subset of the references that
exist in the module that is being tested. Notice that this is the information that
is output by the model to represent the desired output of the implementation.
And after the transformation the querying-layer returns the exact same, but
correctly updated, subset of function references. In this case the test will pass,
since after the transformation, the implementation returns the desired output
as represented by the model. This is a false negative.

This situation actually occurred to me (one time that I know of), and is
described in section 8.6. The other way around it works the same: one cannot
expect the upper layers to be correct because tests of the layers it depends on
all pass.

The only way to locate and eliminate these defects (with the approach cur-
rently discussed) is to independently test each of these layers as well.

Why not dedicated models? Clearly, the approach described has some is-
sues, and hence it is useful to review the alternative: writing for each property
a fully independent, dedicated model, which does not use any of the implemen-
tation’s information to mimic the desired behavior of the system. For example,
the model could compute desired output based on a certain input by parsing
the Erlang syntax tree.

This approach comes at the cost of writing a lot of extra lines of code for
this purpose alone, which gives rise to new defects that will probably result in
false negatives as well. Hence, I consider this approach to be more useful in the
scenario where development of the implementation and MBT go hand-in-hand
from the start.

The method mentioned earlier, the one I actually applied, is more interesting
when a substantial implementation is already at hand, for: it allows the tester
to quickly build MBT’s focused on a high level of the system which are likely
to reveal a lot of errors at all layers; it requires fewer lines of code, since a lot
of required model-information can be gathered using the implementation; the
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tester can choose whether or not he trusts the models enough, and decide if he
wants to write MBT’s for lower layers to strengthen this belief. The labor of
having to manually write extensive models does not seem to weigh op to these
reasons for using the first approach.

What layer to use in models? So, the question to be answered here is:
‘which layer should be used for in the models used in the tests?’

When for example, tests are written for verification of functions defined in
the bottom layer, defects will be revealed on that level, whereas defects in higher
levels will go unnoticed. By testing functions in the higher layers on the other
hand, defects in all lower layers might be revealed as well, including those found
in the tests for the bottom layer functions. This ‘high-level testing’ renders the
latter redundant.

On the other hand, I explained how using information provided by the top-
layer in models could result in false negatives, because defects in the lower layers
might result in the top-layer returning inadequate information.

I decided, based on these considerations, to only use the top-most layer in
my models, the foremost reason being the fact that it saves me the trouble of
writing a lot of code that has already been written by the project group. As an
effect of this decision I will have to write significantly fewer lines of code for my
tests, which will save time, but more importantly, will result in a drop in the
number of defects introduced in the tests in conformance with LOC-vs-defects
estimates.

The only way to identify and eliminate as much as possible false negatives
that result from this approach, is to separately MBT each layer (from the top-
most to the bottom layer), thus to divide-and-conquer rather than using a big-
bang approach. This engenders several advantages, e.g.: it will be easier to
divide the testing of code in portions that are actually feasible for one person
to handle in a reasonable time; and make it possible to have multiple people
working on related parts of the code that are spread over different layers, at the
same time.

Actually this approach has already been incorporated slightly, since Máté
Tejfel –a member of the research group– has developed a QC testing module for
verification of some properties that should hold for the variable analyzer (figure
7.2), which resides in the parsing-layer.

7.3 Step 1: Formal specification of properties in Z

Since tests can only be as good as the specification they test, my first step
toward MBT-ing RefactorErl, consist of formalizing the specifications of trans-
formations, using Z-notation. Before this moment (for RefactorErl) these were
only defined in terms of ‘properties’: statements that should always hold for
a certain transformation, in natural language. Similar specifications have been
defined on a more abstract level[55] (the paper addresses the actual transfor-
mations, whereas my focus is more RefactorErl / code specific) for HaRe.[46]

I considered specifying all the functions that I use in my Z specifications too
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much work to fit in my thesis though, and decided to define function signa-
tures in Z that are to represent the equivalent existing functions in RefactorErl.
These functions can in the future be specified in Z as well, making the total
specification more complete.

Formalizing the specifications might seem a bit superfluous and even re-
dundant, since I might as well directly transform the currently defined natural-
language properties to QuickCheck code (it is a formalization of properties after
all), but there are some reasons for doing this nonetheless that I will elaborate
on.

The main reason for formalizing the specifications in the first place is the
problem that resides in definitions in natural language: they are context de-
pendent. Hence, people might interpret them in different ways; not a very
comforting thought when writing reliable code is one of the most important
goals of a project. By formalizing the specifications using Z, the context depen-
dence is resolved, and hence all readers should interpret them the same. Since
it is derived from a natural language specification, designers of the Z specifica-
tion will have to discuss what the final meaning of the Z specification should be
though.

But why not just formalize the specifications using QC then? I am plan-
ning to test the specifications using QC anyway, and hence I could eliminate
a formalization step. First of all because QC is no common notation, hence
people that are not familiar with QC can have a hard time understanding its
semantics. Z notation on the contrary, is understood by a much larger group of
people (I referring to the final, compiled specification), because it is basically
set-notation which many computer scientists are familiar with.

Secondly, QC is designed for the purpose of MBT: it has no other application
at all, whereas Z-notation can be used to for multiple purposes like generating
models out of specifications. Furthermore, unlike Z-notation, QC is language
dependent; there are tools available for language independent type-checking and
animation of specifications defined using Z-notation; Use of formalized specifi-
cations using Z is not limited to MBT, but can be used for all testing purposes
in the future. Thus, an independent notation such as Z that was designed for
the purpose of formalizing specifications of systems, has several advantages over
a very specific ‘language’ like QC, which was designed for the sole purpose of
MBT.

Additionally, once the formal specifications are written down, they can be
used for many purposes in future work, like formally proving the correctness of a
model using a (automated) theorem prover.[66] Natural language specifications
do not facilitate this possibility.

And the third reason is that formal specifications present you the natural
language specifications from a different perspective (e.g. set-wise, rather than
a series of restrictions; forces you to truly understand them, as opposed to
natural language definitions which will make you easily miss/read over things).
So, formalizing might aid one in seeing that tests are incomplete because of the
different perspective.
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7.3.1 Z-notation

The formal specification notation Z (pronounced ”zed”), useful for describing
computer-based systems, is based on Zermelo-Fraenkel set theory and first order
predicate logic. It has been developed by the Programming Research Group
(PRG) at the Oxford University Computing Laboratory (OUCL) and elsewhere
since the late 1970s, [...] Z is now defined by an ISO standard and is public
domain.[67]

This notation seems to be the most convenient tool for the job, since I
was looking for a way to write specifications that are as tool-independent as
possible. But at the same time I wanted to have a tool available which can
verify the specification’s syntax, so as to avoid writing specifications that have
are not formally compliant with the used notation.

The Z-notation conforms perfectly to these requirements, since any text-
processor will do as a tool for writing specifications in Z; it has a syntax ver-
ification tool available; and last but not least the Z-notation is based on an
internationally well-known notation (Zermelo-Fraenkel set theory) as stated in
the first paragraph of this section.

7.3.2 Tools for Z

Fuzz is a collection of tools that help you to format and print Z specifications
and check them for compliance with the Z scope and type rules.[68]

It is a command-line tool which I used to verify the syntax of all my speci-
fications. Basically it searches through a LATEX source for Z specifications and
verifies their syntactic correctness. If it detects incorrect syntax or typing issues,
it outputs on what line and character position the defect is to be found.

Jaza is an ‘animator’ for the Z formal specification language. It is intended to
help one validate specifications via: evaluating Z expressions, testing Z schema’s
against example data values and executing Z specifications (but not all specifi-
cations are executable).[69]

Jaza can ‘execute’ a specification, given some input. This will result in an
output, and the designer of the specification use this result to verify if it is the
desired output.

7.4 Step 2: MBT transformations using QuickCheck

Currently RefactorErl testing is approached by means of unit- and regression
testing. Good unit tests usually perform boundary checks, and try to achieve
decision- and code coverage. But even if all code and decisions were covered,
that does not imply that the code will work for all inputs, since not all input is
checked.

Model based testing on the other hand will more thoroughly test the code,
by feeding functions randomly generated data, or when available, data based
on heuristics; which is less naive than the random approach. Theoretically, this
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approach will test every case (i.e.: if it ran to infinity, and the model is complete)
as opposed to the unit tests which will only test a small subset of inputs.

Besides that, the model based testing approach separates the properties
being tested and the test data, whereas in unit tests these are defined together
in one test. Which makes it easier to change test data and properties apart from
each other. Also, model based testing can be configured to test more thoroughly
by changing one parameter, which is not the case with unit testing.

Given these advantages, it is interesting to incorporate model based testing
as an extension to the current methods of testing RefactorErl.

This actual testing part of my thesis is also the part that is affected the most
with my models using information supplied by the implementation of Refactor-
Erl (section 7.2). Even though the models only access information through
the querying-layer (the upper-most layer) the tests are able to detect defects
throughout all the layers of the system, as opposed to the situation where I
would use one of the other layers ‘below’ the querying-layer. For example, most
issues that are detected in the top layer actually originate from defects residing
in the underlying layers, given that this is a much larger code base and it is
where the more complex computations are performed. When an issue is found,
it is up to the tester to find out in which layer the defect causing this issue is
located.

And finally, by applying this method, the false negatives in the upper layer
tests are naturally eliminated when bugs are fixed in lower layers. So, as a result
of the project’s maturing process, false negatives will become positives.

7.4.1 Refactoring 1: Rename function

The tests I defined for the rename function transformation are an extension
to an incomplete QuickCheck module that was written by Elroy Jumpertz.[3]

The extension consists of two properties, which verify correctness of the binding
structure of both function parameters and functions.

These properties are defined in a paper[48] written by Huiqing Li and Simon
Thompson of the Wrangler project. They state that the binding structure of a
function: “refers to the association of uses of identifiers with their definitions in
a program, and is determined by the scope of the identifiers.”. This basically
comes down to associating the scopes of all functions throughout a set of modules
with their definitions.

To verify the correctness of the binding structure after the rename function
transformation –which renames a function and all its occurrences loaded in the
database–, I collect all nodes (i.e. definition and references) that belong to a
certain function, and determine their token position in the syntax tree (i.e. in
the database, not in the source file, because these might change when a function
name changes length). Before and after the renaming of a function, these token
positions should remain unaltered –this also means that the binding structure
is still intact–, and the function name should have changed.

Of course from the sole perspective of correctness, this property does not
fully hold. Consider snippets 12 and 13. If the function renaming would refactor
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the code like this, the semantics of the module would remain intact. Hence,
the refactoring is correct with respect to the specification, but contradicts the
property I defined, because the token positions in the syntax tree have changed.

However, another important property that holds for all transformations, is
that the overall structure of the code should remain recognizable after each
transformation (i.e. change as little as possible). This means that when moving
a function across modules for example, the unaffected code should remain in
place, and the moved function being added to the beginning or the ending of
the target module. And in this case of merely renaming a function, its token
positions (definition and references) in the syntax tree should remain unaltered.

1 f() ->

2 42.

3

4 g() ->

5 f().

Snippet 12: Before renaming f/0 to c/0

1 g() ->

2 c().

3

4 c() ->

5 42.

Snippet 13: After renaming (semantically equivalent)

7.4.2 Refactoring 2: Reorder function parameters

After finishing the rename fun test module, the most logical step was to de-
fine tests for the reorder fun args transformation, since functions for analyzing
variable and function binding structures are already at hand as a result of the
rename fun test module and earlier work by István Bozó, which are exactly the
functionalities needed to verify properties for the reorder fun args module.

In general, the test module for this transformation performs the same trick
that was applied in the rename fun test module.

The two properties I implemented are the a binding structure comparison
of both function scope and the arguments of the function, and the ‘reverse’
property.

The latter verifies that if the arguments of a function are reversed, and the
same transformation is performed on the result, the binding structure after the
transformation is equal to the one before it. Like I stated before: theoretically
verification of binding structures of randomly ordered arguments (i.e. the ‘nor-
mal’ binding structure test) will test this case too, but one can only be sure of
that if the test was ran to infinity. However, by forcing the verification of this
reverse-property, the reordering of the same variables consecutively is checked,
which might reveal errors like snippet 14.
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7.5 Step 3: Regression testing of QC tests

While writing the model-tests and searching for complicated constructs (section
7.6) to test them against and vice-versa, I decided to write a regression-test
module which takes some code and tests it against one or several specified
model-tests (rather than having to manually test them one by one). But apart
from easing the testing-process there are some other reasons for writing such a
module.

First of all, complex constructs (section 7.6) might cause trouble in multiple
refactorings, and therefore should be tested against every applicable model after
each change to RefactorErl’s source. This requires several steps to be taken by
the tester, that can easily be automated by the proposed regression testing
module. Also, in the future, it might be useful for the project to include the
QC regression tests in the already existing regression test, in order to quickly
detect the (re)introduction of bugs.

The second reason is that each time perform a test was performed the test-
set had to be reinitialized(i.e. keep a copy of the original files and copy them
over the modified test files), as a result of the refactorings being performed
directly on the original test code. The regression module can handle this fully
automatically.

7.6 Step 4: Selecting interesting complex constructs

I searched for some ‘complex’ constructs that assist in revealing defects in Refac-
torErl, as well as in my own test-modules. This was achieved by studying the
Erlang manual thoroughly looking for ‘rare’ constructs; by checking code from
existing projects for bugs using the model-tests; and using common sense (e.g.:
nested constructs probably cause trouble more easily than plain variable assign-
ments, since programmers tend to mainly test only the more obvious cases when
coding).

By this selecting these constructs a set of modules –that can be used as useful
input to the MBT’s– is created. These modules can be classified by purpose.

For example, testing the rename variable refactoring against a module that
does not contain any variables is (most probably) not too interesting. So, in
principle, this is a less naive approach than just feeding model based tests fully-
randomly generated data.

This is not to say that the generation of semi-random data as input for model
based tests is useless. If one would write an Erlang code generator which accepts
parameters that define what types of constructs the emitted code should contain
(e.g. lots of list comprehensions, deeply nested functions, etc.), then this might
result in interesting and more ‘creative’ code than an Erlang programmer would
come up with.

The result of this part of the research is a set of interesting modules, which
will form the basis for a useful QC regression test-set.
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8 Results

This section shows the results of my research, grouped by the methods (as
described in section 7 from which they resulted. The results of the MBT, and
Complex Construct sections sketch concrete situations that revealed defects in
RefactorErl. The Regression Test section is more of a description of the use of
an Erlang module I wrote. And the Z-notation part is the simplest specification
I formalized, with an explanation of its meaning.

8.1 Model based testing

8.1.1 ‘Rename function’-refactoring

The binding structure-property of this transformation revealed one major bug,
which was fixed by the group before I reported it though.

Consider a piece of code (snippet 14) containing two function definitions f/0
and g/1. Rename f/0 to g/0 and then rename it back to its original name f/0.

1 % the bug shows after renaming ’f/0’ to ’g/0’, and

then back to ’f/0’ again

2 f() ->

3 g(7).

4

5 g(X) ->

6 6*X.

Snippet 14: Binding structure violation bug

This action broke the entire function binding structure, causing symptoms
like: the export attribute not being updated accordingly, ‘phantom’ function
nodes (i.e. when renaming f/0 back to g/0 one more time, the system would
complain that this function already existed), and other function nodes not being
rename-able anymore.

Even though this bug was solved before I reported it, its discovery by this
test is an important result, since it demonstrates that the test’s ability to reveal
bugs it was designed to find.

Additionally, the test is able to detect the rename fun record bug (snippet
19), which emphasizes this conclusion.

8.2 Regression testing

8.2.1 Merely a convenience module

The result of the regression testing should be regarded merely in terms of a
convenience-module addition to the QC modules that were written, and that
are to be written in the future; and as an extension to the project’s current
regression tests, rather than another means of revealing bugs.
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To illustrate this: writing this module resulted from the inconvenience of
having to supply a new test-set after each test; the calling of inconsistent func-
tion names on the different testing modules to initiate testing; and not being
able to execute a batch of different model test on a test-set. These are just a few
examples of things that result in very tedious, repetitive and sometimes incon-
sistent work (e.g. no convention for function names for each testing module),
which is eliminated by a single regression-test module.

Hence, this part’s result is a module that helps to get more out of the
potential of the model tests, the gathered complex constructs, and the testing
of the project in general.

8.2.2 Concept of the module

The module is an extension to the MBT research, and its concept is quite simple.
It is a module that can be used to batch-test a set of QC modules against a set
of regression-test files.

The module is easily extensible, meaning that whenever a new QC testing
module is written, it can be integrated in the regression tester without having
to modify a single line of code of the regression module itself.

This is achieved by adding a regtest/2 function to the particular QC mod-
ule, which on invocation is supposed to call the properties that are defined in
the module. How this function is implemented, is entirely up to the author of
the module. As for extending the regression test-set (the modules which are
being tested), this is as trivial as copying a file to a directory where all test-files
reside.

I implemented this concept in the regression module that contains a func-
tion go/2 which accepts two parameters, the first one being a path to a directory
which contains a set of regression test files, and the second being a list of options.

When this function is called, the module (which is assumed to reside in the
same directory as all QC testing modules) compiles all Erlang files residing in
its own directory, which are presumably all QC testing modules.

This this testing of modules that do and do not compile is important (and
filtering out those that do not compile), since it is very plausible that a tester or
programmer has some work-in-progress code in this directory when he executes
the test, which would interrupt the testing as a result of the erroneous modules
not being filtered out.

Modules that compiled without throwing errors are then scanned for a func-
tion called regtest/2, which results in a list of modules which are supposed to
be included in regression testing. For each of them a separate result directory
is created.

In this newly created directory, for all QC modules that have a regtest/2

function, a separate directory is created, where all modules from the specified
regression test-set are copied. This ensures that the original regression test-set
remains intact, and that each test will have its own result set in their dedicated
result directories.

50



Finally, on each of the QC modules the regtest/2 function is invoked, which
should invoke the testing of all the properties that are specified in that particular
module. To include his module in the regression testing, all the programmer
has to do is to implement this regtest/2 function.

8.3 Specification formalization

8.3.1 Introduction

Specifications of two transformations were formalized in my research using Z-
notation: variable rename and function reorder arg. Both are contained in
this section and in this order.

8.3.2 Notation

Table 2 gives a short description of the notations that are not too straight-
forward, or Z-specific.

Notation Description
7→ Partial function
P1 S PS\∅
X? Input variable X
Y! Output variable Y
dom R Domain of a relation R
ran R Range of a relation R
S ⊕ T Replace (or add if does not exist)

element T in S
A C R Domain restriction of a relation

R {x : X ; y : Y | xRy ∧ x ∈ A •
x 7→ y}

∆S State S might be modified
ΞS State S will remain unchanged

Table 2: Z-specific set-notation

8.3.3 General definitions

Nodes This section describes some general Z definitions, that are used through-
out the specifications of all the transformations.

• VARNAME set of all valid variable names;

• VARSYNNODE set of all syntactic variable nodes;

• CLAUSENODE set of all clause nodes;

• FUNSEMNODE set of all semantic function nodes;
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• PATTERNNODE set of all syntactic pattern (or function-argument) nodes.

I described the mentioned sets below in Z-notation. As you can see, I ab-
stracted from RefactorErl by using ranges of Z-identifiers, rather than realistic
representations of the elements in the sets since the latter would require me
to write Z-specifications for all elements. In the light of the time-window of
this thesis, and because identifiers suffice to specify the desired behavior of the
transformations (behavior is about what is done to the elements, not what they
are; not in this context anyway), I have abstracted from that.

CLAUSENODE == cl0, ..., cln

VARSYNNODE == vsyn0, ..., vsynn

VARNAME == vname0, ..., vnamen

FUNSEMNODE == fun0, ..., funn

PATTERNNODE == arg0, ..., argn

As was shortly explained earlier in section 6.2.1, there exists a difference
between semantic and syntactic nodes in RefactorErl. The semantic nodes con-
tain information about a node like its value, arity (when the node describes a
function), bindings and references. The syntactic nodes represent the source
code, they have information about token positions in the file, and whether this
token represents the definition or a reference to a variable or function. The syn-
tactic nodes are automatically related to their respective semantic nodes, and a
semantic node only exists when it is related to at least one syntactic node.

Clause nodes were not explained earlier. RefactorErl maintains syntactic
nodes that represent function clauses in the code. Such function clause consists
of a clause head and a clause body, separated by →. A clause head consists of
the function name, an argument list, and an optional guard sequence beginning
with the keyword when. A clause body consists of a sequence of expressions
separated by comma (,).[70]

Z-specific definitions Aside from Z representations of RefactorErl-nodes,
some definitions are required in order to be able to write down complete spec-
ifications. The definition of REPORT and the Success schema are required to
handle inputs to specifications that violate the preconditions.

REPORT ::= ok | already exists | invalid arg number

Success
result ! : REPORT

result ! = ok
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8.3.4 The initial state of the specifications

The initial state InitState of the specification in this thesis is a set of ba-
sic functions. Some of them have equivalents in the RefactorErl library (e.g.:
?Var:occurrences(), ?Var:scopes()), whereas the others are just helpers,
which result from the abstraction from the system. But all of them have an ex-
isting equivalent in RefactorErl, which makes it possible to rather easily write
tests which can verify whether or not the system conforms to the specification.

The Z-schema shown below displays the definition of the assumed initial
state before either of both specified transformations:

InitState
occurrences : VARSYNNODE 7→ seq1 VARSYNNODE
scopes : VARSYNNODE 7→ seq1 CLAUSENODE
scope variables : CLAUSENODE 7→ seq VARSYNNODE
var name : VARSYNNODE 7→ VARNAME
fun clauses : FUNSEMNODE 7→ seq CLAUSENODE
clause patterns : CLAUSENODE 7→ seq PATTERNNODE
fun arg count : FUNSEMNODE 7→ N

Notice that the schema only defines the signatures of the functions that are
used and it lacks their actual implementation. This is due to the limited time
to finish this thesis; a certain abstraction is therefore mandatory.

This abstraction requires some of the definitions of these functions to be
described in natural language. But given their quite intuitive character they
can be described in one sentence, which should minimize the context sensitivity.
Additionally, the functions presented here are representations of functions that
are actually available in RefactorErl’s implementation, in order to keep the
specifications related to the project as closely as possible.

• occurrences: provided a variable syntactic node σ, this function will re-
turn a list τ of nodes that refer to σ, where τ = seq1 VARSYNNODE
(analogous to RefactorErl’s ?Var:occurrences());

• scopes: when fed a variable syntactic node σ, this function will return a
list of scopes (i.e. clause nodes), in which σ is referred to. (analogous to
?Var:scopes());

• scope variables: handing this function a clause node σ results in a list of
variables that occur in σ. (analogous to ?Clause:variables());

• var name: on input of a variable-syntactic node this function returns a
string representing its name. (analogous to ?Var:name()).

• fun clauses: When given a function’s semantic node, it will return all its
clauses (analogous to ?Fun:clauses()).

• clause patterns: Returns all patterns (or ‘arguments’) belonging to the
supplied clause-node. (analogous to ?Clause:patterns()).
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• fun arg count: Returns the arity of the function belonging to the supplied
semantic function-node. (analogous to ?Fun:arity()).

8.3.5 ‘Variable rename’-refactoring specification

Trivial transformation This refactoring –which renames all occurrences of
a particular variable based on an old and new variable name provided by the
user– is one of the most trivial transformations of the RefactorErl project, which
is the main reason I use it here to explain the meaning of the Z-results of this
thesis.

This ‘Variable rename’-specification is followed by the ‘Function Reorder
Parameters’-specification, which is a little more complicated.

Schema The OkRenameVar schema tries to update InitState schema in
such a way that all occurrences of a variable
var node? are renamed to new name? (input-variables are followed by a
question-mark, whereas output-variables are followed by an exclamation-mark).
This can be read from the ∆InitState line, which says that the initial state of
this schema is described in the InitState schema mentioned earlier. The ∆
sign tells that the InitState might be modified by this transformation.

Furthermore, only when none of the scopes where the variable occurs already
contains a variable with name new name?, InitState will be updated.

Originally Zermelo-Fraenkel set-theory defines an axiom ρ[71] for this purpose
(i.e. replacing an occurrence of a particular node with a new one), which Z
lacks. Instead the specification –inspired by a use-case from the [65, Zbook]–
now manually finds all occurrences of a particular variable-node and binds them
to the new variable name. The new nodes function has an important role in
this, which will be explained in detail in the following paragraph, which focuses
on the definition-part (lower-part) of the schema.

OkRenameVar
∆InitState
new nodes : VARSYNNODE 7→ VARNAME
var node? : VARSYNNODE
new name? : VARNAME

∀ x : ran(scopes(var node?)) • new name? /∈
ran(ran(scope variables(x )) C var name)

new nodes = (ran(occurrences(var node?))) C var name

(var name ′ = var name) ∧
(∀ x : (ran(occurrences(var node?))) •
var name ′(x ) = new name?)

scopes ′ = scopes

occurrences ′ = occurrences
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This specification tells what to do when a the input conforms to a set of
propositions, like: the supplied variable name does not exist yet. But it doe s not
tell what to do when it does not exist, and I therefore specified the VarExists-
schema, which handles exactly this situation.

VarExists
ΞInitState
var node? : VARSYNNODE
new name? : VARNAME
result ! : REPORT

∃ x : ran(scopes(var node?)) • new name? ∈
ran(ran(scope variables(x )) C var name)

result ! = already exists

Now there are two schema’s that both handle the same action, but on dif-
ferent situations (i.e. variable does not exist yet, and variable does exist yet
respectively). And even more of these schema’s can be added until the specifi-
cation is complete.

These schema’s can be combined into one big schema which specifies the
entire desired behavior of the variable rename function, like so:

RenameVar =̂ (OkRenameVar ∧ Success) ∨ VarExists.

Definitions of OkRenameVar This paragraph explains, in short, the intu-
itive meaning of the OkRenameVar specification.

∀ x : ran(scopes(var node?)) • new name? /∈
ran(ran(scope variables(x )) C var name)

Explanation:

• Determine all scopes where var node? is referred to (or defined), and get
all the variable nodes from these scopes. Get their corresponding variable
names, and make sure that none of them equals new name? as to avoid
name clashes.

• More literally: restrict the domain of var name to the variable nodes
which occur in all scopes var node? is part of and make sure none of the
nodes is named new name?.
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(var name ′ = var name) ∧
(∀ x : (ran(occurrences(var node?))) • var name ′(x ) = new name?)

Explanation:

• all nodes in new nodes are assigned new name (new name? ). (i.e. each
x in the domain of new nodes is mapped to a new value).

scopes ′ = scopes

occurrences ′ = occurrences

Explanation:

• scopes and occurrences must remain unaltered.

Definitions of VarExists This paragraph explains, in short, the intuitive
meaning of the VarExists specification. This specification describes how to han-
dle the situation where a user hands an already existing name for a variable.

∃ x : ran(scopes(var node?)) • new name? ∈
ran(ran(scope variables(x )) C var name)

Explanation:

• There exist at least one a variable named new name? in any of the af-
fected scopes.

result ! = already exists

Explanation:

• There already is a variable that goes by the name new name?, so return
already exists, and leave InitState unaltered (as described by Ξ).
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Combining schema’s Now there exist two schema’s which handle two sepa-
rate situations, these are combined in the RenameVar -schema.

RenameVar =̂ (OkRenameVar ∧ Success) ∨ VarExists.

Explanation:

• If the supplied variable name does not conflict with that of any existing
variables, then OkRenameVar will hold, Success always holds, and returns
ok.

• When the supplied variable does clash, it OkRenameVar will not hold,
but VarExists does. This results in already exists, and nothing will be
changed.

8.4 Function Reorder Arguments Specification

8.4.1 What does this specification describe?

This is a partial Z-specification of the already available natural language specifi-
cation of the Function Reorder Arguments transformation in RefactorErl. This
transformation reorders the arguments of a given function, to a given order. It
not tested very thoroughly (only on type and syntactic correctness using fuzz
and jaza), and is mainly added for illustration purposes.

8.4.2 Initial state

The implementation of the transformation in RefactorErl, uses already existing
RefactorErl functions. fun args and fun args count in the InitState schema
represent [?Query:exec( <querytofunction>, ?Clause:patterns())] and
?Fun:arity respectively. The fun args count function returns the number of
arguments function represented by the supplied semantical node has (this is
defined below the line).

8.4.3 Reordering function parameters

The ReorderFunPar schema defines the requirements of this transformation,
and how the reordering works. It should be noted that it is assumed that before
the action, the graph was correct.

Input to the transformation consists of a function’s semantical node, and
a list of integers, which represent the new order of arguments (e.g. [3,1,2],
[1,4,3,2]).

The first requirement is that the supplied order is correct, so the specifica-
tions requires that the number of items in the supplied list is equal to the actual
number of arguments to the function. After that, it is checked that all the items
in the list are a unique number between 1 and the arity of the supplied function.
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When the preconditions are met, the functions arguments (i.e. all patterns
of all clauses) are reordered with respect to the supplied list.

OkReorderFunPar
∆InitState
what fun? : FUNSEMNODE
apply order? : seqN

ran apply order? = (1 . . fun arg count(what fun?))

∀ x : dom apply order?; y : ran(fun clauses(what fun?)) •
(clause patterns ′(y)(x ) = clause patterns(y)(apply order?(x )))

As already was the case with the rename var transformation, situations
can occur in which the preconditions for the function rename-transformation
are not met. These situations require different schema’s that can handle them.
InvalidArgNumber handles the situations where the supplied list does not have
the correct length, or does not contain the right numbers.

InvalidArgNumber
ΞInitState
what fun? : FUNSEMNODE
apply order? : seqN
result ! : REPORT

ran apply order? 6= (1 . . fun arg count(what fun?))

result ! = invalid arg number

And finally, the ReorderFunPar schema is defined, which combines the sev-
eral schema’s presented before.

ReorderFunPar =̂ (OkReorderFunPar ∧ Success) ∨ InvalidArgNumber .

OkReorderFunPar This paragraph contains a short explanation for the spec-
ification of the OkReorderFunPar -schema.

ran apply order? = (1 . . fun arg count(what fun?)).

Explanation:

• The list with the new order apply order? must contain exactly the num-
bers [1 .. arity]. These numbers can have any random order.
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∀ x : dom apply order?; y : ran(fun clauses(what fun?)) •
(clause patterns ′(y)(x ) = clause patterns(y)(apply order?(x )))

Explanation:

• All clauses of what fun? are gathered, and for each one its patterns are
swapped with the desired pattern (as described by apply order? ).

InvalidArgNumber This paragraph contains a short description of how the
InvalidArgNumber -schema works.

ran apply order? 6= (1 . . fun arg count(what fun?)).

Explanation:

• The list with the new order apply order? does not contain exactly the
numbers [1 .. arity] in any random order.

result ! = invalid arg number

Explanation:

• When the precondition was met, it means apply order? has an incorrect
value, and hence invalid arg number is returned, and everything remains
unchanged (note the Ξ before InitState).

Combining schema’s Like with the rename var transformation, the schema’s
need to be combined, which results in the ReorderFunPar -schema.

ReorderFunPar =̂ (OkReorderFunPar ∧ Success) ∨ InvalidArgNumber .

8.5 From specifications to QuickCheck

A tester can use Erlang to manually code a model along the lines of the Z-
specifications. The tester will have to write code that loads and generates test
data (e.g. source code, nodes, function names), and then he can check if the
separate properties hold, by defining them using QC syntax (section 6.2.2).

Another approach can be to write or use a tool which generates a model or
(abstract) test cases from the specifications. Of course, writing such tool is a
lot of work in itself, and might turn out not being worth the effort. Besides,
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this tool will need thorough testing as well, which comes down to the same
problem you are trying to solve. Furthermore, I did only find one third party
tool which claims to generate abstract test cases, but I could not get it to work
(section 5.6.1). Therefore, it seems that one can only manually translate the
specifications into QC code for now.

8.6 Interesting constructs selection

8.6.1 ‘Dynamic function call’-bug

This section elaborates on a ‘bug’ I found, by walking through the Erlang manual
in a quest for little-known or -used, and hence interesting constructs. I quote
‘bug’, because it turned out not to be a bug as much as it is a deliberately
unsupported construct (one of the main reasons being that this construct is
marked deprecated in the Erlang documentation). It is, however, a perfect
example of a ‘false positive’ that is not detected by my model tests, resulting
from my assumption of the lower layers being correct.

The construct I found is a ‘dynamic function call’: a function call, in the
form of a tuple. For example, snippet 15 contains two lines of code that mean
the same thing, the first line being a regular function call, and the second
representing its dynamic notation.

1 modulename:f().

2 {modulename ,f}().

Snippet 15: Regular vs. dynamic function call

When considering the code in snippet 16 below, and one renames function
g/1 to h/1, all the calls but the dynamic call will be updated, violating the num-
ber 1 property for all refactorings: when code compiles before, it must compile
afterward, which it does not, because there exists no function g/1 anymore.

1 -module(fun_rename_dynfunbug).

2

3 -export([f/0, g/1]).

4

5 f() ->

6 {fun_rename_dynfunbug ,g}(6).

7

8 % when ’g’ is renamed , the dynamic function call to ’g

’ in ’f’ is not updated.

9 g(Number) ->

10 Number * 7.

Snippet 16: Dynamic function rename bug example

Then why is this problem not revealed by my QC test? Well, that is because
in my model I use RefactorErl’s upper layer for querying the database. So,
when renaming function f/0 to g/1, I use this layer extensively to collect all
the occurrences of function f/0 before and function g/0 after, which will then
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be compared on their binding structures, which should be the same (i.e. the
binding structure remained unchanged).

But since the lower layers, and hence the upper layer, do not recognize
dynamic function calls as being actual function calls, the test will never include
them in the comparison in the first place, and therefore the test does not detect
that the dynamic call was not updated.

However, should dynamic function calls in the future be supported by the
lower layers, the test will –without modification– include the dynamic func-
tion calls in its comparison, and as a result reveal potential defects concerning
dynamic calls.

8.6.2 ‘Function rename record’-bug

Erlang contains a record construct, which is described in the Erlang Reference
Manual[70] as follows: a record is a data structure for storing a fixed number of
elements. It has named fields and is similar to a struct in C. A record definition
consists of the name of the record, followed by the field names of the record.
Each field can be given an optional default value.

1 -record(Name , {Field1 [= Value1],

2 ...

3 FieldN [= ValueN]}).

Snippet 17: Example of a record definition

The following expression creates a new Name record where the value of each
field FieldI is the value of evaluating the corresponding expression ExprI :

1 #Name{Field1=Expr1 ,..., FieldK=ExprK}

Snippet 18: Example of creating a record

As stated earlier, I consider nested constructs to be the most plausible lo-
cation for finding defects in the implementation of RefactorErl, so I defined a
record ftr in a module, a construct which I noticed is not used very often in the
RefactorErl project, and assigned as the default value of its a-field a function
g/0 that is defined in its module, like so:
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1 -module(fun_rename_recordbug).

2

3 -export([f/0]).

4

5 -record(ftr ,{a=g()}).

6

7 f() ->

8 g(),

9 Z = #ftr{},

10 Z#ftr.a.

11

12 %when ’g’ is renamed , the #ftr.a field is not updated.

13 g() ->

14 42.

Snippet 19: Function rename record bug example

When the rename function transformation is applied to function g/0, all
nodes are updated accordingly, with exception of #ftr.a’s default value.

The reason that this bug was introduced most probably resides in the fact
that records are usually defined in import modules as ‘global-constructs’, rather
than in a ‘normal’ module (and hence no one spotted the problem).

An interesting detail is that in the ‘import module’-situation the assignment
of a certain function is ambiguous. For example, when there are two modules
x and y that both contain a function g/0, and a header file that is included
in both modules that defines #ftr in the same way as snippet 19 does, then
#ftr.a refers to both x:g/0 and y:g/0. So, it is impossible for RefactorErl to
update the field to the right value, for such value does not exist. It would for
example be better to throw an exception informing the user of this problem,
rather than just ignoring this construct though.

The situation described in snippet 19, where the record is used in just a
single module, is unambiguous though. Therefore it is a bug.

9 Discussion

The main results of my research is a working approach of testing the transforma-
tions of RefactorErl using QuickCheck. This approach consists of several steps:
specification, Model Based Testing, gathering complex constructs as input to
MBT. Each of these steps has its own results, which are both an explanation
and a proof that this approach is useful for testing RefactorErl.

9.1 MBT vs Unit testing

Prior to this research, the RefactorErl project was tested by means of unit tests.
This is a quite structured approach of testing, and is often used to test boundary
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values and gain certain code coverage percentage. Also, unit testing is designed
to test small parts of a system, like separate classes or modules for example.

To achieve a closer-to-testing-completeness result, it is useful to apply mul-
tiple testing techniques with different philosophies. This makes MBT a suitable
candidate, because it takes a different approach in testing: rather than testing
boundaries and defining static tests, it uses generated inputs which may test
many more cases.

The usefulness of complementary testing techniques is demonstrated by the
defects that went undetected by unit tests, but were revealed by MBT.

9.2 Z-specifications

The specifications in this thesis are merely an example of how Z-specifications
can be applied in the RefactorErl project. As I mentioned several times in the
text already, I am convinced that it is important to define the current natural
language specifications in some formal-notation, and I think Z is a very suitable
notation to use to this end.

One of the merits of having a formal specification, is that model based tests
can easily be derived from them. This can even be done with the simplified
specifications that I defined in this thesis. When all functions that are used
by the specifications are specified as well, the currently existing specifications
can be extended to be more accurate. Properties can then be specified that are
related to more detailed information like particular node-properties for example.

When everything, or all ‘crucial’ parts are specified, the result is a tool which
can be useful for several researches in the future (e.g. partial formal proof of
the system; expanding the MBT-set and making it more thorough; deriving
models).

9.3 Selected constructs

Resulting from the lack of an Erlang code generator, for the inputs to QC
MBT, I gathered a few constructs that caused problems with RefactorErl by
browsing through Erlang’s documentation and using some common-sense (e.g.
nested operations are more likely to cause problems than a simple arithmetic
operation). The result is a small set of modules that demonstrate the simplest
occurrence of a particular problem. I have discarded the constructs that I
suspected to be troublesome, but did not reveal any problems, because the
value of these results cannot be tested.

The resulting set of modules demonstrates problems with transformations
of obscure constructs that are either marked for removal in some future version
of Erlang (e.g.: dynamic functions); not likely to be used in the practice (e.g.:
function call in definition of a record); or still under construction in RefactorErl
(e.g.: checking for side-effects in functions).

These results are not too compelling on themselves, but they are useful to
demonstrate that defined MBT’s are able to spot any defects at all. It is also
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useful to add them to the regression test-set, after defects have been solved, to
ensure that these defects are abandoned in the future.

9.4 Improving the results

As I have stated before, all my tests most probably return some false negatives,
which, as I explained, can only be solved by either MBT-ing each layer or
creating an implementation independent model.

Therefore, the results gain more value by extending the focus of testing
to underlying layers as well, or by creating fully implementation-independent
models. It should be noted that the latter might be both unfeasible and a more
error-prone approach, though.

9.4.1 Fully random input to MBT

The results of MBT (defects detected) were gathered by supplying ‘interesting’
code to the tests, which results in more test-cases that actually make sense.
Also, this is a more sophisticated approach than just ‘brute-force’ testing by
feeding the MBT random data.

This means however, that some test-cases that reveal defects might be omit-
ted. For example: testing a rename variable refactoring to a module which
contains no variables at all might result in an error, but this will never be de-
tected by the ‘sophisticated’ approach however, because it does not make enough
sense to test it.

Hence, to strengthen the result-set, it is useful to use fully randomly gener-
ated Erlang code (i.e. unbiased code) as input to the MBT on a regular basis.
MBT is perfect for this purpose, because it costs no effort to leave such test to
work unattended for a long time-span (e.g. several days).

10 Conclusion

10.1 Main goal

The main part of my research consisted of model based testing the implementa-
tion of RefactorErl using QuickCheck. My goal was to propose an approach of
testing the transformations defined RefactorErl, and to prove that this approach
is successful.

10.2 Proposed approach

The proposed approach consists of formalizing the specifications of transforma-
tions, which are currently only defined in natural language; create models based
on these specifications; collect as many as possible code snippets that show un-
desired behavior under a particular transformation (and simplify them as far
as possible). And finally use all these ingredients to test the implementation of
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RefactorErl, by testing implementation against models and code snippets using
QuickCheck.

10.2.1 Formalizing specifications

I have successfully specified several of these transformations based on their nat-
ural language definitions. That is: I used Z-notation to define them, the way I
interpreted them, and tested them using a type-checker and an animator. This
does not mean that these specifications are correct, for I could have misinter-
preted the natural language definitions.

Therefore, reviewing is required before they can be used for non-experimental
testing-purposes. But once a transformation in specified, it can be used for
all testing-purposes in the future; the specifications can be used for theorem
proving; are interpretable by computers, and can therefore be used for such
purposes as generating models.

10.2.2 MBT using QuickCheck

Based on the specifications I have defined some QuickCheck tests. I have re-
vealed one defect this way, and the tests are able to detect several others which
were revealed in another step of the proposed approach.

Therefore both these tests and the proposed approach have proved their use,
albeit not too compelling yet; I expect a lot more defects to be revealed when
all layers are tested.

On a final note, MBT is by no means a (total) replacement for other types
of testing. It might be too much effort for example to write models for the
bigger part of the system. Due to its shortcomings it cannot completely test a
system on itself; it should be complemented by the already existing unit tests
for example, which has its own shortcomings.

10.2.3 Complex constructs

This part of the research revealed several defects in the system. I have used
these results to verify whether or not my MBT’s detect them as well.

It has proved to be quite useful as a surrogate for an actual code generator.
And it is also a good means to prove the defined tests are (at least partially)
correct; and a good extension to the set of regression-test modules.

10.3 Overall conclusion

From this research I conclude that applying MBT to RefactorErl is useful. I
also consider the formalization of transformation-specifications an interesting
addition to the project, for they are a simple means for improving on all tests,
models and implementations that will be written in the future. Also, they make
way for new approaches in testing.

The overall approach I proposed seems to work out well, although the MBT-
part can be improved on, as I mentioned several times.
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A Syntax-tree comparison

In order to familiarize myself with both Erlang and RefactorErl, I did some in-
troductory research. This consisted of comparing the syntax tree of RefactorErl
to the code in the actual file, which should at all times be the same. It is very
well possible that there reside defects to be detected in this part of the system,
because RefactorErl has its own Erlang parser, which is used to store Erlang
source code in an MNesia database.

Rather than writing my own parser, I used syntax tools, which is included
with Erlang. This system uses the actual Erlang parser (which I assume to be
correct) the parse a file and store it in a tree. It also contains a lot of functions
that can be used to access this tree.

The general approach I applied was to take a file, and load it with RefactorErl
and just walk from the root of the three through all the nodes. With every step
in the RefactorErl tree I then make the same step in the tree as presented by
the syntax tools. If this succeeds, then the RefactorErl tree must at least be
a sub tree of the syntax tools tree. But to be sure that they are one and the
same tree, the trees also need to be walked the other way around (i.e. walk the
RefactorErl tree based on the syntax tools tree.

Unfortunately though, due to my lack of a thorough understanding of Erlang
and RefactorErl it took quite some time to implement the one-way test. Given
the limited time-window for my entire research, I did not get to implement the
test the other way around.

It might be useful to further/reimplement this idea though, because it seems
like a feasible thing to do. And due to the different parsers, defects seem almost
inevitable.

67



Glossary of Terms

BIF A function that is part of the Erlang core, a
Built-In Function

26

DRY Don’t Repeat Yourself 24

edoc EDoc is the Erlang program documentation
generator. [It] lets you write the documenta-
tion of an Erlang program as comments in the
source code itself.

22

Erlang/OTP The open telecom platform (OTP) is a develop-
ment system platform for building telecommuni-
cations applications, and a control system plat-
form for running them. The platform, whose
aim is to reduce time to market, enables design-
ers to build - from standard, commercially avail-
able computer platforms - a highly-productive
development environment that is based on the
programming language Erlang.[72]

22

Git Source Code Management system 29

IMRaD Introduction, Methods, Results and Discussion 23

Model Based Testing Testing the implementation of a software system
against a model.

22

monad Code construct for which the definition of
‘building-block for workflows’ suffices in the con-
text of this thesis. Haskell uses them to preserve
its purity, banning all side-effect operations to
monads.

26

side-effect Change in state caused by a function 26
struct Structured (record) type that aggregates a fixed

set of labelled objects, possibly of different
types, into a single object.
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