

Generating a rule-based modelling agenda Jörg Mutter

Preface

All things come to an end - Geoffrey Chaucer, English poet

This thesis will be the final chapter in my life as a student. It has been a long
road, with ups and downs, which has taken me through the beautiful world
of Artificial Intelligence, before ending in the realm of Information Science.
Though sometimes this road seemed endless, I never stopped wandering and
now, with the finish in sight, it is time to to say ”Thank you”.

Thank you, to Stijn Hoppenbrouwers, for being my supervisor, for being
my sparring partner during my research and for your infinite patience with
me. If I’d ever had to write another thesis, I know I’d like always want have
you as my supervisor again.

Thank you, to my family and friends, for your unconditional support in
all the choices I made, and a special thank you, to my mother, for designing
this beautiful front page.

I hope you will enjoy reading this thesis.

July 4th, 2010 Jörg Mutter

I

Generating a rule-based modelling agenda Jörg Mutter

Contents

Preface I

1 Introduction 3
1.1 Research questions . 4
1.2 Methodology . 5
1.3 Scope . 5
1.4 Reading guide . 5

2 Models, Interactions and Rules 6
2.1 Introduction . 6
2.2 Models . 7

2.2.1 Object Role Modelling . 7
2.2.2 Metamodelling . 8

2.3 Interactions . 9
2.3.1 Collaborative modelling 9
2.3.2 Weak workflows . 9
2.3.3 Dialogue systems . 10
2.3.4 Dialogue games . 11
2.3.5 Modelling as a game . 11

2.4 Rules . 13
2.4.1 Strategic rules . 13
2.4.2 Business rules . 13

2.5 Conclusion . 14

3 Design Process 15
3.1 Introduction: Design Science . 15
3.2 Relevance cycle . 16

3.2.1 Scope . 16
3.2.2 Requirements . 18

3.3 Design cycle . 19
3.3.1 The ORM metamodel . 19
3.3.2 The syntactic metamodelling rules for ORM 20
3.3.3 Design choices . 21

4 The modelling agenda 23
4.1 Functional description . 23

4.1.1 Starting the modelling agenda 23
4.1.2 Adding a fact type . 24
4.1.3 Adding a fact instance . 25
4.1.4 Adding an object type . 26
4.1.5 Adding an object instance 27
4.1.6 Answering questions . 28

4.2 Use case diagram . 35
4.3 Use cases . 36

1

Generating a rule-based modelling agenda Jörg Mutter

5 Conclusions and future work 54
5.1 Questions and answers . 54
5.2 Future work and research . 55

6 Literature 56

7 Appendix 58
7.1 Module overview . 58
7.2 Module agenda paper.pl . 60
7.3 Module process additions.pl . 63
7.4 Module process answers.pl . 68
7.5 Module output agenda.pl . 78
7.6 Module business rules.pl . 80
7.7 Module sql.pl . 85

2

Generating a rule-based modelling agenda Jörg Mutter

1 Introduction

Models help us deal with the complexity around us every day. In engineering,
scale models of buildings, aeroplanes and ships are used to test their ability
to cope with the elements they meet. These models can be seen as an actual
(partial) representation of what may be built. In the Middle Ages, maps were
drawn for seafareres, representing coastal lines and cities on them. Today, we
have little devices in our cars that tell us where we have to go in order to reach
our destination, replacing the old paper street maps.

Models come in various shapes and forms. In many cases, like scale
model building, the rules for making these models are more or less clear. Scale
models must represent reality as closely as possible, otherwise they are useless
as testing material. Likewise, in cartography, every map must be drawn on
a certain scale, which is the same for the whole map. This precision prevents
ships from running aground and makes city planning possible.

In computer science, models are used to make graphic representations of
complex businesses. Models provide a means of understanding the complex
processes and domain knowledge that exist in many companies. They are
widely used as a means of verifying the understanding of what the business
is all about and to communicate to IT specialists how computers can help
optimize the business processes.

When different people talk about a specific domain, they invariably use
some form of domain specific language. The words they use have a specific
meaning in the context of the domain. Adding to the complexity, they may
also use synonyms (different words having the same meaning) and homonyms
(one word having different meanings). Understanding these subtleties and
translating natural language into a formal model is one of the major challenges
for modellers these days.

Not only the use of natural language poses problems to the modeller. To
ensure that models are corect, they have to adhere to a certain syntax, leaving
little to no room for more than one interpretation. These syntactic rules form
the basis for creating, reading and understanding all kinds of models. Without
them, models are more or less useless in computer science.

Modelling nowadays is still rather art than science. Interactions with do-
main experts lead to models, which have to be checked and discussed in
length to ensure their correctness. These interactions lead to changes in the
model. The model itself has to adhere to the rules of the modelling language,
ensuring syntactical soundness and correctness.

3

Generating a rule-based modelling agenda Jörg Mutter

In order to transform this modelling art into science, a broader understand-
ing of the modelling process is essential. While much literature can be found
on model syntax, semantics and quality, the modelling process itself typically
stays underexposed. What drives modellers, what are their options while
creating a model and why do they choose one option instead of another?

Some work of interest on this topic has been carried out by Lindeman,
who provides us with a functional decomposition of the modelling process,
describing the different activities, their role in the modelling process and the
order in which they are carried out [Lindeman06]. Her work describes the
broader modelling process, from identifying the contracter [[[up to]]] writing
the documentation.

The research this thesis describes aims at getting a more detailed insight
into the process of creating models. The theoretical part describes a frame-
work linking product and process. The practical assignment aims at getting
a more detailed insight into the process of modelling. In order to do so, the
modelling agenda will be introduced, a computer program that helps modellers
create correct models.

The modelling agenda strongly supports the modelling framework as
described by Ssebuggwawo et al. [Ssebuggwawo09], which will be discussed
further on. In particular, the modelling agenda supports the principle that
rules influence models and that models lead to new rules. It also demonstrates
the influence of rules on interactions and how these interactions form models.

1.1 Research questions

The questions that will be answered in this thesis will be the following:

1. How can a modelling agenda be generated based on syntactical rules, procedural
rules and a partial model?

Subquestions that will be answered are:

(a) What is a modelling agenda?

(b) What are procedural rules of modelling?

2. Provide a proof of concept.

4

Generating a rule-based modelling agenda Jörg Mutter

1.2 Methodology

This thesis combines a literature study with a proof of concept. This proof
of concept will be the modelling agenda, a program that will check a model
during creation using declarative metamodelling rules. When not all meta-
modelling rules are satisfied, the program will create a set of goals for the
modeller (the agenda) that have to be fulfilled in order to achieve the main
goal: a syntactically sound and correct model (leading to an empty agenda).

The research will be performed top-down and bottom-up, incorporating
new insights from the proof of concept along the way.

1.3 Scope

As mentioned above, models come in all sorts of forms. The scope of this
research has been limited to Object Role Modelling, ORM for short. This mod-
elling language has been chosen for its quality of being close to natural lan-
guage. This contributes to an easily understandable dialogue between mod-
eller and program.

1.4 Reading guide

This thesis is devided into two parts: the literature study in chapter 2 and the
proof of concept in chapter 3. Chapter 4 answers the above research questions
and contains some remarks on future work. The computer code of the mod-
elling agenda can be found in the addendum.

5

Generating a rule-based modelling agenda Jörg Mutter

2 Models, Interactions and Rules

2.1 Introduction

In [Ssebuggwawo09], Ssebuggwawo et al. describe an analytical framework
and approach for analysing interactions, rules and models. They hypothesize
that:

”The interactions that take place in collaborative modeling sessions can be seen
as games with players who may either explicitly or implicitly determine and play by
rules of a modelling game”.

Their hypothesis is at the heart of this research. The modelling agenda
program supports the modelling process in the form of a dialogue game. The
interactions that take place between the modeller and the program eventually
form the model. The interactions are restricted by the meta-model rules. These
meta-model rules apply to the model at hand, while building the model leads
to more (or less) modelling goals on the agenda.

This modelling framework as an interplay between interactions, rules
and models is schematically depicted in figure 1.

Figure 1: Interactions, rules and models

6

Generating a rule-based modelling agenda Jörg Mutter

2.2 Models

Models help us deal with the complexity of the reality around us. A model
may describe (part of) a (software) system, seen from a particular point of
view. Models help us explain, understand and/or design a systems behaviour.

Conceptual modelling is a software development activity aiming at con-
structing a complete and unambiguous model of that part of reality, relevant
to the software system in development. During the conceptual modelling
phase, the problem domain is unravelled and described. No decisions are
taken as to how the problem should be solved technically. The conceptual
model forms the foundation for the rest of the software development process.

In object oriented conceptual modelling, reality is modelled as a collec-
tion of linked and interacting objects, uniting both the structural aspects
and the behavioural aspects of the problem domain. One language well
suited for this purpose is Object Role Modelling, or ORM. As ORM plays a
significant role in this research, a short introduction will be given below. A full
description of ORM can be found in [Halpin98].

2.2.1 Object Role Modelling

Object Role Modelling (ORM) is a fact oriented method, which has initially
been developed for modelling information systems at a conceptual level.
ORM makes use of natural language statements by examinig them in terms of
elementary facts.

In [Halpin98] a Conceptual Schema Design Procedure (CSDP) is provided,
consisting of seven steps:

1. Transform familiar information examples into elementary facts, and ap-
ply quality checks.

2. Draw the fact types, and apply a quality check.

3. Check for entity types that should be combined, and note any arithmetic
derivations.

4. Add uniqueness constraints, and check arity of fact types.

5. Add mandatory role constraints, and check for logical derivations.

6. Add value, set comparison and sub-typing constraints.

7. Add other constraints and perform final checks.

This CSDP captures the idea of a modelling process for ORM, but it is only
one of many ways to create a syntactically correct ORM-model. One might for
example want to initially add only entity types, and connect those by roles later

7

Generating a rule-based modelling agenda Jörg Mutter

on in the process to form fact types. Others might want to start by adding fact
instances to the model en derive the corresponding fact types from there on.

2.2.2 Metamodelling

In order to support the modelling process, a precise description of the
modelling language is of great use. This description is best captured in a
metamodel of the language. As Clark et al. point out: a metamodel is a model
of a modelling language, that captures its essential properties and features
[Clark04].

A metamodel thus describes the syntax of a modelling language. As
will be demonstrated, a metamodel can then be transformed into declarative
rules. These declarative rules constitute a major part of the modelling agenda
program this thesis deals with.

8

Generating a rule-based modelling agenda Jörg Mutter

2.3 Interactions

The process of modelling typically involves more than one person [Zanten01].
Usually, models are created by one or more domain experts and one or more
modelling experts. The modelling experts function as facilitators, translating
the domain experts’ knowledge into a conceptual model.

The act of modelling can than be seen as a succession of interactions. In-
teractions may lead to statements on the domain by the domain expert, which
can be translated by the modeller into model elements. The resulting model
may lead to more interactions, further shaping the model.

As Ssebuggwawo et al. point out, modellers also interact and communi-
cate their ideas and opinions to each other. To reach consensus and agreement,
they need to abide to their collective knowledge, conventions and decisisons
(rules of their game) [Ssebuggwawo09]. These interactions are beyond the
scope of this reasearch, which is merely concerned with the actual model
building.

2.3.1 Collaborative modelling

Collaborative modelling is the process, in which domain experts and mod-
ellers work together to perform some modelling task. In [Hoppenbrouwers06],
Hoppenbrouwers et al. describe modelling processes as in principle involving
two related dialogues: one for elicitation and one for formalization. The
elicitation dialogue takes place between one or more informers (domain
experts) and one or more model mediators (typically information analysts).
The formalization dialogue, on the other hand, takes place between the model
mediator and the model builder (usually some tool used to capture and verify
the actual model).

The role of the mediator is thus to interface between the two dialogues.
The elicitation dialogue takes place in normal language; for the formalisation
dialogue, some form of controlled language is taken as a key means of bridging
the gap between informal and formal.

The formalisation dialogue is of most interest for the modelling agenda
program. Interactions between modeller and program will take place in a
very simple controlled language. This language has been designed to be
understandable for domain experts as well as for a computer. The controlled
language rules will be described further on.

2.3.2 Weak workflows

Collaborative modelling is a somewhat ad hoc process, which makes it very
hard to support it with a software program. Highly structured processes

9

Generating a rule-based modelling agenda Jörg Mutter

can often quite easily be captured and supported by workflow systems.
Decomposition of these processes often reveals process steps in the form of:
”Task A always leads to Task B”. Tasks in knowledge intensive processes often
rely on information gathered in an earlier part of the process: ”Task A delivers
information I. Given information I, task B may be skipped and task C may
commence.”

Modelling is in fact a weakly-structured, or weak workflow. In [Ad-
sett04], Adsett et al. provide a clear definition of weak workflows: ”A weak
workflow within an organization’s information system allows processes to be
defined as they are being performed. It requires general knowledge about the
organization to be dynamically combined with specific information about a
current workflow.”

In [Elst03], Van der Elst et al. describe the characteristics of weak work-
flows. These characteristics form the basic requirements for the modelling
agenda:

1. Lazy and late modelling are supported:
A modeller may start with a possibly incomplete model and refine it later.
He may not have all relevant information at hand during the modelling
process, or he may not know to which extent the model should be refined.

2. Modelling and execution of process-models is interleaved:
In order to be able to already use a partial model it should be possible
to work also on the process model while it is being executed instead of
having modelling and execution in two distinct phases (like in traditional
workflow approaches).

3. Tasks can be dynamically and hierarchically decomposed/refined:
A typical phenomenon in knowledge work is the abstract notice that a
specific subtask is necessary, while the single steps of this subtask are
unknown in advance. This is a key characteristic for lazy and late mod-
elling.

4. A rich process logic allows for expressive process representations:
In knowledge-intensive tasks the execution sequence is often highly de-
pendant from information gathered in earlier processing steps. The
traditional modelling of task sequences may not be suffcient. Instead,
constraint-like descriptions of pre- and post-conditions of individual
tasks and appropriate reasoning mechanisms allow for the dynamic con-
figuration of the work process at runtime.

2.3.3 Dialogue systems

The modelling agenda, in order to support the weakly-structured modelling
process, is highly dependent on the information it receives from the modeller.

10

Generating a rule-based modelling agenda Jörg Mutter

Any information provided may either lead to new questions, or answer one or
more of the existing questions. This interactivity is best captured by a dialogue
system.

A dialogue system is a computer system, intended to interact using hu-
man language. It gets a predefined command from the modeller, and performs
the action (or actions) linked to that command. These commands may
eventually be replaced by a more graphical way of modelling.

2.3.4 Dialogue games

Dialogue systems have long been used in computer games, before they were
more or less replaced by joystick- and mouse-controlled games. Typical
examples include the adventure games from Sierra On-Line, like Space Quest,
Police Quest and Kings Quest.

In these games, the player feeds natural language commands to the computer.
The computer then parses the command (stripping information like articles
and prepositions) and performs some task, or it warns the player that the
command was not properly understood.

In artificial intelligence, dialogue games are sometimes used when deal-
ing with incomplete or inconsistent data, like in [Lebbink03] and [Bryant05].
Prakken [Prakken05] mentions: Dialogue systems define the principles of
coherent dialogue, referring to Carlson [Carlson83] who defines coherence in
terms of the goal of a dialogue. Utterances are coherent when they further the
goal of the dialogue in which they are made.

The power of a dialogue game as a support tool for modelling is demonstrated
by Ravenscroft et al. Their program, Interloc (collaborative interaction through
scaffolding locutions) [Ravenscroft06], supports reasoning with incomplete
and possibly inconsistent data by multiple persons. One can easily apply this
to a modelling session, where modellers may propose adding or changing
model elements. Their propositions may be challenged or accepted by other
participants.

This method also supports the weak modelling workflow, but leaves the
issue of soundness and completeness of the model entirely to the participants.
One can imagine the modelling agenda as an extra, automatic participant,
adding propositions where necessary in order to keep the model sound and
complete.

2.3.5 Modelling as a game

The act of modelling is in essence a dialogue game [Hoppenbrouwers08],
in which the actors constantly deal with incomplete and sometimes in-

11

Generating a rule-based modelling agenda Jörg Mutter

coherent data. The model mediators must gather as much information as
possible and transform all this information into a coherent set, to form a model.

When we look at modelling as a game, the main goal of the game is to
create a correct and complete model. Subgoals may be defined, not only by the
players, but also by the modelling rules (syntactical goals). These syntactical
goals form new rules, that have to be followed to come to a correct model. The
next section takes a closer look at these rules.

12

Generating a rule-based modelling agenda Jörg Mutter

2.4 Rules

In the framework proposed by Ssebuggwawo et al. rules influence models and
models influence rules. The rules that come from models are in fact modelling
goals. Goals are viewed as a key type of rule (”goal rules”), setting states to
strive for [Ssebuggwawo09]. These goal rules also have some influence on
the strategy of the modelling process. The syntactical rules of the modelling
language (the rules that influence the models) can be captured in declarative
rules.

2.4.1 Strategic rules

In [Bommel08], Van Bommel et al. describe a rule-based conceptual framework
for capturing strategies of modelling, in the process of obtaining conceptual
models. Their paper concerns specifically meta-model driven strategies,
aiming to fulfil modelling goals or obligations that are the direct result of
meta-model choices. These meta-model oriented goals are imposed by the
modelling language, and the correctness of the statements made in it. If
the modelling language is strictly defined, these goals are at the core of the
strategies that lead to well-formed models.

Modelling languages impose requirements not only on the structure of
the model, but also on the modelling process. In ORM for example, theoret-
ically it might be possible for a role to exist on its own, but this would not
likely describe a real world concept. Therefore a modeller might want to add
the requirement that every entity type belongs to at least one fact type, which
links it to another entity type via a relation.

Strategic rules also influence the process of modelling in time, some goals
having to be fulfilled before going on to the next. In the modelling agenda,
goals (derived from the incomplete model) will be represented as questions on
the agenda. As will be demonstrated, prioritizing these questions is one of the
programs functions.

2.4.2 Business rules

The syntactical modelling rules can be described as business rules. In his
Business Rules Manifesto [Ross03], Ross provides a clear definition of business
rules in the form of 10 articles. Especially noteworthy in relation to the
modelling agenda are article 2.1 , article 4.1 and article 5.3:

Article 2.1 - Rules are explicit constraints on behavior and/or provide support
to behavior

Article 4.1 - Rules should be expressed declaratively in natural language sen-
tences for the business audience

13

Generating a rule-based modelling agenda Jörg Mutter

Article 5.3 - Formal logics, such as predicate logic, are fundamental to well-
formed expression of rules in business terms, as well as to the technologies that
implement business rules

2.5 Conclusion

This chapter has described the relations between models, interactions and
rules. Some remarks have been made on (meta)models and a small overview of
Object Role Modelling has been presented. The act of modelling has been de-
fined as a succession of interactions between domain expert, modeller and pos-
sibly a mediator. Modellers may have their own modelling strategies, which
can be captured in business rules. The act of modelling has been identified as
a weak workflow, which may be supported by an interactive dialogue system
or a (dialogue) game.

14

Generating a rule-based modelling agenda Jörg Mutter

3 Design Process

3.1 Introduction: Design Science

This thesis, consisting of a literature study as well as a proof of concept, is an
example of design science. Design science has been practiced in computer
science for decades, but has been lost during the last 25 years. In his essay,
Iivari discusses the ontology, epistemology, methodology and ethics of design
science [Iivari07].

In a reaction to Iivari’s article, Hevner [Hevner07] poses a design science
research cycle, consisting of the Relevance cycle, the Rigor cycle and at the
heart the Design cycle.The relevance cycle sets the context for the design
science by providing requirements and acceptance criteria for the research
results. The rigor cycle adds past knowledge to the research, to ensure its
innovative power. The design cycle iterates between construction, evaluation
and further design. The design science research cycle is depicted in figure 2.

The knowledge base for this research has been provided in chapter 2.
This thesis is a derivative of the framework for interactions, rules and models
[Ssebuggwawo09]. The following sections will therefore be devoted to the
relevance cycle and the design cycle.

Figure 2: Design science research cycle

15

Generating a rule-based modelling agenda Jörg Mutter

3.2 Relevance cycle

In this section, the scope and the requirements for the modelling agenda will
be described.

3.2.1 Scope

One modelling language

The goal of the modelling agenda is to help the modeller in designing a
syntactically correct model. Any modeller may have his own preferences
regarding the modelling language. The modelling agenda should in principle
not be limited to one single modelling language. For the proof of concept
however, the choice was made to incorporate only one language, Object Role
Modelling (ORM).

ORM was chosen because its models are derived from natural language
statements. On the one hand, the use of natural language facilitates the
elicitation dialogue between domain expert and modeller. The formalization
dialogue on the other hand is a form of controlled natural language, as are the
ORM statements.

Only basic elements of ORM

ORM is a very rich modelling language. It comprises many types of con-
straints, allows for subtyping, objectification and many other things. The
modelling agenda will not support the full ORM language. Firstly because
many model elements are overlapping, i.e. one element can be substituted by
one or more other model elements. Secondly, many elements are optional in
ORM and therefore models can be syntactically sound and complete without
them (syntactical soundness and completeness are the main goal of the
modelling agenda).

The modelling agenda will therefore initially support only the following
model elements:

• Fact types

• Fact instances

• Object types

• Object instances

• Roles

• Uniqueness constraints

Note that this list may be extended with any model element of choice when
needed, this however is beyond the scope of this proof of concept.

16

Generating a rule-based modelling agenda Jörg Mutter

Limited temporal ordering

To prove the concept of temporal ordering, the choice was made to make a
distinction between only two types of questions:

• Questions that should be answered immediately.

• Questions that may be answered later on in the modelling process.

The first type of questions must appear on top of the list of questions, the rest
follows.

Dialogue system

The modelling agenda uses a dialogue system, rather than a graphical user
interface (GUI). Building a GUI for the modelling agenda requires an interface
with another programming language like Java. This falls beyond the scope
of this proof of concept, but in principle the dialogue could even be shaped
around ”graphical propositions” using a diagram editor.
A dialogue system is easy to build in Prolog and still provides the interactivity
needed to support the weak workflow of modelling. Prefix commands are used
to distinguish between several types of input:

1. Add fact type

2. Add fact instance

3. Add object type

4. Add object instance

5. Answer question

When a user types following command: ”Add fact type : Student has Book.”,
this tells the modelling agenda to add the fact type ”Student has Book” to the
model. In a GUI, this would probably be replaced by a dropdown box with
prefix commands and an open text box to input the model element.

Ojects in uppercase, roles in lowercase

Object types and object instances must start with an uppercase letter, roles must
start with a lowercase letter. An example of correct input: ”Student has Book”.
This choice was made, so that the user does not have the tedious task of telling
the modelling agenda for each element if it is an object or a role and speeds up
the modelling process significantly.

17

Generating a rule-based modelling agenda Jörg Mutter

3.2.2 Requirements

1. The modelling agenda adds given ORM model elements to an ORM
model.

2. The modelling agenda detects knowledge gaps in an ORM model, using
a set of given business rules.

3. The modelling agenda creates a list of questions, addressing the knowl-
edge gaps mentioned in requirement 2.

4. The modelling agenda adds elements, provided in answers to questions
as mentioned in requirement 3, to an ORM model.

5. The modelling agenda adds temporal ordering to the questions men-
tioned in requirement 3.

6. The modelling agenda prevents double entries of fact types and object
types.

18

Generating a rule-based modelling agenda Jörg Mutter

3.3 Design cycle

This paragraph contains some remarks on the design work. Design started
off with creating the ORM metamodel. From this metamodel, the syntactic
rules for ORM were derived. In the last paragraphs, some design choices are
described.

3.3.1 The ORM metamodel

In order to gather the declarative rules that determine whether or not an ORM
model is syntactically correct, the below metamodel for ORM was drawn
up. This initial metamodel accounts for the fact that any element of an ORM
model could be added in any stage of the modelling process.

The metamodel for ORM is depicted in figure 3.

Figure 3: ORM Metamodel

Elements may be concepts, and the links between these concepts. Concepts
and links can be devided into types and instances. Concepts are objects,
roles, or facts. Object types are either entity types or value types. Object
types can also be subtypes or supertypes of other object types. Instances

19

Generating a rule-based modelling agenda Jörg Mutter

have verbalisations (textual description, like ’Pete owns a car’). Note that
constraints on fact types are left implicit in this metamodel.

During the construction phase, the scope was limited to only the basic
elements of an ORM model (objects, roles, facts and uniqueness constraints).
This reduced the complexity of the metamodel and led to the below, simplified
ORM metamodel.

Figure 4: simplified ORM Metamodel

3.3.2 The syntactic metamodelling rules for ORM

Most of the decalarative rules that are needed to check an ORM model for in-
consistencies can be easily retrieved from the above refined ORM metamodel.
All mandatory role constraints define a single business rule for basic ORM
(numers 1 - 12 in the next paragraph). There are three more business rules
that cannot be captured from the metamodel; these stem from the fundamen-
tal priciples that ORM is based on (numbers 13, 14 and 15).

20

Generating a rule-based modelling agenda Jörg Mutter

Business rules for basic ORM

1. Every fact type is populated by at least one fact instance

2. Every fact instance populates at least one fact type

3. Every object type is populated by at least one object instance

4. Every object instance populates at least one object type

5. Every object type participates in at least one fact type

6. Every fact type consists of at least one object type

7. Every role participates in at least one fact type

8. Every fact type consists of at least one role

9. Every object instance participates in at least one fact instance

10. Every fact instance consists of at least one object instance

11. Every role is constrained by at least one uniqueness constraint

12. Every uniqueness constraint belongs to at least one role

13. Every fact type is elementary

14. Every object type is unique (Principle of strong identification)

15. Every fact type is unique (Principle of strong identification)

3.3.3 Design choices

Prolog

After deriving the syntactical rules, a suitable programming language had to
be chosen for implementation. Three candidate programming languages were
evaluated: a logic programming language (like Prolog), a functional program-
ming language (like Haskell) or an imperative programming language (like
Java).

Because the modelling agenda has to be able to evaluate data on the ba-
sis of declarative rules, the choice for a Prolog was quickly made. The
modelling agenda is basically a theorem prover. Its goal is to reach a state in
which the model satisfies all declarative rules, expressed in logic formulas. A
logic programming language best suits this purpose.

21

Generating a rule-based modelling agenda Jörg Mutter

MySQL database

The initial idea was, to feed the modelling agenda with input files, run the
ruleset and then output the agenda onto an output file. After several attempts,
this proved to be very difficult. To use the knowledge, gathered from the
input, vast arrays of information needed to be stored at runtime.

Therefore, a MySQL database was added to the modelling agenda. Al-
though this requires a lot of interfacing (e.g. every single database result is
returned as: ”row(result)” and needs to be stripped), it proved to be much
easier than using input and output files.

Definite clause grammar

Business rules 1 - 12 (see paragraph 4.5.1) are used to derive the questions for
the modelling agenda. These rules need to be parsed and interpreted. For
this purpose, a small definite clause grammar (DCG) is used. The keyword
”every” translates as the logic quantifier ∀.

After parsing the logical statements, contradictions are sought in the database.
∀ is contradicted by an empty slot in the database. When an empty slot is
found, a suitable question is added to the agenda.

Answering mechanism

The initial version of the modelling agenda supported only adding state-
ments. This is a problem, because when the agenda contains a question
”Provide a fact type for fact instance ”John takes Mathematics”.”, and the user
adds fact type ”Student takes Course”, the agenda can not automatically de-
tect that the added fact type belongs to fact instance ”John takes Mathematics”.

Therefore, an answering module was added to the modelling agenda. A
user can input a command, starting with ”Answer question X : ” (X being the
number of the question). This combines the answer and the knowledge gap
the question addresses.

22

Generating a rule-based modelling agenda Jörg Mutter

4 The modelling agenda

This section contains a description of the functionality of the modelling agenda
program. In the next paragraph, an example is provided based on a small
model. The second paragraph contains a use case diagram of the modelling
agenda; the last paragraph contains the use cases.

The use cases are slightly technical, not only providing insight in the in-
teraction between user and program, but also in the interaction between
program and database.

4.1 Functional description

This section describes the modelling of a small domain containing students,
teachers and courses.

4.1.1 Starting the modelling agenda

To start the modelling agenda, the user types ”fcoim modeling”. This triggers
a few actions:

1. An introduction text is shown to the user

2. The database is created, if it does not already exist

3. The repeat call is made, to start the command line loop

4. The user is prompted to input a command

Figure 5 shows what the screen looks like after this command.

Figure 5: Starting up the modelling agenda

23

Generating a rule-based modelling agenda Jörg Mutter

4.1.2 Adding a fact type

At the command prompt, the modeller types ”add fact type : Student takes
Course”, and presses enter. A graphical representation of this fact type is
shown in figure 6. The modelling agenda stores this input as a fact type and
separates the object types from the role (these are stored separately in the
database).

Then, the ruleset is applied to the model and some gaps are detected.
For these gaps, questions are formulated and the agenda is shown to the user.
Beneath the agenda appears the command prompt again. The resulting screen
is shown in figure 7.

Figure 6: Model after adding a fact type

Figure 7: Agenda after adding a fact type

24

Generating a rule-based modelling agenda Jörg Mutter

4.1.3 Adding a fact instance

At the command prompt, the modeller types ”add fact instance : Jones teaches
Mathematics”, and presses enter. The modelling agenda stores this input as a
fact instance and separates the object instances from the role (these are stored
separately in the database).

Then, the ruleset is applied to the model again and this results in more
questions in the agenda. The resulting model is shown in figure 8; the
resulting screen in figure 9.

Figure 8: Model after adding a fact instance

Figure 9: Agenda after adding a fact instance

25

Generating a rule-based modelling agenda Jörg Mutter

4.1.4 Adding an object type

At the command prompt, the modeller types ”add object type : Teacher”, and
presses enter. The modelling agenda stores this input as an object type.

This results in the following model (figure 10) and agenda (figure 11):

Figure 10: Model after adding an object type

Figure 11: Agenda after adding an object type

26

Generating a rule-based modelling agenda Jörg Mutter

4.1.5 Adding an object instance

At the command prompt, the modeller types ”add object instance : Peter”,
and presses enter. The modelling agenda stores this input as an object instance.

The resulting model (figure 12) and agenda (figure 13) are shown below.

Figure 12: Model after adding an object instance

Figure 13: Agenda after adding an object instance

27

Generating a rule-based modelling agenda Jörg Mutter

4.1.6 Answering questions

Adding four elements to the model has resulted in eleven questions on
the agenda. Four questions start with ”Immediately”, indicating that these
have the highest priority. The modeller may however choose to answer any
question he likes, he is not obliged to follow the order of the agenda.

The modeller answers the second question on the agenda (Immediately
provide at least one fact type for fact instance : Jones teaches Mathematics).
At the command prompt, he types ”answer 2 : Teacher teaches Course”, and
presses enter. The modelling agenda stores this input as a fact type, belonging
to fact instance ”Jones teaches Mathematics”.

The answer contains more information than just the fact type. In answering
this question, four other questions are automatically answered:

• question 1 (Immediately provide at least one object type for object in-
stance : Jones) is answered by ”Teacher”

• question 4 (Immediately provide at least one object type for object in-
stance : Mathematics) is answered by ”Course”

• question 6 (Provide at least one fact type for object type : Teacher) is
answered by ”Teacher teaches Course”

• question 10 (Provide at least one object instance for object type : Course)
is answered by ”Mathematics”

These questions all disappear from the agenda. The resulting model (figure 14)
and agenda (figure 15) are shown below.

28

Generating a rule-based modelling agenda Jörg Mutter

Figure 14: Model after answering a question

Figure 15: Agenda after answering a question

29

Generating a rule-based modelling agenda Jörg Mutter

Next, the modeller answers the second question from the newly created
agenda (Provide at least one fact instance for fact type : Student takes Course).
He types ”answer 2 : Peter takes Mathematics”. This answers two more ques-
tions at the same time:

• question 1 (Immediately provide at least one object type for object in-
stance : Peter) is answered by ”Student”

• question 3 (Provide at least one object instance for object type : Student)
is answered by ”Peter”

These questions also disappear from the agenda. The resulting model (figure
16) and agenda (figure 17) are shown below.

Figure 16: Model after answering the second question

Figure 17: Agenda after answering the second question

30

Generating a rule-based modelling agenda Jörg Mutter

The modeller now answers the question ”Provide at least one fact instance
for object instance : Peter”. He types ”answer 1 : Peter takes Mathematics”.
This answer one question, but it also adds three more questions to the agenda:

• Immediately provide at least one object type for object instance : Peter

• Immediately provide at least one object type for object instance : Mathe-
matics

• Immediately provide at least one fact type for fact instance : Peter takes
Mathematics

This may seem a bit strange, but it is a direct consequence of the fact that
instances (object as well as facts) do not have to be unique in an ORM model.
The modelling program may not assume that the lastly added fact instance
”Peter takes Mathematics” is the same as the one entered before. Every
instance is treated as a new instance, so types have to be provided by the
modeller.

The resulting model (figure 18) and agenda (figure 19) are given on the
next page.

31

Generating a rule-based modelling agenda Jörg Mutter

Figure 18: Model after answering the third question

Figure 19: Agenda after answering the third question

32

Generating a rule-based modelling agenda Jörg Mutter

The modeller than answers the question ”Immediately provide at least one
fact type for fact instance : Peter takes Mathematics” by typing ”answer 3 :
Student takes Course”. This answers all three newly added questions. The
resulting model (figure 20) and agenda (figure 21) are shown below.

Figure 20: Model after answering the fourth question

Figure 21: Agenda after answering the fourth question

33

Generating a rule-based modelling agenda Jörg Mutter

Lastly, the questions for the uniqueness constraints are answered. These
uniqueness constraints are represented by a numeric value. In this example,
the 4 stands for a uniqueness constraint spanning both roles of takes; the 1
stands for a constraint on the first role of teaches.

The finished model is shown below (figure 22), the agenda is empty as
is shown in figure 23.

Figure 22: Model after answering the last questions

Figure 23: Agenda after answering the last question

34

Generating a rule-based modelling agenda Jörg Mutter

4.2 Use case diagram

This section contains the use case diagram, followed by the use cases for the
modelling agenda in the next section (4.3). The use cases are somewhat techni-
cal, not only describing interactions between user and modelling agenda, but
also between modelling agenda and database.

Figure 24: Use case diagram

35

Generating a rule-based modelling agenda Jörg Mutter

4.3 Use cases

Use Case 1 - Add fact type

Use Case Name: Add fact type
Authors: Jörg Mutter
Date: 01-02-2008
Iteration: Focused
Description: User adds fact type to model.
Actors: User and database.
Preconditions: None.
Triggers: The actor wants to add a fact type to the model.

Basic Course of Events:

1. User enters a command starting with ”add
fact type : ” followed by a fact that is not
yet in the database,

2. System adds an entry fact - object - role into
table types in the database for each object
type,

3. System creates separate tables for each ob-
ject type in the database,

4. System creates a table for the fact type,

5. System enters the fact type and the role into
table facts,

6. System proceeds with use case ”Create and
output agenda”.

36

Generating a rule-based modelling agenda Jörg Mutter

Alternative Path:

1. User enters a command starting with ”an-
swer X”, where X is the number of a ques-
tion in the agenda starting with ”Imme-
diately provide fact type for object type”
or ”Provide fact type for object type”, fol-
lowed by a fact that is not yet in the
database,

2. System adds an entry fact - object - role into
table types in the database for each object
type,

3. System creates separate tables for each ob-
ject type in the database,

4. System creates a table for the fact type,

5. System enters the fact type and the role into
table facts,

6. System proceeds with use case 13.

Alternative Path:

1. User enters a command starting with ”add
fact type : ”, followed by a fact type that is
already in the database,

2. System proceeds with use case 13.

Alternative Path:

1. User enters a command starting with ”An-
swer X”, where X is the number of a ques-
tion in the agenda starting with ”Imme-
diately provide fact type for object type”
or ”Provide fact type for object type”, fol-
lowed by a fact type that is already in the
database,

2. System proceeds with use case 13.

Exception Paths: None.
Assumptions: None.
Postconditions: Tables for objects and fact and entries in several

tables.
Related business rules: All fact types are unique

37

Generating a rule-based modelling agenda Jörg Mutter

Use Case 2 - Add fact instance

Use Case Name: Add fact instance
Authors: Jörg Mutter
Dates: 01-07-2007
Iteration: Focused
Description: User adds fact instance to model.
Actors: User and database.
Preconditions: None.
Triggers: The actor wants to add a fact instance to the

model.

Basic Course of Events:

1. User enters a command starting with ”add
fact instance : ” followed by a fact instance,

2. System adds an entry ”fact - object” into ta-
ble instances in the database for each object

3. System adds fact instance into table facts,

4. System proceeds with use case ”Create and
output agenda”.

Alternative Path:

1. User enters a command starting with ”An-
swer X”, where X is the number of a ques-
tion in the agenda starting with ”Imme-
diately provide fact instance for object in-
stance” or ”Provide fact instance for object
instance”, followed by a fact instance,

2. System adds an entry fact - object into table
instances in the database for each object in-
stance,

3. System enters the fact instance and the role
into table facts,

4. System proceeds with use case 13.

38

Generating a rule-based modelling agenda Jörg Mutter

Exception Paths: None.
Assumptions: None.
Postconditions: Entries in tables instances and facts.
Related business rules:

39

Generating a rule-based modelling agenda Jörg Mutter

Use Case 3 - Add object type

Use Case Name: Add object type
Authors: Jörg Mutter
Dates: 01-02-2008
Iteration: Focused
Description: User adds object type to model.
Actors: User and database.
Preconditions: None.
Triggers: The actor wants to add an object type to the

model.

Basic Course of Events:

1. User enters a command starting with ”add
object type : ” followed by an object type
that is not yet in the database.

2. System creates a seperate table for the ob-
ject type,

3. System enters the object type into table ob-
jects,

4. System inserts object type into table types,

5. System proceeds with use case ”Create and
output agenda”.

Alternative Path:

1. User enters a command starting with ”add
object type : ” followed by an object type
that is already in the database.

2. System proceeds with use case 13.

Exception Paths: None.
Assumptions: None.
Postconditions: Entries in tables objects and types.
Related business rules: All object types are unique.

40

Generating a rule-based modelling agenda Jörg Mutter

Use Case 4 - Add object instance

Use Case Name: Add object instance
Authors: Jörg Mutter
Dates: 01-02-2008
Iteration: Focused
Description: User adds object instance to model.
Actors: User and database.
Preconditions: None.
Triggers: The actor wants to add an object instance to the

model.

Basic Course of Events:

1. User enters a command starting with ”add
object instance : ” followed by an object in-
stance,

2. System inserts the object instance into table
objects,

3. System inserts the object instance into table
instances,

4. System proceeds with use case ”Create and
output agenda”.

Alternative Path: None.
Exception Paths: None.
Assumptions: None.
Postconditions: Entries in tables objects and instances.
Related business rules:

41

Generating a rule-based modelling agenda Jörg Mutter

Use Case 5 - Answer question

Use Case Name: Answer question
Authors: Jörg Mutter
Dates: 01-02-2008
Iteration: Focused
Description: User answers a question in modelling agenda.
Actors: User.
Preconditions: There is at least one question in the agenda.
Triggers: The actor wants to answer a question in the mod-

elling agenda.

Basic Course of Events:

1. User enters an answer to a question in the
agenda, asking for an object type for an ob-
ject instance,

2. System proceeds with use case 6.

Alternative Path:

1. User enters an answer to a question in the
agenda, asking for an object instance for an
object type,

2. System proceeds with use case 7.

Alternative Path:

1. User enters an answer to a question in the
agenda, asking for a fact type for a fact in-
stance,

2. System proceeds with use case 8.

Alternative Path:

1. User enters an answer to a question in the
agenda, asking for a fact instance for a fact
type,

2. System proceeds with use case 9.

Alternative Path:

1. User enters an answer to a question in the
agenda, asking for a fact type for an object
type,

2. System proceeds with use case 10.

Alternative Path:

1. User enters an answer to a question in the
agenda, asking for a fact instance for an ob-
ject instance,

2. System proceeds with use case 11.

42

Generating a rule-based modelling agenda Jörg Mutter

Alternative Path:

1. User enters an answer to a question in the
agenda, asking for a constraint for a fact
type,

2. System proceeds with use case 12.

Exception Paths: None.
Assumptions: None.
Postconditions: None.
Related business rules:

43

Generating a rule-based modelling agenda Jörg Mutter

Use Case 6 - Add object type for object instance

Use Case Name: Add object type for object instance
Authors: Jörg Mutter
Dates: 01-07-2007
Iteration: Focused
Description: System adds object type for object instance to

model
Actors: Database.
Preconditions: At least one untyped object instance exists in the

model.
Triggers: Use case ”Answer question”.

Basic Course of Events:

1. System inserts the object type into table ob-
jects,

2. System inserts the object type into table
types,

3. System creates a table for the object type,

4. System inserts the object instance into the
table created in step 4,

5. System proceeds with use case ”Create and
output agenda”.

Alternative Paths:

• In step 2, if entry object type - object in-
stance already exists, proceed with step 3

• In step 3, if entered object type already ex-
ists, proceed with step 4

• In step 4, if table already exists, proceed
with step 5

• In step 5, if the object instance already oc-
curs in the table, proceed with step 6

Exception Paths: None.
Assumptions: None.

Postconditions:

1. Entries in tables objects and types

2. A table for the new object type with an en-
try for the object instance.

Related business rules: None.

44

Generating a rule-based modelling agenda Jörg Mutter

Use Case 7 - Add object instance for object type

Use Case Name: Add object instance for object type
Authors: Jörg Mutter
Dates: 01-02-2008
Iteration: Focused
Description: System adds object instance for object type.
Actors: Database.
Preconditions: At least one uninstantiated object type exists in

the model.
Triggers: Use case ”Answer question”.

Basic Course of Events:

1. System inserts the object instance into table
objects on the row where the object type oc-
curs,

2. System inserts the object instance into table
instances,

3. System inserts the object instance into the
table for the object type,

4. System proceeds with use case ”Create and
output agenda”.

Alternative Paths:

• In step 2, if entry object type - object in-
stance already exists, proceed with step 3

• In step 5, if the object instance already oc-
curs in the table, proceed with step 6

Exception Paths: None.
Assumptions: None.

Postconditions:
1. Entries in tables objects and instances

2. Entry in the table for the object type.

Related business rules: None.

45

Generating a rule-based modelling agenda Jörg Mutter

Use Case 8 - Add fact type for fact instance

Use Case Name: Add fact type for fact instance
Authors: Jörg Mutter
Dates: 01-02-2008
Iteration: Focused
Description: System adds fact type for fact instance.
Actors: Database.
Preconditions: At least one untyped fact instance occurs in the

model.
Triggers: Use case ”Answer question”.

Basic Course of Events:

1. System inserts the fact type Into table facts
on the row where the untyped fact instance
occurs,

2. System performs steps 2, 3, 4 and 5 from
use case ”Add fact type”,

3. System inserts the fact instance into the
newly created table for the fact type,

4. System inserts the object instances occur-
ing in the fact instance into the newly
created tables for their counterpart object
types,

5. System inserts the object types into table
objects on the rows where their counterpart
object instances occur,

6. System proceeds with use case ”Create and
output agenda”.

Alternative Path:

• In step 2, if the combination fact type -
fact instance already exists, delete the sin-
gle fact type and proceed with Use Case 15

• If in step 5 the object type and object in-
stance already occur apart from each other,
delete these rows and insert one with the
combination object type - object instance

Exception Paths: None.
Assumptions: None.

46

Generating a rule-based modelling agenda Jörg Mutter

Postconditions:

• Entries in tables facts, objects, types and in-
stances

• Entries in the tables for the fact type and its
object types

Related business rules:

47

Generating a rule-based modelling agenda Jörg Mutter

Use Case 9 - Add fact instance for fact type

Use Case Name: Add fact instance for fact type
Authors: Jörg Mutter
Dates: 01-02-2008
Iteration: Focused
Description: System adds fact instance for fact type.
Actors: Database.
Preconditions: At least one uninstantiated fact type exists in the

model.
Triggers: Use case ”Answer question”.

Basic Course of Events:

1. System inserts the fact instance into table
facts on the row where the uninstantiated
fact type occurs,

2. System inserts the fact instance into the ta-
ble for the fact type,

3. System retrieves the object instances occur-
ing in the fact instance

4. System inserts the object instances found in
step 3 into table objects on the rows where
their counterpart object types occur,

5. System inserts the object instances into the
tables for the object types,

6. System proceeds with use case ”Add fact
instance” for this fact instance

48

Generating a rule-based modelling agenda Jörg Mutter

Alternative Path:

• In step 2, if the combination fact type -
fact instance already exists, delete the sin-
gle fact type and proceed with Use Case 15

• If in step 5 the object type and object in-
stance already occur apart from each other,
delete these rows and insert one with the
combination object type - object instance

Exception Paths: None.
Assumptions: None.

Postconditions:

• Entries in tables facts, objects, types and in-
stances

• Entries in the tables for the fact type and its
object types

Related business rules:

49

Generating a rule-based modelling agenda Jörg Mutter

Use Case 10 - Add fact type for object type

Use Case Name: Add fact type for object type
Authors: Jörg Mutter
Dates: 01-02-2008
Iteration: Focused
Description: System adds fact type for object type.
Actors: Database.
Preconditions: At least one object type occurs in the model with-

out a fact type.
Triggers: Use case ”Answer question.

Basic Course of Events:

1. System checks if combination fact type -
object type already exists in table types in
the database,

2. If this combination does not yet exist, the
system deletes the row in table types in
the database where the object type occurs
alone,

3. System proceeds with use case ”Add fact
type” for this fact type.

Alternative Path: In step 2, if the combination fact type - object
type already exists, the system proceeds with
step 3.

Exception Paths: None.
Assumptions: None.

Postconditions:

• Entries in tables facts, objects and types

• New tables for the newly introduced object
type(s)

Related business rules:

50

Generating a rule-based modelling agenda Jörg Mutter

Use Case 11 - Add fact instance for object instance

Use Case Name: Add fact instance for object instance
Authors: Jörg Mutter
Dates: 01-02-2008
Iteration: Focused
Description: System adds fact instance for object instance.
Actors: Database.
Preconditions: At least one object instance occurs in the model

without a fact instance
Triggers: Use case ”Answer question”.

Basic Course of Events:

1. System checks if combination fact instance
- object instance already exists in table in-
stances in the database,

2. If this combination does not yet exist, the
system deletes the row in table instances in
the database where the object instance oc-
curs alone,

3. System proceeds with use case ”Add fact
instance” for this fact instance.

Alternative Path: In step 2, if the combination fact instance - object
instance already exists, the system proceeds with
step 3.

Exception Paths: None.
Assumptions: None.

Postconditions:

• Entries in tables facts, objects and instances
in the database

• New tables for the newly introduced object
instance(s)

Related business rules:

51

Generating a rule-based modelling agenda Jörg Mutter

Use Case 12 - Add constraint for fact type

Use Case Name: Add constraint for fact type
Authors: Jörg Mutter
Dates: 01-02-2008
Iteration: Focused
Description: System adds constraint for fact type.
Actors: Database.
Preconditions: At least one unconstrained fact exists in the

model.
Triggers: Use case ”Answer question”.

Basic Course of Events:

1. System inserts the constraint on every row
where the fact type occurs in table types,

2. System proceeds with use case ”Create and
output agenda”.

Alternative Path: None.
Exception Paths: None.
Assumptions: None.
Postconditions: Entries in table types.
Related business rules:

52

Generating a rule-based modelling agenda Jörg Mutter

Use Case 13 - Create and output agenda

Use Case Name: Create and output agenda
Authors: Jörg Mutter
Dates: 01-02-2008
Iteration: Focused
Description: System creates and outputs modelling agenda.
Actors: Database, mode set
Preconditions: A modelling mode has been set by the user.
Triggers: Use cases 2, 3, 4, 6, 7, 8 and 12

Basic Course of Events:

1. System scans the database for entries that
do not satisfy business rules 1 to 16 in the
business rules catalogue,

2. System checks the priority for every viola-
tion of a business rule, as described by the
user in mode set,

3. System creates a suitable question for ev-
ery violated business rule (according to the
information that has to be added to the
model and the priority of the violation),

4. System sorts the questions in the agenda,
according to their priority,

5. System shows the agenda on the screen.

Alternative Path: None.
Exception Paths: None.
Assumptions: None.
Postconditions: A (non-empty) agenda.
Related business rules:

53

Generating a rule-based modelling agenda Jörg Mutter

5 Conclusions and future work

This chapter contains the answers to the research questions in chapter 1. Sub-
sequently, some remarks on future work and research on the modelling agenda
are made.

5.1 Questions and answers

How can a modelling agenda be generated based on syntactical rules, procedural rules
and a partial model?

What is a modelling agenda?
A modelling agenda is a support tool for a (team of) modeller(s). The
modelling agenda in essence is a collection of ”toDo items” for a partial
model, based on syntactical and procedural rules for modelling. Adding
new elements to the partial model may lead to questions on the modelling
agenda. These questions may be answered, leading to new model elements
and possibly new items on the agenda.

In a broader perspective, the modelling agenda can be used as (part of)
a modelling forum, in which modellers propose adding or changing model
elements. These propositions may then be challenged by other modellers,
or domain experts, leading to altered partial models. This modelling forum
might help close the gap between business and IT.

What are procedural rules of modelling?
Procedural rules of modelling are concrete descriptions of the actions to be
performed in a modelling session. These procedural rules tell the modeller(s)
which actions have to be taken in order for the model to be sound and
complete. These procedural decriptions may be denoted textually (in natural
or controlled language or even pseudo code) or graphically (for example a
workflow diagram).

Provide a proof of concept for a modelling agenda.
The proof of concept has been demonstrated in chapter 4.1. The source code
for the modelling agenda can be found in the appendix.

54

Generating a rule-based modelling agenda Jörg Mutter

5.2 Future work and research

Modelling forum
In its current form, the modelling agenda is a pre-emptive model checker,
that transforms knowledge gaps into relevant questions. Other tools exist, in
which modellers debate the model at hand, posing new questions themselves
or challenging earlier decisions or propositions. Integrating the modelling
agenda with such a tool might shed some more light on modelling procedures.

Extending the logic
The modelling agenda may be extended with logic for business rules 13, 14,
15 (see paragraph 4.5.1). Also, logic that checks the set of business rules for
inconsistencies is needed. In its current form, inconsistent business rules may
lead to an infinite loop within the modelling agenda.

Extending the modelling language
The modelling agenda now only supports the key ingredients for a syntacti-
cally sound and complete ORM model. This however is only a tiny portion of
what ORM offers. Thereby, other languages, like UML, are more widely used
and might be supported.

Usability
In order to support natural language better, a spelling checker to correct
user input (much like Google does in its search engine) and a graphical user
interface (GUI) would be nice additions.

55

Generating a rule-based modelling agenda Jörg Mutter

6 Literature

Adsett04 : Adsett, C., Bernardi, A, Liu, S, and Spencer, B. (2004). Realising
Weak Work Workflow with Declarative Flexible XML Routing in SOAP (DeFleX)
(Conference publication). Conference: Proceedings of Business Agents and Se-
mantic Web (BASeWEB’04); a workshop in conjunction with the Seventeenth
Canadian Conference on Artificial Intelligence, London, Ontario, Canada,
May 16, 2004.

Bommel08 : van Bommel, P., Hoppenbrouwers, S.J.B.A., Proper, H.A.,
Roelofs, J. (2008). Concepts and Strategies for Quality of Modeling, Innovations
in information systems modeling: methods and best practices, Advances in
database research (ADR) series, Halpin, T., Krogstie, J., Proper, H.A. (editors),
pp. 167-189.

Bryant05 : Bryant, D. (2005). Exploring agent-based argumentation dialogue
games, MSc Dissertation, University of Surrey.

Carlson83 : Carlson, L. (2003). Dialogue games: an approach to discourse
analysis, Dialogue Games: An Approach to Discourse Analysis, Reidel Pub-
lishing Company, Dordrecht, The Netherlands.

Clark04 : Clark, T., Evans, A., Sammut, P., Willans, J. (2004). Applied
Metamodelling - A Foundation for Language Driven Development, Xactium,
Inc., Sept. 2004.

Elst03 : van Elst, L., Aschoff, F. R., Bernardi, A., Schwarz, S. (2003). Weakly-
structured Workflows for Knowledge-intensive Tasks: An Experimental Evaluation,
WETICE 03: Proceedings of the Twelfth International Workshop on Enabling
Technologies, pp.340 345.

Halpin98 : Halpin, T. (1998). Object-Role Modeling (ORM/NIAM), Hand-
book on Architectures of Information Systems, Chapter 4.

Hevner07 : Hevner, A. (2007). A Three Cycle View of Design Science Re-
search, Scandinavian Journal of Information Systems, Vol. 19, No. 2, 2007, pp.
87-92.

Hoppenbrouwers06 : Hoppenbrouwers, S.J.B.A., Proper, H.A., van der
Weide, Th.P. (2006). Exploring Modelling Strategies in a Meta-modelling Context,
OTM Workshops 2006, LNCS 4278, R. Meersman, Z. Tari, P. Herrero et al.
(editors), Springer-Verlag Berlin Heidelberg, pp. 11281137.

Hoppenbrouwers08 : Hoppenbrouwers, S,J,B.A., van Bommel, P., Jarvi-
nen, P. (2008). Method engineering as game design - an emerging HCI perspective
on methods and case tools, Proceedings the Thirteenth International Workshop

56

Generating a rule-based modelling agenda Jörg Mutter

on Exploring Modeling Methods in Systems Analysis and Design (EMMSAD
2008), held in conjunction with CAISE 2008, volume 337 of CEUR Workshop
Proceedings, Halpin, T., Proper, H.A., Krogstie, J. (editors), pp 167-189.

Iivari07 : Iivari, J. (2007). A Paradigmatic Analysis of Information Systems as
a Design Science, Scandinavian Journal of Information Systems, 19(2), pp. 39-64.

Lebbink03 : Lebbink, H.J., Witteman, C.L.M., Meyer, J.J.C. (2003). Dia-
logue games for inconsistent and biased information, LCMAS 2003, Logic and
Communication in Multi-Agent Systems, van der Hoek, W., Lomuscio, A., de
Vink, E. (editors), pp. 134-151.

Lindeman06 : Lindeman, L. (2006). Modelleerprocessen. MSc Disserta-
tion, Radboud University Nijmegen; in Dutch.

Prakken05 : Prakken, H. (2005). Coherence and flexibility in dialogue games
for argumentation, Journal Logic and Computation 15(6), pp. 1009-1040.

Ravenscroft06 : Ravenscroft, A., McAlister, S. (2006). Digital Games and
Learning in Cyberspace: A Dialogical Approach, E-Learning Journal, Vol. 3,
No 1, pp 38-51

Ross03 : Ross, R., (editor) (2003). Business Rules Manifesto. Business Rules
Group, version 2.0., http://www.businessrulesgroup.org/brmanifesto.htm
(accessed June 12, 2010)

Ssebuggwawo09 : Ssebuggwawo, D., Hoppenbrouwers, S.J.B.A., Proper,
H.A. (2009). Interactions, Goals and Rules in a Collaborative Modelling Session,
Second IFIP WG 8.1 Working Conference on The Practice of Enterprise Model-
ing: from Business Strategies to Enterprise Architectures Stockholm, Sweden,
November, 2009, Persson, A., Stirna, J. (editors), Springer, Berlin, Germany, pp
54-68

Zanten04 : Veldhuijzen van Zanten, G., Hoppenbrouwers, S.J.B.A., Proper,
H.A. (2004). System Development as a Rational Communicative Process.
Journal of Systemics, Cybernetics and Informatics, vol. 2(4), pp. 47-51

57

Generating a rule-based modelling agenda Jörg Mutter

7 Appendix

7.1 Module overview

Figure 25: Module overview

The modelling agenda consists of six prolog modules. The main module
is agenda paper.pl. This module contains the main loop which enables the
modeller to continuously give new commands. Agenda paper uses four
modules, the first being sql.pl, which contains general functions to connect
prolog to a mySQL database.

When the modeller gives a new command, module process additions is
called. When the command contains an answer to an agenda question, this
module calls module process answer. Otherwise the addition is processed
in module process additions itself. Both modules use general functions from
sql.pl.

58

Generating a rule-based modelling agenda Jörg Mutter

After processing the command, module agenda paper calls module busi-
ness rules, which checks the database for rule violations. After deleting the
old agenda questions, every rule violation is transformed into a new agenda
question.

Finally, agenda paper calls module output agenda, which constructs a
neatly numbered new agenda from the questions generated by module
business rules.

59

Generating a rule-based modelling agenda Jörg Mutter

7.2 Module agenda paper.pl

:- include(’sql.pl’).
:- include(’process additions.pl’).
:- include(’process answers.pl’).
:- include(’business rules.pl’).
:- include(’output agenda.pl’).

:- dynamic model name/1.
:- dynamic mode/1.

The main loop assures commands can be given continuously
Everything after repeat is repeated as long as command ’stop’ is not given
In case of command ’stop’, end statement ends the program

fcoim modeling :-
intro,
connect db(test, root,”),
create tables,
assert(mode(fcoim)),
repeat,
nl,
write(’command: ’),
text to list(C),
execute(C),
end statement(C),
!.

Execute tries to execute the command
In case of an invalid command, this is communicated
In case of command ’stop’, end statement is triggered

execute(C) :-
split at(C, Lists, ’:’),
process list(Lists),
fill agendas,
output agenda,
!;
C == [show, agenda],
output agenda,
!;
C \= [stop],
write(’This is not a valid command!’),
! ;
!.

60

Generating a rule-based modelling agenda Jörg Mutter

The introduction statement

intro :-
write(’##’),nl,
write(’#’),
write(’ ’),
write(’#’),
nl,
write(’#’),
write(’Modelling Agenda’),
write(’#’),
nl,
write(’#’),
write(’ ’),
write(’#’),
nl,
write(’##’),nl,nl.

text to list reads input from the command line and converts it into list format

text to list(L) :-
readline(T),
wordlist(L,T,[]).

readline(L) :- get0(Char),buildlist(Char,L).

buildlist(10,[]) :- !.
buildlist(Char,[Char |X]) :- get0(Char2),buildlist(Char2,X).

wordlist([X |Y]) –>word(X),whitespace,wordlist(Y).
wordlist([X]) –>whitespace,wordlist(X).
wordlist([X]) –>word(X).
wordlist([X]) –>word(X),whitespace.

word(W) –>charlist(X),name(W,X).

charlist([X |Y]) –>chr(X),charlist(Y).
charlist([X]) –>chr(X).
chr(X) –>[X], X>=33.

whitespace –>whsp,whitespace.
whitespace –>whsp.
whsp –>[X],X<33.

End statement

61

Generating a rule-based modelling agenda Jörg Mutter

end statement([stop]) :-
nl,
write(’Program terminated’),
retract(mode()),
stop.

stop.

62

Generating a rule-based modelling agenda Jörg Mutter

7.3 Module process additions.pl

Function split map is used to split multiple answers into separate lists

split map([], ,).
split map([X],Y,) :-

Y = ([[X]]).
split map([X |Xs], Y, Z) :-

split at([X |Xs], [Voor |Na], Z),
flatten(Na,Nas),
split map(Nas, Ys, Z),
Y = [Voor |Ys].

Function split at is used to split a list into two separate lists
at symbol ’Separator’

split at([], ,) :- !.
split at(Input, Output, Separator) :-

conc(Head, [Separator |Tail], Input),
Output = [Head, Tail],
!;
Output = Input,
!.

Function conc concatenates lists

conc([],L,L).
conc([X |L1],L2,[X |L3]) :-

conc(L1,L2,L3).

Function list to string converts a list of words into a string

list to string(List, String) :-
list to string(List, [], String), !.

list to string([], L, String) :-
atom chars(String, L), !.

list to string([H], L, String) :-
atom chars(H, Hlist),
append(L, Hlist, List),
list to string([], List, String), !.

list to string([H |T], L, String) :-
atom chars(H, Hlist),

63

Generating a rule-based modelling agenda Jörg Mutter

append(Hlist, [’ ’], HH),
append(L, HH, List),
list to string(T, List, String), !.

Function capitalized checks if a word starts with a capital

capitalized(X) :-
string to list(X, Y),
Y = [C0 |],
C0 =<96.

Function process list processes lists of lists in case of file use

process list(X,[]) :-
process(X,[]).

process list([X,Y]) :-
process(X, Y), !.

process list([[X,Y] |Rest]) :-
process(X, Y),
process list(Rest),
!.

Function process receives two lists: one with the function to be called,
the other with the fact or object types or instances

process(X, Y) :-
X == [add, fact, type],
add fact type(Y, , Y);
X == [add, fact, instance],
add fact instance(Y, Y);
X == [add, object, type],
add object type(Y);
X == [add, object, instance],
add object instance(Y);
X = [answer, Z],
member(’,’,Y),
split map(Y, [A |As], ’,’),
prepare answer(Z, A),
process(X,As);
X = [answer, Z],
prepare answer(Z, Y);
fail.

Function add fact type receives the fact type
It selects the object types and sends these to function
add object type, along with the fact type itself.

64

Generating a rule-based modelling agenda Jörg Mutter

add fact type([], Role, Y) :-
add role type(Role),
list to string(Y,S),
(
check existence(S, facts, facttype);
insert X(S, facts, facttype)
).

add fact type([X], Role, Y) :-
capitalized(X)
add object type(X,Y),
conc(Role,[’...’],Rest),
add role type(Rest),
list to string(Y,S),
(
check existence(S, facts, facttype);
insert X(S, facts, facttype)
);
conc(Role,[X],Rest),
add role type(Rest),
list to string(Y,S),
(
check existence(S, facts, facttype);
insert X(S, facts, facttype)
).

add fact type([X |Xs], Role, Y) :-
capitalized(X),
add object type(X,Y),
conc(Role,[’...’],Rest),
add fact type(Xs, Rest, Y);
conc(Role,[X],Rest),
add fact type(Xs, Rest, Y).

Function add fact instance receives the fact instance
It selects the object instances and sends these to function
add object instance, along with the fact instance itself.

add fact instance([], Y) :-
list to string(Y,S),
(
check existence(S, facts, factinstance);
insert X(S, facts, factinstance)
).

add fact instance([X], Y) :-

65

Generating a rule-based modelling agenda Jörg Mutter

capitalized(X),
add object instance(X,Y),
list to string(Y,S),
(
check existence(S, facts, factinstance);
insert X(S, facts, factinstance)
);
list to string(Y,S),
(
check existence(S, facts, factinstance);
insert X(S, facts, factinstance)
).

add fact instance([X |Xs], Y) :-
capitalized(X),
add object instance(X,Y),
add fact instance(Xs, Y);
add fact instance(Xs, Y).

Functon add object type(1) receives an object type and places it in tables objects and types

add object type([X]) :-
create table(X),
check existence(X, objects, objecttype);
insert X(X, objects, objecttype),
insert object into types(X).

Functon add object type(2) receives an object type and a fact type.
It places the objects into the objects and types tables.
The fact is placed in tables facts and types.

add object type(X, Y) :-
create table(X),
list to string(Y,S),
insert fact into types(S,X),
(
check existence(X, objects, objecttype);
insert X(X, objects, objecttype)
),
create table(S).

Functon add object instance(1) receives an object instance and places it in tables
objects and instances

add object instance([X]) :-

66

Generating a rule-based modelling agenda Jörg Mutter

insert X(X, objects, objectinstance),
insert object into instances(X).

Function add object instance(2) receives an object instance and a fact instance.
It places the objects into the objects and instances tables.
The fact is placed in tables facts and instances

add object instance(X,Y) :-
list to string(Y,S),
insert fact into instances(S,X),
insert X(S, facts, factinstance),
insert object and instance into objects(X, S).

Function add role type sets the role type in table types to the correct role

add role type(X) :-
list to string(X,S),
sformat(SQL,’UPDATE types SET role = ”˜w” WHERE role = ”sngnbknd”’,[S]),
odbc query(modelling,SQL).

67

Generating a rule-based modelling agenda Jörg Mutter

7.4 Module process answers.pl

Function prepare answer retrieves the answered question from the database
and then deletes it.

prepare answer(Z,[]) :-
sformat(SQL, ’SELECT questions

FROM agenda
WHERE id = ˜w’,

[Z]),
odbc query(modelling, SQL, Question),
isolate result(Question, U),
sformat(SQL2, ’DELETE

FROM agenda
WHERE questions = (”˜w”)’,

[U]),
odbc query(modelling, SQL2).

prepare answer(Z, X) :-
sformat(SQL, ’SELECT questions

FROM agenda
WHERE id = ˜w’,

[Z]),
odbc query(modelling, SQL, Question),
isolate result(Question, U),
concat atom(List, ’ ’, U),
split at(List, [Head |Subs], ’:’),
flatten(Subs, Na),
list to string(Na, Q),
list to string(X, Antw),
query(Query,[Head, [Q], [Antw]],[]),
simplify query(Query,C),
execute(C).

Function simplify query simplifies the query for execution.

simplify query((S,C),C) :-
S,!.
simplify query(C,C).

Function execute executes a function.

execute(C) :-
C,
!.

68

Generating a rule-based modelling agenda Jörg Mutter

Function provide object type for object instance sets the object type
as provided in the answer for an object instance.

provide object type for object instance(Instance, Antw) :-
(
sformat(SQL, ’SELECT objecttype

FROM objects
WHERE objecttype = ”˜w”
AND objectinstance = ”˜w”’,

[Antw, Instance]),
findall(Query, odbc query(modelling, SQL, row(Query)), X),
X \= [],
sformat(SQL2, ’DELETE

FROM objects
WHERE objectinstance = ”˜w”
AND objecttype IS NULL
LIMIT 1’,

[Instance]),
odbc query(modelling, SQL2);
sformat(SQL3, ’UPDATE objects

SET objecttype = ”˜w”
WHERE objectinstance = ”˜w”
AND objecttype IS NULL
LIMIT 1’,

[Antw, Instance]),
odbc query(modelling, SQL3)
),
(
sformat(SQL4, ’SELECT *

FROM types
WHERE objecttype = ”˜w”’,

[Antw]),
odbc query(modelling, SQL4,);
sformat(SQL5, ’INSERT INTO types (objecttype)

VALUES (”˜w”)
ON DUPLICATE KEY UPDATE objecttype=objecttype’,

[Antw]),
odbc query(modelling, SQL5)
),
create table(Antw),
insert object(Antw, Instance).

Function provide object instance for object type sets the object instance
as provided in the answer for an object type.

69

Generating a rule-based modelling agenda Jörg Mutter

provide object instance for object type(Object, Antw) :-
(
sformat(SQL, ’SELECT objecttype

FROM objects
WHERE objectinstance = ”˜w”
AND objecttype = ”˜w”’,

[Antw, Object]),
findall(Query, odbc query(modelling, SQL, row(Query)), X),
X \= [],
sformat(SQL2, ’DELETE

FROM objects
WHERE objecttype = ”˜w”
AND objectinstance IS NULL
LIMIT 1’,

[Object]),
odbc query(modelling, SQL2);
sformat(SQL2, ’UPDATE objects

SET objectinstance = ”˜w”
WHERE objecttype = ”˜w”
AND objectinstance IS NULL
LIMIT 1’,

[Antw, Object]),
odbc query(modelling, SQL2)
),
(
sformat(SQL3, ’SELECT *

FROM instances
WHERE objectinstance = ”˜w”’,

[Antw]),
odbc query(modelling, SQL3);
sformat(SQL4, ’INSERT INTO instances (objectinstance)

VALUES (”˜w”)
ON DUPLICATE KEY UPDATE objectinstance=objectinstance’,
[Antw]),

odbc query(modelling, SQL4)
),
insert object(Object,Antw).

Function provide fact type for object type sets the fact type
as provided in the answer for an object type.

provide fact type for object type(Object, Antw) :-
sformat(SQL, ’SELECT facttype

FROM types
WHERE facttype = ”˜w”
AND objecttype = ”˜w”’,

70

Generating a rule-based modelling agenda Jörg Mutter

[Antw, Object]),
findall(Query, odbc query(modelling, SQL, row(Query)), X),
X \= [],
sformat(SQL2, ’DELETE

FROM types
WHERE objecttype = ”˜w”
AND facttype IS NULL
LIMIT 1’,

[Object]),
odbc query(modelling, SQL2);
sformat(SQL3, ’DELETE

FROM types
WHERE objecttype = ”˜w”
AND facttype IS NULL
LIMIT 1’,

[Object]),
odbc query(modelling, SQL3),
string to atom(String,Antw),
string to list(String,Temp),
string to list(Temp,AntwString),
wordlist(List,AntwString,[]),
add fact type(List, ,List).

Function provide fact instance for object instance sets the fact instance
as provided in the answer for an object instance.

provide fact instance for object instance(Object, Antw) :-
sformat(SQL, ’SELECT factinstance

FROM instances
WHERE factinstance = ”˜w”
AND objectinstance = ”˜w”’,

[Antw, Object]),
findall(Query, odbc query(modelling, SQL, row(Query)), X),
X \= [],
sformat(SQL2, ’DELETE

FROM instances
WHERE objectinstance = ”˜w”
AND factinstance IS NULL
LIMIT 1’,

[Object]),
odbc query(modelling, SQL2);
sformat(SQL3, ’DELETE

FROM instances
WHERE objectinstance = ”˜w”
AND factinstance IS NULL
LIMIT 1’,

71

Generating a rule-based modelling agenda Jörg Mutter

[Object]),
odbc query(modelling, SQL3),
string to atom(String,Antw),
string to list(String,Temp),
string to list(Temp,AntwString),
wordlist(List,AntwString,[]),
add fact instance(List,List).

Function provide fact type for fact instance sets the fact type
as provided in the answer for a fact instance.

provide fact type for fact instance(Instance, Antw) :-
sformat(SQL, ’SELECT facttype

FROM facts
WHERE facttype = ”˜w”
AND factinstance = ”˜w”’

, [Antw, Instance]),
findall(Query, odbc query(modelling, SQL, row(Query)), X),
X \= [],
sformat(SQL2, ’DELETE

FROM facts
WHERE factinstance = ”˜w”
AND facttype IS NULL
LIMIT 1’,

[Instance]),
odbc query(modelling, SQL2);
sformat(SQL3, ’UPDATE facts

SET facttype = ”˜w”
WHERE factinstance = ”˜w”
AND facttype IS NULL
LIMIT 1 ’,

[Antw, Instance]),
odbc query(modelling, SQL3),
string to atom(String,Antw),
string to list(String,Temp),
string to list(Temp,AntwString),
wordlist(AntwList,AntwString,[]),
add fact type(AntwList, ,AntwList),
sformat(SQL4, ’INSERT INTO ‘˜w‘ (instances)

VALUES (”˜w”)
ON DUPLICATE KEY UPDATE instances=instances’,

[Antw, Instance]),
odbc query(modelling, SQL4),
string to atom(StringInst,Instance),
string to list(StringInst,Temp2),
string to list(Temp2,StringInstance),

72

Generating a rule-based modelling agenda Jörg Mutter

wordlist(InstanceList, StringInstance,[]),
process object types(InstanceList, AntwList).

Function provide fact instance for fact type sets the fact instance
as provided in the answer for a fact type.

provide fact instance for fact type(Fact, Antw) :-
sformat(SQL, ’SELECT factinstance

FROM facts
WHERE factinstance = ”˜w”
AND facttype = ”˜w”’,

[Antw, Fact]),
findall(Query, odbc query(modelling, SQL, row(Query)), X),
X \= [],
sformat(SQL2, ’DELETE

FROM facts
WHERE facttype = ”˜w”
AND factinstance IS NULL
LIMIT 1’,

[Fact]),
odbc query(modelling, SQL2);
sformat(SQL3, ’DELETE

FROM facts
WHERE facttype = ”˜w”
AND factinstance IS NULL
LIMIT 1’,

[Fact]),
odbc query(modelling, SQL3),
sformat(SQL4, ’INSERT INTO facts (facttype,factinstance)

VALUES (”˜w”,”˜w”)
ON DUPLICATE KEY UPDATE factinstance=factinstance’,

[Fact, Antw]),
odbc query(modelling, SQL4),
sformat(SQL5, ’INSERT INTO ‘˜w‘ (instances)

VALUES (”˜w”)
ON DUPLICATE KEY UPDATE instances=instances’,

[Fact, Antw]),
odbc query(modelling, SQL5),
string to atom(AntwStr,Antw),
string to list(AntwStr,Temp),
string to list(Temp,AntwString),
string to atom(FactStr,Fact),
string to list(FactStr,Temp2),
string to list(Temp2,FactString),
wordlist(FactList, FactString,[]),
wordlist(AntwList, AntwString,[]),

73

Generating a rule-based modelling agenda Jörg Mutter

process object instances(FactList, AntwList).

Function provide constraint for fact type sets the constraint
as provided in the answer for a fact type.

provide constraint for fact type(Fact, Antw) :-
sformat(SQL, ’UPDATE types

SET uniqueness constraint = ”˜w”
WHERE facttype = ”˜w”’, [Antw, Fact]),

odbc query(modelling, SQL).

Function process object instances deletes the object types without instances
as provided in the answer for that object type, adds an entry for object
and instance together and adds an entry in the table for the object type with
its instance.

process object instances([],[]).
process object instances([X],[Y]) :-

capitalized(X),
sformat(SQL, ’DELETE

FROM objects
WHERE objecttype=”˜w”
AND objectinstance IS NULL
LIMIT 1’,

[X]),
sformat(SQL2, ’DELETE

FROM objects
WHERE objectinstance=”˜w”
AND objecttype IS NULL
LIMIT 1’,

[Y]),
sformat(SQL3, ’INSERT INTO objects (objecttype, objectinstance)

VALUES (”˜w”,”˜w”)
ON DUPLICATE KEY UPDATE objecttype=objecttype’,

[X, Y]),
sformat(SQL4, ’INSERT INTO ˜w (instances)

VALUES (”˜w”)
ON DUPLICATE KEY UPDATE instances=instances’,

[X, Y]),
odbc query(modelling, SQL),
odbc query(modelling, SQL2),
odbc query(modelling, SQL3),
odbc query(modelling, SQL4);
!.

process object instances([X |Xs],[Y |Ys]) :-

74

Generating a rule-based modelling agenda Jörg Mutter

\+ capitalized(X),
process object instances(Xs,Ys);
capitalized(X),
sformat(SQL, ’DELETE

FROM objects
WHERE objecttype=”˜w”
AND objectinstance IS NULL
LIMIT 1’,

[X]),
sformat(SQL2, ’DELETE

FROM objects
WHERE objectinstance=”˜w”
AND objecttype IS NULL
LIMIT 1’,

[Y]),
sformat(SQL3, ’INSERT INTO objects (objecttype, objectinstance)

VALUES (”˜w”,”˜w”)
ON DUPLICATE KEY UPDATE objecttype=objecttype’,

[X, Y]),
sformat(SQL4, ’INSERT INTO ˜w (instances)

VALUES (”˜w”)
ON DUPLICATE KEY UPDATE instances=instances’,

[X, Y]),
odbc query(modelling, SQL),
odbc query(modelling, SQL2),
odbc query(modelling, SQL3),
odbc query(modelling, SQL4),
process object instances(Xs,Ys).

Function process object types deletes the object instances without types
as provided in the answer for that object instance, adds an entry for object
and instance together and adds an entry in the table for the object type with
its instance.

process object types([],[]).
process object types([X],[Y]) :-

capitalized(X),
sformat(SQL, ’DELETE

FROM objects
WHERE objectinstance=”˜w”
AND objecttype IS NULL’,

[X]),
sformat(SQL2, ’DELETE

FROM objects
WHERE objecttype=”˜w”
AND objectinstance IS NULL’,

75

Generating a rule-based modelling agenda Jörg Mutter

[Y]),
sformat(SQL3, ’INSERT INTO objects (objecttype, objectinstance)

VALUES (”˜w”,”˜w”)
ON DUPLICATE KEY UPDATE objecttype=objecttype’,

[Y, X]),
create table(Y),
sformat(SQL4, ’INSERT INTO ˜w (instances)

VALUES (”˜w”)
ON DUPLICATE KEY UPDATE instances=instances’,

[Y, X]),
odbc query(modelling, SQL),
odbc query(modelling, SQL2),
odbc query(modelling, SQL3),
odbc query(modelling, SQL4);
!.

process object types([X |Xs],[Y |Ys]) :-
\+ capitalized(X),
process object types(Xs,Ys);
capitalized(X),
sformat(SQL, ’DELETE

FROM objects
WHERE objectinstance=”˜w”
AND objecttype IS NULL’,

[X]),
sformat(SQL2, ’DELETE

FROM objects
WHERE objecttype=”˜w”
AND objectinstance IS NULL’,

[Y]),
sformat(SQL3, ’INSERT INTO objects (objecttype, objectinstance)

VALUES (”˜w”,”˜w”)
ON DUPLICATE KEY UPDATE objecttype=objecttype’,

[Y, X]),
create table(Y),
sformat(SQL4, ’INSERT INTO ˜w (instances)

VALUES (”˜w”)
ON DUPLICATE KEY UPDATE instances=instances’, [Y, X]),

odbc query(modelling, SQL),
odbc query(modelling, SQL2),
odbc query(modelling, SQL3),
odbc query(modelling, SQL4),
process object types(Xs,Ys).

DCG to transform the questions into corresponding functions.

query((Q)) –>

76

Generating a rule-based modelling agenda Jörg Mutter

command(Q).

command((XˆYˆprovide object type for object instance(X,Y)))
–>[[’Provide’, at, least, one, object, type, for, object, instance] , [X], [Y]].

command((XˆYˆprovide object type for object instance(X,Y)))
–>[[’Immediately’, provide, at, least, one, object, type, for, object, instance], [X], [Y]].

command((XˆYˆprovide object instance for object type(X,Y)))
–>[[’Provide’, at, least, one, object, instance, for, object, type], [X], [Y]].

command((XˆYˆprovide object instance for object type(X,Y)))
–>[[’Immediately’, provide, at, least, one, object, instance, for, object, type], [X], [Y]].

command((XˆYˆprovide fact type for object type(X,Y)))
–>[[’Provide’, at, least, one, fact, type, for, object, type], [X], [Y]].

command((XˆYˆprovide fact type for object type(X,Y)))
–>[[’Immediately’, provide, at, least, one, fact, type, for, object, type], [X], [Y]].

command((XˆYˆprovide fact instance for object instance(X,Y)))
–>[[’Provide’, at, least, one, fact, instance, for, object, instance], [X], [Y]].

command((XˆYˆprovide fact instance for object instance(X,Y)))
–>[[’Immediately’, provide, at, least, one, fact, instance, for, object, instance], [X], [Y]].

command((XˆYˆprovide fact type for fact instance(X,Y)))
–>[[’Provide’, at, least, one, fact, type, for, fact, instance], [X], [Y]].

command((XˆYˆprovide fact type for fact instance(X,Y)))
–>[[’Immediately’, provide, at, least, one, fact, type, for, fact, instance], [X], [Y]].

command((XˆYˆprovide fact instance for fact type(X,Y)))
–>[[’Provide’, at, least, one, fact, instance, for, fact, type], [X], [Y]].

command((XˆYˆprovide fact instance for fact type(X,Y)))
–>[[’Immediately’, provide, at, least, one, fact, instance, for, fact, type], [X], [Y]].

command((XˆYˆprovide constraint for fact type(X,Y)))
–>[[’Provide’, at, least, one, constraint, for, fact, type], [X], [Y]].

command((XˆYˆprovide constraint for fact type(X,Y)))
–>[[’Immediately’, provide, at, least, one, constraint, for, fact, type], [X], [Y]].

77

Generating a rule-based modelling agenda Jörg Mutter

7.5 Module output agenda.pl

Function output agenda is used to reorder the agenda, reorder the numbering of the
questions and output the agenda

output agenda :-
reorder agenda,
get questions(X),
X \= [],
nl, nl,
process results(X),
nl,
!;
nl,nl,
write(’Agenda is empty’),
!.

Function reorder agenda is used to reorder the agenda and the numbering of the questions

reorder agenda :-
odbc query(modelling, ’CREATE TABLE newagenda

(
type ENUM(”IMM”,”NORM”) NOT NULL,
id MEDIUMINT NOT NULL AUTO INCREMENT,
questions VARCHAR(256) UNIQUE,
PRIMARY KEY (type,id)
)
ENGINE = MYISAM’),

odbc query(modelling, ’INSERT INTO newagenda
SELECT * FROM agenda ORDER BY type’),

odbc query(modelling, ’DROP TABLE agenda’),
odbc query(modelling, ’RENAME TABLE newagenda TO agenda’),

/* First, double the max id from agenda, to avoid double key entries */
odbc query(modelling, ’SELECT COUNT(*)

FROM agenda’,
W,
[types([integer])]),

isolate result(W,F),
string to list(F,G),
name(Total,G),
NewTotal is Total * 2,
sformat(SQL, ’SET @var name = w’,[NewTotal]),
odbc query(modelling, SQL),
odbc query(modelling, ’UPDATE agenda

78

Generating a rule-based modelling agenda Jörg Mutter

SET id = (@var name := @var name +1)’),

/* Then reset count from 1 */
odbc query(modelling, ’SET @var name2 = 0’),
odbc query(modelling, ’UPDATE agenda

SET id = (@var name2 := @var name2 +1)’),
odbc query(modelling, ’SELECT COUNT(*)

FROM agenda’,
W,
[types([integer])]),

isolate result(W,E),
string to list(E,M),
name(Int,M),
NewInt is Int + 1,
sformat(SQL2, ’ALTER TABLE agenda AUTO INCREMENT = w’, [NewInt]),
odbc query(modelling, SQL2).

Function process results is used to isolate the questions from the database results

process results([]).
process results([X]) :-

isolate result(X,U),
write(U), nl.

process results([X|Xs]) :-
isolate result(X,U),
write(U), nl,
process results(Xs).

Function get questions is used to retrieve the questions from the database

get questions(Y) :-
findall(X, odbc query(modelling, ’SELECT id, questions

FROM agenda’,
X),

Y).

79

Generating a rule-based modelling agenda Jörg Mutter

7.6 Module business rules.pl

Function fill agendas first deletes the old agenda, and then searches for all
entries in the database that conflict with the ruleset.

fill agendas :-
odbc query(modelling, ’DELETE FROM agenda’),
ruleset(R),
zoek tegenmodel(R,).

The set of business rules for ORM.

ruleset(R) :-
R =
(
[
[”Ieder feittype wordt gepopuleerd door minimaal een feitinstantie”, facts, 0],
[”Iedere feitinstantie hoort bij minimaal een feittype”, facts, 1],
[”Ieder objecttype wordt gepopuleerd door minimaal een objectinstantie”, objects, 0],
[”Iedere objectinstantie hoort bij minimaal een objecttype”, objects, 1],
[”Ieder objecttype participeert in minimaal een feittype”, types, 0],
[”Ieder feittype bestaat uit minimaal een objecttype”, types, 0],
[”Iedere rol participeert in minimaal een feittype”, types, 0],
[”Ieder feittype bestaat uit minimaal een rol”, types, 0],
[”Iedere objectinstantie participeert in minimaal een feitinstantie”, instances, 0],
[”Iedere feitinstantie bestaat uit minimaal een objectinstantie”, instances, 0],
[”Ieder feittype wordt beperkt door minimaal een uniqueness constraint”, types, 0],
[”Iedere uniqueness constraint beperkt minimaal een feittype”, types, 0]
]
).

The set of business rules that are incorporated in code (database
restrictions):
Every object type is unique (Principle of strong identification)
Every fact type is unique (Principle of strong identification)

And one for the modeller to check:
Every fact type is elementary
Function zoek tegenmodel reads every rule in the ruleset, transforms it into a
logic formula and parses its elements to find the corresponding database
columns. It then checks if the formula is true for all entries in these
columns and if not, stores these entries in a resultset.

zoek tegenmodel([],[]).

80

Generating a rule-based modelling agenda Jörg Mutter

zoek tegenmodel([[Rule, Table, Prio] |Rules], Resultset) :-
lees tekst naar lijst binair(List, Rule),
formulate(List,Formula),
parse(Formula, Col1, Col2),
retrieveContradictions(Table, Col1, Col2, Resultset),
create questions(Col1, Col2, Prio, Resultset),
zoek tegenmodel(Rules,).

Function lees tekst naar lijst binair converts text to the Prolog list format.

lees tekst naar lijst binair(L,T) :-
wordlist(L,T,[]).

Function formulate converts the list to a logic formula.

formulate(List,Formula) :-
logic formula(Formula,List,[]),!.

Function parse selects the database columns to check.
Momentarily only works for formulas quantified as ALL.x EX.y.

parse((Q1,Q2,E1,E2,), E1, E2) :-
Q1 = all(),
Q2 = ex();
fail.

Function retrieveContradictions selects all NULL-values.
Momentarily only works for formulas quantified as ALL.x EX.y.

retrieveContradictions(Table, Col1, Col2, Resultset) :-
sformat(SQL1,’SELECT ˜w

FROM ˜w
WHERE ˜w IS NULL’,

[Col1, Table, Col2]),
findall(Y, odbc query(modelling, SQL1, Y),Resultset).

Function createQuestions creates the questions for the agenda.
It tidies the query results and transforms them into questions.

create questions(, , ,[]).
create questions(Col1, Col2, Prio, [Result |Results]) :-

isolate result(Result,X),

81

Generating a rule-based modelling agenda Jörg Mutter

tidy column(Col2, Tidy2),
tidy column(Col1, Tidy1),
write prio(Prio, PrioRes, PrioDB),
concat(PrioRes, Tidy2, C1),
concat(C1, ’ for ’, C2),
concat(C2, Tidy1, C3),
concat(C3, ’ : ’, C4),
concat(C4, X, C5),
sformat(SQL2,’INSERT INTO agenda (type, questions)

VALUES (”˜w”, ”˜w”)
ON DUPLICATE KEY UPDATE questions=questions’,

[PrioDB, C5]),
odbc query(modelling, SQL2),
Results [],
create questions(Col1, Col2, Prio, [Results]);
!.

Function isolate result strips the query results.

isolate result(X,U) :-
sformat(F,’˜w’,X),
atom codes(F,G),
starts with(G,”row(”,Z),
ends with(Z,”)”,Y),
atom chars(U,Y).

starts with(Whole, Part, X) :- append(Part, X, Whole).
ends with(Whole, Part, X) :- append(X, Part, Whole).

Function tidy column returns the full name of a database column.

tidy column(X,Y) :-
X = facttype,
Y = ’fact type’;
X = factinstance,
Y = ’fact instance’;
X = objecttype,
Y = ’object type’;
X = objectinstance,
Y = ’object instance’;
X = uniqueness constraint,
Y = ’constraint’.

Function write prio returns the start of a question, depending on the priority
of the corresponding business rule.

82

Generating a rule-based modelling agenda Jörg Mutter

write prio(Prio, PrioRes, PrioDB) :-
Prio == 0,
PrioRes = ’Provide at least one ’,
PrioDB = ’NORM’;
Prio == 1,
PrioRes = ’Immediately provide at least one ’,
PrioDB = ’IMM’.

DCG of the business logic.

logic formula returns the logic formula:
quantifier(X), quantifier(Y), element(X), element(Y), function(X,Y)

quantifiedVariable returns: quantifier(X), element(X), X

logic formula((Q1,Q2,E1,E2,F)) –>
quantifiedVariable((Q1, ,X,E1)),
functie((XˆYˆF)),
quantifiedVariable((Q2, ,Y,E2)).

quantifiedVariable((Z,Y,X,U)) –>
quantifier((XˆZ)),
element((XˆYˆU)).

quantifier((Xˆex(X))) –>[minimaal, een].
quantifier((Xˆall(X))) –>[ieder].
quantifier((Xˆall(X))) –>[’Ieder’].
quantifier((Xˆall(X))) –>[iedere].
quantifier((Xˆall(X))) –>[’Iedere’].
quantifier((Xˆall(X))) –>[alle].
quantifier((Xˆall(X))) –>[’Alle’].

element((Xˆfacttype(X)ˆfacttype)) –>[feittype].
element((Xˆfactinstance(X)ˆfactinstance)) –>[feitinstantie].
element((Xˆobjecttype(X)ˆobjecttype)) –>[objecttype].
element((Xˆobjectinstance(X)ˆobjectinstance)) –>[objectinstantie].
element((Xˆrole(X)ˆrole)) –>[rol].
element((Xˆuniqueness constraint(X)ˆuniqueness constraint)) –>[uniqueness,
constraint].

element(facttype) –>[feittype].
element(factinstance) –>[feitinstantie].
element(objecttype) –>[objecttype].
element(objectinstance) –>[objectinstantie].
element(role) –>[rol].
element(uniqueness constraint) –>[uniqueness, constraint].

83

Generating a rule-based modelling agenda Jörg Mutter

functie((XˆYˆpopuleert(X,Y))) –>[wordt, gepopuleerd, door].
functie((XˆYˆpopuleert(Y,X))) –>[hoort, bij].
functie((XˆYˆparticipeert in(X,Y))) –>[participeert, in].
functie((XˆYˆparticipeert in(Y,X))) –>[bestaat, uit].
functie((XˆYˆbeperkt(X,Y))) –>[beperkt].
functie((XˆYˆbeperkt(Y,X))) –>[wordt, beperkt, door].

84

Generating a rule-based modelling agenda Jörg Mutter

7.7 Module sql.pl

Function connect db for connecting to the database.

connect db(DBName, User, Pass) :-
odbc connect(DBName, ,

[user(User),
password(Pass),
alias(modelling),
open(once)
]).

Function create tables creates the necessary tables on startup.

create tables :-
odbc query(modelling,

’CREATE TABLE IF NOT EXISTS agenda
(type ENUM(”IMM”,”NORM”) NOT NULL,
id SMALLINT NOT NULL AUTO INCREMENT PRIMARY KEY,
questions VARCHAR(256) UNIQUE)
ENGINE = MYISAM’),

odbc query(modelling,
’CREATE TABLE IF NOT EXISTS types (
id SMALLINT(10) PRIMARY KEY AUTO INCREMENT,
facttype VARCHAR(254),
objecttype VARCHAR(254),
role VARCHAR(254),
uniqueness constraint CHAR(3))’),

odbc query(modelling,
’ALTER TABLE types
ADD UNIQUE (facttype, objecttype)’),

odbc query(modelling,
’CREATE TABLE IF NOT EXISTS instances (
id SMALLINT(10) PRIMARY KEY AUTO INCREMENT,
factinstance VARCHAR(254),
objectinstance VARCHAR(254))’),

odbc query(modelling,
’CREATE TABLE IF NOT EXISTS facts (
id SMALLINT(10) PRIMARY KEY AUTO INCREMENT,
facttype VARCHAR(254),
factinstance VARCHAR(254) UNIQUE)’),

odbc query(modelling,
’ALTER TABLE facts
ADD UNIQUE (facttype,factinstance)’),

odbc query(modelling,

85

Generating a rule-based modelling agenda Jörg Mutter

’CREATE TABLE IF NOT EXISTS objects (
id SMALLINT(10) PRIMARY KEY AUTO INCREMENT,
objecttype VARCHAR(254),
objectinstance VARCHAR(254),
factinstance VARCHAR(254))’),

odbc query(modelling,
’ALTER TABLE objects
ADD UNIQUE (objecttype,objectinstance)’);

write(’Please select an empty database’),nl,
stop.

Function create table creates a table for an object.

create table(TableName) :-
sformat(SQL,’CREATE TABLE IF NOT EXISTS ‘˜w‘

(instances VARCHAR(256) PRIMARY KEY)’,
[TableName]),

odbc query(modelling, SQL).

Function insert inserts a value into a table.

create table(TableName) :-
insert X(X,Table,Column) :-

sformat(SQL,’INSERT INTO ˜w (˜w)
VALUES (”˜w”)
ON DUPLICATE KEY UPDATE ˜w=˜w’,
[Table,Column,X, Column, Column]),

odbc query(modelling, SQL).

Function check existence checks if a value already exists in a table.

check existence(X,Table, Column) :-
sformat(SQL2, ’SELECT *

FROM ˜w
WHERE ˜w = (”˜w”)’,
[Table, Column, X]),

odbc query(modelling, SQL2,).

Function create table creates a table.

insert fact into types(Fact, X) :-
sformat(SQL2, ’DELETE

FROM types
WHERE objecttype = ”˜w”

86

Generating a rule-based modelling agenda Jörg Mutter

AND facttype IS NULL
LIMIT 1’,

[X]),
odbc query(modelling, SQL2),

sformat(SQL,’INSERT INTO types (facttype, objecttype, role)
VALUES (”˜w”, ”˜w”, ”sngnbknd”)
ON DUPLICATE KEY UPDATE facttype=facttype’,
[Fact, X]),

odbc query(modelling, SQL).

Function insert object into types inserts an object in table types.

insert object into types(Object) :-
sformat(SQL,’SELECT *

FROM types
WHERE objecttype = (”˜w”)’,
[Object])

odbc query(modelling, SQL, X),
X \= row(’null’);
sformat(SQL2,’INSERT INTO types (objecttype)

VALUES (”˜w”)’,
[Object]),

odbc query(modelling, SQL2).

Function insert fact into instances inserts a fact in table instances.

insert fact into instances(Fact, X) :-
sformat(SQL,’INSERT INTO instances (factinstance, objectinstance)

VALUES (”˜w”, ”˜w”)
ON DUPLICATE KEY UPDATE factinstance=factinstance’,
[Fact, X]),

odbc query(modelling, SQL).

Function insert object into instances inserts an object in table instances.

insert object into instances(Object) :-
sformat(SQL2,’INSERT INTO instances (objectinstance)

VALUES (”˜w”)’,
[Object]),

odbc query(modelling, SQL2).

Function insert object and fact into objects inserts an object and a fact
in table objects.

87

Generating a rule-based modelling agenda Jörg Mutter

insert object and fact into objects(Object, Fact) :-
sformat(SQL2,’INSERT INTO objects (objecttype, factinstance)

VALUES (”˜w”,”˜w”)’,
[Object, Fact]),

odbc query(modelling, SQL2).

Function insert object and instance into objects inserts an object and a
fact instance in table objects.

insert object and instance into objects(Object, Fact) :-
sformat(SQL2,’INSERT INTO objects (objectinstances, factinstance)

VALUES (”˜w”,”˜w”)’,
[Object, Fact]),

odbc query(modelling, SQL2).

Function insert object inserts an object.

insert object(TableName, Object) :-
sformat(SQL,’INSERT INTO ˜w (instances)

VALUES (”˜w”)
ON DUPLICATE KEY UPDATE instances=instances’,
[TableName, Object]),

odbc query(modelling, SQL).

88

	Preface
	Introduction
	Research questions
	Methodology
	Scope
	Reading guide

	Models, Interactions and Rules
	Introduction
	Models
	Object Role Modelling
	Metamodelling

	Interactions
	Collaborative modelling
	Weak workflows
	Dialogue systems
	Dialogue games
	Modelling as a game

	Rules
	Strategic rules
	Business rules

	Conclusion

	Design Process
	Introduction: Design Science
	Relevance cycle
	Scope
	Requirements

	Design cycle
	The ORM metamodel
	The syntactic metamodelling rules for ORM
	Design choices

	The modelling agenda
	Functional description
	Starting the modelling agenda
	Adding a fact type
	Adding a fact instance
	Adding an object type
	Adding an object instance
	Answering questions

	Use case diagram
	Use cases

	Conclusions and future work
	Questions and answers
	Future work and research

	Literature
	Appendix
	Module overview
	Module agenda_paper.pl
	Module process_additions.pl
	Module process_answers.pl
	Module output_agenda.pl
	Module business_rules.pl
	Module sql.pl

