
Radboud University Nijmegen

Master thesis in information science

Relief-based feature selection in bioinformatics:
detecting functional specificity residues from

multiple sequence alignments

Author:
Wout Megchelenbrink

First supervisor:
Dr. Elena Marchiori

Second supervisor:
Dr. Peter Lucas

Thesis number:
132IK

Abstract

Finding functionality specific residues in proteins is important for a better
understanding of many biological processes. A better knowledge of these
amino-acids can help understanding the development of certain diseases and
aid in drug design. Finding these residues is not easy and biological experi-
ments take a lot of time, resulting in large costs. Automated computing of
these residues from multiple sequence alignments (MSA) can aid biologists
in this task. It is generally assumed that conservation of residues within a
subfamily of a MSA and divergence of this residue between subfamilies is a
strong lead for functional specificity. Many feature selection algorithms have
been developed to exploit this difference. Of these algorithms, Relief-based
methods generally show good performance because they perform a global
and local search based on a nearest neighbor classifier.

Relief-based algorithms compute a feature weight Wi for every residue
i. Consider the simple case where a MSA is divided into two subfamilies.
Relief computes the weight by finding the nearest neighbor of a sample X
from the same subfamily (the nearest hit, NH) and one from the opposite
subfamily (the nearest miss, NM). In this case, because I use MSA’s, the
Hamming distance is used as a distance metric. Now the weight can be
computed as:

Wi = Wi + α0|Xi −NMi| − α1|Xi −NHi|, (1)

where | · | is the distance between residues. Weights are computed by
iterating over all samples. Relief uses α0 = α1 = 1, which means that within-
class conservation and inter-class divergence are ‘weighted’ equally. In this
thesis I tried to optimize the predictive performance of several Relief-based
algorithms by increasing the value of α1 thereby emphasizing conservation.
All algorithms used can handle multi-class data. Experiments have been
conducted on 18 datasets. The residues predicted as specificity determin-
ing have been compared with ‘known positives’ from biological experiments
using the area under the ROC-curve. Results show a trend where datasets
containing proteins of short length (< 300 amino-acids) benefit from this dis-
tinction, whereas datasets containing large proteins (> 1000 amino-acids)
show no improvement.

Preface

This master thesis about feature selection in bioinformatics consists of eight
chapters. The first chapter is a general introduction on the topic of feature
selection. Chapter two deals with the characteristics of biological sequence
data. In the third chapter, I’ll explain the basic theory of feature selection
and some approaches to keep in mind when creating new methods. The
fourth chapter is about related work on feature selection in bioinformat-
ics. Chapter 5 explains the basics of Relief as a two-class feature selection
method. It also discusses some successful algorithms that extend this sub-
ject to multi-class data and deal with some of the issues discussed in chapter
2. In chapter 6 I’ll discuss a new approach, based on Relief. In this chap-
ter the new theory is discussed and the research method and results are
provided. Chapter 7 discusses the results of the experiments conducted.
Finally, chapter 8 concludes the results and gives some guidelines for future
research.

With this thesis comes a webserver implementation of the algorithms dis-
cussed in chapter 5 and 6. This code is available on CD-ROM. Information
about the implementation of the webserver can be found in appendix A.

1

Acknowledgments

I’m very glad that I was given the opportunity to combine my interest and
knowledge for computers and programming with my interest for biology.
I like new challenges and bioinformatics certainly is a challenging and in-
teresting research terrain. I’d like to specially thank my supervisor Elena
Marchiori for giving me the opportunity to study this topic, who helped
me with questions and provided useful feedback. I’d also like to thank my
girlfriend Jolien for helping me with the ungrateful task of putting all data
in a spreadsheet to obtain the tables and graphs in this thesis.

Nijmegen, July 2010

2

Contents

List of Tables 5

List of Figures 6

1 Introduction to feature selection 7
1.1 Introduction . 7
1.2 What is feature selection? . 8
1.3 Feature selection in bioinformatics 9

2 Biological sequence data and functionality specific residues 10
2.1 Sequence data . 10

2.1.1 MSA: Multiple Sequence Alignment 11
2.1.2 Specificity determining residues 12

2.2 Challenges in feature selection 12
2.3 How can feature selection help? 14

3 Feature selection and learning algorithms 16
3.1 Supervised and unsupervised learning 16
3.2 Feature relevancy . 16
3.3 Information and dependency measures 18

3.3.1 Entropy and information gain 18
3.3.2 Mutual information 21
3.3.3 Chi-square (χ2) . 21

3.4 Wrapper and filter approach 22
3.5 Univariate and multivariate feature selection 23

4 Related work 24
4.1 SDP-Pred . 24
4.2 Sequence Harmony . 25
4.3 Xdet . 25
4.4 Protein-Keys . 26
4.5 PROUST-II . 27
4.6 SPEER . 28
4.7 Multi-Harmony . 28

3

5 Relief-based algorithms 29
5.1 The myopic drawback of impurity functions 30
5.2 The original Relief-algorithm 30
5.3 The relation between impurity and Relief 33

5.3.1 Missing values in data 35
5.3.2 Multi-class data . 36

5.4 RELIEF-F . 36
5.5 Margin based Feature selection 37

5.5.1 G-flip . 40
5.5.2 Simba . 40

5.6 Optimizing the margin as a convex optimization problem . . 41
5.6.1 Optimizing the margin 41
5.6.2 Iterative-Relief . 42

5.7 Multi-Relief for sequence alignments 46
5.7.1 Residue relevancy . 47
5.7.2 3D contacts . 48

6 New approach 49
6.1 Theory . 49
6.2 Heuristic AUC optimization 50
6.3 Research target . 50
6.4 Materials and methods . 51

6.4.1 Materials . 51
6.4.2 Method . 52

6.5 Results . 53

7 Discussion 57

8 Conclusions 60

A Webserver implementation 62
A.1 Feature selection on a given dataset 62

A.1.1 Input . 62
A.2 Compute AUC on given α1 value 63

A.2.1 Additional material 64

B AUC plots for different α1 values 65

Bibliography 69

Glossary 72

4

List of Tables

1.1 Simple feature selection example 8
1.2 Feature selection with a price 9

2.1 Sequence alignment example on English text 11
2.2 Conservation and divergence example 12

3.1 Sunburn dataset . 19
3.2 Correlation between hair color and sunburn 20
3.3 Information Gain example . 20

5.1 Weights computed by Multi-Relief applied on a toy example . 47

6.1 Used Relief-based algorithms 52
6.2 Used sequence datasets . 53
6.3 Computed AUC result for α1 = 1 55
6.4 Computed improvements for α∞ 56

5

List of Figures

2.1 MSA snippet from GPCR database 11

3.1 Feature relevancy and redundancy 18
3.2 Wrapper and filter method in a unified model 23

5.1 Feature selection based on impurity measures 30
5.2 Finding nearest neighbors with Relief 33
5.3 Sample margin and hypothesis margin for K-NN 38
5.4 Relation between hypothesis- and sample margin 39
5.5 Nearest miss (a) and outlier (b) illustrated 45

A.1 Input page for a MSA in FASTA format 63
A.2 Example of a plotted ROC-curve 64

B.1 AUC values plotted for different α1 values (part 1) 66
B.2 AUC values plotted for different α1 values (part 2) 67
B.3 AUC values plotted for different α1 values (part 3) 68

6

Chapter 1

Introduction to feature
selection

1.1 Introduction

Fast improvements in research and ongoing developments in information
technology enables us to collect and store huge amounts of data. The Inter-
net with all its webpages is probably the most well-known example of the
explosion of information. To find your information, many search engines
exist to aid you in this task. Biology is no exception to the domains where
technology contributed to a tremendous increase in available data. You can
think of the sequencing of DNA and proteins, yielding in databases with
thousands to billions of records. Understanding these building blocks of
life is very important, for example for the production of food, fighting and
preventing diseases, drug discovery, understanding the genome and better
understanding evolution. But finding out which genes are involved for in-
stance in the development of diseases is not an easy task. There are millions
of nucleotides in the human genome and in most cases, there are multiple
factors and genes involved in the development of these diseases.

Any disease affecting or affected by the genome can potentially be dis-
covered. After that, effective drugs or treatment to solve or prevent this
disease have to be discovered. In the case of drug discovery, analysis of
all the residues in a protein family is virtually impossible and automated
feature selection can help out.

The problem is not unique to biology as well, for instance the Internet
has billions of webpages. Billions of e-mail messages are being send each
day, of which a large quantity is spam. Newsgroups, forums, auctioning
websites and social networking sites such as Facebook, YouTube and Twitter
emerge quickly. In many of these cases, people want to search and categorize
huge amounts of data. Data with many features, of which only a small
part is relevant. The same goes for research data and datamining. In all

7

fields where people want to automatically deduce relevant information from
high dimensional data, feature selection can offer a helping hand. So it is
not strange that computing science can use the lessons learned from these
domains and use them for other research areas, such as bioinformatics.

In this thesis, I will focus on the biological datasets of multiple sequence
alignments (MSA). By using Relief-based algorithms, I will try to select
functional specificity determining residues in the MSA’s (see chapter 2 for
more information about sequence data and families) of families of these large
molecules.

1.2 What is feature selection?

Feature selection is about selecting relevant features from a high dimen-
sional space. This sounds somewhat abstract and without much knowledge
of biology, it doesn’t get any easier. To get a basic understanding of the
principles of feature selection, let’s look at a very basic example. How this
is applied to biological data is discussed in the next chapter.

Example 1.2.1 Feature selection on colored cards
Imagine you have four colored cards, with a three letter code written on
it. The colors and codes are given in table 1.1 and are independent of each
other.

Card Nr Color Code

1 Blue AB
2 Blue BA
3 Red AC
4 Red CA

Table 1.1: Simple feature selection example

Suppose we have two boxes: R and B. When I ask you to put the blue
cards in box B and the red ones in the box R, you will implicitly select the
relevant features for these cards, namely the color, and discard the code on
the card.
Now we make it somewhat more difficult. I say there is a price on the
backside of the card. The price can be either 0 or 100 euro. I don’t tell you
which ones it is, but I give you table 1.2:

To solve this problem, you will probably do the following. First you’ll
-unconsciously- make two classes; one without a price (classnp) and the other
with a price (classp). Then you look for a common pattern in classp. You
find out that there is a price for both blue cards and red cards, so color is
no good. You look at the code. You notice all cards with a price contain

8

Card Nr Color Code Price

1 Blue AC 100
2 Blue BA 0
3 Blue CB 0
4 Blue BC 100
5 Red AB 0
6 Red BA 0
7 Red BC 100
8 Red CB 0

Table 1.2: Feature selection with a price

letter C. But you see that letter C can also be found in classnp. You look
at the position of the C and find that all prices have C in second position,
and if C is in second position, you observe there is always a price. So a C
in second position is a good feature; color is not and the complete code also
doesn’t tell you much. In other words, you’ll only have to look for a letter
C in second position of the code and find that card number 3 is probably
the winning card in table 1.1.

1.3 Feature selection in bioinformatics

Bioinformatics is the application of information technology and computer
science to the field of molecular biology 1. Bioinformatics is about using com-
puter science, machine learning, pattern recognition and the like to discover
the mechanisms in molecular biology. Bioinformatics covers many areas,
some profound examples are sequence alignments, splice-site prediction and
discovering gene expression using microarrays. Feature selection is impor-
tant in virtually all areas of bioinformatics, because the enormous amount
of data doesn’t allow inferring information easily. You’ll often have to deal
with high dimensional data (genomic data with thousands to ten-thousands
of nucleotides) and small sample sizes [27]. Bringing this dimensions down,
and selecting only the relevant aspects, is what feature selection is all about.

In this thesis I will focus on feature selection in biological sequences;
MSA’s of some well-studied protein families to be exact. More information
about what bioinformatics is and is not can be found on Wikipedia and
a simplified but nevertheless entertaining paper of Dr. Achuthsankar S.
Nair [1].

1http://en.wikipedia.org/wiki/Bioinformatics

9

Chapter 2

Biological sequence data and
functionality specific residues

To understand the subject of feature selection in bioinformatics, it is good
to have an understanding of what biological data is and some side-effects to
bear in mind. This chapter will not deeply elaborate the biological processes,
because I am not a biologist. The purpose of this chapter is to provide a
basic understanding of the data dealt with throughout this thesis. The last
part discusses some challenges to keep in mind while dealing with this kind
of data.

2.1 Sequence data

A protein is a large sequence of amino-acids (a amino-acid is also called
a residue). In real life, these amino-acids are not nicely packed one after
another, but create a difficult folded structure that gives the protein its
basic function. Many proteins can bind other molecules and sort of ‘capture’
them in this folded structure and release it somewhere else. Based on this
‘primary’ function, proteins can be put in some hierarchical families, such as
the G-Protein Coupled Receptors (GPCR) or SMAD family. These families
can be divided in subfamilies with a given ‘subfunctionality’.

The construction of a protein is a difficult biological process, where polar-
ity, hydrophobicity, charge and other chemical principles play an important
role. What is important for specificity computing is that a protein can be
seen as a string of amino-acids. In nature there are 20 different amino-
acids, which names can be abbreviated with letters from A to W (not all
letters are used). Proteins within a family can all be represented with such
a string representation. The most well-known string format for MSA’s is the
FASTA-format, which is just this encoding of an amino-acid to an alphabet
letter.

10

2.1.1 MSA: Multiple Sequence Alignment

Since the late 1980’s, there has been an exponential growth in sequence
data. This is mainly caused by efficient experimental techniques, like DNA
sequencing. To interpret all this data, sophisticated techniques are required.
A fundamental feature of chain molecules, like DNA and proteins is that
they can be represented in the form of digital symbols, like the letters of our
alphabet [3].

Remember that a protein is a difficult folded structure with no clear be-
ginning or end. Thus a string representation has no meaningful beginning
or end. If we want to compare proteins in a given family, we want their
amino-acids to be as much alike as possible. This is done by aligning the
sequences in a family, and the result is known as a multiple sequence align-
ment (MSA). This process can be seen as shifting the proteins left or right,
such that as many amino-acids are the same as possible. Equal amino-acids
are named ‘conserved’ amino-acids or conserved residues. Inserting ‘gaps’
(sort of padding of no value) ensures that all sequences in the MSA are of
equal length. A simplified example from [1] is depicted in figure 2.1

G A T E L I K E S C H E E S E
|
G R A T E D C H E E S E

(a) Before alignment

G - A T E L I K E S C H E E S E
| | | | | | | | |
G R A T E D - - - - - C H E E S E

(b) After alignment

Table 2.1: Sequence alignment example on English text

Aligning a large amount of sequences is a computational difficult task.
Basic local alignment search tool (BLAST) [2] is probably the most used
and known tool for this task. Once the sequences are aligned, we can start
computing. A more realistic example is figure 2.1. This is a small snippet of
a MSA from the GPCR database. Some of the amino acids have a different
color, so that differences can be spotted easily.

Figure 2.1: A snippet of a MSA from the GPCR database obtained from
http://www.gpcr.org/7tm/.

11

2.1.2 Specificity determining residues

In an MSA, we can look at the amino-acids and try to find a pattern for
residue position. In finding these specificity determining residues a notion
of conservation and divergence is important. The conserved residues are im-
portant because they are believed to have a common ancestor in evolution,
whereas divergence is a signal of a functional specialization of a residue.
‘. . . the common assumption of conservation of functional residues during
evolution’ [23]. This biological phenomenon enables us to make computa-
tions, based on this difference.

Residue positions can be fully conserved (the amino-acids at position i
in subfamily S of the MSA are all the same) or fully divergent (they are
all different). Table 2.2 shows this principle on a toy example. Protein 1-3
are of subfamily A, proteins 4-6 are of subfamily B. Note that position 1
is fully conserved in both subfamilies and is not of much interest. Position
2 is fully conserved in subfamily A and fully divergent between A and B,
which indicates that this is an interesting residue. Position 3 is only partly
conserved and finally position 4 is conserved between the subfamilies. This
is not a good indication of functional specificity and so we don’t want these
kind of residues. In the weighting algorithms, residue 1 is good and will get
high weight, residue 4 gives no information and so we penalize this with low
(or negative) weights.

X 1 2 3 4

Subfam. A

1 A B C D
2 A B C E
3 A B B F

Subfam. B

4 A C B D
5 A C C E
6 A C B F

Table 2.2: Conservation and divergence example: The table shows two sub-
families, each containing 3 proteins with 4 residue positions.

2.2 Challenges in feature selection

Feature selection in bioinformatics is not straightforward. You often have
a lot of data with many possible features, but few training examples. I’ll
list some of the difficulties you often have to cope with in feature selection.
Fortunately, there are a lot of papers that try to solve or mitigate these
issues. I’ll briefly discuss some of these issues now.

• The ’curse of dimensionality’ and data sparseness
• Unlabeled data

12

• Noise or gaps
• Dependent features
• Bias and overfitting

The curse of dimensionality

Example 1.2.1 is of course highly simplified. For instance in bioinformatics,
the number of features is much much higher, there are more classes and more
instances. On top of that there is often little training data. This means there
are lots of possible relevant feature sets, and only little samples to learn the
relevant features. This problem is known as the ’curse of dimensionality’,
introduced by Bellman and illustrated in [21]. It says that a fixed data
sample becomes exponentially sparse as the number of dimensions increase,
according to the formula:

SD ∝M1/N , (2.1)

With sampling density SD, M samples and N dimensions. The intuition
behind this simple formula is that for every added feature, the possible
outcomes increase exponentially. Therefore you also need the number of
samples to increase with this rate, to deduce the information.

In real world problems there are not only many more features than in the
simple example above. Sometimes you don’t have a good versus a bad class.
You have many classes, or worse you don’t have any classes at all. Often
you have a sparse training set, which doesn’t allow you to make a decision
with certainty. You have errors or gaps in your training data or features
are not independent. So there is a need for algorithms that can cope with
these problems and select relevant features, that allow for predicting with
high accuracy.

Unlabeled data

Most of the feature selection done today is based on supervised learning.
This means the data is labeled because proteins belong to some subfamily.
Sometimes you don’t have labeled data, because the cost of labeling is too
big, it takes too much time, or people simply don’t know which subfamily a
protein or DNA-string belongs to. Unlabeled data problems occur frequently
also, and there is a lot of research for classifiers and feature selection algo-
rithms that can handle unlabeled data. Although this research area, called
unsupervised or semi-supervised learning is evolving quickly, in this thesis I
will only consider supervised learning.

Noise and gaps

The sequencing and alignment of biological data is not perfect. It’s pos-
sible that some amino-acids are replaced or the alignment algorithm used

13

is suboptimal. This can lead to noise (unwanted artifacts) in your MSA’s.
The very task of aligning sequences leads almost irrevocably to gaps. So
algorithms in bioinformatics have to cope with noise and gaps.

Dependent features

Words in a sentence are often not independent. For instance finding the
word ’Barack’ increases the likelihood of ’Obama’. Thus these words are not
independent. However, often treating all words as if they were independent
(the so called bag-of-words model) yields pretty good classifiers. For speech
recognition, this is often not good enough, because you have to make ad hoc
predictions. In this case for example consecutive words are often treated as
dependent (so called n-grams of n consecutive words). The same principle
holds for bioinformatics. It’s unlikely that amino-acids in a sequence are
all independent. However, many models treat them this way. Sequences in
biology are not just as linear as they appear in their FASTA-format. DNA
for example, is known as a twisted string, or helix. The structure of proteins
is even more complicated, with the chemical properties mentioned above.
Thus deciding what is a relevant feature in the case of proteomics is not
easy. Comparing single amino-acid positions is in fact the naive counterpart
of the bag-of-words model, but these algorithms also show good results.

Bias and overfitting

Training data in bioinformatics is often sparse due to high costs of sequencing
or because families just don’t contain that many proteins. Therefore you’ll
have to train and test your model with small datasets. Using a method like
LOOCV is often inevitable to test the outcome, but results in an increase in
computational complexity, because you have to run the algorithm for every
sample.

2.3 How can feature selection help?

Feature selection helps reducing input dimensionality. For instance for
breast cancer detection, you look at the expression of genes in healthy per-
sons and in breast cancer patients. You try to find significant gene expres-
sion differences between these two groups. Of the thousands of genes that
could possibly be relevant, good algorithms can bring this back to just a
couple, or in the order of tens of genes. This makes it easier for doctors
to assess the possibility that someone has breast cancer. There is a lot of
development in this area and feature selection algorithms and classifiers are
not perfect. However methods improve at fast rate. It’s likely that they
will assist doctors in diagnosing hereditary diseases at a larger scale in the
nearby future.

14

This breast cancer example is one of the many cases where feature se-
lection shows its importance for real life problems. There are many fields
in bioinformatics where this can be applied [27]. It’s also applied in com-
pletely different fields like spam filtering and text categorization. This shows
that feature selection is not only important in science, but can have very
important social consequences.

It is clear that feature selection is used for many applications. There
are many different algorithms, some slow but accurate, some fast but less
accurate. There is wide variety in methods, data used and for instance
time complexity. An accurate method for feature selection on small protein
datasets might not be desired for large DNA datasets. In general, the choice
of algorithm highly depends on the type of problem your dealing with, what
results you want (and what not) and the data your dealing with. In general
there is no such thing as a ’best’ algorithm, but some guidelines are provided
by [11].

15

Chapter 3

Feature selection and
learning algorithms

In this chapter I’ll describe some of the fundamentals of feature selection.
This chapter is by far not exhaustive, but gives a basis for the research
and decisions made later on. Liu and Motoda [20] [21] have written some
excellent books on feature selection and explained a lot of theory and many
common algorithms. Another useful introduction can be found in [10].

3.1 Supervised and unsupervised learning

There are two main types of learning problems: supervised and unsupervised
learning. Supervised learning problems deal with labeled data, in the sense
that they take class information into account. Unsupervised learning lacks
class information, therefore finding these group labels (known as clustering)
is often the purpose of these algorithms. The MSA datasets I use are all
labeled, making supervised learning possible.

For the sake of completeness, I’ll have to mention that there is also
semi-supervised learning where only a few datapoints are labeled. These
labeled points can be used to guide the unsupervised learning algorithm.
Unsupervised learning is often more difficult but also very interesting.

3.2 Feature relevancy

Feature relevancy is discussed in [13] by Kohavi, John and Pfleger. Blum and
Langley [4] have extended some of these thoughts and theorems. Kohavi,
John and Pfeger discuss the three basic levels of relevancy:

• Strong relevance
• Weak relevance
• Irrelevance

16

Strong Relevance
A feature Xi is relevant iff there exists some xi, y and si for which P (Xi =
xi, Si = si) > 0 such that P (Y = y|Xi = xi, Si = si) 6= P (Y = y, Si = si)

where Xi is feature, xi is the value of Xi for a given instance and y is
a class label. Si and si respectively denote all features except Xi and its
value assignment for a given instance. In other words, a feature is strongly
relevant, if removing that feature affects the predictive accuracy.

Weak Relevance
A feature Xi is weakly relevant iff it is not strongly relevant, and there exists
a subset of features S′i of Si for which there exists some xi, y and s′i with
P (Xi = xi, S

′
i = s′i > 0) such that P (Y = y|Xi = xi, S

′
i = s′i) 6= P (Y =

y|S′i = s′i)

Weak relevance indicates that a feature does not always contribute to
predictive accuracy. Such a feature is usually correlated with one or more
other features. For instance in a boolean case where F1 is relevant and
F2 = F3, F2 and F3 are weakly relevant. If we leave F2 out, F3 becomes
strongly relevant and vice versa. Another way of saying this is that F2 and
F3 are redundant, because knowing either one of them implies also knowing
the other one. Finding redundant features is often more difficult, because
many features are not completely correlated as in this case.

If features are neither strongly relevant nor weakly relevant, they are
irrelevant. Irrelevant features can not contribute to predictive accuracy and
therefore can always be removed. The challenge it to remove all irrelevant
and redundant features, giving you the optimal set as depicted in figure 3.1.

Irrelevance
A feature Xi is irrelevant iff
∀ S′i ⊆ Si, P (Y = y|Xi = xi, S

′
i) = P (Y = y|S′i)

Although these three definitions are sufficient to put features in three
distinct categories, Blum and Langley [4] add relevance as a complexity
measure and incremental usefulness. These measures are pretty intuitive
and can be defined from the above definitions. Because many algorithms
use these measures, I will briefly discuss them.

Relevance as a complexity measure
Given a sample of data S and a set of concepts C, let r(S, C) be the number
of features strongly relevant to a concept in C that, out of all those whose
error over S is least, has the fewest relevant features.

In other words, we try to find a minimal subset of features for the best
classifier for a given concept C.

17

Figure 3.1: Feature relevancy and redundancy, depicted by [32]

Incremental usefulness
Given a sample of data S, a learning algorithm L, and a feature set A
(where xi /∈ A), feature xi is incrementally useful to L with respect to A if
the accuracy of the hypothesis that L produces using the feature set xi ∪A
is better than the accuracy achieved using just the feature set A.

So in this definition, we look at the predictive accuracy of L, by evaluat-
ing it after adding or removing a feature. This kind of measure is at the heart
of sequential forward selection (SFS) and sequential backward elimination
(SBE). I’ll explain more about these methods in chapter 5 on Relief-based
algorithms.

3.3 Information and dependency measures

3.3.1 Entropy and information gain

In supervised learning tasks, it’s likely that the value of a specific feature
contributes to the classification task. Relevant features will contribute most
to this classification task. So if we know the classes, we can in principle ‘re-
verse engineer’ what features are relevant. One of the methods that uses this
principle is information gain, which I will illustrate using a simple sunburn
example from [20]. Information gain measures the amount of uncertainty
reduced by knowing a feature. Uncertainty is usually measured using Shan-
non’s entropy.

Entropy

Shannon’s entropy is a measure for the amount of uncertainty in a distribu-
tion. For instance if you have a coin and you flip it, there are two possible
outcomes. If it’s a fair coin, it’s difficult to predict the outcome. If the

18

Id Hair Height Weight Lotion Result

1 blond average light no sunburned
2 blond tall average yes none
3 brown short average yes none
4 blond short average no sunburned
5 red average heavy no sunburned
6 brown tall heavy no none
7 brown average heavy no none
8 blond short light yes none

Table 3.1: Sunburn dataset

coin is biased, it’s easier to predict the outcome. Shannon’s entropy E(S)
is given by:

E(S) = −
n∑
i=1

P (i) log2 P (i), (3.1)

Where n is the number of possible outcomes and P (i) is the probability
for outcome i. In this formula you can see that highest entropy is given to
uniform distributions, which makes sense, because if all chances of outcomes
are equal, it’s more difficult to predict the outcome.

Information Gain

Now if we could take away some of the uncertainty, we could make a better
prediction. We can do this by splitting up our dataset for every feature, and
compare the entropy before the split and after the split by feature X. If we
use Shannon’s entropy on our dataset, we get the information for all data
with d number of classes.

Info(D) = −
d∑
i=1

Pd(ci) log2 Pd(ci), (3.2)

where Pd(ci) is the observed probability for each class Pd. Now we split
the data D by feature X into p parts {D1, D2, .., Dp}. The information for
part Dj is:

Info(DX
j) = −

d∑
i=1

PDX
j

(ci) log2 PDX
j

(ci), (3.3)

with Info(DX
j) = 0 if pi equals zero in the limit limpi→0 log2 pi = 0. The

information gain due to feature X is:

19

InfoGain(X) = Info(D)−
p∑
j=1

|Dj |
|D|

Info(DX
j), (3.4)

where |D| and |Dj | is the number of instances in D and Dj respectively.
Consider the feature Hair in table 3.1. Hair can have three distinct

values, so we can split our dataset for featurehair in three datasets.

Nr Result
1 SB
2 -
4 SB
8 -

(a) Blond (bl)

Nr Result
3 -
6 -
7 -

(b) Brown (br)

Nr Result
5 SB

(c) Red (r)

Table 3.2: Correlation between hair color and sunburn

Now we can calculate the information gain by filling in the numbers from
table 3.2 into the equations. The results are depicted in table 3.3.

Info(D) = −5
8 log2

5
8 −

3
8 log2

3
8 ≈ 0.95

Info(DHair
bl) = 2× (−1

2 log2
1
2) = 1

Info(DHair
br) = 0

Info(DHair
r) = 0

InfoGain(Hair) = 0.95− 4
8 × 1 ≈ 0.45

Table 3.3: Information Gain example

We can also do this for the other features and order them from highest
gain to lowest. The features with highest gain are the most relevant. In this
case {hair, lotion, height, weight}. Information gain tends to favor features
with more distinct values. Consider equation 3.4; more distinct features do
not affect the first part of the equation Info(D). It does however affect
the second part. Consider the extreme where we take Id as a feature. In
this case every class contains exactly one example, having Info(DId) = 0
for every Id, thereby maximizing the information gain. In other words, Id
is very good predictor for the class, but is useless for generalization. Quin-
lan [26] suggested to normalize information gain by a measure called split
information, which is basically the entropy of the feature in the complete
dataset.

SplitInfo(X) = −
n∑
i=1

|Ti|
|T |
× log2

(|Ti|
|T |

)
, (3.5)

where T is the dataset, partitioned into datasets Ti by feature X. The
normalized information gain measure is called information gain ratio:

20

GainRatio(X) =
InfoGain(X)

SplitInfo(X)
(3.6)

The gain ratio tries to maximize equation 3.6, with the constraint that
information gain should also be high, to prevent choosing features with only
low split information.

3.3.2 Mutual information

Another method is to measure the dependency between a feature and a class.
Mutual information is such a method:

MutualInfo(Xi;C) =
∑
c∈C

∑
xi∈Xi

P (xi, y) log
P (xi, y)

P (xi)P (y)
, (3.7)

where C is the set of classes and Xi is the set of features at position
i. High values of mutual information reflect high dependency between a
feature and a class. In the case of independence, mutual information = 0.
Mutual information can also be explained as the amount of uncertainty in
a feature removed by knowing its class:

MutualInfo(Xi;C) = H(Xi)−H(Xi|C), (3.8)

where H(Xi) is the entropy in Xi and H(Xi|C) is the entropy of Xi after
knowing C. So if knowing C provides much information, H(Xi|C) will be low
and therefore MutualInfo will be high. Mutual information is widely used in
feature selection, and also in sequence alignments. Usually you select the top
k features, with highest mutual information. For instance Peng, Long and
Ding [24] use it in their algorithm minimal-redundancy-maximal-relevance.
One drawback of mutual information is that it prefers rare features in case
that the conditional probabilities P (Xi|C) are equal [30]. This may not
always be a desired result.

3.3.3 Chi-square (χ2)

Chi-square is a very simple measure for the difference between observed and
expected frequencies. Due to its simplicity and effectiveness, it is widely
used in statistics and machine learning. In the case of feature selection, it
can be stated as:

X2(xi) =
∑
c∈C

e(c, xi)− o(c, xi)
e(c, xi)

, (3.9)

where the expected number of feature xi in C is computed as:

e(c, xi) = nc
axi

N
,

21

Where nc is the number of proteins in subfamily c, N is the total number
of proteins and axi is the number of proteins having feature x at position
i. It’s easy to see that when expected and observed frequencies are equal,
chi-square is zero, reflecting their independence in the observed data.

In [8] the authors use χ2 in a multivariate feature selection method for
the simple Naive Bayes and Decision Tree classifiers on the GPCR dataset.
They use n-grams of n subsequent features and use chi-square to select
the top K n-grams with highest chi-square value. A nice outcome of their
research was that Naive Bayesian Classifiers and Decision Trees, the simplest
classifiers outperformed state-of-the-art algorithms like SVM in classifying
sequences. This is probably mainly due to the effective feature selection
process they performed prior to the classification task.

Chi-square and information gain prove to be reliable and useful in feature
selection for text categorization [30]. Feature selection in text classification
and bioinformatics prove to be very similar, and therefore these methods
have also been adopted in various algorithms for feature selection in bioin-
formatics.

3.4 Wrapper and filter approach

Feature selection algorithms can be divided into two basic approaches [18].
First is the wrapper approach, where the selection of features is ‘wrapped’
within a learning algorithm. The second method is called the filter approach,
where the features are selected according to data intrinsic values, such as
information, dependency or consistency measures.

The difference between these approaches is in the way the ‘quality’ of
the feature subset is measured. For wrapper approaches, a common method
is to measure the predictive accuracy for a given subset. Then, applying
some forward or backward selection method, the subset is changed and the
accuracy is re-evaluated. If it’s better, the new subset is retained, otherwise
the old one is kept. You can iterate this until you reach a given number
of features, some accuracy threshold, after a fixed number of iterations, or
when you’ve explored the whole search space. For this method, the learning
algorithm has to run for each subset, so it should not be too demanding.
This is the main drawback of this approach.

The other method is the filter method. As mentioned, this method uses
the intrinsic properties of the data and therefore is not dependent on the
learning algorithm. Information, dependency or consistency measures are
usually less complex (in time). Therefore these algorithms can be used on
large datasets, to reduce the input dimensionality. After that, you can use
a classifier or a wrapper to deal with the reduced dataset.

In bioinformatics, datasets are often very large. Therefore the filter
approach is mostly used to select the features. Another advantage of this

22

approach is that you can use any classifier to evaluate the accuracy of the
testset. In the wrapper approach, if we use a different classifier for the
testset and trainingset, results may be negatively affected.

Figure 3.2: Wrapper and filter method in a unified model

Figure 3.2 shows a unified model for these these two approaches from [20].
The difference is in the evaluation method, where filter approaches use a
evaluation measure independent of the learning algorithm. In the wrapper
approach, the evaluation is performed by the learning algorithm itself, taking
the predictive accuracy as a measure for feature quality.

3.5 Univariate and multivariate feature selection

The difference between univariate and multivariate selection is in consid-
ering the relationship between features. If you select features by adding,
deleting or comparing one feature at a time, this is called univariate feature
selection. It is similar to the bag-of-words assumption discussed earlier,
assuming independence of features.

One of the main drawbacks of univariate methods is that they do not
model dependencies between features. On the other hand, multivariate mod-
els often suffer from an explosion of possible feature sets, looking at n fea-
tures simultaneously, increases complexity by the power of n.

23

Chapter 4

Related work

Due to the explosion of data in bioinformatics, many feature selection al-
gorithms have been developed. Some are based on evolutionary trees (in
biology not only species, but also proteins have a sort of evolutionary tree).
Some are based on chemical principles such as hydrophobicity, charge and
polarity, others can incorporate 3d structure (although very little is known)
or other biological principles. Many are like Relief-based algorithms, based
on multiple sequence alignments. I will discuss some of the most successful
and known methods for MSA’s, because these can be best compared with
the Relief-based methods discussed in the next chapter.

Many algorithms based on information theory exist, and it would be
impossible to discuss them all. I have selected the most successful and
known algorithms. A second reason for discussing these algorithms is that
the area under (AUC) the ROC-curve values on many datasets have been
published. It is interesting to compare these results with those from my own
experiments and try to explain their differences. This is done in chapter 7.

4.1 SDP-Pred

Specificity-determining positions prediction (SDP-pred) [14] is a tool based
on mutual information. It uses the statistical association between the value
of an amino-acid α and a position i in a MSA as two discrete random
variables.

Ip =
N∑
i=1

20∑
α=1

fp(α, i) log
fp(α, i)

fp(α)f(i)′
, (4.1)

where fp(α, i) is the fraction of residues at position p having amino-acid
α in subfamily i, fp(α) is the frequency of residue α in the whole alignment
column, f(i) is the fraction of proteins belonging to subfamily i.

To handle small sample size and biased composition, the amino-acid
frequencies are smoothened using a substitution matrix. After that statis-

24

tical significance is computed based on random shuffling. The important
residues are returned based on cut-off for which the threshold is computed
by a Bernoulli estimator.

4.2 Sequence Harmony

Sequence Harmony [25] is a relative entropy based method for feature selec-
tion. It uses a derivation of Shannon’s entropy for biological sequences:

rE
A/B
i =

∑
x

pAi,x log
pAi,x
pBi,x

(4.2)

where pAi,x and pBi,x is the probability of amino-acid type x being observed
at position i in family A and B respectively. For an amino-acid to be of
maximum importance, it should be present in family A and absent in B or
vice versa. Using equation 4.2, this gives a unwanted result, so the authors
have introduced sequence harmony:

SH
A/B
i =

∑
x

pAi,x log
pAi,x

pAi,x + pBi,x
(4.3)

In general SHA/B 6= SHB/A. So to find a ‘weight’ for position i, the
average is taken, yielding the final sequence harmony formula:

SHi =
1

2
(SH

A/B
i + SH

B/A
i) (4.4)

The method is called sequence harmony, because it looks at the ‘har-
mony’ of two subfamilies at a given position. If they have all different
amino-acids at that position, the harmony is 0. Identical distributions have
maximal harmony with value 1. So important sites have low harmony.

4.3 Xdet

Xdet [23] is a method that uses the functional classification of a protein to
find specificity determining residues. It does this by correlating two matrices.
The first matrix contains the amino-acids changes for two proteins i and j at
a given position k (for instance BLOSUM 1 can be used). The second matrix
contains the functional similarity between the corresponding proteins. If no
quantified similarity information is known, 0 can be used for different and 1
for similar proteins.

After the construction of these two matrices, specificity determining
residues can be found using a Spearman rank-order correlation coefficient.

1http://en.wikipedia.org/wiki/BLOSUM

25

rk =

∑
i,j(A

′
ijk − Ā′) · (F ′ij − F̄ ′)√∑

i,j(A
′
ijk − Ā′)2 ·

√∑
i,j(F

′
ij − F̄ ′)2

, (4.5)

where Aijk is the similarity between the amino acids of proteins i and j
at position k. Fij is the functional similarity between these proteins and A′

and F ′ are the ranked values of A and F . Ā and F̄ are the average values
of the ranked matrices. The rank rk is thus a measure of importance of a
given residue k, where higher values correspond to more important features.

The most important property of Xdet is thus that it doesn’t use a mea-
sure of the sequence hierarchy as a subgrouping property. Instead it uses
the functional classification.

4.4 Protein-Keys

This method finds functional residues and subfamilies by employing a com-
binatorial entropy optimization on a given MSA. The intuition behind this
algorithm can be described as follows. Divide a MSA into subfamilies such
that each subfamily has a characteristic conservation at some residue posi-
tions. Then optimize this information by achieving a compromise between
the number of conserved residues and the number of subfamilies. At the
two extremes, you can have one subfamily containing all residues, or one
protein per subfamily. Both give no information, thus the optimization is
somewhere in between. To solve this problem the authors introduce a mea-
sure to compare the grouping of sequences into subfamilies, a notion of what
is the ‘best’ distribution and an optimization function to solve this problem.

Measuring by combinatorial entropy

The method uses the general idea that important residues are conserved
within subfamilies and are different between them. It uses a simple combi-
natorial formula to measure the quality of the grouping at position k.

Zi,k =
Nk!∏

α∈[1..21]Nα,i,k!
, (4.6)

Where Zi, k is the number of permutations of position i in subfamily
k. Nk is the number of sequences in subfamily k, Na,i,k is the number of
amino-acids of type α in subfamily k, where gaps are treated as the 21th
residue. The values for each position are treated as independent and thus
can be summed to obtain the quality of the subgroupings.

S =
∑
i

∑
k

lnZi,k (4.7)

26

It is not difficult to see that the entropy is equal to zero if all proteins
are put in different subfamilies and maximal if just one subfamily is used.

Best residues

To optimize the method, the authors had to define what ‘best’ is. The best
grouping is where there are as much conserved amino-acids as possible. For
instance if a position k is fully conserved within a subfamily, the entropy at
that position is 0. If you would have a random grouping of amino-acids, the
residue frequencies would follow a uniform distribution, yielding maximum
entropy.

Optimization

The optimization method measures the conditional entropy S for a given
grouping of subfamilies. It compares this to a measure where the amino-
acids are uniformly distributed S̃, which is computed very similar to 4.6.
The optimization is thus defined as:

∆Si =
∣∣∣Si − S̃i∣∣∣ , (4.8)

Where |·| is the absolute operator. The optimal solution thus is the
largest delta between the observed conditional entropy, and the maximum
conditional entropy.

Due to the combinatorial explosion for even a small number of proteins
of short length, this algorithm can not perform a full search. The authors
use a deterministic hierarchical clustering. A nice property of this algorithm
is that it is unsupervised and returns also the subgrouping optimizing the
found functional specific residues. This can be helpful if the subfamilies are
unknown.

4.5 PROUST-II

PROUST-II [12] is a method that uses hidden Markov models and cumula-
tive relative entropy to find relevant residues. From a given MSA A, with
subfamilies S1, S2, . . . , Sk the subalignment from A corresponding to Sj is
taken. From this subalignment Aj a hidden Markov model is build using
an external webserver, resulting in a profile P j . The profile is converted
into a probability profile such that for every amino acid x at position i, the
following holds: ∑

x

pji,x = 1 (4.9)

27

Let s̄ denote all subtypes except s. Now, the role of the alignment
position i in determining the subtype Sj can be computed using relative
entropy.

REsi =
∑
x

P si,x log
P si,x
P s̄i,x

(4.10)

To find the role of an alignment position in determining the sub-types,
we have to sum over all subtypes.

CREi =
∑
s

REsi (4.11)

The last step is to convert these cumulative values into Z-scores, to find
significant residues.

Zi =
CREi − µ

σ
(4.12)

Experiments have shown that residues with a Z score > 3.0 are believed
to determine specificity.

4.6 SPEER

Specificity prediction using amino-acid properties, entropy and evolution
rate (SPEER) [7] is a new method that combines three approaches for the
feature selection problem. It uses relative entropy on MSA’s, Eucledian
distance on physico-chemical properties and computes maximum likelihood
on phylogenetic trees to incorporate evolution rate.

These three measures are not new, but combined they provide comple-
mentary information and the authors have proven that this information gives
better results.

4.7 Multi-Harmony

The authors of Sequence Harmony (SH) have combined their method with
an adapted approach of Multi-Relief (MR) and named it Multi-Harmony [5].
MR in this case is implemented as an exhaustive deterministic search instead
of random sampling. Z-scores for both SH and MR are computed based
on random shuffling. These scores can be combined and the webinterface
enables the user to adapt the Z-values to tune the false discovery rate. The
idea is that residues with a score far away from the mean score are the most
interesting.

28

Chapter 5

Relief-based algorithms

In the previous chapter I’ve discussed some algorithms based on measures
like information gain and chi-square. While these are good algorithms, they
have the major drawback of being myopic. That is, they only consider
one feature at a time, independent of all the other features. This myopic
univariate feature selection is a somewhat naive approach. Usually, the
features in a dataset are not independent. In the case of proteins, this is
certainly not the case, as amino-acids interact giving the protein its unique
folded structure that determines a large part of its functionality.

To mitigate this drawback, Kira and Rendell introduced the algorithm
Relief in 1994 [16] [17]. It is a supervised learning algorithm that considers
global and local feature weighting by first computing the nearest neighbors
of a sample. By doing so, it takes the whole feature space into account,
before updating the relevance for a feature. The intuition is that if you try
to find the important properties of an object X in a class, you look at an
object Y very similar to X in the same class and one Z in a different class.
Then the features that are the same in X and Y , but different between X
and Z are probably important. I’ll explain this intuition in more detail using
an example of cars and boats, in example 5.2.1.

This chapter is constructed in the following way. First I’ll illustrate
the principles of the original Relief algorithm. I will discuss the major
drawbacks and some extensions made to solve them. Relief still proves to be
a good basis for new state-of-the-art algorithms. In the subsequent section
I will discuss some of the mathematical fundamentals of Relief and show
why this is such an effective and efficient tool. This chapter finishes with
an explanation of Multi-Relief, which is designed especially for MSA data.
The knowledge about these algorithms is essential for the next chapter. In
that chapter the general notion of within-class conservation and inter-class
divergence is slightly adapted. But first let’s take a closer look at why Relief
is such an effective algorithm.

29

5.1 The myopic drawback of impurity functions

The majority of feature selection and evaluation functions are based on
impurity measures. Entropy, information gain and Gini-index are good ex-
amples. The problem with these measures is that they are univariate and
thus myopic, in the sense that they can only look at one feature at a time.
They can not take the context of other features into account and are there-
fore not appropriate for problems with a high degree of feature interaction.
This problem is illustrated in [20], which I have also depicted in figure 5.1

Figure 5.1: Feature selection based on impurity measures. The method is
myopic and can not make a distinction between more than one feature at a
time.

In this figure the geometrical objects are instances and their shape re-
flects a feature. The color (black or white) defines the class. The figure
illustrates that impurity function splits the data by one feature at a time.
It can separate the ellipse, square, circle etcetera. After this separation, it
can not separate any further based on the containment of circle or the size.
Hence there was a need for a simple, fast algorithm that also takes the whole
feature space into account and reliefs us from the myopic drawbacks of only
looking at local differences. Its probably not hard to guess the name of this
algorithm . . .

5.2 The original Relief-algorithm

Relief was proposed by Kira and Rendell in 1994 [16]. The success of the
algorithm is due to the fact that it’s fast, easy to understand and implement
and accurate even with dependent features and noisy data. The algorithm is

30

based on a simple principle. We like to put objects with similar properties
in a class. Some of these properties (or features) are very important in
the classification task and others are less important. It’s probably best to
illustrate this with a simple example of separating boats from cars.

Example 5.2.1 The intuition behind Relief
Consider that we have many boats and cars. Both classes have some well-
known properties in common. For instance you can travel with them, they
have an engine, a steering wheel etcetera. You can say that not every boat
has an engine, some are sailing boats and hence rely on their sail for energy.
But if you ask a child what separates boats from cars, they probably say
that cars have wheels and boats have not, or boats float on water and cars
do not. So these are important features. This is basically what Relief does,
if we pick a car, it looks for a car most similar to the one we’ve picked and
also for a boat most similar to the car we’ve picked. After doing that it looks
at the features in which they differ, because these are important features for
separating boats from cars.

The same principle can be applied to less obvious examples, such as
functional specificity determining residues in MSA’s. If we take a sequence
X, its nearest neighbor from the same class (the nearest hit NHX) and near-
est neighbor from an opposite class (the nearest miss NMX), we think the
residues or amino-acids that separate X and NMX the most and are pre-
served between X and NHX are the most important. It is a sound assump-
tion that these are also the features that contribute much to the functional
specificity of such a residue. The Relief algorithms’ pseudo code is depicted
in algorithm 1. The algorithm basically consists of three important parts:

1. Calculate the nearest miss and nearest hit;
2. Calculate the weight of a feature;
3. Return a ranked list of features or the top k features according to a

given threshold.

The algorithm starts with initializing the weight vector and setting the
weight for every feature to 0. After that it randomly picks a learning in-
stance X and calculates the NHX and NMX . In the case of numerical data,
the obvious distance to use is the Euclid distance. In the case of nominal
features, as in the case of sequence data the Hamming distance is more
appropriate.

The Hamming distance between two sequences X1 and X2 is the num-
ber of positions in which they differ. For instance the Hamming distance
between ABCD and ACBD = 2. The nearest neighbor of course is the in-
stance with the smallest distance. After this global feature exploration, the
algorithm evaluates the difference between X and its two nearest neighbors

31

Algorithm 1 RELIEF

Input: M learning instances X described by N features; T iterations
Output: for each feature Fi a quality weight within −1 ≤W [i] ≤ 1

1: ∀i,W [i] = 0;
2: for t = 1 to T do
3: randomly pick an instance X
4: find nearest hit NHX and nearest miss NMX of X
5: for i = 0 to N do
6: W[i]=W[i] + diff(X(i),NM

(i)
X)/(M × T) - diff(X(i),NH

(i)
X)/(M × T)

7: end for
8: end for
9: return (W);

in a local sense; thus one feature at a time. This difference is calculated
using equation 5.1.

y =

|xj,i−xk,i|

max(Fi)−min(Fi)
Fi is numerical

0 Xj,i = Xk,i ∧ Fi is nominal
1 Xj,i 6= Xk,i ∧ Fi is nominal

(5.1)

In Relief, both nominal and numeric features can be used, and they can
also be used simultaneously. However in that case, one should be aware
that numerical features tend to be underestimated and compensate for this
fact. I will not go into this, for I only have to deal with nominal features.
Therefore the distance for a feature between two instances is either 0 (they
are the same) or 1 (they are different). After each iteration, the weights for a
feature are updated and normalized within the interval [−1, 1] by dividing it
with the number of samples and iterations. The output is a weight vector,
with a weight Wi for each feature i. In the original paper, the authors
propose a relevancy threshold τ . If you select all features with a weight
≥ τ you get a subset selection algorithm. The authors describe a statistical
mechanism to calculate τ , but for sequence alignments, a ranked list of all
features is preferred in most cases. In this case, Relief operates as a feature
ranking mechanism.

By now, it should be obvious that the key to the success of Relief lays
in the fact that it does a global and a local search. It doesn’t rely on greedy
heuristics like many other algorithms that often get stuck in local optima.
This idea is nicely illustrated in [20] and depicted in figure 5.2. In this picture
there are three features {shape, size, contains a dot}. The idea is that a
relevant feature can separate two instances from opposite classes that are
closely related. Therefore it takes the most closely related instance from an
opposite class (the nearest miss) and from the same class (the nearest hit).

32

Note that in the right hand side, there are two nearest misses, because they
both have two of the three features in common with the selected instance.

Figure 5.2: Finding nearest neighbors with Relief. The class labels are the
colors. Relief chooses the NH and the NM based on the number of features
(shape, size, contains a dot) they have in common.

5.3 The relation between impurity and Relief

Before going into more detail with the other Relief-based algorithms, it
is good to know why Relief is such an effective algorithm and also what
are its limitations. There is clear relation between the impurity functions
mentioned in chapter 3 and Relief. Let’s have a closer look at the background
and basis of this successful algorithm. First, I’ll give the definition of an
impurity function defined by Breiman [6].

Impurity function
An impurity function is a function defined on the set of all K-tuples of num-
bers (p1, ..., pK) satisfying pj ≥ 0, j = 1,..,K,

∑
j pj = 1 with the properties:

1. φ is a maximum only at the point (1
K ,

1
K , ..,

1
K)

2. φ achieves its minimum only at the points (1, 0, ..., 0), (0, 1, 0, ..., 0),
..., (0, 0, ..., 0, 1).

3. φ is a symmetric function of p1, ..., pK , i.e., if you permute pj , φ remains
constant.

With this definition it is easy to see that entropy is such a function. It
has its maximum with a uniform distribution, its minimum if only one of
the features differs and it is symmetric. Gini-index gain is another impurity
function similar to the entropy based information gain. It is also closely
related to Relief. Gini-index gain is the difference between the prior and the
expected posterior Gini-indices.

33

Gini(Fi) =
ni∑
j=1

p(Fi = j)
C∑
c=1

p(y = c|Fi = j)2 −
C∑
c=1

p(y = c)2 (5.2)

It has been shown by Igor Kononenko [19] that Gini-index gain and Relief
are closely related. What Relief tries to approximate is the probability that
a feature can separate two classes in a local neighborhood.

W [Fi] = P(different value of Fi|nearest miss)
− P(different value of Fi|nearest hit)

(5.3)

When you don’t look for just one nearest neighbor, but increase this to
all k nearest neighbors, equation 5.3 becomes:

W [Fi] = P(different value of Fi|different class)
− P(different value of Fi|same class)

(5.4)

I’ll use a shorter notation: Pev = P(equal value of Fi), Psc = P(same
class), Psc|ev = P(same class| equal value of Fi). Now we can rewrite 5.4
using Bayes rule:

W [Fi] =
Psc|evPev

Psc
−

(1− Psc|ev)Pev
1− Psc

(5.5)

Where the prior class probability is defined as:

Psc =
∑

c∈classes
P (c)2 (5.6)

Equation 5.6 is common sense, because the probability that two instances
are in a given class is the probability of one instance being in that class times
the probability of the other being in that class. Summing over all classes
gives the probability of two instances being in the same class. We can also
obtain P (sc|ev), as demonstrated by Kononenko. I will use a derivation
similar from [15], where same class is represented as c1 = c2. Similarly,
equal value is represented by v1 = v2.

Psc|ev =
P (c1 = c2 ∩ v1 = v2)

P (v1 = v2)

=
∑
v

P (c1 = c2 ∩ vx = vy)∑
v P (v)2

=
∑
v

P (c1 = c2|vx = vy)P (v)2∑
v P (v)2

=
∑
v

∑
c

P (c|v)2)P (v)2∑
v P (v)2

=
∑
v

P (v)2∑
v P (v)2

∑
c

P (c|v)2 (5.7)

34

Substituting 5.6 and 5.7 in equation 5.5, we get:

W [Fi] =
(1− Psc)Psc|evPev
Psc(1− Psc)

−
Psc(1− Psc|ev)Pev

(1− Psc)Psc

=
Psc|evPev

Psc(1− Psc)
− Psc

(1− Psc)Psc

=
Pev ×Gini′(Fi)
Psc(1− Psc)

Where Gini′(Fi) = Psc|ev − Psc. The prior probability of a class is not
affected by the attribute and thus a constant. We can rewrite this as:

Constant×
∑
v

P (v)Gini′(Fi) (5.8)

Now the only difference between the Gini-index gain and Gini′ is that

the latter uses the factor p(v)2∑
v
p(v)2 , where the first uses p(v)∑

v
p(v)

= p(v). It’s

known that impurity functions tend to overestimate features with a larger
number of distinct values. By using the factor

∑
v p(v)2 in 5.8, there is a

sort of implicit normalization for this effect. Thus while impurity functions
overestimate multi-valued attributes, Relief has no such undesired property.

The derivation above holds for a larger number of nearest neighbors. By
taking more nearest neighbors into account, you get the algorithm known as
Relief-A. By using more neighbors, Relief-A can handle some noise. How-
ever, in many applications, even a 1-NN classifier yields good results and
‘upgrading’ this to K-NN gives only modest improvements.

5.3.1 Missing values in data

Relief-A can cope with noisy and redundant features, but has no mechanism
to handle missing attributes. Kononenko discussed three possible solutions
(Relief B, C and D) of which Relief-D performed significantly better than the
other two. It can handle missing data in cases that only one or both instances
have a missing value for the given attribute. It does this by extending the
difference measure with these two cases:

• if one instance has a missing value for the given attribute (for instance
a ‘gap’ in a MSA):

diff(Fi, Xl, Xk) = 1− P (Fi = Xk,i|y = yl) (5.9)

In this case look at feature i of the instances we do know and which are
in the same class as Xl. We can compute the probability that they are the

35

same. By subtracting this probability from 1, we get the probability that
they are different as an estimation of the probability that Xl and Xk are
different also.

• if both instances have a missing value for the given attribute:

diff(Fi, xl, xk) = 1−
∑

ni
j=1(P (Fi = j|y = yl)× P (Fi = j|y = yk)) (5.10)

If both are different the same applies. This time we look at the possibility
that any two features from the two classes are the same. By summing over
all possibilities and subtracting this from 1, we receive the desired estimate.

5.3.2 Multi-class data

The original algorithm can handle only two-class problems. Kononenko pro-
posed two extensions of Relief, which can handle multi-class problems. The
first is a straight-forward extension, where the nearest hit calculation stays
the same and one nearest miss is calculated for all classes. This method
(Relief-E) seems unsatisfactory. A better method is known as Relief-F,
where the nearest miss is calculated for every opposite class (that is ev-
ery class different from the class of the instance Xl picked). The result is
weighted with the prior probability of each opposite class and averaged over
all opposite classes. The new weight update function thus is:

W [Fi] = W [Fi]−
diff(Fi, xl, NHxl)

m
+

∑
c6=class(xl)

[P (C)× diff(Fi, xl, NM(C))]

m

Where NM and NH respectively denote the nearest hit and nearest miss.
The idea is that Relief-F measures not only the ability of an attribute to
separate it from another class, but the ability that an attribute separates
any pair of classes, no matter how close they are.

5.4 RELIEF-F

The resulting algorithm of the previous section is known as Relief-F. Because
this is such an important algorithm, the pseudo code is given in algorithm 2.

The algorithm looks a lot like Relief (algorithm 1), but incorporates
three important improvements. First, it is less sensitive to noise, because it
looks for n nearest instances (line 6 and 9). Second, it includes the above
mentioned strategy for coping with missing values (line 11, 13). And last but
not least, the algorithm can handle multi-class data (line 6) and normalizes
the weights with the a priori probability of the class

py
1−pyk

at line 13.

36

Algorithm 2 RELIEF-F

Input: M learning instances Xk described by N features; C classes; m it-
erations; class probability py; number of n nearest instances from each
class

Output: for each feature Fi a quality weight within −1 ≤W [i] ≤ 1

1: for i = 0 to N do
2: W[i]=0.0
3: end for
4: for l = 1 to m do
5: randomly pick an instance Xk (with class yk);
6: for y = 1 to C do
7: find n nearest instances x[j, y] from class y, where j = 1..n;
8: for i = 1 to N do
9: for j = 1 to n do

10: if y = yk then {nearest hit}
11: W[i] = W[i] + diff(i, xk, x[j, y])/(m× n);
12: else {nearest misses}
13: W[i] = W[i] + py/1− pyk × diff(i, xk, x[j, y])/(m× n);
14: end if
15: end for
16: end for
17: end for
18: end for
19: return (W);

5.5 Margin based Feature selection

In [9], the authors introduce the idea of margin based feature selection. A
margin is a geometric measure for evaluating the confidence of a classifier
with respect to its decision. Margins are not new to machine learning, they
are for instance widely used in support vector machines. Margins are used
for theoretic bounds and can be used for the design of new algorithms.

There are two types of margins:

• sample margin; the sample margin measures the distance between the
instance and the decision boundary induced by the classifier. (for
example used in SVM).

• hypotheses margin; the hypothesis margin with respect to an instance
is the distance between the hypothesis and the closest hypothesis that
assigns alternative label to the given instance.

Hypothesis-margin

37

Let P be a set of points and x be an instance. Let w be a weight vector
over the feature set, then the margin of x is:

θwp =
1

2
(|x−NM(x)|w − |x−NH(x)|w) (5.11)

where |z|w =
√∑

iw
2
i z

2
i

It is natural to normalize such that max w2
i = 1 , because this guarantees

that |z|w ≤ |z|, where |z| represent the Euclidean norm. In order to compare
two feature sets, we need an evaluation function. The evaluation is the sum
of all the margins in the sample.

Evaluation function
Given a training set S and a weight vector w, the evaluation function is
defined as

e(w) =
∑
x∈S

θwS\x(x) (5.12)

Figure 5.3: Sample margin (a) and hypothesis margin (b) for K-NN

Figure 5.3 [11] shows the two types of margins for the nearest neighbor
classifier. The circles reflect the sample points, the square is a new instance
x. The sample margin (a) is the distance between the boundary and the
instance. The hypothesis margin (b) is the maximum distance the sample
points can travel without altering the label of the new instance x. In this
case it is 1

2(|x − NM(x)| − |x − NH(x)|). It has been shown that the
sample margin for 1-NN can be unstable, and thus the hypothesis margin is
preferred. Two important points are:

1. The hypothesis-margin of an instance X with respect to a set of points
P can be easily obtained using: θp(x) = 1

2(|x − NearestMiss(x)| −
|x−NearestHit(x)|).

2. The hypothesis-margin lower bounds the sample margin.

38

Figure 5.4: Relation between hypothesis- and sample margin

The two important points stated above are shown in figure 5.4. The
sample margin a is illustrated as the distance of X to the decision boundary.
Following point 1, the hypothesis margin is 1

2(2a− b). Since b is a distance,
it holds that b ≥ 0, and thus 1

2(2a− b) ≤ a, which shows point 2.
It’s important to note that a chosen set of features influences the nearest

hit and nearest miss, just as in original Relief. Therefore, the chosen set
of features directly influences the hypothesis-margin, through the distance
measure. With the above definition of a margin, it’s a logical step to look
for a set of features that maximizes this margin and thereby the confidence
in the classification task. This is exactly the intuition behind the algorithms
G-Flip and Simba introduced by the authors. G-flip is a greedy heuristic
consisting of four basic (a little simplified) steps:

1. Start with an empty set of features F = ∅;
2. Calculate the average margin between the sample instances given the

feature set F and a weight vector w;
3. Evaluate (F +Fi) vs (F −Fi), for a randomly selected feature Fi and

keep the set that maximizes the margin;
4. Iterate these three steps until convergence.

The margin is calculated based on the definition of the hypothesis-margin
above. The authors re-evaluate the weight vector by taking the one that
maximizes the average margin at each iteration (where wi = 1 for Fi ∈ F
and 0 otherwise). The algorithm is based on a greedy heuristic and sensitive
to local optima. The authors try to mitigate this effect, by restarting each
iteration with a random permutation of the features to flip. Note that this
algorithm incorporates the sequential forward selection method discussed in
chapter 3.

39

5.5.1 G-flip

Algorithm 3 Greedy feature flip (G-flip)

Input: M learning instances, described by N features
Output: set of relevant features F

1: initialize the set of relevant features F = ∅
2: for t = 1 to T do
3: pick a random permutation s of 1..N
4: for i = 1 to N do
5: evaluate e1 = e(F ∪ s(i)) and e2 = e(F \ s(i))
6: if e1 > e2 then {margin is bigger with feature s(i)}
7: F = F ∪ s(i)
8: else if e2 > e1 then {margin is bigger without feature s(i)}
9: F = F \ s(i))

10: else {no change}
11: break
12: end if
13: end for
14: end for
15: return (F);

G-flip is a greedy search algorithm that tries to maximize the evaluation
function in equation 5.12. It iteratively adds or removes a feature to the set
of features F , by evaluating the margin with and without the feature. It is
Monte-Carlo algorithm that converges to a local maximum of the evaluation
function. The time complexity is Θ(TN2m2), where T is the number of
iterations, N is the number of features and m is the number of instances.
The authors claim the algorithm is parameter free, which is true, except
for the number of iterations. This is an advantage, it’s fast convergence
(about 10 to 20 iterations) is another one. However no optimal solution can
be guaranteed and the computational complexity is much larger than most
other Relief-based algorithms.

5.5.2 Simba

The above algorithm tries to maximize the margin directly. Therefore it
must rely on heuristic greedy search, which is often slow and gives no guar-
antees for an optimum solution. On top of that the weight vector w is often
unknown. To overcome these problems, the authors propose an algorithm
that computes the weight vector w that maximizes the evaluation function
in equation 5.12 directly. They do so by using a stochastic gradient ascent
over e(w). The idea is that the algorithm converges, to a feature weight

40

vector that maximizes the evaluation function.

Algorithm 4 Simba

Input: S learning instances, described by N features
Output: feature weight vector W

1: ∀i,Wi = 1
2: for t = 1 to T do
3: (a) pick a random instance x from S.
4: (b) calculate NM(x) and NH(x), with respect to S \ x and weight

vector w
5: for i = 1 to N do
6: (c) calculate ∆i = 1

2

(
(xi−NM(x)i)

2

|x−NM(x)|w −
(xi−NH(x)i)

2

|x−NH(x)|w

)
wi

7: (d) wi = wi + ∆i

8: end for
9: end for

10: w = w2

|w|∞ where (w2)i = (wi)
2

11: return (W);

The major advantage of Simba compared to Relief is that is re-evaluates
the margin with respect to the updated weight vector. Relief has no such
feedback mechanism and is therefore inferior to Simba. They have the same
time complexity of Θ(TNm).

5.6 Optimizing the margin as a convex optimiza-
tion problem

Relief is a successful algorithm, due to its simplicity and effectiveness. Sun [28]
shows that Relief implements an online algorithm that solves a convex op-
timization problem based on a nearest neighbor margin objective function.
Therefore, it performs better compared to most filter methods, because it
receives performance feedback from a nonlinear classifier. It’s also better
than most wrapper methods, because it optimizes a convex problem and
therefore avoids exhaustive or heuristic search and thus can be implemented
efficiently.

Sun claims two drawbacks of Relief:

1. The nearest neighbors are defined in the original feature space, which
are unlikely to be the same as in the weighted feature space.

2. Relief can not deal with outliers.

5.6.1 Optimizing the margin

As described above the hypothesis margin can be defined as:

41

ρn = d(Xn −NM(xn))− d(Xn −NH(Xn)) (5.13)

Where d(·) is a distance function. It seems natural to maximize the
average margin in a weighted feature space (which Relief establishes) by
scaling each feature:

maxw

N∑
n=1

ρn(w) (5.14)

When we use the distance metric from 5.13, equation 5.16 becomes:

maxw
∑
n

(∑
i

wi|xin −NM i
xn | −

∑
i

wi|xin −NH i
xn |
)

(5.15)

subject to ‖w‖22 = 1, w ≥ 0

where ρn is the margin of xn with respect to w, n is the number of
samples and i is the number of features. The constraint ‖w‖22 = 1 prevents
a boundless increasing of the maximization. w ≥ 0 ensures a distance metric,
since a distance can not be negative.

Equation 5.16 can be simplified to:

maxww
T z (5.16)

subject to ‖w‖22 = 1, w ≥ 0,

where z =
∑
n |xn − NM(xn)| − |xn − NH(xn)|, and | · | denotes the

point-wise absolute operator. The optimum solution is calculated as:

w =
(z)+

‖(z) + ‖2
, (5.17)

where (z)+ = [max(z1, 0),max(z2, 0), . . . ,max(zI , 0)]T .
Basically, the new weights for every position i, is the margin z times the

old weight, where distances < 0 are set to 0.
This optimization is incorporated in the update rule of Relief (although

the distance is not reweighed at every iteration), which is thus a online
solution to this problem. Simba uses this idea for the Eucledian distance,
but returns many local optima. This is why it starts every iteration by
picking a random instance, and maximizes the margin for this instance.

5.6.2 Iterative-Relief

Basic idea and pseudo code

This algorithm [28] consists of two important steps: the first is to calculate
the maximum margin over all sample points given the weight vector. In

42

the second step, re-estimate the weight vector given this maximum margin.
Iterate these steps until the algorithm converges or has passed all iterations.
The strength of this algorithm is that it considers the margin over all sample
points, thereby avoiding local optima. In the second step, it re-estimates
the feature weights in a global sense, thereby trying to increase the margin a
little more every iteration. This feedback mechanism is not incorporated in
Relief. A secondary strength is a mechanism to take outliers into account,
a mechanism that Relief also lacks. Before explaining this algorithm step-
by-step, I’ll give a description in pseudo code.

Algorithm 5 Iterated Relief

Input: M learning instances, described by J features, T iterations, stop
criterion τ

Output: feature weight vector W

1: ∀ i, Wi = (1√
N

)

2: for t = 1 to T do
3: for n = 1 to M do
4: select instance Xm and calculate Po(Xm) with respect to W (t−1)

like equation 5.20;
5: for i = 1 to M do
6: select i1 = miss(Xm) and i2 = hit(Xm);
7: calculate Pm(i1|Xm,W

(t−1)) and Ph(i2|Xm,W
(t−1)) like equa-

tion 5.18 and 5.19 respectively;
8: calculate |Xm − i1| and |Xm − i2| with respect to W (t−1) and

update weight W t as equation 5.22
9: end for

10: end for
11: if ‖W t −W (t−1)‖ < τ then
12: return (W t);
13: end if
14: end for
15: return (W t);

The working of the algorithm

Consider two sets Mn = {1 ≤ i ≤ N, y1 6= Yn} and Hn = {1 ≤ i ≤
N, yi = yn, i 6= n}, associated with pattern xn. We have a set of binary
parameters o = [o1, o2, .., on]T , where 0n = 0 if xn is an outlier and 0n = 1
otherwise. Unfortunately, we don’t know which are the nearest hits and
misses for every pattern xn, nor do we know whether a pattern is an outlier
or not. We do know that we want to optimize the objective function C(w) =∑N
n=1,on=1(‖Xn−NMXn‖w−‖Xn−NHXn‖w), which can be optimized using

43

equation 5.16.
Now a problem is that if we want to calculate the nearest hit and miss

for every data point, we have to calculate the distance from X to all other
points in S and do this for every X ∈ S. This becomes intractable, so
Sun resolved this by assuming all data point are random variables, and
calculate the probability that a given data point i is a nearest neighbor.
The probability of pattern i being the nearest miss of xn is given as:

αi,n = Pm(i|xn, w) =
f(‖Xn −Xi‖w)∑

j∈Mn
f(‖Xn −Xj‖w)

(5.18)

similar for pattern i being the nearest hit of Xn:

βi,n = Ph(i|xn, w) =
f(‖Xn −Xi‖w)∑

j∈Hn
f(‖Xn −Xj‖w)

(5.19)

and the probability that xn is not an outlier is:

γi,n = 1− Po(on = 0|D,w) = 1−
∑
i∈Mn

f(‖Xn −Xi‖w)∑
Xi∈D\Xn

f(‖Xn −Xj‖w)
(5.20)

Where f(·) is a kernel function. In his paper [28], Sun uses the exponential
function: exp(−d/σ), where the kernel width σ is a user-defined parameter.
Figure 5.5 illustrates the α and γ functions where all weights are equal. It
is easy to see that due to the exponential function, a smaller distance yields
a higher probability of a nearest miss. The denominator can be seen as a
constant for all i. Thus a higher probability of i being the nearest hit is
indeed reflected in a closer distance. The probability that i is the nearest
hit of Xn can be calculated in the same way, using the βi,n function from
equation 5.19.

For the outliers, a large distance to the other class samples gives a bigger
probability of Xn being an outlier. The equation can be interpreted as

C

C+e−∆Hit . Where C is a constant reflecting the exponential function of Xn

and all the misses. ∆Hit is the distance to a hit of Xn. A larger distance
thus reflects a bigger probability that Xn is indeed an outlier. The objective
function can be maximized using an algorithm strongly related to expectation
maximization (which works with likelihoods, not distances).

Step (1): Calculating Q after iteration t:

Q(w|w(t)) = E{S,o}[C(w)] =

N∑
i=1

γn

 ∑
i∈Mn

α‖Xn −Xi‖w −
∑
i∈Hn

β‖Xn −Xi‖w

 =

44

(a) Example where D is the nearest
miss of Xn

(b) Example of Xn being an outlier

Figure 5.5: Nearest miss (a) and outlier (b) illustrated

N∑
i=1

γn

∑
j

wj
∑
i∈Mn

αi,nm
j
n,i︸ ︷︷ ︸

mj
n

−
∑
j

wj
∑
i∈Hn

βi,nh
j
n,i︸ ︷︷ ︸

h
j
n

 =

wT
N∑
i=1

γn(mn − hn) = wT v (5.21)

α, β and γ are defined in equation 5.18, 5.19 and 5.20 respectively.
Furthermore, mn,i = |Xn−Xi|, for i ∈Mn and hn,i = |Xn−Xi| for i ∈ Hn.

Step (2): Setting w for the (t+1)-th iteration:

w(t+1) = arg maxw∈WQ(w|w(t)) =
v(+)

‖v(+)‖2
(5.22)

These two steps are repeated until ‖w(t+1) − w(t)‖ < τ .

Multi-class extension The algorithm at this moment can only handle
two-class problems. I-Relief can be easily extended with the multi-class
definition from Relief-F.

wi = wi +
∑

c∈Y,c 6=y(x)

P (c)

1− P (y(x))
|x(i) −NM(i)

c (x)| − |x(i) −NH(i)(x)| (5.23)

where Y is the set of possible class labels {1, 2, .., C}, NMc(x) is the
nearest miss of x from class c and P (c) is the a priori probability for class

45

c. This equation can also be used to define a sample margin, with one
drawback, that a positive margin does not guarantee correct classification.
It seems more natural to define the margin as the minimal difference instead
of the average weighted difference.

ρ = minxi∈D\Dy(x)
(d(x− xi)− d(x−NH(x))) (5.24)

It also ensures us that a positive margin corresponds to a correct classi-
fication.

Conclusion

In this section I’ve described how Relief can be formalized as a convex op-
timization problem. I-Relief is an algorithm that tries to re-estimate the
weights of the features be iteratively maximizing the margin as shown in [28].
I-Relief has a time complexity Θ = TNM2 (T iterations, N feature dimen-
sions, M samples), compared to Θ = TNM for Relief. Sun also discussed
an online algorithm which is based on the same principles as I-Relief, and
has the same time complexity as Relief.

5.7 Multi-Relief for sequence alignments

Multi-Relief [31] is designed for determining functional specific residues in
MSA’s. It does this by repeatedly sub-sampling two randomly selected
classes and applying Relief to these sub-samples. Results of these multi-
ple runs are then ensembled.

Algorithm 6 Multi-Relief

Input: C classes of aligned proteins, each protein described by N residues;
T iterations; number of S sub-samples

Output: feature weight vector W

1: ∀ i, Wi = 0
2: for t = 1 to T do
3: select randomly two classes c1, c2 ⊆ C;
4: X1, X2 = select randomly S sample sequences from c1 and c2 resp.;
5: Wt = apply Relief(X1, X2);
6: end for
7: for i = 1 to N do
8: Wi = weight(i);
9: end for

10: return (W);

The weight of a position i is normalized within the boundary [−1, 1]
on line 8 by averaging over all the runs that assigned weight to i. Where

46

N+ = |{Wt(s) > 0∀t}| is the average over all the runs that assigned a
positive weight and N− = |{Wt(s) < 0∀t}| is the average weight over all
negative runs. Thus the weight(i) function is defined as:

weight(i) =

1
N+

∑
t{Wt(i) > 0∀t} for N+ > 0

1
N−

∑
t{Wt(i) > 0∀t} for N+ = 0 ∧N− > 0

0 for N+ = N− = 0
(5.25)

In the definition of weight(i) those positions that can separate between
at least two classes are given a positive weight. If they can not, but they
separate samples within a class, the feature gets a negative weight. If it can
not separate anything it gets weight 0. Random sampling pairs of classes
is mainly done for efficiency, whereas random sub-sampling is also done to
handle unbalanced classes.

5.7.1 Residue relevancy

a b c d e
C1 R F T I T

R F T Q F
R F T N V
R F T A D

C2 R F Y S T
R F Y F F
R F Y D V
R F Y L D

C3 R Y D E T
R Y D V F
R Y D W V
R Y D G D

C4 R Y H H T
R Y H P F
R Y H Y V
R Y H C D

weights 0 1 1 0 -1

Table 5.1: Weights computed by Multi-Relief applied on a toy example [31]

In table 5.1 there are four subfamilies {C1..C4}, each containing four
proteins with five amino-acid positions {a..e} each. We can see that Multi-
Relief assigns weight = 0 to position a, because it can not separate any
subfamily (it is fully conserved). Put another way, knowing position a is
knowing nothing, because every protein has R at position a. The same holds
for position d, because every position in d is different and thus d doesn’t tell
anything about a subfamily either (it is fully divergent). c seems to be the
perfect feature, because it separates all classes, but is fully conserved within
the class. b is also good, because it can separate at least two subfamilies

47

{c1, c2} vs {c3, c4}. e gets a negative weight, because it has the undesired
property that it separates the proteins within a subfamily, but no between
subfamilies. Note that b also gets the maximum weight, even though it can
not separate all subfamilies. This property is desired in many cases where
the number of subfamilies is larger than the twenty amino-acids, and one
position can thus not possibly separate all subfamilies.

5.7.2 3D contacts

Multi-Relief can boost its performance by exploiting 3D structural informa-
tion. The idea is that functional specificity in general is caused by multiple
residues clustered close to each other. By adding the average weight of the
neighbors that share surface with a residue to that residue, some perfor-
mance gain can be achieved. This structural information can be obtained
from a web server.

Multi-Relief has proved to be a state-of-the-art algorithm for finding
functional specific residues in MSA’s. It has a time-complexity similar to
Iterated-Relief.

48

Chapter 6

New approach

Many sequence algorithms work on the assumption that within class con-
servation and inter-class divergence of residues is a strong lead for relevant
features. All Relief-based algorithms discussed use this assumption to cal-
culate the importance of a residue. However, the conservation of a feature
within a subfamily may be more important than the difference between sub-
families or vice-versa. All Relief-based algorithms mentioned before do no
make any distinction between these two properties; in other words conser-
vation and divergence of residues is weighted equally.

It might be interesting to give a different weight to these two properties
and find out what the result is on the predictive quality of the Relief-based
algorithms. I will conduct experiments on multiple sequence datasets, using
the latest state-of-the-art Relief-based algorithms.

6.1 Theory

Marchiori showed in her paper [22] that Relief can be decomposed into three
different components. The NM of a sample xWmiss(i), the maximum nearest
hit Whit,max(i) and the minimum nearest hit Whit,min(i). Using weights for
these three components one can emphasize the within class conservation or
inter-class divergence of residues. These three components are defined as:

Wmiss(i) =
∑
x∈X

(X(i)−NMx(i)),

Whit,min(i) = min(Wc1(i),Wc2(i)),

Whit,max(i) = max(Wc1(i),Wc2(i)), (6.1)

where the classes c1, c2 are defined as:

Wc1 =
∑

x∈X,cl(x)=c1

(X(i)−NHx(i)),

49

Wc2 =
∑

x∈X,cl(x)=c2

(X(i)−NHx(i)), (6.2)

Where X is a dataset, x is an alignment, i is a residue and c1 and c2 are
the two subfamilies or classes used in Relief. The weight update part of the
new Relief algorithm is thus defined as:

Wnew(i) = α0Wmiss(i)− α1Whit,min(i)− α2Whit,max(i), (6.3)

with α0, α1, α2 in (0, 1]. If all alphas are 1, the original weight update of
Relief is obtained.

6.2 Heuristic AUC optimization

Marchiori has set the α0, α1, α2 values in her work, based on the assump-
tion that the conservation of residues within a subfamily is more important
than the divergence between subfamilies. Therefore, she has given the α1

parameter (corresponding to the class with minimum intra-class distance for
a position i and thus maximum conservation) twice as much weight as the
other two parameters. It might be interesting to check which parameters
optimize the performance of our prediction methods, by measuring the area
under the ROC curve for each α1 value.

I have done this by implementing the alpha parameters into the Relief-
based algorithms discussed earlier. The used algorithms and their char-
acteristics are summarized in table 6.1. I have conducted experiments on
18 well-studied sequence datasets, which are depicted in table 6.2. I have
compared these results with the related work, discussed in chapter 4.

6.3 Research target

Relief basically consists of two important parts. The first part is finding the
nearest neighbors NHx and NMx of an instance x from a given subfamily.
The second is updating the weight for a residue position. By using equa-
tion 6.3, only the second part is changed 1. Setting a higher value for α1

means that you in fact ‘penalize’ cases where residues are not conserved.
By doing this you can emphasize the importance of conservation by the
weight you give to this penalty. This will result in lower (probably nega-
tive) weights. Since only the relative weight value is important, this has no
negative effects.2.

1This doesn’t hold for Simba and I-Relief, they use a weighted distance and so if you
affect the weights, you also affect the distance and the nearest neighbors that are chosen.

2This is actually not entirely true; I-Relief performs worse, which is explained in the
discussion.

50

Now, using this information the goal is to find an answer to the question:

Is the within subfamily conservation of residues in a MSA equally
important as the between subfamily divergence?

I have tried to find an answer to the following questions to answer this.
They are implicitly answered in the remainder of this thesis.

• Is there a significant improvement in the computed AUC values for a
higher value of α1?
• If there is an improvement, does this hold for all used algorithms?
• If there is an improvement, does this hold for all datasets?
• How well does this method work, compared to other methods?

To say whether results are significant or not, I have defined a null-
hypothesis and an alternative hypothesis:

• H0: There is no significant improvement in the computed AUC values
for different values of α1.
• H1: There is a significant improvement in the computed AUC values

for different values of α1.

Significance has been measured with a one-sided Student’s TTest at a
confidence level of 95% (See chapter 6.4.2).

6.4 Materials and methods

To find out the importance of within class conservation versus inter-class
divergence, I have setup a large scale experiment. In this experiment I
implemented 5 Relief-based algorithms (with 2 version of Multi-Relief and
new Multi-Relief, resulting in a total of 7 algorithms) and tested this on 18
MSA datasets.

6.4.1 Materials

I have implemented the most successful Relief-based algorithms discussed
in chapter 5 in a web program (for more information see appendix A) and
conducted experiments on 18 datasets. 13 datasets are obtained from the
authors of [7], the remaining 5 are obtained from the authors of [31]. Be-
cause Simba and I-Relief update the feature weight at each iteration, equa-
tion 6.3 can not be used for these algorithms. For Relief-F, equation 6.3
is more difficult to implement, because you’ll have to sum over all classes.
In datasets with many classes, the results might be skewed. Therefore for
these algorithm, I ’ve simplified the formula to:

51

Wnew(i) = α0Wmiss(i)− α1Whit(i) (6.4)

Table 6.1 shows the used Relief-based algorithms and the way in which
the parameter tuning is implemented. For Multi-Relief and new Multi-
Relief both the hitmin / hitmax implementation from eq. 6.3 and the weight
for only the nearest hit (eq. 6.4) have been implemented. This way, I can see
if there are differences between these two implementations. All algorithms
have equal time complexity except for G-Flip and Iterative-Relief. Results
for G-Flip take too long to compute and it is considered inferior to Simba,
so G-Flip is not further used for the experiments. The used datasets and
their characteristics are depicted in table 6.2.

Nr Algorithm Abbr. Time comp.Θ Implementation
1. Relief-F RF NMT Whit

2. G-Flip GF N2M2T not used
3. Simba Simba NMT Whit

4. Iterative-Relief IR N2MT Whit

5. Multi-Relief MR NM2T Whit,min

6. new Multi-Relief nMR NM2T Whit,min

7. Multi-Relief MR* NM2T Whit

8. new Multi-Relief nMR* NM2T Whit

Table 6.1: Used Relief-based algorithms for the experiments. For MR and
nMR, both the implementations using equation 6.3 and 6.4 are used. The
other algorithms only use 6.4. In the column ‘time complexity’; N is the
alignment length, M the number of proteins and T the number of algorithm
iterations.

6.4.2 Method

The algorithms from table 6.1 have been implemented in PHP. The datasets
where loaded into a MySQL database. For the experiment I used 10 discrete
values of α1 ∈ [1..10]. The other alpha values where kept at 1. After that,
10 experiments where run for every dataset-algorithm combination on every
α1 value. All algorithms where run at t = 100 iterations, except for I-Relief,
which doesn’t sample but runs over all proteins. For this algorithm the
stopping criteria where set at t = 5 iterations (5 times a feature reweighing),
or τ = 0.05 (see section 5.6.2 for details).

For every dataset there is a list of known residues (from biological ex-
periments). Using this list, I have computed AUC values for every α1 value
on every dataset-algorithm combination. Thus in total, 10 values of α1 ×
10 observations × 18 datasets × 7 algorithms = 12.600 AUC values have
been computed.

52

Dataset No of Average Min, max No of Site No known
classes class size class size sites information residues

cmb9 2 9.5 8, 11 196 7
cd00120 2 44.5 41, 48 1108 3
cd00264 2 15.5 12, 19 831 3
cd00333 2 13.5 10, 17 1118 12
cd00363 2 5.5 3, 8 591 6
cd00365 2 15 8, 22 1151 10
CN myc 2 17 7, 27 583 11
GPCR* 77 26.8 3, 189 214 Ligand 21
GST 11 9.7 9, 10 330 Protein 9
IDH/IMDH 4 17 8, 34 745 14
Laci* 15 3.6 2, 12 339 Ligand,DNA 28
MDH/LDH 2 22 9, 35 180 1
Nuc. cyc. 2 24.5 20, 29 231 2
Rab5/Rab6* 2 5.0 4, 6 162 Protein 28
Ras/Ral* 2 41.5 10, 73 217 Protein 12
Ricin 3 15.7 14, 19 135 Protein 21
Serine 3 32 6, 77 284 2
Smad* 2 16,5 16, 17 211 Protein 29

Table 6.2: Used sequence datasets. The datasets marked with * are from
the authors of [31]. The others from the authors of [7]. Site information is
only known for a small number of datasets.

For every algorithm and database, the significance over all 10 observa-
tions of every α1 value has been compared to the case where α1 = 1 (the
standard Relief). For the first sets I used both the Students TTest [29]
and the Wilcoxon rank test [29] to compute p-values for the given obser-
vations to check if the mean over the observations significantly differed. It
was soon clear that all observations follow a Gaussian distribution, so I con-
tinued with only the Students TTest. Using these p-values, I have drawn
conclusions whether or not there is a significant performance increase.

If the average AUC over 10 observation of any α1 > 1 was higher than
the AUC for α1 = 1 and p < 0.05, I’ve concluded that there was a significant
performance increase. The goal is to find the α1 that maximizes the AUC,
and to keep the results compact only this value of α1 is used in the result
table 6.4. Trends are visualized in the plots in appendix B.

6.5 Results

The results are depicted in table 6.3 and table 6.4. The first contains the
AUC values computed for the different datasets, the second contains the
relative improvements (if there are any). For all datasets and all algorithms,
the value of α1 is given that maximizes the AUC, denoted as α∞. The AUC

53

improvement relative to α1 = 1 is also given. If there is no significant
improvement, this is denoted by a ∗ in that cell. The result tables for every
algorithm-dataset combination can be found in the digital supplementary
data that comes with this thesis. Because these are 7× 18 = 126 tables, it
didn’t seem useful to put them all in the appendix. Plots that visualize the
AUC fluctuations at different α1 values can be found in appendix B.

54

D
a
ta

se
t

K
n

ow
n

R
es

.
R

F
S

im
b

a
IR

M
R

n
M

R
M

R
*

n
M

r*
A

V
G

cb
m

9
7

0.
52

2
0.

34
0

0
.5

5
4

0.
47

7
0.

47
7

0.
53

7
0.

47
5

0.
48

3
cd

00
1
20

3
0
.9

7
0

0.
45

6
0.

56
2

0.
96

6
0.

17
3

0.
83

8
0.

17
3

0.
59

1
cd

00
2
64

3
0.

46
9

0.
24

4
0
.6

1
3

0.
54

2
0.

16
5

0.
29

6
0.

16
5

0.
35

6
cd

00
3
33

1
2

0.
79

1
0.

41
5

0.
51

2
0
.8

8
3

0.
50

9
0.

82
1

0.
51

1
0.

63
5

cd
00

3
63

6
0.

49
3

0.
50

5
0
.5

3
0

0.
47

8
0.

50
7

0.
50

7
0.

50
4

0.
50

3
cd

00
3
65

1
0

0.
78

6
0.

73
0

0.
41

3
0.

76
1

0.
75

7
0
.8

0
0

0.
75

8
0.

71
5

C
N

-m
y
c

1
1

0.
73

0
0.

72
0

0.
72

4
0
.7

5
9

0
.7

5
9

0.
74

7
0
.7

5
9

0.
74

3
G

P
C

R
2
1

0.
80

8
0.

80
3

-
0.

77
1

0.
87

7
0.

69
9

0
.8

7
4

0.
80

5
G

S
T

9
0.

79
0

0.
75

2
0.

81
6

0.
75

7
0.

81
5

0.
74

6
0
.8

1
6

0.
78

5
ID

H
/
IM

D
H

1
4

0.
73

5
0.

72
1

0.
77

4
0.

73
5

0
.7

9
6

0.
75

1
0.

79
2

0.
75

8
L

ac
i

2
8

0.
76

0
0.

79
9

0.
79

8
0.

78
8

0.
79

4
0.

45
5

0
.8

0
8

0.
74

3
M

D
H

/L
D

H
1

0
.9

8
6

0.
79

5
0.

96
1

0.
96

8
0.

96
3

0.
96

5
0.

96
0

0.
94

3
N

u
cl

.c
y
cl

.
2

0.
78

5
0.

54
8

0
.9

1
7

0.
77

7
0.

86
3

0.
85

6
0.

86
5

0.
80

2
R

ab
5
/6

2
8

0.
68

5
0.

69
2

0.
73

2
0.

68
0

0.
73

7
0.

72
6

0
.7

4
0

0.
71

3
R

as
/R

al
1
2

0.
57

5
0.

65
3

0
.7

3
5

0.
54

6
0.

61
2

0.
57

0
0.

61
3

0.
61

5
R

ic
in

2
1

0.
47

7
0
.5

0
9

0.
48

5
0.

47
8

0.
48

1
0.

47
5

0.
47

8
0.

48
3

S
er

in
e

2
0.

70
5

0.
87

4
0.

58
2

0
.9

1
7

0.
86

8
0.

85
0

0.
85

6
0.

80
7

S
m

ad
2
9

0
.9

6
5

0.
76

0
0.

90
6

0.
96

3
0.

94
4

0.
95

8
0.

93
6

0.
91

9

A
V

G
0.

72
4

0.
62

9
0.

68
3

0
.7

3
6

0.
67

2
0.

70
0

0.
67

1

T
ab

le
6
.3

:
C

o
m

p
u

te
d

A
U

C
re

su
lt

s
fo

r
α

1
=

1;
b

es
t

va
lu

es
ar

e
in

b
ol

d
.

A
ve

ra
ge

sc
or

es
ar

e
in

th
e

la
st

co
lu

m
n

an
d

ro
w

.
T

h
e

re
la

ti
ve

p
er

fo
rm

an
ce

in
cr

ea
se

is
d

ep
ic

te
d

in
ta

b
le

6.
4.

55

D
a
ta

se
t

R
F

S
im

b
a

IR
M

R
n

M
R

M
R

*
n

M
R

*

α
∞

A
U

C
%

α
∞

A
U

C
%

α
∞

A
U
C

%
α
∞

A
U
C

%
α
∞

A
U
C

%
α
∞

A
U
C

%
α
∞

A
U
C

%
A

V
G

cb
m

9
1

0
6

+
50

.0
0

1
0

1
0

1
0

9
*

+
2.

61
2

*
+

0.
63

+
7.

14
cd

00
1
2
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

0
cd

00
2
6
4

1
0

10
+

8
6
.8

9
1

0
1

0
1

0
1

0
1

0
+

12
.4

1
cd

00
3
3
3

1
0

1
0

2
+

0.
2

3
*

+
1.

13
1

0
1

0
1

0
+

0.
03

cd
00

3
6
3

3
+

7.
30

1
0

2
+

6.
60

1
0

1
0

1
0

1
0

+
1.

99
cd

00
3
6
5

1
0

1
0

1
0

3
*

+
0.

39
1

0
3

*
+

0.
39

1
0

0
C

N
-m

y
c

1
0

1
0

1
0

1
0

1
0

9
+

1.
07

1
0

+
0.

15
G

P
C

R
1

0
1

0
-

-
1

0
1

0
1

0
1

0
0

G
S

T
2

+
2.

15
1

0
4

+
6.

99
1

0
1

0
9

+
5.

23
1

0
+

2.
05

ID
H

/
IM

D
H

2
+

6.
26

1
0

1
0

7
+

2.
86

1
0

2
+

1.
98

1
0

+
1.

59
L

a
ci

2
+

5.
66

1
0

1
0

9
+

2.
54

1
0

6
*

+
3.

52
1

0
+

1.
17

M
D

H
/L

D
H

3
*

+
0.

30
1

0
1

0
5

*
+

0.
41

8
*

+
0.

42
6

*
+

0.
10

9
+

0.
73

+
0.

10
N

u
cl

.c
y
cl

.
6

+
1
6
.5

6
9

+
35

.0
4

1
0

7
+

18
.6

6
10

+
11

.0
1

3
+

5.
26

10
+

11
.2

1
+

13
.9

6
R

ab
5
/
6

4
+

7.
59

1
0

1
0

6
+

1.
03

1
0

1
0

1
0

+
1.

23
R

as
/
R

a
l

8
+

1
6
.1

7
2

+
2
.7

6
1

0
4

+
2.

93
4

+
6.

05
10

+
5.

61
5

+
7.

99
+

5.
93

R
ic

in
8

+
7.

34
3

*
+

2
.5

5
1

0
10

+
1.

67
8

+
6.

44
6

+
5.

47
7

+
8.

16
+

4.
15

S
er

in
e

3
+

3.
55

1
0

1
0

1
0

7
+

4.
49

3
*

+
0.

94
9

+
6.

07
+

2.
02

S
m

ad
1

0
1

0
1

0
1

0
1

0
9

+
0.

21
1

0
+

0.
03

A
V

G
+

4.
03

+
9
.7

1
+

0.
77

+
1.

65
+

1.
56

+
1.

38
+

1.
90

T
ab

le
6
.4

:
C

o
m

p
u

te
d

im
p

ro
ve

m
en

ts
fo

r
α
∞

.
T

h
e
α

1
va

lu
e

th
at

m
ax

im
iz

es
th

e
A

U
C

(α
∞

)
is

gi
v
en

.
Im

p
ro

ve
m

en
ts

of
th

e
A

U
C

co
m

p
u

te
d

fo
r
α
∞

re
la

ti
ve

to
α

1
ar

e
al

so
p

ro
v
id

ed
.

R
es

u
lt

s
n

ot
si

gn
ifi

ca
n
t

fo
r

p
<

0.
05

ar
e

m
ar

ke
d

w
it

h
a

*.
A

ve
ra

ge
sc

or
es

ar
e

in
th

e
la

st
ro

w
a
n

d
co

lu
m

n
.

R
es

u
lt

s
fo

r
IR

on
th

e
G

P
C

R
d

at
as

et
to

ok
to

o
lo

n
g

to
co

m
p

u
te

.

56

Chapter 7

Discussion

Tables 6.3 and 6.4 and the plots in appendix B contain a lot of data. I will
discuss some of the most remarkable patterns here.

Explaining the results for α1 = 1

From the results in table 6.3, it can be concluded that Multi-Relief (MR)
performs best over all datasets and Simba performs worst in the standard
situation where α1 = 1. Note that MR and MR* are the same algorithms
in the case that α1 = 1, the same holds for nMR and nMR*. This explains
that there is almost no difference between the latter two. A slightly bigger
difference between MR and MR* could be explained by the fact that in this
case the averaging is only over the positive weights, which might vary a little
more over 100 iterations. nMR* takes the average over all values which might
explain the smaller differences. The number of known functional specificity
residues seems to have no influence on the AUC values computed.

Conservation more important to shorter sequences?

As can be obtained from table 6.4 and the graphs in appendix B, most
algorithms perform best when α1 = 1. On some datasets improvements
have been achieved for some algorithms, and these are mostly the datasets
with a relative short sequence length of about 135 to 330 amino-acids.

Three datasets stand out; Nucleotidyl Cyclase, Ras/Ral and Smad show
an increasing predictive accuracy for every algorithm except IR (the reason
for this is discussed below). For a non-biologist it is difficult to give an
interpretation why this is so. However, the datasets with long sequences
(over 1000 amino-acids) show no improvement for any algorithm. On the
other hand, the datasets that benefit most from an emphasis on conserva-
tion of residues within subfamilies, are all relatively small and with limited
sequence length. It is tempting to say that conservation is more important
for shorter sequences. The length of a protein has probably a relation to its

57

function and therefore there might be a good biological explanation for this
remarkable result.

IR performance deteriorates for higher α1 values

Strikingly, IR shows almost no improvement for any α1 > 1. A first thought
might be that this has something to do with the feature reweighing. There-
fore it affects the nearest neighbor computation at every new iteration, which
could explain this result. However, Simba also incorporates this method
of feature reweighing and shows some remarkable improvements on some
datasets. The reason that IR doesn’t improve for most α1 values bigger
than 1 is probably because it optimizes the margin and doesn’t allow a
negative margin. From equation 5.17, one can easily see that all negative
weights are set to 0. And from equation 6.4, one can easily see that increas-
ing the value of α1, increases the number of negative weights even if only
a small number of residues are not conserved. In this case, most residues
-relevant or not- get weight 0, which results in lower predictive power and
corresponding lower AUC values. This pattern is nicely illustrated by the
graphs in appendix B.

Simba has some remarkable performance increases

Simba shows some remarkable improvements of 35% to even 86%. On other
datasets, improvements are only small or negative. This might have some-
thing to do with the reweighing discussed above, although it is strange that
it only occurs in three cases. If you look at table 6.3, you can conclude that
it started with an arrear for α1 = 1. In all three cases, it performed much
worse than the other algorithms. Although it improves much for higher α1

values, it still doesn’t outperform the other algorithms.

Deteriorating predictive accuracy

A result that can easily be obtained from table 6.4 is that there is no clear
α1 value that maximizes the AUC. Increasing α1 from 1 to 2 might result
in an improvement, but increasing α1 to higher values often deteriorates
the predictive accuracy. Thus there is no boundless increase in predictive
accuracy by just increasing the value of α1. This seems reasonable because
at high α1 values conservation is so much emphasized that divergence can
almost be neglected and thus we sort of lose this information. The graphs
in appendix B clearly show this trend. It might be interesting to turn
the method around by giving more weight to the inter-class divergence and
compute the corresponding AUC results. Unfortunately I had no time to
perform these experiments, but it would be interesting for future research.

58

Results compared to other methods

The authors of Multi-Harmony [5] have included an extensive table with all
computed AUC results for all datasets mentioned in the previous chapter.
However, the AUC results they computed are hard to compare because
they seem pretty low or are normalized somehow. The AUC results they
computed with the Multi-Relief method also significantly differs from the
results in [31].

My results from table 6.3 and the results in [31] show more agreement.
The slightly better scores in the latter can be explained by the number of
iterations used (100 in this thesis versus 1000 in [31]).

59

Chapter 8

Conclusions

Relief-based algorithms can weight features according to the conservation
of residues within a subfamily and the divergence between subfamilies in
a given MSA. The assumption that conservation is more important than
divergence is only partially confirmed by the experiments. Remarkable is
that especially proteins of smaller length seem to benefit from more emphasis
(expressed as a higher value of α1) on within subfamily conservation of
residues. In general, this trend is visible on all implemented algorithms,
except for Iterative-Relief. The reason is that this algorithm computes a
margin and therefore doesn’t allow negative weights, which strongly affects
the feature weighting method.

Another interesting conclusion is that there is no clear maximum for
the α1 value I’ve tried to optimize. Increasing α1 without bound is useless,
because in general the computed AUC results drop after a certain optimum
value, strongly dependent on the dataset and algorithm used. A sound
explanation is that by emphasizing conservation too much the inter-class di-
vergence gets oppressed. This means that for high α1 values the divergence
is almost neglected, which is lost information that results in lower predic-
tive accuracy. This makes it difficult to incorporate this method into new
algorithms, because the optimum settings are not known a priori.

Unfortunately, only conservation has been emphasized. It might be
interesting to conduct similar experiments where inter-class divergence is
weighted more important than within-class conservation. It would be really
interesting to see if proteins with larger length benefit in this case, which
would support my research results.

New directions

Proteins are very complex molecules, with a complex structure. Many prop-
erties are even unknown today. So modeling these molecules with a simple
string representation, which a MSA in fact is seems somewhat limited. Im-
proving algorithms based on MSA’s only will inevitably reach its ceiling

60

soon. In my opinion methods for predicting residue specificity should in-
clude more data if possible. Phylogenetic trees, chemical data, amino-acid
interaction matrices and 3D information are other data sources that could
be valuable to incorporate in new models. In fact methods like SPEER [7]
incorporate multiple methods and data sources to compute specificity deter-
mining residues. By combining Relief-based methods for MSA’s with new
research methods, we could combine the best of both worlds and obtain
better results. Much is to be discovered. . .

61

Appendix A

Webserver implementation

To perform the experiments in this thesis, I have created a web application
in PHP using Zend Framwork 1. I have used PHP because it is fast and the
framework assists me in creating a nice class-hierarchy for my algorithms,
that can easily be extended in the future if desired. I have chosen a web
application to enable other researchers to use the program. They can eas-
ily upload their own data and conduct the experiments they want. The
application has two main functions:

• Select features on a given dataset. The result is a list of features and
their computed weights;
• Compute the AUC for a given dataset on different values of α1.

A.1 Feature selection on a given dataset

The first function is a basic implementation of the feature selection algo-
rithms. You can either select a database or upload your own sequence in
FASTA-format, set some parameters and run the application to obtain the
computed feature weights. Figure A.1 shows a screenshot of this function.

A.1.1 Input

The input for this functionality is a given MSA in FASTA-format, a division
into the subfamilies used and optionally a list of known functionality specific
residues (true positives). The 18 datasets I used for my experiments are pre-
loaded, including their subfamily division and true positives. Users can also
just select one of these datasets from a dropdown box. In either case the
parameters to select are:

• Algorithm: the Relief-based algorithm you’d like to use;

1http://framework.zend.com/

62

Figure A.1: Input page for a MSA in FASTA format. Users can upload
their own MSA’s here and choose the parameters to use for discovering the
functional specificity residues.

• Nr iterations: the number of iterations for the selected algorithm;
• Nr samples: the number of samples to use, if the algorithm is based

on (sub-)sampling, otherwise this parameter can not be selected;
• Feature output order: whether to preserve the input order, or order

features by descending weight.

A.2 Compute AUC on given α1 value

This function doesn’t return a weighted feature list, but plots a ROC-curve
for different α1 values. The ROC-curves for α1 = 1 to α1 = x are plotted,
where x can be any discrete value between 1 and 10. This functionality has
the same input and parameters as the one in the previous section, with one
extra:

• Alpha-1 max: The maximum value of alpha to use, AUC’s are com-
puted for every α1 from 1 to Alpha-1 max. The maximum is limited to
10, which is the value used for my experiments. This is done for both
efficiency reasons and because experiments pointed out that higher
values show no improvements.

The output is a plotted ROC-curve and a table with the computed AUC
values (see A.2 for an example) and there corresponding values of α1.

63

Figure A.2: Example of a plotted ROC-curve. This ROC-curve was potted
using Relief-F on the SMAD-receptors dataset. In this example, unlike in
the experiments conducted the other α values are not kept at 1.

A.2.1 Additional material

The web application includes a short manual and tutorial to guide beginning
users. A documented API and UML class schema are also provided, to
enable users to change or extend this method. At the time of writing this
thesis, the web application is used local and therefore a URL can not yet be
provided.

64

Appendix B

AUC plots for different α1
values

In this appendix, the area under the ROC-curve (AUC) values for α1 ∈
[1..10] are plotted for each algorithm used on all the 18 datasets. On the
horizontal axis the values of α1 values are plotted. The corresponding AUC
value is plotted on the vertical axis. The name of the dataset used is depicted
under each plot.

65

(a) cbm9 dataset (b) cd00120 dataset

(c) cd00264 dataset (d) cd00333 dataset

(e) cd00363 dataset (f) cd00365 dataset

Figure B.1: AUC values plotted for different α1 values. The α1 values are
plotted on the x-axis, the corresponding AUC values on the y-axis.

66

(a) CN-myc dataset (b) GPCR dataset

(c) GST dataset (d) IDH/IMDH dataset

(e) Laci dataset (f) MDH/LDH dataset

Figure B.2: AUC values plotted for different α1 values. The α1 values are
plotted on the x-axis, the corresponding AUC values on the y-axis.

67

(a) Nucleotidyl cyclase dataset (b) Rab5/Rab6 dataset

(c) Ras/Ral dataset (d) Ricin dataset

(e) Serine dataset (f) Smad dataset

Figure B.3: AUC values plotted for different α1 values. The α1 values are
plotted on the x-axis, the corresponding AUC values on the y-axis.

68

Bibliography

[1] Achuthsankar, S. Computational biology and bioinformatics - a
gentle overview. Communications of Computer Society of India (2007).

[2] Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and
Lipman, D. J. Basic local alignment search tool. Journal of Molecular
Biology 215, 3 (1990), 403–410.

[3] Baldi, P., and Brunak, S. Bioinformatics: The Machine Learning
Approach. The MIT Press, 1998.

[4] Blum, A. L., and Langley, P. Selection of relevant features and
examples in machine learning. Artificial Intelligence 97, 1-2 (1997),
245–271.

[5] Brandt, B. W., Feenstra, K. A., and Heringa, J. Multi-
Harmony: detecting functional specificity from sequence alignment.
Nucleic Acids Research 38, suppl2 (2010), W35–40.

[6] Breiman, L., Friedman, J., Olshen, R., and Stone, C. Classifi-
cation and Regression Trees. Wadsworth and Brooks, 1984.

[7] Chakrabarti, S., Bryant, S. H., and Panchenko, A. R. Func-
tional specificity lies within the properties and evolutionary changes of
amino acids. Journal of Molecular Biology 373, 3 (2007), 801–810.

[8] Cheng, B. Y. M., Carbonell, J. G., and Klein-Seetharaman,
J. Protein classification based on text document classification tech-
niques. Proteins : structure, function and genetics 58, 4 (2005), 955–
970.

[9] Gilad-Bachrach, R., Navot, A., and Tishby, N. Margin based
feature selection - theory and algorithms. In ICML ’04: Proceedings of
the twenty-first international conference on Machine learning (2004),
ACM, p. 43.

[10] Guyon, I., and Elisseeff, A. An introduction to variable and feature
selection. The Journal of Machine Learning Research 3 (2003), 1157–
1182.

69

[11] Guyon, I., Gunn, S., Nikravesh, M., and Zadeh, L., Eds. Feature
Extraction, Foundations and Applications. Springer, 2006.

[12] Hannenhalli, S. S., and Russell, R. B. Analysis and prediction
of functional sub-types from protein sequence alignments. Journal of
Molecular Biology 303, 1 (2000), 61–76.

[13] John, G. H., Kohavi, R., and Pflegger, K. Irrelevant features
and the subset selection problem. In Machine learning: Proceedings
of the Eleventh International Conference (1994), Morgan Kaufmann,
pp. 121–129.

[14] Kalinina, O. V., Mironov, A. A., Gelfand, M. S., and
Rakhmaninova, A. B. Automated selection of positions determining
functional specificity of proteins by comparative analysis of orthologous
groups in protein families. Protein Science 13, 2 (2004), 443–456.

[15] Kamleitner, B. Machine learning feature weighting algorithms for
discovering functionally specific residues, master thesis, 2007.

[16] Kira, K., and Rendell, L. A. The feature selection problem: Tra-
ditional methods and a new algorithm. In Proceedings of the AAAI-92
(1992), AAAI Press, pp. 129–134.

[17] Kira, K., and Rendell, L. A. A practical approach to feature
selection. In The 9th International Conference on Machine Learning
(1992), Morgan Kaufmann, pp. 249–256.

[18] Kohavi, R., and John, G. H. Wrappers for feature subset selection.
Artificial Intelligence 97, 1-2 (1997), 273–324.

[19] Kononenko, I. Estimating attributes: Analysis and extensions of
relief. In European Conference on Machine Learning (1994), Springer
Verlag, pp. 171–182.

[20] Liu, H., and Motoda, H. Feature selection for knowledge discovery
and data mining. Kluwer Academic Publishers, 1998.

[21] Liu, H., and Motoda, H. Computational Methods of Feature Selec-
tion. Chapman & Hall/CRC, 2008.

[22] Marchiori, E. Evolutionary Computation, Machine Learning and
Data Mining in Bioinformatics. Springer, 2010, ch. Improving Multi-
Relief for Detecting Specificity Residues from Multiple Sequence Align-
ments, pp. 158–169.

[23] Pazos, F., Rausell, A., and Valencia, A. Phylogeny-independent
detection of functional residues. Bioinformatics 22, 12 (2006), 1440–
1448.

70

[24] Peng, H., Long, F., and Ding, C. Feature selection based on mu-
tual information: Criteria of max-dependency, max-relevance, and min-
redundancy. IEEE Transactions on Pattern Analysis and Machine In-
telligence 27, 8 (2005), 1226–1238.

[25] Pirovano, W., Feenstra, K. A., and Heringa, J. Sequence com-
parison by sequence harmony identifies subtype-specific functional sites.
Nucleic Acids Research 00, 00 (2006), 1–9.

[26] Quinlan, J. C4.5: programs for machine learning. Morgan Kaufmann
Publishers, 1993.

[27] Saeys, Y., Inza, I., and Larran, P. A review of feature selection
techniques in bioinformatics. Bioinformatics 23, 19 (2007), 2507–2517.

[28] Sun, Y., and Li, J. Iterative relief for feature weighting. In ICML ’06:
Proceedings of the 23rd international conference on Machine learning
(2006), ACM, pp. 913–920.

[29] Wonnacott, T. H., and Wonnacot, R. J. Introductory statistics.
John Wiley and Sons, 1990.

[30] Yang, Y., and Pedersen, J. A comparative study on feature selec-
tion in text categorization. In Proceedings of ICML-97, 14th Interna-
tional Conference on Machine Learning (1997), 412–420.

[31] Ye, K., Anton Feenstra, K., Heringa, J., IJzerman, A. P.,
and Marchiori, E. Multi-relief. Bioinformatics 24, 1 (2008), 18–25.

[32] Yu, L., and Liu, H. Efficient feature selection via analysis of relevance
and redundancy. Journal of Machine Learning Research 5 (2004), 1205–
1224.

71

Glossary

alignment An alignment is a sort of ordering where residues or amino-acids
between proteins are as much conserved as possible. 5

conserved residues Residues that has the same value at a given position
for all proteins in a subfamily of a MSA. 5, 6

Hamming distance The Hamming distance in the context of this thesis
is measured between amino-acids. When two amino-acids have equal
value, the corresponding Hamming distance is 0. If the values are not
equal, the Hamming distance is 1. 25

MSA A multiple sequence alignment (MSA) is a dataset where all protein
sequences are aligned. 2, 5

nearest hit The nearest hit for a given protein x is the nearest neighbor
from the same subfamily. 25

nearest miss The nearest miss for a given protein x is the nearest neighbor
from the opposite subfamily. 25

nearest neighbor The nearest neighbor for given protein x is the protein
with the smallest distance to x. The distance in this case is the Ham-
ming distance summed over all amino-acids. 25

residue A residue is one amino-acid in a sequence. It is thus a synonym
for both an amino-acid and a feature in the context of this thesis. 4

sequence A sequence is an ordered string of all the amino-acids in a protein.
4

72

