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Abstract

Centrality measures provide a means to differentiate the importance of vertices in a net-
work. These measures are mathematically clear, but the algorithms to compute them often
have quadratic time complexity or worse. This may lead to significant computational chal-
lenges when applied to large networks. In this paper, we propose a local strategy for three
frequently used centrality measures: (i) closeness, (ii) betweenness and (iii) PageRank. This
local approach uses only the vertices directly adjacent to a target vertex to derive an ap-
proximation of the true centrality measure. The approximations are accompanied with an
analysis of the approximation error bounds. Our analysis and experiments show that local
approximations are quite successful on undirected graphs, and on directed graphs depending
on the reciprocity of edges.

1 Introduction

Many collections of data can be represented as complex networks, such as the world wide web,
various social networks, networks of interacting proteins or internet routers. An important aspect
of complex and/or social network analysis is formed by centrality indices, measures that are used to
indicate the (relative) importance of vertices and edges in the networks [1]. Mathematically, these
measures are usually well defined and fairly simple to grasp. However, their actual calculation is
much more involved, for the following reasons:

• First of all, the networks we study are exceedingly large. Although most path-based central-
ity indices can be calculated in polynomial time, running time complexities of O(n2) or O(n3)
are still prohibitive for networks consisting of millions or even billions of nodes. Specialized
algorithms are sometimes able to lower this complexity, but even they are cumbersome for
networks of web magnitude.

• Second, the networks are updated continuously, adding or removing vertices and adding,
removing or rewiring edges. Being able to track the changes in a network and the accompa-
nying centrality rankings is an important topic, but infeasible with slow algorithms.

The aforementioned issues force us to rely on approximation algorithms instead of calculating
the exact centralities. But not any approximation will do. The most straightforward solution to
the problem of scale would be to find a representative sample and use this to find an estimated
mean and variance of the true centralities [2, 3, 4]. However, to find such a sample, the entire
network must be accessible and known which is not a reasonable assumption.

Fortunately, all is not lost. We propose to approximate centrality indices with what we refer
to as local techniques [5]; algorithms that at each step of their execution consider only vertices
adjacent to those they have seen before. For example, such an algorithm could estimate the
centrality of a vertex by only examining it, its neighbours and its neighbour’s neighbours. With
these local approximation techniques, we overcome both problems.

The paper is structured as follows: we take off by introducing the notation and definitions
that are used throughout this paper in Section 2. This is followed by Section 3 in which we
describe the application of our approach on three well-known centrality measures. Here we also
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analyze the approximation errors that accompany our approximations. The performance of the
local approximations in terms of running time complexity is discussed in Section 4. Afterwards,
we show a series of experiments in Section 5 to validate our theoretical results. Finally, we draw
the conclusions of our work in Section 6.

2 Preliminaries

We model a network as a graph G = (V,E), where VG is the set of vertices and EG ⊆ VG × VG is
the set of edges that connect the vertices. We define a H as a subgraph of G, denoted H ⊂ G, iff
its vertices form a subset of the vertices of G, i.e. H ⊂ G , VH ⊂ VG .

Let nG be the number of vertices in a graph: nG = |V | and mG the number of edges: mG = |E|.
The subscript G is omitted when there is no confusion likely to occur. We use the shorthand v → w

to indicate v is connected to w and its transitive closure v +→G w to denote that v is connected to
w through a path of one or more edges in G. The shortest path between two vertices is called a
geodesic path, its length is the distance d(v, w) between its endpoints. We also use the shorthand
v

k→ w , d(v, w) = k. Note that in the case of undirected graphs v → w and w → v are equivalent
(idem for paths), but this not the case in general when the edges are directed.

The neighbourhood N(v) of a vertex v consists of those vertices that it is connected with:
N(v) = {w ∈ V | v → w}. In the case of directed networks we will make the distinction between
the neighbours that connect to v, Nin(v) and those that v connects to, Nout(v). The degree k(v)
of a vertex is simply the number of neighbours it has. In-degree and out-degree of v in directed
networks is defined analogous with its neighbourhood.

2.1 Definitions

We are looking for the smallest possible subgraph around v on which we can calculate a successful
approximation of a centrality measure. For each vertex for which we calculate its centrality, the
subgraph for that particular calculation must be local with respect to this vertex. The concept of
a local subgraph will be formally defined as:

Definition 2.1
We call a graph H a local subgraph with respect to a vertex v ∈ VG, denoted L (G,H, v), if

it satisfies the following three axioms:

Axiom 1. H ⊂ G

Axiom 2. v ∈ VH
Axiom 3. w ∈ VH⇒ v

∗→H w

In other words, a subgraph is a local subgraph w.r.t. v iff all vertices in the subgraph can be
reached from v. In directed networks this implies that a member w of the in-neighbors of v,
w ∈ Nin(v), is not part of the subgraph unless there is a path v

+→ w as well. However, many
centrality measures implicitly use such incoming edges in their definitions. To analyze this problem
we introduce the concept of reciprocity-at-distance-k ρk, which we define as:

Definition 2.2
The reciprocity-at-distance-k ρk of a graph G is the conditional probability that an edge

from v to w exists, given that there is a path from w to v of k steps:

ρk(G) = Pr
(
w → v

∣∣∣v k→ w
)
. (2.1)

Definition 2.3
To obtain a local subgraph, we make use of an environment generator g. It assigns to a

vertex a subgraph that is strictly smaller than the entire graph. A function is an environment
generator, denoted E(g), iff
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1. for each graph G the function g(G) assigns to each node v ∈ VG a local subgraph:
L (G, g(G)(v), v) and

2. this local subgraph is essentially smaller than the graph itself. The latter is formalized
as follows. Let n̂g(G) be the maximum of ng(G)(v) for all nodes v ∈ VG. Then the size
requirement is expressed as n̂g(G) = o(nG) for nG →∞.

The requirement that the assigned subgraph must be significantly smaller than the entire graph
leads to the critical trade-off in local approximations: smaller subgraphs lead to faster computa-
tion, but decreased approximation accuracy.

We consider the functions we intend to approximate – centrality measures – as a general class
of functions operating on networks:

Definition 2.4
A network function is a function that, given a graph G and a vertex v ∈ VG, assigns a value
to v. Formally, it is a function with signature f : G → VG → R .

Critically, a network function can be restricted to a specific input domain. This forms the basis
of our approach for local approximations:

Definition 2.5
Given an environment generator g(G), a local network function with respect to a vertex
v ∈ VG is a function that, given a graph G, assigns a value to that vertex based on its
local subgraph assigned by g(G). Formally, it is a function f(G) with signature f(G) :
VG × ℘(G)→ R.

Calculations on g(G)(v) will likely differ from the ‘true’ result on G. We require that this difference
is as small as possible. We distinguish between local approximations and local order approxima-
tions:

Definition 2.6
Let f be a network function and G a graph. We call a local network function f̃(G) a local
approximation of f if there exists an environment generator that assigns a local subgraph to
each vertex v, g(G)(v), such that the computation by f̃(G) on the subgraph yields a close
approximation of the value computed by f . Formally, f̃(G) is a local approximation iff

∀G∈G ∀v∈VG
∃g:E(g)

[∣∣∣f(G)(v)− f̃(G)(v, g(G)(v))
∣∣∣ ≤ ε] . (2.2)

From an application perspective, the exact centrality values are not always relevant. What
is more relevant is that the order that is induced by a centrality measure stays the same in the
approximation.

Definition 2.7
Let f be a network function. Then for any graph G, f induces a network ordering 4G of
the vertices VG as follows:

∀v,w∈VG

[
v 4G w , f(G)(v) ≤ f(G)(w)

]
. (2.3)

(VG,4G) is a partial order, as it is reflexive, antisymmetric and transitive.

Definition 2.8
Let f̃ be a local network function and g an environment generator. Then for any graph G,
f̃ induces a local network ordering 4̃G of the vertices VG. Formally:

∀v,w∈VG

[
v 4̃G w , f̃(G)(v, g(G)(v)) ≤ f̃(G)(w, g(G)(w))

]
. (2.4)

(VG, 4̃G) is once again a partial order, as it is reflexive, antisymmetric and transitive.
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Definition 2.9
Let 4G be the ordering induced by a network function f on the vertices VG and let 4̃G be
a local network ordering induced by f̃ . We say that f̃ is a local order approximation of f iff

τ(4G, 4̃G) ≥ δ , (2.5)

with τ ∈ [0, 1] a statistic measuring the correlation between the two orderings.

Although the choice for a specific correlation statistic is in principle arbitrary, in this paper we opt
for Kendall’s tau-b [6], as it does not pose any restrictions on the distributions of the orderings
and makes adjustments for ties.

3 Closeness, betweenness and PageRank

Using the framework of definitions from the previous section, we proceed to describe local ap-
proximations for a series of centrality indices. We consider (i) closeness, (ii) betweenness and
(iii) PageRank. The first two are widely adopted measures in social network analysis [1]. The
latter measure [7] has formed the basis for the success of Google, but is now also used in entirely
different contexts, e.g. [8].

For each of these measures we suggest an intuitive local approximation f̃ , based on the local
connectivity g of a vertex. We then pose two questions for each measure:

Research question 1
Given a centrality measure f , a local network function f̃ and an environment generator g,
what is the approximation error

ε =
∣∣∣f(G)(v)− f̃(G)(v, g(G)(v))

∣∣∣ (3.1)

that f̃ induces, in terms of the parameters of g?

And:

Research question 2
Given a centrality measure f , a local network function f̃ and an environment generator g,
(to what extend) is f̃ a local order approximation?

We approach the first question in a theoretical fashion, the second question will be answered
in the form of a series of experiments.

3.1 Closeness centrality

The closeness centrality cC of a vertex v is given by:

cC(G)(v) =
∑
w∈VG

2−d(v,w) . (3.2)

It is a measure of the (reciprocal of the) distance between a vertex and all other vertices in the
graph. Throughout this analysis we will use the normalized version of closeness centrality:

cC(G)(v) =
1
nG

∑
w∈VG

2−d(v,w) . (3.3)

Another formulation of closeness centrality allows us to easier distinguish the contributions by
vertices at different distances. Let Nk(v) be the vertices that are k edges away from v, i.e.
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Nk(v) = {w ∈ V | d(v, w) = k}. Note that N1(v) coincides with N(v) and N0(v) = {v}. Using
this notation, the closeness centrality of a vertex can be expressed as

cC(G)(v) =
1
nG

∞∑
k=0

|Nk(v)| 2−k . (3.4)

We create an intuitive local approximation of cC by choosing the local subgraph as the graph
induced by the vertices at most d edges away from v. Let H(v) be this subgraph, then formally
H(v) is defined as

H(v) =
d⋃
k=0

Nk(v) . (3.5)

Lemma 3.1 H(v) is a local subgraph.

Proof:
H(v) satisfies the three axioms as per Definition 2.1:

1. It follows from the definition that VH ⊂ VG and therefore H ⊂ G.

2. d ≥ 0, so N0(v) ⊆ H(v). Since N0(v) = {v}, it follows that v ∈ H(v).

3. If v, w ∈ H, then there is a shortest path between v and w with length at most d. From this
it follows directly that v ∗→ w.

�
Closeness centrality consists of the sum of contributions by vertices in H(v) and those in

G \H(v):

cC(G)(v) =
1
nG

∑
w∈VH

2−d(v,w) +
1
nG

∑
w∈VG\VH

2−d(v,w)

=
1
nG

d∑
k=0

|Nk(v)| 2−k +
1
nG

∞∑
k=d+1

|Nk(v)| 2−k . (3.6)

By considering only the first component, we obtain the approximation c̃C :

c̃C(G)(v,H) =
1
nG

∑
w∈VH

2−d(v,w) =
1
nG

d∑
k=0

|Nk(v)| 2−k . (3.7)

Lemma 3.2 c̃C(G)(v,H) has approximation error ε ≤ 2−d.

Proof:
The second term in (3.6) is the approximation error ε of (3.7), for which we can derive

ε =
1
nG

∞∑
k=d+1

|Nk(v)| 2−k

≤ 2−d , (3.8)

where we made use of the fact that |Nk(v)| ≤ nG − nH ≤ nG. �

Lemma 3.3 Let Hd be the function that assigns for each graph G to each vertex the local
subgraph as described above. In addition, let D be the longest shortest path from the most
central node v̂ in G. Then Hd is an environment generator iff d < D.
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Proof:
Since the distance between the source vertex v and any vertex in Hd is smaller than D, there are
at least some vertices unreachable from v. Yet, Hd is a local subgraph, so Hd is an environment
generator. �

This allows us to conclude:

Lemma 3.4 Let Hd be the environment generator as described above. Then c̃C is a local
approximation of cC with approximation error 2−d.

Proof:
This follows directly by choosing ε in Definition 2.2 to be 2−d. �

It is worth noting that the approximation error decreases exponentially with the distance
of considered neighbours. This implies that the approximation error is small even when only
a small local subgraph is considered. Consequently, closeness centrality is well suited for local
approximation.

In Section 5 we show that c̃C is also a local order approximation.

3.2 Betweenness centrality

Whereas closeness is an indicator of the number of vertices that can be reached from v, betweenness
is a measure of amount of communication that passes through v. It is expressed as the fraction of
shortest paths through v. Let σ(u,w) be the number of shortest paths between u and w, and let
σ(u, v, w) be the number of shortest paths between u and w that pass through v. The betweenness
centrality cB is then given by:

cB(G)(v) =
∑

u,w∈VG\{v}

σ(u, v, w)
σ(u,w)

. (3.9)

Similar to the analysis of closeness, we use the normalized version of this measure instead:

cB(G)(v) =
1

(nG − 1)(nG − 2)

∑
u,w∈VG\{v}

σ(u, v, w)
σ(u,w)

. (3.10)

To obtain a local approximation for betweenness centrality, let us examine the summation terms
in isolation. The enumerator in Eq. (3.10) can be decomposed as

σ(u, v, w) = σ(u, v) · σ(v, w) . (3.11)

By repeatedly applying this identity, we may partition the summation terms in (3.10) into those
fractions that include a predecessor and a successor of v:

σ(u, v, w)
σ(u,w)

=
∑

v0→v→v1
v0 6=v1

σ(u, v0, w)
σ(u,w)

· σ(v0, v, v1)
σ(v0, v1)

· σ(u, v1, w)
σ(u,w)

. (3.12)

Let S = E [σ(·, ·)] be the expected number of paths between any pair of vertices. Note that
σ(u, v0, w) · σ(u, v1, w) ≤ S. This implies

σ(u, v, w)
σ(u,w)

≈
∑

v0→v→v1
v0 6=v1

S

S2
· σ(v0, v, v1)
σ(v0, v1)

=
1
S

∑
v0→v→v1
v0 6=v1

σ(v0, v, v1)
σ(v0, v1)

∝
∑

v0→v→v1
v0 6=v1

σ(v0, v, v1)
σ(v0, v1)

, (3.13)
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where we made use of the fact that S is independent of v. Substituting this result into the
definition (3.10) yields:

cB(G)(v) ∝ 1
(nG − 1)(nG − 2)

∑
u,w∈VG\{v}

∑
v0→v→v1
v0 6=v1

σ(v0, v, v1)
σ(v0, v1)

=
∑

v0→v→v1
v0 6=v1

σ(v0, v, v1)
σ(v0, v1)

(3.14)

= c̃B(G)(v,H) , (3.15)

with H the local subgraph assigned by H1.

Corollary 3.1
c̃B(G)(v,H) is a local network function.

Proof:
This is a direct consequence of the fact that H1 is an environment generator (see Lemma 3.3). �

Lemma 3.5 Let H1 be an environment generator and c̃B the local network function as given
by (3.15). Then c̃B approximates cB with approximation error ε ≤ S ·Nin(v) ·Nout(v).

Proof:
The approximation error ε of c̃B is given by the definitions in (3.10) and (3.15):

ε = |cB(G)(v)− c̃B(G)(v,H)|

=

∣∣∣∣∣∣∣
∑

u,w∈VG\{v}

σ(u, v, w)
σ(u,w)

−
∑

v0→v→v1
v0 6=v1

σ(v0, v, v1)
σ(v0, v1)

∣∣∣∣∣∣∣
=

∑
u6→v 6→w

σ(u, v, w)
σ(u,w)

≈ 1
S

∑
u

+→v0→v→v1
+→w

v0 6=v,v1 6=v,u6=w

σ(u, v, w)

≤ S ·Nin(v) ·Nout(v) (3.16)

�
In the case of an undirected network, Eq. (3.16) rewrites to ε ≤ S ·N(v)2 = S · n2

H1
.

Corollary 3.2
c̃B is not a local approximation.

Proof:
As the approximation error in Eq. 3.16 can be arbitrarily large depending on the specific degree
of the vertex we consider as well as the expectation of the number of paths S, the error has no
definite bound that depends on the size of the subgraph. As such, c̃B is not a local approximation.

�
In contrast with closeness centrality, betweenness does not have a built-in mechanism that

dampens contributions from vertices further away. Nonetheless, a decomposition shows that be-
tweenness is proportional to an approximation consisting of vertices from H1. Adding vertices
further away will obviously lower the approximation error.

By extending the environment around v to cover neighbours more steps away (as with closeness
centrality), the approximation becomes less dependent on the expectation value S. Hence, it is to
be expected that Hd, d > 1 will result in a more accurate order approximation. In Section 5 we
show that such a local order approximation is indeed moderately successful.
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3.3 PageRank centrality

The degree centrality of a vertex simply assigns to each vertex the number of neighbours it has as
score. As such it is a fairly crude measure of centrality. By taking into account the centrality of
the adjacent neighbours, we obtain a recursive improvement over degree centrality which is known
as PageRank.

The PageRank centrality cP of a vertex v is given by:

cP (G)(v) = (1− α) + α
∑

w∈V :w→v

cP (G)(w)
k(w)

. (3.17)

The constant α is the so-called damping factor of the algorithm which corresponds to the proba-
bility of a random jump to another vertex. As the definition shows, it is a recursive measure that
weighs vertices by importance of its in-neighbours, scaled by their outdegree.

If we are to solve Eq. (3.17) iteratively, we first rewrite it in matrix notation as

xi+1 = αMxi +
1− α
N

1 , (3.18)

with xi the PageRank vector at the i-th iteration, and M the stochastic link matrix derived from
A as M = (K−1A)T . Here, K is the diagonal degree matrix and A once again the N × N
adjacency matrix that corresponds to EG. The PageRank vector is usually initialized as x0 =
1−α
N 1. Consequently, we have

xi =
i∑

j=0

(αM)j
(

1−α
N

)
1 (3.19)

=
(

1−α
N

) (
I− (αM)i+1

)
· (I− αM)−1 . (3.20)

An intuitive approximation of PageRank c̃P consists of a finite number of such iterations. If we
put this in the perspective of a single vertex, the approximation consists of taking vertices one
step further away into account at each iteration.

However, the subgraph thus obtained is not a local subgraph. The reason for this is that
PageRank is defined recursively on the incoming edges of neighbours of v. Such edges are in
general not known from a local perspective. We will first examine the local approximation with
the assumption that we have access to an index containing the incoming edges for each vertex.
Thereafter we continue with a local approximation that uses a true local subgraph.

3.3.1 PageRank approximation with incoming edges

Note that if we consider only a single vertex, each subsequent multiplication in Eq. (3.20) corre-
sponds to the set of (in-)neighbours one step further away. Let Id be the function that assigns to
each vertex the subgraph I consisting of vertices at most d in-edges away:

I(v) =
{
w ∈ VG | w

d→ v
}

, (3.21)

then by restricting cP to this environment we obtain an approximation of PageRank.

Lemma 3.6 I(v) is not a local subgraph.

Proof:
I(v) does not satisfy the third axiom as per Definition 2.1: given w ∈ I(v) we know that w ∗→ v,
but in a directed graph this does not imply v ∗→ w. �

Corollary 3.3
Id is not an environment generator.
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Proof:
This follows directly from Lemma 3.6. �

Nonetheless, we can use Id as a restricted subgraph to approximate PageRank with, e.g. to
calculate c̃P (G)(v, Id).

Lemma 3.7 c̃P (G)(v, Id) has approximation error ε ≤ αd+1 · ||M||d+1 · ||x∞||.

Proof:
The approximation error is obtained by

x∞ − xd =
∞∑
j=0

(αM)j
(

1−α
N

)
1−

d∑
j=0

(αM)j
(

1−α
N

)
1

=
(

1−α
N

) ∞∑
j=d+1

(αM)j

= (αM)d+1x∞ . (3.22)

The approximation error ε as a real number is obtained by taking the (Euclidean) norm of this
difference:

ε = ||x∞ − xd|| ≤ αd+1 · ||M||d+1 · ||x∞|| . (3.23)

�

Corollary 3.4
c̃P (G)(v, Id) is not a local approximation.

Proof:
This follows directly from the fact that Id is not an environment generator (see Corollary 3.3). �

Note that if we choose d = 1, the approximation score is directly proportional to the in-degree
Nin(v). In Section 5 we demonstrate how this estimate is a good approximation of the true
PageRank. However, as shown above, the subgraph assigned by Id is not a local subgraph.

3.3.2 True local PageRank approximation

To work with a true local subgraph, we use the environment generator Hd. Approximating Page-
Rank is again accomplished by applying the recursion d times. However, the lack of knowledge of
incoming edges has consequences for the approximation error. This error is strictly greater than
with the use of Id as an environment generator, as there are likely vertices that contribute towards
the PageRank score that are not in the local subgraph. Vertices w in the subgraph have an edge
towards v with a probability which can be expressed in terms of the reciprocity of the graph. In
other words, if w is k steps away from v, then it has a probability ρk to have an edge to v directly
(see Def. 2.2). This allows us to rewrite Eq. (3.17) as a local approximation:

c̃P (G)(v,Hd) = (1− α) + α

d∑
k=1

ρk

 ∑
w∈H:v

k→w

c̃P (G)(w,Hd)
k(w)

 . (3.24)

In matrix form, we encapsulate the probability of reciprocal edges in the new definition of the
matrix M. Let M̂d =

∑d
k ρk(K−1Ak)T . Note that M̂d is not a stochastic matrix, as its rows do

not (necessarily) sum to 1 anymore. Now the approximated vector after i iterations is given by

c̃P (G)(v,Hd) = x̃d =
d∑
j=0

(
αM̂d

)j (
1−α
N

)
1 . (3.25)
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Lemma 3.8 c̃P (G)(v,Hd) has approximation error

ε ≤ αd+1 · ||Md+1|| · ||x∞||+
(

1−α
N

) [N − αd+1||M||d+1

N − α||M||
− N − αd+1ρd+1

1 ||M||d+1

N − ρ1α||M||

]
.

Proof:
The approximation error is obtained by

x∞ − x̃d =
∞∑
j=0

(αM)j
(

1−α
N

)
1−

d∑
j=0

(
αM̂d

)j (
1−α
N

)
1 . (3.26)

If we assume that the probability of a reciprocal edge given a path of length 2 or more is negli-
gible (which is the case for the directed networks we consider, see Table 3), then this is further
reformulated as

x∞ − x̃d =
∞∑

j=d+1

(αM)j
(

1−α
N

)
1 +

d∑
j=0

(1− ρj1)(αM)j
(

1−α
N

)
1

=
∞∑

j=d+1

(αM)j
(

1−α
N

)
1 +

d∑
j=0

(αM)j
(

1−α
N

)
1−

d∑
j=0

(ρ1αM)j
(

1−α
N

)
1

= (αM)d+1x∞

+
(

1−α
N

) [
(1− (αM)d+1) · (1− αM)−1 − (1− (ρ1αM)d+1) · (1− ρ1αM)−1

]
.

(3.27)

Consequently, with the shorthand y = α||M||
N ,

ε = ||x∞ − x̃d||

≤ αd+1 · ||M||d+1 · ||x∞||+ (1−α)
N

[
N − αd+1||M||d+1

N − α||M||
− N − αd+1ρd+1

1 ||M||d+1

N − ρ1α||M||

]

= αd+1 · ||M||d+1 · ||x∞||+ (1− α)
(1− ρ1)y + (ρd+1

1 − 1)(y)d+1 + (ρ1 − ρd+1
1 )yd+2

(1− y)(1− ρ1y)
. (3.28)

�
Note that the first term in this equation is exactly the approximation error in Eq. (3.23). This

error can be seen as the convergence error, since this part of the deviation stems from the fact that
only a fixed number of iterations are executed. The second term can be seen as the model error,
because this part occurs as consequence of the lack of knowledge about incoming edges. It can
be arbitrarily large for small values of ρ1. However, when ρ1 approaches 1, Eqs. (3.28) and (3.23)
become equivalent. In this scenario, only the convergence error remains.

Corollary 3.5
Let Hd be an environment generator, then c̃P (G)(v,Hd) is not a local approximation of
cP (G)(v).

Proof:
This follows directly from the fact that the approximation error of c̃P (G)(v,Hd) does not have a
clear bound depending on the size of the subgraph Hd. �

In Section 5 we show that c̃P (G)(v, Id) successfully approximates the PageRank order, while
c̃P (G)(v,Hd) is unfortunately not able to.
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4 Complexity

The local approximation approach tacitly assumes that the centrality scores for only a relatively
small number of vertices is required for a given application. In such a scenario, calculating the
entire vector of centrality scores would be a waste of resources. However, because of the low time
complexity of the local approximation algorithms, local approximations might even be faster in
the case where entire vector must be obtained.

4.1 Closeness

The calculation of the true closeness centrality for all vertices in the network requires knowledge
of all shortest paths. This can be obtained through several algorithms, such as the Floyd-Warshall
algorithm with running time complexity O(n3) or Dijkstra’s algorithm which has time complexity
O(nm+ n2 log n), depending on the implementation of its priority queue.

The local approximation of closeness centrality considers for each vertex the number of neigh-
bours at most d steps away and therefore has running time complexity O(nkd), with k the average
degree. Note that nk = m, so our approximation based on H2 is calculated in O(mk) time.
As most real world graphs are sparse, k � n, so the local approximation significantly improves
calculation time.

4.2 Betweenness

Efficient algorithms for the calculation of betweenness centrality have been proposed by Bran-
des [9] and Newman [10], both with time complexity O(nm). To analyze the complexity of the
approximation, we take a closer look at its definition in Eq. (3.14), which we repeat here for the
sake of convenience: ∑

v0→v→v1
v0 6=v1

σ(v0, v, v1)
σ(v0, v1)

.

This definition coincides with the concept of ego centrality, which was discussed by Everett and
Borgatti [11]. In the same paper, Everett and Borgatti show that ego centrality can quickly
be calculated by summing the reciprocal of the entries of E2, where E is the adjacency matrix
containing v and its neighbors, hence the local subgraph contains k + 1 vertices. Using the
Coppersmith-Winograd algorithm for matrix multiplication, the ego centrality is calculated in
O((k+1)2.376) time. Once again, k denotes the average degree of the network. Computing the ego
centrality for all vertices thus leads to a running time complexity of O(n(k + 1)2.376). In general,
(k+1)2.376 � m, which implies that the local approximation is faster than the actual betweenness
centrality, even when all vertices are considered.

However, when vertices at further distance from v are considered (i.e. for Hd with d > 1) or
the network is directed, the fast calculation as suggested by Everett and Borgatti can no longer be
used. In this situation, one of the algorithms from Brandes or Newman should be used on the local
subgraph instead. An upper bound on the number of vertices in the local subgraph is

∑d
i=0 k

i,
which is of the order of magnitude kd. In the worst-case scenario all these vertices are connected
in a tree structure, which gives at most kd − 1 edges. Applying one of the betweenness centrality
algorithms is therefore calculated in O(k2d), which must be repeated for all vertices in the network,
leading to a total running time complexity of O(nk2d). In this case we have a trade-off between
the size of the local subgraph and the computation time; the local approximation is more efficient
iff k2d < m.

4.3 PageRank

The problem of finding the PageRank vector corresponds to finding the principal eigenvector of
the matrix M = (K−1A)T . In practice, this is done using a straightforward iterative algorithm,
which is applied until a certain convergence threshold is reached. Let γ be the number of iterations
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Table 1: Small sized networks. Given are the number of vertices n, the number of edges m and
the diameter of the graph D.

Network Label Edges n m D

Bottlenose dolphins [12] BD undirected 62 159 5
Football players [13] FP undirected 115 613 8
Political books recommendations [14] PBR undirected 105 441 8
Les Miserables [15] LM undirected 77 254 5

needed until convergence is satisfied, then the running time complexity of iterative PageRank is
O(γnk) = O(γm) – which is by far the quickest to calculate centrality measure we consider, given
reasonable values for γ. Calculating the local approximation of PageRank simply iterates d times,
using only vertices in Hd. The number of vertices in this subgraph is at most kd as we have shown
before, so the complexity of the approximation of a single vertex’ score is O(dkd+1). Obtaining
the entire approximated PageRank vector is then done in O(dnkd+1). In contrast to closeness and
betweenness, the approximation of the entire PageRank vector is actually slower than applying
iterative PageRank (once again assuming reasonable values for γ and d). The rationale behind
this is the fact that in the approximation many of the local subgraphs will overlap, but each is
considered separately in the local approximation.

Nonetheless, when instead of the entire PageRank vector only the scores for a subset of the
vertices is required, the local approximation is definitely a faster alternative.

5 Experimental Setup

In Section 3 we analyzed the approximation errors of local approximations. In the case of lo-
cal order approximations however, we only consider the ordering that the measures induce. To
investigate how the suggested local approximations perform as local order approximations, we
calculated the exact values of the centrality measures and compared these to those obtained by a
local approximation.

5.1 Small networks

As our initial experiment, we considered four small, undirected, networks from Mark Newman’s
online collection1. Details of these networks can be found in Table 1.

Since these networks are fairly small, we can plot the values for the true measure and its
approximation in a chart. This is done in Figures 1, 2, 3, 4 and 5. For each of these charts, the true
centrality score is shown on the horizontal axis. On the vertical axis is the local approximation
of the centrality measure. If the local approximation is successful, all points should lie on the
diagonal, as all values for the global and the local measure would be the same. In addition, the
axes would have the same scale. In the case of a local order approximation, the points should lie
on the diagonal as well, but the axes may differ.

5.2 Larger networks

In addition to these small examples, we experimented on several larger graphs taken from the Stan-
ford Large Network Collection2. The collection contains both directed and undirected networks.
Details of the selected networks can be found in Table 2.

When considering significantly larger networks, we cannot simply plot the measures on a chart
for obvious reasons. We therefore consider only the rank correlation coefficients between the
rankings induced by the centrality measure and its approximation. Tables 6a, 6b and 6c show

1http://www-personal.umich.edu/~mejn/netdata/
2http://snap.stanford.edu/data/
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Figure 1: Closeness centrality. All local subgraphs are generated by H2.
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Figure 2: Betweenness centrality. All local subgraphs are generated by H1.

Kendall τ for several configurations. However, there is an important caveat when considering
correlation coefficients for larger networks. As can be observed from the charts for the smaller
networks, the centrality measures (and their approximations) yield many scores close to or exactly
zero. This in itself is not surprising nor incorrect; dangling vertices will have zero shortest paths
passing through them and hence cB will be zero. However, when calculating correlation, these
vertices will have the same rank in both the approximation as well as the actual measure. Again,
this is as intended, but may lead to premature conclusions about the quality of the local order
approximation. For example, a local approximation ∀v ĉ(v) = 0 may show strong correlation,
simply because many zero values exist in the true result.

To avoid this pitfall, we also display the correlation for each configuration considering only
vertices for which at least one component (the global or the local measure) is nonzero. These
scores are shown in Figures 6a and 6b as τ ′. In addition, the table lists the percentage of the
vertices that remain when vertices with zero scores have been ignored, indicated by %′. Note that
this problem does not apply to PageRank, as it does not yield zero values.
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Figure 3: Betweenness centrality. All local subgraphs are generated by H2.
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Figure 4: Pagerank centrality. All local subgraphs are generated by H1.
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Figure 5: Pagerank centrality. All local subgraphs are generated by H2.

5.3 Results

5.3.1 Closeness

The results as shown in the series of plots as well as the correlation values reveal a number of
facets of local approximations. First, we note that closeness centrality is very well suited for
local approximation. We attribute this fact to the damping factor in its definition. Since vertices
further away contribute increasingly less to the closeness score, ignoring vertices further than d
steps away does not have an all too great impact on the result. Not only can the order induced by
cC be approximated locally, the approximation strategy also applies to the actual values assigned.
This allows us to conclude that the approximation of closeness as given by Eq. (3.7) is both a local
approximation as well as a local order approximation.

Table 2: Large sized networks. Given are the number of vertices n, the number of edges m and
the diameter of the graph D. In addition the shorthand that is used throughout this paper and
the directionality of the edges are listed.

Network Label Edges n m D

Political blogs [16] PB directed 1210 18139 9
Wikipedia user votes [17] WV directed 7115 103689 7
Pages linking to www.epa.gov [18] PE directed 4271 8965 9
Pages matching query “california” [19] PC directed 6175 16150 15
Arxiv General Relativity Collaboration [20] GR undirected 5241 28968 17
Arxiv Condensed Matter Collaboration [20] CM undirected 23133 186878 15
Arxiv High Energy Physics Collaboration [20] HE undirected 9877 51971 17
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Figure 6: Correlation between true order and local order approximation for different local sub-
graphs. For closeness and betweenness the correlation for non-zero scores is shown; for PageRank
the correlation for Id is shown.

Table 3: Reciprocity-at-distance-k ρk(G) for directed networks.

Network ρ1(G) ρ2(G)

PB 0.22 0.03
WV 0.06 0.01
PE 0.01 0.00
PC 0.02 0.00

5.3.2 Betweenness

Second, we observe that for undirected networks the order approximation of betweenness correlates
strongly with the actual scores. Since local algorithms cannot use incoming edges, we expected that
approximating betweenness on directed graphs would perform significantly less. This is indeed the
case for most of the larger networks we consider. However, for some networks the order induced
by betweenness is actually fairly well approximated by our suggestion in Eq. (3.15). This is a
surprising result, and as such we took a closer look at the differences between the networks on
which the approximation scores highly and those where it does not. We expected that the success
of betweenness approximation on directed graphs depends on the reciprocity-at-distance-k ρk(G).
Table 3 shows the scores for ρ1(G) and ρ2(G) for the directed graphs we considered. Indeed, the
PB network and the WV network (for which the betweenness approximation is fairly successful)
have significantly larger reciprocity than the other networks.

5.3.3 PageRank

Third, the results for the approximation of PageRank show that when we assume to have an
index available to request incoming edges, considering only the incoming neighbours of one or
two steps away correlates very strongly with the actual PageRank. This applies to both directed
and (obviously) undirected networks. In the case of the true local approach where such an index
is unavailable, the correlation for directed graphs drops significantly. Here we observe a pattern
similar to betweenness, where the correlation with the approximation increases with the increased
fraction of reciprocal edges.

6 Conclusion

In this paper we have presented a framework of definitions that can be used to find local approx-
imations of network functions. These local approximations consider only a subgraph of vertices
around a specific vertex. The benefit of this local approach is that on large networks, calculation
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on small subgraphs is significantly faster than obtaining the exact scores. However, the tech-
nique intentionally throws away much information of the network connectivity, and consequently
introduces an approximation error. For three examples we considered expressions for these er-
rors. In addition, we analyzed the computational benefits of the local approximations, and their
performance on real networks.

From the analysis and the experiments we conclude that some measures are well suited for local
approximations. The best example is closeness centrality, which has a local approximation, a local
order approximation, an approximation error which is clearly defined in terms of the parameters
of the local subgraph and which performs very well on real networks. Since closeness centrality is
used in disciplines that consider large networks, such as neuroscience [21], the local approximation
has great application perspective. The same applies to betweenness centrality, although here
it should be noted that the approximation is much better on undirected graphs. However, for
directed graphs with some degree of reciprocity in the edges, the local order approximation of
betweenness centrality performs remarkably well. Finally, PageRank can be approximated very
well on undirected networks, or on directed networks if we assume that incoming edges are known.
Although this is not the case in general, large scale search engines may benefit from local order
approximations, since they usually have indices of incoming edges available.
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