
Comparison of penetration testing tools for web

applications

Frank van der Loo

Supervisor: Erik Poll

Research number: 653

Student number: 0314005

August 15, 2011

Executive summary

Testing the security of web applications with automated penetration testing
tools produces relatively quick and easy results. However there are a lot of such
tools, both commercial and free. In this thesis a selection of such tools are tested
against a number of di�erent test cases to compare the tools and �nd out the
quality of such tools. For each test case the number of reported vulnerabilities
by the tools is recorded per type of vulnerability. For each type of vulnerability
the reported vulnerabilities are manually checked for false positives and false
negatives.

The tools leave much to be desired. The tools appear to have problems with
web applications that use techniques that are a bit more advanced than average
pages, such as cookies for logging in or session ids. Further, the tools produce
quite a lot of false positives and duplicate results. Also, all tools had false
negatives. These false positives, duplicates and false negatives would have to
be checked manually. This can take hours, especially for big web applications.
Some of the tools also have problems with crawling a web application when
techniques such as includes are used. Another problem is that the tools are
mainly good in �nding SQL injection and XSS, while other vulnerabilities are
not always detected by every tool. Other problems of the tools are that they
depend on the server for some vulnerabilities (mainly SQL injection) and fail
detection of this vulnerability for certain servers. Some of the tools have their
own speci�c problems that causes the tools to miss certain vulnerabilities.

Ultimately, it is impossible to name a tool that is the best. The usefulness
of the tools depends on the web application that is going to be tested and the
vulnerabilities that it is going to be tested for. After all none of the tools was
the best for all types of vulnerabilities and for all test cases.

2

Contents

1 Introduction 6

2 The vulnerabilities 8

2.1 SQL injection . 8

2.2 XPath injection . 9

2.3 XSS . 9

2.4 Cross site tracing . 10

2.5 CSRF . 10

2.6 Local �le inclusion . 10

2.7 Remote �le inclusion . 11

2.8 HTTP response splitting . 11

2.9 Command injection . 11

2.10 SSI injection . 11

2.11 LDAP injection . 12

2.12 Bu�er over�ow . 12

2.13 Session management . 12

3 Penetration testing tools 13

3.1 Inner workings . 13

3.2 Advantages . 15

3.3 Limitations . 15

4 The tools 16

4.1 Commercial tools . 16

4.1.1 HP WebInspect . 16

4.1.2 JSky . 16

4.2 Free/open source tools . 17

4.2.1 w3af . 17

4.2.2 Wapiti . 17

4.2.3 Arachni . 17

4.2.4 Websecurify . 17

4.3 Summary . 17

4.4 Tools not chosen . 18

4.5 Tools chosen . 18

3

5 Comparison 20

5.1 Test setup . 20
5.2 Results . 22

5.2.1 MiniSQLApp . 22
5.2.2 WebGoat . 22
5.2.3 phpBB . 29
5.2.4 Mutillidae . 30
5.2.5 zero.webappsecurity.com 34

6 Related work 35

6.1 General consensus . 35
6.2 Description of each paper . 35
6.3 Summary . 37

7 Conclusion 39

7.1 Quality of the tools . 39
7.1.1 Quality of the crawling 39
7.1.2 Quality of the fuzzing . 40
7.1.3 Quality of the analyzing 40

7.2 Conclusions per test case . 40
7.2.1 General . 40
7.2.2 MiniSQLApp . 41
7.2.3 WebGoat . 41
7.2.4 phpBB . 41
7.2.5 Mutillidae . 41

7.3 Main conclusions . 41
7.4 Limitations . 42
7.5 Suggestions for improvement . 43

7.5.1 Suggestions in general . 43
7.5.2 w3af . 44
7.5.3 Arachni . 44

7.6 Conclusion about each tool . 44
7.6.1 General . 45

7.7 Choosing a tool . 45

8 Future work 46

A MiniSQLApp 49

4

List of Figures

5.1 JSky's report . 24
5.2 w3af's report . 25
5.3 Wapiti's report . 26
5.4 Arachni's report . 27
5.5 Websecurify's report . 28

5

Chapter 1

Introduction

Testing the security of web applications is very important. There are several
ways to do this. One such way is by using penetration testing tools. These tools
test the security by performing an attack, without malicious payload (i.e. they
will not delete parts of the web application or the database it uses), against
the web application that should be tested. The results of these attacks are
monitored by the tool to see which succeed.

There are a lot of penetration testing tools available, with di�erent qualities.
Research question: Which penetration testing tool is the best?
Subquestions

1. What penetration testing tools exist?

2. How do these tools work?

3. What metrics can be used to compare the tools?

4. What test cases can be used to compare the tools?

5. What vulnerabilities can these tools detect and what not?

6. How do these tools compare in a test?

The tools will be tested by running them against a number of web appli-
cations and comparing the performance of the tools. The performance will be
measured by counting the number of false positives and false negatives.

In chapter 2 the vulnerabilities the tools can test for will be explained. It
will contain, per vulnerability, a description of the vulnerability, an explanation
of the di�erent form of the vulnerability (if any) and how a tool can test for the
vulnerability. This chapter will answer subquestion 5.

Chapter 3 will go deeper into penetration testing tools, explaining the inner
workings of such tools and the advantages and disadvantages. This chapter will
answer subquestion 2 and partly subquestion 5.

In chapter 4 the tools chosen for this thesis will be introduced. This chapter
will also explain why these tools were chosen and which tools were not chosen
and why. This chapter also partly answers subquestion 1.

Chapter 5 contains the comparison. It will explain the test setup and the
results per test case. This chapter answers subquestion 4 and 6.

6

In chapter 6 related work about penetration testing tools will be discussed.
This will contain both the general consensus and conclusions drawn by individ-
ual papers. This related work will be used partly to answer subquestion 1 and
3.

In chapter 7 the �nal conclusions of this thesis are drawn. It will contain
conclusions about the quality of the tools, suggestion for improvement of the
tools and a section explaining how to choose a suitable tools for a certain web
application. This chapter answers subquestion 6.

Chapter 8 contains ideas for future work in this subject.

7

Chapter 2

The vulnerabilities

This section lists the vulnerabilities the tools can test for according to the claims
on the tools' website. For each vulnerability a description will be given, followed
by the di�erent types (if there is more than one type) and it will be explained
how a tool can �nd the vulnerability. In this thesis only the �rst nine vulnera-
bilities will be used for testing the tools.

2.1 SQL injection

SQL injection (CWE-89 - Improper Neutralization of Special Elements used in
an SQL Command) can occur when unvalidated user input is used to construct
an SQL query that is then executed by the web server. A very well known
example is a query used by a user login. This query is usually like "SELECT *
FROM users WHERE username='entered username' AND password='entered
password ' ". If an attacker enters the string x' OR '1'='1 in both the username
and the password �eld the query becomes "SELECT * FROM users WHERE
username='x' OR '1'='1' AND password='x' OR '1'='1' ". Because '1' is always
equal to '1', this query is true for all records in the database. A more detailed
description can be found at the OWASP website1 and in [1].

There are two di�erent types of SQL injection: blind SQL injection and
"normal" SQL injection. The di�erence between these two types is that for
"normal" SQL injection the server shows an error message when the SQL query's
syntax in incorrect, for blind SQL injection this error message is not shown.
Instead the attacker will see a generic error message or page.

"Normal" SQL injection can be tested for by entering characters like quotes
to create a query with an incorrect syntax and search the page for error messages
about it. Blind SQL injection can not be detected this way, instead the attacker
has to enter SQL commands like sleep or statements that are always true or
false. For instance trying both strings ' AND '1'='1 and ' AND '1'='2 will
likely produce di�erent results if the page is vulnerable to SQL injection.

1https://www.owasp.org/index.php/SQL_Injection

8

2.2 XPath injection

XPath injection (CWE-643 - Improper Neutralization of Data within XPath
Expressions and CWE-91 - XML Injection (aka Blind XPath Injection)) is sim-
ilar to SQL injection. The di�erence between these two vulnerabilities is that
SQL injection takes place in a SQL database, whereas XPath injection takes
place in an XML �le as XPath is a query language for XML data. Just like
SQL injection the attack is based on sending malformed information to the web
application. This way the attacker can discover how the XML data is structured
or access data he is not allowed to. More information about this attack can be
found at the OWASP website2.

Just like SQL injection, there are two types of XPath injection: "normal"
XPath injection and blind XPath injection. The di�erence between these two
types of XPath injection is that for blind XPath injection the attacker has no
knowledge about the structure of the XML document and the application does
not provide useful error messages.

Testing for XPath injection is also similar to SQL injection. The �rst step
would be to insert a quote in an input �eld to see if it produces an error message.
For blind XPath injection data is injected to create a query that always produces
true or false.

2.3 XSS

Cross-site scripting (CWE-79 - Improper Neutralization of Input During Web
Page Generation), often abbreviated as XSS. In short, it occurs when an attacker
can input HTML code (such as Javascript), that will then be executed for the
visitors of the site. An example would be a guest book that shows the text that
is entered in the guest book on the website. If an attacker enters the string
<script>alert('XSS');</script> a pop-up with the text "XSS" would be shown
on that page of the guest book. This type of vulnerability can also be exploited
in a more serious way. An attackers might use XSS to steal a user's cookie,
which can then be used to impersonate the user on a website. A more detailed
description can be found at the OWASP website3 and in [1].

There are three di�erent types of XSS: stored XSS, re�ected XSS and DOM
based XSS. The di�erences between these types are that, for stored XSS the
attacker's code is stored on the web server (e.g. the guest book of the example
above), whereas for re�ected XSS the attacker's code is added to a link to the
web application (e.g. in a GET parameter) and the attacker has to trick a user
into clicking on the link. Such a link would look like
http://www.example.com/index.php?input=<script>alert('XSS');</script>. For
Dom based XSS the attacker's code is not injected in the web application, in-
stead the attacker uses existing Javascript code on the target page to write text
(e.g. <script>alert('XSS');</script> on the page.

To test for this vulnerability, a penetration testing tool should try to input
HTML code in the inputs on a web application. After this, the tools would have
to search for the code that was inputted, to see if it is present.

2https://www.owasp.org/index.php/XPATH_Injection
3https://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%29

9

2.4 Cross site tracing

Cross Site Tracing often abbreviated as XST is an attack that abuses the HTTP
TRACE function. This function can be used to test web applications as the web
server replies the same data that is sent to it via the TRACE command. An
attacker can trick the web application in sending its normal headers via the
TRACE command. This allows the attacker to be able to read information in
the header such as a cookie. A more detailed description can be found at the
OWASP website4.

To test for this vulnerability, the penetration testing tool will have to re-
quest OPTIONS from the web server and see if the headers Allow: TRACE
are present. If that is present, the tool should try to request the page via the
TRACE command.

2.5 CSRF

Cross-Site Request Forgery (CWE-352 - Cross-Site Request Forgery), often ab-
breviated as CSRF, is an attack where an attacker tricks a user's browser into
loading a request that performs an action on a web application that user is
currently authenticated to. For example an attacker might post the following
HTML on a website or send it in an HTML email
.
If the user is authenticated at his bank website (at http://www.bank.com) when
this link is loaded it would transfer 10000 from the user's account to bank ac-
count number 12345. A more detailed description can be found at the OWASP
website5 and in [1].

Testing for this attack is pretty similar to testing for XSS, the tool will have
to check if it can inject a link that may have e�ect on an other web application
(e.g. the link of the example) into the web application that is being tested.

2.6 Local �le inclusion

Local �le inclusion, also known as path traversal or directory traversal (CWE-22:
Improper Limitation of a Path name to a Restricted Directory ('Path Traver-
sal')), means that a �le on the same server as the one where the web application
is running is included on the page. A common example would be a web ap-
plication with the URL http://www.example.com/index.php?�le=some_�le.txt,
by manipulating the �le parameter the attacker might be able to load a �le that
he should not be able to see. A more detailed description can be found at the
OWASP website6.

A tool can test for this vulnerability by entering a path to a local �le (usually
/etc/passwd) in an input or GET parameter. This can be done with an absolute
path (e.g. /etc/passwd) or a relative path (e.g. ../../../../../etc/passwd). The
tool will then have to check if the contents of the local �le are present on the
page.

4https://www.owasp.org/index.php/Cross_Site_Tracing
5https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29
6https://www.owasp.org/index.php/Path_Traversal

10

2.7 Remote �le inclusion

Remote �le inclusion is equal to local �le inclusion, except for that the �le that
is included is a �le from a di�erent server than the one the web application
is running on. An example of this vulnerability is the same as for local �le
inclusion. However, instead of changing the �le name parameter to a local �le,
the attacker should enter a path to a remote �le.

Testing for this vulnerability is also similar to local �le inclusion. However,
instead of a path to a local �le a path to a remote �le should be used (e.g.
http://www.something.com/index.html).

2.8 HTTP response splitting

HTTP Response Splitting (CWE-113 - Improper Neutralization of CRLF Se-
quences in HTTP Headers), also known as CRLF is an attack where the attacker
can control the data that is used in an HTTP response header and enters a new-
line in this data. For example, if a web application uses a redirect via a GET pa-
rameter (e.g. http://www.example.com/index.php?page=somepage.html), this
redirect is sent via the HTTP headers to the browser (the "Location" header).
An attacker can append a newline to the value of the GET parameter and add
his own headers. This way an attacker can add a "normal" response header
and can cause text to appear on the web application this way. A more detailed
description can be found at the OWASP website7 and in [1].

A penetration testing tool would have to enter a newline, followed by a
HTTP header, in inputs that may be present in the HTTP response header.
The tool will then have to check whether the server returns the data that is
inputted in the header by the attacker.

2.9 Command injection

Command injection (CWE-77: Improper Neutralization of Special Elements
used in a Command ('Command Injection')) means that the attacker can exe-
cute a command on the server. An example would be a web application that
lets the user enter an IP address that the server will then send a ping to. If an
attacker would enter the string 1.2.3.4;ls the server would send a ping to the IP
address 1.2.3.4 and run the command "ls". A more detailed description can be
found at the OWASP website8.

This vulnerability can be tested by a penetration testing tool by entering
a semicolon followed by a command (e.g. "ls") into an input �eld that may
be vulnerable and checking if the response of the web application contains the
output of the injected command.

2.10 SSI injection

Server-Side Includes Injection (CWE-97 - Improper Neutralization of Server-
Side Includes (SSI) Within a Web Page), often abbreviated to SSI injection

7https://www.owasp.org/index.php/HTTP_Response_Splitting
8https://www.owasp.org/index.php/Command_Injection

11

is an attack where the attacker can enter SSI directives (e.g. <!�#include
�le="�le.txt" �> or <!�#exec cmd="ls -l" �>) that are then executed by the
web server. A more detailed description can be found at the OWASP website9.

To test for SSI injection a penetration testing tool would have to enter SSI
directives in the inputs on a web application and see if the web server executes
these by searching the web page for results of the SSI directive.

2.11 LDAP injection

LDAP injection (CWE-90 - Improper Neutralization of Special Elements used
in an LDAP Query) is an attack where the attacker inputs LDAP statements
that are executed by the server. More information can be found at the OWASP
website10.

There are two types of LDAP injection: "normal" LDAP injection and blind
LDAP injection. Just like with SQL injection and XPath injection, the di�erence
between these two types is that with blind LDAP injection no error messages
are shown.

To test for LDAP injection a penetration testing tool should enter (parts
of) LDAP statements in inputs for normal LDAP injection. For blind LDAP
injection true or false questions should be entered in the inputs.

2.12 Bu�er over�ow

In short, a bu�er over�ow occurs when an application tries to store more data
in a bu�er than the bu�er can hold. A more detailed description can be found
at the OWASP website11.

Testing for bu�er over�ows is relatively easy. The tool will have to input
long (random) data and see if it produces any errors caused by trying to store
more data than �ts in the bu�er.

2.13 Session management

Session management vulnerabilities can mean several things: session predic-
tion12, session �xation13 or session hijacking14. It is not yet clear to me for
which of the vulnerabilities the tools test for.

9https://www.owasp.org/index.php/Server-Side_Includes_%28SSI%29_Injection
10https://www.owasp.org/index.php/LDAP_injection
11https://www.owasp.org/index.php/Bu�er_Over�ow
12https://www.owasp.org/index.php/Session_Prediction
13https://www.owasp.org/index.php/Session_�xation
14https://www.owasp.org/index.php/Session_hijacking_attack

12

Chapter 3

Penetration testing tools

This section will be about penetration testing tools. Here, the inner workings of
these tools are explained. Later in this section the advantages and limitations
of penetration testing tools will be explained.

3.1 Inner workings

Most of the penetration testing tools use a technique that is called fuzz testing,
fuzzing or fault injection. Fuzzing has been de�ned by [2] as:

A highly automated testing technique that covers numerous bound-
ary cases using invalid data (from �les, network protocols, API calls,
and other targets) as application input to better ensure the absence
of exploitable vulnerabilities. From modem applications' tendency
to fail due to random input caused by line noise on "fuzzy" telephone
lines.

The part of the program that does this is called a fuzzer or a fault injector.
Fuzzers can be divided in two main types:

Fuzzers that act as a proxy The user will have to set up his browser to use
a proxy: the fuzzer. These tools monitor the web application the user
visits and the data the user enters in input �elds to �nd inputs [3].

Fuzzer that can crawl These tools will crawl the web application to �nd in-
puts that may be vulnerable and only rely on the user to provide a URL
to crawl.

Fuzzers can also be divided in two types by a di�erent property:

Generation fuzzers A fuzzer that generates its own data.

Mutation fuzzers A fuzzer that uses valid data, mutates this and replays the
mutated data.

The usual steps that are performed by penetration testing tools to discover
vulnerabilities are explained in [4].

1. Identify the target

13

2. Identify inputs

3. Generate fuzzed data

4. Execute fuzzed data

5. Monitor for exceptions

6. Determine exploitability

1. Identify the target Identifying the target consists of choosing the target
to run the tool against.

2. Identify inputs Identifying the inputs consists of �nding vulnerable spots.
In a web application these spots are found by crawling the site to �nd
links, action attributes of forms and the source attributes of other tags
[5].

3. Generate fuzzed data After identifying the inputs, the fuzz data to send
to these inputs has to be generated. Whether this data is generated in
advance or generated dynamically depends on the target and data format.

4. Execute fuzzed data This step is where the actual penetration testing is
performed with the fuzzer. It sends input to the vulnerable spots found
when identifying the inputs.

5. Monitor for exceptions In this phase the result of every fuzz packet is
monitored. This is important, because it is vital to know what packet
caused what result (i.e. what vulnerability was discovered by what packet).

How this monitoring takes place depends on the target and the type of
vulnerability that is tested. For instance, monitoring for XSS vulnerabil-
ities will consist of crawling the web application again and searching for
pages that contain the input that was injected during the execution of the
fuzzed data [5]. Monitoring for SQL injection would consist of looking for
SQL errors or other results that show that the injection was successful.
These other results depend on the fuzzed data.

6. Determine exploitability This �nal phase is to determine whether a vul-
nerability discovered can be exploited. This process usually has to be done
by a person rather than the tool.

An easier way to divide the steps a penetration testing tool performs is

Crawling The phase that crawls the web application to �nd the pages the web
application consists of and vulnerable inputs. This corresponds with step
1 and 2 of the other division.

Fuzzing This phase sends the data to test the web application to the applica-
tion. This corresponds with step 3 and 4 of the other division.

Analyzing In this phase the result of the fuzzing phase is analyzed to check
if the web application is vulnerable. This corresponds with step 5 of the
other division.

14

3.2 Advantages

The main advantage of using penetration testing tools it that it is a relatively
fast and easy way to detect certain security vulnerabilities. Unlike traditional
black box testing, in which an ethical hacker tries to attack the web application,
penetration testing tools can be used by a person with little or no knowledge
about security. Only the analysis of the result has to be done by a person with
knowledge about security.

3.3 Limitations

Despite the advantages, penetration testing tools have limitations.
Some of these limitation are described in [6], [4] and [5]:

� Penetration testing tools can not �nd all vulnerabilities. Only vulnerabil-
ities that cause results that can be monitored for. Therefore, they do a
poor job at �nding vulnerabilities like information disclosure and encryp-
tion �aws.

� Such a tool �nd cannot �nd access control �aws, identify hardcoded back-
doors or identify a multivector attack (i.e. an attack that consists of
chaining together multiple minor vulnerabilities which results in a major
vulnerability) [4].

� For most applications random data will not uncover vulnerabilities. Even
if it does, the fuzzing process will have to be repeated many times, because
of its random nature [6].

� Automated penetration testing tools have no speci�c goals in mind to
work towards. The tool, therefore, has to try to attack every possible risk
[5].

15

Chapter 4

The tools

This section will introduce the penetration testing tools that will be used for this
thesis. Here, the tools and the vulnerabilities they can detect will be described.
This section will also explain why some of the tools that have been considered
will not be used for this thesis.

Because tools that act as a proxy, as described in 3.1, rely on the user to
guide them I have decided not to use such tools for this thesis. Only tools that
can crawl the web application themselves will be used.

The tools that have been taken into consideration for this thesis were found
in lists at various websites1 2 3 4.

4.1 Commercial tools

4.1.1 HP WebInspect

HP WebInspect is a commercial penetration testing tools from HP [7]. For this
thesis the 15-day evaluation version will be used. The list of vulnerabilities it
claims to test for can be found in its data sheet5. It appeared that this evaluation
version can only be used against a web application on the web server of HP,
therefore this penetration testing tool will only be used in one very limited test.

4.1.2 JSky

JSky is a commercial penetration testing tools from NOSEC [8]. For this thesis
the 15-day fully functional evaluation version will be used. The list of vulnera-
bilities it claims to test for can be found on the tool's website6.

1http://www.owasp.org/index.php/Phoenix/Tools7#RSnake.27s_XSS_cheat_sheet_based-
tools.2C_webapp_fuzzing.2C_and_encoding_tools

2http://www.dragoslungu.com/2007/05/12/my-favorite-10-web-application-security-
fuzzing-tools/

3http://www.securityprocedure.com/complete-list-free-web-application-security-scanner
4http://pentesttools.com/index.php/web-application-test-tools.html
5http://www.hp.com/hpinfo/newsroom/press_kits/2011/applicationtransformation/WebInspectDataSheet.pdf
6http://www.nosec-inc.com/en/products/jsky/

16

4.2 Free/open source tools

4.2.1 w3af

w3af is the abbreviation of the Web Application Attack and Audit Framework
[9]. It is an open-source program, written in Python. It uses plugins to perform
the attacks on the web application. A description of the vulnerabilities these
plugins are claimed to detect can be found on the tool's website7. It uses a
menu-driven text-based structure, but it also has a GUI. Results are outputted
to the console or to an XML-, text-, or HTML-�le.

4.2.2 Wapiti

Wapiti is another open-source program written in Python [10]. The vulnerabil-
ities it claims it can detect can be found on the tool's website8. It works from
the command-line completely automatically, however command-line options can
be used to customize scanning. Output is written to the console or an XML-,
text-, or HTML-�le.

4.2.3 Arachni

Arachni is a Web Application Vulnerability Scanning Framework [11]. It is an
open source program written in Ruby. It has a modular setup. A description
of what the modules can test for can be found on the tool's website9. At the
moment it only has a command-line interface. Running the program with as
parameter a URL will automatically audit the web application on that URL
with all modules. The audit can be customized with options on the command-
line. The output can be sent to the console or a text-, XML-, HTML- or AFR
(Arachni Framework Report)-�le.

4.2.4 Websecurify

Websecurify is an open-source integrated web security testing environment [12].
A list of vulnerabilities it claims it can detect can be found on the tool's web-
site10. It has a GUI interface and performs the testing automatically. Very few
options can be controlled via settings.

4.3 Summary

The vulnerabilities that can be detected by at least two of the chosen tools are
listed in table 4.1. An 'x' means that the tool in that columns claims to be able
to detect the vulnerability in that row.

7http://w3af.sourceforge.net/plugin-descriptions.php
8http://wapiti.sourceforge.net/
9http://arachni.segfault.gr/overview/modules

10http://www.websecurify.com/overview

17

Table 4.1: Summary of common vulnerabilities the tools claim they can detect
HP WebInspect JSky w3af Wapiti Arachni Websecurify

XSS x x x x x x
SQL injection x x x x x x
CSRF x x x x
bu�er over�ow x x
SSI injection x x
remote �le inclusion x x x x x
local �le inclusion x x x x
HTTP response splitting x x x x
command injection x x x x
session management x x
XPath injection x x x
LDAP injection x x x
Cross site tracing x x

4.4 Tools not chosen

The tools that have been reviewed but were not chosen in this paper for a variety
of reasons are listed in table 4.2. Proxy means that the tools acts as a proxy,
Not available means that the program is no longer available for download, Did
not work means that I was not able to get the program to detect a very simple
SQL injection and Other means that the program was not chosen for a di�erent
reason, the reason is stated in the table.

4.5 Tools chosen

The commercial tool, JSky, was chosen because it was the only commercial tool
that could be found that o�ered a fully functional trial period.

The free/open source tools were initially selected from lists on various web-
sites and related work and based on the claims on the tool's website. After this
initial selection the tools were tested against MiniSQLApp, a very simple test
created by me, and only tools that worked against that test and could detect
blind SQL injection were chosen. The only exception is Websecurify. That tool
was chosen even though it was not able to detect blind SQL injection. This tool
was still chosen because it was claimed on the website that the tool could detect
the entire OWASP top 10.

18

Table 4.2: Tools not chosen
Proxy Not available Did not work Other

ProxMon x
Suru Web Proxy x
Paros x
WebScarab x
SPIKE x
XSSScan x
HTMangLe x
WebFuzz x
ASP Auditor x
WhiteAcid's XSS Assistant x
screamingCobra x
Overlong UTF x
Web Hack Control Center x
Web Text Converter x
Grabber x
Wfuzz x
WSTool x
Uber Web Security Scanner x
Grendel-Scan x
J-Baah x
JBroFuzz x
XSSFuzz Only XSS
WSFuzzer Only for SOAP services
RegFuzzer Only for regular expressions
RFuzz Only for HTTP requests
XSSFuzz Only XSS
Acunetix WVS(Free version) Only XSS
Falcove Could not be installed
NeXpose community edition Not for web applications

19

Chapter 5

Comparison

This section will be about the comparison of the penetration testing tools. First,
the test setup will be explained and this section will end with the results of the
comparison.

5.1 Test setup

Testing the tools consists of several tests. A small test created by me, Mini-
SQLApp, and four existing web applications: WebGoat, phpBB, Mutillidae and
zero.webappsecurity.com. Unless otherwise speci�ed all tests were performed
with the tools set to scan for all vulnerabilities and otherwise the tools' default
settings.

1. The �rst test, created by me, consists of three pages. One page with
two links to the other pages. Each of the two other pages consists of one
input �eld and one submit button. Both have the same SQL injection
vulnerability, however one application shows an error message, the other
one does not (blind SQL injection). This test was chosen as an initial
quality test. The test case can be found in appendix A.

2. WebGoat is a very extensive web application consisting of approximately
69 vulnerable web pages, divided into 19 categories: General, Access Con-
trol Flaws, AJAX Security, Authentication Flaws, Bu�er Over�ows, Code
Quality, Concurrency, Cross-Site Scripting, Denial of Service, Improper
Error Handling, Injection Flaws, Insecure Communication, Insecure Con-
�guration, Insecure Storage, Malicious Execution, Parameter Tampering,
Session Management Flaws, Web Services and Challenge. Because Web-
Goat is meant to teach people about web application security, every page
is called a lesson. This test case was chosen because of its extensiveness
in number and type of vulnerabilities.

Advantages of WebGoat are that it comes with its own Web Server:
Apache Tomcat. Therefore it will produce the same results regardless
of the computer it runs on. Also, every lesson has a link that will show
the solution for that lesson, this can help to determine why a tool was not
able to detect the vulnerability.

20

Disadvantages are that it is very large, therefore it takes quite a long time
to run the tools against it. Further, a user has to authenticate with a
username and password and a session id is stored in a cookie, this made
it harder to run the tools against it.

3. phpBB is a well-known forum software. It is the only "real" web applica-
tion in this test. It was chosen because of the fact that it is a "real" web
application instead of one with vulnerabilities implemented on purpose.

The advantage is that it has been used in the real world, so it is not
equipped with vulnerabilities implemented on purpose. This provides a
challenge for the tools, to see if they can �nd vulnerabilities that are harder
to detect.

The disadvantage is that not all vulnerabilities are known. There exist se-
curity advisories and changelogs for phpBB, but these not always pinpoint
the exact location of a vulnerability and how this is exploited. Another
disadvantage is that it requires a web server. Therefore the results of the
tools depends partially on the web server that is used and its con�guration,
so the tools' results will not always be the same.

4. Mutillidae is similar to WebGoat in that it consists of several vulnerable
web pages, divided into categories. It consists of 12 web pages, divided into
13 categories: the 10 categories of the 2010 OWASP top 10, malicious �le
execution, information leakage and improper error handling and denial
of service. Multiple vulnerabilities exist in the pages. However, unlike
WebGoat Mutillidae is a set of PHP scripts and requires a web server
that is installed on the computer it is run on. This test case was chosen
because it contains the entire 2010 OWASP top 10, but does not contain
cases such as HTTP authentication like WebGoat.

Advantages of Mutillidae are that it contains the entire OWASP top 10, i.e.
the most import vulnerabilities. Also, every page contains hints to exploit
the vulnerability. This makes it easier to �nd out what vulnerability is in
that page, although WebGoat's approach with solution is easier. Finally,
because it is a set of PHP scripts it is very easy to make changes.

A disadvantage is that it requires a web server. Just like phpBB this may
cause the tools' results to di�er because of the web server that is used and
its con�guration.

5. zero.webappsecurity.com is an existing web application. It has been cre-
ated by HP as an example for potential buyers of HP WebInspect. This
web application is the only web application the free trial of HP WebInspect

can test. It was chosen because it is the only way to make a comparison
between HP WebInspect and the other tools, even though it may be biased
in favor of HP WebInspect.

Advantages of this web application is that it is running on a web server
online from HP, so the web application will remain the same regardless of
the computer the tools is installed on.

Disadvantages are that it is not possible to �nd out how many and what
vulnerabilities exist in the web application. Also, because this is the only

21

Table 5.1: Results of the simple SQL injection test on MiniSQLApp
SQL injection Blind SQL injection

JSky yes no
w3af yes yes
Wapiti yes yes
Arachni yes yes
Websecurify yes no

web application the trial version of HP WebInspect can test it may be
optimized for that tool.

5.2 Results

5.2.1 MiniSQLApp

The �rst test is a small web application that I made, MiniSQLApp, with two
SQL injection vulnerabilities, one "normal" and one blind. The results of this
test can be found in table 5.1. All the tools, except for Websecurify and JSky,
were able to �nd both vulnerabilities. The fact that JSky was unable to �nd
the blind SQL injection is peculiar, as the tool has a module that should be
able to �nd blind SQL injection vulnerabilities. However, the values it entered
to �nd vulnerabilities are not suitable to �nd blind SQL injection. The reason
Websecurify can not �nd the blind SQL injection vulnerability is the same as
JSky's: the values it enters to �nd vulnerabilities are not suitable to �nd blind
SQL injection vulnerabilities.

5.2.2 WebGoat

A di�erent test was performed by running the tools against OWASP WebGoat1

version 5.3-RC1. WebGoat is a web application with several vulnerabilities. It
consists of several lessons and the goals for the user is to exploit the vulnerability
to complete the lesson. Initially, the tools were not able to crawl WebGoat and
�nd vulnerabilities. The cause of this was that WebGoat sets a cookie when it
is �rst visited. The tools did not store this cookie and send it when visiting the
other pages. This problem was solved by using a cookie from a normal browser.
Websecurify has a built-in browser, that was used to set the cookie. JSky o�ers
a similar functionality, however it still failed to authenticate despite using this
functionality. The results of this test can be found in table 5.3, 5.4 and 5.5.
The tables contain the total amount of vulnerabilities (i.e. vulnerable inputs)
found, the number of true positives (TP), the number of false positives (FP)
and the number of false negatives (FN). Numbers between brackets are the total
numbers including duplicates. The runtime (in hh:mm:ss) of the tools against
WebGoat can be found in table 5.2. For XST it could not be determined if
the reported XST vulnerabilities are true or false positives, because the tools
only test for XST by testing if the TRACE method is supported by the web
server. The true and false positives have been determined manually. This was
done mainly by entering the string as reported by the tools in the vulnerable

1https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project

22

input. Examples of these reports can be found in �gure 5.1, 5.2, 5.3, 5.4 and
5.5.However, for some reported vulnerabilities (e.g. XSS injection in the value
of the submit button) it was immediately clear that it was a false positive.
Other true and false positives could be determined by comparing the reported
vulnerabilities to reports of the other tools that have been checked for true and
false positives already.

Peculiar about the results is that barely any tool discovered the SQL injection
vulnerabilities. The reason the "normal" (i.e. non-blind) SQL injection was not
discovered by most tools is because of the SQL error messageWebGoat produces.
All tools have a list of error messages or regular expressions of error messages
produced by several SQL servers. However, only the list of Arachni contains the
error message the SQL server of WebGoat produces. The reason Arachni did
not discover all SQL injections is because it adds the string '�;` to the default
value, or 1'�;` if there is no default value. For most SQL servers this will cause
an error, however with the SQL server of WebGoat this may result in a valid
query (if the value of the input is used between quotes in the query, appending
the abovementioned string will result in a valid query).

Another peculiar result is the amount of XSS vulnerabilities that were dis-
covered by the tools. The high number of false positives is caused because none
of the tools is able to execute Javascript as explained below. The tools test
for XSS vulnerabilities by entering HTML code into potential vulnerable spots
and check whether or not the HTML that was injected is present on the page.
However, if the injected HTML is present in an input box, the tool will count
it as an XSS vulnerability even though code inside such a box will never be
executed. So, even though the injected HTML is present in the page, it can not
be exploited. Another cause of the number of false positives is the amount of
input �elds on the pages of WebGoat. Some pages have a lot of input �elds,
when all input �elds "remember" the value that was entered there, the tool will
count every �eld as an XSS vulnerability and every �eld could cause a false pos-
itive as explained above. Another reason for the high number of false positives,
mainly of Wapiti, is the "Show Params" link in WebGoat. When clicked, this
link causes all parameters (both GET and POST) to show on the page. This is
the reason that Wapiti (and possible other tools) can �nd the HTML code that
they tried to inject by setting it as the value for the submit button on the page.

The number of false positives of XPath injections reported by w3af can not
be determined. The tool only reported that it found XPath injections, but it
did not report on what page.

It was hard to determine the results of Websecurify. In WebGoat every page
has two GET parameters: screen and menu. In the report of Websecurify the
value of screen was wrong. It pointed to a non-existent page. The correct page
had to be deduced by looking at the inputs in the report.

It is di�cult to determine the total number of vulnerabilities in WebGoat
as it appeared that some pages had more than one vulnerability. For instance,
several of the pages with an SQL injection vulnerability also has an XSS vul-
nerability. Therefore the only way to count the total number of vulnerabilities
in WebGoat is to try and count every vulnerability on every page. However,
this method costs a lot of time. Therefore, instead, other vulnerabilities (i.e.
XSS vulnerabilities in pages with on purpose implemented SQL injection vul-
nerabilities) will be ignored. The numbers in the tables only show the number
of detected vulnerabilities in the pages with that type of vulnerability.

23

Figure 5.1: JSky's report

24

Figure 5.2: w3af's report

25

Figure 5.3: Wapiti's report

26

Figure 5.4: Arachni's report

27

Figure 5.5: Websecurify's report

28

Table 5.2: Runtime against WebGoat in hh:mm:ss
w3af 01:13:11
Wapiti 02:04:16
Arachni 01:31:38
Websecurify 00:21:39

Table 5.3: Injection results of WebGoat, a question mark means that the value
could not be determined, TP indicates the true positives and FP the false pos-
itives, FN indicates the false negatives

SQL Blind SQL XPath
injection injection injection

Total TP FP FN Total TP FP FN Total TP FP FN
w3af 0 0 0 6 0 0 0 2 139 ? ? ?
Wapiti 0 0 0 6 0 0 0 2 0 0 0 2
Arachni 2 2 0 4 0 0 0 2 0 0 0 2
Websecurify 0 0 0 6 0 0 0 2 0 0 0 2

Some of the tools also reported some other vulnerabilities that are not in
the table. w3af reported three unidenti�ed vulnerabilities using HTTP method
GET, but testing these manually revealed no vulnerabilities. Arachni also re-
ports a private IP address disclosure and several unencrypted password forms.
Websecurify reports an HTTP banner disclosure and �ve email address disclo-
sures.

5.2.3 phpBB

A larger test was performed on phpBB 2.0.0. Because it was an old version
created for old PHP version the source code of phpBB had to be changed to get
it to work. Running the tools on it proved to be a problem for most tools. The
main problem is that every page of the forum uses a sid parameter as session
id. The tools did not store this sid parameter, that is why the crawling phase
took multiple hours. With such a high number of pages, the attack phase took
multiple hours as well. Because of the amount of time the test had to be aborted
manually. Only JSky was able to scan the entire site in a reasonable amount
of time. The results can be found in table 5.6, 5.7, 5.8 and 5.9. Because the

Table 5.4: XSS, XST and CSRF results of WebGoat, numbers in brackets are
the value when duplicates are included, a question mark means that it could
not be determined, TP indicates the true positives and FP the false positives,
FN indicates the false negatives

XSS XST CSRF
Total TP FP FN Total TP FP FN Total TP FP FN

w3af 3 1 2 6 1 ? ? ? 0 0 0 3
Wapiti 87 7(17) 27(70) 0 0 0 0 1 0 0 0 3
Arachni 6 3 3 4 1 ? ? ? 3 3 0 0
Websecurify 1 1 0 6 0 0 0 1 0 0 0 3

29

Table 5.5: Misc vulnerabilities results of WebGoat, numbers in brackets are the
value when duplicates are included, TP indicates the true positives and FP the
false positives, FN indicates the false negatives

Path CRLF Command
traversal injection

Total TP FP FN Total TP FP FN Total TP FP FN
w3af 0 0 0 2 0 0 0 1 0 0 0 1
Wapiti 3 2(3) 0 0 0 0 0 1 0 0 0 1
Arachni 3 2 1 0 0 0 0 1 0 0 0 1
Websecurify 0 0 0 2 0 0 0 1 0 0 0 1

Table 5.6: Runtime against phpBB in hh:mm:ss
JSky 00:58:39
w3af >05:00:00
Wapiti >05:00:00
Arachni >05:00:00
Websecurify >05:00:00

total number of vulnerabilities is unknown, the number of false negatives in
the tables is based on the highest number of true positives found by any tool
for that category. For XST it could not be determined if the reported XST
vulnerabilities are true or false positives, because the tools only test for XST
by testing if the TRACE method is supported by the web server. The CRLF
vulnerabilities could not be veri�ed either. I was unable to reproduce it, but I
was also unable to get the CRLF vulnerability in WebGoat to work.

5.2.4 Mutillidae

Another test was performed on Mutillidae2. Similar to WebGoat, it is also
a set of vulnerable scripts, the author claims that the entire OWASP Top 10
is implemented. The tools were run with all modules and could try all links,
except for three: the link to toggle hints, the link to toggle the security level and

2http://www.irongeek.com/i.php?page=security/mutillidae-deliberately-vulnerable-php-
owasp-top-10

Table 5.7: Injection results of phpBB, TP indicates the true positives and FP
the false positives,FN indicates the false negatives, this number could not be
determined completely

SQL Blind SQL XPath
injection injection injection

Total TP FP FN Total TP FP FN Total TP FP FN
JSky 0 0 0 ≥ 0 0 0 0 ≥ 0 0 0 0 ≥ 0
w3af 0 0 0 ≥ 0 0 0 0 ≥ 0 0 0 0 ≥ 0
Wapiti 0 0 0 ≥ 0 0 0 0 ≥ 0 0 0 0 ≥ 0
Arachni 0 0 0 ≥ 0 0 0 0 ≥ 0 0 0 0 ≥ 0
Websecurify 0 0 0 ≥ 0 0 0 0 ≥ 0 0 0 0 ≥ 0

30

Table 5.8: XSS, XST and CSRF results of phpBB, a question mark means the
value could not be determined, TP indicates the true positives and FP the false
positives, FN indicates the false negatives, this number could not be determined
completely

XSS XST CSRF
Total TP FP FN Total TP FP FN Total TP FP FN

JSky 3 2 1 ≥ 0 1 ? ? ? 0 0 0 ≥ 0
w3af 0 0 0 ≥ 2 11 ? ? ? 0 0 0 ≥ 0
Wapiti 0 0 0 ≥ 2 0 0 0 ≥ 0 0 0 0 ≥ 0
Arachni 0 0 0 ≥ 2 1 ? ? ? 0 0 0 ≥ 0
Websecurify 2 1 1 ≥ 1 0 0 0 ≥ 0 0 0 0 ≥ 0

Table 5.9: Misc vulnerabilities results of phpBB, TP indicates the true positives
and FP the false positives, FN indicates the false negatives, this number could
not be determined completely

Path CRLF Command
traversal injection

Total TP FP FN Total TP FP FN Total TP FP FN
JSky 0 0 0 ≥ 0 2 ? ? ? 0 0 0 ≥ 1
w3af 0 0 0 ≥ 0 0 0 0 ≥ 0 1 1 0 ≥ 0
Wapiti 0 0 0 ≥ 0 0 0 0 ≥ 0 0 0 0 ≥ 1
Arachni 0 0 0 ≥ 0 0 0 0 ≥ 0 0 0 0 ≥ 1
Websecurify 0 0 0 ≥ 0 0 0 0 ≥ 0 0 0 0 ≥ 1

the link to reset the database. All the tools have an option to ignore certain
pages or regular expressions of pages. In w3af this option can be found in
the con�guration menu for the "webspider" plugin. Wapiti and Arachni have
a command-line option for this. The GUI of websecurify contains an input
�eld where a regular expression of pages to ignore can be entered. However, to
achieve this in Websecurify, the code had to be changed as it contains a known
bug that causes URLs that should be excluded not to be excluded3. w3af failed
to �nd the links with the vulnerable pages, therefore it was passed all pages as
target and crawling was disabled. The results of this test can be found in table
5.10, 5.11, 5.12 and 5.13. Because every page of Mutillidae contains more than
one vulnerability, the total number of false negatives could not be determined
completely. Again, the number of false negatives is based on the highest number
of true positives found by any tool for that type of vulnerability. The number
of true and false positives for XST are unknown for the same reason as with
the test against WebGoat: the tools only test if the webserver support the
TRACE method. The reason the number of true and false positives for the
CSRF vulnerabilities reported by w3af could not be determined is that w3af

only reported that the vulnerabilities existed, but it did not specify where and
what data it used to �nd these vulnerabilities.

A very peculiar result of this test is that the results of w3af are very poor.
Testing w3af against certain pages of Mutillidae while a packet sni�er monitors
the tra�c and comparing this tra�c with the tra�c generated by other tools

3http://code.google.com/p/websecurify/issues/detail?id=53

31

Table 5.10: Runtime against Mutillidae in hh:mm:ss, w3af * is the result of the
second test of w3af after changing Mutillidae
JSky 00:12:07
w3af 00:03:58
w3af * 00:07:50
Wapiti 00:03:34
Arachni 00:03:00
Websecurify 00:00:56

reveals the problem with w3af. It is the only tool that, in sending the HTTP
POST request, does not send the name/value pair of the submit button, but
only the name/value pairs of the other inputs of the HTML form (even though
the name/value pair of the submit button is shown in its report). However,
Mutillidae tests whether or not the form has been sent by checking for the
name of the submit button in the POST data. The pages, therefore, do not
"know" that w3af has entered data in the input �elds and just show the original
page with an empty form to �ll in.

To get more results from w3af I have changed the check in the pages of
Mutillidae. Instead of checking for the name of the button, the pages now check
if the request method is POST. Running the test again with w3af produces the
results of table 5.10, 5.11, 5.12 and 5.13 named "w3af *". Although w3af �nds
more vulnerabilities now, it still �nds less than the other tools. A reason for
this is a strange problem of w3af. When running w3af against a single page of
Mutillidae in which it did not �nd any vulnerabilities during the test on all the
pages of Mutillidae, it did detect the vulnerabilities. I have not been able to
discover why these vulnerabilities where found when testing on a single page,
but not when testing on all of the pages. A similar result appeared when w3af

was two pages of Mutillidae were given as target to w3af: it only detected the
vulnerabilities in one of the pages, however when given these pages as target
separately it detected vulnerabilities in both of them.

Another problem of w3af that was discovered is that it does not fuzz textar-
eas, only other inputs. Also, w3af appears to have some sort of cache. Changes
in a page or in parameters of w3af only seem to take e�ect after restarting w3af.

Mutillidae also has a SQL injection in on of the pages that none of the
tools could detect. This page (register.php) consists of �ve inputs: a �eld for
the desired username, the password, con�rmation of the password, signature
and submit. All the tools only fuzzed one of the �elds at a time. In this case
that caused a problem. The password �eld was vulnerable for a SQL injection,
however the script tested if the password �eld and the con�rmation were the
same. Because the tools only fuzzed one �eld at a time this was never the case,
so the vulnerability in this �eld was not detected by any of the tools.

Also, two pages with an XSS vulnerability did not have any inputs. These
contents of these pages were generated by the headers that were sent to retrieve
the page. The vulnerabilities in these pages could be exploited by fuzzing the
"Referrer" and "User-agent" header. However, none of the tools did this.

32

Table 5.11: Injection results of Mutillidae, w3af * is the result of the second
test of w3af after changing Mutillidae, numbers in brackets are the value when
duplicates are included, TP indicates the true positives and FP the false pos-
itives, FN indicates the false negatives, this number could not be determined
completely

SQL Blind SQL XPath
injection injection injection

Total TP FP FN Total TP FP FN Total TP FP FN
JSky 9 4(7) 2 ≥ 5 0 0 0 ≥ 8 0 0 0 ≥ 0
w3af 0 0 0 ≥ 9 0 0 0 ≥ 8 0 0 0 ≥ 0
w3af * 5 5 0 ≥ 4 2 2 0 ≥ 6 0 0 0 ≥ 0
Wapiti 9 9 0 ≥ 0 8 8 0 ≥ 0 0 0 0 ≥ 0
Arachni 9 9 0 ≥ 0 0 0 0 ≥ 8 0 0 0 ≥ 0
Websecurify 9 9 0 ≥ 0 0 0 0 ≥ 8 0 0 0 ≥ 0

Table 5.12: XSS, XST and CSRF results of Mutillidae, w3af * is the result
of the second test of w3af after changing Mutillidae, numbers in brackets are
the value when duplicates are included, TP indicates the true positives and FP
the false positives, FN indicates the false negatives, this number could not be
determined completely

XSS XST CSRF
Total TP FP FN Total TP FP FN Total TP FP FN

JSky 2 0 2 ≥ 8 1 ? ? ? 0 0 0 ≥ 1
w3af 1 0 1 ≥ 8 1 ? ? ? 4 ? ? ?
w3af * 10 4(9) 1 ≥ 4 1 ? ? ? 1 ? ? ?
Wapiti 21 7(21) 0 ≥ 1 0 0 0 ≥ 0 0 0 0 ≥ 1
Arachni 12 8 4 ≥ 0 1 ? ? ? 1 1 0 ≥ 0
Websecurify 26 6 20 ≥ 2 0 0 0 ≥ 0 0 0 0 ≥ 1

Table 5.13: Misc vulnerabilities results of Mutillidae, w3af * is the result of the
second test of w3af after changing Mutillidae, numbers in brackets are the value
when duplicates are included, TP indicates the true positives and FP the false
positives, FN indicates the false negatives, this number could not be determined
completely

Path CRLF Command
traversal injection

Total TP FP FN Total TP FP FN Total TP FP FN
JSky 1 1 0 ≥ 3 0 0 0 ≥ 0 0 0 0 ≥ 1
w3af 1 1 0 ≥ 3 0 0 0 ≥ 0 0 0 0 ≥ 1
w3af * 3 3 0 ≥ 1 0 0 0 ≥ 0 1 1 0 ≥ 0
Wapiti 16 4(16) 0 ≥ 0 0 0 0 ≥ 0 1 1 0 ≥ 0
Arachni 3 3 0 ≥ 1 0 0 0 ≥ 0 1 1 0 ≥ 0
Websecurify 0 0 0 ≥ 4 0 0 0 ≥ 0 0 0 0 ≥ 1

33

Table 5.14: Injection results of zero.webappsecurity.com
SQL Blind SQL XPath

injection injection injection
HP WebInspect 43 0 0
w3af 12 1 10
Wapiti 2 1 0
Arachni 2 0 0
Websecurify 0 0 0

Table 5.15: XSS, XST and CSRF results of zero.webappsecurity.com
XSS XST CSRF

HP WebInspect 48 0 2
w3af 6 1 8
Wapiti 7 0 0
Arachni 7 1 6
Websecurify 0 0 0

5.2.5 zero.webappsecurity.com

After installing the trial version of HP WebInspect it became clear that, next to
a trial period of 15 days, a second limitation of the trial version is that only one
particular web application could be scanned: http://zero.webappsecurity.com.
Because this web application is used to sell HP WebInspect, it is likely that it is
optimized for HP WebInspect. The results in tables 5.14, 5.15 and 5.16 seem to
con�rm this. Because of this reason and the fact that JSky complained about
its license when trying to run it against this web application, the results of this
test are not used, nor are the true and false positives counted.

Table 5.16: Misc vulnerabilities results of zero.webappsecurity.com
Path CRLF Command

traversal injection
HP WebInspect 0 0 0
w3af 0 0 0
Wapiti 1 0 0
Arachni 0 0 0
Websecurify 0 0 0

34

Chapter 6

Related work

6.1 General consensus

Comparisons between penetration testing tools have been performed by other
people as well. In some of these comparisons the comparison was the goal
([13, 14, 15]) while in other papers these comparisons are used as a method to
test a benchmark or a new technique for penetration testing tools ([5, 16, 17,
18, 19, 20]). The most common vulnerability that is tested for is SQL injection
[13, 14, 15, 16, 17, 18, 19, 20] followed by XSS [14, 15, 5, 16, 17, 19]

Several of these papers conclude that the tools do not discover all vulnera-
bilities, [13, 14, 15, 5, 17, 18, 19], some also conclude that they produce a lot of
false positives [13, 17, 18].

6.2 Description of each paper

For instance in [13] three commercial tools (HPWebInspect, IBM Rational App-
Scan and Acunetix Web Vulnerability Scanner) were used against 300 publicly
available services to detect SQL injection, XPath injection, code execution, pos-
sible parameter based bu�er over�ow, possible username or password disclosure
and possible server path disclosure. The names of the tools were not mentioned
in the results to assure neutrality and because commercial licenses do not allow
in general the publication of tool evaluation results, instead they were referred
to as VS1.1, VS1.2 (two di�erent versions of one tool), VS2 and VS3.

In [17] three commercials tools (the names of these tools are not given be-
cause of the same reason as in [13]) are tested against two web applications. One
is custom made (MyReferences), the other one is the Online BooksStore. To test
the tools several types of faults are injected in these web applications. Both web
applications are tested for Cross Site Scripting and SQL injection for each type
of fault injected. The conclusions are that di�erent tools produce quite di�erent
results, all tools leave a considerable amount of vulnerabilities undetected and
the tools result in a high amount (20% to 77%) of false positives.

Paper [18] is based on the results of [13]. The authors propose an approach
to detect SQL injection. To test this approach the test in [13] is repeated. This
time a tool created by the authors, referred to as VS.WS, that uses the proposed
approach is tested as well. All the tools were tested against 262 public web

35

services and a Java implementation of four web services speci�ed by the TPC-
App benchmark. The only vulnerability that was tested for is SQL injection.
They conclude that the results of their tool are better in both coverage and false
positives than the commercial tools.

In [5] three tools (Burp Spider, w3af and Acunetix Web Vulnerability Scan-
ner (Free Edition)) are tested on Django-basic-blog, Django-Forum and Satchmo
online shop. Only re�ected and stored XSS vulnerabilities are tested for, but
the authors claim the same techniques also apply to other injection attacks such
as SQL injection and directory traversal attacks. The conclusion is that cover-
age of the tools is low, however when the techniques from the authors are used
(guided fuzzing and statefull fuzzing) more vulnerabilities are found.

In [16] a test suite for penetration testing tools is tested. The test is per-
formed with four commercial and open source penetration testing tools for web
applications, the names of these tools are not given in the paper. The tools are
tested against an imitation of an online banking web application. This appli-
cation contains several vulnerabilities, however the authors only test for XSS,
SQL injection, blind SQL injection and �le inclusion vulnerabilities. Each tool
is used multiple times against the application, every time a di�erent level of
defense is used. Examples of such a level of defense are typecasting the input
(casting the input to the type expected (e.g. integer or string)) or not showing
MySQL errors. No conclusion is drawn on the quality of the tools, but the
authors conclude that their test suite is e�ective for distinguishing tools based
on their vulnerability detecting rates. They also conclude that no tool is able
to �nd any vulnerability at level 2 or above.

In [19] penetration testing tools are tested to analyze the limitations of
these tools. The author performs the test with the tools Grendel-Scan, Wapiti,
w3af, Hailstorm, N-Stalker, Netsparker, Acunetix Web Vulnerability Scanner
and Burp Scanner. The tools are tested against a modi�ed version of the Bug-
gyBank web application and, because the author deemed this not suitable for a
full analysis of such tools because of its lack of features and functionality, against
a secure and an insecure (with vulnerabilities intentionally implemented) ver-
sion of the Hokie Exchange web application. The vulnerabilities that are imple-
mented in the insecure version, and thus are tested for, are SQL injection, XSS,
session management �aws, malicious �le execution and bu�er over�ow. Of all
of these vulnerabilities, except malicious �le execution and bu�er over�ow, mul-
tiple types (e.g. re�ected XSS, stored XSS etc.) are implemented. For example
SQL injection from form inputs and from cookie variables. The conclusion of
this thesis is that a testbed with secure and insecure versions of web applications
is a suitable method to discover why penetration testing tools produce false pos-
itives and false negatives. The conclusion on the quality of the tools is that they
perform relatively well in detecting the most simple kinds of SQL injection and
XSS. However, to detect non-traditional instances of SQL injection and XSS,
session management �aws, malicious �le execution and bu�er over�ows, much
work needs to be done to improve the techniques of the tools.

A similar conclusion is drawn in [14]. In this paper the penetration testing
tools Acunetix Web Vulnerability Scanner, Cenzic Hailstorm Pro, HP WebIn-
spect, IBM Rational AppScan, Mcafee SECURE, N-Stalker QA Edition, Qualys
QualysGuard PCI and Rapid7 NeXpose are tested against older versions of Dru-
pal, phpBB and Wordpress. The tools are also tested against a custom-built
testbed with vulnerabilities that have a proven attack pattern. The vulnera-

36

bilities that were tested for are XSS (multiple types), SQL injection (multiple
types), Cross-Channel Scripting, session management �aws, CSRF, information
disclosure, Server and Cryptographic Con�guration and Detection of Malware.
The authors concluded that penetration testing tools are adept at detecting
straightforward XSS and SQL injection vulnerabilities, but there is room for
improvement for advanced and second-order forms of XSS and SQL injection,
other forms of Cross-Channel Scripting, CSRF, and Malware Presence. The
authors also note that the tools require a better understanding of active content
and scripting languages, like SilverLight, Flash, Java Applets and Javascript.

In [20] a new tool CIVS-WS (Command Injection Vulnerability Scanner for
Web Services) has been created based on a new approach by the authors to
detected SQL/XPath injection. This tool is compared with HP WebInspect,
IBM Rational AppScan, Acunetix Web Vulnerability Scanner and VS.BB (a
tool that implements the approach proposed in [18]) by running them against
operations implemented by nine web services. A part of these services is speci�ed
by the TPC-App benchmark another part is public code. Only SQL injection
and XPath injection is tested for. The conclusion of the authors is that their
tool (CIVS-WS) achieved a coverage of 100% and 0% false positives.

In [15] the tools Acunetix Web Vulnerability Scanner, IBM Rational App-
Scan, Burp Scanner, Grendel-Scan, Hailstorm, Milescan, N-Stalker, NTOSpider,
Paros, w3af and HP WebInspect are tested against the web application Wack-
oPicko that has been created by the authors of the paper. The vulnerabilities
that were tested for are XSS (multiple types), SQL injection, command-line
injection, �le inclusion and �le exposure. The conclusion of the paper is that
crawling a modern web application is a serious challenge for penetration testing
tools and that support for well-known, pervasive technologies (such as Flash
and Javascript) should be improved, more sophisticated algorithms are needed
to perform "deep" crawling and track the state of the application under test,
and more research is warranted to automate the detection of application logic
vulnerabilities.

6.3 Summary

37

Table 6.1: Summary of related work
Paper Tools used
[13]

� Acunetix Web Vulnerability Scanner

� HP WebInspect

� IBM Rational AppScan

[14]

� Acunetix Web Vulnerability Scanner

� Cenzic Hailstorm Pro

� HP WebInspect

� IBM Rational AppScan

� McAfee SECURE

� N-Stalker QA Edition

� Qualys QualysGuard PCI

� Rapid7 NeXpose

[15]

� Acunetix Web Vulnerability Scanner

� Burp Scanner

� Cenzic Hailstorm Pro

� Grendel-Scan

� HP WebInspect

� IBM Rational AppScan

� Milescan

� N-Stalker QA Edition

� NTOSpider

� Paros

� w3af

[5]

� Acunetix Web Vulnerability Scanner (Free Edition)

� Burp Spider

� w3af

[16] Names are not given
[17] Names are not given
[18]

� Acunetix Web Vulnerability Scanner

� HP WebInspect

� IBM Rational AppScan

� VS.WS

[19]

� Acunetix Web Vulnerability Scanner

� Burp Scanner

� Cenzic Hailstorm Pro

� Grendel-Scan

� N-Stalker QA Edition

� w3af

� Wapiti

[20]

� Acunetix Web Vulnerability Scanner

� HP WebInspect

� IBM Rational AppScan

� VS.BB

� CIVS-WS

38

Chapter 7

Conclusion

The tools are able to �nd vulnerabilities in the test cases. However, there are
certain vulnerabilities that none of the tools can �nd. Also, all tools produce
false positives in certain test cases.

Section 7.1 is about the quaility of the tools divided into separate parts, in
section 7.2 conclusions about the tools are drawn based on the results of the
test cases. Section 7.3 contains the main conclusions of this thesis, section 7.4
is about the limitations of these tools, section 7.5 contains some suggestions
for improvement, section 7.6 contains conclusions on every tool used in this
thesis and section 7.7 is about how to choose a tool if one wants to test a web
application.

7.1 Quality of the tools

The quality of the tools depend on three properties:

� quality of crawling

� quality of fuzzing

� quality of "analyzing"

7.1.1 Quality of the crawling

The crawler is responsible for crawling the web application for pages that may be
vulnerable to a certain attack. The quality of the crawler can be determined by
the number of pages it crawls. It should crawl all pages of the web application,
but not include doubles. The crawling phase is independent of the type of
weakness that is tested for or present in the web application.

Initially, all the tools failed to crawl the entire WebGoat, after changing the
settings of the tools only the commercial JSky failed to crawl WebGoat.

For phpBB the opposite was true. Only JSky was able to crawl it like it
should. The free tools managed to crawl it as well, but these crawled double
pages with only a di�erent sid as well. The sid consists of 32 hexadecimal digits,
which means that the free tools will �nd every page 512 times. This causes the
crawling phase to take a very long time.

Mutillidae was crawled successfully by all tools, except for w3af.

39

7.1.2 Quality of the fuzzing

The fuzzer is responsible for entering input that may expose a vulnerability.
The quality of the fuzzer can be determined by what it inputs to �nd a certain
vulnerability. These inputs should work for a certain vulnerability regardless of
the underlying web- or SQL-server.

It is hard to tell how to determine the quality of the fuzzing as there exists
no problem that is clearly caused by the fuzzing. However, some problems (like
false negatives) may be caused by the fuzzing. By analyzing the cause of such
a problem it can be determined if it was caused by the fuzzing phase.

7.1.3 Quality of the analyzing

The analyzer is responsible for analyzing the results of the inputs from the
fuzzer. It should discover the vulnerabilities without producing false positives.

For WebGoat, only Arachni was able to �nd a few SQL injection vulnerabil-
ities, the other tools did not because they could not be ran against WebGoat or
did not recognize the error message from the web- or SQL-server.

Also, all the tools produced quite a lot of false positives when trying to
detect XSS vulnerabilities in WebGoat.

For phpBB, none of the tools discovered all vulnerabilities. JSky and Webse-

curify discovered the most vulnerabilities, even though they both did not discover
the command injection vulnerability. Only w3af discovered that vulnerability.

The results against Mutillidae are quite peculiar, because JSky performed
less than the free tools. JSky is the only commercial tool in the test. One would
expect that a program that costs money performs better than, or at the least
equal to, free programs.

False positives are caused by the analyzing part, as it means it wrongly
recognizes a vulnerability that is not there.

False negatives can be caused by the crawling, fuzzing or analyzing part.
The crawling part may fail to reach the page with the vulnerability. The fuzzing
part can cause false negatives by using "wrong" inputs that do not exploit a
vulnerability. The analyzing part can be wrong in not recognizing a vulnerability
that is there.

7.2 Conclusions per test case

The tools were tested by running them against several test cases. This section
draws conclusions based on what every test case has shown about the use of these
tools. Even though most of the test cases were not "real" web applications, the
techniques they use are the same as in "real" web applications, therefore the
results against the test cases are valid for use against "real" web applications as
well. Some test cases revealed problems with a speci�c tool, these are explained
in 7.5. Some test cases revealed problems with a speci�c tool, these are explained
in 7.5.

7.2.1 General

� All test cases revealed that the tools only test for XST by testing if the
web server supports HTTP TRACE. The tools do not check if this can be

40

abused

7.2.2 MiniSQLApp

� MiniSQLApp revealed that the tools are able to crawl a simple web ap-
plication and can detect an SQL injection vulnerability; however, not all
tools can detect blind SQL injection vulnerabilities

7.2.3 WebGoat

� WebGoat revealed that all the tested tools experience problems when au-
thentication is used; however, for all the tools except JSky, could this be
resolved

� WebGoat also revealed that the tools, except for Arachni, did not recognize
the error message by the SQL server used by WebGoat

� WebGoat revealed as well that the tools test for XSS vulnerabilities by
trying to inject an HTML tag, but the tools only test if this tag is present
on the page, they do not test if this presence is on a location where the
tag is parsed (i.e. not in an HTML attribute)

7.2.4 phpBB

� phpBB revealed that all the tools, except for JSky experience problems
when a session id is used

7.2.5 Mutillidae

� Mutillidae revealed that none of the tools tries to perform an XSS attack
by fuzzing the headers it sends to the web server

� Mutillidae also revealed that the tools only fuzz one input at a time, this
caused the tools to miss an SQL injection in a form with two password
�elds that had to be equal

7.3 Main conclusions

The tools are able to �nd vulnerabilities in web applications and are, in general,
easy to use, however as of yet they are by no means a complete solution to make
a web application safe. The tools have quite a high number of false positives and
false negatives, so a manual review of the false positives and the code in general
(because of false negatives) is still necessary. The tools provide a good report
of vulnerabilities that makes it pretty easy to verify the reported vulnerabilities
(although in the test with Websecurify against WebGoat, Websecurify's report
did not specify the pages with the discovered vulnerabilities correctly). However,
because most of the reported vulnerabilities have to be veri�ed manually (some
of the reported vulnerabilities are clearly false or true positives and do not have
to be tested), it can take hours (especially with a big web application) to verify
all reported vulnerabilities to determine which are true positives and which are
false. Determining the false negatives in a real web application is much harder as

41

Table 7.1: Final results of the tools against the di�erent test cases, ++ = very
good, + = good, +/� = average, � = bad, �� = very bad, a question mark
indicates that it could not be determined;1did not work initially, but could be
solved

MiniSQLApp WebGoat phpBB Mutillidae

C
ra
w
li
n
g

F
u
zz
in
g

A
n
a
ly
zi
n
g

C
ra
w
li
n
g

F
u
zz
in
g

A
n
a
ly
zi
n
g

C
ra
w
li
n
g

F
u
zz
in
g

A
n
a
ly
zi
n
g

C
ra
w
li
n
g

F
u
zz
in
g

A
n
a
ly
zi
n
g

JSky ++ +/� ++ �� ? ? ++ + +/� ++ � ��
w3af ++ ++ ++ +/� � �� �� ? ? �� +/� ++
Wapiti ++ ++ ++ +/� +/� �� �� ? ? ++ + ��
Arachni ++ ++ ++ +/� +/� +/� �� ? ? ++ + +
Websecurify ++ +/� ++ +/� �� ++ �� ? ? ++ +/� ��

they are not known. In the test web applications like WebGoat and Mutillidae
it is possible, but very time consuming. To determine the false negatives and
the cause of it the tools have to be run again against the speci�c page of the
web application that produces the false negative, while monitoring what the tool
sends to the web application and what it receives (e.g. with a packet sni�er).
Determining false negatives in these cases will take several hours.

Table 7.1 contains the main conclusions on every tool per test case.
For crawling the deciding factor was the number of pages the tool could

crawl. If it crawled all pages without requiring any con�guration it gets the
rating ++. If it fails to crawl all pages, but manages to crawl more than half
of the number of pages it gets the rating +. If it only crawls about half of the
number of pages or requires the user to help it gets the rating +/�. If it crawls
less than half of the number of pages it gets the rating �. If it fails to crawl the
web application completely it gets the rating ��.

For fuzzing the deciding factor was the amount of true and false negatives.
If the tool could �nd more than 90% of all vulnerabilities it get the rating ++.
If it �nds 60-89% it gets the rating +. If it only �nds 40-59% it gets the rating
+/�. If it �nds 10-39% it gets the rating �. If it �nds less than 10% it gets the
rating ��.

For analyzing the deciding factor was the amount of false positives and
duplicates. If the tool produced less than 10% false positives and duplicates it
gets the rating ++. If the tools produced 11-39% false positives and duplicates
it gets the rating +. If it produced 40-59% false positives and duplicates it gets
the rating +/�. If it produces 60-89% false positives and duplicates it gets the
rating �. If the tool produced more than 90% false positives and duplicates it
gets the rating ��.

7.4 Limitations

All of the tools seem to have problems when web applications use techniques that
are a bit more advanced than average pages, for instance cookies for logging in
and session ids. When these tools are used, they should be monitored carefully
to detect and solve these problems.

42

7.5 Suggestions for improvement

In this section suggestions to improve the tools will be given. This will contain
both suggestions for the tools in general and speci�c suggestions for each tool.

7.5.1 Suggestions in general

Improving the crawling

� the tools should be able to handle session ids in the URL better, this can
either be done by allowing the user to specify this id (like with cookies)
or the tools should test if the only di�erence in pages they are crawling is
the session id; this suggestion is based on the results of the test against
phpBB

� right now the tools only fuzz one input at a time, in certain cases a vul-
nerability can be found by fuzzing multiple inputs at the same time; this
problem was revealed by Mutillidae

Improving the fuzzing

� the tools should also try to fuzz headers (like the referrer or the user-agent)
as well as "normal" inputs; this suggestion is based on the results of the
test against Mutillidae

� currently the tools only test for XST vulnerabilities by checking if the
web server supports HTTP TRACE, the tools should also try to abuse
this functionality; this suggestion is based on the results of all test cases

Improving the analyzing

� when testing for XSS vulnerabilities, the tools should check where the
HTML code appears to see if the code would be executed/parsed by the
browser (i.e. the code does not appear in a textarea or a similar �eld);
this suggestion is based on the results of the test against WebGoat

� when testing for XSS vulnerabilities, the tools should precede the HTML
code they inject with "> to close any tag in which the code may appear
(e.g. an input �eld or link); Wapiti already does this in certain cases,
presumably only in GET parameters; right now the tools only test if the
injected text is present on the page, however this might be inside an HTML
tag, for instance <input type="text" value="injected text">; if this is the
case, the injected text is not parsed by the browser; if the tools precedes
the injected text with "> the resulting HTML will be <input type="text"
value="">injected text">; this way the browser will parse the injected
text; ; this suggestion is based on the results of the test against Mutillidae

� the list of error messages that shows SQL injection is possible should
be increased; this suggestion is based on the results of the test against
WebGoat

43

7.5.2 w3af

Improving the crawling

� use textareas for fuzzing as well, just like the other tools, instead of only
inputs that are created by the input HTML tag; this suggestion is based
on the results of the test against Mutillidae

� handle multiple pages better, so that all vulnerabilities can be found re-
gardless of the number of pages that is set as target; this suggestion is
based on the results of the test against Mutillidae

Improving the fuzzing

� send the name/value pair of the submit button in the HTTP POST data
to the page as well as the other inputs; this suggestion is based on the
results of the test against Mutillidae

7.5.3 Arachni

Improving the fuzzing

� change the test for SQL injection, right now it adds '-;' to the default
value or 1'-;' if there is no default value, this does not result in a SQL
injection in all servers; a better input would be an odd number of quotes
(single and double); this suggestion is based on the results of the test
against WebGoat

7.6 Conclusion about each tool

JSky was a bit of a disappointment as well, especially as it is a commercial tool.
Despite this fact it failed against WebGoat and was outperformed by the free
tools against the other test cases, with the exception of XSS vulnerabilities in
phpBB.

w3af scored mediocre. It did discover a number of vulnerabilities, but it
never excelled in any category or test case. Except for command injection in
phpBB, other tools discovered more vulnerabilities in the other categories and
test cases.

Except for the phpBB and zero.webappsecurity.com case studies, Wapiti dis-
covers a lot of vulnerabilities. However, a lot of these are double or false pos-
itives. If only unique true positives are taken into account, it still discovers a
high number of vulnerabilities, although it failed to detect any vulnerability in
phpBB.

Arachni performs pretty good as well. It is the only tools that discovered
any SQL injection vulnerabilities in WebGoat. For the other tests it performed
quite similar to Wapiti, but with less doubles and false positives.

Websecurify was a bit of a disappointment. In all test cases it was by far the
fastest program and because of its GUI the easiest to use, however despite its
claim that it detects the entire OWASP top 10, in the test cases it only detected
XSS and SQL injection vulnerabilities. Also, it was the only tool in the test
that failed to detect blind SQL injection.

44

7.6.1 General

It is impossible to name a tool that is the best. The reason is that the usefulness
of the tools depends on what web application is going to be tested and what
vulnerabilities is going to be tested for.

As mentioned by several papers, [13, 14, 15, 5, 17, 18, 19], and the false
negatives in the tests none of the tools are able to discover all vulnerabilities.
Also, the tools have problems when the web application that is being tested is
not a straightforward static web page. When the web application uses techniques
like authentication or session ids the tools have problems with crawling the pages
of the web applications that use these techniques.

Other papers mention that the tools produce a lot of false positives [13, 17,
18], in the tests in this thesis it appeared that the tools do indeed produce
quite a high number of false positives. The tests in this thesis also showed that
some tools produced duplicates and had problems with crawling certain web
applications. None of the related work mention any of these problems.

7.7 Choosing a tool

When a session id is used the only tool in this test that can handle it correctly is
JSky. However, if HTTP authentication is used with a cookie, none of the tools
works by default. However, all tools except JSky can be made to work in this
case. In these tests, the most vulnerabilities are found by Wapiti and Arachni,
although Wapiti produces a lot of duplicate results and quite a high number of
false positives. However, these results only apply to the test cases used in this
thesis, for other test cases the results may di�er. Also, as none of the tools is
able to �nd all vulnerabilities in a web application, currently the best way to
�nd as many vulnerabilities as possible is to use multiple tools.

45

Chapter 8

Future work

Obvious ideas for future work would be to test other tools and vulnerabilities.
However, because of the amount of tools, vulnerabilities and test cases this can
go on for a very long time. A suitable way to test such tools is to divide it into
two separate parts:

1. Crawling

2. Fuzzing and Analyzing

The quality of crawling is independent of the quality of fuzzing and analyzing.
These two parts can both be tested separately. To test the fuzzing and analyzing
web applications like WebGoat and Mutillidae can be used, they use the same
techniques as "real" web applications with the advantage that the vulnerabilities
that are present are known. To test the crawling one would have to �nd or create
a test suite that uses several techniques to test the crawling part.

46

Bibliography

[1] Howard, M., LeBlanc, D., Viega, J.: 24 Deadly Sins of Software Security:
Programming Flaws and How to Fix Them. 1 edn. McGraw-Hill, Inc., New
York, NY, USA (2010)

[2] Oehlert, P.: Violating Assumptions with Fuzzing. IEEE Security and
Privacy 3 (2005) 58�62

[3] Palmer, S.: Web Application Vulnerabilities: Detect, Exploit, Prevent.
Syngress Publishing (2007)

[4] Sutton, M., Greene, A., Amini, P.: Fuzzing: Brute Force Vulnerability
Discovery. Addison-Wesley Professional (2007)

[5] Mcallister, S., Kirda, E., Kruegel, C.: Leveraging User Interactions for
In-Depth Testing of Web Applications. In: Proceedings of the 11th inter-
national symposium on Recent Advances in Intrusion Detection. RAID '08,
Berlin, Heidelberg, Springer-Verlag (2008) 191�210

[6] Zhao, G., Zheng, W., Zhao, J., Chen, H.: An Heuristic Method for Web-
Service Program Security Testing. ChinaGrid, Annual Conference 0 (2009)
139�144

[7] HP: HPWebInspect (2009) http://www.hp.com/spidynamics/products/webinspect/.

[8] NOSEC: JSky (2010) http://www.nosec-inc.com/en/products/jsky/.

[9] Riancho, A.: w3af (2011) http://w3af.sourceforge.net.

[10] Surribas, N.: Wapiti (2009) http://wapiti.sourceforge.net.

[11] Laskos, A.: Arachni - Web Application Vulnerability Scanning Framework
(2011) https://github.com/Zapotek/arachni.

[12] : Websecurify (2011) http://www.websecurify.com.

[13] Vieira, M., Antunes, N., Madeira, H.: Using Web Security Scanners to
Detect Vulnerabilities in Web Services. 2009 IEEEIFIP International Con-
ference on Dependable Systems Networks (2009) 566�571

[14] Bau, J., Bursztein, E., Gupta, D., Mitchell, J.: State of the Art: Auto-
mated Black-Box Web Application Vulnerability Testing. In: Proceedings
of the 2010 IEEE Symposium on Security and Privacy. SP '10, Washington,
DC, USA, IEEE Computer Society (2010) 332�345

47

[15] Doupé, A., Cova, M., Vigna, G.: Why Johnny can't pentest: an analysis of
black-box web vulnerability scanners. In: Proceedings of the 7th interna-
tional conference on Detection of intrusions and malware, and vulnerability
assessment. DIMVA'10, Berlin, Heidelberg, Springer-Verlag (2010) 111�131

[16] Fong, E., Gaucher, R., Okun, V., Black, P.E., Dalci, E.: Building a Test
Suite for Web Application Scanners. In: Proceedings of the Proceedings
of the 41st Annual Hawaii International Conference on System Sciences.
HICSS '08, Washington, DC, USA, IEEE Computer Society (2008) 478�

[17] Fonseca, J., Vieira, M., Madeira, H.: Testing and Comparing Web Vul-
nerability Scanning Tools for SQL Injection and XSS Attacks. Paci�c Rim
International Symposium on Dependable Computing, IEEE 0 (2007) 365�
372

[18] Antunes, N., Vieira, M.: detecting SQL Injection Vulnerabilities in Web
Services. Dependable Computing, Latin-American Symposium on 0 (2009)
17�24

[19] Shelly, D.A.: Using a Web Server Test Bed to Analyze the Limitations
of Web Application Vulnerability Scanners. Master's thesis, Virginia Poly-
technic Institute and State University, Blacksburg, Virginia (July 2010)

[20] Antunes, N., Laranjeiro, N., Vieira, M., Madeira, H.: E�ective Detection
of SQL/XPath Injection Vulnerabilities in Web Services. In: Proceedings
of the 2009 IEEE International Conference on Services Computing. SCC
'09, Washington, DC, USA, IEEE Computer Society (2009) 260�267

48

Appendix A

MiniSQLApp

index.php

<html>

<head>

<title>Test SQL injection</title>

</head>

<body>

other page

another page

</body>

</html>

index1.php

<html>

<head>

<title>Test SQL injection</title>

</head>

<body>

<?php

if ($_SERVER['REQUEST_METHOD'] == "POST")

{

mysql_connect("localhost", "root", "");

mysql_select_db("test");

$query = "SELECT * FROM test WHERE name='" . $_POST['name'] . "'";

$result = mysql_query($query) or die (mysql_error());

if (mysql_num_rows($result) == 0)

{

echo "Not found";

}

while ($row = mysql_fetch_assoc($result))

{

echo $row['id'] . " => " . $row['name'] . "
\n";

}

}

?>

49

<form name="form" action="" method="post">

<input type="text" name="name"> Name

<input type="submit" name="smb" value="Find name">

</form>

</body>

</html>

index2.php

<html>

<head>

<title>Test SQL injection</title>

</head>

<body>

<?php

if ($_SERVER['REQUEST_METHOD'] == "POST")

{

mysql_connect("localhost", "root", "");

mysql_select_db("test");

$query = "SELECT * FROM test WHERE name='" . $_POST['name'] . "'";

$result = mysql_query($query);

if (mysql_num_rows($result) == 0)

{

echo "Not found";

}

while ($row = mysql_fetch_assoc($result))

{

echo $row['id'] . " => " . $row['name'] . "
\n";

}

}

?>

<form name="form" action="" method="post">

<input type="text" name="name"> Naam

<input type="submit" name="smb" value="Find name">

</form>

</body>

</html>

50

