Design Space Exploration with
Generated Timed Automata

RADBOUD UNIVERSITY NIJMEGEN
MATSER THESIS COMPUTER SCIENCE
AugusT 18, 2010

AUTHOR: F.H.M. (FReD) HOUBEN
THESIS NUMBER: 636
SUPERVISOR: PROF. DR. F.W. (FRITS) VAANDRACER

EXTERNAL SUPERVISOR: DR. L.J.A.M. (LoU) SOMERS
SECOND CORRECTOR: PROF. DR. J.J.M. (JozZEF) HOOMAN

Preface

This master thesis marks the end of my study Computer Science at the Radboud University
Nijmegen. It is the result of ten months of research carried out at Océ Technologies and the
Radboud University. During this time I conduced my research within the Octopus project, which
is a cooperative research effort involving Océ, the Embedded Systems Institute (ESI), and several
academic research groups. I would like to thank Océ for giving me the opportunity to conduct my
research in a stimulating and professional environment.

It would not have been possible to write this thesis without the support of a number of people.
I would like to thank my Océ supervisor, Lou Somers, for helping me understand the technical
difficulties involved in designing printer/copiers and for his feedback on my thesis. I would also
like to thank my direct colleagues at Océ and the people involved in the LOA1 Octopus project
for their ideas, support and the positive work environment they created.

At the Radboud University I want to thank my supervisor, Frits Vaandrager, for his help with the
formal definitions and his support and feedback during the whole project. I also want to thank
Georgeta Igna for the experiments she performed that enabled a comparison between her models
and the models presented in this thesis.

Last but not least, I want to thank my family for their support. Special thanks to my mother
for correcting my English and my girlfriend for supporting me during my studies and helping me
through the difficult times.

Fred Houben
Tegelen, 21 juli, 2010

Design Space Exploration with Generated Timed Automata
Fred Houben

Institute for Computing and Information Sciences
Radboud University Nijmegen, The Netherlands

August 18, 2010

Abstract

Modern high-tech embedded systems are constructed from a complex mix of hardware and
software components. An important issue during the development of such complex embedded
systems is getting to grips with the extremely large number of design options that are available.
This is often referred to as the design space of a system under development. To support
developers in their exploration of the design space we use a high-level specification that
captures possible design options. This high-level specification is then automatically translated
to timed automata that are used for design space exploration, i.e. reachability properties are
formulated and the state space is exhaustively searched to check whether these properties hold.
The results are then fed back to the developers of the system, e.g. with a Gantt chart that
visualises the exact execution times of the various system tasks. Based on this information the
developers can improve their design. We have applied the implementation of this translation
to an Océ case study that focuses on the digital data path of a printer/copier. The results
were compared to manually constructed models created for the same case study. Globally
the results of this thesis are: (i) a high-level representation that is geared towards designers
of embedded systems; (ii) a translation from this high-level specification to timed automata,
(iii) an implementation of this translation that can be used to automatically generate timed
automata; (iv) a comparison between generated and manually constructed timed automata.

1 Introduction

Many of today’s high-tech embedded systems are built out of a complex mix of heterogeneous
hardware and software components. These components form a computational platform that pro-
cesses a combination of environment events, with real-time requirements, and data intensive tasks.
Furthermore, these platforms often need to support concurrent or distributed computations. Some
examples of such systems are mobile phones, printers/copiers, wafer steppers, and medical scan-
ners. Due to the complexity of these embedded systems the time and resources needed for devel-
opment are increasing quickly. This increases the challenge of developing embedded systems that
are cost effective and at the same time satisfy customer expectations. An important issue dur-
ing development is to cope with the extremely large number of design options that are available.
This is often referred to as the design space of a system under development. Besides functional
requirements, quantitative properties like timeliness, resource usage, and energy usage are also
important. The relation between the design options, e.g. number of CPUs, memory setup, and
scheduling policies on one hand, and the quantitative properties on the other hand are often dif-
ficult to establish.

Océ Technologies, the Embedded Systems Institute (ESI), and several academic research groups
are involved in a cooperative research effort called the Octopus project. The research focuses on
the development of new techniques that can be used during the development of embedded systems.
One of the research topics is the development of a framework that supports developers in their

Introduction August 18, 2010

exploration of the design space. This framework provides a model-based approach that helps the
developers to create a formal model of their system. This process is automated as much as possible
and does not require the end-users to be experts in formal methods. There does not exist a single
modelling approach or analyses tool that can answer all questions, i.e. each approach tends to have
its advantages and disadvantages. The Octopus framework combines the power of several formal
method tools into one design space exploration framework, giving the developers the possibility
to choose the most appropriate tool for the problem at hand.

The framework is based on the Y-chart [24, 25] methodology depicted in Figure 1. The cen-
tral idea of the Y-chart is that the development of embedded systems requires the co-development
of an application, a platform, and a mapping of the application onto the platform. All three as-
pects, individually or combined, have an impact on the performance of the system under design.
An advantage of this clear separation is that it allows independent evaluation of one or two aspects
while the other aspects remain fixed. A good example can be found in the domain of digital print-
er/copiers. In this domain the emphasis is on the exploration of platform and mapping. The set
of applications, for example, copying, scanning, and printing is relatively stable and well known.
In other domains the emphasis may be on application and mapping because the platform is fixed.
The application, platform, and mapping are used to generate models for one or more tools. The
actual analyses of the generated models are done by tools that return diagnostic information. This
information is then used to improve the application, platform, and/or mapping (indicated by the
light bulbs).

v

Application Platform |«

\/

Mapping

.\
- N=—
- < —-_—
// ~
4
S~
N
\
\
h 4
<
<
AN : :;;
\‘~__ = ___——’

W Analyses
\
\\
N \ A 4 P
~o (N PR
= =3=a Diagnostics t~=="

Figure 1: The Y-chart

In this research we first capture the three Y-chart aspects application, mapping, and platform.
This is done with the Design Space Exploration Intermediate Representation (DSEIR) that rep-
resents a specific design option from which models are generated for analyses. The new concept of
Parameterized Partial Order (PPO) [15] is used to describe the application aspect. These PPOs
are used for specifying task graphs with repetitive behavior. The main advantage of PPOs is that
they are simple in use yet expressive enough for practical applications. Another advantage is that
they have a well defined formal definition. The next step is to capture the platform aspect. For
this we use a generic description of resources that describes for each resource the capacity and
the pace at which it can process data. The last aspect is the mapping that describes how an
application uses the resource of the platform. The advantage of DSEIR is that several models
can be generated from a single specification, which reduces the chance of inconsistencies between
models. Another advantage is that DSEIR is more geared towards designers of embedded systems,
i.e. it provides a high-level description of a system. By adding domain specific languages on top of
DSEIR we can create a representation dedicated to a particular problem domain. These domain
specific languages are then translated to DSEIR, which in turn is translated to the various models.
However, in this research we consider DSEIR as the top-level language and we regard the addition
of domain specific languages as future work.

Introduction August 18, 2010

Given a DSEIR representation that captures the three Y-chart aspects we define a translation
to UPPAAL. This is a tool for modeling and verification of timed systems modelled as networks
of timed automata [5, 6]. In previous work timed automata have been successfully used for op-
timal planning and scheduling problems [1, 2, 16, 18, 20], and performance analyses of real-time
distributed systems [19, 28]. With this translation UPPAAL models can be generated for the pur-
pose of design space exploration. Figure 2 shows an implementation of the framework for two
different modelling approaches and corresponding analyses tools. Here files are used to denote
input and output and rectangles denote tools that transform input to output. The first (top)
toolchain generates coloured petri net [21] models and uses CPN Tools [22] for simulation. The
second toolchain generates UPPAAL models and uses the UPPAAL model checker to explore the
state space and generate a trace file. From this trace file a Gantt chart is generated that helps the
developers in improving their design. This last toolchain is marked grey and describes the files
and tools used in this research.

“l “l Excel

> DSEIR to CPN » CPN CPNTools Metrics performance

|> model file metrics

\ J
\ J

DSEIR

model b t
ResVis
P> DSEIR to UPPAAL P Uppaal - UPPAAL Trace P> Gantt charts&
model file Resource usage

Figure 2: Octopus framework realisation

Research questions. In this master thesis the following research questions are investigated:
e What is the formal definition of task-level parameterized partial orders?
e How to translate task-level parameterized partial orders to UPPAAL?
e How to extend the translation with resources?

e How do the generated models compare to manually constructed models?

Case study. The industrial case study used in this research is provided by Océ technologies, a
manufacturer of digital document printer/copiers. These printer/copiers are embedded systems
with soft real-time requirements that process all kind of paper-based and data only documents.
The focus of the case study is on the digital data path that transforms input to output data. This
data path consists of various resources like FPGAs, CPUs, memory, and busses and forms the
platform on which computations are performed. This platform executes various applications like
copying, scanning, and printing. The main challenge is to compute efficient schedules for applica-
tions that minimise execution time on a platform with limited resource. Other important aspects
of digital document printer/copiers, that do not fall within the scope of the case study, are the
paper flow and the physical printing process.

Related work. In previous work, within the Octopus project, several modeling approaches and
analyses tools have been applied to the case study described above. In [20], the case study is
modelled and analysed using three different approaches: time automata, coloured petri nets, and
synchronous data flow. These approaches are compared in term of found solutions, ease of model
construction, and analyses efficiency. A more elaborate description of the coloured petri net
model is given in [23]. In [4] the time automata model is modified to solve scheduling problems
with uncertainty, i.e in reality the arrival times of new print jobs are typically unknown. Timed
game automata are used to model uncertainty in the arrival times of new jobs. All the research
mentioned above use manually constructed models for the case study. This increases the chance

Partial Order August 18, 2010

of inconsistencies occurring between the various models. Another drawback is that experts are
needed to create and maintain these models. Even worse, a different expert my be needed for each
modeling technique. In this research we address these problems by generating timed automata
from a single, easy to use, specification. A key role in this specification is the used of PPOs for
specifying task graphs with repetitive behavior. In [17] another approach for specifying compact
task graphs with repetitive behavior is described. Here a subclass of UML activity diagrams are
used to specify the causal dependencies between tasks. The main disadvantage of this approach
is the complexity of the activity diagrams that makes them less intuitive than PPOs. Other non-
repetitive approaches for specifying task graphs are given in [2, 27, 30].

Running erxample. Throughout this document a simple running example is used to illustrate
various points. This example consists of two tasks a and b. The idea is that the output of a is
the input of b. It describes a common situation in which task a writes some data into a buffer
which is then read by task b. Depending on the buffer size b could wait for a to fill the buffer
and finish, after which b starts reading the buffer. Instead of waiting for a to finish b can also
start processing chunks of the output from a. This streaming behavior is common in, for example,
video encoding/decoding, graphic rendering pipelines, and the processing of documents in print-
er/copiers. In the domain of digital document printer/copiers the scanning and resampling of a
document represents such a case. Here a represents the scan task that scans a document line by
line and writes these lines into the buffer. Task b represents the resample task that can start
when the buffer contains enough lines.

Organisation. This master thesis is organised as follows. In section 2 we introduce the con-
cept of parameterized partial orders that are used for specifying applications. Section 3 gives a
short overview of the UPPAAL modelling language and tools. Based on the previous two sections
a translation from parameterized partial orders to UPPAAL timed automata is given in section 4.
With this translation in hand, section 5 describes the implementation. The next step is to extend
the translation with a platform and mapping that describe how applications are executed. This
is described in section 6. In section 7 we verify the behavior of the generated models by compar-
ing them with manually constructed models. Besides behavior we also compare the performance
during model-checking. Finally, section 8 gives the conclusions and directions for future work.

2 Partial Order

The application aspect of the Y-chart describes a number of tasks that perform some functionality
of a system. To represent the tasks of an application we use the concept of Partial Orders (PO).
A PO is a binary relation that describes the ordering of elements in a set. It is called a partial
order to reflect the fact that not every pair of elements in the set needs to be related. With a PO
one can describe the causal relation between tasks. In other words, one can describe that some
task have to be executed in sequence while others can be executes concurrently. For example, in
the domain of digital document printers, a PO can be used to specify the causal relations between
tasks involved in realising applications like copying, scanning, and printing. In fact, applications
in many different domains can be modelled as a PO. This section first defines the standard model
of event-level POs. The next step is to extend the definition to parameterized POs that can be
used to compactly represent POs. The last step is to define taks-level parameterized POs that are
more intuitive and enable a more efficient translation to UPPAAL (see section 4).

2.1 Event-level Partial Order

The standard model of Event-level Partial Orders (EPO), as described by e.g. [26, 33], can be
used to describe applications. Such an EPO describes precedence relations between events. An
event identifies an instantaneous action that marks state change. Each event is unique and can
occur only once. The causal ordering between events is defined by the precedence relations that

2.1 Event-level Partial Order August 18, 2010

describe in what order events should occur but not the precise time at which events occur. We
abstract from the precise time because this depends on who or what executes the application. In
a computer system the precise time is determined by the specifications of resources like memory,
CPU, and buses. Another example are the applications of a manufacturing plant that are typically
executed by a mix of human labour and machinery. This means that there is a clear separation
between applications, described as an PO, and the resources on which they are executed. At a
later stage resources and clocks will be added to give a more precise notion of time (see section 6).

Events can be used to specify tasks by pairing start and end events. The duration of a task
is defined by the time that elapses between the occurrence of the two events. A restriction is that
the start event must precede the end event of a task.

An EPO is a pair (E, P) where F is the set of events and P C (FE x E) is a binary precedence
relation on the set E. Intuitively a precedence pair (a,b) describes that event a must precede
event b. If we want an EPO (E, P) to describe a meaningful ordering of events we need to impose
three restrictions on the binary relation P.

e P is transitive, i.e. Va,b,c € E : aPbAbPc — aPc
Intuitively this says that whenever a precedes b and b precedes ¢ then also a precedes c.

e P is irreflexive, i.e. Ve € ' : —ePe
The intuition behind this is that no event can precede itself.

e P is asymmetric (not symmetric), i.e. Va,b € E : aPb — —bPa
This restriction avoids cycles. In other words, an event that precedes a sequence of one or
more events cannot depend on that sequence.

An EPO can be represented by a directed acyclic graph, where the nodes denote events and di-
rected edges denote precedence relations between events. The graph in figure 3 shows an EPO
(E, P) with E = {as,ae,bs,be} and P = {(as,ae), (bs, be), (as,bs), (ae,be), (as,be)}. Note that
the pair (as,be) € P is not drawn in figure 3 because it follows out of the transitive property. The
graph is drawn with the fewest possible edges such that it is still represents the same reachability.
This is also known as a Hasse diagram which is visualisation of the transitive reduction.

as ae
A A
bs > be

Figure 3: Example of an EPO

The EPO in figure 3 describes the ordering of two tasks a and b. Each task is specified by a
start and end event and a precedence relation that ensures that the start event precedes the end
event. So the nodes as and ae together with the precedence edge (as,ae) represent task a. Task
b follows the same scheme. The idea is that the output of a is the input of b. Instead of waiting
for a to finish b can start processing chunks of the output from a after a has started (precedence
(as,bs)). As b depends on the output of a it can only finish when a has finished (precedence
(ae,be)). This describes a common situation in which task a writes some data into a buffer which
is then read by task b. This example will be used as a running example throughout the document
to illustrate various points.

2.2 Event-level Parameterized Partial Order August 18, 2010

2.2 Event-level Parameterized Partial Order

Applications often contain patterns that repeat in a predictable manner. Specifying such repeti-
tions in an EPO, as described in the previous section, results in very large POs. Another drawback
is that one does not have a finite representation for an arbitrary number of repetitions, i.e. there
is no finite representation for an infinite EPO. In order to facilitate large or infinite EPOs we
introduce Event-level Parameterized Partial Orders (EPPO) [15], which can be used to represent
recurring events and precedence rules in a compact manner.

Event classes are used to represent events that are repeated several times. Each event class is
parameterized with one or more instantiation variables and a specific instance is defined by a
valuation of these variables. To simplify the notation, variable names can be reused in differ-
ent event classes, e.g. both event classes A and B can have an instantiation variable z. If there
are infinite valuations for the instantiation variables we end-up with an infinite EPO, i.e. there
are infinite instances of event classes. To restrict the number of possible instances, each event
class has a range that defines the lower and upper bounds. The precedence relations between
classes are extended with boolean expressions that describe when a precedence relation between
two event class instances exists. These expressions are build over the instantiation variables of
the two classes that have a precedence relation. Because variables names can be reused we need
a way to distinguish between the source and target class variables. This is done by decorating all
shared variable names of the target class with a prime. We will now present the formal definition
of EPPOs.

Let VAR be the universe of typed variables. A valuation of a set A C VAR is a function that maps
each variable in A to an element of its domain. We write V' (A) for the set of valuations of variables
in A. Let UVAR be the set of undecorated variables and DVAR the set of decorated variables de-
fines as DVAR = {v' | v € UVAR}. Then the set of all variables is VAR = UVARU DVAR. Given
aset A C UVAR we write A’ for the set {a’ | a € A}. The set BoolEzp of boolean expressions
is built over function symbols, predicate symbols, constants, and variables. We write BoolEzp(A)
for the set of boolean expressions built over the variables in set A.

An EPPO is a tuple (E, P, M, R, C) where

e F' is a finite set of events classes.

P C (F x E) is the set of precedence relations between event classes.

M : E — F(UVAR) associates to each event class e a finite set of instantiation variables.
Here F(UVAR) is the set of all finite subsets of UVAR. We write V(e) as a shorthand for
V(M(e)).

e R : E — BoolExp gives the allowed valuation range for the instantiation variables of an
event class. A range is built over the instantiation variables of the associated event class.
Therefore we require, for all e € E, R(e) € BoolExp(M (e)).

e C': P — BoolFExp gives the condition under which a precedence relation between two event
class instances exists. Elements of UVAR denote the variables of the source event class
and elements of DVAR denote the variables of the target event class. We require, C(s,t) €
BoolExp(M (s) U M(t)").

Figure 4 shows the EPPO for the running example that is defined by:
E = {as, ae, bs, be}
P = {(as,ae), (bs, be), (as, bs), (ae, be), (be,as))}
M(as) = M(ae) = M(bs) = M(be) = {p}
R(as) = R(ae) = R(bs) = R(be) =1 <p <2

2.2 Event-level Parameterized Partial Order August 18, 2010

C((as,ae)) = C((bs,be)) = C((as,bs)) = C((ae,be)) =p' =p, C((beyas)) =p' =p+1

1<ps2
p'=p
as[p| > aelp]

U '= +1 U
p'=p P=p p=p
y , v
P=p
bs[p] > belp]

Figure 4: Example of an EPPO

The example describes the situation in which task a writes some data into a buffer which is then
read by task b. The event classes are visualised as as[p], ae[p], bs[p], and be[p] where p is an
instantiation variable with a different scope for each class. Directly above the event classes is
the valuation range of the instantiation variables. If every range contains the same sub condition
this sub condition is shown as a global condition outside the graph. This is useful when many
event classes have the same sub condition, as in figure 4, because we only have to write it once.
Each precedence relation has a condition that describes whether a precedence relation between
two event instances exists.

EPPOs add no expressive power compared to EPOs as they are nothing more that a compact
representation of EPOs. An EPPO can be unfolded to an EPO by assigning all values, within the
range, to the instantiation variables. The resulting event instances are ordered with the precedence
relations. If the condition evaluates to true then a precedence relation exists between two event
instances. Figure 5 shows the EPO after unfolding the EPPO in figure 4.

as[1] » ae[l] as[2] > ag?2]
4 4
bs[1] » be[1] bs[2] > be2]

Figure 5: Example of an unfolded EPPO

We will now formally define the unfolding of an EPPO. We use the notation v = ¢ to denote that
boolean expression t is a consequence of valuation v. In other words, v |= t is true if ¢ evaluates to
true for valuation v. Given an EPPO (E, P, M, R, C) we defined the unfolding to an EPO (E, P)
as:

E={(e,v)|e€c EAvEV(e)Av = R(e)}

P ={((e,), (f;w)) | (e, f) € PAv,w' |= Cle, f)}

here w’ is the valuation of V' (f)" given by w'(2’) = w(z), for z € V(f)
P = the transitive closure of P

Note that after constructing the binary precedence relation we take its transitive closure. This
ensures that P satisfies the transitive property. In other words, if the relation is already transitive it
will not change, otherwise precedences will be added that denote the transitive properties between
events. A EPPO is said to be consistent iff its unfolding yields an EPO.

2.3 'Task-level Parameterized Partial Order August 18, 2010

2.3 Task-level Parameterized Partial Order

In the previous section we described tasks in terms of events. Events describe instantaneous ac-
tions at a certain point in time. However, engineers typically specify system activities in terms
of tasks and durations because these are considered more intuitive than events. Task based de-
scriptions explicitly associate tasks with durations, whereas event implicitly describe durations.
As we will see, another advantage of lifting the representation to the task level is that it enables a
more efficient translation to UPPAAL. In a Task-level Parameterized Partial Orders (TPPO) the
tasks are parameterized instead of the events. Each task has a start and end event on which the
precedence relations are defined.

A TPPO is a tuple (T, E, P, M, R, C)
e T is a finite set of task classes.

e F is a finite set of events. We assume two functions start : T' — E and end : T — E that
maps each task to its corresponding start and end event. The function task : E — T maps
each event to its corresponding task. For each task ¢ we require, task(start(t)) = t and
task(end(t)) = t. Furthermore, we require that each event is associated with a task, i.e.
Vee E,3t € T : e = start(t) Ve = end(t).

e P C (E x E) is the set of precedence relations between events. To ensures that the start of
a task precedes its end we require that, for each ¢t € T, (start(t),end(t)) € P.

e M :T — F(UVAR) associates to each task class ¢ a finite set of instantiation variables. We
write V(t) as a shorthand for V(M (¢)).

e R:T — BoolEzxp gives the allowed valuation range for the instantiation variables of a task
class. A range is built over the instantiation variables of the associated task class. Therefore
we require, for all t € T, R(t) € BoolExzp(M(t)).

e C : P — BoolFxp gives the condition under which a precedence relation between two events
exists. We require, C'(s,t) € BoolExp(M (task(s)) U M (task(t))’).

Figure 6 shows the TPPO for the running example that is defined by:

T= {av b}

E = {as, ae, bs,be}

P = {(as, ae), (bs, be), (as, bs), (ae, be), (be,as)}

M(a) = M(b) = p

R(a)=R(b)=1<p<2

C((as,bs)) = C((ae,be) = o = p, C((be,as)) =/ =p+1
Unfolding a TPPO is similar to unfolding an EPPO, i.e. a TPPO can be unfolded by assigning
all the values, within the range, to the instantiation variables and ordering the obtained tasks
instances with the precedence relations. Figure 7 shows the unfolding of the TPPO in figure 6.

A TPPO is said to be consistent iff it can be converted to a consistent EPPO. Given a TPPO
(T,E,P,M, R,C) we defined the conversion to an EPPO (E, P, M, R,C) as:

]
I

E

P

M = (E, F(UVAR), {(start(t), M(t)) | t € T} U {(end(t),M(t)) |t € T})

R = (E, BoolExp, {(start(t),R(t)) | t € T} U {(end(t), R(t)) |t € T})

C = (P, BoolEzp, {((start(t),end(t)),Yv € M(t) :v' =v) |t € T} U {(p,C(p)) | p € P})

vl
I

UPPAAL August 18, 2010

1<ps2
»s| ap] |e
s| a[l] |e »s| a2 |e
p'=p p'=p
A \ 4
s| blp] |e . . I ‘
p'=p+i ‘ s| b[1] |e— s| b[2] |e
Figure 6: Example of a TPPO Figure 7: Example of an unfolded TPPO

3 UPPAAL

UPPAAL is an integrated tool environment for modeling, simulation, and verification of timed
systems. It is designed to exhaustively explore the state space of a modelled system. It has been
successfully applied to numerous industrial case studies [9]. The environment consists of three
main parts: a modelling language, a simulator, and a model checker. A short overview is given for
each of these three parts. In later sections the reader will be provided with additional information
when needed. For more in depth information see [9] for a tutorial and [11] for the underlying
theory, semantics, and algorithms.

The modelling language is based on timed automata [6, 11]. Such a timed automaton is a finite-
state machine extended with continues clock variables. All clocks increase synchronously with the
same rate. Besides clock variables, the automata in UPPAAL are extended with bounded discrete
variables. An automaton is composed out of a finite number of locations and edges between these
locations. Edges are decorated with guard, synchronisation, and update labels. An automaton
may fire an edge separately when the guard is satisfied. Edges from different automata can also
be fired synchronously when the guards and synchronization labels of all involved edges are satis-
fied. When an edge is fired the discrete variables are updated and a new location is reached. To
ensure progress, a clock invariant can be defined on locations. Such an invariant ensures that the
automaton does not stay at a location indefinitely, i.e. an edge must be fired before the invariant
is violated. A typical UPPAAL model consists of a network of parallel timed automata. These
automata can communicate via synchronization channels and/or shared variables. The state of
such a network is defined by the locations of all automata, the values of the discrete variables, and
the constraints on clocks.

Figure 8 shows a small network of parallel timed automata, taken from the UPPAAL tutorial
[9], that illustrates most of the modelling language constructs. The lamp automaton is depicted
on the left and consists out of the locations off, dim, bright and a local clock c. The user au-
tomaton, depicted on the right, consists out of one initial location and one transition that models
the lamp button being pressed. Both automata use the global synchronization channel press for
communication. The initial location of the lamp is off. If the user synchronises with press! the
lamp moves to the location dim and the clock is reset to zero. To set the lamp to bright the user
has to synchronise again within five time units. Only then is the guard c<5 satisfied and can the
location bright be reached. In all other cases the guard c>=5 is satisfied and the lamp moves
to the location off. When the lamp is in the location bright the user can turn off the lamp by
pressing the button once.

In the simulator users can experiment with models by manually choosing the edges that should
fire. This enables the user to debug the model and get a general idea of how consistent the be-

From TPPO to UPPAAL August 18, 2010

press?

idle
©><] press!

Figure 8: Lamp example

havior is with respect to the requirements. The formal consistency checking with respect to the
requirements is done with the model checking engine. When a counter example of a property is
found the path is visualised in the simulator.

The UppPAAL model checking engine uses a subset of the Timed Computation Tree Logic (TCTL)
language [5, 9] to query the state space. The language consists of path and state formulae. Path
formulae quantify over paths and states in the state space. A denotes that a property should hold
for all paths, whereas E denotes that there should be at least one path where the property holds.
To quantify over the states within a path the symbols [] (globally) and <> (eventually) are used.
[| denotes that all states within a path should satisfy the property, whereas <> denotes that at
least one state in the path has to eventually satisfy the property. State formulae are properties
that can be checked against a state. The following properties are supported by UPPAAL:

Al]¢ - ¢ must be satisfied for all states (Safety).

E[]¢ - there exists a path on which all states satisfy ¢ (Safety).

E <> ¢ - there exists a path in which ¢ is eventually satisfied (Reachability).
e A <> ¢ - for all paths there eventually must be a state that satisfies ¢ (Liveness).

e ¢ — — > - whenever ¢ is satisfied all sequent paths will eventually satisfy ¢ (Liveness).

where ¢ and 1 are state formulae.

There are several extensions of UPPAAL, each focusing on different problem domains. For ex-
ample, UPPAAL TIGA is used for solving games based on timed game automata [8], and UPPAAL
CoORA is used for cost optimal reachability analysis [10].

4 From TPPO to UPPAAL

In this section a translation from TPPO to UPPAAL is introduced. This translation generates an
UPPAAL model that captures the same causal ordering of tasks as defined by the input TPPO.
With these generated models the advantages of the UPPAAL model checking engine can be ex-
ploited. That is, the model checking engine can efficiently unfold the UPPAAL model of a TPPO
by generating the state space. This state space can then be investigated by defining queries as
described in section 3. Although UPPAAL is designed for verification of timed systems the transla-
tion described in this section does not contain any timing. This is because a TPPO describes the
ordering of tasks and does not contain any timed behavior. In section 6 the translation is extended
with resources that add time. In this section we completely ignore the notion of resources.

The global idea of the translation is that each task in a TPPO is translated to a task automaton

and that events are translated to edges of such a task automaton. An guard is added to each
event edge that ensures that an event can only occur when all precedence relations have been met.

10

4.1 Efficient Translation August 18, 2010

The result is a network of task automata where each task has a start and end event edge with a
guard. We use the following notation when defining the translation. If X and Y are sets we write
X —., Y for the set of partial functions from X to Y. If f € X —, Y and z € X we write f(x) |
if f(z) is defined and f(z) 1 if f(x) is undefined.

4.1 Efficient Translation

As mentioned earlier, UPPAAL is designed to exhaustively explore the dynamic behavior of a mod-
elled system. Despite the fact that the model checker does this very efficiently the problem of state
space explosion is still present. The generated models are only useful if they provide some degree
of scalability. To enable a translation that generates scalable models we assume two restrictions
on the input TPPO.

The first restriction is that each task class has a precedence relations from its end to its start
event. This self loop eliminates auto-concurrency. In other words, a new instance of a task can
only occur if the immediate predecessor instance of the same class has finished. Figure 9a shows
this dependency for task a, where the next instance is defined by the condition p’ = p + 1. The
Gantt chart in figure 9b shows a possible execution sequence for the TPPO in figure 9a. Instead
of creating one automaton per task instance this restriction enables efficient reuse of a single task
automaton for several instances. After a task instance has finished we can reuse the automaton
for the next instance by assigning a new valuation to its instantiation variables. To satisfy this

1<ps<3
p=pti
an | a@ || ag
s| alp] |e >
time
(a) TPPO (b) Gantt chart

Figure 9: Example where new instances depend on the predecessors

restriction we add the requirement that there is a precedence relation between the end and start
event of the same task class. That is, for all ¢t € T, (end(t), start(t)) € P. The conditions on
these precedence relations are called next functions and return the new valuation of the instanti-
ation variables given the current valuation. Figure 9a depicts a precedence relation with a next
function. For each task ¢ € T, next; € V(t) —, V(¢). Initially I assigns to each task ¢t € T an
initial valuation I(t) € V(t). We define R(t) to be the least set of valuations that contains I(t)
and satisfies v € R(t) A nexti(v) | = nexti(v) € R(t). Valuations in R(t) are called reachable.
We define <; to be the least transitive relation on R(t) satisfying v <; next;(v). We require that
<y is irreflexive, that is, there exists no v € R(t) such that v <; v.

The second restriction is that all precedence conditions are partial monotonic functions. These
functions are called update functions because they map a valuation of the source event to an val-
uation of the next target event that may occur, e.g. p’ = p + 1 returns the valuation of the target
event p’ by increment the valuation of the source event p. These functions are called monotonic
because they maintain the order. Given that precedence conditions are monotonic functions one
can efficiently derive if all dependencies for an event have been met. That is, instead of main-
taining a history of all past event instance one can derive the history from the last event instance
that occurred. This decreases the amount of memory needed for verification because the model
does not need to maintain the complete history. Thus, for each precedence p = (A4, B) € P, an

condition also called an update function U(p) € V (task(A)) —. V(task(B)). We write A 1 Bif
(A,B) € P and U(A, B) = f. We require, for each task t € T, U(start(t),end(t)) = Av € V(t).v
and U(end(t), start(t)) = next;. Moreover, we require the following monotonicity properties, for

11

4.2 Translation August 18, 2010

each precedence A 4, B and v,w € V(task(A)):
v <task(A) w A f(’l)) T = f(w) T
v <task(A) w A f(’LU) \J/ = f(’U) \I/ A f(’l)) <task(B) f(w)

4.2 Translation

The UpPPAAL model consists out of a network of finite automata. For each task class t € T an
automaton as depicted in figure 10 is created. The network has a global array M that contains

WaitStart
. ©

dep_met(start(tld))
S(true)

WaitEnd
ON

dep_met(end(tid))

S(false)
Done Choice
C Inext_def() :C>
D(true)
. J
next_def()
next_M()

Figure 10: Task automaton

the instantiation variables for each task class. A task instance is defined by the valuation of
its instantiation variables. For each t € T, the variables in M[t] are initialised to I[t]. Edges
are used to model the start and end event of a task. The start event is modelled by the edge
between the locations WaitStart and WaitEnd. The edge between WaitEnd and Choice models
the end event. It is important to note that the automaton ensures that the start event of a task
always precedes the end event. Event edges can only be taken when all causal dependencies have
been satisfied. The guard dep_met checks if all dependencies for the start or end event are sat-
isfied. Here the functions start and end are used to return the corresponding event given a task id.

Some additional information is stored to keep track of the current location of an automaton.
This is needed because in UPPAAL one cannot directly determine the current location of an au-
tomaton. Therefore, the model maintains two arrays S and D of Boolean variables. For each task
t € T, a Boolean variable S[t] records whether the last event that occurred was end(t) or start(t).
When an event edge is taken the value of S[t] is set to true for the start event and false for the
end event. Initially, S[t] = false. For each task ¢ € T, a Boolean variable D]t] records whether
a task is done. Initially all variables in D are set to false. When all instances for task ¢ have
occurred DJt] is set to true. In figure 10 the function S and D are used to set the value of the
Boolean variables.

When the end event occurs the automaton moves to the location labelled Choice. This is a
committed location denoted by the C. In such a location no time may pass and the next edge
taken must be an outgoing edge of a committed location. The outgoing edges of the committed
location determine the next valuation of the instantiation variables. The guard /next_def is sat-
isfied when all tasks instances have occurred and the automaton can move to the location Done.
If still some instances have to occur for task ¢ the guard next_def is satisfied. On this edge the
instantiation variables are updated by next_M that sets M[t] to next(t). The automaton then
moves to the location WaitStart where it waits for the start event of the new task instance.

12

Implementation August 18, 2010

For event e € E, the function eval(e) denotes the valuation of the next event instance of e
that will occur. The next valuation of e depends on the valuation of the associated task ¢ and on
whether the start event has occurred. If no such valuation exists, that is when all event instances
of e have occurred already, eval(e) is undefined and we write eval(e) 1.

M(t) if e = start(t) A ~S[t]
eval(e) = ¢ mnext(M(t)) if e = start(t) A S[t]
M(t) if e = end(t)

For an event b € F, the guard dep_met(b) is given by

dep-met(b) = V(a EN b) € P~ :eval(a) } A fleval(a))l = eval(b) < f(eval(a))

Here P~ is the set of precedences minus all precedences between the start and end event of a task,
ie. P~ = P\ {(start(t),end(t)) | t € T}. These internal task precedences are removed because
the task automaton already takes care of these dependencies. The intuition behind the definition
of dep-met(b) is as follows. In order to check whether the next event instance of b may occur,

we have to check for each incoming precedence (a EN b) € P~ whether the dependency induced
by that specific precedence has been met. In order to decide whether the dependency induced by

precedence a Lobis met, we first test if eval(A) is defined. If this is not the case then all event

instances of a have occurred and all dependencies induced by a 4, b have been met. If still some
event instance of a has to occur, we check whether f is defined for the next instance of a. If f

is not defined then, by the first monotonicity condition, again all dependencies induced by a ENY
have been met. If f is defined for eval(a), then we require that the next instance of b precedes
f(eval(a)). Clearly, if f(eval(a)) < eval(b) then the occurrence of the next event instance of
a should precede the occurrence of the next event instance of b, and so the dependencies have
not been met. Conversely, if eval(b) < f(eval(a)) then for any immediate predecessor of eval(d),
that is, for any v € V(task(a)) with f(v) = eval(b), the second monotonicity condition implies
v < eval(a). Hence, all precedences for eval(b) have been met.

5 Implementation

In the previous section a translation from TPPO to UPPAAL is given. This section describe the
implementation of this translation. First a textual representation for TPPOs is described that
will serve as input for the translator. Then the implementation of the translator is discussed.
A overview of the translation phases is given together with a description of the code generation
algorithm. The running example will be used to illustrate the implementation.

5.1 TPPO Representation/Syntax

For the implementation of the translator we need a textual representation for TPPOs that will
server as input. Within the Octopus project the name Design Space Exploration Intermediate
Representation (DSEIR) is used to denote the textual format that describes, among other things,
the TPPOs. It is important to note that the DSEIR format presented here is an early version
and that the format has changed in newer versions. There are no fundamental differences between
the old and new format and therefore it should be relatively easy to adapt the translator to this
new format. DSEIR is based on the Y-chart approach (see section 1) and thus describes the tree
aspects application, platform, and mapping. The DSEIR file format is based on XML. XML is a
textual format used to structure data according to a formal syntax. The syntax of a DSEIR file
is defined in a Document Type Definition (DTD) [32] that can be found in Appendix A. Figure
11 shows the DSEIR XML file for the running example. To facilitate a better explanation the
example has been divided into Scenario, Application, Task, and Precedence. The full DSEIR for

13

1

2

3

4

© ® N o

16

5.1 TPPO Representation/Syntax August 18, 2010

the running example can be found in appendix B.

<?xml version="1.0" encoding="UTF-8"7>

<IDOCTYPE scenario SYSTEM " dseir . dtd”> ' <2Pplication>

<scenario> 2 <J0t.)> .
<platform> 3 <id>example</id>
P 4 <range>
L, <id>p</id>
latf °
E{npa N inor>m> 6 <IBound>1</IBound>
pping 7 <uBound>2</uBound>
L 8 </range>
iémail)ipclgfion> 9 <tasks>..</tasks>
PP 10 <precedences>..</precedences>
11 <job>

</application>

. </application>
</scenario> 2 </app

Applicati
(a) Scenario (b) Application

<tasks> 1 <precedences>
<task> 2 <precedence>
<id>a</id> 3 <source>a_s</source>
<instantiationVar> 4 <targe't'>b,s</'target> o
<id>p</id> s <condition>p'=p</condition>
<iniValue>l</iniValue> ¢ </precedence>
</instantiationVar> 7 <precedence>
</task> 8 <source>a_e</source>
<task> 9 <target>b_e</target>

10 <condition>p '=p</condition>
11 </precedence>
12 <precedence>

<id>b</id>
<instantiationVar>
<id>p</id>

. - source>b_e</source
<iniValue>l</iniValue> e <source>b-e</source>
. .. 14 <target>a._s</target>
</instantiationVar> L . -
</task> 15 <condition>p '=p+1</condition >
</tasks> 16 </precedence>
17 </precedences>
Task:
(c) Tasks (d) Precedences
Figure 11: Running example DSEIR
Scenario

Figure 11a shows the listing of the XML root and its children. Line 1 defines the XML version and
the character encoding used. On line 2 the DOCTYPE declaration refers to the external DSEIR
DTD. The root of every DSEIR file is scenario. This node contains the three Y-chart aspects,
i.e. platform (lines 4-6) describing the resources, mapping (lines 7-9) describing how applications
are executed on the platform, and application (lines 10-12) describing the tasks that make up an
application. Note that sub-trees mapping and platform are not shown in figure 11. These will be
discussed in section 6. In this section we will focus on the application sub-tree.

Application

The application sub-tree contains one or more instances of applications, called jobs. A job is an
application that has concrete values for the job parameters. For example, in the domain of digital
document printers, the application print in combination with the specific amount of pages to be
print is called a job. Each job is described by one TPPO. If an application contains more than
one job these can be executed concurrently, i.e. there are no precedence relations between jobs. In
figure 11b only one job is defined for the running example (lines 2-11). This job has a unique id
at line 3 and defines a range for the instantiation variable p at lines 4-8. The tasks and precedences

14

5.2 Translator August 18, 2010

sub-trees are shown in figure 11c and 11d.

Task
The tasks sub-tree contains the tasks that are involved in realising a job. Each task has a unique
identifier and one or more instantiation variables. Figure 11c shows the listing for the two tasks
used in the running example. Each task is identified by an id at line 3 and 10. The instantiationVar
nodes contain the id of the used instantiation variable and the node iniValue contains the initial
value.

Precedences

The precedence relations between tasks are defined in the precedences sub-tree. For each precedence
the source and target events are defined. An event id consists out the task id extended with _s or
_e for the start or end event of that task. The condition defines when a precedence relation exists.
In figure 11d p’ denotes the instantiation variables of the target and p denotes the instantiation
variables of the source.

5.2 Translator

The translation process consists out of four phases that gradually transform a DSEIR file to an
UpPAAL model file. Figure 12 depicts the input and output of each phase. The four phases Parse,
Convert, Code generation, and Serialise are depicted by arrows that transform some input to an
output. Here the documents DSEIR XML and Uppaal XML denote the external input and output
files of the translator. Internally the translator uses the trees DSEIR, IR, and NTA as input and
output of the phases.

The translator is implemented in the Java programming language. Java was chosen because
of its widespread use, portability, and extensive open source community. The parse and seri-
alise phase are implemented with the XStream open source library. This library provides an user
friendly interface for mapping XML tags to Java objects and vice versa. Given such a mapping,
XStream automates the parsing from XML and the serialisation to XML. The tool is available at
http://xstream.codehaus.org/.

Translator

DSEIR IR NTA

Parse Convert Code gen. Serialise
—_— —_—

\/

DSEIR Uppaal
XML XML

l Syntax analysis

Error messages
(abort)

Figure 12: Translation phases

Parse & Syntax analysis
The parse phase has two goals. The first goal is to determine if the structure of the DSEIR XML
file is correct with respect to the grammar given in appendix A. The second goal is to transform

15

5.3 Code Generation August 18, 2010

the input file to a tree structure that provides easy access to the data. The strings that makeup
a XML document can be divided into markup and content. Markup strings, also known as tags,
describe the structure of the document, whereas the content is the actual data we wish to store.
Note that the parsing process only checks the markup syntax and not the syntax of the content
strings. Some additional analysis is done after the parse phase to check the syntax of the content.
For example, an error is thrown when the source or target of a precedence relation is undefined.

The implementation of the parse phase uses the XStream library. The DSEIR tree structure
is modelled as a set of Java classes. The relationships between these classes describe the allowed
structure of the tree. There is a one-to-one mapping between the tags in the DSEIR XML file
and the classes of the DSEIR tree in Java. The only exception being that the XML may contain
implicit collections that have to be modelled explicitly in Java, e.g. with an array or list. Given
this mapping XStream can automatically instantiate a DSEIR tree from a DSEIR XML file. If
the structure of the XML file cannot be parsed an exception is thrown giving the location of the
error in the XML file.

Convert

The converter phase transforms a DSEIR tree into an IR (Intermediate Representation) tree. The
goal is to transform and rearrange the input tree so that it is suited for the code generation
phase. The addition of an intermediate representation simplifies the implementation of the code
generation phase. For example, in the DSEIR data structure there is a clear separation between
application, mapping, and platform. During code generation this separation requires extra navi-
gation through the data structure. Therefore the convert phase creates a new data structure that
combines application and platform information by applying the mapping. Another advantage
of the convert phase and IR is that it decouples the code generation phase from DSEIR. This
makes the translator less sensitive to changing in the DSEIR data structure. If a converter can
be implemented for the changed DSEIR data structure no changes to the code generation phase
are necessary. When such a conversion is not possible the IR and the code generation have to be
adapted.

Code generation

In this phase a Network of Timed Automata (NTA) is generated from the IR. The output of
this phase is a NTA tree that represents the generated UPPAAL model. Such a tree consists of
automata templates and code. The task template, as depicted in figure 10, is predefined and can
simply be added to the NTA tree. The bulk of the work in this phase deals with the generation
of code that implements the logic behind the precedence relations. Sections 5.3 gives an overview
of the code generation algorithm.

Serialise

The last phase serialises the NTA tree to the XML format used by UPPAAL. The formal syntax of
such a UpPAAL XML file is defined in a DTD that is available at http://www.it.uu.se/research/group
/darts/uppaal /flat-1_1.dtd. The serialisation of the NTA tree is implementation with the XStream
library. There is a one-to-one mapping between the classes in the NTA tree and tags in the XML
file. Given this mapping XStream can automatically serialise a NTA tree to a UrPPAAL XML file.

5.3 Code Generation

Based on the translation given in 4 we now describe the algorithm that generates the UPPAAL
code. The input of this translation is a DSEIR, XML file that descibes a TPPO. The output is
code that implements the TPPO precedence dependencies. Each task and event is assigned an
non-negative integers that serves as a unique identifier. To enable a mapping from tasks to events
and back the encoding start(t) = 2t, end(t) = 2t + 1, task(t) = t/2 is used. Listing 1 shows the
implementation of these functions.

16

5.3 Code Generation August 18, 2010

1 int start(int id){return id=x2;}
2 int end(int id){return idx2+1;}
3 int task(int id){return id/2;}

Listing 1: Task and event encoding

The algorithm is broken down into nine small steps, each step building on the previous step(s).

To clarify the algorithm examples of generated code are given for the running example in figure
11.

1. Identifiers: For each task class and event unique identifiers are generated. These identifiers
are used throughout the model and will reappear in almost every piece of generated code.
The total number of task classes are stored in a constant variable called nTasks. In line 3
of listing 2 the type tld_T is defined as an integer with a lower bound of 0 and an upper
bound of nTask—1. A value between these bounds identify a task class. For each task class a
constant variable is generated that is assigned an unique value of type tld_T (see lines 4-5).
The same scheme is applied for generating the event identifiers at lines 8-13 . Note that the
number of events in line 8 is nTasksx2 as each task has a start and end event denoted by _s
and _e.

1 // Task identifiers

2 const int nTasks = 2;

3 typedef int[0,nTasks—1] tId_T;
4 const tld_T a_id = 0;

5 const tld_T b_id = 1;

6

7 // Event identifiers

g8 const int nEvents = nTasks%2;

o typedef int[0,nEvents—1] eld_T;
10 const eld_. T a_s = 0;

11 const eld_.T a_e = 1;

const eld_.T b_s = 2;
const eld_T b_e 3;

-
N

-
@

Listing 2: Identifiers for the running example

2. Range: Each task class has a set of instantiation variables. A valuation of these variables
defines a task instance. To limit the number of task instances a range is given that defines
the upper and lower bounds for each instantiation variable. Lines 1-3 show the code that
is generated from the range of the running example. The constant variables IBound_p and
uBound_p are used in other pieces of generated code to check whether a valuation is within
bounds. For implementation reasons some instantiation variables have to be marked as
undefined. For this purpose a unique value is assigned to undef_p. An instantiation variable
p is said to be undefined if its value equal the value of undef_p.

1 const int IBound_p = 1;
2 const int uBound_p = 2;
3 const int undef_p = IBound_p —1;

Listing 3: Range for the running example

3. Instantiation variables: As mentioned each task has a set of instantiation variables. Current
versions of UPPAAL do not support a set data structure. Therefore sets are modelled as
structs that group together several variables. Lines 1-4 show the definition of such a struct
named varSet_T. For each instantiation variable a variable with the same name is added
to the struct definition. In the case of the running example there is only one instantiation
variable p at line 3. The function undef at lines 6-10 can be used to check whether all variable
values in a set are within the range. In line 11 an array M of varSet_T instances is generated.

17

5.3

Code Generation August 18, 2010

Each index in this array contains the set of instantiation variables for a specific task. All
task instantiation variables are assigned the initial value.

1 typedef struct

> {

3 int p;

4 } varSet_T;

6 bool undef(const varSet. T &v)

7 {

8 return (v.p < IBound_p && v.p != undef_p) || v.p > uBound._p;
o}

[
o

-
-

varSet. T M[tld_T] ={{1}.{1}};

Listing 4: Instantiation variables for the running example

. Next function: As described in section 4, each task has a partial function called next that

returns the new valuation of its instantiations variables given the current valuation. All
the next functions are modelled in a single UPPAAL function next, that accepts a task id
and returns the new valuation of the instantiation variables. A switch is generated using
cascading if else statements. For each task a case is added to the switch that calculates the
next valuation (see lines 3-14). For the running example the next valuation is the increment
of p. As mentioned all nezt functions are partial functions, i.e. not every input maps to and
output. Therefore an extra function called next_def is generated that returns whether the
update function is defined for some input. For each task a case is added that checks whether
the next valuation falls within the bounds (see lines 20-24).

1 varSet.T next(tld_-T id)
2 {

3 varSet_T newSet;

. if(id = a_id)

6 newSet = M[id];

7 newSet . p++;

s}

9 else

w if(id = b_id)

n |

12 newSet = M[id];

13 newSet . p++;

14 }

15 return newSet;

16 }

17

18 bool next_def(tld_-T id)
19

20 if(id = a_id)

21 return M[id].p < uBound_p;
22 else

25 if(id = b_id)

24 return M[id].p < uBound_p;
25}

Listing 5: Next function for the running example

. Precedence function: The precedence relations are modelled in a single function P. It accepts

two events A, B and returns whether a precedence exists between these two events. A switch
is generated using cascading if else statements. For each precedence relation a case is added

18

5.3

Code Generation August 18, 2010

that returns true. If no precedence relation exists between A and B the function will return
false .

1 bool P(eld_T A, eld_T B)

2

{

3 if(A=— a_s & B = b_s)
4 return true;

5 else

6 if(A=— a_e && B = b_e)
7 return true;

8 else

9 if(A=— b.e && B — a_s)
10 return true;

11 else

12 return false;

Listing 6: Precedence function for the running example

. Update function: Each precedence condition is assumed to be a partial monotonic function

(see section 4). All update functions are modelled in a single function U, that accepts a source
event A, a target event B, and the valuation of the source event v. A switch is generate using
cascading if else statements. For each precedence relation a case is added to the switch that
applies the update function and returns the new valuation (see lines 3-19). As mentioned
all updates are partial functions. Therefore an extra function called U_def is generated that
returns whether the update function is defined for some input. First the update function is
applied on the given arguments (line 24). Then the undef function at line 25 determines if
the resulting output is defined, i.e. if all instantiation variables are within the range.

1 varSet.T U(eld_T A, eld_.T B, varSet.T v)
2 {

3 if(A=— a_s & B = b_s)
v

5 V.p=v.p;

6 return v;

T}

8 else

9 if(A=— a_e && B b_e)
10 {

11 V.p=v.p;

12 return v;

13 }

14 else

15 if(A=— b_.e && B = a_s)
16 {

17 v.p=v.p+1;

18 return v;

19 }

20 }

21

22 bool U_def(eld_-T A,eld_.T B,varSet.T v)
23 {

24 varSet.T uv =U(A,B,v);
25 return lundef(uv);

26 }

Listing 7: Update function for the running example

19

5.3 Code Generation August 18, 2010
7. Location identifiers: In UPPAAL one cannot directly determine the current location of a task
automaton from within a function. Some additional data has to be maintained to enable
this. Each task automaton maintains one boolean variable in the arrays S and D. Here S[t]
records whether the last event instance of task t was a start or end event and D[t] records
whether all instances of task t have occurred. If we relate this to the locations of the task
automaton in figure 10, then S[t]==false denotes WaitStart, S[t]==true denotes WaitEnd,
and D[t]J==true denotes Done. Initially all Booleans are set to false as this corresponds to
the initial locations of the task automata.
1 bool S[tld_T] = {false ,h false};
2 bool D[tld_T] = {false , false};
Listing 8: Location identifiers for the running example
8. FEwal function: For each event the partial function eval gives the next event instance that
will occur. The next instance or valuation of an event depends on the current location of
the associated task automaton, maintained in the arrays S and D. If event e is a start event
and the current location is WaitEnd then the next event valuation is the next valuation
of the associate task (see line 7). Otherwise the location is WaitStart and the next event
valuation is the current task valuation (see line 9). If event e is an end event the next event
valuation is always the current task valuation (see line 12). To model the fact that eval is a
partial function eval_def is generated. eval is undefined if the next task instance is undefined
(line 21) or if the task automaton is in the location Done (line 23 and 26). In all other cases
eval is defined.
1 varSet. T eval(eld T e)
2 {
3 tld.T t = task(e);
4 if(e = start(t))
5
6 if(S[t])
7 return next(t);
s else
9 return M[t];
10 }
11 else
12 return M[t];
13 }
14
15 bool eval_def(eld. T e)
16 {
1w tld.T t = task(e);
18 if(e = start(t))
19 {
20 if (S [t])
21 return next_def(t);
22 else
23 return !D[t];
24 }
25 else
26 return !D[t];
27
Listing 9: Eval function for the running example
9. dependencies met function: The guard dep-met checks if all dependencies for an event are

satisfied. This function builds upon the previously generated code.

20

Resources August 18, 2010

1 bool dep_met(eld_T B)

2 {

3 return forall (A :eld-T) P(A,B) imply

4 (eval_def(A) && U_def(A,B,eval(A)) imply eval(B).p < U(A,B,eval(A)).p);
5}

Listing 10: Dependencies met function for the running example

6 Resources

In the previous sections we explained how TPPOs are used to describe applications and how these
can be translated to UPPAAL. In this section we extend the translation with resources that deter-
mine the execution time. Applications are executed on a platform consisting of various resources,
e.g. RAM and hard disks for storage, buses for data transport, FPGA blocks and general purpose
CPUs for processing. Each resource has a limited capacity, e.g. max memory or bus bandwidth.
The total capacity of a resource is divided into a number of chunks that can be claimed or re-
leased. Resources are used to execute tasks that make up an application and are typically claimed
at the start and released at the end of a task. Depending on the available capacity a claim may
succeed or fail. A task can only start executing if all resource claims have succeeded. When a task
finishes it typically releases the claimed resources. However, in some cases instead of releasing a
resource it is handed over to another task. When the task, to which the resource was handed over,
finishes the resource is released or handed over to yet another task. An common example is when
one task hands over memory that contains data for another task. In this research we modelled
resource handovers implicitly, i.e. when a task does not release a claimed resource it is assumed
that eventually another task will release it. Another solution is to explicitly define to which task
a resource is handed over. In this solution we know exactly which task will use and release the
resource. An disadvantage of explicit resource handover is that its implementation requires addi-
tion logic, whereas implicit resource handover does not require any additional logic. The duration
of a task depends on the size of the work and the pace at which the claimed resources can process
the work. If the pace is constant the duration of a task is defined by size/pace. However, during
execution the pace of a resource may change resulting in slower or faster task execution. Con-
tention between tasks for resources occurs because resources are limited and multiple tasks can
be executed concurrently. Scheduling policies are used to resolve resource contention and attempt
to optimize, for example, throughput, turnaround time, and response time. In practise these
scheduling policies are based on heuristic algorithms and thus are not guaranteed to find the op-
timal solution. For the generated UPPAAL models no scheduling policies need to be implemented
as the model checking engine can explore the whole state space and find the optimal solution.
However, the computation time and memory usage can increase sharply due to state space ex-
plosion. This problem can be alleviated by implementing some scheduling policies that decreases
the nondeterminism in the model, with the risk of losing the optimal solution. Another advan-
tage of scheduling policies is that the model behavior comes closer to the behavior of a real system.

The running example used in the previous sections describes a situation in which task a writes
some data into a buffer which is then processed by task b. Task a and b are pipelined, which means
that b can start before a has finished. We extend the running example with a simple platform
consisting of a general purpose dual core CPU and 32 MB of RAM. Both tasks are mapped on
the CPU and are assigned at least one core. If two cores are available both will be used doubling
the pace of a task. All the 16 MB buffer memory is claimed by a and is only released when b has
finished. In this simple example we abstract for the buses that transport data from one resource
to another. Figure 13 shows the TPPO and the resource mapping for the running example. Here
ellipses denote resources, edges from resource to task denote claims, and edges from task to re-
source denote releases. The amount that is claimed or released is shown in a label next to the
edge.

21

6.1 Resource Representation/Syntax August 18, 2010

s| blp] |e
)
|
[NGO |
p'=pH

Figure 13: Running example with resources and mapping

6.1 Resource Representation/Syntax

In sections 5.1 we described the textual representation of TPPOs. This section describes the tex-
tual representation of resources and the mapping that maps tasks on resources. Figure 14 shows
the DSEIR XML file for the running example. Note that only the platform and mapping sub-trees
are shown. The application sub-tree was already discussed in section 5.1. To facilitate a better
explanation the example has been divided into Scenario, Platform, Map task a, and Map task b.
The full DSEIR for the running example can be found in appendix B.

Scenario

Figure 14a shows the listing of the XML root and its children. The root contains the three Y-
chart aspects, i.e. platform (lines 4-6) describing the resources, mapping (lines 7-9) describing how
applications are executed on the platform, and application (lines 10-12) describing the tasks that
make up an application.

Platform

A platform consists of one or more resources. Each resource has a capacity that gives the number
of chunks that can be claimed or released by a task. The pace of a resource is defined by the
pace function that returns the speed at which a resource can process data. Figure 14b shows
the platform node that contains the resources for the running example. The dual core CPU is
modelled as one resource that has a capacity of two (line 3), i.e. one chunk for each core. The
paceFunction node, at lines 4-7, describes the dynamic behavior of the CPU. Here the UPPAAL
expression syntax is used, which is almost identical to C. At a later stage it may be desirable
to use an intermediate expression language that can be translated to the languages of the used
tools. For now we define expressions in the language of the target tool, in this case UPPAAL. The
resource_cap array maintains the state of each resource. If all cores have been claimed the pace is
10. If one core is idle it will be used to double the pace of the task that has claimed the other
core. Memory is modelled as a single resource in lines 9-13. The total capacity of the memory
resource is 32 MB (line 11) and the pace is a high constant (line 12).

Mapping

The mapping node describes how the tasks are mapped onto the platform. For each task it contains
a map node that describes the size of the work and the resources that are claimed and released.
Figure 14c shows the mapping for task a. The size node (line 4) gives the size of the data that
has to be processed. To resolve resource contention a lazy or greed claiming strategy is defined for
each task (line 5). If the node claimStrategy is not defined the lazy strategy will be used as default.

22

6.2 Extending the Network of Timed Automata August 18, 2010

A greedy strategy can be used to reduce the state space or to accurately model a system with
greedy scheduling. Note that with a greedy strategy the optimal solution may be lost. Before task
a can start it has to claim one CPU core (lines 6-9) and a 16 MB buffer (lines 10-13). When a is
done the claimed CPU core is released (lines 14-17). The buffer is not released by task a because
it serves as input for task b that may still be busy. The mapping for task b is shown in 14c. The
size of the data that b has to process is larger than task a (line 4). Another difference is that
b does not claim any memory as it uses the buffer claimed by a. When b is done it releases the

buffer and the CPU core (lines 10-17).

1 <?xml version="1.0" encoding="UTF-8"7>
2 <!DOCTYPE scenario SYSTEM " dseir.dtd">
3 <scenario>

4 <platform>

</platform>
<mapping>

© o N o

</mapping>

10 <application>
11 ..

12 </application>
13 </scenario>

(a) Scenario

<map>
<jobld>example</jobld>
<taskld>a</taskld>
<size>100</size>
<claimStrategy>lazy</claimStrategy>
<claim>
<resourceld>cpu</resourceld>
<capacity>l</capacity>
</claim>
<claim>
<resourceld>mem</resourceld>
<capacity>16</capacity>
</claim>
<release>
<resourceld>cpu</resourceld>
<capacity>l</capacity>
17 </release>
18 </map>

© W N e ;oA W N =

N e
[S S C R)

-
=Y

(c) Map task a

1 <resource>
2 <id>cpu</id>

3 <capacity>2</capacity>

4+ <paceFunction>

5 if (resource_cap[cpu_-id]==0) return 10;
6 else return 20;

7 </paceFunction>

s </resource>

9 <resource>

10 <id>mem</id>

11 <capacity>32</capacity>

12 <paceFunction>return 999;</paceFunction>
13 </resource>

(b) Platform

<map>
<jobld>example</jobld>
<taskld>b</taskld>
<size>160</size>
<claimStrategy>lazy</claimStrategy>
<claim>
<resourceld>cpu</resourceld>
<capacity>l</capacity>
</claim>
10 <release>
11 <resourceld>mem</resourceld>
12 <capacity>16</capacity>
13 </release>
14 <release>

© ® N o ‘oA W N e

15 <resourceld>cpu</resourceld>
16 <capacity>1l</capacity>

17 </release>

18 </map>

(d) Map task b

Figure 14: DSEIR platform and mapping for the running example

6.2 Extending the Network of Timed Automata

To enable resource usage the network is extended with an automaton, as depicted in figure 16, for
each resource. Such a resource automaton maintains the current capacity of a resource. In order
to claim and release resources the task automata are extended with a one-way message passing
mechanism that enables communication from one task to multiple resources. To keep track of a
tasks duration, each task automaton is extended with a clock variable and a mechanism that han-
dles changes in resource pace. Another option is to add clocks to each resource automata as was
done in [20]. In this solution a resource keeps track of its duration and signals a task automaton
when it is done. This simplifies the mechanism for detecting changes in resource pace as this can

23

6.2 Extending the Network of Timed Automata August 18, 2010

be handled within a single resource automaton. The disadvantage of this approach is that each
resource requires multiple clocks when several tasks are using the resource concurrently, i.e. one
clock to maintain the progress of each task. To avoid complex resource automata we choose to
extend the task automata with clocks. Figure 15 depicts an extended task automaton.

WaitStart

dep_met(start(tld))&&
canClaim(start(tld))&&

dep_met(start(tld))&&
canClaim(start(tld))&&

greedy Igreedy

greedyClaim! lazyClaim!

S(true), S(true),
setClaimRequest(start(tld)), setClaimRequest(start(tld)),
x=0, x=0,

cSize=size, cSize=size,

oldPace = tPace() oldPace = tPace()

tPace()!=oldPace
throttle!

_/ WaitEnd
i:int[0,size] (tPace()!=oldPace) ||
i<=x && (i+1)>x (tPace()>0 imply x <= divide(cSize,tPace()))
cSize=(cSize—-oldPace*i)>? 0 dep_met(end(tld)) &&
oldPace = tPace(),x=0 tPace()>0 && tPace()==oldPace &&
I>r(e|>e:ac51ie\/lide(cSize,tPace())

setReleaseRequest(end(tld)),
S(false),oldPace=0,cSize=0

Done Inext_def()

D(true) @ Choice
next_def()
\ next M() Y,

Figure 15: Task automaton with resource usage

release?
resource_cap[id]+=resMessages][id].reqCap,
resMessages][id].reqCap=0

I lazyClaim?
@ resource_cap[id]-=resMessages[id].reqCap,
resMessages|id].reqCap=0

/[

greedyClaim?
resource_cap[id]-=resMessages][id].reqCap,
resMessages][id].reqCap=0

Figure 16: Resource automaton

Claiming/Releasing Resources

To enable the claiming and releasing of resources task and resource automata pass data via chan-
nels and shared variables. The general idea is that a task sets a message in a shared variable and
uses a channel to notify the resource of this new message. The channels used to notify resources
are so called broadcast channels. With broadcast channels one sender automaton can synchronise
with zero or more receiver automata. This enables one task automaton to set multiple variables

24

6.2 Extending the Network of Timed Automata August 18, 2010

and notify all resource automata. After receiving a notification the resources will check if they
received a message.

To avoid state space explosion the model can be fine-tuned by choosing the appropriate scheduling
strategy for claiming resources. For each task the claiming strategy can be set to either lazy or
greedy. With the lazy strategy the claiming of resources can be postponed even if the requested
resources are available, thus postponing the execution of a task as it can only start when all re-
sources have been claimed. This introduces a lot of nondeterminism increasing the state space.
On the other hand this will ensure that the optimal solution is found. When a greedy strategy
is used a task is forced to claim the required resources as soon as they become available. This
decreases the nondeterminism and thus reduces the state space, with the risk of losing the optimal
solution. Note that there is still some nondeterminism left when two or more tasks want to claim
the same resource at the same time. In future versions priorities could be added to resolve this
nondeterminism and enable further fine-tuning of the model.

In figure 15 the two edges between locations WaitStart and WaitEnd denote the start event
of a task. These edges can only be taken when the guards dep_met and canClaim are satisfied.
The guard dep_met was already discussed in sections 4 and 5. The guard canClaim is satisfied
when all the required resources for the task are available. The two edges that denote the start
event differ in the used claiming strategy. The left edge is taken when a task uses a greedy strategy,
i.e. greedy is satisfied, and the right edge is used for the lazy strategy, i.e. !greedy is satisfied.
When a greedy strategy has been chosen the urgent broadcast channels greedyClaim is used for
communication between task and resources. Declaring a channel urgent ensures that no delay can
occur if a synchronization is enabled. For lazy resource claims the non-urgent broadcast channel
lazyClaim is used that does allow delays. Before synchronizing with the resources the update
function setClaimRequest sets a variable to the requested capacity for each resource. These vari-
ables are stored in the global array resMessage that uses the unique resource identifiers as indexes.
When the variables are set the task automaton synchronises with the resource automata. During
synchronization a resource automaton takes one of the edges labelled with the greedyClaim or
lazyClaim synchronization. Given its unique identifier a resource can look up its current capacity,
stored in the global array resource_cap, and update it by subtracting the requested capacity stored
in the array resMessage. The last update resets the variable used for message passing. The same
schema is used to release resources. The edge between locations Wait End and Choice denotes
the end event of a task and the release channel on this edge synchronises with the resources. The
invariant on the location WaitEnd ensures that the end event edge cannot be delayed and thus
no delay can occur when releasing a resource, i.e. all resource releases are considered to be greedy.

Task Duration

The duration of a task is defined by the time that elapses between the occurrence of the start
and end event. This task duration depends on the size of the work and the pace at which the
claimed resources can process the work. If the pace is constant the duration of a task is defined
by size/pace. However, during execution the pace of one or more resources may change resulting
in faster or slower task execution. In the task automaton shown in figure 15 the elapsed time
since the last occurrence of a start event is maintained by clock z. The function ¢tPace gives the
current pace at which the task can process its work. This is defined by the resource that forms
the bottleneck, i.e. the resource that has the lowest pace. The time at which a task will end is
given by divide(cSize,tPace()) 1. Here the variable cSize is the current size of the work that still
has to be processed by the task.

Time elapses when the task is in the location Wait End. To force progress the invariant ¢t Pace()! =
oldPace || (tPace() > 0 imply © <= divide(cSize,tPace()) defines when this location may be oc-

Tn UPPAAL we can only impose integer bounds on clock variables. Therefore the function divide(a,b) gives the
smallest integer greater or equal to %.

25

6.3 Code Generation August 18, 2010

cupied. The global idea is that the elapsed time, given by clock x, should not exceed the task dura-
tion given by divide(cSize, tPace()). To avoid violation of the invariant the end event edge should
be taken when both the invariant and the guard are satisfied, i.e. z == divide(cSize, tPace()).

To model dynamic resources we need to know exactly when the pace of a resource changed.
When such a change occurs the guard tPace()! = oldPace is satisfied. The urgent property of the
broadcast channel throttle ensures that the automaton moves to the committed location without
delay. Because there are no receivers throttle will synchronise with zero automata. In order to
calculate the work that has been done we multiply the value of clock x with oldPace. However,
UpPAAL cannot refer to the value of clocks in integer assignments. Therefore we use a trick,
described in [20], to derive the largest integer i that satisfies ¢ < x. This trick uses the select
statement ¢ : int[0 : size] that non-deterministically binds ¢ to a value in the range 0 to size. The
guard i <=z && (i+ 1) > x ensures that i is the largest integer that satisfies ¢ < . The value of
¢Size can then be updated to (¢Size — OldPace xi) >70. Here >7 is the maximum operator that
ensures that the new value of ¢Size is at least 0. The last step is to update oldPace and reset z.
It is important to note that rounding down the clock value leads to a small over approximation of
the amount of work that still has to be done.

6.3 Code Generation

We now describe the algorithm that generates the code needed for resource usage. The algorithm
is broken down into seven small steps, each step building on the previous step(s). To clarify the
algorithm examples of generated code are given for the running example in figure 14.

1. Identifiers: For each resource an unique identifier is generated. The total number of resources
are stored in the constant variable nResources. In line 2 the type rld_T is defined as an integer
with a lower bound of 0 and an upper bound of nResources—1. A value between these bounds
identifies a resource. For each resource a constant variable is generated that is assigned an
unique value of type rld_T (see lines 4-5).

const int nResources = 2;
typedef int[0,nResources —1] rld_T;

const rld_T cpu_id = 0;
const rld_T mem.id = 1;

[I S

Listing 11: Resource identifiers for the running example

2. Message passing code: Task automata communicate with resource automata via channels
and shared variables. When a greedy strategy has been chosen the urgent broadcast channels
greedyClaim is used for communication between task and resources (line 1). For lazy resource
claims the non-urgent broadcast channel lazyClaim is used (line 2). Resources can be released
with the non-urgent broadcast channel release (line 3). The shared variables used to pass
messages from task to resource are of type resMessage T (lines 5-8). Such a struct contains
a field with the requested capacity of a resource. More fields can be added to extend the
resource message. Instances of resMessage T are stored in the global array resMessage that
uses the resource identifiers as indexes (line 9). The meta keyword is used to denote that
resMessage is not part of the state when doing model checking, i.e. two states are considered
to be equal when they only differ in meta variables. The throttle channel, at line 11, is used
for its urgent property. It ensures that a task automaton throttles its pace without delay.

urgent broadcast chan greedyClaim;
broadcast chan lazyClaim;
broadcast chan release;

typedef struct

{

o u oA W N e

26

6.3

Code Generation August 18, 2010

7 int reqCap;
s } resMessage_ T ;
o meta resMessage_T resMessages[rld_T];

11 urgent broadcast chan throttle;

Listing 12: Message passing code for the running example

. Resource capacity: The current capacity of each resource is maintained in the array resource_cap.

Initially each index is set to the maximum capacity of the corresponding resource. This state
information can be used to throttle the pace of a resource.

1 int resource_cap[rld_-T] = {2,32};

Listing 13: Resource capacity for the running example

Resource pace function: For each resource the rPace function returns the current pace at
which it can operate. A switch is generated using cascading if else statements. For each
resource a case is added to the switch that applies the paceFunction of the DSEIR input file.
In the example below we can clearly see the code contained in the paceFunction nodes of

figure 14b.

int rPace(rld_T id)

{
if (id=cpu_id)

else return 20;
}

else

if (id=mem_id)
10 {
11 return 999;

12 }

1

2

3

4

5 if (resource_cap[cpu.id]==0) return 10;
6

T

8

9

Listing 14: Resource pace function for the running example

. canClaim function: Before a start event can occur the guard canClaim has to be satisfied. A

switch is generated from the DSEIR claim nodes that returns whether the require resources
can be claimed.

1 bool canClaim(int id)

2 {

s if(id==a_s)

4 return resource_cap[cpu_id]>=1 && resource_cap [mem_id]>=16;
5 else

6 if (id=b_s)

7 return resource_cap[cpu_id]>=1;

8 else

9 return true;

10 }

Listing 15: canClaim function for the running example

. Set message functions: The function setClaimRequest sets the message variables to the re-

quested capacity (lines 1-13). For each start event a case is added that sets the requested
capacities. To release resources setReleaseRequest sets the message variables to the capacity
that should be released (lines 15-27). For each end event a case is added that sets the
capacities to the amount that should be released.

27

Comparison August 18, 2010

1 void setClaimRequest(int id)

. {

3 if(id=a_.s)

4

5 resMessages[cpu_id].reqCap = 1;
6 resMessages [mem_id].reqCap = 16;
T}

8 else

o if(id=b_s)

10 {

11 resMessages[cpu_id].reqCap = 1;
12 }

13}

15 void setReleaseRequest(int id)

17 if(id=a_e)

18
{
19 resMessages|[cpu_id].reqCap = 1;
20 }
21 else
22 if(id=b_e)
23 {
24 resMessages [mem_id].reqCap = 16;
25 resMessages|[cpu_id].reqCap = 1;
26 }
27 }

Listing 16: Set message functions for the running example

7. Task pace function: The function tPace returns the current pace at which a task can process
its work. A tasks pace is defined by the resource that forms the bottleneck, i.e. the resource
that has the lowest pace. For each task a case is generated that returns the minimum pace
from the list of claimed resources. Here <? is the minimum operator.

1 int tPace(int id)

2 {

s if(id=a_id)

4

5 return rPace(cpu_id) <? rPace(mem.id);
o)

7 else

s if(id=b_id)

o

10 return rPace(cpu_id);
11 }

12}

Listing 17: Task pace function for the running example

7 Comparison

In the previous sections we presented an implementation for generating UPPAAL models from an
abstract intermediate representation (DSEIR). In this section we compare these generated models
to manually constructed models. For this comparison we use an industrial case study from Océ
technologies and the UPPAAL models that were manually constructed for it. The case study and
models are described in [20]. The goal is to verify that the behavior of the generated models

28

7.1 The Case Study August 18, 2010

corresponds to the manually constructed models. Other important aspects in the comparison are
memory usage and computation timed during model checking.

7.1 The Case Study

We first introduce the case study, which has been taken from [20, 4]. This case study describes
an experimental setup of a digital printer/copier. It is important to note that the performance
numbers used in the case study do not represent the performance of any real system. The main
challenge in the case study is to compute efficient schedules for jobs that minimise execution time.

A typical multifunctional printer/copier performs a variety of image processing functions on dig-
ital documents in addition to scanning, copying and printing. Apart from local use for scanning
and copying, users can also remotely use the system for image processing and printing. A generic
architecture of the system is shown in figure 17. The system has two ports for input: Scanner and

Controller

A

USB client

g — USB

<

Scanner ScanlP > Memory PrintlP > Printer

IP1 1P2

Figure 17: Generic architecture

Controller. Users locally come to the system to submit jobs at the Scanner and remote jobs enter
the system via the Controller. These jobs use the image processing (IP) components (ScanlIP,
IP1, IP2, PrintIP), and system resources such as memory and a USB bus for executing the jobs.
Finally, there are two places where the jobs leave the system: Printer and Controller. The IP
components can be used in different combinations depending on how a document is requested to
be processed by the user. This gives rise to several applications of the system, that is, each job
may use the system in a different way. The list of components used by a job defines the datapath
for that job. Some examples of applications are:

- direct copy: Scanner, ScanlP, IP1, IP2, USBClient,PrintIP
- scan to store: Scanner, ScanlP, IP1, USBClient

scan to email: Scanner, ScanlP, IP1, IP2, USBClient

- process from store: USBClient, IP1, IP2, USBClient
simple print: USBClient, PintIP

- print with processing: USBClient, P2, PrintIP

It is not mandatory that components in a datapath process a job sequentially, i.e. the design
of the system allows for a certain degree of parallelism. The degree of parallelism is defined by the
TPPOs of the various applications. Figure 18 shows the TPPO for direct copy together with the

29

7.1 The Case Study August 18, 2010

resources and mapping. This example illustrates how the components of the generic architecture
are used.

(Ussup)
— -

IP1[p]

RelMem([p]

@

Delay(p]

)
w
o
@
=
]
S
@
2
[2)
N
-
- = -
@
N »
-3
3
-_ N
- KX
@
»

=== -1 |
I ' p=p p=p
| * * - | »s| Upload[p] |e

: s| Scanp] |e P pks ScanRec]p] | e

: p—prs Print[p] eP P
|

IP=p p=pt1 p=p 1 *1

|

.

: p=p p'=p

|

|

|

|

|

|

|

Figure 18: Direct copy TPPO with resources and mapping

In the case study many image processing components are designed to perform a single task, e.g.
ScanIP, IP1, and IP2. Therefore, the task and the component claimed by it often have the same
name. In figure 18 the tasks Scan and ScanIP process pages in parallel. This is because ScanIP
processes the output of Scan on a line-by-line basis (streaming) and has the same throughput as
Scan. The Scan task for the next page can only start when ScanIP has ended. Another con-
straint for the start of Scan is imposed by the fact that the scanner has to recover after scanning
a page. This is handled by the task ScanRec that releases the scanner when it is ready for the
next page. Only after the scanner is released can it be claimed by the Scan task for the next
page. The dependency between tasks ScanIP and IP1 is different. IP1 processes the output of
ScanlP in streaming mode and has a higher throughput than ScanIP. Therefore, IP1 may start
processing the page in parallel with ScanIP, with a certain delay due to the higher throughput
of IP1. This delays is modelled with a task that has a fixed duration. Because of the nature of
the image processing function that IP2 performs, IP2 can start processing a page only after IP1
has finished. The output of IP2 servers as input for the tasks Print and Upload that can start
processing the output of IP2 immediately. Pages are uploaded to the controller for later use, e.g.
pages are downloaded when multiple copies need to be printed.

In addition to the image processing components, two other system resources are memory and
USB bandwidth. Processing of a single page is only allowed if the entire memory required for
completion is available and allocated. Each task uses a certain amount of memory that is released
once the computation has finished and no other task needs the information stored in the memory.
In figure 18, Scan claims 48 MB of RAM per page that is gradually released by IP2 and RelMem.
The task RelMem has a duration of zero time units and is used to synchronise the release of mem-
ory. Only when Print and Upload have finished can the last 16 MB of RAM be released. Another
important resource is the USB. This bus has limited bandwidth and serves as a bridge between
the USBClient and the memory. The bus may be used both for uploading and for downloading
data. At most one task may upload data at any point in time, and similarly at most one task
may download data. Uploading and downloading may take place concurrently. If only one task
is using the bus, transmission takes place at a rate of high MB/s. If two tasks use the bus then
transmission takes place at a slightly lower rate of low MB/s. This is referred to as dynamic USB
behavior. Approximately, low is 75% of high. The reason why it is not 50% is that the USB

30

7.2 Manually Constructed Models August 18, 2010

protocol also sends acknowledgment messages, and the acknowledgment for upward data can be
combined with downward data, and vice versa. The static USB behaviour is one in which the
transmission rate is always high MB/s. To model the dynamic behavior the USB is spilt into an
USB up and USB down resource. When the two resources are used concurrently the transmission
rate for both will drop to low.

7.2 Manually Constructed Models

For the comparison we use UPPAAL models that were manually constructed for the case study.
The basic idea is that each application is represented by a single automaton that describes the
order in which resources are used. In the manually constructed models the term use-case is used
instead of application. Figure 19 shows the automaton for the simple print use-case. A single
sequence from the location INIT to DONE represents one page undergoing several image process-
ing tasks. Use-case automata synchronise with resource automata depicted in figure 20. Initially
a resource is in the location IDLE. When a use-case automaton claims a resource it enters the
RUNNING location. How long a resource remains in this location depends on the variable exe-
cution_time that is compared with clock z. After execution_time units have elapsed the resource
moves to the location RECOVERING where it stays for recover_time units. When recover_time
units have elapsed the resource automaton signals the use-case automaton that it can continue.
Note that here each resource automaton contains a clock that maintains the elapsed time. In the
generated models resources do not contain clocks. Instead, each task automaton contains a clock.

INIT
rev(job_id, page_id, prev_page_started[job_id]) &&
pages_started[job_id]<max_pages|job_id] end_down?
start_page! prev_download[job_id]=page_id
pagefarrivaIftime=_c0mputefpagefarrivalftime(jobfid),
Ei%esfstarted[jobfld]ﬁ, prev(iob_id, page_id,
: prev_page_simple_print_printed)
x<=page_arrival_time start_print_ip!
x>=page_arrival_time && setPrintTime()
prev(job_id, page_id, prev_page_started[job_id]) X =0
prev_page_started[job_id]=page_id end_print_ip? IDLE start resource? RUNNING
memory:=memory+memory_printer, x <= execution_time
memory>=memory_printer && prev_page_simple_print_printed=page_id
prev(job_id, page_id, prev_download[job_id])
start_down! DONE end_resource! x >= execution_time
totalMB=dataToBeTransfered, X >= recover time x:=0
memory:=memory—-memory_printer -
.
update(job_id), RECOVERING
x=0 X <= recover_time
Figure 19: Simple print template Figure 20: Resource template

The manually constructed models described above are slightly modified versions of the models
described in [20]. To improve performance an edge is added from DONE to INIT that enables
reuse of use-case automata. Another improvement is the addition of a nonovertaking rule that
ensures that pages of the same job cannot overtake each other, i.e. the second page of a job cannot
be processed before the first page of the same job.

7.3 Experiments

The case study introduces a generic printer platform and applications that can be executed on this
platform. For the experiments we use two platforms that only differ in the used USB. In the first
platform a static USB is used that always has the same transmission rate. The second platform
uses a dynamic USB that can throttle its transmission rate depending on whether uploading and
downloading is taking place concurrently or not. Several different applications are mapped onto
these two platforms. By combining different applications instances, called jobs, and platforms
we can define test scenarios that will serve as benchmarks for the comparison in section 7.4. All

31

7.3 Experiments August 18, 2010

experiments were performed using UPPAAL version 4.1.2. To avoid interference from other non-
UPPAAL processes all experiments were performed on a Sun Fire X4440 server with 16 cores (AMD
Opteron 8356, 2.3GHz) and 128 GB of DDR2 RAM. Because UPPAAL version 4.1.2 is limited to
a single processor and a maximum of 4GB of memory the performance should be almost identical
on a desktop pc with a comparable CPU and 4GB of RAM.

The Formats '08 benchmark is taken from [20] and consists of a process from store job of three
pages, a print with processing job of two pages, a scan to email job of one page, and a scan to store
job of one page. For this scenario we use the platform with static and dynamic USB and 96 MB
of RAM. This benchmark contains a lot of resource contention because several jobs, that require
the same resources, are executed concurrently. Table 1 shows an overview of the job arrival times
and the required resource per page for each job.

Application Arrival Required Resources Pages
Time Per Page

24 MB RAM, USB (down), IP1, IP2, USB (up)

12 MB RAM, USB (down), IP2, PrintIP

48 MB RAM, Scanner, ScanIP, IP1, IP2, USB (up)

36 MB RAM, Scanner, ScanlP, IP1, USB (up)

Process from store
Print with processing
Scan to email

Scan to store

=]
== N W

Table 1: Formats 08 benchmark

The scenario described above is a good benchmark for concurrent jobs. However, in practice
the number of pages per job are higher and the number of jobs that are executed concurrently
on a printer/copier is smaller. Therefore we define single job benchmarks, with varying number
of pages, for the applications simple print, process from store, scan to store, and direct copy. We
also define two benchmarks in which two jobs, with varying number of pages, are executed con-
currently. These two benchmarks use the compound application direct copy € simple print and
direct copy € process from store. To ensure continuous interleaving the applications with a higher
throughput, i.e. simple print and process from store, are assigned more pages than direct copy
that has a lower throughput. For the single and concurrent jobs we only consider a platform with
dynamic USB as this is the more interesting behavior. Table 2 shows an overview of the single and
concurrent benchmarks. Here the number of pages is a range from 1 to 100. Several experiments
are performed with values from this range. To push the UPPAAL model checker to its limits two
additional benchmarks, with a higher number of pages, will be performed for direct copy & simple
print and direct copy & process from store.

Application(s) Arrival Required Resources Pages
Time Per Page

Simple print 0 12 MB RAM, USB (down), PrintIP 1-100

Process from store 0 24 MB RAM, USB (down), IP1, IP2, USB (up) 1-100

Scan to store 0 36 MB RAM, Scanner, ScanIP, IP1, USB (up) 1-100

Direct copy 0 48 MB RAM, Scanner, ScanIP, IP1, IP2, USB (up), PrintIP ~ 1-100

Direct copy 0 48 MB RAM, Scanner, ScanlP, IP1, IP2, USB (up), PrintIP 1-100
&

Simple print 0 12 MB RAM, USB (down), PrintIP 1-100

Direct copy 0 48 MB RAM, Scanner, ScanlP, IP1, IP2, USB (up), PrintIP ~ 1-100
&

Process from store 0 24 MB RAM, USB (down), IP1, IP2, USB (up) 1-100

Table 2: Single and concurrent benchmarks

32

7.4 Results August 18, 2010

For each experiment we are interested in the precise behavior that results in an optimal schedul-
ing solution. Given a model, UPPAAL can find an optimal solution and generate a trace file for
it. From such a trace file a Gantt chart is generated that visualises the start and end time for
each task. By comparing the Gantt charts we can verify whether the behavior of the generated
models corresponds to the manually constructed models. Appendix C shows the Gantt charts
with static and dynamic USB for the manual and generated models. Besides model behavior, we
are also interested in the performance of the UPPAAL model checker during verification. For each
experiment the following performance metrics are used: peak memory usage, running time, size
of the generated trace file, and the number of states explored during verification. The latency of
the fastest schedule is used as an indicator of the model behavior and should be equal for both
models. Appendix D contains the results of the experiments.

7.4 Results

By comparing the Gantt charts for the Formats 08 benchmarks we can verify whether the behav-
ior of the generated models corresponds to the manual models. Appendix C contains the Gantt
charts for the comparison. First we compare the static USB charts of the manual and generated
models. The charts for both models are identical, i.e. the start and end time for each task is
identical. Figure 21 show this Gantt chart. In the second comparison we look at the dynamic
USB charts of the manual and generated models. When we compare the manual model chart in
figure 22 with the generated model chart in figure 23 a small difference in the USB down task
of the print from store (pfs) job can be seen. In the manual model the down task for the first
page is delayed one time unit, whereas in the generated model no such delay occurs. Delaying this
task does not effect the latency of the schedule. In fact there are several optimal solutions from
which UPPAAL picks one. Because the manual and generated models use a different structure
UppPAAL picks another optimal solution. The start and end times for all other tasks are iden-
tical. For the remaining experiments we will not show the Gantt charts as this will require too
much space. Instead we will use the latency of the found solution as an indicator of model behavior.

We now continue with the comparison of the UPPAAL model checker metrics. Table 3 shows
the experiment for the Formats 08 benchmark. We can observe that the number of states ex-
plored for the generated models is significantly reduced compared to the manual models. However,
the running time for the generated models does increase compared to the manual models. This is
mainly due to some inefficiencies in the generate code. For example, the generated code depends
heavily on cascading if else statements as UPPAAL does not support the switch construct. We
recommend extending the UPPAAL language with an optimized switch, e.g. using branch table
optimization. This is a useful language extension and would reduce the running time of the gen-
erated models.

USB Model Peak Mem | Running | Latency Size States
Behavior Usage(KB) | Time(s) (s) | Trace | Explored
Static Manual 37876 25.51 22 | 334K 400661
Generated 20696 43.73 22 | 288K 64222

Dynamic Manual 35272 23.91 25 | 347K 369673
Generated 30556 103.66 25 | 312K 192014

Table 3: Formats '08 Experiments

More experiments for single and concurrent applications, with varying number of pages, can be
found in tables 4 and 5 of appendix D. In total 41 experiments were performed that confirm the
observations made in table 3, i.e. the generated models perform better in terms of states explored
and the manual models perform better in terms of running time. If we look at the concurrent

33

Conclusion and Future Work August 18, 2010

applications in table 5 we observe that the generated models have the advantage of a lower peak
memory when a high number of pages are used.

Both models use variables to keep track of the current page numbers. These variables are mono-
tonically increased and thus define a measure of progress. This property can be used to reduce
memory usage during model checking. The basic idea is that, depending on the progress of the
model, some states can never be reached again and thus can be deleted from the history of vis-
ited states. A more detailed description of this method can be found in [13]. Tables 6 and 7
in appendix D show the experiments with progress measures. We observe a decrease in peak
memory and running time for both manual and generated models. For the generated models with
progress measures we can verify the extreme benchmarks direct copy & simple print for 1400 &
1930 pages and direct copy & process from store for 450 & 900 pages. Without progress measures
these extreme benchmarks cause an out of memory exception during model checking.

8 Conclusion and Future Work

In this master thesis, we presented an approach for generating UPPAAL models from a high-level
representation specifying an embedded system under development. These generated models help
designers to explore possible design options, i.e. the models can be used to get more insight into
the chosen design options which can then be improved. We have addressed the research questions
formulated in section 1. Answering these research questions resulted in: (i) a formal definition of
task-level parameterized partial orders; (ii) a translation from task-level parameterized partial or-
ders to UPPAAL; (iii) an extended translation with resources; (iv) a comparison between manually
constructed and generated models.

The use of parameterized partial orders, developed within the Octopus project, is a novel ap-
proach for specifying compact task graphs with repetitive behavior. We have given a definition of
Task-level Parameterized Partial Orders based on three steps. First we define the classical model
of Event-level Partial Orders (EPOs). In the second step we extend this definition to Parameter-
ized Partial Orders (EPPOs) that compactly represent repetitive events. In the third and last step
we defined Task-level Parameterized Partial Orders (TPPOs) that pairs start and end events to
create tasks. An important advantage is that TPPOs have a well defined definition that is based
on the well known classical model of EPOs. By lifting the notation to the task level we create a
more intuitive representation, i.e. engineers typically specify system activities in terms of tasks.

All model checking tools face the problem of state space explosion, that must be addressed to
solve most nontrivial problems. To elevate this problem we have defined an efficient translation
based on two assumption on the input TPPO, i.e. tasks are not auto-concurrent and all precedence
conditions are monotonic functions. For the case study used in this research these assumptions are
perfectly valid. However, in other cases these assumptions may restrict the generated models too
much. For example, it may be necessary to allow auto-concurrency. In future work, this can be
accomplished by defining a translation that creates an automaton for each task instance. Before
translating a TPPO one could automatically check whether to use the efficient or less efficient
translation.

By extending the translation with a platform consisting of various resources we add timing to
the generated models. Typically resources that execute a task are claimed at the start and re-
leased at the end of the task. The implicit resource handovers used in this research assume that
when a task does not release a claimed resource another task eventually will. An improvement
would be to add an explicit handover mechanism that keeps track of the tasks to which resource
are handed over. This is especially important if a resource that is handed over determines the
execution speed of a task. The duration of a task depends on the pace of the claimed resources.
Some resources have dynamic behavior that may result in faster or slower task execution, de-

34

Conclusion and Future Work August 18, 2010

pending on how many tasks are using the resource concurrently. A complex example of dynamic
behavior are buses that continuously have to throttle their speed. We have modelled a somewhat
simplified version of bus throttling with the dynamic USB. Here a function is used to derive the
speed from the current state. It should be relatively straight forward to model more complex cases
of bus throttling by extending the logic of these functions. However, it is likely that more state
information has to be maintained to derive the speed for the more complex cases.

We have implemented the translation in the Java programming language and applied it to an
Océ case study that focuses on the digital data path of a printer/copier. The challenge in the case
study is to compute efficient schedules for jobs that minimise execution time. The results were
compared to manually constructed UPPAAL models created for the same case study. For the com-
parison a total of 43 experiments were performed for several different scenarios. When comparing
the behavior of the models we sometimes observed small differences in the behavior that do not
effect the end times of the schedules. These differences occur because there can be several optimal
schedules from which one is picked. Because the manual and generated models have a different
structure UPPAAL sometimes picks another solution. Other important aspects in the comparison
are peak memory usage and computation timed during model checking. Here the number of states
explored has a big influence on peak memory. During model checking the states explored for the
generated models is roughly half of that of the manual models. This result in a lower peak memory
for the more complex test scenarios, e.g. scenarios with a lot of concurrency and a high number
of pages. With the reduce in peak memory we were able to verify two extreme scenarios that
could not be verified by the manually constructed models because of an out of memory exception.
However, in terms of computation time the generated models are outperformed by the manually
constructed models. This is mainly due to some inefficiencies in the generated code. For example,
the generated code depends heavily on cascading if else statements as UPPAAL does not support
the switch statement. The addition of an optimized switch statement in the UPPAAL language
would reduce the computation time as it could replace the inefficient cascading if else statements.

Because Octopus is an ongoing project we expect that some of the future work discussed here
will be applied in newer versions of the framework. In general we conclude that the generated
UpPPAAL models are most suited for the early phases of design space exploration. Here nonde-
terminism may be used to reflect uncertainties in the design, e.g. no scheduling policies have to
be specified. The disadvantage of this approach is that it aggravates the state space explosion
problem. As the number of uncertainties decrease a more deterministic model can be created and
simulation may be more appropriate than model checking.

35

REFERENCES August 18, 2010

References

[1]

2]

[13]

Yasmina Abdeddaim, Eugene Asarin, and Oded Maler. Scheduling with timed automata.
Theoretical Computer Science (TCS), 354(2):272-300, 2006.

Yasmina Abdeddaim, Abdelkarim Kerbaa, and Oded Maler. Task graph scheduling using
timed automata. Parallel and Distributed Processing Symposium (IPDPS’03), International,
0:237b, 2003.

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman, editors. Compilers:
principles, techniques, and tools. Pearson/Addison Wesley, Boston, MA, USA, second edition,
2007.

Israa AlAttili, Fred Houben, Georgeta Igna, Steffen Michels, Feng Zhu, and Frits W. Vaan-
drager. Adaptive scheduling of data paths using uppaal tiga. In S. Andova et.al., editor, First
Workshop on Quantitative Formal Methods: Theory and Applications (QFM’09), Findhoven,
The Netherlands, pages 1-12. Electronic Proceedings in Theoretical Computer Science 13,
20009.

Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking for real-time systems. In
Proc. 5th IEEE Symposium on Logic in Computer Science (LICS90), pages 414-425. IEEE
Computer Society Press, 1990.

Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183-235, 1994.

Andrew W. Appel and Jens Palsberg. Modern Compiler Implementation in Java. Cambridge
University Press, New York, NY, USA, 2003.

Gerd Behrmann, Agnes Cougnard, Alexandre David, Emmanuel Fleury, Kim G. Larsen, and
Didier Lime. Uppaal Tiga User-manual, 2007. www.cs.aau.dk/~adavid/tiga/manual.pdf.

Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on uppaal. In Marco
Bernardo and Flavio Corradini, editors, SFM, volume 3185 of Lecture Notes in Computer
Science, pages 200-236. Springer, 2004.

Gerd Behrmann, Kim Guldstrand Larsen, and Jacob Illum Rasmussen. Priced timed au-
tomata: Algorithms and applications. In FMCO, pages 162-182, 2004.

Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools. In Jorg
Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors, Lectures on Concurrency and Petri
Nets, volume 3098 of Lecture Notes in Computer Science, pages 87-124. Springer, 2003.

Thomas Bggholm, Henrik Kragh-Hansen, Petur Olsen, Bent Thomsen, and Kim G. Larsen.
Model-based schedulability analysis of safety critical hard real-time java programs. In JTRES
'08: Proceedings of the 6th international workshop on Java technologies for real-time and
embedded systems, pages 106—114, New York, NY, USA, 2008. ACM.

Sgren Christensen, Lars Michael Kristensen, and Thomas Mailund. A sweep-line method for
state space exploration. In TACAS 2001: Proceedings of the 7th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, pages 450-464, London,
UK, 2001. Springer-Verlag.

Alexandre David, Jacob Illum, Kim G. Larsen, and Arne Skou. Model-based framework for
schedulability analysis using uppaal 4.1. January 2009.

N. Trcka et al. Parameterized timed partial orders and resources: Formal definition and
semantics. Technical Report ESR-2010-02, Eindhoven University of Technology, 2010.

36

REFERENCES August 18, 2010

[16]

[19]

[20]

[25]

Ansgar Fehnker. Scheduling a steel plant with timed automata. In the Sizth International
Conference on Real-Time Computing Systems and Applications (RTCSA’99), pages 280287,
Washington, DC, USA, 1999. IEEE Computer Society.

Martijn Hendriks, Barend van den Nieuwelaar, and Frits Vaandrager. Recognizing finite
repetitive scheduling patterns in manufacturing systems. In ASAP, University of Nottingham,
United Kingdom, pages 291-319, 2003.

Martijn Hendriks, Barend van den Nieuwelaar, and Frits Vaandrager. Model checker aided
design of a controller for a wafer scanner. Software Tools for Technology Transfer (STTT),
8(6):633-647, 2006.

Martijn Hendriks and Marcel Verhoef. Timed automata based analysis of embedded system
architectures. In Workshop on Parallel and Distributed Real-Time Systems 2006. IEEE, 2006.

Georgeta Igna, Venkatesh Kannan, Yang Yang, Twan Basten, Marc Geilen, Frits Vaandrager,
Marc Voorhoeve, Sebastian de Smet, and Lou Somers. Formal modeling and scheduling of dat-
apaths of digital document printers. In Franck Cassez and Claude Jard, editors, FORMATS,
volume 5215 of Lecture Notes in Computer Science, pages 170-187. Springer, 2008.

Kurt Jensen and Lars M. Kristensen. Coloured Petri Nets: Modelling and Validation of
Concurrent Systems. Springer, 2009.

Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. Coloured petri nets and cpn tools for

modelling and validation of concurrent systems. International Journal on Software Tools for
Technology Transfer (STTT), 9(3-4):213-254, 2007.

Venkatesh Kannan, Lou Somers, and Marc Voorhoeve. Datapath architecture simulation.
In M. Al-Akaidi, editor, Proceedings 23rd European Simulation and Modelling Conference
(ESM’2009), pages 238-242. Ostend: Eurosis-ETT, 2009.

Bart Kienhuis, Ed Deprettere, Kees Vissers, and Pieter van der Wolf. An approach for quan-
titative analysis of application-specific dataflow architectures. In ASAP ’97: Proceedings of
the IEEE International Conference on Application-Specific Systems, Architectures and Pro-
cessors, page 338, Washington, DC, USA, 1997. IEEE Computer Society.

Bart Kienhuis, Ed F. Deprettere, Pieter van der Wolf, and Kees A. Vissers. A methodology
to design programmable embedded systems - the y-chart approach. In Embedded Processor
Design Challenges: Systems, Architectures, Modeling, and Simulation - SAMOS, pages 18-37,
London, UK, 2002. Springer-Verlag.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558-565, 1978.

Michael G. Norman and Peter Thanisch. Models of machines and computation for mapping
in multicomputers. ACM Computing Surveys, 25(3):263-302, 1993.

Simon Perathoner, Ernesto Wandeler, Lothar Thiele, Arne Hamann, Simon Schliecker, Rafik
Henia, Razvan Racu, Rolf Ernst, and Michael Gonzalez Harbour. Influence of different system
abstractions on the performance analysis of distributed real-time systems. In EMSOFT °07:
Proceedings of the 7th ACM & IEEE international conference on Embedded software, pages
193202, New York, NY, USA, 2007. ACM.

Wilhelm Reinhard and Maurer Dieter. Compiler Design. Addison Wesley, New York, NY,
USA, 1995.

Concepcio Roig, Ana Ripoll, and Fernando Guirado. A new task graph model for map-
ping message passing applications. IEEE Transactions on Parallel Distributed Systems,
18(12):1740-1753, 2007.

37

REFERENCES August 18, 2010

[31] Thomas A. Sudkamp. Languages and machines: an introduction to the theory of computer
science. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, second edition,
1997.

[32] World Wide Web Consortium (W3C). Extensible Markup Language (XML) 1.0. World Wide
Web publication, 2008. http://www.w3.org/TR/xml.

[33] Glynn Winskel. An introduction to event structures. In Linear Time, Branching Time

and Partial Order in Logics and Models for Concurrency, School/Workshop, pages 364-397,
London, UK, 1989. Springer-Verlag.

38

DSEIR Document Type Definition (DTD) August 18, 2010

A DSEIR Document Type Definition (DTD)

1 <!l—nodes—>
2 <!ELEMENT scenario (platform ,mapping, application)>
3 <!ELEMENT platform (resourcex)>

4 <!ELEMENT resource (id,capacity ,paceFunction)>

5 <!ELEMENT mapping (mapx*)>

6 <!ELEMENT map (jobld ,taskld ,size ,claimStrategy?,claimx*,release x)>
7 <!ELEMENT claim (resourceld ,capacity)>

8 <!ELEMENT release (resourceld ,h capacity)>

9 <!ELEMENT application (job+)>

10 <!ELEMENT job (id, parameterx,range+,userFunctionx*,tasks,6 precedences)>
11 <!ELEMENT parameter (id, type,value)>

12 <!ELEMENT range (id,|Bound, uBound)>

13 <!ELEMENT tasks (task+)>

14 <!ELEMENT task (id,instantiationVar+,condition?)>

15 <!ELEMENT instantiationVar (id,iniValue)>

16 <!ELEMENT precedences (precedencesx)>

17 <!ELEMENT precedence (source, target,bcondition)>

18

19 <l—Jeafs—>

20 <!ELEMENT id (#PCDATA)>

21 <!ELEMENT capacity (#PCDATA)>

22 <!ELEMENT paceFunction (#PCDATA)>
23 <!ELEMENT jobld (#PCDATA)>

22 <!ELEMENT taskld (#PCDATA)>

25 <!ELEMENT size (#PCDATA)>

26 <!ELEMENT claimStrategy (#PCDATA)>
27 <!ELEMENT resourceld (#PCDATA)>

28 <!ELEMENT userFunction (#PCDATA)>
29 <!ELEMENT type (#PCDATA)>

30 <!ELEMENT value (#PCDATA)>

31 <!ELEMENT I|Bound (#PCDATA)>

32 <!ELEMENT uBound (#PCDATA)>

33 <!ELEMENT condition (#PCDATA)>

s« <!ELEMENT iniValue (#PCDATA)>

35 <!ELEMENT source (#PCDATA)>

36 <!ELEMENT target (#PCDATA)>

39

DSEIR XML file for the running example

August 18, 2010

B DSEIR XML file for the running example

1 <<?xml version = "1.0" 7>

2 <!DOCTYPE scenario SYSTEM "DSEIR.dtd">
3 <scenario>

4 <platform>

5 <resource>

6 <id>cpu</id>

7 <capacity>2</capacity>

8 <paceFunction>

9 if (resource_cap|[cpu_id]==0) return 10;
10 else return 20;

11 </paceFunction>

12 </resource>

13 <resource>

14 <id>mem</ id>

15 <capacity>32</capacity>

16 <paceFunction>return 999;</paceFunction>
17 </resource>

18 </platform>
19 <mapping>

20 <map>

21 <jobld>example</jobld>

22 <taskld>a</taskld>

23 <size>100</size>

24 <claim>

25 <resourceld>cpu</resourceld>
26 <capacity>l</capacity>

27 </claim>

28 <claim>

29 <resourceld>mem</resourceld>
30 <capacity>16</capacity>

31 </claim>

32 <release>

33 <resourceld>cpu</resourceld>
34 <capacity>l</capacity>

35 </release>

36 </map>

37 <map>

38 <jobld>example</jobld>

39 <taskld>b</taskld>

10 <size>160</size>

41 <claim>

42 <resourceld>cpu</resourceld>
13 <capacity>l</capacity>

44 </claim>

45 <release>

16 <resourceld>mem</resourceld>
a7 <capacity>16</capacity>

18 </release>

49 <release>

50 <resourceld>cpu</resourceld>
51 <capacity>l</capacity>

52 </release>

53 </map>

sa </mapping>
55 <application>
56 <job>

40

59

60

61

62

63

64

65

66

68

69

70

71

72

73

74

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

DSEIR XML file for the running example

August 18, 2010

<id>example</id>
<range>
<id>p</id>
<IBound>1</IBound>
<uBound>2</uBound>
</range>
<tasks>
<task>
<id>a</id>
<instantiationVar>
<id>p</id>
<iniValue>l</iniValue>
</instantiationVar>
</task>
<task>
<id>b</id>
<instantiationVar>
<id>p</id>
<iniValue>l</iniValue>
</instantiationVar>
</task>
</tasks>
<precedences>
<precedence>
<source>a_s</source>
<target>b_s</target>
<condition>p '=p</condition >
</precedence>
<precedence>
<source>a_e</source>
<target>b_e</target>
<condition>p '=p</condition>
</precedence>
<precedence>
<source>b_e</source>
<target>a._s</target>
<condition>p '=p+1</condition >
</precedence>
</precedences>

</job>
</application>

9s </scenario>

41

August 18, 2010

Gantt Charts

C Gantt Charts

1000005} |l L00000:3}s M 200000:dmd [] 100000:dMd [] £00000:s)d | 200000:s}d [1 100000:s)d []

o]

0'€Z §'2z 022 S'lz 0Lz S0z 002 S'6L 0'6L S'8L 0'8L S'ZL 0ZL S'9L 0'9L G'GL 0'GL S'vb O'WL G'€L 0'€L §'2L 0L S'LL 0'bL S'0L 00 S'6 06 S8 08 S22 02 S9 09 §s 0§ Sv 0¥ gt 0¢ Sz 0z &1 01

§0 00 S0 0

100000:dmd

100000:dmd

100000:dMd

umop

ueos

diueos

2di

dyuud

1

jusuodwo)

Figure 21: Optimal schedule for manual and generated models with static USB

42

August 18, 2010

Gantt Charts

100000:S}s M 100000:2}s i 200000:dmd [1 100000:dMd [] £00000:s)d | 200000:sd [1 1L00000:s}d [1

awi
sz vz 1x4 (44 74 0z 61 81 L 9l Si 143 €l 13 123 oL 6 8

~

200000:s)d

100000:5)d

100000:dmd

100000:dmd

100000:dmd

I - -

umop

ueos

diueos

edi

dnuud

]

jusuodwo)

Figure 22: Optimal schedule for manual model with dynamic USB

43

August 18, 2010

Gantt Charts

100000:S}s M 100000:2}s i 200000:dmd [1 100000:dMd [] £00000:s)d | 200000:sd [1 1L00000:s}d [1

awi

st vz €T [44 24 0z 61 8l L 9 St i3 €L z 113 oL 6 8

~

200000:s)d

100000:dmd

100000:dmd

100000:dmd

I - -

umop

ueos

diueos

edi

dnuud

]

jusuodwo)

Figure 23: Optimal schedule for generated model with dynamic USB

44

August 18, 2010

Experiments

D Experiments

S6LY W6V | €0L 168 CLVL 18€8 LG | €04 07 ¢689 00T

G6€¢C NG'C | €9€ 0¢'v 4%3Y 18TV N6'C | €9€ 0L°€ 09¥¢ 0g

GG6 MEG6 | €71 08T ¥v9Q 2991 NC'T | €1 09T 38GY 0¢

QLY ML6YV | €L 0T'T 88¢E4 L8 M98¢E | €L 060 9Lcv 0T

GET M0ST | 8€ 0L0 | ¥ees L0V MG6T | 8€ 050 | 080 g Adop
16 McOT | LT 070 609G qart MICT | LT 0¢°0 76¢ (4 P21
154 Mcs 0T 0¢€°0 80¢V 1. 29 0T 00 088¢ !

10¢¢ N9'¢c | ¢0L 06°¢ ¢6¢S g0ce NEe | ¢0L 0c'y CcLVS 00T

T0TT NE'T | ¢S¢ 08T 6LV G091 LT | ¢S¢ 0T'¢ 969V 0g

18744 MLCS | ¢Vl 08°0 09¥v 79 ML99 | ¢Vl 060 00T¥ 0¢

1¢¢ MVv9¢ | ¢L 050 ovey Gce MPEE | ¢L 080 006€ 0T 2101§
TT1 MEET | LE 0¢°0 89¢V 9oT MSIT | L€ 00 89.¢ q 0}
17 Mys 91 020 0vee 69 M69 91 00 ¥89¢ (4 ueog
€¢ M8¢ 6 020 9¢1¢ €¢ MGE 6 00 c499¢ !

¢c9ce vt | 0¥ 00°¢ SV v 9¢08 WEv | vO¥ 06°¢ 0299 00T

¢l91 M069 | ¥0T 00T iy 9€6¢ W¢'e | ¥0¢ 08¢ oves 0g

¢a9 MLLE | V8 060 0v6€ 9L¥V1 MEIR | T8 0c'T cqsv 0¢

¢6¢ MOV | VP 0¢°0 898¢ 9469 M8ev | W 0L°0 44474 0T 2101§
pra! MIL 14 020 09L¢ 97¢ MTIC | ¥¢ 070 3807 g wo.ay
1€ MLC ¢l 020 96.L¢ 89 MO8 ¢l 00 ¥86¢ (4 559901
0T MGT 6 020 ¥89¢ 1! D 4 6 00 ¥r6¢ !

667 M09y | €07 060 96v¢ €911 NEC | €0V 08°C 005¢ 00T

67¢C M6¢¢ | €0C 0€0 09€¢ €19 INT'T | €0C 09T 8C8Y 0s

36 MI6 €8 0¢0 00€€ ¥9¢ MC9v | €8 040 14454 0¢

0% M9V 1974 01°0 cel 91T MEET | €V 070 oviy 0T

14 Mve €¢ 01°0 9¢T 2] MSTIT | €¢C 0¢°0 807 q FuLq
0T ML6 | T1 01°0 cel 02 M6V 1T 00 096¢ (4 ordurg
q 1S | L 010 9¢1 6 M9¢ L 0€°0 00€¢€ !

poroldxy | eoeiy, | (s) (s)owrr, | (g>3)eSes || peiordxy | eoery, | (s) (s)owr], | (g>31)oSes) || se8eq

so9ye1g VA Adouojer] | Suruuny | WO\ feod || sejeis o7Z1G Aousyer] | Suruuny | W YeoJ ON ddy

S[OPOJA PoeIousr)

S[OPOTA Tenuey

Table 4: Single Application Experiments

45

August 18, 2010

Experiments

1 1 1 1 1 1 1 1 70°06GT 09VCLTV 006 0S¥

0L8L79 LG | 749 ¢E€c0g | ¢6899 €VLI6ET | INL'8 | PGS VE€6.L 88¢CECT 00T 0§ 21015
08941 N6'¢ | 6.¢ 80°€CT | 00¥¢C 89TV EE VY | 6.¢ 1¢°'1¢ 806¥€ 0G G¢ wotq
066¢¢ ST | P11 16°8T 9666 €0G.LY W8T | PIT VeV 07001 0¢ 0T §se201d
0819 MLLSG | 6S 00°G 1449 8¥c0T MEBY | 6G 09T 78€9 0T G z34dop
6.€ MLOT | ST 06°0 0799 €0L MPLT | ST 09°0 (4514 ¢1 191G
T T~ T 86°G0¥¥¢ | ¥9899TY T~ T T 9¥7°060T | ¢LOLLTY 0€6T 0071

¢LCeSe VG | LEL T0°08T | ¥¢498¢ 9¢1009 N8 | LEL ¢0°6€ 09767 00T 0

¢9.69 NWLe | L9€ V18 [qr43! T6T98T Wvv | L9€ 1071 8701¢ 0¢ g€ g
9LTET INT'T | ¢P1 16°0T CG8. 94v8€ INS'T | 97T 06°€ 8956 0¢ 7T ordurg
vcee MBES | 1L 02'€ €99 69801 MI8Y | T 091 8¥19 0T L %
6% MEST | €2 080 | ¢€09 GETT MIST | €3 050 | T4Lly €¢ Adop
8¥ ML9 1T 0S¢0 G614 88 MTTT | 17 070 8¢EY TT 191G
poroldxy | eoeiy, | (s) (s)owrry, | (g>[)odes)) || porodxy | eoely, | (s) (s)omrry, | (g>3])oSesn soSeJ

LAY 971§ Aouojer] | Suruuny | WO Yo || S0el1s oZIg Aouojer] | Sumuuny | WO YeoJ ON ddy

S[OPOJA] PoYeIousx)

S[OPOTN TenUeIN

Table 5: Concurrent Application Experiments

1Out of memory

46

August 18, 2010

Experiments

G6.LY W67 | €0 1¢'8 7069 L8¢8 NL'G | €0L 0€"L 88T9 00T

G6¢€¢ NG¢ | €4€ 0cv G564 L8TV N6'C | €5€ 00v 0c0g 0¢

GG6 MEGE | EVT 06T 88€4 1991 We'T | €71 09T 80€Y 0¢

GLy ML6Y | €L 0T'T 00¢S LC8 398G | €L 060 9L0v 0T

Gee 30sc | 8¢ 040 80T¢ L0V MG6C | 8€ 0¢0 896¢ G Adop
16 Mc0T | LT 0v°0 870G Gqr MICT | LT 0€0 ¢68¢€ é 1091
ev Mcs 0T 070 ¥¢04 12 M9 0T 0¢0 098¢ 1

10¢¢ N9¢ | ¢0L 0¢°¢ 020% G0ce NEE | ¢0L 0c'¥ 960¢ 00T

T0TT WE'T | ¢S€ 0¢'c v09v G09T LT | ¢S€ 0¢'¢ 0vev 0¢

vy MLcS | VT 080 4547 79 ML99 | VT 060 706€ 0¢

1¢¢ My9¢ | CL 09°0 9eeY Gce Myee | ¢L 0s0 ¥9L€ 0T 91035
11T MeET | L€ 0¥°0 0ccy 991 M8IT | L€ 0€0 969¢€ g 03
i Mys 91 0¢°0 GE0¥ 69 3169 91 0¢0 ¢99¢ 4 ueaS
€¢ M8¢ 6 0¢0 91ge €¢ MGE 6 020 GE9¢€ 1

191¢€ Wv'T | 0¥ 06°T ¢ley 9€08 eV | 0¥ 0¢¢ 7964 00T

1961 M069 | ¥0¢ 00T 966¢ 9€6€ W¢'e | ¥0¢ €L°C 9667 0¢

109 MLLG | P8 0<0 898¢ 97T MEIY | T8 0C'T 8VEY 0¢

18¢ MOVL | P 0€0 ve8e 999 M8ey | v 0.0 9ETy 0T 91015
1T MIL 4 0€0 GI8¢ 9ve MII¢G | V6 070 vecov G woLy
1e MLT ¢l 0¢0 9.6¢ 89 308 ¢l 0¢0 ¢S6¢ ¢ S8990.Id
0] MST 6 020 6618 8T vy 6 0¢0 8GCE 1

667 M09y | €0F 09°0 88¢E €911 NEC | €0¥ 08¢ 090G 00T

6V¢ M6¢c | €0¢ 0¢0 91€e €19 We'T | €0¢ 0S'T 91sY 0¢

86 MT16 €8 0¢0 GLCE ¥9¢ MEIY | €8 0.0 L1V 0¢

0¢ M9¥ 157 0¢0 09¢ce 911 MEET | €V 070 oy 0T

[Ve €¢ 010 491 4 MBIT | €¢ 0€°0 786€ g g
0T ML6 | T 010 9¢T 0¢ M6V 11 0¢0 9€6¢ ¢ ordurg
g TS | 4 010 ¢el 6 M9¢ L 0¢0 ¥C6€]!

poroldxy | eoeiy, | (s) (s)owrr, | (g>f)eSes || peiordxy | eoeiy, | (s) (s)owr], | (g>3)oSes)) || seSeq

LRI 971§ Adouojer] | Suruuny | WO Yeod || sejeis VA AouojerT | Suruuny | WO Yeod ON ddy

S[OPOJA PojeIousx)

S[OPOTA Tenuey

Table 6: Single Application Experiments with Progress Measures

47

August 18, 2010

Experiments

VLITERSY | INCS | 7467 z e 1” . . TL°68TC | 9.8VCIV 006 0S¥

¥,€98¢ LG | 49 0v'cly | 9T¢Tvy T€0L6ET | INL'S | ¥49 78°0L 9G¢TL 00T 09 9103§
veeevt N6C | 6.¢ LT°GTT ¢cLcSl 9097¢¢ V'V | 6.2 1661 cGeIe 06 9¢ WOl
7601¢ We't | 711 18'8T 8761 TGGLY INS'T | 71T 0T'¥ oveL 0¢ 0T $89901d
V88Y M9LS | 69 06’7 0989 99¢0T MIS8 | 69 091 7849 0T G 234dop)
GLE MLOT | ST 08°0 ¥8¥9 ¥0. MPLT | ST 0v°0 9G¥ ¥ [P21
LTT906¢V | INLOT | €29Vl T0'7E€69¢ | 786EV6E . a86 . TO'989T | |9STVIV 0¢6T 00¥1

L8TT9T V'S | LEL 388 VC1 ¢1061 9I8EET N8R | LEL ¢6°Le 8969¢ 00T 02

L6809 WLC | L9€ CL6¢ 07001 926671 WvVv | L9€ 1€°1T 808¢T 0S G¢ yatg
69911 INT'T | &V1 1.°6 8069 8G8TE INS'T | &V1 09°¢ 0072 0¢ 71 ordurrg
€8¢¢ MLEG | TL 0¢°¢ 08T9 8LG0T MISS | TL 091 0879 0T L %
8TV MEST | €2 08°0 9186 0€TT MIST | €2 050 | 00S¥ €T Adop
37 ML9 1T 050 8¢.LS 88 MITT | TT 0€°0 8¢y IT P21
poroidxy | ooell, | (s) (s)owry, | (g31)o8es() || peroldxy | ooel], | (s) (s)omury, | (g3f)oSesn sofeJ

SEULEAIN 9Z1g Aouojer] | Suruuny | WO\ Yedd || sorels 971§ Adouojer] | Suruuny | WA YeoJ ON ddy

S[OPOJN PoYeIous)

S[OPOIN Tenuey

Table 7: Concurrent Application Experiments with Progress Measures

2No value specified by UPPAAL

1Out of memory

48

