
Radboud Universiteit Nijmegen

Computing Science Department

Learning Bayesian models using
mammographic features.

Master Thesis

Author:
Niels Radstake

Supervisor:
dr. Peter J.F. Lucas

Second supervisor:
dr. Elena Marchiori

Thesis number:
625

Date:
January 13, 2010





Abstract

The most frequent type of cancer among women worldwide is breast cancer.
When breast cancer is detected in an early stage, chances of successful treatment
are high. Screening programmes have shown to reduce the mortality rate of
breast cancer. Studies have shown that radiologists fail to identify a significant
number of cases with breast cancer due to misinterpretation.

To address the problem of interpretation failure by radiologists, the B-
SCREEN project investigates the use of Bayesian networks and Bayesian clas-
sifiers. This study focuses on the learning of Bayesian networks from data that
is available from the Dutch breast cancer screening programme using differ-
ent structure and parameter learning techniques. The possibility to use these
techniques is verified using experiments.

This study concludes that it is possible to use structure and parameter learn-
ing techniques to learn Bayesian classifiers that perform reasonable using data
from breast cancer screening programmes. The network structures give insights
in the correlation of certain variables in the breast cancer domain. However,
the performance of these classifiers is still less than when other classification
methods are used.
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1 Introduction

Worldwide, the most frequent type of cancer (in order of the number of global deaths)
among women is breast cancer [36]. In the Western world, 10 percent of all women
are confronted with breast cancer in their lives [36]. The success of treatment of
breast cancer largely depends on the stage of the tumor at the time of detection.
When breast cancer is detected in an early stage, chances of successful treatment
are high.

To detect breast cancer in an early stage, many nations have set up screening pro-
grammes. In these programmes, female breasts are examined using X-rays, resulting
in screening mammograms. These mammograms are read by radiologists for abnor-
malities. Studies have shown that radiologists fail to identify a significant number
of cases with breast cancer due to interpretation failure. Audits have shown that
in the Dutch screening programme more than 25% of the detected cancers already
show relatively clear signs of abnormality on mammograms made during a previous
screening, while another 25% show minimal signs [3]. If these abnormalities had
been detected in previous screenings, a more effective treatment would have been
possible.

Starting in 2006, all mammograms of the Dutch breast cancer screening programme
are being digitized and stored in one central national archive. This large database
provides an opportunity for the development of decision-support systems, which can
assist radiologists in reading mammograms.

At the end of 2006, the B-SCREEN: Bayesian Decision Support in Medical Screening
project started as a collaboration of the Institute for Computer and Information
Science of the Radboud University Nijmegen and the Department of Radiology,
UMC St. Radboud Nijmegen1. The aim of this project is to “use Bayesian networks
and Bayesian classifiers to further address the problem of interpretation failures by
radiologists” [3]. To develop these new improved Bayesian classifiers, advanced image
analysis and domain knowledge from the breast cancer screening domain are being
used. The breast cancer models that are being developed can be used in decision
support systems for radiologists and help to improve the detection of breast cancer
in an early stage.

In previous research in the B-SCREEN project [12], a Bayesian network model was
constructed using medical expert knowledge. This Bayesian model was built from a
conceptual model, which is based on a causal picture of the domain. The feature-
based model, shown in Figure 10, is based on elements of the domain that can be
observed and measured. A problem with the network model that was constructed

1The UMC St. Radboud Nijmegen plays an active role in the Dutch breast cancer screening
programme. It houses the LRCB (Dutch: Landelijk Referentiecentrum voor Bevolkingsonderzoek)
which is responsible for quality assurance and training of screening radiologists.
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using medical expert knowledge is that the classification performance of the network
was lower than expected. Construction of models using expert knowledge is also
very time consuming and with the availability of large datasets it becomes possible
to learn Bayesian network structures using data.

The study reported in this document focuses on the learning of Bayesian models in
the breast cancer domain using structure and parameter learning techniques. Learn-
ing the optimal network structure is not possible, because the number of possible
network structures is super exponential in the number of variables used. Using
heuristic methods, it is possible to search a part of the space of network structures
and find structures that fit well to the data.

Results from research in the B-SCREEN project [33, 34, 35, 28, 29] have been used
as a starting point for this study.

The purpose of this study is to investigate:

1. to what extent structure and parameter learning techniques can be used in
breast cancer research;

2. whether the correlation of certain variables in the dataset can be observed in
the learned models;

3. the possibility of improving classification performance by combining data from
different mammographic views.

This can help the development of better performing Bayesian classifiers and possibly
improve detection of breast cancer in an early stage. It is not the aim of this project to
find a perfect performing classifier or to include all available mammographic features
in the learning process.

In section 2, an overview of the breast cancer domain is given. In section 3 the
theory of Bayesian network is explained briefly. To learn the Bayesian classifiers, a
number of existing learning algorithms are being used. Which algorithms are used for
learning Bayesian networks from data is explained in section 4. The experiments and
results of this research are in section 5. This thesis concludes with the conclusions,
discussion and suggestions for future research in section 6.
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2 Breast cancer domain

2.1 Breast cancer

Breast cancer is a form of cancer that starts in the cells of the breasts of women
and men. It is the result of uncontrolled division and growth of breast cells. Most
breast cancers have their origins in the cells of the ducts and some in cells of the
lobules, which are milk producing glands. See Figure 1 for the anatomy of a female
breast.

Figure 1: Breast anatomy. Image taken from http://www.wikimedia.org

A malignant cancer, or carcinoma, has various stages starting at carcinoma in-situ,
or CIS, which is a pre-malignant condition in which the tumor is in-situ (Latin for
‘in its place’) and there is no invasion of surrounding tissue. A CIS is considered
a precursor form of cancer that can develop into a malignant cancer, which can
spread to surrounding tissue or metastasize to other parts of the body through the
lymphatic system. It is generally assumed that all invasive cancers develop from a
CIS condition, but not every CIS develops eventually to an invasive carcinoma.

Most breast carcinomas (75%) are invasive ductal carcinomas, or IDCs. About 10-
15% are invasive lobular carcinomas, or ILCs. Other breast carcinomas include
invasive medullary carcinomas (5-7%), invasive tubular carcinomas (2-6%), invasive
mucinuous carcinomas (3%) and invasive papillary carcinomas (2%) [13].

Breast cancer is an unilateral disease, which means that it develops, usually, in one
breast. However, in 1-2% of the cases breast cancer is bilateral at the moment of
detection. The incidence of breast cancer in men is about a hundred times less
common than in women [36], because women have more breast tissue and their
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breasts cells are exposed to the female hormones estrogen and progesterone. In this
research, the focus in only on breast cancer in women.

2.2 Risk factors

There are several risk factors that increase the probability of developing breast cancer
[13].

Age Breast cancer occurs more frequent in older women. Only 12-15% of all inva-
sive breast cancers are found in women younger than 45 [36].

Genes Presence of BRCA1/2 genes leads to an increased risk of developing breast
cancer irrespective of other risk factors.

Age at menarche A lower age at the menarche increases the risk of developing
breast cancer.

Pregnancy Nulliparous women have a 25% higher chance of developing breast
cancer compared to women who have had a full-term pregnancy.

Hereditary factors Women with a mother or sister who has had breast cancer
have about twice as much chance of developing breast cancer.

Hormonal stimulation The use of the combined oral contraceptive pill (COCP)
or hormone replacement therapy (HRT) increases the risk of developing breast
cancer.

Life style factors Factors related to diets, alcohol consumption, physical activity
and other life style factors do have influence on the risk of developing breast
cancer.

Ionizing radiation Exposure to ionizing radiation increases the risk of developing
breast cancer.

History of breast cancer Women with previous breast cancer diagnosis have an
increased risk of developing breast cancer.

2.3 Breast cancer screening

The success of treatment of breast cancer largely depends on the stage of the tumor
at the time of detection. When a tumor is smaller than 20 mm and it has not
metastasized to other parts of the body, chances of a successful curative treatment
are high. Screening programmes have shown to contribute to the detection of breast
cancer in an early stage [31, 24].

10



Many nations have set up a screening programme for breast cancer. The aim of these
programmes is to detect breast cancer in an early stage and reduce the mortality
rate of breast cancer. In previous research by Nyström et al., screening programmes
have shown to reduce the mortality rate of breast cancer by 25% to 30% [24]. Using
recent data it is estimated that the breast cancer mortality in The Netherlands has
decreased by 800 cases per year [6]. If the screening methods can be improved, the
breast cancer mortality can be reduced even further.

This research focuses on the Dutch breast cancer screening programme. In The
Netherlands, asymptomatic women — women showing no indication of the presence
of breast cancer — between the ages of 50 and 75 can voluntarily participate in the
breast cancer screening programme. There is a high participation level: 82% of all
invited women participated in 2006 [22].

The women that participate are invited biennially (every two years) to have an
examination of both breasts. For the initial screening, two mammographic views —
which are described in the next section — of each breast are taken: the mediolateral
oblique (MLO) view and the craniocaudal or (CC) view. For subsequent screenings
only a MLO view is taken, unless there is an indication that a CC view might be
beneficial. Acquisition of a CC view occurs in about 30% of subsequent screening
rounds [9].

2.4 Mammography

Mammography is the diagnostic procedure to detect breast cancer in the female
breast using low-dose X-rays. In the process, mammographic images, called mam-
mograms, are made from different angles (views or projections). The most common
projections of the breast are the mediolateral oblique (MLO) view and the cranio-
caudal (CC) view, which are shown in Figure 2. The MLO view is a 45 degree
angled side view, usually showing a part of the pectoral muscles (see Figure 1). The
craniocaudal (literally: from head to tail) view is an projection of the breast from
above with the nipple centered in the image.

Because a mammogram is a projection of the breast, the parts of which the breast
is consisted (see Figure 1) are superimposed. The X-ray attenuation (due to absorp-
tion and scattering of photons) describes the density of a region. In the resulting
mammogram, this can be seen as the contrast, or whiteness, of a region. The darker
areas of the breast are non-dense tissue and consist mainly of fatty tissue. The lighter
areas are denser tissue which contain lobules, ducts and possibly masses.

Diagnosis of breast cancer through mammography is more accurate in non-dense
breasts, because dense breasts make mammograms difficult to read. Dense breast
tissue can hide masses that are potentially malignant. This is especially true for
young women, since breasts gradually becomes less dense over time. Because the
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Figure 2: CC and MLO projections. Image c©http://www.imaginis.com.

Figure 3: Mammograms. From left to right: MLO (right), MLO (left), CC (right),
CC (left). Image taken from [9]

incidence of breast cancer in younger woman is very low and the mammograms of
younger woman are in general difficult to read, only woman over the age of 50 are
invited to participate the Dutch screening programme.

In Figure 4, four categories of breast density are shown. A mass would be easily
detectable in the leftmost non-dense breast, whereas it might not be detected in the
rightmost dense breast.

Other imaging techniques like ultrasound and magnetic resonance imaging (MRI)
are available, but these techniques are not useful for screening programmes because
of their high costs and respectively low specificity (see section 3.8) and low sensitiv-
ity. They can however by used as complementary to mammography. For instance,
ultrasound is used to investigate detected lesions which can not be classified only
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Figure 4: Four different categories of breast density as defined by the Ameri-
can College of Radiology [2]. From left to right: ‘almost entirely fat’, ‘scattered
fibroglandular densities’, ‘heterogeneously dense’ and ‘extremely dense’. Image
c©http://sprojects.mmi.mcgill.ca/Mammography

using mammography images.

2.5 Interpretation of mammograms

The interpretation of mammograms by radiologists includes the identification of a
number of regions of interest, or regions for short. A region can also be referred to
as lesion or abnormality.

Each region is characterized by a number of properties called features. Examples of
these features are, for instance, the area of the region, its location, its shape and its
density. The features of a region of interest together might suggest a certain level of
suspiciousness for the presence of breast cancer.

A radiologist reads the mammograms in search of abnormalities. When both MLO
and CC views are present, regions that appear in both views are compared. When
previous mammograms are present, the current mammograms are compared to pre-
vious ones to see how the breast has changed over time. See Figure 5 for an exam-
ple.

In the Dutch screening programme the mammograms are independently interpreted
by two radiologists. If both recommend to have a further investigation, the patient
is recalled. If one of the radiologists recommends to recall the patient and the
other does not, the decision for recall is reached by discussion (consensus double
reading).

13



Figure 5: Comparing regions in different views (dotted line) and over time (dashed
line)
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2.6 Malign and benign tumors

The majority of breast tumors that are detected through mammography are benign.
These tumors, such as cysts, are non-cancerous and cannot metastasize to other
parts of the body. Using mammography it is in some cases difficult to distinguish
between malign and benign tumors. However, there are some features of regions that
can indicate whether a tumor is benign or malign. This section describes the most
important features that radiologists use to distinguish between benign and malign
tumors.

2.6.1 Margins

In general, benign tumors have clear, well-defined, circumscribed borders whereas
malign tumors have less distinguishable borders or are surrounded by a radiating
pattern of spicules. However, when the cancer is in its initial stage it can appear
to have a well-defined (circumscribed) margin. A margin can be obscured by other
superimposed or adjacent tissue. In mammography, five different classes of margins
are distinguished (see Figure 6).

Figure 6: Mass margins as defined by BI-RADS [2]. From left to right: ‘cir-
cumscribed’, ‘obscured’, ‘micro-lobulated’, ‘ill-defined’ and ‘spiculated’. Image
c©http://sprojects.mmi.mcgill.ca/Mammography

2.6.2 Shape

The shape of a tumor is an important feature to indicate the presence of breast
cancer. The five shapes as defined by BI-RADS [2] are shown in Figure 7. When
there is no mass visible, but the normal architecture is distorted, a tumor is classified
as ‘architectural distortion’. This includes a spiculated margin.

2.6.3 Size

The size of a tumor combined with other features, such as its shape and location is
an indication whether a tumor is malignant or not. Malignant masses are on average
larger than benign masses [32].
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Figure 7: Mass shapes as defined by BI-RADS [2]. From left to right:
‘round’, ‘oval’, ‘lobular’, ‘irregular’ and ‘architectural distortion’. Image
c©http://sprojects.mmi.mcgill.ca/Mammography

2.6.4 Location

The location of a mass is an indication for the presence of breast cancer because
most malignancies (45%) develop in the upper outer quadrant of the breast toward
the armpit [5].

2.6.5 Density

Malignancies have in general a greater density than benign masses. In a mammo-
gram, this shows as the contrast (whiteness) of a region. Lesions with the same
density as the surrounding tissue can remain invisible on mammograms.

2.6.6 Calcifications

Calcifications are small bits of calcium that can appear in breast tissue. They can
give further information about the presence of breast cancer and appear as white
dots on mammograms. There are two kind of breast calcifications:

Macrocalcifications are calcifications that are larger than 2 mm and are usually
not an indication for breast cancer.

Microcalcifications are calcifications smaller than 1 mm that are associated with
breast caner. They can appear in different patterns. The number of microcalci-
fications, their grouping of the calcifications and its pattern give an indication
for breast cancer.

2.7 Computer-aided detection

Studies have shown that radiologists fail to identify a significant number of cases
with breast cancer (false negatives) due to misinterpretation. The causes for these
misses are not clear [9]. Audits have shown that abnormalities that are clearly visible
in retrospect must have been overlooked or its signs were misinterpreted [3].
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(a) (b)

Figure 8: Examples of calcifications. Normal calcifications in (a) and calcifications
with a high probability of malignancy in (b).

To increase detection rate, computer-aided detection (CAD) systems are being de-
veloped. These systems use pattern recognition techniques to identify features in a
mammogram that can give an indication for the presence of breast cancer. Using
these features, a CAD system is able to identify regions in a mammogram that are
possibly suspicious. With this information, the CAD system can assist the radi-
ologist while reviewing mammograms with the identification and interpretation of
breast abnormalities.

CAD systems are not intended to replace the radiologist, but to assist the radiologist
during reviewing by indicating suspicious regions. Advantages of a CAD system are
that these systems are objective en consistent, and are able to identify suspicious
regions that might be overlooked or misinterpreted. The use of CAD systems can
(potentially) decrease the need of multiple readings.

The CAD system at the UMC St. Radboud Nijmegen uses four steps to classify
regions [9]. These steps are presented in Figure 9.

1. The mammographic image is segmented into breast tissue, background and
pectoral muscle and some corrections are being made;

2. Initial detection of suspicious pixel-based locations is performed;

3. Regions and region-based features are extracted;

4. Regions are classified using a classifier.

The suspiciousness for each region is calculated by the CAD system, based on other
features. Per mammogram the number of regions is limited to the five most suspi-
cious regions.
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Figure 9: General scheme of the UMCN CAD system
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2.8 Features

For each region, specific features, are calculated by the CAD system after the pre-
processing step. These features are properties of the region such as its area, the
distance to skin or its contrast. The features are represented by continuous val-
ues. This section gives a description of the features that are used throughout this
thesis.

In total there are 81 features calculated for each region [28]. Some of them represent
in essence the same feature, but are calculated using different algorithms (see the
Contrast feature below).

The features can be categorized into two groups:

1. Features that have been extracted directly from the mammographic image by
the CAD system during step three (see previous section). These features can
be observed directly in the mammogram. For instance, the distance of a region
to the skin or the contrast of a region compared to its surrounding area. These
features will be referenced to as observed features.

2. Features that are calculated using the CAD system. These features are calcu-
lated using region-based or pixel-based features. These features include false-
positive level (FPLevel) and mass likelihood (MassLik). These features will be
referenced to as calculated features

In this research, a subset of 9 observed features that are expected to contribute most
to the detection of cancer have been selected to learn Bayesian models from the
data. This set of features consists of {LocX, LocY, d2skin, Contrast, Isodense,
Spiculation, FocalMass, LinTexN, RegSize}. Also, two calculated features (FPLevel,
MassLik) are being used. Each of these 11 features is described below.

The features that are directly observed from the mammogram:

Relative location: The relative location is captured by the position of the region
on the x- and y axis in a normalized breast. The location of a region is impor-
tant because most malignancies (45%) develop in the upper outer quadrant of
the breast toward the armpit [28]. The location features will be referenced to
as LocX and LocY.

Distance to skin: The distance to skin is the shortest distance of the region to
the skin. This feature will be referenced to as d2skin.

Contrast: The contrast of a region is its whiteness relative to other breast tissue.
A region with a higher contrast than other parts of the mammographic image
is more likely to be a mass, so this feature is important. There are different
ways of calculating the contrast. The contrast value used in this research is
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the difference in the mean pixel value between the pixels inside the region and
the pixels outside the region.

Spiculation: The spiculation feature indicates if the margins of a region are spicu-
lated, a characteristic of the margin of tumors. A region is spiculated if straight,
thin lines radiate from a central point or mass. This feature will be referenced
to as Spiculation.

Focal mass: Indicates the presence of a circumscribed lesion. This feature will be
referenced to as FocalMass.

Linear texture: Indicates if the region has linear texture characteristics, which
are common to normal breast tissue. This feature is expected to be correlated
to the Spiculation feature: if linear texture is present, the region can not be
spiculated and vice-versa. This feature will be referenced to as LinTex.

Size of the region: This feature represents the area of the region in cm2 relative
to a typical breast tumor. A small value indicates that the region is similar in
size to a typical breast tumor. Most breast tumors are about 2 cm2 in size.
This feature will be referenced to as RegSize and is defined as

RegSize =| size− typicalsize |

The features that are not extracted directly from the preprocessed mammographic
image, but are calculated by the CAD system based on observed features, including
the ones used in this research. These calculated features are:

False positive level: The false-positive level indicates the average number of
normal regions in a image with the same or higher likelihood scores. A higher
value means that similar regions occur frequently and that the region is most
likely benign. This feature will be referenced to as FPLevel.

Mass likelihood: The malignancy likelihood calculated by the CAD system, based
on a neural network supervised learning (taking into account automatically
computed region features). This feature will be referenced to as MassLik.

Calcifications

This research concentrates on the detection of masses and no features that relate to
the presence of calcifications (see Section 2.6.6) have been used during the research.
The reasons for this are:

• Calcifications are usually quite easily detected during the reading, and some
automatic systems already show good performance on detecting them [15],
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• Masses occur more frequently as an indication of breast cancer development,
and,

• Breast masses misinterpretation seems to be a more common cause of cancers
being missed during mammogram reading [15].

Figure 10: Mammography-feature-based model [12]
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3 Bayesian network theory

A Bayesian network (BN) is a probabilistic graphical model that represents a set of
random variables and their probabilistic independencies. Formally, it is defined as a
pair (G, P ) where:

• G is a directed acyclic graph (DAG) G = (V,E) that encodes a set of con-
ditional independence assertions about variables in the set of variables X:
{X1, ..., Xn}. The nodes (vertices) V of G represent the variables X in a one-
to-one correspondence. The lack of arcs (edges) E between nodes represent
conditional independencies between the corresponding variables.

• P is a set of local probability distributions associated with the variables.

The local probability distributions p ∈ P define the joint probability distribu-
tion

P (X) =
n∏

i=1

p(Xi|Pa(Xi))

on the variables. A Bayesian network structure G is an I-map (independency map-
ping) of P . In I-maps each independence relationship modelled in the graph G has
to be consistent with the joint probability distribution P and each dependence rela-
tionship represented in the joint probability distribution P has to be present in the
graph representation G [14].

If the value of a node is observed, the node is called an evidence node. If a node
has no parents, its local probability distribution is unconditional, otherwise it is
conditional.

Under some conditions, the DAG can be interpreted causally. In this case, the
nodes that correspond to the random variables from the domain and the arcs are
direct causal relations between these variables [25, 18]. This means that the parent
variables have a causal influence on the values of their child variables.

A BN can be constructed from domain knowledge. An expert determines the vari-
ables in the domain of interest and the relationships among these variables, so a
DAG G can be constructed. Then the conditional probabilities given G are deter-
mined.

Domain knowledge is often not sufficient to construct a complete BN. If data is
available, both the structure and parameters can be learned using this data. Section
4 is dedicated to learning BNs from data.
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3.1 Bayesian networks

Figure 11: A Bayesian network representing causal influences among five variables
[26]

Figure 11 illustrates a simple Bayesian network that describes the relationships
among the season of the year (X1), whether rain falls (X2) during the season, whether
the sprinkler is on (X3) during that season, whether the pavement would get wet
(X4), and whether the pavement would be slippery (X5).

At each node, the conditional probability distribution (CPD) is specified. If the
variables are discrete, this distribution can be represented as a table (CPT) which
contains for each combination of values of the nodes’ parents the probability that
the node takes on each of its different values.

In the sprinkler example, for example, the CPD’s can be specified as the following
tables (CPT’s).

SEASON: Since X1 has no parents, the CPT specifies the prior probability that it is
the rainy season. A probability of 0.5 is assumed for having the rainy season.

P (X1 = F ) = P (X1 = T ) = 0.5

RAIN: When it is the rainy season (X1 = T ), the probability of rain is 0.8. When
it is not the rainy season (X1 = F ), the probability of rain is 0.2.

X1 P (X2 = F ) P (X2 = T )
F 0.8 0.2
T 0.2 0.8
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SPRINKLER: The probability that the sprinkler is on during the rainy season is
low (0.1), but 0.5 during the dry season.

X1 P (X3 = F ) P (X3 = T )
F 0.5 0.5
T 0.9 0.1

WET: In the model we can see that the event ‘wet pavement’ has two possible
causes: either the sprinkler is on, or it is raining. This table specifies the probability
of the pavement being wet, conditional on the values of these causes.

X2 X3 P (X4 = F ) P (X4 = T )
F F 1.0 0.0
F T 0.1 0.9
T F 0.1 0.9
T T 0.01 0.99

3.2 Basic probability theory

A probability distribution is function of Boolean expressions to the closed real inter-
val [0,1]. Two basic probabilistic rules are used to compute probabilities of interest
from the specification of a BN. The first rule, marginalization, is used to sum out
irrelevant variables from a joint probability distribution:

P (A) =
∑
b∈B

P (A, b) (1)

In additions, often conditional probabilities are computed to determine the effect
of observations or evidence on uncertainty. This is done using Bayes’ theorem, is a
formula used for calculating conditional probabilities. In BNs it is used for inference
in which evidence E is used to update the probability that a hypothesis H may
be true. Bayes’ theorem adjusts probabilities given new evidence in the following
way:

P (H|E) =
P (E|H)P (H)

P (E)
(2)

Where:

• H is a specific hypothesis;

• P (H) is the prior probability of H.
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• P (E) is the marginal probability of E: the a priori probability of observing E
under all possible hypothesis.

• P (E|H) is the conditional probability of observing evidence E, given H being
true.

• P (H|E) is the posterior probability of H being true, given E is observed.

If we consider the sprinkler example and observe that the pavement is wet (X4 = T ).
From the model we know that there are two causes for this: either it is raining (X2 =
T ), or the sprinkler is on (X3 = T ). We can use Bayes’ rule to infer the posterior
probability of both causes (respectively P (X2 = T |X4 = T ) and P (X3 = T |X4 = T ))
and see which cause is more likely:

The probability that the sprinkler is on, given the wet pavement:

P (X3 = T |X4 = T ) =
P (X3 = T, X4 = T )

P (X4 = T )
=

∑
x1,x2∈{T,F} P (X1 = x1, X2 = x2, X3 = T, X4 = T )∑

x1,x2,x3∈{T,F} P (X1 = x1, X2 = x2, X3 = x3, X4 = T )
=

0.2781
0.6471

= 0.430

The probability that it rains, given the wet pavement:

P (X2 = T |X4 = T ) =
P (X2 = T, X4 = T )

P (X4 = T )
=

∑
x1,x3∈{T,F} P (X1 = x1, X2 = T, X3 = x3, X4 = T )∑

x1,x2,x3∈{T,F} P (X1 = x1, X2 = x2, X3 = x3, X4 = T )
=

0.4581
0.6471

= 0.708

So we can see that it is more likely that the grass is wet because it is raining.

3.3 d-separation

The DAG G encodes independencies between variables. Conditional independence
can be determined by the (graphical) property of d-separation, in which ‘d’ stands
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for ‘directional’. If two sets of nodes X and Y are d-separated in G by a third set
Z, the corresponding sets of variables X ∈ X and Y ∈ Y are independent given the
variables in Z ∈ Z.

The basic idea of d-separation is to associate dependence between variables with the
existence of a connecting path between the corresponding nodes and independence
with separation (no connecting path). If we have disjoint sets of nodes X, Y and Z,
X and Y are d-connected by Z if and only if:

• there exists an undirected path U between X ∈ X and Y ∈ Y;

• for every collider C in U , C or a descendant of C is in Z. A collider in a path
is a node with two incoming arcs. In Figure 12, node B is the collider;

• no non-collider in U is in Z. Every node that is not a collider node is a
non-collider.

X and Y are d-separated by Z in G if and only if they are not d-connected by Z in
G.

This implies that two variables are (unconditionally) independent if the correspond-
ing nodes are d-separated by the empty set ∅.

Figure 12: Collider

3.4 Markov equivalence

Definition 3.1. Two DAGs are said to be Markov equivalent (noted ≡) if they imply
the same set of conditional dependencies. The Markov equivalent classes set (named
E) is defined as E = A/≡ where we named A the DAGs’ set. [20]

This means that the DAGs

, and

are equivalents and can be denoted as
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≡ ≡ .

3.5 Essential graphs

Definition 3.2. An arc is said to be reversible if its reversion leads to a graph which
is equivalent to the first one. [20]

The space of essential graphs is defined as the set of chain graphs, i.e., acyclic
graphs that have directed and undirected edges. The essential graph acts as a class
representative for BNs that encodes the same probabilistic independence information
[14].

This means that the DAGs

, and

can be represented by the essential graph:

.

3.6 Specific Bayesian networks structures

Two network structures that are used in this thesis are described in this section.

3.6.1 Naïve Bayesian network

A naïve Bayesian network, or NB, is a special case of a Bayesian network. It con-
sists of one class variable C which is conditional on a set of feature variables F:
{F1, ..., Fn}. All variables in F are assumed to be conditional independent from each
other given C, which means that P (Fi|C,F\Fi) = P (Fi|C) for each i. The arcs are
going from the class node C to all feature nodes F ∈ F.

Despite their naïve design and over-simplified independence assumptions, naïve
Bayes classifiers often work well in many complex real-world situations.

3.6.2 Tree augmented naïve Bayes network

The major drawback of naïve Bayes is that it assumes all feature variables to be
conditionally independent given the class variable. In practice, these variables are
often strongly related to each other. The tree augmented naïve Bayes, or TAN,
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Figure 13: Naïve Bayes network

model retains the basic structure of naïve Bayes, but also permits each feature node
to have at most one other feature node as a parent. This allows the model to capture
dependencies between the feature nodes.

Figure 14: Tree augmented naïve Bayes network

3.7 Bayesian classifiers

Bayesian networks can be used to infer probabilities. For instance, in this research
we use Bayesian networks to infer the probability of a region being cancerous.

A classifier is a mapping from discrete or continuous values to a set of labeled classes.
In this research, we want to map the output of a Bayesian network to the two classes
cancerous and non-cancerous.

By applying different threshold values the probabilities can be mapped into the
different labeled classes cancerous and non-cancerous. For instance, a region with
a probability of being cancerous of 0.4 will be classified as non-cancerous with a
threshold of 0.5. However, if the threshold is lowered to 0.2, the case will be classified
as being cancerous.

With a binary classifier (two classes, e.g. positive (p) and negative (n)), there are
four possible outcomes. If the outcome of the classifier is p and the actual value is
also p, this is called a true positive (TP) or ‘hit’. However, if the actual value is n,
this is called a false positive (FP) or ‘false alarm’. When the predicted value is n and
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the actual value is also n, this is called a true negative (TN) or ‘correct rejection’.
If the actual value is p, this is called a false negative (FN) or ‘miss’.

For example, in this research this means:

True positive (TP): A cancerous case is classified as cancerous;

False positive (FP): A non-cancerous case is classified as cancerous;

True negative (TN): A non-cancerous case is classified as non-cancerous;

False negative (FN): A cancerous case is classified as non-cancerous.

With multiple cases and a classifier we can calculate the sensitivity and the specificity
of a classifier. The sensitivity is the number of correctly classified cancerous cases
divided by the total number of cancerous cases.

sensitivity =
TP

TP + FN
(3)

The specificity is the number of correctly classified non-cancerous cases divided by
the total number of non-cancerous cases.

specificity =
TN

TN + FP
(4)

3.8 Evaluation of classifier performance

To evaluate the performance of a classifier, a measure is needed. Using the percentage
of correctly classified cases is not a good measure. Since the probability of breast
cancer being present in a mammogram is very low, a high accuracy could simply
be reached by predicting that no breast cancer is present for each mammogram.
Therefore, the performance of a classifier should be described by its sensitivity and
its specificity.

The receiver operating characteristic (ROC) curve is in the field of Radiology an
widely accepted methodology for evaluating the performance of a classifier. In ROC
curves the true positive rate (TPR), or sensitivity, versus the false positive rate
(FPR) of a classifier for different threshold values is plotted.

With a threshold of 0, every case is classified as cancerous, so the sensitivity and
1 - specificity are both 1. However, all non-cancerous cases are also identified as
cancerous. With a threshold of 1, all cases are identified as non-cancerous, so the
sensitivity and 1 - specificity are both 0.

To compare classifiers, we bring back the ROC curve to a single scalar value that
represents the expected performance. A common used method is to calculate the area
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Figure 15: Example of ROC curve

under the ROC curve AUC. The AUC value lies in the range 0.5 - 1. A worthless
classifier’s curve is a straight line from (0,0) to (1,1) and has an AUC value of
0.5.

When a classifier has a low FPR and a high TPR, it has a high AUC value. This
means that the classifier will perform better than a classifier with a lower AUC
value.

The AUC value has also an important statistical property: the AUC value of a
classifier is equivalent to the probability that the classifier will rank a randomly
chosen positive instance higher than a randomly chosen negative instance [10].

In this thesis, the AUC value will be used to represent expected classifier perfor-
mance.
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4 Learning Bayesian Networks from data

As explained in the previous section, a Bayesian network consists of two parts, its
structure G and the parameters P , which is the conditional probability distribution
associated with the network topology. It is possible to learn both of these from data.
However, it is much harder to learn the structure of the network than its parameters.
Sections 4.1 and 4.2 will respectively give details on structure learning and parameter
learning.

4.1 Structure Learning

A naïve idea to find the best network structure is to score all possible DAGs using
a scoring function and choose the DAG that has the highest score. The problem
with this method is that the number of possible DAGs is super exponential in the
number of nodes. Robinson has proved in [27] that the number of different network
structures r(n) for a network with n nodes, is given by the formula of Equation
5.

r(n) =
n∑

i=1

(−1)i+1

(
n

i

)
2i(n−i)r(n− i) (5)

As we can see in Table 1 it becomes impossible to search the space of DAGs exhaus-
tively in reasonable time with values of n ≥ 6, so heuristic methods are needed to
find (sub)optimal network structures.

Number of variables n Number of possible DAGs
1 1
2 3
3 25
4 543
5 29,281
6 3,781,503
7 1,138,779,265
8 78,370,2329,343
9 1,213,442,454,842,881
10 4,175,098,976,430,598,100

Table 1: Number of possible DAGs for different number of variables

In general there are two different approaches to structure learning. Both view the
structure learning problem differently.
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Constraint-based: This approach tries to measure the dependencies and condi-
tional independencies in the data. These dependency and independency re-
lationships are measured by a statistical tests on the data set. In general,
constraint-based methods start with a fully connected graph from which edges
are removed when certain conditional independencies are present in the data.

Optimization-based search: This approach searches the space of possible DAGs
and returns the structure that best fits the data. Different algorithms exist to
limit the size of the space that is searched for possible DAGs.

In this research, we use the more popular optimization-based search approach. This
heuristic approach requires:

A scoring function which measures how well a network structure fits the data;

A search algorithm, which tries to find the network structure with the highest
score.

Both scoring functions and search algorithms are described in this section.

4.1.1 Scoring functions

To measure how well a network structure fits the data, we need a scoring function
which calculates the probability of network graph G given data set D, P (G|D). This
scoring function should be equivalent, which means that the measure should return
the same score for Markov equivalent DAGs. Such a scoring function can be used to
rank Bayesian network structures using:

q =
P (G|D)
P (G′|D)

(6)

From Bayes’ theorem it follows that the model that maximizes the posterior proba-
bility is the model that maximizes P (D,G):

P (G|D) =
P (D|G)P (G)

P (D)
(7)

Thus:

q =
P (D|G)P (G)/P (D)
P (D|G′)P (G′)/P (D)

q =
P (D|G)P (G)
P (D|G′)P (G′)
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P (G, D) = P (D|G)P (G)

So for each Bayesian network, we need to determine:

log P (G, D) = log P (D|G) + log P (G)

If we assume:

1. No missing values in data set D;

2. Cases c ∈ D have occurred independently;

3. Discrete network parameters.

This can be calculated by:

log P (D|G) =
N∑

i=1

qi∑
j=1

ri∑
k=1

nijk · log2

(
nijk

nij

)
(8)

Where

• N is the number of variables in the network;

• qi is the number of states over the parents Pa(Xi) in the graph, with qi = 1 if
Pa(Xi) = ∅;

• ri is the number of states for variable Xi;

• nijk is the number of cases in D with Xi in state k and Pa(Xi) in state j;

• nij is the number of cases in D with Pa(Xi) in state j.

This measure estimates the maximum likelihood parameters for the model.

Overfitting

One thing that should be taken into consideration is that the model with the maxi-
mum likelihood is a complete (fully connected) graph, because adding an arc never
decreases likelihood on the training data. This can lead to severe overfitting.

This can be solved in two ways:

• Using a prior to specify that we prefer sparse models. The effect of using a
prior is equivalent to penalizing complex models, since the prior probability of
a complex model is lower than from a less complex model.
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• Adding a penalty term

We can see the prior probability for the structure P (G). If we assume that all
Bayesian networks are equally likely, P (G) is a uniform probability distribution and
can be replaced by a constant c ∈ R.

logP (G, D) = logP (D|G) + c (9)

We can also incorporate background knowledge and specify that we prefer sparse
models.

P (G, D) is usually higher for complex networks. Another solution to prevent over-
fitting is to add a penalty term r that penalizes complexity:

r = −1
2
k · log n

where k is the number of parameters needed to specify the joint probability distri-
bution.

Scoring functions

The two most widely used scoring functions are the:

Bayesian score [17], which is the marginal likelihood of the model (parameters
are marginalized out).

BIC (Bayesian Information Criterion) score [17], which is the log likelihood
score with a term added to penalize model complexity. Since two equivalent
graphs have the same likelihood and the same complexity, the BIC score is also
equivalent.

The Bayesian score is a more accurate scoring function, but it needs more computa-
tion

The BIC score can be derived as a large sample approximation to the marginal
likelihood, the second component of Bayesian score. In practice, the sample size
does not need to be very large for the approximation to be good. The BIC score is
defined as follows:

log Pr(D|G) ≈ log Pr(D|G, Θ̂G)− log N

2
#G (10)

Where
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• N is the number of samples;

• Θ̂G is the Maximum Likelihood estimation (MLE) of the parameter;

• #G is the dimension of the model.

As can be seen in Equation 10, the first term is the likelihood and the second term
penalizes complex structures. Also, the BIC score does not depend on a prior.

4.1.2 Search algorithms

The aim of a search algorithm is to find the most probable network structure given
a dataset. The algorithms described in this section have different ways of searching
for this structure.

Exhaustive search

The exhaustive search method does not minimize the search space of possible DAGs,
but generates all possible DAGs and chooses the one with the highest score. The
score of the resulting network is the global optimum, so the structure is the best
possible structure. As mentioned before, this method does not find the optimal
network in reasonable time for networks with more than 6 nodes, since the number
of possible DAGs is super exponential in the number of nodes [27].

Greedy search

A simple search algorithm is greedy search. The greedy search algorithm starts with
a initial network structure G. For each step, it defines a set of neighborhood graphs
and computes the scores for every graph in this neighborhood set. The neighbor
graph with the highest score is selected and used for the next iteration. The search
is stopped when there is no neighborhood network graph with a higher score than
the current structure.

The most common way of defining the set of neighborhood graphs is the set of graphs
that differ only one arc operation with the current graph, while taking the acyclicity
constraint into consideration. The possible arc operations are:

• insert arc,

• remove arc, and

• reverse arc.
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Other definitions of the set of neighborhood graphs are possible (see [7]).

The greedy search algorithm can be initialized with any graph, e.g., the empty graph,
a random graph or a network structure determined using another search algorithm.
By default, the algorithm is initialized with the empty graph.

The greedy search algoritm does not necessarily reach a global maximum, but can
also converge to a local maximum. A solution to this problem is to add a second
phase in which the network structure is randomly disturbed when a maximum is
reached and repeat the algorithm for a number of times.

Greedy equivalence search

The greedy equivalence search algorithm works similar to the greedy search algorithm
described in the previous paragraph. However, it searches the space of essential
graphs (see section 3.5). It does not require an initial graph as an input, but the
empty graph is used as a starting point for the algorithm.

The algorithm consists of two phases. First, arcs are added or removed until an
network structure is found that gives the highest score. After this first phase, arcs
are removed in the second phase.

The advantage of using greedy equivalence search is that the space of essential graphs
is a subspace of all graphs and the amount of search reduces the search space.

K2 algorithm

The K2 algorithm was introduced by Cooper and Herskovits in [8] and is a special
case of a greedy search algorithm. It minimizes the search space by having a initial
ordering on the nodes and limiting the number of parents a node can have. It
requires:

• A set of n nodes;

• An ordering on the nodes;

• An upper bound u on the number of parents a node may have;

• A dataset D containing cases.

To minimize the search space, the K2 algorithm requires an specific ordering in the
nodes. A node can be only the parent of nodes which are appearing after it in the
ordering. So, the first node in this ordening can’t have a parent. The second node
can only have node one as a parent. The nth node can only have (some) of the
n − 1 nodes as parents. The search space becomes the subspace of all the DAGs
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admitting this order as topological order. As a consequence, the search space under
this constraint is much smaller than the entire search space.

The algorithm assumes for a node that it has no parents. Then it incrementally adds
the parent whose addition increases the probability of the resulting structure most.
The algorithm stops adding parents to the node if the number of parents equals u
or when the addition of no single parent can increase the probability.

The major disadvantage of K2 is that the input node ordering is of great influence
on the performance of the algorithm. Using an improper order will result in poor
results.

Naive Bayes

The algorithm for learning a naive Bayes network is trivial. The search space is
empty, since the search space is minimized by allowing only NB structures (exactly
one network with a fixed class node C).

TAN

A very simple structure learning algorithm is used for finding the optimal TAN struc-
ture. The search space of DAGs is minimized by allowing only TAN structures. The
best tree is obtained using the Maximum Weight Spanning Tree algorithm [16].

4.2 Parameter learning

To fully specify the joint probability distribution, it is necessary to specify the local
conditional probability distribution for each node N (the probability distribution
for N conditional upon its parents). This distribution can have any form, such as
discrete or Gaussian. If the distribution is discrete, a conditional probability table
(CPT) can be used.

The goal is to find the parameters of each CPD which maximizes the likelihood of
the training data D, where all N cases in D are assumed to be independent.
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5 Experiments

This section describes the experiments that have been performed in this research
and their results. The experiments have been divided into three parts, each with a
different goal. These parts, including their goals are:

1. Learn restricted models. In this experiment, only 4 feature variables are used.
The goal of this experiment is to compare the models obtained using structure
learning with a model that is constructed using expert knowledge and a model
found using exhaustive search. The result of this experiment is described in
Section 5.2.

2. See what the influence of certain features variables is on the resulting model.
In this experiment, a difference is made between observed feature variables and
feature variables that have been calculated by the CAD system. Models are
learned using:

• 9 observed feature variables and 2 calculated feature variables, and

• with the same 9 observed feature variables (without calculated feature
variables).

The results of this experiment is described in Section 5.3.

3. Learn models with feature variables from both the CC and MLO view. Since
a MLO and a CC view of the same breast are related, it is interesting to take
features of the regions of one view into account when learning the classification
of the regions of the other view. In these experiments, variables of regions in
the CC view are used when learning the classification of regions from the MLO
view. The result of this experiment is described in Section 5.4.

The set up of the experiments is described first in this section. It covers:

• The software and toolboxes that have been used are described in Section 5.1.1;

• The dataset that has been used, the features that have been selected for the
experiments and the data discretization techniques are described in Section
5.1.2;

• The initialisation of the structure learning algorithms that have been used is
described in Section 5.1.4.

5.1 Set up

For calculating the scores of networks, the Bayesian score is used, unless stated
otherwise. The Bayesian score is a more accurate scoring function than the BIC
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score, but it needs more computation.

5.1.1 Software and toolboxes

The experiments described in this section are performed using Matlab 7.5.0.338
(R2007b) for Mac OS X. Additional toolboxes which provide functions for the use
with Bayesian networks have also been used. These toolboxes are:

Bayes Net Toolbox by Kevin Murphy [21]. This toolbox provides the basic
functionality for using Bayesian networks. The version used in this research is
version 1.0.4, which was last updated February 11, 2007.

BNT Structure Learning Package by Philippe Leray and Olivier Francois.
This toolbox provides additional structure learning functions for the use with
Murphy’s Bayes Net Toolbox. It is proposed and documented in [20] and
distributed on the GNU Library General Public License.

5.1.2 Dataset

The dataset with mammograms that are used for the experiments have been ob-
tained from the Dutch breast cancer screening programme ‘Bevolkingsonderzoek
Borstkanker Nederland’. The dataset contains data of 1063 patients or cases. Screen-
ing was performed in each of the patient’s breasts, giving a total of 2126 screened
breasts. Both the CC- and MLO-views of are present for all breasts.

For each mammogram the number of regions is limited to the 5 most suspicious
regions (among the — at most — 10 regions detected and classified by the CAD
system). In total there are 10478 MLO regions and 10343 CC regions in the dataset.
For each case it is known if the patient has breast cancer. In total, 385 regions are
known to be cancerous by pathological report. This means that a cancer has been
identified in 36.2% of the cases and that it is known which regions represent the
cancer. On region level, this means that 1.8% of the regions is cancerous.

The dataset contains features from both the CC and MLO views. In the first two
experiments, this data is kept separated. This means that structures are learned
using either CC data or MLO data. In the third experiment, the data of both views
are combined.

The dataset is divided into a trainingset, used for learning the models, and a testset
that is used for scoring the models afterwards. These sets have an equal distribution
of cancerous regions.
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Identification of region

Each mammogram is identified by a code. The first 8 positions are used for case
identification. This is followed by ‘m’ or ‘c’ (respectively MLO or CC view) and ‘l’ or
‘r’ (respectively left or right breast). For example: l0100025ml means “MLO view
of left breast of case l0100025”. For each mammogram there are multiple regions
available which are identified by a number {0..10}, which is the number the CAD
system has given to the region. The features that are calculated by the CAD system
are described in Section 2.8.

5.1.3 Discretization of the data

Most structure learning implementations work with discrete values for the variables.
The values of the features in the dataset are real-valued, so to perform structure
learning, the data needs to be discretized.

For the discretization of the data, the hist_ic implementation present in the BNT
Structure Learning Package was used. This function discretizes the data into an
optimal number of bins according to a cost function based on Akaike’s Criterion
[20]. The function takes the continuous data and a penalty term as input. For the
penalty term, the default setting for the algorithm is used.

After applying this function to the dataset, the resulting number of bins per variable
varied between 2 and 33. For some variables, this number of bins was too high to
obtain useful results. This was verified by experiments. The number of bins for the
resulting discrete dataset is reduced by merging smaller bins into bigger bins until a
maximum number m of bins remains.

To see the influence of different discretization, the value of the maximum num-
ber of bins m has been varied from 2 (binary data) to 20. The class variable
Finding has always 2 bins, that correspond to the two output classes cancerous
and non-cancerous.

Using the resulting discrete datasets, TAN and GS structures and parameters have
been learned. For each resulting structure, the Bayesian score has been calculated
to see how well the model fits the data. Also the area under the ROC curve (AUC)
has been calculated as an indication of how well the trained model performs as a
classifier. The results are presented in appendix A in Table 11.

We can see that classification performance decreases rapidly for the TAN structure
when the number of bins becomes greater than 10. The classification performance
of the structures learned with GS varies a lot. Taking results from both TAN and
GS into account, maximizing the number of bins to 7 seemed a reasonable choice.
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This means that the number of bins for each variable in the discretized dataset is
between 2 and 7.

Since discretization is not the main aim of this research and finding the optimal
number of bins for each variable is computationally expensive, the maximum number
of bins of 7 is used for all features as a good estimate. Using further statistical
analysis, the optimal number of bins for each feature can be determined and it is
expected that this will increase the quality of the models.

5.1.4 Initialisation of the algorithms

Order of the variables for K2

The K2 algorithm needs an ordering of the nodes to limit the search space. With
a small number of variables experiment, it is possible to perform structure learning
using K2 for all permutations of the variables. In the first experiment this is possible
since with 5 variables there are only (5! =) 120 permutations of the variables possible.
For models with more variables this is not feasible. For example: if we have 10
variables, there are over 106 permutations; with 20 variables this increases to over
1018 permutations. So, for the second and third experiment we need to determine
some pre-ordering on the nodes. The ordering is obtained using the expert model and
experiments with different orderings to fine-tune the order. The K2 algorithm used
the BIC scoring function for evaluation of the intermediate results while performing
the algorithm. This setting is chosen instead of the Bayesian score, because it needs
less computation and the results are good. It is also the default scoring function for
the K2 algorithm in BNT [21].

Initial network structure for GS

The greedy search algorithm needs an initial network structure as a starting point for
the algorithm. During the research, different variations have been used for the initial
network structures. The models did not differ much in structure or score and were
in some cases equivalent to other models learned using greedy search with another
initialization. In this thesis only the results of the greedy search algorithm with an
empty network structure as initial structure are presented for clarity reasons. Using
the empty structure is the default choice for the greedy search implementation in
BNT [21].

41



Neighborhood definition for GS

There are different ways of defining the set of neighborhood structures. In this
research, the implementation from BNT for Matlab [21] is used, which defines the
set of neighborhood structures as described in section 4.1.2.

5.2 Restricted model

A small sub-model containing 5 variables is selected from the expert model (shown
in Figure 16). The choice to use 5 variables is made so it is possible to perform
exhaustive search. Exhaustive search finds the network structure that fits best to the
data and is feasible in reasonable time for 5 variables. With more than five variables,
this is not feasible as the number of possible possible DAGs is super exponential in
the number of nodes.

The goal of using a part of the expert model is that we can compare the part of
the expert model with the results of structure learning and the model found using
exhaustive search.

Figure 16: Sub model extracted from the expert model

To compare the fitness of the expert model, two models which do not incorporate
any of the knowledge incorporated in the expert model are made. These models
are kept very simple and consist of a class variable C Finding and the same set of
feature variables F {MassLik, FPLevel,d2skin, LocX} as the expert model.

The two reference models are:

Independent variables. All variables are considered independent, which means
there are no arcs in the model. This model is described in Figure 17(a).

Naive Bayes. This model follows from the description given in Section 3.6.1.
The class variable Finding is conditionally dependent from the four feature
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variables. All feature variables are considered to be independent. This model
is described in Figure 17(b).

(a)

(b)

Figure 17: Models with independent variables and conditional independence (naïve
Bayes).

5.2.1 Learned models

TAN

When learning the optimal TAN structure, it is needed to provide the class node C
and the root node of the tree Froot. The class node is fixed (Finding) and there are
only four possible variables to use as the root node. All possible TAN structures were
learned. The resulting structures are Markov equivalent and are shown in Figure 28.
One of the models (using FPLevel as root node) is shown in Figure 18.

Figure 18: Learned TAN structure
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K2

For the K2 algorithm, it is needed to provide an ordering on the input nodes. Since
our model consists of only five nodes, it is possible to learn the structure with all
(5! = 120) permutations of the required ordering on the nodes. For all resulting
models, the scores are calculated and the model with the highest score is chosen.
The model with the highest score is shown in Figure 19.

Figure 19: Models found with K2, GS, GES and exhaustive search

Greedy search

The greedy search algorithm needs a initial network structure as a starting point
for the algorithm. For the initial structure, different network structures have been
used:

1. Empty structure

2. Naive Bayes structure

3. Structure learned using K2

The results of the greedy search algorithm are 3 equivalent dags, which are also
equivalent to the structure learned using K2 (see Figure 19).
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Exhaustive search

Finally, we learn the optimal network structure using exhaustive search. Since the
number of variables is 5, this is feasible. All possible network structures with 5
variables (29281) are scored.

The best performing model found with exhaustive search is equivalent to the model
found using K2 and greedy search (see Figure 19. This means that these search
algorithms have found the structure that fits the best to the data. Since the search
space of all possible DAGs is relatively small and the model is very restricted, this
is not surprising.

5.2.2 Scores

The results of the reference models (independent variables and naïve Bayes) and the
learned models (TAN, K2, GS, GES) are shown in Table 2. Since the K2, GS, GES
and exhaustive search models are Markov equivalent, the scores of these models
are equal. The scores of these models are also higher than the reference models
(independent variables and naïve Bayes) and slightly higher than the TAN model.
This means that these models describe the data more accurately.

Indep. NB TAN K2 GS GES Exhaustive
Bayesian -30772 -30508 -28506 -28220 -28220 -28220 -28220

BIC -30771 -30509 -28506 -28213 -28213 -28213 -28213

Table 2: Results of the simple structures

When looking at the learned structures, we can see that in these models Find-
ing becomes conditioned on MassLik and FPLevel, just like in the expert model.
The variables LocX and d2skin are not conditioned on Finding as in the expert
model.

The values of the Bayesian score and the BIC score are almost the same. This con-
firms that the BIC score is a good estimate, even with a relatively small dataset.

5.3 Influence of calculated features

This section describes the results of experiments that were performed to investigate
the influence of calculated features on both the performance and network structures
when learning models from data. By using the calculated features MassLik and
FPLevel, the classifier becomes in fact a second-order classifier, since it uses features
that are the result of a first classifier (the CAD system).
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In the experiment, models are learned using all variables (observed and calculated)
and only using observed variables. The structure learning algorithms introduced in
Section 4 are used to learn the models. The NB structure follows from the definition
given in Section 3.6.1.

5.3.1 All variables

In section 2.8 we have made a distinction between observed features and calculated
features. The models learned in this experiment include all features as variables.
First, all selected features ({LocX, LocY, FPLevel, MassLik, d2skin, Contrast,
Isodense, Spiculation, FocalMass, LinTexN, RegSize}), are being used to learn
the models. These models are scored using the Bayesian score and the AUC value
of the classifier is calculated. The results are shown in Table 3.

CC MLO
Bayesian score (×104) AUC Bayesian score (×104) AUC

NB -9.9787 0.8606 -10.1710 0.8319
TAN -9.5442 0.8092 -9.7866 0.8033
K2 -9.4059 0.8490 -9.6489 0.8299
GS -9.3385 0.8489 -9.6023 0.8299
GES -9.3385 0.8489 -9.5944 0.8299

Table 3: Results using all variables

The models that were learned are included in Appendix C.

5.3.2 Only observed variables

Secondly, only features that are observed in the mammographic image are used. This
means that the features MassLik and FPLevel are not used as variables during the
learning process. For the other features, the dataset remained the same. The scores
and AUC value are shown in Table 4.

CC MLO
Bayesian score (×104) AUC Bayesian score (×104) AUC

NB -8.0157 0.8269 -8.1824 0.7786
TAN -7.7521 0.7700 -7.9304 0.7494
K2 -7.5682 0.7019 -7.7859 0.6950
GS -7.5612 0.7019 -7.7728 0.6950
GES -7.5591 0.7425 -7.7634 0.6706

Table 4: Results using only observed variables
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The models that were learned are included in Appendix C.

5.3.3 Results

When we compare the models, we notice that the AUC value for the models learned
using MLO data and the GS, K2 and GES algorithms are the same (0.8299) when
FPLevel and MassLik are included. When comparing these models, it appears that
in the structures, Finding is conditioned on FPLevel and not on other variables.
This means that when using the model as a classifier, only the FPLevel feature is
taken into account and that the entire structure could be replaced by the very simple
model without that is shown in Figure 20.

Figure 20: Finding is conditioned on FPLevel

This can be explained because the FPLevel feature is the result of another classifier.
When not taking the calculated features FPLevel and MassLik into consideration, a
number of observations can be made.

One thing that can be noticed is that the features LocX, LocY and d2skin are
related in all learned models. These features describe the location of the region in
the breast. In some models, especially those learned using CC data, these variables
are independent of the other variables.

It was expected that the Spiculation and LinTex features are related and that models
would show relations as shown in Figure 22. The features are more or less comple-
mentary: if linear texture is present, the region is not spiculated and vice-versa. In
some models this can be observed. However, in only 25% of the learned models this
relation is present.

5.4 Combining CC and MLO data

An interesting feature of learning relational models is the ability to consider the
features of objects and links that are related to the object that is classified. Since a
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Figure 21: Location features

Figure 22: Spiculation and linear texture

MLO and a CC view of the same breast are related, it would, for example, be inter-
esting to take features of the CC regions into account when learning the classification
of MLO regions.

This section describes the experiments and results of taking features of CC regions
into account while learning the classification of MLO regions. There are two com-
mon techniques to combine the datasets of MLO and CC views. In this research,
experiments have been performed using both these techniques and the results have
been compared.

In this section, each feature variable is prefixed with ‘MLO-’ or ‘CC-’ to indicate
which dataset was used.

5.4.1 Aggregate function

The datasets can be combined using an aggregate function. This means that instead
of considering the value of certain features, the values of these features are aggregated
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into a new feature using a function, such as an average, a max, a proportion, or a
count of a specific value. To make this more clear, an example is given:

We want to classify an object O and also have a dataset of a related object OR. The
dataset of the object O and the dataset of the related object OR are shown in Table
5.

F1 F2 F3
1 1 3
1 2 2
2 1 3

F1’ F2’ F3’
2 1 2
1 1 3
2 2 3

Table 5: Dataset of object O and related object OR

Suppose that feature F2’ of the related object OR contains useful information for
the classification of object O. We can use an aggregate function, such as the average
or max value, to add another feature to the dataset O. For this example we use
the max function on feature F2’. The dataset that is used in the learning process
becomes:

F1 F2 F3 F2’
1 1 3 2
1 2 2 2
2 1 3 2

Table 6: Aggregated dataset of object O and related object OR.

In this research, object O translates to a MLO view. The related object OR translates
to the CC view of the same breast. The rows in the datasets translate to the regions
in this view and the columns to the features of these regions. The MLO dataset
contains 10478 regions from 2126 screened breasts. The aggregated features from the
CC dataset are added for each MLO region. Half of the dataset is used for learning
a model using greedy search, the other half is used for validation and scoring.

Based on expert knowledge, three features, CC-Spiculation, CC-Contrast and CC-
RegSize, have been selected. These features from the CC dataset are aggregated
and added to the MLO dataset. The three features have been aggregated using the
maximum value and the average value for all linked CC regions. The calculated
features MLO-FPLevel and MLO-MassLik are not used in this dataset, because in
the previous experiment we have shown that these features are not of interest for
learning models from data.

Six models are learned from this dataset using greedy search. These six models are
the models for each of the three features with both aggregate functions. The results
are included in Table 7.
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Max Average
Bayesian score (×104) AUC Bayesian score (×104) AUC

CC-Spiculation -8.7686 0.6950 -8.7492 0.6950
CC-Contrast -8.6639 0.6952 -8.7393 0.6950
CC-RegSize -8.7552 0.6950 -8.7459 0.6950

Table 7: Results using aggregated features.

When looking at the learned network structures for these models, it appears that
the aggregated CC-Spiculation and CC-RegSize variables are independent of the
other variables. The aggregated CC-Contrast variable becomes conditioned on the
MLO-Contrast feature for both aggregate functions.

(a) (b)

Figure 23: Learned structures using greedy search.
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5.4.2 Cartesian product

The Cartesian product of set A and B, denoted as A × B, is the set of all ordered
pairs (a, b) with a ∈ A and b ∈ B. Using the Cartesian product, each MLO region of
a patient’s breast is combined with each CC region from the same breast. For most
views are 5 regions available and for a small number of views 4 regions. When these
views are combined using the Cartesian product, there are at most 25 combinations
per screened breast. The combined datasets contains data for 2126 screened breasts
and has 51088 records.

In this experiment, the same features that are used for the previous experiment have
been selected. Four models are learned from this dataset using greedy search:

1. Using MLO data and CC-Spiculation,

2. Using MLO data and CC-Contrast,

3. Using MLO data and CC-RegSize,

4. Using MLO data and CC-Spiculation, CC-Contrast and CC-RegSize.

When CC-Spiculation and CC-RegSize are included, these variables are independent
of the rest of the (MLO) variables in the model. When CC-Contrast is included, this
feature is conditioned on the MLO-Contrast feature. When CC-Spiculation, CC-
Contrast and CC-RegSize are included, CC-Contrast is also conditioned on MLO-
Contrast.

The models that are learned using greedy search with MLO data and CC-Contrast,
and CC-Spiculation, CC-Contrast and CC-RegSize are included in Figure 24.

Bayesian score (×105) AUC
Spiculation -4.6290 0.8356
Contrast -4.6256 0.8356
RegSize -4.6326 0.8356

Spiculation, Contrast and RegSize -5.5569 0.8356

Table 8: Results using Cartesian product dataset.

5.5 Modifying greedy search

In Section 5.3, we have seen that in all cases where MassLik and FPLevel variables
are present, Finding becomes conditioned on FPLevel (see Figure 20). This can be
explained because FPLevel is already the result of a classifier.

To see if classification results can be improved by learning models from data with-
out incorporating FPLevel and MassLik in the learning process, but enforcing this
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(contrast) (all three)

Figure 24: Learned structures using greedy search.

structure in the resulting structures, the greedy search algorithm is modified. This
section describes the results of these learning using this updated algorithm.

Figure 25: Finding is conditioned on FPLevel and MassLik

5.5.1 Adding features afterwards

The greedy search algorithm is modified, so that the learning process does not use
MassLik and FPLevel. Instead, these variables are added as parent of Finding to
the resulting structure. These resulting structures are shown in Figure 26 and the
scores are presented in Table 9.
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When the AUC scores are compared with the scores of the models that were learned
using GS with MassLik and FPLevel included, we see a minor decrease of classifica-
tion performance of 0.0175 for CC and 0,0322 for MLO.

Bayesian score (×104) AUC
CC -9.5819 0.8314
MLO -9.9670 0.7977

Table 9: Results with FPLevel and MassLik being added afterwards

MLO CC

Figure 26: DAG structures learned without FPLevel and MassLik and added after-
wards

5.5.2 Adding during scoring step

An other way to modify the greedy search algorithm is by including FPLevel and
MassLik only in the scoring step of the algorithm.

The greedy search algorithm starts with a initial network structure G, which consist
of the nodes {Finding, LocX, LocY, d2skin, Contrast, Isodense, Spiculation,
FocalMass, LinTexN, RegSize} without arcs. For each step, it defines a set NG
of neighborhood graphs. A copy of this set NG′ is made and each DAG in NG′ is
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modified: FPLevel and MassLik are added to the variables and used to condition on
Finding (see Figure 25). For each modified DAG, the score is computed. The (mod-
ified) graph with the highest score is selected and its (unmodified) original version
is used for the next iteration. The search is stopped when there is no neighborhood
network graph with a higher score than the current structure. The resulting network
structure is modified in the same way as before.

The parameters are learned for the resulting structure.

Bayesian score (×104) AUC
CC -9.5461 0.8495
MLO -9.7830 0.8179

Table 10: Results using modified GS

When we compare the results, we see a slightly higher score for CC (0.0006) and a
slightly lower score for MLO (0.002).

MLO CC

Figure 27: DAG structures learned with modified GS algorithm
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6 Conclusions and discussion

In the introduction of this thesis, the goals of this research have been set. This
section evaluates the research.

The purpose of this study was to investigate:

1. to what extent structure and parameter learning techniques can be used in
breast cancer research;

2. if the correlation of certain variables in the dataset can be observed in the
learned models;

3. the possibility of improving classification performance by combining data from
different mammographic views;

Looking at these goals, a number of observations can be made.

It is possible to use structure and parameter learning techniques to learn Bayesian
networks that perform reasonable using data from breast cancer screening pro-
grammes. Different algorithms can be used and classification performance of the
resulting networks does not differ much. The simple Naive Bayes classifier still out-
performs all learned classifiers. A remarkable observation is that the Naive Bayes
classifier performs better than the Tree Augmented Naive Bayes classifier.

Including the variables FPLevel and MassLik greatly improves the performance of
a classifier. In all cases where FPLevel and MassLik are used as variables, Finding
becomes conditioned on FPLevel. This was expected, since the FPLevel feature is
the result of another classifier, making the resulting classifier a sort of a second-order
classifier and not very useful.

When FPLevel and MassLik are absent, Finding is conditioned on Contrast or
RegSize. Without these variables, classifiers — in particular the Naive Bayes clas-
sifier — still perform reasonable. This means that the other variables do contain
useful information about the presence of breast cancer. The choice for the features
in the dataset, and how they are calculated, is affected by the fact that they are
used in the classifier that calculates FPLevel and MassLik. This makes it harder to
learn Bayesian classifiers that show a good performance, and certain features, and
the way these features are calculated, could have been determined in another way
which would have affected the results.

The results for using data from the CC-view are slightly better than for the MLO-
view. This was expected, because the MLO-view is harder to interpret.

Two modifications to the greedy search algorithm have been proposed to see if classi-
fication results can be improved by learning models from data without incorporating
FPLevel and MassLik in the learning process, but enforcing them in the resulting
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network structures. The performance of these modified versions of the greedy search
algorithm is not significantly different than using FPLevel as a classifier.

Future research

In this section, some suggestions for future research on this topic are presented.

When looking at the goal of improving classifier performance, it is useful to include
other features in the dataset. The dataset used in this research concentrated on
the detection of masses. Features on microcalcifications (see Section 2.6.6) are used
by radiologists when screening mammograms. From previous research it is known
that microcalcifications are usually quite easily detected during the reading, and
some automatic systems already show good performance on detecting them. Freer
and Ulissey concluded in [15] that “the ability to detect clustered microcalcifications
with a CAD system produced the most profound effect on the performance”.

In Section 2.2, a number of risk factors that increase the probability of developing
breast cancer are mentioned. These risk factors can not be observed from mam-
mograms, but can be translated into features that provide relevant information and
which can be useful to use for classification purposes. These risk factors include
age, presence of certain genes, previous incidence of breast cancer and dietary and
other lifestyle factors such as alcohol consumption. The inclusion of these ‘risk factor
features’ could possibly lead to a better classification.

In the dataset are 81 features available, which are chosen and calculated for optimum
performance of the classifier that calculates FPLevel. In this research, a subset of 11
features that are expected to contribute most to the detection of cancer have been
selected to learn network structures from the data. The influence of other features on
resulting structures and classification performance is an interesting topic for future
research.

In this research, I have made use of the discretization methods that existed in the
software libraries that were used for this research (see section 5.1.1). Other software
libraries or tools, such as, for example, the Waikato Environment for Knowledge
Analysis (WEKA) machine learning suite, provide more comprehensive libraries for
discretization and other preprocessing steps of the data. An in-depth study exploring
the possibilities and their influences is an interesting subject for future work.
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A Discretization

TAN GS
Bins AUC Score (×105) AUC Score (×105)
2 0.7259 -0.3687 0.7769 -0.3586
3 0.7618 -0.5801 0.7955 -0.5669
4 0.7678 -0.7133 0.7921 -0.7002
5 0.7857 -0.8252 0.8037 -0.8112
6 0.7777 -0.9121 0.8122 -0.8954
7 0.8033 -0.9787 0.8299 -0.9602
8 0.7574 -1.0561 0.8151 -1.0424
9 0.7519 -1.1056 0.8287 -1.0886
10 0.7469 -1.1612 0.8365 -1.1411
11 0.7224 -1.1990 0.8289 -1.1756
12 0.7115 -1.2513 0.8196 -1.2213
13 0.6602 -1.2984 0.8168 -1.2604
14 0.6416 -1.3312 0.8198 -1.2886
15 0.6403 -1.3896 0.8146 -1.3369
16 0.6370 -1.4262 0.8333 -1.3665
17 0.5939 -1.4752 0.8280 -1.3985
18 0.6000 -1.5036 0.8278 -1.4177
19 0.5934 -1.5252 0.8217 -1.4301
20 0.5844 -1.5682 0.8218 -1.4561

Table 11: Results for different discretization parameters
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B TAN structures for 5 variables

(a) (b) (c)

(d)

Figure 28: Equivalent tree augmented networks with different root nodes for the tree
part of the DAG: (a) FPLevel; (b) MassLik; (c) d2skin; (d) LocX
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C Network structures

C.1 Naive Bayes

(a)

(b)

Figure 29: Naive Bayes structures.
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C.2 Tree augmented networks

(MLO) (CC)

(MLO) (CC)

Figure 30: Tree augmented networks.
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C.3 Structures learned using K2

(MLO) (CC)

(MLO) (CC)

Figure 31: Structures learned using K2.
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C.4 Structures learned using greedy search

(MLO) (CC) (MLO)

(CC)

Figure 32: Structures learned using greedy search.
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C.5 Structures learned using greedy equivalence search

(MLO) (CC)

(MLO) (CC)

Figure 33: Structures learned using greedy equivalence search.
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