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Chapter 1

Introduction

1.1 Problem Statement

For over 10 years, the idea of Probabilistic Relational Models is floating around in scientific IT-
research. Already in 1997, [KP97] described a language to represent Object Oriented Bayesian
Networks, another name under which PRMs are known. Still, here we are in 2011 and a lot
of problems with these PRMs haven’t been tackled sufficiently.

Before getting into the problems with PRMs, let us first look at the main idea behind
PRMs. When modeling a complex domain, uncertainty is one of the main issues to tackle.
Of course, when problems arise, so do solutions: in this case Bayesian Networks are most
common to use. However, BNs give us a major problem: they are not that good in modeling.
In fact, [KP97] describe it as: the task of programming using logical circuits.

So we need something to do the modeling part. [KP97] decided to use Object Orientation
for this. They name it Object Oriented Bayesian Networks (OOBN), because it is a combina-
tion of Object Orientation and Bayesian Networks. In the last decade both the terms OOBN
and PRM have been used for the same thing, with PRM eventually being the most commonly
used one. According to [GFK+07] a PRM specifies how probabilities can be distributed over
a database. Their article then specifies a PRM over their database model. However, their
database model is very rudimentary, giving a big opportunity for improvement of this model.

In 2010, [SEJ10] try to make a practical implementation of a PRM, connecting it to UML
CD. With this, they improve the database model [GFK+07] give, but it still has its limitations:
UML is not able to express a lot of constraints and their article is limited to a security domain.

After digging into the research behind Probabilistic Relational Modeling, we see a recur-
rent problem: finding a good graphical modeling language on which a PRM can be expressed,
which is able to express constraints on the model itself. In this thesis it is tried to use an ex-
isting modeling language, ORM, and take a look if it can support PRMs without having the
problem of being graphically limited. So, can ORM support the graphical representation of a
PRM? And if it can not, is it easily extended to do so?
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6 CHAPTER 1. INTRODUCTION

1.2 Research Question & Method

The main goal of this thesis is to look at existing PRM frameworks and try to combine PRM
with the modeling language ORM. The focus lies on graphical representations, not the formal
part of models. This means that we will not try to validate or formal define the examples
and models we give. It is a study of what is graphically possible with PRM models and
its combination with ORM. To research the graphical representation of PRM in ORM the
following main research question has been defined:

How can Probabilistic Relational Models be graphically expressed in ORM and what can be the
possibilities of this expression?

To answer this question, a couple of subquestions need to be answered. The basis of
subquestion 1, 2 and 3 is the scientific literature. All facts and figures are based upon the
found literature. Not always references to the articles will be present, but unless stated
otherwise, it are the findings from the articles written down in our own words. We are, as
always, standing on the shoulders of giants.

1.2.1 What is a Probabilistic Relational Model (PRM)?

A quite fundamental subtopic is to explain what a PRM exactly is. Which models qualify
for this term? Where did the PRMs originate from? We also take a look at the differences
between PRMs and OOBNs, two terms used for what we now call PRMs. We will use the
scientific literature about PRMs and OOBNs as source for answering these question. Exam-
ples of this literature are [BB58], [BW00a], [GFK+07], [KP97], [Pfe99], [TWG10]. Output of
this subquestion will be a global definition of PRMs, a short overview of the articles written
about PRMs and the ideas found in them and an explanation of the terms OOBN and PRM.

1.2.2 What does a PRM Framework look like?

Now we have defined what the term PRM means, it is needed to find examples of graphical
representations of PRMs. Again, the literature gives us the information we need. This study is
to find inspiration and examples of how to represent the PRMs in other modeling languages
and the good and bad practices. This will mean we will compare the three frameworks
with each other. Also, we will introduce the case study used to give examples of these
graphical representations. We will use three frameworks, by [KP97], [BW00a] and [GFK+07].
The output of this chapter will be a description of our case study and descriptions of three
frameworks, one which will be used in the creation of a connection between PRMs and ORM.

1.2.3 What is Object Role Modeling (ORM)?

In this subquestion the existing modeling language, ORM, will be described and we will dis-
cuss why ORM (and not another from all the available languages) is used. This subquestion
is not only for the people who do not know ORM. The goal of this subquestion is also to
formulate an interpretation and semantics of the language and to make a good foundation
for the usage of ORM in the last subquestion. We will use [Hal98] as source for the ORM de-
scription. This article is written by Terry Halpin, one the founding fathers of ORM. The case
study will be used to show the construction of an ORM schema. Finally we will discuss why
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we used ORM and not an other language, like UML, for this thesis. With this subquestion we
lay the last foundation for converting ORM to a PRM-supporting language.

1.2.4 ORM and PRM: a Working Combination with new Possibilities?

With this subquestion we try to convert the found graphical representations from the second
subquestion to ORM. We will use the framework of [GFK+07] as source for the conversion.
There will be an in depth study of what is possible to express in ORM regarding PRMs and
what is not. Besides that, we take a look if the advantages ORM has over other modeling
languages also gives an advantage when expressing PRMs in them. The result will be a
mapping from the framework of [GFK+07] (GFW) and ORM as described in subquestion
3 and we will discuss the answer to the question why using ORM can have an advantage
over using other modeling languages for PRM. We will try to play a bit with the graphical
possibilities has and see if they give new options in the combination of ORM and PRM, called
P-ORM. The output of this subquestion will be many conversion-figures between GFW and
ORM, and figures which illustrate the (new) possibilities of P-ORM.

1.2.5 Answering the research question

After answering the subquestions, we should have found if it is possible to combine PRM
with ORM and the new possibilities that this combination may give. The answer on this
question will be a summary of the important findings we did in subquestion 4, backed by the
theory we found in subquestions 1, 2 and 3. Possible future research will also be discussed.

1.3 Structure of this thesis

The structure of this thesis will be as follows: you are now in chapter one, introducing this
thesis. Chapter two will show the results of the research for subquestion 1: What is a PRM?.
Chapter three will do the same for subquestion 2: What does a PRM Framework look like?.
Chapter four will describe ORM and the other topics belonging to the subquestion What is
Object Role Modeling (ORM)?. Chapter five is about subquestion 5: ORM and PRM: a working
combination with new possibilities?. Chapter six will conclude this thesis with a summary,
evaluation of the subquestions, the answer to our main research question and possibilities for
future work.
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Chapter 2

What is a PRM?

This chapter explains what Probabilistic Relational Models (PRMs) exactly are and why they
are used. The first part will give definitions of what a PRM is by walking you through the
history of PRMs. The second part summarizes this history and the different definitions of
PRMs.

2.1 The core of PRMs: Bayesian Networks

But first we start with a short description of the basis of all PRMs, Bayesian Networks (BN).
A BN consists of a given set of random variables (integers), which have a fixed relationship
with each other. An example of a Bayesian Network can be found in figure 2.1. Most of
the time, a BN uses probabilities as variables and can do some kind of prediction of chance.
In the example, it is calculated what caused wet grass with a certain probability. It is also
possible to add more variables to it, letting the BN also predict values for these variables.
The predicting is based on the probability theory of Thomas Bayes [BB58], hence the name
Bayesian Networks.

Figure 2.1: Example of a Bayesian Network with probability distribution.
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10 CHAPTER 2. WHAT IS A PRM?

As said, in most cases a BN would be sufficient to model a domain with uncertainty.
When modeling, for example, possible diagnosis for certain symptoms (like coughing and
shortness for breath are symptoms for pneumonia), a BN will do its job just fine. The chance
that a combination of certain symptoms gives away a certain medical condition is (sort of)
fixed. However, the given definition of a BN also gives away its major drawbacks: BNs are
limited to prespecified variables and fixed relationships [GFK+07].

Besides the above mentioned drawbacks of BNs, there is another one: a BN can only be
used in the specific domain it was created for. When creating a model for a complex domain,
it would be nice to, with some small editing, be able to use it for another domain. Conclusion:
BNs are not suited to be used for a changing and complex domain (a complex domain can be
seen as a domain with hard-to-define, changing relationships between entities). So, something
else is needed to help us model domains with uncertainty.

2.2 The beginning of PRMs: OOBN

[KP97] seem to have found a suitable solution: combining BNs with Object Orientation (OO).
The power of OO lies in the way it can, in a simple manner, express relations between complex
and basic objects [KP97]. A complex object, in fact, is nothing more than an object consisting
of one or more basic or complex objects. These basic objects can be seen as attributes. Their
idea is simple: using BNs to create a probabilistic model using the assignment of values to a
certain object. They give it the name OOBN, Object Oriented Bayesian Networks.

The first description of what [KP97] see as an OOBN is found in their introduction and
could be summarized as: OOBNs use the declarative probability semantics of BN in combi-
nation with the organizational aspects of Object Oriented models. Their OOBN consists of
objects, which can be standard random variables (as in traditional BNs) and complexer ob-
jects, which can have other objects as attributes. A detailed description of their framework can
be found in the next chapter. The objects are then treated as stochastic functions: a function
that returns a probability distribution for each value of its inputs. The returned probabili-
ties are distributed via outputs. Complex objects can be calculated by combining different
stochastic functions.

To generalize over multiple objects, objects belong to certain classes. Each class has the
same probabilistic model underneath it, which gives it the possibility to use it in different
contexts. Just like a BN, an OOBN has an unique probability distribution, which gives it the
ability to be interpreted unambiguously. This means that if an OOBN contains more than one
instantiation, every instantiation has to be defined separately in a BN. Besides generalization,
classes also support inheritance. Because each attribute is a stochastic function, a subclass can
easily redefine some functions or add new ones.

Besides being a nice language for representing complex probabilistic models [KP97], OOBNs
also give the opportunity to represent a domain in a hierarchic way, as interconnected objects.
[KP97] give a good example themselves, shown in figure 2.2.
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Figure 2.2: Example of hierarchy of interconnected objects [KP97].

2.3 From OOBN to PRM

Using the work of [KP97] as a base, [FGKP99] are the first to formally speak of Probabilistic
Relational Models. According to Friedman a PRM allows the properties of an object to prob-
abilistically depend on not only the properties of the object itself, but also on properties of
other objects. When giving their formal definition of a PRM, they also state that a PRM can
express more information than a BN. This is because a BN can only be expressed over a fixed
set of attributes. A PRM, however, can be used over any set of attributes (it can be used over
more than one domain). When comparing this to [KP97] the definition is basically the same,
stressing the strength of the ability to define a model for more than one context or domain.

2.4 OOBN revisited

The 2000-article by [BW00a] jumps back to [KP97], speaking of OOBN instead of PRM. Di-
rectly based on this article is the work by [LB01]. This article is trying to come up with an
other solution than [KP97]: they use a top-down approach, where [KP97] had a ‘normal’
modeling approach. Still, their vision on an OOBN is the same, facilitating the construction
and modification of repetitive structures. Also providing a natural way of the reuse of certain
model fragments. The biggest benefit of Object Orientation, class hierarchy, is a powerful tool
to help construct and modify these models.

Building on the work of [BW00a] and [BW00b], [BFJ03] tries to optimize the practical part
of OOBNs. The problem they find with the current implementations of OOBNS is that there
has been no attempt to benefit (read: exploit) the instance-structure of OOBNs. This means
to do calculations with an OOBN, you first need to extract a BN from it and then create
a junction tree from it. To optimize this process, [BFJ03] try to take away the second step,
directly translating an OOBN to a junction tree.
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2.5 PRM again

The definition [GFK+07] give for PRM, is shown in the conclusion of this chapter. For the
first time, a definition of PRM is given which tells us what a PRM contains: a template for
a probability distribution over a database which contains (1) a relational component describ-
ing the relational schema for the domain and (2) a probabilistic component describing the
probabilistic dependencies present in the domain [GFK+07]. When comparing this to the
definitions given by [KP97] (1) could be the model consisting of basic- and complex object,
while (2) could be the BN, supporting the probability distribution. In the next chapter, the
framework of [GFK+07] will be shown in its detail.

2.6 The shortcomings of PRM

PRMs are still not perfect. With their article, [TWG10] try to extend [BW00a]’s framework.
Funny thing is that [BW00a] still speak of OOBNs, while [TWG10] speak of PRMs. Comparing
definitions of both, it can be said they are the same with PRM being the more popular term
for it. Their major problem with existing PRMs is the lack of real usage of class inheritance.
The definition of PRMs found in [KP97] and [BW00a] still hold for [TWG10]. But, because
they try to fix one of the shortcomings of PRM, an addition to these definitions is done: a
PRM, for them, now also contains interfaces, attribute typing, type inheritance and attribute-
and reference overloading. The workings of these additions will be explained in the next
chapter. For future work, [TWG10] see room for improvement in the graphical section, which
is what we are trying to do in this thesis.

2.7 The practical part of PRM

Figure 2.3: Example of a UML Class Diagram (from uml.com.cn)

Being the first article to be all about a practical implementation for PRMs, [SEJ10] do
not redefine the PRM or OOBN definitions. [SEJ10]’s definition is similar to the one from
[GFK+07]. It describes a PRM containing a template for a probability distribution over an
architecture model. The template contains the meta model for the architecture model and
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also the probabilistic dependencies between attributes of the classes in the architecture model.
This definition can be traced back to [GFK+07] and [BW00a]. An interesting notion from the
article is the combination of a PRM with Class Diagrams from the UML language. Because
UML Class Diagrams (UML CD, see figure 2.3) and ORM models are related this article
showed how PRM can be used in an existing modeling language. Where [GFK+07] still used
a limited database model, [SEJ10] use a more powerful language, UML CD. The limitation of
this article is that it is specific for a computer security related domain. The main contribution
of the article is a package of abstract PRM-classes, applicable on security risks coming from
architecture models.

2.8 Concluding

In this chapter, we showed a small time line of the contributions to the PRM and OOBN
field, making the reader familiar with the different articles about those two subjects and we
tried to show the different definitions these articles gave and compare them to each other. To
summarize the what in ‘What is a PRM?’ this thesis from now in will use the definition of
[GFK+07]: A PRM specifies a template for a probability distribution over a database. The template
includes a relational component that describes the relational schema for our domain, and a probabilistic
component that describes the probabilistic dependencies that hold in our domain. A PRM has a coherent
formal semantics in terms of probability distributions over sets of relational logic interpretations.

What exactly is meant by this definition and how it can be expressed, will be shown in
the next chapter. Here, three frameworks of PRMs will be discussed, namely [KP97], [BW00a]
and [GFK+07].
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Chapter 3

What does a PRM Framework look
like?

As we saw in chapter 2, there are different implementations of a PRM: first we have the
implementations which are still called OOBNs: [KP97], [BW00a]. Then there are the ones
who speak of PRMs: [GFK+07], [TWG10] and [SEJ10]. All these different implementations
are either based on the framework of [KP97] or on the one given by [BW00a]. While it is
strongly based on [KP97] and [BW00a], the framework created by [GFK+07] gives a much
more modern view on PRMs. By discussing these three frameworks, a broad understanding
about PRMs can be created, giving us the ability to make the combination of ORM and PRM
in chapter five.

This chapter will discuss the following subjects: in the second section [KP97]’s framework
will be discussed, in the third the frameowkr of [BW00a]. The fourth section will discuss
the framework of [GFK+07] and the fifth concludes this chapter. First, a description of the
running example used throughout this thesis will be given.

3.1 Running Example

The Running Example below will be used to explain and illustrate concepts we find in the
articles about PRM and in the next chapter ORM. The basic notation we use is based on
the one [LB01] use for their cow-example. Throughout this and later chapter, the notation
may vary. We name this example the Running Example (RE) (as it is based on sports, a
fitting name). The RE will slowly develop and be defined using the different perspectives
found in the literature. It will be used to illustrate concepts from the articles if the authors
themselves fall short in giving a(n) (good) example. If the articles have good examples and
figures themselves, we will use them instead of our own Running Example.

The idea behind the RE is the following: a Sporting Team consists of a selection of (1)
Players, (2) a Trainer and (3) a Country. (1), (2) determine the Performance of the team. And the
Performance determines the Prizes a team will win, the amount of Revenue the team revenues
and how large its Fanbase is. The Fanbase is also influenced by the country the team is in.
This is because a sport can be favored more in a certain country than in an other. Also, the
bigger the country, the more fans there likely will be. The Revenue is also influenced by the

15
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Fanbase. The more fans a team has, the more revenue it makes. The whole schema is shown
in figure 3.1.

Figure 3.1: Running Example of Sports Team

3.2 OOBN

Before describing the framework [KP97] give, we first need some kind of definition. In their
paper, [KP97] describe OOBNs as: object-oriented Bayesian networks (OOBNs), a powerful and
general framework for large-scale knowledge representation using Bayesian networks. As we will show,
OOBNs combine clear declarative probabilistic semantics with many of the organizational benefits of
an objectoriented framework. The article by [KP97] is the main source for this section. Unless
specified otherwise, all quotations come from their article.

First, a description of [KP97]’s graphical representation will be given. Then, the inheri-
tance in their framework will be defined. Finally, we discuss the strengths and weaknesses of
this framework.

3.2.1 Graphical Representation

The basic building block here is the object. This object can refer to a physical entity (a house,
a car), an abstract entity (a disease, a chemical substance) or a relationship between different
entities.

Definition 1. A basic type is a set of values, which is a predefined type (Integers, Booleans,
Reals) or a user-defined enumerated set (e.g. week = {monday, tuesday, wednesday,...}). In
the RE, Revenue can be seen as predefined, being some kind of integer. Country can be
user-defined as country = {Albania, Algeria, ..., Zimbabwe}.

A basic variable is a variable which takes values in a basic type. Then there are the struc-
tured types, which consist out of basic or structured types.
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Definition 2. A structured type is a set of values defined by a tuple (A1 : t1.....An : tn), where Ai
is the label for the attribute and ti the corresponding (basic or structured) type. The matching
value vi is that with label Ai and type ti. In the RE, Players can be seen as a structured type,
containing an amount of players of the type Player. The name of the player is the attribute
label. A player itself is also a structured type, inheriting attributes from a Person and some
additional attributes, belonging to an athlete.

Example 1. In our RE, Trainer is a structured type, containing attributes defining a trainer.
These attributes could be Age, Gender, Description and Trainers Experience. Age is a basic pre-
defined type, based on integers (and most of the time < 100). Gender is a basic user-defined
type GENDERS = {male, f emale}. Trainers Experience is a user-defined type Experience =

{0, 1− 5, 6− 10, 10− 15, > 15}. Description is the description of the appearance of the trainer.
It is a structured type, containing attributes like Height, Weight, Eye Color and Hair Color.
These are all basic types, with Height and Weight being integers and Eye Color and Hair Color

user-defined types.

With these two definitions, objects can be defined. Objects are composed of two types of
attributes: input attributes and value attributes. Input attributes are parameters to the object
and influence the choice of values for the vale attributes. Complex attributes can be created
when these attributes are objects themselves. Value attributes are divided into two types:
output attributes (visible to rest of model) and encapsulated attributes (only visible within the
object).

Definition 3. A simple object X is of a set of labeled input attributes I1, ..., Ik and a single output
attribute. All of X’s attributes are basic variables.

Definition 4. A complex object X is composed of a set of labeled attributes. The attributes
are partitioned into three sets: the input attributes I(X), the output attributes O(X) and the
encapsulated attributes E(X). These two are also called value attributes and denoted A(X). The
input attributes are (basic or structured) variables.

Example 2. We take Sporting Team (ST) as object from the RE, with the attributes {Players,
Trainer, Country, Performance, Fanbase, Revenue, Prizes }. ST qualifies as a complex object, be-
cause not all of ST’s attributes are basic variables (e.g. Trainer is a structured type). ST’s input
attributes are Players, Trainer and Country. The encapsulated attribute here is Performance. The
output attributes are Fanbase, Revenue and Prizes. The corresponding model is found in fig-
ure 3.2, where the dark nodes show input-attributes, light gray nodes show the encapsulated
attributes and the white nodes are the output attributes.

With these definitions, we can now define an OOBN. The formal definition for an OOBN
is:

Definition 5. An object-oriented Bayesian network consists of a set of class definitions C1, ..., Cm

and a single Situation object, which has no input attributes, with an associated OONF. A
OONF defines the connections between the attributes of a class (see figure 3.4. Besides that,
their can be no class recursion: X being of class Y and attribute A of X (X.A) also being of
class Y.
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Figure 3.2: ST-Object with corresponding attributes.

In their definition, [KP97] say an OOBN has a single Situation-object. However, when
studying the text above their definition, it is found that an OOBN in essence is a single situ-
ation object, without inputs and with probabilistic properties defined with an OONF (which
specifies the conditional distribution of a set of value attributes, with a set of input attributes).
A conclusion from this statement is that an OOBN is a situation object. In [BW00a], which
use this framework as the foundation for theirs, the Situation-object is ignored. So, it doesn’t
become really clear from their definitions and examples what a Situation-object exactly is and
how it is used. The best way to describe it, is saying that with some expansions a situation
object can become an OOBN itself. But as [BW00a] ignore the situation object, we assume it is
not that important.

Example 3. When applying [KP97]’s definitions and examples to our RE, the schemes in fig-
ure 3.3 and 3.4 can be constructed. Figure 3.4 is the graphical connection model of the players
class. As we can see, it contains one or more objects from the class Player, from which their
Physical Strength, Motivation and Speed is used as input to Team Speed, Team Physical Strength

and Team Motivation. These three then determine the strength of a team, found in Team

Strength. This is the output-variable of the class.
When looking at the whole RE, we can construct an OOBN of it. In the OOBN, there

are 4 classes (Players, Trainer, Fanbase, Prizes. Players, Trainer, Fanbase and Prizes are instan-
tiations of their corresponding classes, and are complex objects. Country, Performance and
Revenue are simple objects. The attributes named under Players, Trainer, Fanbase and Prizes

(e.g. Trainer.Age) are the output-types of those objects.

[KP97] continue with expressing the stochastic formulas and probabilistic theory of their
framework. Because of the complex level of these definition and this thesis is about graphical
representations of PRMs, we will not further discuss them.
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Figure 3.3: OOBN for RE

Figure 3.4: Interconnections in Players-Class for RE
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Figure 3.5: is-a hierarchy of RE

3.2.2 Class Inheritance in the Framework

Object Orientation is well known for its ability to create subclasses and use inheritance to
define the properties of that class. Classes use an is-a-hierarchy: if you instantiate a subclass it
also belongs to its parent class. With this hierarchy, you are now able to use an instance of a
subclass where an instance of the parent class is expected. This means the in- and output of
subclasses must at least have the same attributes as its parent-class. To define the inheritance,
interface-types are used:

Definition 6. 〈I1 : tI1 , ..., Ik : tIk → O1 : tO1 , ..., Om : tOm〉, where I(C) = {I1, ..., Ik},O(C) =

{O1, ..., Om} and tA is the type of attribute A. In short, I is input, O is output and t is the type
of that attribute.

A subclass can now be defined as follows:

Definition 7. C′ is a subclass of C if O(C) ⊆ O(C′), and the projected interface type of C′

onto O(C) is a subtype of the interface type of C. The is-a hierarchy of the RE is shown in
figure 3.5.

There are two main reasons for definition of the is-a hierarchy. The first is that a parent-
class can be used as an abstracted version of its subclasses. A subclass is, most of the time,
more detailed than its parent-class. An example of this is found in our RE: a Trainer is a
Person, but has more attributes (like Experience).

The abstraction property of the is-a hierarchy is also useful for simple objects. An example
from the RE: the object Country contains Netherlands, Germany, England, Spain and Italy. But
maybe when looking at a sports team, the sport is also played in Russia. We then create a
subtype of Country: Country+ = {the Netherlands, Germany, England, Spain, Italy, Russia}.

As said, there is a second reason to use the is-a hierarchy. Because C′ is a subclass of C,
we can use all the definitions, types, connections and input mappings of C for C′. It then
is only needed to specify the additional attributes of C′ with the usual mechanisms: a type
declaration, an OONF (see figure 3.4). When dealing with overspecification, [KP97] mention
the following: if an attribute A is declared in C′ and an attribute by the same name already
exists in C, then the C′ definition replaces the one in C.
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3.2.3 Findings on the Framework

The framework described in their article basically has two components: a relational model, as
described in section 3.2.1 and a probabilistic model, where an interconnection model can be
found of in figure 3.4. The formal definition of the probabilistic part was not of interest for
this thesis, as we focus on graphical representations.

We find two kinds of graphical representations in [KP97]: an object-oriented relational
model, which describes the objects (input, output, enhanced) of a model (figure 3.2) and a
probabilistic model (figure 3.4), which describes which attributes of a class influence each
other. The problem with their framework and its description is that is quite vague about
how to give graphical representations of their different models. There are examples in their
article, but these are or in words or graphical-without-description. This makes constructing
these graphical models a bit like guessing and imitating, basing it on the formal descriptions
they give.

Another problem comes forth when looking at [KP97]’s definitions for inheritance. They
use a Situation-object, but fail in clearly stating what it is an how it works. The best description
is that this object is an instantiation of an OOBN.

Because [KP97] do not really define their graphical representations, it is hard to judge
them. Their representation of OOBN’s (as in figure 3.3) focuses on the interrelation and only
gives the output attributes of the classes. They lack a graphical representation of all the at-
tributes belonging to a class and their (inter)relations. The best they can do is a database
representation of their own example, shown in figure 3.6, but this model lacks all the possi-
bilities of adding constraints or uncertainty-markers to the model (this is also the case with all
the other models in [KP97]’s framework. This is mentioned by themselves as main limitation:
In particular, the language does not allow us to express uncertainty about the identity and number of
objects in the model and about the relationships between them. [...] A related restriction is that we
cannot express global constraints on a set of objects.

Then there is the problem of not being able to construct models where the number of
objects vary. If we look at the RE, a Player-class in a Sports Team does not always have the
same amount of players in a team. A football team has eleven players in the field, while a
basketball team has five. This means it needs to be possible to vary the amount of players. It
is tried in figure 3.4 to do this with the three dots between the players, but this is of course
not the best way to do this.

3.3 Top Down Representation

In their article, [BW00a] take another point of view than [KP97]. The central perspective in
this article is the top-down perspective. The description of [BW00a]’s framework will start
with its definitions of the class representation and the graphical representation of it. The
class hierarchies will be discussed as second. Because [BW00a] state that their framework
differs much from the one [KP97] describe, the third section will look at these differences. All
citations are from [BW00a] unless specified otherwise.
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Figure 3.6: Model of database of car accidents-OOBN by [KP97]

3.3.1 Introduction to the Framework

The cornerstone of [BW00a]’s framework is the class, as used in a Bayesian Network. The
terminology is as follows:

• Class A class is a fragment of a Bayesian network. It can contain instantiations of other
classes.

• Instantiation An instantiation is an instantiation of a class within the specification of
another class. There can be several instantiations of a single class.

A class contains the building blocks of their framework: nodes. A class is viewed as a unit,
with two kind of interactions with the outside the class:

• A node inside a class has parents outside the class

• A node outside a class has parents inside the class

[BW00a] see the first type of interaction as problematic. This is because the inner nodes
can not be changed by nodes outside the class. An inner node can therefor not have a parent
outside its own class. They therefor introduce a new kind of node: the reference node. It points
to a node in another scope and is linked with a reference link. An example is found in figure
3.7b. An important limitation to reference nodes is that changes to reference nodes can only
be accomplished by changing its referenced node. Changing the values of the reference node
itself is not possible. The interface of a class is the set of input and output nodes (as they are
the nodes visible outside the class).

Classes are pieces of BNs, containing special nodes (instantiation and reference) and spe-
cial links (reference). Classes have three sets of nodes:

• Input Nodes which are all reference nodes
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Figure 3.7: Different kinds of input-output interactions in [BW00a].

• Output Nodes which can be parents of nodes outsides the class

• Internal Nodes which are only visible inside a class or instantiation

The scope of a class consists of all its nodes and all the input and output nodes of the
instantiations in that class. The graphical representation of the entities in a class are shown in
figure 3.8.

3.3.2 Explaining the Class Representation

A class T is a Directed Acyclic Graph (DAG, a graph with no directed loops) over {I, H, O},
where I are the input nodes, H the internal nodes and O the output nodes. Because [BW00a] want
no recursion in their framework, instantiations of class T can not be of type T. The following
rules apply for T and its instantiations t:

• I, H, O are pairwise disjoint (a node can only be of one type).

• A node of I has no parents in t (figure 3.9a), no children outside t (figure 3.9b) and can
have at most one referenced node outside t (figure 3.9c).

• A node of O has no parents outside t.

• A node of H has no parents or children outside t.

Nodes can be of different kinds:

• Instantiation A node representing the instantiation of a class inside another class.

• Simple Node a node which is either a:

– Reference Node Specifies input- and output nodes. A reference node can only
have one referenced node (the node from which the reference comes from). A
reference node has no parents, but can have children. An output node can be a
reference node (when an output node of an instantiation is used as an output node
of the class containing the instantiation). All input nodes are reference nodes. An
internal node can not be a reference node (an internal node may only be accessed
from inside the class).
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Figure 3.8: The different nodes and links in a class specification [BW00a].

Figure 3.9: Forbidden constructions in the framework of [BW00a].
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– Real Node a node representing a variable.

Between nodes, links exist. There are three sorts of links: directed, construction and reference.
The directed link is a normal link, from a simple node to a real node. Construction links are used
when specifying a network. They have no impact on the underlying BN, they only specify
there is some kind of link between two nodes (they can both be directed or undirected).
Then we have the reference links, connecting simple nodes with reference nodes. If we have the
connection A ⇒ B, A is the referenced node and B the reference node. When looking at the
underlying BN, only A is used (as B is only a reference).

From these linkage, a reference tree can be built, with at the top the referenced root. This is
the node to which all the other nodes in the tree are referencing. A class can contain several
reference trees. To avoid illegal structures to be specified in the underlying BN, [BW00a] have
introduced restrictions, stating that there can not be reference links between two simple nodes
in the same class and a referenced node may only have one reference node in the same class.
From these restrictions we can conclude the following statements [BW00a]:

• Input nodes can not be used as referenced nodes for simple nodes specified in the
same class, but only for input nodes of (other) instantiations. Two input nodes in an
instantiation can not have the same referenced node.

• Output nodes can be used as referenced nodes for output nodes in the encapsulating
class and for input nodes in a different instantiation in the encapsulated class. Two
output nodes of a class can not have the same referenced note.

• Internal nodes can be used as referenced nodes for input nodes of instantiations only.
Internal nodes will always be referenced roots if they occur in a reference tree, as they
can never be reference nodes.

• A chain of reference links can go in both directions (further inside classes or further out)
but once it begins going inside, it can not begin going out again (figure 3.3.2.b).

Figure 3.3.2 gives some examples allowed or disallowed by the restrictions. When speci-
fying the links and these restrictions are not met, changes have to be made to the model. The
restricted situations and their valid alternatives are shown in figure 3.11: a) a reference link
between two nodes in the same class, b) reference links from a node to nodes in the same
scope and c) two reference links to two nodes in the same instantiation.

In their article, [BW00a] discuss the usage of their framework for time slice representation
(models that include time). This falls out of the scope of this thesis. However there is an
interesting point to this topic: they abruptly dissociate themselves from one of the most
constraining rules in BNs: they allow cycles. Because BNs have to be acyclic, this sudden
change in approach is to be called weird at the least. [BW00a] give no explanation for the
directed cycles, which makes this time-slice example a strange addition to their article. The
only mention we find for neglecting their own restriction is the following: Notice that the
reference links [...] are not allowed under the regime of section 3.4, but the restrictions there are relaxed
for time slice specification (where section 3.4 is the section stating the restrictions).
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Figure 3.10: [BW00a]: Examples of different kinds of reference chains [BW00a].

Figure 3.11: Three situations with restricted constructs and their valid alternative [BW00a].

3.3.3 Top-Down Representation and Class Hierarchies

We now come to the part in [BW00a]’s article where class hierarchies are discussed. There is
a need for class hierarchy because of the overlap between certain classes. Instead of defining
almost the same class twice (with both differing in maybe only two attributes), defining one
class with two subclasses is much easier and faster. For example, in our Running Example,
a Player and a Trainer are both persons, different in only some attributes. With class hierar-
chy, both Trainer and Player inherit attributes from the class Person and specify some new
attributes for their specific subclass.

In this paragraph the class hierarchy framework found in [BW00a] will be discussed. The
goals of their class hierarchy are the same as in Object Oriented Programming (OOP):

• To simplify specifications of similar classes

• To allow automatic updates in classes sharing some properties

• To organize knowledge in a hierarchical way
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The second goal is not that relevant for this thesis, but still shows the possible strength
of a class hierarchy. The class hierarchy framework of [BW00a] is built on the OOP-idea,
borrowing some of their definitions. The first one states the definition of a subclass:

Definition 8. A class S over (IS, HS, OS) is a subclass of a class T over (IT, HT, OT) (or T is a
superclass of S), denoted S ⊂ T if IT ⊆ IS, HT ⊆ HS and OT ⊆ OS

So S is a subclass of T if S at least contains the nodes of T. To avoid cycles, S can only be a
subclass of T and not a superclass of T at the same time (which could happen if they contain
the same set of nodes). [BW00a] also prohibit multiple inheritance, since an elegant way to do this
is yet to be seen.

An example of class hierarchy in [BW00a]’s framework is found in figure 3.12. Here class
X has two subclasses: Y and Z. For both, some redefinition of the probabilities have to be
done. For example, instead of P(E|B), we now have P(F|B) and P(E|F) in class Y.

Figure 3.12: Class hierarchy example of [BW00a]

3.3.4 Top-down OOBNs vs. ‘Normal’ OOBNs

The frameworks from [BW00a] and [KP97] are closely related, but differ in some parts. This
section will describe the similarities and differences between the two frameworks. For a
better overview of the frameworks, the tables given by [BW00a] are summarized in the table
3.1. Some explanation will be given in the table itself.

The biggest difference between the two frameworks can not be put in the table, because
[KP97] have no representation for it: top-down modeling. The reason why there is no top-
down modeling in [KP97]’s framework is stated by [BW00a] as follows: The reason why it is
not possible to do top-down modeling in [KP97]’s framework is that all inputs need an annotation
and therefore it must be known in advance how an object is to be used. Because they make use of
reference nodes, [BW00a]’s framework does allow top-down modeling.
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However, as was the problem with [KP97]’s framework, uncertainty about the amount of
objects of a class can not be represented Also, constraints are not available in their framework.
Later articles, e.g. [GFK+07] or [TWG10], also do not address these limitations.

3.4 A Modern Approach

In 2007, a more modern view on PRMs was introduced with the article by [GFK+07]. Where
[KP97] and [BW00a] stay very close to BNs, [GFK+07] decide to stay closer to a modeling
language. Strongly built on the findings of [KP97] and [BW00a], [GFK+07] give a different
implementation, much more practical and relational language based.

Despite not stating it explicitly, the graphical representation of their relational model
shows many similarities with UML Class Diagrams. Because UML CD and ORM-schemas
are very similar, this article is a good starting point for getting to a combined representa-
tion of ORM and PRM. This subchapter will first discuss the graphical representation of
[GFK+07]s framework. Second, some of the probabilistic theory behind the PRM model will
be discussed. As last thing, we will discuss the usage of class hierarchy in the framework.
Because the nature of this thesis is not mathematical but graphical oriented, all formulas are
just briefly discussed to show some of the theory behind the framework.

3.4.1 Description of the Framework

We already stated in chapter two that the definition [GFK+07] give in their article is the most
workable definition of PRMs. For them, a PRM consists of a logical representation of a domain
and a probabilistic graphical model template, describing the probability distribution for that
representation. This logical representation of the domain and its probability distribution can
be graphical, but can also be a formal definition of the domain. [GFK+07] decide to do both
with a graphical representation.

In the relational language used to describe a domain, there are classes and attributes. In
their example describing the university as a domain, they have the classes Professor, Student,
Course and Registration. As with the framework of [KP97], the attributes used are descriptive
attributes, giving some import properties of the class. More formally:

Definition 9. A domain has a set of classes X = {X1, ..., Xn} and a set of descriptive
attributes A(X). Attribute A of class X would be X.A. The values of X.A can be found
in V(X.A). So, if we would take the class Student, A(Student) = {Intelligence, Ranking}.
V(Student.Intelligence) can be {high, low}

An example of the university domain is found in figure 3.13. As you can see, the structure
of the model shows a lot of similarities with the UMLCD showed in figure 2.3. Besides
descriptive attributes with a direct value, there also exist reference slots. These are to enable
the usage of classes in other classes. To formally explain it:

Definition 10. Each class X has reference slots in it, R(X). One reference slot within X
can be denoted as X.ρ. A reference slot ρ consists of a domain type Dom[ρ] and a range
type Range[ρ]. For example, we look at the reference slot Instructor in the class Course.
Dom[Instructor] = Course, Range[Instructor] = Professor. The underlined attributes in figure
3.13-left are the reference slots, connected to its corresponding classes with the dotted lines.
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Figure 3.13: Relational schema of the university domain (left) and example population of the
schema (right) [GFK+07].

The relational schema can be easily converted to a relational database, with each class
being a single table. The descriptive attributes are columns with a value, the reference slots
are columns with a reference key (unique key of attribute(s)) to another table with its corre-
sponding class. The connection of the reference slots works both ways, making you able to
inverse this relation:

Definition 11. ρ−1 describes the inverse function of ρ. Inversing, for example, the InstructedBy

reference slot, CourseteachedbyInstructor, we get InstructorteachesCourse. So if we have a refer-
ence slot ρ, Dom[ρ] = X, Range[ρ] = Y, Dom[ρ−1] = Y and Range[ρ−1] = X.

The last thing we need to complete the description of the relational models are slot chains,
which define functions from objects to objects.

Definition 12. A slot chain {ρ1, ..., ρn } describes a sequence of reference slots, such that for
all i Range[ρi] = Dom[ρi+1]. For example Professor.Teaches.Course.Rating gives all the ratings
of the courses a Professor teaches.

3.4.2 Instantiating the Relational Model

Without actual values, a PRM wouldn’t be of much use. So we need to define instantiations
of our objects, describing the population of a relational model. In [GFK+07]’s framework we
find the following implementation of an instantiation:

Definition 13. A relational schema has one or more instances, denoted with an I . It specifies
for each class X:

1. The set of objects in the class, I(X)

2. The value for each attribute x.A

3. The value of each reference slot, denoted as value y for reference slot x.ρ

x is an instance of class X, Ix.A is the value of attribute A in I The right part of figure 3.13
shows an instantiation of the relational schema.

With both the relational model (RM) and a way to describe its population, we can now
define a probability distribution over the RM and advance to the PRM.
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Figure 3.14: Relational skeleton for the university domain (left) and PRM dependency struc-
ture of the domain (right) [GFK+07].

3.4.3 Usage of a PRM in the Framework

As we saw in the previous sections, a probabilistic model gives the probability distribution
of relational model. The assumption is that the relations in the RM are fixed. The probability
distribution can then be given as relations between attributes in the model. A relational skeleton
is therefor needed.

Definition 14. σr is the relational skeleton of a relational schema and can be seen as a partial
specification of a schema’s instance. In σ the set of objects σr(Xi) for each class is specified,
as are the relations that hold between these objects. Values of attributes are not specified in
the relational skeleton.

A PRM can now be depicted in two parts: the PRM dependency structure S and the
parameter distribution over it, θS. The dependency structure is built out of associations of
attributes and their parents. These associations are graphically displayed with arrows in the
right schema of figure 3.14. We can now define two kinds of formal parents:

Definition 15. An attribute X.A can depend on X.B, giving a dependency for an individual
object: for any object x in σr, x.A will depend probabilistically on x.B. An example from
the university domain: a Professor’s Popularity depends on the Teaching Ability of the Professor.
X.A can also depend on attributes which are related to X.A, like X.K.B. K here is a slot chain.
An example (from figure 3.14: a student’s grade depends on
Registration.Student.Intelligence and Registration.Course.Difficulty.

The dependencies can get quite complex when the amount of attributes attached to a
class vary. If we look at the dependency of Student.Ranking on Student.RegisteredIn.Grade, a
student isn’t enrolled in one class, but in different kinds. An as each student is registered in a
different number of courses, these dependencies could get complicated. We can say that x.A
is probabilistically depended on the multiset {y.B : y ∈ x.K}. This means: x.A depends on
all values of B from different kinds of y in chain K.

To make it possible to do a calculation with a multiset, [GFK+07] introduce aggregation, a
concept taken from database theory. The probability of x.A will then depend on an aggrega-
tion property of the multiset. Examples of aggregations are: mode, mean value, maximum,
minimum etc. The Student.Ranking problem can than be solved by using the GPA (Grade
Point Average).
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Figure 3.15: CPD for Registration.Grade (left) and CPD for aggregrate dependency of
Student.Ranking and Student.RegisteredIn.Grade (right) [GFK+07].

When the PRM dependency structure has been defined, conditional probability distribu-
tion (CPD) can be added to the schema. The example from [GFK+07] can be found in figure
3.15.

Definition 16. The parents of X.A are defined as Pa(X.A). Then, a CPD is added for X.A,
which specifies P(X.A| Pa(X.A)) (The probability X.A has a certain value, given the values
of PA(X.A). One of the central rules in Bayes’ probability theory[BB58]). U is the set of
parents of X.A, which has some set of values, VU. For each tuple of values, u ∈ V(U),
P(X.A|u) is then the distribution over (V)(X.A). This set of paramaters is then called θs.

The formal definition of a PRM Π for a relational schema R is then as follows [GFK+07]:

Definition 17. For each class X ∈ X and each descriptive attribute A ∈ A(X):

• a set of parents Pa(X.A) = {U1, ..., Un} where each Ui (or parent) has the form X.B or
γ(X.K.B), K being a slot chain and γ an aggregate of X.K.B.

• a legal CPD, P(X.A | Pa(X.A))).

To get the entire probability distribution, factorization is used (this is also done in normal
BN). This means: taking the product, over all x.A, of the probability in the CPD of the
specific value assigned by the instance of the attribute, given the values assigned to its parents
[GFK+07]. Formally this would be:

Definition 18. P(I | σr, S, θS) = ∏
x∈σr

∏
A∈A(x)

P(Ix.A|IPa(x.A)) = ∏
Xt

∏
A∈A(Xt)

∏
x∈σr(Xt)

P(Ix.A|IPa(x.A))

We will not try to prove definition 18. It is just there to show the Bayesian background of
the framework and to show the differences this product-formula has with the Bayesian chain
rule. It differs on three aspects:

1. The random variables in this framework are the attributes from a set of objects.

2. Random variables have a varying set of parents, defined by the relational context of the
object. In BNs, the set of parents is static.

3. The parameters of the model are shared. The local probability models use the same
parameters for attributes of objects in the same class.
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Figure 3.16: Class Dependency Graph for the university domain [GFK+07].

Assuring A-cyclicity

An important property of a BN is that it needs to guarantee a coherent probability distribution
(the sum of the probability of all instances needs to be 1). Acyclicity of a graph is what
guarantees this ability for BN. As mentioned before, if a PRM would be cyclic, an attribute
could be an ancestor of itself or, in other words, the value of an attribute could depend on its
own value.

To ensure there are no cycles in a PRM, the process of creating probabilistic dependency
edges needs be done very carefully. An example of such a edge is found in the right schema
of figure 3.14: the arrow between Registration.Grade and Registration.Satisfaction.

Acyclicity can be guaranteed on instance and on class level. [GFK+07] do both, but stress
that the second one is the most important. To guarantee acyclicity on class level, it is first
needed to define edges between attributes [GFK+07]:

Definition 19. GΠ is a class dependency graph (see figure 3.16 for a PRM Π. GΠ has a node for
each descriptive attribute X.A and contains the follow edges:

1. Type I edges For any attribute X.A and any of its parents X.B, an edge from X.B to X.A
is introduced. Example: Registration.Grade→ Registration.Satisfaction.

2. Type II edges For any attribute X.A and any of its parents X.K.B, an edge from Y.B to
X.A is introduced, where Y = Range[X.K]. Example: Course.Difficulty→ Registration.Grade.

It is then required that the CDG is acyclic. When this requirement is met, the following
statement holds:

If the CDG Gπ is acyclic for a PRM Π, then for any skeleton σr the instance dependency
graph is acyclic.

When this is met, a PRM can be called coherent.

Of course, there are exceptions to acyclicity in the CDG. [GFK+07] take the example of
genetics: a person genetics depend on the genetics of the person’s parents. A PRM of this
domain is found in the left graph of figure 3.17.

So why does this cyclicity in a PRM work? Well, it depends on the constraints active on
the domain itself. A person genetics could never be depended on his own genetics, but always
on his parents’. Because a person’s parents are a different instantiations of the schema, these
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Figure 3.17: PRM for the genetics domain (left) and dependency graph with the three different
colored dependencies (right) [GFK+07].

dependencies do not create a troublesome cycle. To create a more general theory on these
dependencies, a ‘color’ theory is created by [GFK+07]. An example can be found in the right
graph of figure 3.17.

Definition 20. To implement this theory, we first need the notion of guaranteed acyclicity. This
means: certain reference slots Rga = {ρ1, ..., ρn} have such a partial ordering ≺ga that if
y is a ρ-relative for some ρ ∈ Rga of x, then y ≺ga x (the relation y → x is guaranteed
acyclic). Guaranteed acyclicity of a slot chain K can then be achieved if each component ρ is
guaranteed acyclic.

The colored class dependency graph can now be implemented:

Definition 21. GΠ is a colored class dependency graph for a PRM Π with the following edges:

1. Yellow Edges If X.B is a parent of X.A, it is a yellow edge X.B → X.A (dotted arrows
in 3.17.right).

2. Green Edges If γ(X.K.B) is a parent of X.A, Y = Range[X.K] and K is guaranteed
acyclic, it is a green edge Y.B → X.A. γ is the aggregate function over the multiset
(dashed arrows in 3.17.right).

3. Red Edges If γ(X.K.B) is a parent of X.A, Y = Range[X.K] and K is not guaranteed
acyclic, it is a red edge Y.B→ X.A (solid arrows in 3.17.right).

There can be several edges of different colors between attributes. Therefor, attention needs
to be paid at which edges are between attributes. If it are only yellow and green edges,
acyclicity can be guaranteed. When red edges are in play, cyclicity can be the case and more
knowledge about constraints on the domain need to be gathered to see if the probability
calculation still works.

An other way to guarantee acyclicity is by using the stratification theory. If there is a
stratification (existence of layers) between attributes of different classes and parents of an
attribute proceed the attribute in the stratification ordening, acyclicity can be guaranteed.

A general definition for this is given by [GFK+07] as follows:
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Figure 3.18: Class hierarchy of movie domain. The arrows depict is-a relationships [GFK+07].

Definition 22. A (colored) dependency graph is stratified if every cycle in the graph contains
at least one green edge and no red edges.

From this we can conclude: If the colored class dependency graph is stratified for a PRM
Π, then for any skeleton σr, the instance dependency graph is acyclic.

3.4.4 Implementation of Class Hierarchy in the Framework

As with [KP97] and [BW00a], [GFK+07] discuss the usage of class inheritance in their frame-
work. They call it PRMs-CH (Probabilistic Relational Models with Class Hierarchies).

The reason for using CH is the same as it is for [KP97] and [BW00a]: making it easier to
define classes which differ in only some attributes from other classes. Also, they claim by
using CH, relations that normally couldnt’t be expressed without CH, can be expressed with
CH. This also means that for using CH, redefinition of existing formulas is needed and new
concepts need to introduced.

As we could see in figure 3.5, CH depend on the Isa-relation. [GFK+07] make use of an
other example, namely the movie-domain. The Isa-relations for this domain are shown in
figure 3.18. Formally, we can state the following about CH:

Definition 23. If we have a class X and a hierarchy H, H[X] is a rooted directed acyclic graph,
defined by a subclass relation ≺ over a finite set of subclasses C[X]. X is the root of the class
hierarchy. For c, d ∈ C[X], we say Xc is a direct subclass of Xd if c ≺ d (and Xd is a direct
superclass of Xc). ≺∗ defines an indirect subclass relation. If c ≺∗ d, Xc is an (indirect) subclass
of Xd.

An example from the movie-domain: a Comedy is a direct subclass of a Movie. A Spy Movie

is an indirect subclass of Movie.

To define all the subclasses that belong to a certain class we define a subclass indicator
X.Class, indicating all objects x ∈ X for which holds x.Class ≺∗ c. In other words:
all objects that are in a class which is a subclass of c. From the movie-domain, Movie.Class
would give the following set (see figure 3.18): {Comedy, Action Movie, Documentary, Spy Movie,
Car− Chase Movie, Kung− Fu Movie}.

With the subclasses we are able to make more specific distinctions when building a prob-
abilistic model. It enables the specialization of CPDs for different subclasses in the hierarchy.
A PRM-CH can now be defined [GFK+07]:
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Definition 24. For each class X ∈ X of a PRM-CH we have

• a class hierarchy H[X] = (C[X ], ≺)

• a subclass indicator attribute X.Class

• a CPD for X.Class

• for each subclass c ∈ C[X] and attribute A ∈ A(X) we have either

– a set of parents Pac(X.A) and a CPD that describes P(X.A|Pac(X.A)); or

– an inherited indicator that specifies that the CPD for X.A in c is inherited from
its direct superclass. The root of the hierarchy cannot have the inherited indicator.
This is because the root is already the top of the hierarchy and has nothing to
inherit.

For each subclass, we can now specialize the CPD for its attributes. Also, for two sub-
classes, the parents of an attribute can be completely different. The popularity of an action
movie can depend on its budget, while the popularity of a documentary can depend on its
director.

Refining the Slot References

There is another advantage coming from the subclass representation. We are now also able to
refer to a certain subset of an attribute. For example, if people could vote for movies, could
we find correlations between them? By using subclasses we can specifically find votes for
certain kinds of movies, which without subclasses would be impossible. If we want to find a
correlation between a person’s vote for action movies and for documentaries, we can now do
so.

We can create subclasses of Vote for the different kind of movies we have. We than get a
Comedy− Vote (for comedies), an Action− Vote (for action movies) and a Documentary− Vote

(for, you guessed it, documentaries). With this, we can isolate a person’s vote for cer-
tain genre of movies and introduce a dependency between Documentary− Vote.Rank and
Action− Vote.Rank (rank is the ranking of person gave to the movie).

But to do so, a mechanism is needed to restrict the types of objects that travel through
reference slots to belong to specific subclasses. So we need to refine the slot-chains as follows:

Definition 25. If we have a slot ρ of X with range Y and subclass d of Y. The refined slot
reference ρd for ρ to d is the following relation between X and Y: For x ∈ X, y ∈ Y, y ∈ x.ρd
if x ∈ X and y ∈ Yd, then y ∈ x.ρ.

We can now use the refined slot chains to fully exploit class hierarchies.

How to implement Instance-Level Dependencies

By using subclasses, the class-based probabilistic model of a PRM can now come closer to the
instance-based Bayesian Networks. As example: the subclass hierarchy of movies starts very
general and can go deeper and deeper, to the point you are at instance level. So we can define
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Figure 3.19: PRM with class hierarchy for the movie domain (left) and class dependency
graph for the PRM (right) [GFK+07].

class based dependencies (a person enjoying action movies is likely to enjoy documentaries)
or instance based dependencies (someone enjoying Star Trek is likely to also enjoy Star Wars).

And, with the redefines slot chains, we cane even combine class based and instance based
dependencies. For example, if someone likes Star Wars, he is very likely to like to whole
genre of SciFi-movies.

We can now give a redefinition of definition 18, including subclasses:

Definition 26. P(I|σr, Π) = ∏
X

∏
x∈σr(X)

P(x.Class) ∏
A∈A()X

P(x.A|Pax.c(x.A)).

As before, we will not explain the formula. It is just there to show the probabilistic theory
behind it.

Coherency of the PRM with Class Hierarchy

As was done with the PRM without CH, the PRM-CH needs to be coherent: it has to be
checked for cycles. Checking only the relational skeleton is not enough, as the subclass
indicator is not specified in it. This makes checking the PRM for coherence a lot more difficult
than it was without CH.

So a new edge theory is added to the existing theory, with a corresponding colored instance
dependency graph:

Definition 27. A colored instance dependency graph for a CH-PRM ΠCH and its relation skeleton
σr is a graph Gσr with the following nodes for each class X and for each x ∈ σr(X):

1. A descriptive attribute node x.A for every descriptive attribute X.A ∈ A(X).

2. A subclass indicator node x.Class.

The dependency graph then contains four edges: two for the descriptive attributes and
two for the subclass indicator. These two types of edges are stated below [GFK+07]. An
example of the usage of the edges can be found in figure 3.19:

• Type I edges For every x ∈ σr(X) and for each formal parent X.B ∈ Pa∗(X.A), we
define an edge x.B → x.A. This edge is black if the parents have not been specialized.
This is the the case for the subclass indicator x.Class and possibly other attributes. All
other edges get the color gray.
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• Type II edges For every x ∈ σr(X) and for each formal parent X.K.B ∈ Pa∗(X.A) (K
is a slot chain), if y ∈ x.K is in σr, there is an edge y.B → x.A. If the CPD has been
specialized or K contains any refined slot references, the edge is colored gray. If not, the
edge is colored black.

So, we now have two types of edges. In practice, they say the following thing: the black
edges are known to exist. Gray edges, however, indicate that we do not know if the edge exist
in the CPD. With only black edges, it is easy to depict whether the graph is acyclic or not.
The gray edges make it much more problematic.

So the notion for acyclicity of the colored instance dependency graph needs to be ex-
tended:

Definition 28. A colored instance dependency graph is acyclic if, for any instantiation of the
subclass indicators, the ordering of the nodes connected to black edges in the graph is acyclic.
A black edge is then determined in the following way:

• With a subclass assignment y.Class, all the edges involving this object can be black or
white. With y.Class = d, the edges for any parent nodes are colored black if the CPD
Pad(X.A) has defined them. If not, the edges are colored white. The edges belonging to
any refined slot references, ρd(x, y), are colored black if y.Class = d. If not, they also
become white.

If a PRM with class hierarchy now has a acyclic colored dependency structure over his
relational skeleton, we can state that the PRM and its relational skeleton define a coherent
probability distribution over the instantiations that extend the relational skeleton.

In section 3.4.3 we showed that we can ensure that any relational skeleton over a PRM is
acyclic. Therefor, we need to extend the definition of the class dependency graph:

Definition 29. The class dependency graph for a PRM with a class hierarchy ΠCH has the
following set of nodes for each X ∈ X

• For each subclass c ∈ C[X] and attribute A ∈ A(X) there is a node Xc.A.

• A node for the subclass indicator X.Class.

and the following edges:

• Type I edges For any node Xc.A and formal parent Xc.B ∈ Pac(Xc.A) there exists an
edge Xc.B → Xc.A.

• Type II edges For any attribute Xc.A and formal parent Xc.ρ.B ∈ Pac(Xc.A), where
Range[ρ] = Y, there exists an edge Y.B → Xc.A.

• Type III edges For any attribute Xc.A and for any direct superclass d, c ≺ d, we add
an edge Xc.A → Xd.A

With these extension we can now define a PRM with Class Hierarchy where the class
dependency graph of the PRM is acyclic for any relational skeleton.
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3.4.5 Findings on the Framework

In comparison to [KP97] and [BW00a], [GFK+07] give a very database and class based imple-
mentation of PRMs. Their initial schema isn’t related to a BN, but to what we now see as an
UML Class Diagram. As with [BW00a] a class contains attributes (nodes in the framework of
[BW00a], which can be classes themselves.

But in [GFK+07]’s framework there isn’t a layered structure with input-, output- and
internal nodes. Instead, attributes are directly linked to the attributes they influence. Still,
reference slots (which were also nodes in [BW00a]) are needed to create these links.

On of the most important findings on [GFK+07]’s framework: it is very graphical. Where
[KP97] lacks in graphical representation and [BW00a] still haven’t optimized their graphical
part, the framework from [GFK+07] is almost completely graphical, backed by a clear and
lengthy explanation of logic and probabilistic calculations behind it. The only shortcoming
in graphical representation was with the class hierarchy. There was no example about how a
class hierarchy could be represented in their graphical framework itself. The best they could
do was a separate model.

Most noticeable about the class hierarchy was that the theory behind the model becomes
a lot more complex. We tried to show the workings of these formal theories, but did not try
to explain them in length. This is because this thesis is about the graphical representation of
things and a lot less about the formal representation of it on paper.

Still, we see the same problems the other two frameworks had: they still lack a good base
to put constraints on their framework and not all of the graphical representation was present.

3.5 Concluding

Now we discussed both frameworks, some general remarks can be made. First of all, the
first two frameworks enable you to use Object Orientation in combination with Bayesian
Networks. Where [KP97]’s framework stays very close to its mathematical base, [BW00a]
focus less on the calculations and more on the manner to representations objects in their
framework.

This allows [BW00a] to be less complicated than [KP97]’s, making it more usable and
understandable. Still, both frameworks lack in representing varying objects and constraints
on certain relations or objects.

The framework by [GFK+07] shows a much more modern approach, using a UML CD
based view on relational models. They then implement the PRM in this RM. Because of the
easy nature of their framework and the relation to CD, the framework of [GFK+07] will be
the one we will use to see if ORM can be combined with PRM. This is one of the reasons why
we discussed this framework in more length and with more mathematical background. The
other is that [GFK+07] discussed their framework in much more detail.

Now we’ve discussed the history of PRMs, their definitions and specified what they look
like, we now continue to specify the modeling language used to possibly extend PRMs: ORM.
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[KP97] [BW00a]
General Definitions

Class = {attributes} Class = {nodes}
Attribute = Single Object | Object Node = Simple Node | Instantiation
Single Object = Random Variable Simple Node = Random Variable
Explanation: The general definitions are the same, but differ in terminology. By using
Object or Instantiation multi-layered objects/nodes can be constructed.

Typing
Basic Type = value Type = value
Structured Type = Basic | Structured Type
Explanation: While [KP97] make use of structured types to construct multi-layered ob-
jects, [BW00a] construct multi-layered objects from Instantiations and Simple Nodes.

Inner Specification

Object =


InputsI(X)

ValuesA(X)

{
Encapsulated E(X)

Outputs O(X)

Class =


Input Nodes IX

Internal Nodes HX

Output Nodes OX

I(X) are Single Objects IX are reference nodes
E(X) are objects HX are real nodes or instantiations
O(X) are objects OX are real or reference nodes

Each attribute has a structured type.


IX are simple nodes
HX are simple nodes or instantiations
OX are simple nodes

Explanation: In [KP97]’s framework, input and output objects are structured types. For
[BW00a] to have the same expressiveness, they should allow input and output nodes to
be instantiations. Instead, they make use of reference links, which, with some adapta-
tions, can express the same thing.

OOBN Definition
OOBN = Objects with a single situation object OOBN = a class
Explanation: Again, the situation object of [KP97] pops up. As said in the section dis-
cussing their framework, this situation object is not well defined, but can be best seen
as an structured object. As can be seen from the definition, an OOBN from the eyes of
[BW00a] is simpler than an OOBN from [KP97]

Table 3.1: Differences and Similarities between [BW00a] and [KP97]. Table based on [BW00a]
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Chapter 4

What is Object Role Modeling (ORM)?

Figure 4.1: An example of some tables in a database

ORM finds its origins in the 70’s, evolving from the Natural language Information Analysis
Method (NIAM) developed by Dutch researcher G.M. Nijssen and also evolving out of re-
search from other scientists. It was Terry Halpin who first spoke of ORM in 1989, writing his
PhD-thesis. We will discuss ORM based on Halpin’s article from 1998: Object Role Modeling
(ORM/NIAM) [Hal98]. There are a lot of additions for ORM, expanding it on almost every
aspect. For this thesis we will only use the basis of ORM as described by [Hal98], this gives
us enough detail about ORM to put it to work regarding PRMs. First, it is discussed what
ORM exactly is, with [Hal98] as main source. The second section describes the workings of
ORM and its graphical representation. The third section will give an example of building an
ORM schema and the last section will specify why we use ORM for this thesis.

41



42 CHAPTER 4. WHAT IS OBJECT ROLE MODELING (ORM)?

Figure 4.2: An example of a logical model behind a database.

4.1 What is ORM?

ORM was created as a method to model an information system at the conceptual level. As
seen in the introduction of this section, it is also known as NIAM (mostly in Europe). ORM’s
main point of view is databases with some logical data model behind it. Databases can be
seen as tables (figure 4.1) filled with data, structured by a logical data model (figure 4.2).

The strength of ORM lies in its ability to be defined at conceptual level, making use of a
notation and a language that is very natural to use for most people. It uses natural language
as well as easy to use diagrams to model the Universe of Discourse (UoD): the application
area of the model.

The name ORM defines the models it produces: it makes use of objects (lets say a car
and a person) which are in some kind of relation (like Person has Car). A role is a part in a
relationship. In the small example: the person plays the role drives in, the car plays the role
gets driven by. The two roles together make the relationship (or fact) driving. Interesting fact:
the relationship itself is also an object, which can also play a role in other facts.

ORM differs from other modeling techniques, like Entity-Relationship(ER) and Object
Oriented languages (OO-languages), because of the absence of attributes in ORM. Attributes
are the same level object types as the class the attribute is in. In our small example: instead
of using hasCar as attribute of Person, ORM creats a fact Person drives in Car. According to
[Hal98] the three most important advantages of this representation are:

1. ORM models are more stable: attributes may evolve into entities or relationships, which
would mean in, for example ER, that attributes have to be redefined. In ORM, attributes
are already relationships or entities.

2. ORM models may be conveniently populated with multiple instances.



4.2. GRAPHICAL REPRESENTATION OF ORM SCHEMAS 43

3. ORM is more uniform (e.g. a separate notation for applying the same constraint to an
attribute rather than a relationship is not needed)

A big disadvantage of using OO-models is that they have a weak support for constraints.
This also backed by [KP97], giving the limitations of their framework. OO-models are also
less stable when it comes to a evolving UoD (see point 1 from the enumeration above).

So, ORM is a language, using objects and roles, defining entities and relationships between
them. This has as big advantage over ER- and OO-models: ORMs can adapt well to changing
UoDs (read: domains), which makes them more stable.

4.2 Graphical Representation of ORM schemas

In this section the graphical representation of ORM will be discussed. Not all symbols dis-
cussed from figure 4.3 are used in this thesis, but to fully understand the possibilities of ORM,
all symbols in figure 4.3 are explained.

Figure 4.3: Main ORM Symbols [Hal98]

1. Entity Type (ET) named A.

2. Value Type (VT) is a entity type with a specific value, like a string or integer. Values
are commonly known, like integer-based values: time, years, costs in money etc. Also
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values like booleans and names can be seen as value types, being known to many. The
VT therefor do not require a reference scheme.

3. Arrow Tipped ET The object appears more than once in the schema.

4. ET with Reference Each object needs to have a reference scheme behind it, which in-
dicates how it can be mapped to one or more values behind it. When an object has
only one value type behind like (like an ID or a Name), the reference schema can be
displayed in the entity type itself.

5. ET with Reference+ The plus indicates that the value is a numeric value.

6. ET with exclamation mark Indicates that an ET is independent, meaning it does not
play a role in any facts. Normally, these ET are not introduced into schemes because
they are not likely to be important.

7. Ternary Predicate (TP) Predicates are also known as facts. A TP contains three roles
(displayed as a box), each played by exactly one object type. Roles are connected to
their object type by a line segment (see symbol 13). A predicate can be seen as a sen-
tence with holes where the object-values can be put in. For example ... is ...with ... can
become (with the right object types connected to it): Brand is a VehicleType with Color.
When filling in values, you could get: Brand Honda is VehicleType Car with Color Blue.
The number of roles is called the ‘arity’ of the predicate (here it is ternary, with 2
roles it would be binary). If we treat a predicate formally, the order in which the
roles are aligned matters: Color is Brand with VehicleType is something different than
Brand is VehicleType with Color. When treating it as natural language, you see the first
one is rubbish and use the second one.

8. Internal Uniqueness Constraint (IUC) are placed over one or more roles in a predicate
and indicate that the (combination of) instances from the constrained roles are unique.
For example, putting an IUC on Car in Car has Brand means that Car can only have one
Brand (but a Brand can have more than one Car connected to it).

9. Primary IUC a predicate can have more than one UC, but only one is primary, which
has the symbol P.

10. External Uniqueness Constraint (EUC) A uniqueness constraint connected to two or
more roles from different predicates. A dotted line is used to connect them. By
adding the constraint, the of combination of those roles in the join of the fact types
becomes unique. For example, when we want to say that a state is identified by its
statecode and country, we add an EUC on the roles played by Statecode and Country in
State is in Country and State has Statecode.

11. Primary EUC To show an EUC is primary, you use a P instead of u.

12. Objectification If we want to treat a predicate as an entity type (and let it play a role
in some kind of relation) we can objectify it by drawing a rectangle around it. They are
also called nested object types.
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13. Mandatory Role Constraint (MRC) This constraint is added to a role if all instances
of the role’s object type must play that role. The symbol is a black dot, placed on the
connection between the ellipse and the relation-line. It is also called a total role constraint.

14. Disjunctive MRC on ET This Disjunctive MRC has the same meaning as (15), but is
attached to the roles on the Enity Type itself. This representation is not commonly used
as it is not that clear.

15. Disjunctive MRC This MRC can be connected to two or more roles (from the same
object type) of different predicates. It means that all instances of this object type must
play a part in at least one of those roles.

16. Value Constraints This constraint is used to limit an object type’s population to a list of
values. This is done by putting the values in braces next to the object type (symbol 16,
upper). If the list is ordered, you can show the first and last value of the list and put ’...’
between them (symbol 16, bottom).

17. Subset Constraint (SC) may only be applied between two compatible roles (these are
roles with the same object type as host). The arrow goes from one role to the other,
telling that the the population of the first role is a subset of the other. So, if we have role
A and role B, A –> B means A ⊆ B.

18. Equality Constraint (EC) may only be applied between two compatible roles. Means
the population of the two roles is equal.

19. Exclusion Constraint (ExC) may only be applied between compatible roles. Means that
if an instance plays a part in one role, it may not play a part in one of the other roles
connected with the ExC. In other words: the ExC displays mutual exclusiveness.

20. Subtype the solid arrow is drawn from one object type to the other, displaying the first
is a subtype of the other.

21. Frequency Constraint Applied to a sequence of one or more roles, these indicate that
instances that play those roles must do so exactly n times, between n and m times, or at
least n times.

22. Ring Constraint can be added to a pair of roles played by the same host type. Indicates
that the binary relation formed by the role population must be irreflexive (ir), intran-
sitive (it), acyclic (ac), asymmetric (as), antisymmetric (ans) or symmetric (sym). Is not
commonly used in ORM.

23. Derivable Fact Type can be placed beside a fact type, showing that this fact type is
derivable from other fact types. Is also not commonly used.

To get a better understanding in how to build a model with this graphical representation,
the next section will model our RE in ORM, starting from the starting point of all models: the
domain.
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Figure 4.4: The conceptual schema design procedure by [Hal98]

4.3 Building our RE as an ORM schema

Remember our RE, defined in section 3.1? Let’s start from scratch and build this model as an
ORM model. We use the steps mentioned in figure 4.4 found in [Hal98].

‘Step 0’ First of all, we add a ‘step 0’ to this procedure: defining the domain. The domain of
the RE is sports and more specific sporting teams, like football clubs, (ice)hockey teams and
even cricket teams. To restrict the domain, we will only look at one sporting team. Possible
extensions of the domain could be a league of sporting teams or all sporting teams of a sport
in one country. But to keep the model small, we will limit ourselves to one sporting team.
Besides that, we limit the connections (relations) in the domain a bit. This is because, as you
will see, a small scope like this can already give a quite large ORM-schema.

Step 1 As defined in section 3.1 a Sporting Team consists of Players and a Trainer. Further-
more, a Sporting Team is based in a Country (when thinking about national teams, the sporting
team can be a country itself). We can now define the following elementary facts:

1. Sporting Team has Players

2. Sporting Team has Trainer

3. Sporting Team is based in Country

Of course, this is not all information we know. A Sporting Team also performs in some
kind of way, has a Fanbase, makes a Revenue and wins Prizes. So, we know the following four
new facts:

4. Sporting Team has Performance

5. Sporting Team has Fanbase

6. Sporting Team makes Revenue

7. Sporting Team has won Prize
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According to the definition of our RE, we now have included all the important objects in
our description. But we are not done yet. In ORM every entity type needs a reference scheme,
which tells us which values it contains and what identifies the entity type. Let’s start with
Players.

Players are a set of one or more Player-instances:

8. Players contains one or more than one Player

But what is a player? Well, as mentioned before when treating the RE, a player can be
seen as a person with some extra attributes:

9. Player is a Person

So which attributes does Person have and which extra attributes does Player have? Person

has a name, an age, a height and a weight. A normal Person is also likely to have an address,
hair color and an eye color. But these are not really important for the sports domain (for
most sports, performance is more important than looks). Player can have the extra attributes
speed, strength and talent. If you would go deeper, you could specify different attributes for
all different kind of sports. You can than create a subtype of Player for every type of sport. To
keep this example small, this RE will no be that detailed. We now know these new facts:

10. Person has Name

11. Person has Age

12. Person has Height

13. Person has Weight

14. Player has Speed

15. Player has Strength

16. Player has Talent

The same goes for Trainer, which is also a Person. And has some extra attributes, like
experience, trainer skill and prizes he won as trainer/player. This gives us new facts:

17. Trainer is a Person

18. Trainer has Experience

19. Trainer has TrainerSkill

20. Trainer has won Prizes

Also related to Person is the Fanbase. A Fanbase consists of Fans and they are also a subtype
of Person, with some extra attributes. A fan has a favorite sporting team and is supporting
that team for some amount of time (in most cases for some years). A fan could also have a
season ticket, which allows him to watch games regularly. This gives the following new facts:
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21. Fanbase consists of one or more than one Fan

22. Fan is a Person

23. Fan supports Sporting Team for Time

24. Fan owns Season Ticket of Sporting Team

Besides the connections Sporting Team already has, it is also good to know which sport is
played by the sporting team. Prizes is a collection of one or more than one Prize with a name,
won in a certain year in a certain sports-category by a certain team:

25. Sporting Team plays Sport

26. Prizes is one or more than one Prize

27. Prize has Name

28. Sporting Team playing Sport won Prize in Year

The last thing to do is to look at how each entity type is identified (they all need a reference
scheme of values they can contain). In case of Person, Player, Trainer and Fan: they are all
referenced to by their name. Because people can have the same name, it is not possible to
uniquely identify a Person by only its name. But we will discuss this in step 3.

The Revenue is an integer, displaying the yearly revenue of a sporting team. Country is
referenced to by the country’s name. Prizes and the Sporting Team itself are also referenced to
by their name.

Step 2 We now can create a first ORM-model from the facts found in step 1. To create the
model, VisioModeler was used. The result is found in figure 4.5. As you can see the symbols
from figure 4.3 are used.

Almost all facts in the model are binary (a fact type with two roles), with two entity types
connected to it (for example: Sporting Team has Players). There are also some value types,
for example the objects Revenue and Year. Three ternary fact types are in the model, the
representations of fact 22, 23 and 27 in step 1. The most interesting of the three is Prize. This
is fact type is an objectification, describing that a Prize consists of a Prize Name, the Sport it was
won in and the Year in which it has been won. There is also an UC on this fact type. This UC
should not yet have been added, this is done in the next step. But when objectifying a fact
type in VisioModeler, the UC is added automatically.

Another interesting symbol in the model are the two power types Fanbase and Players.
They contain a set of entities from the objects Fan and Player and represent facts 8 and 20
from step 1. A population check was not performed, because we are not building an actual
database from this model and that is the reason to do a population check. Now we have
created an ORM-model from our facts, we can go to step 3.

Step 3 This step does not apply for this model. There are no entity types we would want to
combine. And there also no objects that could be derived from others. So, we skip this step.
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Step 4 & 5 Constraints can now be added to the model. Because both step 4 and 5 are about
applying constraints, we combine this to one step. The resulting model can be seen in figure
4.6. When building a database out of an ORM model, every fact type should have uniqueness
constraint on it. These constraints help in defining what the identifying (combination of)
attribute(s) is (the unique key). For example, in the RE, a person is uniquely defined by the
combination of the name, height, weight and age. If we would remove one of these attributes
out the key, it is very likely the key isn’t unique anymore. For example: if we would use only
name and age and we want to look for Jan Janssen who is 20 years old, it is very likely there
is more than one Jan Janssen in the database. By adding height and weight we ensure we find
only the Jan Janssen we are looking for. In most databases a unique code is used as unique
key, which solves the identification problem.

But, because it is not the intention to create a database out of this model, all the constraints
added are constraints which would apply in the physical world. Take the fact Person has Age:
here, the role Person plays is unique. This means: a person can only have one age. Which, of
course, is consistent with what we see in our daily lives. The same logic can be applied to all
other UCs. On the fact Sporting Team is in Country the UC is on both roles. Because there are
sporting teams with the same name, it is possible that two teams with the same name are in
different countries. This also means a team name is not able to uniquely identify one sporting
team.

There are also some mandatory role constraints. Again, we take the fact Person has Age.
The role Person plays is mandatory: every person has an age, so all instances in the entity type
Person must play that role. When combining the MRC and UC you can conclude a person
must at least and at most one age. Again, this logic can be applied to all other MRC in figure
4.6.

Step 6 Step 6 adds the value constraints to the model. For example: Trainer Skill is a level
given to the trainer which indicates how capable he/she is in training a team. A Trainer can
be low skilled, medium skilled or high skilled. Season Ticket is another story. If a fan owns
a season ticket of a team, the value becomes yes, otherwise it is no. So, the value constraint
limits the values of Season Ticket to Yes or No. The value constraint can also be found in 4.6.

Step 7 This step can also be skipped. We have added all the constraints needed. The
optimization part is done when creating a database out of it. This optimization would mean:
making sure that no needless tables are created and tables which can be combined will be
combined. Because this fall out of the scope for this thesis, we will not execute this step.

4.4 Why ORM is used in this Thesis

Modeling domains can be done in many different ways with many different languages. Be-
sides ORM there are hundreds of other languages to be used. The most standard alternative
for ORM is the Unified Modeling Language (UML) [Coo00] and in specific its Class Diagrams.
UML is the most popular modeling language used and consists of many different models and
diagrams, which are able to model all aspects of a domain, like work flow, activities and the
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domain itself. In comparison to UML, ORM can mostly be only applied to modeling the
domain itself.

The main reason to use ORM in this thesis is because it has not yet been used for express-
ing PRMs. [SEJ10] discusses the usage of UML as relational model for PRMs and succeeds
pretty well in it. Because ORM is one of the most expressive modeling languages around, it
seemed interesting to try the same with ORM and see what would happen.

What advantage could ORM give over existing relational models used in PRMs? Well,
there are still limitations in the existing PRMs: they lack representation of constraints and are
not able to express a variable amount of instances for their models. This problem comes forth
from the fact that most PRM-frameworks make use of their own created domain modeling
languages. These are all very basic, limiting themselves to objects, attributes and relations
[KP97], classes, nodes and relations [BW00a] and classes and attributes [GFK+07]. It is, how-
ever, a shame they all neglect the strength of modern, Object Oriented modeling languages
like ORM and UML. [SEJ10] does combine PRM with UML, showing that the combination
of the two is not difficult. But even UML is very limited in expressing constraints, limiting
the ability to express the complexity of domain. ORM is very able to do these tasks for com-
plex domains. In chapter 5 we put to the test if these features of ORM can also be used in
combination with PRMs.

One of the biggest advantages ORM has over other modeling languages is its ability in
expressing relations. In ORM you can express almost every relation there can be expressed in
a natural language. Besides being more expressive relation-language wise, it is also possible
to objectify relations or create relations containing more than two roles. Even UML CDs do
not give us the relation expressiveness ORM gives us. Besides being a big advantage, some
caution is needed. There is always more than one right ‘model’ for a domain, especially
in ORM. However, by giving the chance to create complex relations (relations with a lot of
constraints and involved object types) there are also a lot of ‘wrong’ models and relations
which you can create. The limitations of other languages in comparison with ORM and if the
expressiveness of ORM can give a advantage over these other languages when using PRM
with them, will be discussed by us in the next chapter.

4.5 Concluding

ORM is a modeling language used to represent domains by using objects and roles. The
roles objects play are called facts, a fact being a semi-formal sentence like Person has Age. To
graphically represent these facts, symbols are used to create a schema. In this schema, you
can express the facts and add constraints to them. It is also possible to add a population to
this schema and create databases out of the schema.

Because the lack in usage of modern Object Oriented domain modeling languages in
general, the ability to express constraints specific and its expressiveness in relations, ORM is
an interesting choice to use as graphical model to represent PRMs. The workings of this will
be shown by us in the next chapter.
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Figure 4.5: ORM model of Running Example with only facts
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Figure 4.6: ORM model of Running Example with all constraints.



Chapter 5

ORM and PRM: a Working
Combination with new Possibilities?

As we saw in chapter 2, the most important feature of a PRM model is that it contains
two things: a relational model over a domain and a probabilistic component describing the
probabilistic dependencies in that domain. This probabilistic component can also be seen as
a Bayesian Network. The implementation of these two components of a PRM differs in every
framework designed for it. This chapter will discuss how to represent a relational model and
its probabilistic component in ORM.

We will first try to link the relational model from [GFK+07]’s framework (GFW) to ORM,
building the base on which the PRM can be built. We then look at how the probabilistic model
from GFW can be linked to ORM. The third section will look at possible advantages and
disadvantages that ORM can have over the other modeling languages find in the literature.
The fourth section concludes.

5.1 Converting the Relational Model: from GFW to ORM

This section will take a look at the similarities and differences in the relational model of the
framework of [GFK+07] and ORM. Not all concepts in the first can be expressed in ORM.
Still, we need to find some connections to see if a combination of ORM and PRM is possible
at all. Constraints are not yet discussed in this section.

5.1.1 Converting Objects and Relations

When comparing [GFK+07]’s framework and ORM, Classes and Attributes in GFW are rep-
resented by Objects in ORM. If you look at figure 5.1, the class Person and its attributes Age,
Weight and Height of (A) become entities in the ORM schema of (B).

A more difficult ‘translation’ is that of the relations of GFW. In GFW, the relational model
has two kinds of relations: the class-attribute relation and the reference-relation. The first
relation-type is not explicitly drawn with an edge or a link in GFW, but implicitly the link
is there. For example, in figure 5.1.(A), if we would express the relation between the class
Person and its attributes, in semi-natural language the relation would look like: Person has ...,
with on the dots an attribute of the class. In ORM, this is translated with a binary relation

53
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Figure 5.1: Objects and relations in GFW (A) and ORM (B).

(or fact) between two objects, shown in 5.1.(B). This translation is not very valid formally.
In ORM, a relation can be read in both directions, meaning that Person has ... can also be
read as ... has Person . In most cases, from the context of the model it can be concluded
what the attribute is and what the class. Still, a formal definition is needed for a valid
distinction between class and attribute. The translation of the implicit relations in GFW to
explicit relation in ORM is what we call the Implicit-Relation Translation or IR Translation.

The class-attribute relation from GFW can now be created as a has-relation in ORM. Then
there are the reference slots in GFW. These slots enable the usage of other classes in a cer-
tain class. If we look at figure 5.2, (A) has two classes with reference slot Trainer in class
Sporting Team. The translation of this class relation in ORM is found in (B). In GFW, the
reference slots were given names, like SportingTeam.isTrainedBy.Trainer. isTrainedBy is then
the name for the reference slot. Because ORM makes no use of reference slots, but directly
links the class and the referenced attribute, we use the relation Sporting Team has Trainer. Of
course, we could also write Sporting Team is trained by Trainer, but to explicitly show the class-
attribute relation of it, we use has.

Reference slots in GFW were depicted as ρ. One of the possibilities was to invert the
reference slot, ρ−1 (see definition 11). In ORM, almost every relation can be traveled in two or
more directions (the more roles in a relation, the more directions a relation has). For example
Sporting Team is trained by Trainer can also be seen as Trainer trains Sporting Team . Only unary
relations, where only one role is involved, has only one direction.

Reference slots and slot chains, as defined by GFW, are not that important in ORM. This
has to do with the absence of a class representation in ORM. Everything is an object type,
classes and attributes. Therefor, a class is directly connected to attributes with a relation and
if a class is used as an attribute in another class, the object type of the attribute and the class
is the same.
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Figure 5.2: Two classes with reference slot in GFW (A) and the representation in ORM (B).

5.1.2 Converting the Classes

So, the relations GFW have in their relational model can be expressed in ORM. However,
the class-based structure gives us more problems. In figure 5.1 and 5.2 we saw that ORM
has no explicit graphical mention of classes. They are just object types like attributes are.
As we named all the class-attribute relations has, we could specify a rule stating that all
relations in the form of A has B, A is the class and B is the attribute. But because rela-
tions in ORM can be named everything you want (Sporting Team has Trainer could also be
Sporting Team is trained by Trainer), this rule in most cases will not apply. Also, an ORM re-
lation can be read both ways, making it harder to see what is the class and what is the
attribute. The problems of ORM with class representations is what we will call the Class-
Representation Problem or CR Problem.

The question now arises if it is needed to make a distinction between classes and attributes
in ORM. Because the later introduced probabilistic dependencies are not class bound, the
class-attribute distinction is not that important. ORM works fine without classes. The only
disadvantage is that the clear class-based structure from GFW can not be easily retrieved
from the ORM-schema. Of course, with some in depth analyzing this is possible, but as we
do not really need the class-attribute distinction for expressing the PRM, this kind of analysis
is not needed. This is the No-Class-Needed Advantage or NCN Advantage: ORM is capable
of expressing a relational model which makes use of classes in a different way, without using
classes.

Despite it is not needed, there is a way to make clear to what the class-objects are in ORM
and which the attributes (or which are both), which we will call the Formal-Class-Definition
Solution or FCD Solution. This solution applies when you formally define your model. If we
would define our RE as having the object types O = {Sporting Team, Player, Trainer, Country,
Fan, Revenue, Prizes, Sport, Person, Age, Weight, ...}, you could define subsets of O, defining
which of them are classes and which entities are the ‘attributes’ of these classes. For example,
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Figure 5.3: Population of an ORM schema

O1 could be {Sporting Team} and O1.A = {Player, Trainer, Country, Fan, Prize, Revenue}.
However, this would mean you have to formally define you whole ORM-schema, which is a
lot of work. So, when searching for a good representation of classes in ORM, graphically this
can be problematic. For using PRMs in ORM, classes are not mandatory and we therefor see
the loss of class representation in ORM as not important.

5.1.3 Similarity of Instances?

As with GFW, ORM needs a population of the schema to work. As with GFW, a population
of an ORM schema can be denoted as I . The contents of a population, however, differ a bit
from GFW. In GFW, I defines over a relational schema:

1. The set of objects in the class, I(X)

2. The value for each attribute x.A

3. The value of each reference slot, denoted as value y for reference slot x.ρ

As ORM has no classes, I specifies for each object (entity type and role) its instances.
Value types are not specified with I , because their value-range are assumed to be generally
known. An example of a population I over an ORM schema is found in figure 5.3.

Example 4. The instances of Person can be defined as I(Person) = {John, Mary, Peter}. The
population of, for example, the fact Person has Age can be defined as I(Person has Age) =
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{t1, t2, t3}. We define population not directly, because of their dependency on the exact role
they play.

If we define I(Person has Age) = {{John, 23}, {Mary, 30}, {Peter, 41}} we can not base
any conclusion on this definition. For example, we can not conclude from this definition if
Peter is the Age or the Person. Therefor, we use t1, t2, t3, which are functions used as follows:
t1(Person) = John and t1(Age) = 23.

The differences between populations in GFW and ORM is that GFW’s population not only
define instances of the objects, but also the set of objects in a class and the value of reference
slots. ORM has no classes and reference slots, so only defines the values (instances) of objects.
Therefor, defining a population over a ORM schema is different than defining it over GFW.
This is not a problem, as every modeling language defines its population in an other way, the
Dynamic-Population-Definition Principle or DPD Principle. It does not influence the usage
of PRM in ORM and therefor the different way of populating a schema does not cause any
problems for the scope of this thesis.

Now we showed that we are able to express the relational model of GFW in ORM and its
populations, we can move on to expressing a PRM in ORM.

5.2 Converting PRM: from GFW to P-ORM

This section will discuss the usage of a PRM in ORM. It will take a look at if and how the
concepts from GFW can be transferred to the ORM language.

5.2.1 Converting the Relational Skeleton

The first thing that is needed to make a PRM is the relational skeleton of a schema r, σr. In
GFW, they create a new model for that, seen in the left schema of figure 3.14. An ORM-
schema however, already contains all these relations between objects. And as there are no
classes, it is not needed to specify the objects belonging to the classes. The only thing that is
needed, is to add instances of the objects that are classes in GFW. So in short, the relational
skeleton of a schema is a skeleton with only the classes, their attributes and their relations
in GFW or the ORM schema without constraints and instances in ORM. If we look at figure
5.3, we see that instances can be directly be denoted in an ORM-schema. If we would regard
Person as class and Weight, Age, Height as its attributes, only the values of Person would be
filled in. The values of the attributes coupled to those instances would be blank (see figure
5.4. The expression of a relational skeleton in ORM and the advantages over GFW is called
the Relational-Skeleton Advantage or RS Advantage.

The relational skeleton than can be filled in with actual values, which in combination
with the Conditional Probability Distribution (CPD) and the dependency structure defines
the values for all the object types in a schema. So, we now need to know how a dependency
structure and a CPD can be represented in ORM.

Converting the Dependency Structure

For the dependency structure S which is shown in the right schema of figure 3.14, in ORM
you can create a similar structure. As GFW use solid arrows to illustrate dependencies,
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Figure 5.4: Example of a relational skeleton σr in ORM.

Figure 5.5: Dependencies of performance of sporting team in GFW (A) and its expression in
ORM (B).
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Figure 5.6: A conditional distribution over an ORM schema.

we use dotted arrows in ORM. This is because solid arrows are already used in ORM for
subtyping and dashed arrows for generalization. With this somewhat simple addition, we
can graphically express a dependency structure in ORM. Where in GFW the dependencies
are between attributes of the same class or attributes of different classes, ORM knows only
dependencies between object types. These object types can be, for example entity types,
objectifications and power types.

This still means that GFW make a distinction between attributes and classes and ORM
does not. But, also, the dependencies are only between attributes and the dependencies
themselves make no distinction between classes or attributes. Because of this, the absence of
the class representation and attributes in ORM does not give any problems. Just as in ORM
every object type is treated the same, for the dependency structure there are only attributes
and no classes. Because GFW and ORM define the probabilistic dependencies in almost the
same way, we call it the Dependency-Structure Similarity or DS Similarity.

To illustrate a dependency structure in ORM, we will use a part of our running example,
namely the part of the schema describing a Trainer of a Sporting Team. The Experience of a
Trainer influences his/her Skill. The Skill then influences the Performance of a Sporting Team.
This example can be found in figure 5.5.

Using Conditional Probability Distributions (CPDs) in ORM

Now we can define a dependency structure in an ORM schema, we will also need to define a
Conditional Probability Distribution. This CPD describes which influence values of one object
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type have on another value type. Just as in GFW, in ORM a simple table does the work of a
CPD properly. An example of this can be found in figure 5.6. Because GFW and ORM both
make use of schema-built-in tables, we name it the CPD-Table Similarity or CT Similarity.

The main theory behind probabilistic dependencies uses in GFW also applies to our ORM
representation. The only difference is the absence of classes in ORM. But when taking a close
look at the probabilistic theory in GFW, [GFK+07] make no real use of their class represen-
tation. Their theories are built around them, not with them. Because we will not actually do
the calculations in this thesis, we will not discuss these theories again nor redefine them for
ORM.

[GFK+07] also discuss the use of aggregate functions, when an attribute depends on more
than one value. This theory stays the same for ORM, only attributes are replaced with object
types.

5.2.2 More Formal Definition of P-ORM

With a relational model, a way to describe probabilistic dependencies and a CPD, we are now
able to express a PRM. What exactly was a PRM again?

In words:

Definition 30. A PRM specifies a template for a probability distribution over a database. The template
includes a relational component that describes the relational schema for our domain, and a probabilis-
tic component that describes the probabilistic dependencies that hold in our domain. A PRM has a
coherent formal semantics in terms of probability distributions over sets of relational logic interpreta-
tions[GFK+07].

What definition 30 in combination with the previous section shows, is that our ORM-
representation satisfies this whole definition, except one point: the coherent formal semantics
in terms of probability distributions over sets of relational logic interpretations [GFK+07]. Before
discussing the coherency of our PRM representation in ORM, we will first discuss the formal
definition of a PRM for a relational schema [GFK+07]:

Definition 31. For each class X ∈ X and each descriptive attribute A ∈ A(X):

• a set of parents Pa(X.A) = {U1, ..., Un} where each Ui (or parent) has the form X.B or
γ(X.K.B), K being a slot chain and γ an aggregate of X.K.B.

• a legal CPD, P(X.A | Pa(X.A)).

Because ORM makes no use of attributes and classes, the formal definition of a PRM also
needs to be adjusted to that. From our research in this chapter we could deduct the following:

Definition 32. For each object O ∈ O there is:

• a set of parents Pa(O) = {U1, ..., Un}, where each Ui is an other object out of O or an
aggregate γ if O depends on more than one value of an object type.

• a legal CPD, P(O|Pa(O)).
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Figure 5.7: A simplified part of our RE, showing subtyping in ORM.

You can conclude from this definition that every object type should have a dependency
attached to it. In practice this is not the case, not every object type has a role in the dependency
model. But to make the definition of a PRM easier, [GFK+07] abstracted from this notion and
so did we.

The redefinition of the formal definition for PRMs of GFW to make it usable for ORM is
called the Formal-PRM Redefinition or FP Redefinition. With this, the definition that is given
for GFW is also usable for ORM.

5.2.3 Class Hierarchy: from PRM-CH to P-ORM-CH

The usage of class hierarchy (CH) is something that ORM is familiar with. As could be seen in
the previous chapter, ORM is able to explicitly define subtypes, the name for class hierarchies
in ORM. In GFW, a separate tree structure was needed to show the class hierarchies for their
model (see figure 3.18). In figure 5.7 you can see that ORM can add subtypes in the relational
model itself.

In figure 5.7, we see a simplified part of the RE-domain. A sporting team has a trainer and
a player. Both Player and Trainer are subtypes of Person, inheriting the relations Person has
with other object types. In the figure, we see a person having an age, a weight and a height.
The trainer and the player automatically inherit the relations with these three entity types.

[GFK+07] have to create more than one schema to model inheritance in their framework.
They not only need their relational model with a PRM, but also a separate model which shows
the hierarchies and dependencies for that relational model. Figure 5.8 shows the model with
class dependencies and hierarchy from [GFK+07]. On first sight, this model works fine. But,
when taking a closer look, it does not become clear if Action Movie and Documentary are
subclasses from the class Movie. When representing this model in ORM, we loose the ability
to represent the classes, but we can show subtyping, the dependency model and the relational
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Figure 5.8: The dependencies for action movie votes and documentaries from [GFK+07].

Figure 5.9: The Movie domain from [GFK+07] in ORM.

skeleton all in one model. The possibility to express subtypes in the relational model shall be
called the Subtyping Advantage or ST Advantage.

Because classes were not important for their PRM-theory and class hierarchies are, this
could give ORM an advantage over GFW. According to [GFK+07] with class hierarchy, we
were able to express relation that could not be expressed without CH. Figure 5.9 shows figure
5.8 expressed in ‘step 2’ ORM (everything up to step 2 from section 4.3).

What we see in figure 5.9 are the classes from the GFW-version, depicted as entity types
and with relations between them. Also, Person and Age are not connected with normal ORM-
relations to any other entity type in the schema, which normally means they should be left
out of the schema. However, they have a dependency relation with Rank and are therefor part
of the schema.

In the ORM schema, all the relations GFW try to express in two schemas are tried to be
expressed in one. When comparing this schema to the schema 5.5.B, the dependency arrows
are drawn differently. The reason for this is that we wanted to show the class hierarchy. The
strength of CH in GFW was that you could isolate a set of values, for example Action Vote
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Figure 5.10: Three possibilities of role dependencies in ORM.

and say the ranks belonging to the action votes influence the ranks of the documentary votes.
As you can see in the ORM schema in figure 5.9, we did create separate entity types for

action votes and documentary votes, both subtypes of the entity type Vote. Here, an advan-
tage of using classes in a relational model becomes clear: the attribute Rank in Action Vote is
an other attribute than Rank in Documentary Vote. To represent this structure in ORM, we can
do two things:

1. Isolate-By-Subtyping Solution or IBS Solution Create two different entity types, Action

Rank and Documentary Rank, the first belonging to Action Vote, the second to Documentary

Vote. Both Action Rank and Documentary Rank are subtypes of the entity type Rank. This
solution has been used for representing the two kinds of Vote in the schema, Action Vote

and Documentary Vote.

2. Isolate-With-Roles Solution or IWR Solution The other way to represent this structure
is the one used in the scehma. We make use of the expressiveness of relations in ORM.
In a relation, there are roles, containing those values of a entity type playing a role in
that specific relation. As said, in GFW you could isolate values of certain attributes by
using CH. In ORM, the same thing can be done by making smart use of suptyping and
roles. Because we created two subtypes for Action Vote and Documentary Vote, we have
two separate facts: Action Vote has Rank and Documentary Vote has Rank. Both the roles
played by Rank in these facts contains only values belonging to either Action Vote or
Documentary Vote. We can therefor attach the dependency arrows to the roles and not
the entity types itself.

The big advantage of the second option is that we do not have to add a new entity type
with subtypes for every dependency relation we want to make to isolate certain values. The
more object types you add to an ORM schema, the more relations there are and the complexer
the schema gets. And the more object types and relations there are, the more the schema
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becomes unclear and unreadable. Also, when attaching dependencies to roles, you can isolate
dependencies to certain parts of the schema. An example from the movie-domain: if the
dependency arrow was not between Age and the role Rank plays in Action Vote has Rank, but
between Age and the entity type Rank, all rankings would be influenced by the age of a
person. It could be the case that for documentaries the age of the person does not matter
when ranking it. By attaching the dependency to a role, you make the dependency only valid
for role, not the whole entity type.

There is a catch however. Not every dependency arrow can be drawn from one role to
another. There are cases where all values of a entity type can influence the values of an
other entity type or role, or a role influences all the values of an entity type. So, it is always
needed to be certain what kind of dependency you are trying to add. This is the Dependency-
Scope Problem or DSc Problem. We will not discuss an in depth analysis or correctness of
these dependencies in this thesis, for the same reasons as coherency is not discussed (see
the previous section). We focus on the graphical possibilities of ORM, not on the possible
problems of formal correctness that are behind them. Figure 5.10 shows the three other
possibilities, with the already discussed entity-type to entity-type dependency as fourth one.
The other three are: A) from entity type to role, B) from role to entity type and C) from role
to role.

5.2.4 Notion on Coherency of P-ORM

As seen in section 3.4, GFW created a theory for satisfying acyclicity in their dependency
model. To speak of coherency in P-ORM, we also need a theory like the one of GFW. In this
thesis, the coherency of P-ORM (combination of ORM and PRM) will not be discussed. We
focus on the practical part, showing the possibilities of graphical representations of PRMs in
ORM. Making P-ORM formally coherent is something for future research.

5.2.5 Concluding

What we showed in this section is that it is possible to express GFW in ORM. Because of the
many found problems, solutions and similarities we have put a summary of our findings on
expressing GFW in ORM in table 5.2.5. The first column describes the concept from GFW,
the second column states if it is usable or expressible in ORM and why. The third column
gives the alternatives or solution ORM has for that concept or why it is not a problem that
ORM can not express it. We use the terms indicated with the bold and italic font style found
throughout this first section.

5.3 Possibilities of P-ORM

In this section we want to discuss some the advantages ORM can give over other relational
languages which can be used in combination with PRM. Because ORM is one of the most
expressive modeling languages, it is possible to express structures that other modeling lan-
guages can not express properly. Because this thesis only discussed three frameworks with
their own relational language, this section can only compare ORM to those three. As we used
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GFW Possible in ORM? Solution in ORM
Relational Model

Classes & Attributes no, CR Problem NCN Adv., FCD Sol.
Class - Attribute Relation yes, IR Translation -
Reference Slot (Chain) no, CR Problem NCN Advantage
(Definition of) Population no, CR Problem NCN Adv., DPD Princ.

PRM
Relational Skeleton yes, RS Advantage -
Dependency Structure yes, DS Similarity -
CPD yes, CT Similarity -
PRM Definition no, CR Problem FP Redefinition
Coherency of PRM not discussed not discussed

Class Hierarchy
Class Hierarchy Tree yes, ST Advantage -
Isolation of attribute values no, CR Problem IBS Solution, IWR Solution
Coherency of CH-PRM DSc Problem, not in-depth

discussed
not discussed

Table 5.1: (Im)possibilities of the usage and expression of concepts from GFW in ORM.

GFW this whole chapter and we think this is the most workable framework for PRMs, we
will try to show some situations in which ORM can have an advantage over GFW.

We will first focus on structural advantages, discussing three concepts which are often
used in ORM. We will then also brainstorm a bit about the usage of constraints. Because
the focus of our thesis is not really on formality and constraints have a big deal of formality
behind them, we just want to think a bit about the possibilities for P-ORM they could give.
The last section will summarize this chapter of our thesis.

5.3.1 Examplary Structures of ORM: New Possibilities in P-ORM?

The main advantage ORM has over other modeling languages is that it can express almost
every relation, giving it the ability to express structures other modeling languages can not
express. GFW has no explicit expression of relations as ORM knows them, limiting themselves
only to explicit relations between reference slots and classes. In this section, we will show
three structures that are an example of the expressiveness of ORM. We will try to match these
three structures to their possible counterpart in GFW and see if one of them has an advantage
over the other. The three structures we will discuss are: facts (or relations) that contain more
than two roles, objectifications and power types. Figure 5.11 shows these three structures: A)
ternary fact type, B) objectification and C) power type. After discussing these three examples we
will also discuss the usage of constraints in ORM.

Using Ternary Fact Types in P-ORM

As discussed in the previous chapter, facts in ORM can have as many object types connected
as you want. Of course, if more objects are connected to a fact, the fact becomes more
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Figure 5.11: Three typical structures in ORM.

Figure 5.12: Ternary fact type in ORM (A) and its possible representation in GFW.
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Figure 5.13: Conversion of supposed ternary fact type in GFW to ORM.

complex. In ORM, binary and ternary fact types are the most used. In GFW, we saw they can
represent binary fact types. From the university domain, we saw all kinds of binary relations,
implicit to the class hierarchy [GFK+07] built. But maybe we want to take these relations a
bit further, expressing relations where three or more objects are involved. This is not natural
for the relational model in GFW, so we ask the question: is it possible to express a ternary
relation in GFW?

When we want to express something from the RE like Sporting Team has won Prize with

Trainer it becomes hard to see how this relation can be expressed in GFW. First of all, in ORM
this would be a simple ternary fact type. In our ORM-schema for the RE (figure 4.6) we chose
to objectify Prize, but to make the example less complex, for now just connect three entity
types to a ternary fact type. When expressing a fact in GFW, we first need to identify classes
and attributes. Sporting Team, Prize and Trainer all three are classes, with Prize and Trainer

also being reference slots in the class Sporting Team. Figure 5.12 shows both the ORM as the
GFW expression.

Does the expression in GFW represent what we could express in ORM? Well, not so
clearly. If we would apply our translation of relations from GFW to ORM, two facts are
derived from the class Sporting Team: Sporting Team has Trainer and Sporting Team won Prize,
see figure 5.13. We can not directly deduct the ternary ORM-fact, because Trainer and Prize are
not directly linked. This is what we will call the Ternary Expression Problem or TE Problem.
When we populate both ORM schemas (the ternary (5.14.A) and the double-binary (5.14.B)) we
can see that the double-binary schema allows other populations as the ternary does.

This can be deducted as follows: first we take the population of schema A as the correct
population (as this is the original ternary fact type). We translate the ternary fact to GFW (not
explicit in this figure) and translate this GFW-translation back to ORM, which gives us schema
5.14B. The only way to deduct the ternary fact combinations of A out of B is to combine the
two binary facts. We can than deduct the following facts:

1. Barcelona has won CL with Guardiola

2. Barcelona has won Primera Division with Guardiola

3. Barcelona has won CL with Cruyff

4. Barcelona has won Primera Division with Cruyff
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Figure 5.14: The ternary (A) and binary (B) schemas with population.

The first three facts are the same as those from schema A. But fact 4 is a non existing fact
in the population of B. So, when expressing a ternary fact type in GFW, we need to combine
two binary fact types to one fact. With this combination, sometimes a combination can exists
which was not in the original population. We call this problem the Population-Combination
Problem or PC Problem.

So, GFW is not able to express a valid ternary fact type in their framework, because of the
TE- and PC Problem. This gives ORM a structural advantage over GFW when expressing facts
with more than two roles (or relations containing more than two classes or attributes).

For dependency relations, ternary fact types are not really able to express something more
than GFW could without them. Because we can not attach dependencies to a fact type, we
first need to objectify the fact type to attach dependencies to it. In that way a ternary fact type
is needed to add an objectification to, but it does not give a direct advantage for the PRM,
making it PRM Indifferent. So, for a PRM it does not really matter if you can express ternary
fact types or not. But for expressing a relational model and its population it makes a real
difference.

Using Objectifications in P-ORM

Objectification is the possibility in ORM to make an object type out of a fact that can have
relations with other object types itself. This means that the combination of roles from the fact
are the new object type. The ability to do is directly enabled by the expressive way in which
ORM treats relations. Figure 5.15 shows an objectification of a binary fact type f, which has
a binary relation with the entity type C. It also shows a possible dependency relation with
corresponding CPD.

GFW has a Objectification-Expression Problem or OE Problem, meaning they have no
mechanism to express objectifications. There is no way make a class or an attribute out of
a relation in their relational model. A small comfort for them: in almost no other relational
modeling language there is this possibility. The facts objectifications represent in ORM how-
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Figure 5.15: An example of objectifcation in ORM and a PRM over it.

Figure 5.16: An example of how an objectification can be removed in ORM.
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Figure 5.17: The other way of removing an objectification in ORM.

ever can also be expressed by other constructions, making objectifications not a mandatory
element for expressing the domain. Figure 5.16 shows such a construction, eliminating the
objectification. Because we don not want to loose any facts, fact f and fact g of the left schema
are also drawn in the right figure and not put together in the ternary fact g. When removing
the objectification, you can see it becomes a ternary fact type. For expressing a ternary fact
type in GFW, we already saw the ternary-expression and population-combination problems occur.
We shall call the whole objectification removal problem the Objectification-Removal Problem
I or OR Problem I.

There is another way to remove an objectification, which figure 5.17 shows. The idea is
that entity type f contains the unique combinations of A’s and B’s which were first found
in fact type f. Representing this solution in GFW gives is yet again the binary-combination
problem: we can not restrict the values which we combine with each other. Also, in GFW there
is no way to express uniqueness constraints. Therefor, this objectification removal is not an
option and we shall call this the Objectification-Removal Problem II or OR Problem II.

As you can see in the figure 5.15, expressing a CPD over an objectification works the same
as it does for a normal entity type or role. Still, the CPD-Complexity Disadvantage or CC
Disadvantage can occur: the CPDs for objectifications can become somewhat bigger, because
populations of fact types can contain more values than the object types they are connected to.
It is good to keep this in mind when creating CPDs, because when the larger a CPD is, the
more complex they are.

As we discussed above, an objectification can be easily removed in ORM. But this gives
us some problems with the dependency structure of the newly created ORM schema. Until
now we were only able to express dependencies from and to one entity type and one role.
With an objectification, we could take two or more roles together and attach dependencies to
it. Figure 5.18 shows that when removing the objectification, it graphically becomes harder
to express the same dependency. We now hooked the two roles together, but this is not as
clear as the objectification itself is. Even more when we would also add constraints on the
role, the whole outlook of fact f would become messy. We can say that an objectification has
an Objectification-Dependency Advantage or OD Advantage, letting it express probabilistic
dependencies attached to more than one role in a fact more easily.

In short, objectifications give an extra mechanism to express relations in ORM and they
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Figure 5.18: Removing objectification and its dependencies in ORM.

Figure 5.19: Schema with power type and attached dependency relation.

have no counterpart in GFW or in most other modeling languages, which we called the
OE Problem. This gives ORM an extra way to express aspects of the universe of discourse
and probabilistic dependencies that are connected to it. Still, the part of the domain an
objectification models can also be expressed by other constructions, as figures 5.16 and 5.17
show. But these expressions gave us the OR Problems I & II.

When adding dependencies, objectifications can express something more than is possible
in GFW: it can add a combination of values to the dependency structure, as figure 5.15 shows.
When removing an objectification, these dependencies are graphically harder and less clear
to express in ORM itself. So, objectification have an OD Advantage. In GFW, there is no
valid way to express an objectification, an alternative structure for an objectification or the
dependencies which can be attached to an objectification.
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Figure 5.20: Power type and dependency relation in ORM (A) and its representation in GFW
(B).

Using Power Types in P-ORM

Power types are an construction in ORM to make it possible to create a set of instances of an
entity type. In our RE, we have the entity type Player. When we create a power type over
it, we can create sets of players, named Players. Figure 5.19 shows an example of a schema
containing a power type and a dependency relation it plays.

The power type is a very powerful mechanism to create sets of a variable amount of
instances of the same entity type. As with almost all other object types in ORM, constraints
can be added which, for example, limit the amount of instances a set may contain. In all
other frameworks we discussed in this thesis, a variable amount of instances of something
was problematic. [KP97] explicitly mentioned this problem, but in the frameworks of [BW00a]
and [GFK+07] there also was no solution for this. Of course, a power type is always limited
to one entity type. This makes it a limited solution for the problem. The problem of these
frameworks with an unknown or varying amount of instances is called the Varying-Instance
Problem or VI Problem.

But could GFW construct something like a power type? Well, the closest they could get
is making a class named Players containing a variable amount of attributes belonging to the
class Player. Figure 5.20.B shows a representation of the schema in GFW. Still, there is no
mechanism in GFW to represent a varying amount of attributes from the same class or put
attributes or create a set of instances from an attribute. The inability of GFW to express a
valid power type is what we call the Powertype-Expression Problem or PE Problem.

We showed that power types can be functional for creating sets of instances from the
same entity type. But is it also functional for P-ORM? If we would take the example from
figure 5.19, a possible interpretation of the dependency between Players and Performance is
that a certain combination of players in a team influence the performance of that team. Take
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Figure 5.21: Example of a CPD with a power type.

ORM Expressible in GFW? Alternative in GFW? Function in P-ORM
Ternary Fact no, TE Problem no, PC Problem PRM Indifferent
Objectification no, OE Problem no, OR Problem I & II CC Disadv., OD Adv.
Powertype no, PE Problem no, VI Problem SD Advantage

Table 5.2: Concepts from ORM, expression in GFW and (dis)advantages in P-ORM.

football for instance, where Barcelona has a team with Messi, Xavi and Iniesta in it. Such a
combination of players would likely give you a good performance and sometimes even an
extraordinary performance. When lesser players are included instead of Messi or Xavi, the
probability of a good performance will be lower. A CPD for this example is found in figure
5.21. This gives ORM the advantage to create dependencies on sets of instances, something
GFW can not do. This is called the Set-Dependency Advantage or SD Advantage.

As you can see, the usage of a power type in ORM can give some advantages: it enables
you to create sets of instances from an entity type and you can vary the amount of instances
in the sets (VI Advantage). Still, power types only give a solution for a varying amount of
instances from one entity. In P-ORM, you can add dependencies to a certain combination of
instances (SD Advantage) as our example above showed. This is something which GFW lacks.
We tried to create a schema in GFW which would have the same mechanism as a power type
in ORM, but had to conclude this was not possible (PE Problem).

Concluding

In this section we looked at what kind of advantages some structures typical for ORM could
give ORM an advantage over GFW in both the relational model as the PRM. As we did in
the previous section, we will summarize the section with a table, found in table 5.2. The first
column states the concept from ORM, the second if it is (in)expressable in GFW and why
(not). The third column looks at the alternatives GFW has for the concepts from ORM and
the fourth column gives the (dis)advantages the concept could have in P-ORM.

When looking at this section and the table, we must conclude that ORM is able to express
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more relations and dependencies than GFW can. GFW is not able to express all the concepts
ORM has. Two of the three concepts we discussed gave new possibilities in the P-ORM
schema. Still, more expressiveness also gives more complexity.

5.3.2 The Possibilities of Constraints in P-ORM

This section is more of a brainstorm, discussing the usage of constraints in P-ORM. Because
the is no mention of constraints in GFW and they have no explicit relations to which con-
straints can be added, we already need to conclude that constraints are (almost) impossible to
express in GFW. Because constraints are on of the strengths of using ORM, it is very interest-
ing to take a look at what advantages constraints could give us in the P-ORM, the combination
of ORMs and PRMs. Because the scope of this thesis is on the graphical aspects of PRMs (and
P-ORM), we take some constraints found in ORM and see if they could do something with
the probabilistic dependencies found in a PRM. We will no discuss the correctness of the
constraints in P-ORM or the formal meaning of them on populations of P-ORM schemas and
their CPDs.

What we will do in this section is show some models which use constraints with attached
probabilities. The focus will be on mandatory role constraints, but we will also make use of
uniqueness and exclusion constraints.

Mandatory Role Constraints and P-ORM

Figure 5.22: Using a mandatory role constraint as a gatekeeper.

The mandatory role constraints (MRC) in ORM are put on roles, forcing that all instances
of an entity type play a role in that fact (see figure 5.22). You can also put them between
two roles belonging to the same entity type of different facts, forcing that the joined set of
instances of that role is the whole population of that entity type (see figure 5.23).

The first usage of a MRC in P-ORM is as Gatekeeper, as shown in figure 5.22. The idea
behind the schema is as follows: a player sustains injuries in his sporting career, shown with a
binary fact we name Injured. There are many kinds of injuries, but to keep the example simple
there are only three: muscle-, knee- and foot injuries. Because all players in this example are
very fragile, they all sustain injuries (so every player has to play the role in the fact Injured.
The gatekeeper idea is: every player comes past the gatekeeper, which labels them with an
injury. Every injury has a chance of occurring, with the total of injury-probabilities being 1.

We could also add an uniqueness constraint to the role of Player, stating that every player
can only sustain one injury. In this schema however, a player can have an endless list of
injuries, even of the same one.
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There are, of course, some problems with this example. First of all, in the real world not
every player gets injured. In that case, we could not use a MRC because not every player plays
the role. Also, not every entity type has a limited population. If all probabilities need to add
up to 1, we need some kind of mechanism to let this work for every entity type. Categorizing
the population of an entity type could be such a solution. Implementing the gatekeeper-idea
could be useful, but as said above: we are just brainstorming so it is nowhere near usable.

Figure 5.23: Using the mandatory role constraint as a divider.

But there are other usages of a mandatory role constraint. Figure 5.23 shows the usage
of a MRC as a Divider. The idea behind the schema is as follows: all tennis players have a
favourite surface to play on. To keep the schema simple, all tennis players either favor grass
or have a gravel as favorite. The constraint we see on attached to the roles is a disjuncitve
mandatory exclusion role constraint, a combination of an exclusion constraint and a disjuntive
MRC. It means: either you favor grass or you favor gravel, but never both. The Divider-idea
is that you can attach a probability to both roles, saying that there is a 35% chance you favor
a grass surface and 65% chance you favor a gravel surface.

The divider-idea is very simple, but when attaching it to binary facts is harder. Because
we want to keep it simple in this section, we used two unary facts, which are booleans: if the
instance plays the role it is true, if it does not it is false and the fact does not exist. The Divider
has no real direct problems, still usage in a real P-ORM schema still needs to be researched.

Usage of other Constraints in P-ORM

As ORM has more constraints than the MRC, there are more possibilities of the usage of
probabilities in combination with these constraints. What we want to point out is that ORM
is one of the most expressive modeling languages that exist today and have a very extensive
range of constraints to use. By enabling the usage of constraints in the PRM, ORM can become
a very interesting choice as relational model for PRM models.

Concluding

With this section we tried to show some possibilities with the combination of constraints and
PRMs. We looked at MRC and how they can be used in a PRM. We found two possible
appliances: the Gatekeeper and the Divider. Of course, there are more possibilities also with
other constraints. Because ORM has as strength the use of constraints, using them in PRMs
can give ORM an advantage over every other modeling language.
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5.4 Concluding

In this chapter, we showed that the PRM framework, created by [GFK+07], GFW, can be
expressed in ORM. We encountered some problems with direct translations in the relational
model of classes (CR Problem) and finding explicit relations in GFW that could be created to
facts (IR Translation). But for every concept out of GFW, we could find a representation in
ORM or loose the concept in ORM without consequences (NCN Advantage).

The PRM that was in GFW was also easy to translate, as most of the dependency relation
could almost be translated one on one (DS Similarity). Even when lossing the class represen-
tation, ORM is capable of creating PRMs with the same expressiveness as GFW, with being
even easier to use when it comes to Class Hierarchies (ST Advantage). Because the scope of
this thesis is on the graphical representations, we did not discuss the coherency of the P-ORM
model.

After mapping GFW to ORM, we could look at the possible advantages the expressiveness
of ORM could give over GFW and to PRMs in general. We looked at fact types containing
more than two roles, objectifications and power types. For all three GFW had trouble rep-
resenting them (TE-, OE- and PE Problems). Also, in case of the objectifications and power
types, it gave the possibilities to express dependencies which were not possible in GFW (OD-
and SD Advantage).

For constraints, we saw that they could also be used in the probabilistic aspect of P-ORM.
We showed the Gatekeeper- and Divider idea for MRC. Because MRCs are not the only con-
straints in ORM, there are many more possibilities of the usage of constraints in combination
with the PRM. Because this thesis is focused on graphical representation, we did not go into
formalities of the constraints, making it just some kind of a brainstorm of ideas about con-
straints.

On the whole, we showed that ORM can give advantages over GFW both the relational
model as the PRM over the relational model. Still, more expressiveness also gives more
complexity, which is not always a good thing.



Chapter 6

Conclusion and Discussion

6.1 Summary

In this thesis we tried to find an implementation for a PRM in the ORM modeling language.
We started out by looking at the scientific literature and analyzed the history of the PRM
models. A PRM basically consists of a relational model and a probabilistic model attached to
it. Object Oriented Bayesian Networks (OOBNs) by [KP97] were the first attempt at creating
a combination of a relational model and a probabilistic model, which was based on Bayesian
Networks. [Pfe99] were the first to speak of PRMs (OOBN and PRM both refer to the same
concept). [KP97] and [Pfe99] inspired the frameworks [BW00a], [LB01] and [GFK+07] created.
Where [BW00a] edited the framework of [KP97], enabling top-down representation and mak-
ing the framework less complex, [GFK+07] mapped PRMs to a database oriented relational
model. [GFK+07] inspired [SEJ10] for their PRM framework for security analysis, based on
UML Class Diagrams. Besides [SEJ10], in 2010 [TWG10] updated some inheritance flaws in
PRMs which were not tackled by the earlier literature.

We then dug deeper into three important PRM frameworks from the mentioned literature:
the first OOBN/PRM framework of [KP97], the top-down approach of PRMs by [BW00a] and
the more practical applicable and database oriented approach of [GFK+07]. Besides that, we
introduced our Running Example (RE), which we used to explain concepts from the different
articles. The most important notion of this chapter is that [KP97] implement a rather complex
framework, [BW00a] simplify this framework and add a top-down representation. [GFK+07]
yet again simplify the usage of PRMs and dig a bit deeper into the probabilistic theories
behind the framework. Their framework used a relational model comparable to UML CD,
which is related to ORM schemas This made the framework of [GFK+07] the most usable
framework for a mapping to ORM.

Before mapping PRM to ORM, we needed to explain the language ORM. We discussed
what the theories behind the language were and which graphical representation they used.
Also, we modeled our RE in ORM, showing the workings of this language. As the last part
we motivated the usage of ORM over an other modeling language. The two most important
reasons were that ORM has not yet been used for representing PRMs, while being a known
language in many industries and the other reason was that ORM is one of the most expressive
modeling languages. This makes ORM a language which can support almost every domain
and can also be more expressive than UML CD. For these two reasons, ORM was the chosen

77
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language for a combination with PRMs.
Chapter 5 saw us discuss the mapping of the framework of [GFK+07], GFW, to ORM.

The name we use for this combination is P-ORM. The first section showed if ORM could
express all the concepts from GFW and what problems this would give. The major issue of
this expression was the lack of class representation in ORM (CR Problem). Still, also for this
issue solutions were found (NCN Advantage, FCD Solution). Mapping the PRM from GFW
to ORM also had its problems, but here every problems with the representation could be
resolved (IBS & IWR Solution).

The second part of chapter 5 was used to see if ORM could give some advantages over
GFW. Because ORM is more expressive in many ways, we looked at three exemplary concepts
of ORM: ternary fact types, objectifications and power types. We found that in GFW, representing
these three concepts is hard, if not impossible (TE-, OE-, PE Problems). An objectification and
power type could give some new possibilities when attaching probabilistic dependencies to
them, constructs that GFW is not able to express (OD- and SD Advantage).

We concluded chapter 5 with two examples of usage of constraints in P-ORM, where we
used a mandatory role constraint and a disjunctive mandatory role constraint. We showed that the
first could be used as Gatekeeper, while the last could be used as Divider. Because the focus of
this thesis was not on the formal side of the relational models, we just hinted at the usage of
constraint, never really formally validating them.

6.2 Evaluation of Subquestions

In our introduction we stated that the goal of this thesis was to look at existing PRMs and
see if a combination with ORM was possible. The focus of this thesis was on the graphical
representations, not the formality behind the models.

In this section we will evaluate our four subquestions and see if we researched what we
said we would research. Also, we will point out some interesting insights we gained in this
thesis and problems that we found during our research.

6.2.1 What is a PRM?

We defined that as output for this subquestion we would find a global definition for PRMs
and also give a short overview of the articles written about PRMs and the ideas in them.

What we found as definition for PRMs was a definition [GFK+07] give in their article.
This definition was useful throughout the thesis, it even gave us the possibility to test P-ORM
with. More over, the definition applied to every article we discussed.

When we looked at the difference between OOBNs and PRMs, we gained an interesting
insight: PRM and OOBN were both used to refer to the same thing. Eventually, only the term
PRM was used, making it the official term for what we now know as PRM.

Another insight we gained from this subquestion was that not many researchers have
applied modern modeling languages on PRM. Most frameworks used their own created rela-
tional language. GFW was the first to try something that looks like a database representation
and [SEJ10] used this as base for their security based UML PRM framework.

If we look at the goals we set for this subquestion, we fulfilled them without real problems.
The scientific literature about PRMs is not that extensive, with a lot of articles dating from the
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beginning of this millennium.

6.2.2 What does a PRM Framework look like?

In this subquestion the goal was to find concrete examples of PRM frameworks and describe
them. We also wanted to introduce our RE here, which used throughout our thesis.

The introduced RE was very useful for the whole thesis. By interpreting the RE not to
strictly we could use it throughout the thesis as example for many concepts. Because the
sports domain is very big and known the used examples are also understandable for almost
every reader.

Besides the RE, we described three frameworks. We wanted to show the development
and diversity of PRMs since 1997. Because [KP97] was the first to create a PRM framework,
we thought it was needed to first show their implementation. Problematic with this was that
they lacked a bit in graphical examples of their framework. This meant we needed to create
a lot of examples our selves.

We described the framework of [BW00a] because a lot of later literature refers back to
them. Also, they compared their framework to the framework of [KP97], giving us the chance
to show the evolution of PRMs in those years. An interesting insight we gained from [BW00a]
is that [KP97]’s framework was more complex than it needed to be. Even without their top-
down representation, [BW00a]’s framework was easier to use. The comparison-table [BW00a]
gave in their article (table 3.1) helped us a lot in gaining insight in the complexity of [KP97]’s
framework and the less complex workings of theirs.

We described GFW because they made use of a graphical class-database representation,
like UML CD and their article explained the workings of their framework really well . Because
of the similarity between GFW and UML CD, and being the inspiration for the article by
[SEJ10], their framework was the most useful of the three for a translation to ORM.

Our descriptions of the framework lacked a bit of formal background. This was because
in the thesis we focused more on the graphical part, as stated in the introduction. In all of
the cases we lacked in formal definitions, we found the formalism not important enough to
be included.

Because we only chose to describe three frameworks, we did not address all solutions
for problems in PRMs. Still, the frameworks that were not included were not able to give
a solution for the biggest problem: representing complex domains. The only article which
could have helped us was [SEJ10]. But because this article was already to UML CD specific, it
would be hard to map it to ORM. Therefor, GFW was a better option, as it was more general
than [SEJ10].

6.2.3 What is Object Role Modeling (ORM)?

The goal of this subquestion was to introduce ORM. We wanted to show why we used ORM
for the combination with PRM and what ORM exactly was.

Because we based this subquestion on an article by Terry Halpin, the founder of ORM,
we could stay very close to the important basics of ORM. As we were only interested in the
graphical part of ORM for this thesis, we did not describe any formalities behind ORM. This
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did also limit us a bit in the last subquestion, because we were not able to formally validate
our use of P-ORM. Because of the scope of the thesis, this did not matter.

We also wanted to show how the construction of an ORM schema is done. Here, the RE
was also of use, as it was the RE we modeled to an ORM schema. Because we could adept the
sports domain rather easily, we could also show every important concept that can be used in
an ORM schema.

The reasons why we used ORM and not any other modeling language were mostly based
on the expressiveness of ORM. A language which comes close is UML with their Class Di-
agrams. But as this was already done by [SEJ10] for a specific domain and ORM is more
expressive than UML-CD, we still found ORM the best choice. Still, UML is better known in
the industry than ORM is.

We did not encounter big problems when answering this subquestion. This was mostly
because the source for this subquestion, [Hal98], is a very clear and informative article about
ORM.

6.2.4 ORM and PRM: a working combination with new possibilities?

As we stated in the introduction, in this subquestion we tried to combine ORM with PRM
by mapping a framework from the literature, GFW, to ORM. Also, we wanted to see if ORM
could give us more possibilities than GFW gave us.

When converting GFW to ORM, the major problem that we found was the lack of class
representation in ORM. Luckily, the PRM that was defined over GFW’s relation model was not
strictly based on classes, but more on attributes. If this was not the case, the ORM conversion
would have been a much more complex. Now, we were able to find a solution for every
problem we encountered, except class representation. But as ORM had the NCN-Advantage,
this was no problem.

Because ORM defines relations in great detail, we thought ORM could give some new
possibilities to PRMs, things that in GFW were not possible. Because we did not want to
discuss every concept out of ORM, we choose three typical ORM structures. Every extra
possibility these structures gave us regarding probabilistic dependencies could be traced back
to the way ORM expresses relations. It occurred to us that ORM had the possibility to attach
probabilistic not only to the object types itself, but also to the roles they play. In that way, we
could isolate certain populations of entity types and attach probabilities to it. Where GFW
needed a lot of extra work to do this, ORM already had this possibility in their basic structure.
We named this concept the IWR-Solution.

We also saw that ORM is just far more expressive and graphical than GFW, giving a PRM
a lot of room to express its structure. This was also backed when we look at the constraints
and their possibilities in PRM-models. The extra dimension explicit constraints could give
P-ORM were very interesting. Because we only discussed two constraints here, options are
still open for uniqueness-, subset and value constraints. The downside of this section was that
without discussing formalities, we could only hint at the P-ORM usage of constraints. When
using constraints in a populated P-ORM schema, it is very likely there are formal problems
like illegal populations and strange dependencies.

As with this whole thesis, everything we did was not based on formal validity, but on
graphical representations. We did find some interesting constructs, for example connecting
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the dependencies to roles. But as we did not formally validate their usage, we do not know
for sure if it is really usable in practice. Here lies a good opportunity for future research,
as the formal validity of P-ORM still needs to be researched. Also, we did not compare our
P-ORM with other modern implementations of PRMs, like the one in [SEJ10]

If we look at the goals we set for this chapter, we discussed a lot about graphical repre-
sentations and clearly showed ORM could give new possibilities and sometimes even advan-
tages over GFW. ORM already has more expressiveness than most modeling languages, now
we also showed this could give them advantages in combination with PRM, P-ORM. Another
insight we gained was that ORM models could get very complex when implemented fully.
This is also why we did not try to convert our whole RE to P-ORM. What we also did not do
was looking at other existing modeling languages, like UML CD, and see if they could do the
same as ORM.

6.3 Answering the Research Question

Now we summarized our thesis and evaluated the ‘answers’ to our subquestions, we can
formulate an answer to our main research question. The question was as follows:

How can Probabilistic Relational Models be graphically expressed in ORM and what can be the
possibilities of this expression?

Let us start with answering the first part of the question. As Probabilistic Relational
Model we used the framework as described by [GFK+07] (GFW) and the existing modeling
language used was ORM. As we showed in the fifth chapter, an almost direct translation could
be made from the class-representation of GFW to the entity type representation in ORM. We
showed that a lot of the concepts in GFW had a counterpart in ORM. The PRM itself, with
its probabilistic dependencies could also be mapped almost directly to ORM. The PRM-ORM
combination was given the name P-ORM.

The how can thus be summarized as: finding counterparts of the PRM in the existing
language and in parts express all the important concepts in the existing modeling language.
Because ORM is very graphical, it gave us a lot of room to express GFW in it. With some
other existing modeling languages this could give more problems.

The main new possibilities P-ORM gives us are based on their way of expressing relations,
using roles, constraints and fact types. This enables that combinations of instances of different
entity types and sets of instances from one entity type can be used in the probabilistic depen-
dency structure of the PRM. Also, the constraints used in ORM could give new possibilities
in the PRM. Examples of this are the usage of constraints as Gatekeeper and Divider.

We emphasized throughout this thesis that we focused on the graphical representations.
Therefor, all the possibilities we found with P-ORM can still give us problems when we are
using them in practice. P-ORM still lacks its formal definition and validation.

6.4 Possible Future Work

As we already stated throughout this chapter is that future work on the research of P-ORM is
mostly in the formal validation of the framework. We did not address the formalities of cer-
tain structures and constraints in ORM and therefor could not address the formalities of those
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structures and constraints in P-ORM. Formally defining and validating constructs like roles
with probabilistic dependencies, power types with attached dependencies and constraints
used in the PRM. Without their formal definition, they only exist in a graphical way. That
satisfies the demands for this thesis, but not for usage of P-ORM in practice.

We also fall a bit short in comparing P-ORM to other, newer PRM models, like the frame-
work of [SEJ10]. We do not know if the new possibilities P-ORM could give are also possible
in the UML-PRM combination. In [SEJ10], there is no explicit mention of constructs like
power types, objectifications etc. As we did no discuss their framework in detail, we can not
state that it is not possible at all.

The last point that we want to address as future work is that ORM is very expressive
graphically. Many more graphical (and formal) possibilities for probabilistic dependencies in
P-ORM can be found. As we did not discuss all constraints, entire populations, schema types
and many more extensions there are for ORM, there are many more options for P-ORM. We
showed in this thesis that P-ORM could work, the next step is to show that P-ORM will work.
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