

An Iterative Specification Game

Master Thesis

Thesis number 174 IK

Jeffrey Kwee
Information Science
s0313270
jeffrey@zoja.nl

Institute for Computing and Information Sciences (ICIS)

Radboud University Nijmegen

October 2012

Supervised by Dr. S.J.B.A. (Stijn) Hoppenbrouwers

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:

2

Abstract

The objective of this thesis was to investigate, design and implement a framework of rules to
construct a Serious Game that accommodates functional specification. This framework should
also incorporate the concepts of iteration and functional decomposition.

By performing literature research, distilling existing theories about Serious Gaming, iteration,
functional decomposition and the Chinese Boxes principle, and combining the findings, we
constructed such a framework. This framework consists of several rules and guidelines which
could be used to construct a Serious Game that guides a non-technical player through the
process of functional decomposition. The purpose of the game is to construct a model that
contributes to the functional specification of a system or process, while incorporating the
concept of iteration.

We also implemented a prototype of the framework to showcase the theory. The Fun2Build
game is a Serious Game which offers the player instruction about the concepts behind
models, functional specification and functional decomposition. The game provides the player
with a guided experience through the game and means to independently construct a model
based on the framework’s principles.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:

3

Acknowledgments

Nijmegen, September 2012

At last, my Master’s thesis is finished. Before you lies a product that is the result of lots of
hard work during the past year. I spent hour after hour writing theory, then re-writing it,
programming the Serious Game, cursing when a setback caused me to re-write PHP code or
if an entire segment of the thesis had to be scrapped, and celebrating when a chapter had
been completed or some complex PHP function actually did what it had to do.

In the first place, I would like to thank my supervisor, Stijn Hoppenbrouwers, for providing me
with lots of useful feedback and support during the writing of my thesis. Stijn directed and
coached me towards a successful completion of the thesis, while also considering the time I
put into my full-time job as an IT Consultant and the little spare time I had left to work on the
thesis each week.

I also want to thank Patrick van Bommel, who opted to be the second reader of the thesis.

A big word of thanks is in place for my parents, David and Fatima, my girlfriend Stéfanie, my
family and friends. Their continuous support carried me through the whole process and
convinced me I could do it, time after time. Thank you so much guys!

With the completion of this thesis, I also officially say farewell to my student life. Ten
wonderful (albeit a few too many ) years during which I didn’t only work towards receiving
my Bachelor’s and Master’s Degree in Information Sciences, but during which I also
discovered the world, people and places, and which shaped me to become the man that I am
today.

Jeffrey Kwee
Cohort 2003

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 I

nd
ex

4

Index

Abstract ... 2

Acknowledgments .. 3

Index ... 4

1. Introduction .. 8

1.1 Introduction to the digital society ... 8

1.2 History and emergence of information systems ... 9

1.3 Importance of good quality .. 10

1.4 Engineering an accurate information system .. 12

1.5 The research problem .. 17

1.5.1 The research goal .. 18

1.5.2 Thesis structure .. 18

2. Serious Gaming .. 20

2.1 Introduction to Serious Games .. 20

2.2 Benefits of Serious Gaming ... 21

2.3 History .. 23

2.3 Serious Game Characteristics ... 24

2.4 Genres and application ... 25

2.5 Evolution of the learning process ... 27

2.6 Preview of our Serious Game ... 30

3. Iteration ... 31

3.1 Introduction to Process Iteration .. 31

3.2 Waterfall process vs. Iterative process .. 33

3.3 Iteration benefits .. 34

3.4 Process iteration steps ... 34

3.5 Types of iteration ... 35

3.5.1 Planned iteration .. 35

3.5.2 Triggered iteration .. 36

3.5.3 Ad-hoc iteration ... 36

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 I

nd
ex

5

3.6 Preview of our iterative Serious Game .. 37

4. Functional decomposition and the Chinese Boxes principle ... 38

4.1 Functional Decomposition ... 38

4.2 Function composition .. 40

4.3 The Chinese Boxes principle.. 41

4.4 Chinese Boxes principle building blocks .. 42

4.5 Chinese Boxes principle sequence ... 45

4.5.1 Step 1: View the System function as a Black Box ... 45

4.5.2 Step 2: Turn the Black Box into a Glass Box ... 46

4.5.3 Step 3: Subfunction identification .. 46

4.5.4 Step 4: Transaction identification ... 48

4.5.5 Step 5: (Optional) Formal proof of the model .. 51

4.5.6 Step 6: Turn the Glass Box into the Black Box ... 52

4.5.7 Step 7: Doing it all over again .. 53

4.6 Final thoughts .. 55

5. The Orange Case ... 56

5.1 Introduction to The Orange Case ... 56

5.2 Orange Case mechanics .. 57

5.3 The Orange Case Game .. 58

6. Creating the Game ... 59

6.1 Research Goal and starting point ... 59

6.2 Preparation ... 60

6.3 Serious Game vs. ‘standard tool’ ... 62

6.4 Analysis and Design .. 64

6.4.1 Hoppenbrouwers, van Bommel and Järvinen’s comparison ... 64

6.4.2 Technical Environment .. 66

6.4.3 Gaming environment ... 66

6.4.4 Goals, sub-goals and tasks .. 67

6.4.5 Game elements ... 67

6.4.6 Game mechanics and actions ... 70

6.4.7 Guidance and Feedback ... 71

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 I

nd
ex

6

6.4.8 Graphical User interface (GUI) .. 72

6.4.9 Procedure .. 72

6.5 Implementation .. 74

7. Results .. 75

7.1 Getting started .. 75

7.2. Index.php - Welcome to the Fun2Build Game! .. 76

7.3. Tutorial .. 78

7.3.1 Tutorial.php - Tutorial - Functions and Transactions ... 78

7.3.2 Tutorial2.php - Tutorial – Your tools ... 80

7.3.3 Tutorial3.php - Tutorial – Who doesn’t like coffee? ... 82

7.3.4 Tutorial4.php - Tutorial – Getting started ... 83

7.3.5 Tutorial5.php - Tutorial – Show Overview... 84

7.3.6 Tutorial6.php - Tutorial – ADD Main function .. 85

7.3.7 Tutorial7.php - <Main Function Name> ... 86

7.3.8 Tutorial8.php - <Main Function Name> – ADD Function ... 87

7.3.9 Tutorial9.php - <Main Function Name> – Show Overview... 88

7.3.10 Tutorial10.php - <Main Function Name> – ADD Transaction .. 89

7.3.11 Tutorial11.php - <Main Function Name> – Show Overview ... 91

7.3.12 Tutorial12.php - <Main Function Name> – ADD Transaction .. 92

7.3.13 Tutorial13.php - <Main Function Name> – Show Overview ... 94

7.3.14 Tutorial14.php - <Main Function Name> – REMOVE Transaction 95

7.3.15 Tutorial15.php - <Main Function Name> – Show Overview ... 96

7.3.16 Tutorial16.php - <Main Function Name> – REMOVE Function 97

7.3.17 Tutorial17.php - Tutorial – Getting started .. 98

7.4. Start modelling .. 99

7.4.1 startmodelling.php - Fun2Build - ADD Main function .. 99

7.4.2 showoverview.php - <Main Function Name> - Show Overview 100

7.4.3 addfunction.php - <Main Function Name> - ADD Function ... 103

7.4.4 removefunction.php - <Main Function Name> - REMOVE Function 103

7.4.5 addtransaction.php - <Main Function Name> - ADD Transaction 104

7.4.5 removetransaction.php - <Main Function Name> - REMOVE Transaction 105

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 I

nd
ex

7

8. Conclusion .. 106

8.1 Summary .. 106

8.2 Final Conclusion ... 108

8.3 Recommendations for future research ... 108

8.4 Final words .. 109

Sources ... 110

Appendix A – Source Codes .. 112

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:

8

1. Introduction

here are many ways to design an accurate, working information system and many
support tools that can help designing it. In this thesis, we focus on designing and
implementing a Serious Game in which the functional specification for an information

system can be modelled. This first chapter of the thesis introduces the context of the subject
and why it is an interesting subject to research.

1.1 Introduction to the digital society

Current society is situated in a fast changing world, one which never remains the same for
long and constantly evolves. The entire globe is bustling with activity, with people conducting
business and connecting to each other everywhere throughout the planet. Since the middle
of the 20th century, people have been empowered by use of technology. Daily life wouldn’t
be the same without information technology (IT). The usage of inter-global communications,
computer networking and the Internet has changed our way of acting and thinking.

The technical advancement of society has affected companies and their products around the
world. Where the majority of companies used to produce goods to be competitive in olden
days, nowadays they shift more and more towards providing services and knowledge as a
way to put them ahead of competition. Driven by increasing global demand of information,
knowledge and services, we conduct business, provide services and live a modern life at
speeds that were unthinkable a century ago.

This increase in service-oriented business can be accredited for a great part to the emergence
of computers and the digital society we currently live in. Today, a person is subjected to more
information in a day than a person in the middle ages in his entire life. Even though human
beings have grown in intelligence and brain capacity since then, they need an aid in
processing that huge stream of information.

T

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 1

. I
nt

ro
du

ct
io

n

9

A big role in aiding people in that fast evolving, digital life is played by information systems
(IS), systems comprising of computers that are interconnected through computer- and
telecommunications networks, and the way people use these IT resources to support
(business) processes. Information systems enable users to provide and retrieve services all
around the globe. The usage of these systems is inextricably interwoven with our daily course
of affairs.

Definition

 Information System
 An information system is any combination of information technology and
 people's activities using that technology to support operations, management, and
 decision-making.

Note: Information systems engineering is often mistaken for computer engineering.
However, it does not only encompass computer engineering, but also the strategic, managerial and
operational activities surrounding computer engineering to make gathering, processing and using
information possible.

Information systems can differ in size, price and computing power, ranging from a single
computer that provides information about stock prices through the internet, to a
supercomputer consisting of numerous clusters, spanning a whole building. All kinds of
information systems exist, each tailored to the situation in which they will be used. The
bottom line is that they provide us with means to gather lots of data and information and to
analyse, compute and execute actions on that data. A well designed and implemented
information system can do the work of hundreds or even thousands of people
simultaneously, and provides us with computing power, interconnectivity, increased means of
collaboration, easy means to share information and knowledge and automation of tedious
activities. We truly live in the digital age, in a digital society.

1.2 History and emergence of information systems

In the past, information systems used to exist only within large corporations, taking over
tasks and activities within business processes since the invention of the modern computer
and the introduction of computers in the world of business in the 1960s. The effectiveness of
these systems was evident and astounding at that time. Business processes were automated,
along with other matters like customer relationship management and organisational
communications. Work was smoothed out, optimized and digitally enhanced through use of
information systems. Users of these information systems were able to work more efficient
and more economical. These systems were precisely designed with the support of complex
business processes in mind, and because they were tailored to suit exactly those business

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 1

. I
nt

ro
du

ct
io

n

10

processes, the cost to implement an information system within a company was very high.
Only a select few people knew how to operate these machines, and it took a lot of work to
prepare them for those tasks.

With years passing, computer manufacturing processes were modernized, which resulted in
smaller, more powerful and, most important, less expensive computers. In the 1970s and
1980s, companies like Hewlett-Packard, Apple and IBM started to build computers for use at
home, aiming to place a personal computer on every desk and in every household. Even
though ownership of these machines was still costly, extra computing power was available for
the people, offering lots of new possibilities. Instead of big, cumbersome machines like the
mainframes used at work, people could access computing power through easy to use
appliances at home. Small and medium-sized companies used these computers and turned
them into information systems by using software that supported their business processes.

Nowadays, more and more and medium-sized businesses own and use information systems
to plan and execute their business strategies. Even common households are able to use small
scale information systems to interconnect computers to share data and computing power.
The cost of ownership of a small information system, which can be as simple as a single
computer connected to the Internet to gather information, is being lowered continually. This
leads to very high penetration of information system use in daily life.

In 2008, information technology research and advisory firm Gartner Inc. suggested that there
were more than one billion computer systems in use worldwide and that the growth of
computer instalments was 12 per cent per year (Gartner08). This means by calculation that
there will be two billion computer systems in 2014, of which many are used as information
systems. As we can conclude, information systems are all around us, even if we aren’t
consciously aware of it.

1.3 Importance of good quality

Billions of information transactions are completed each day, analysed, simplified and
supported for a great part by information systems. A lot of actions that used to require
human physical interaction are replaced by digital counterparts, like the replacement of
paper mail by electronic mail. We have become so used to having some actions automated
by information systems, that we can’t even imagine how some tasks were executed before
they were automated.

Information systems process data and take actions behind our backs, automatically executing
the instructions and rules that humans have specified for the system. We depend on their
preciseness and reliability to carry out tasks and are used to the system functioning properly
to such an extent that things in our daily life can go wrong if the information system we use

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 1

. I
nt

ro
du

ct
io

n

11

malfunctions. If we want to withdraw money at an ATM, we expect to get money from our
bank account, in exactly the amount we have entered into the system. If a pilot lands a plane
and consults his flight instruments for information, he expects the information the system
displays is true and correct.

Herein lies the crux of this section: because we rely very much on the information systems
around us to function correctly, we trust they always work like they’re supposed to.
Unfortunately, this is not always the case. The more information transactions are performed,
the higher the chance of errors occurring and mistakes made.

Sometimes, an information system has been through all the stages of the systems
engineering process and the end product doesn’t meet all the stakeholders’ requirements, or
it isn’t usable by the end-users for some reason, or the system doesn’t work at all. This is an
annoying situation which leads to loss of productivity, financial assets and time, but it can be
a lot worse.

We depend on information systems to take care of some very important issues, issues that
we severely depend on, sometimes even with our lives. Nuclear plants, missiles, traffic control
systems, banking accounts, digital storage of important documents, hospital patient
monitoring and life support are all examples of cases in which the correct functioning of the
information system can have an effect on our health and well-being. In the past, several
malfunctioning systems that were responsible for safety in critical circumstances have led to
disasters, resulting in deaths and immense economic consequences. Most of these problems
are caused by faulty information systems. Below are some examples to illustrate the
catastrophic consequences of an erroneous information system:

Between 1985 and 1987, design and testing errors in the Therac-25 radiation therapy
machine controlling system caused six people to receive an overdose of radiation and died
(Leveson93 and Sarter97).

In 1992, the London Ambulance Service used a computer aided despatch system to
automatically assign ambulances to nearby emergency situations. The badly designed system
failed, resulting in ambulances arriving too late or at a wrong destination, which lead directly
or indirectly to the loss of 46 lives (Mellor94 and Finkelstein96).

In 1996, the European Space Agency built a prototype of the Ariane 5 rocket, developed
during ten years and costing 7 billion dollars to develop, which was destroyed in flight after
less than a minute after take-off due to a fault in the software, which was reused from the
Ariane 4 rocket (Lions96).

It is very clear that critical systems have to be engineered accurately, with a lot of expertise at
hand and implemented with great precision, or the consequences will be very dire. Apart

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 1

. I
nt

ro
du

ct
io

n

12

from that, not only critical systems, but all information systems should be of high quality to
fulfil their purpose as helper of mankind in our daily lives.

1.4 Engineering an accurate information system

So far, we can already conclude two things: there are a lot of information systems around the
globe, and it is of great importance that those information systems are designed,
implemented and maintained as accurate as possible. The problems that the information
systems have to solve are becoming more complex and of greater magnitude, so the
engineering of those systems has to be done in an orderly and quality-controlled manner to
prevent system errors and engineering flaws.

There are many ways in which systems can be engineered, using different methods and
mechanics, like eXtreme Programming, Scrum, the Rational Unified Process, Dynamic Systems
Development Method, but most of the phases in systems engineering are roughly the same,
which include:

Requirements engineering
A correct information system fulfils the correct requirements. Too often, an information
system fails after delivery because it is the wrong system, a perfectly working system that
solves different problems than it is intended for. To counter this, the process of requirements
engineering is carried out, eliciting the actual requirements of the system from the
stakeholders instead of features that might be nice to have, but don’t solve the problem the
system is intended for. The ‘what must the system do’ question is answered.

Analysis
During analysis, a selection of requirements is made that will be implemented in the system
according to available time and budget. These requirements are then distilled into high level
functions and operations that the system will provide. End-user information needs are also
analysed, ensuring the system will provide the information and functions that are
indispensable.

Design
The high level functions and operations are refined into detailed, tangible design, including
screen layouts, business rules, user interface design and pseudo code, all of which are
thoroughly documented for direct use in the implementation phase. The ‘how will the system
work’ question is answered in detail.

Implementation
The real code is written in this phase. Sometimes the entire code is written in one go, but in
larger projects, the design is usually split into several parts that are written by separate teams.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 1

. I
nt

ro
du

ct
io

n

13

Testing
The testing phase brings together all system components that are manufactured during
implementation, and tests these components in a special testing environment. Errors and
bugs in the code are inspected, and interoperability between the system components is
thoroughly checked.

The problem with stakeholders
In this thesis, we focus on the design phase. Designing a system right is one of the most
important aspects of system engineering. The system design is the basis on which the entire
system is built. The system functions, internal and external interactions, user interfaces,
usability, interoperability, even the colour of the buttons, all of those and more are decided
upon in the design. Just as with requirements flaws, flaws in the design will be incorporated
in the later phase of implementation, which leads to great loss of time and effort if they have
to be corrected. In such manner, small errors in design can exponentially grow to become
huge disasters later on in the process of engineering. If systems design was done by only
professionals and expert designers, there would be no problem, because of the experience
they usually have. However, there is a major element that must be kept in mind: involvement
of stakeholders.

Definition

Stakeholder
A stakeholder is a person or organisation who or which is influenced by or can
influence the activities surrounding an information system. In this context, they can be
virtually anyone; an investor, a domain expert or an end-user, as long as they directly
or indirectly benefit from the information system that is being built.

Note: On this assumption, in this thesis, by ‘stakeholders’, we specifically mean those stakeholders that
are directly involved in the process of systems engineering and that are relevant to communicate with
during that process.

Stakeholders have to be interviewed and cooperated with to ensure the information system
will meet everyone’s wishes and demands. In the end, a perfectly working system that solves
the right problem but that nobody wants to use because it is not user-friendly or efficient, is
a poorly designed information system. The problem with stakeholders is that they often, or
better said, usually lack exact technical knowledge. During interviews or workshops, the
information architect, who is in charge of designing an information system, tries to elicit the
stakeholder’s input in such way that it can be incorporated into the design. Because of their
lack of technical knowledge, wrong input is often acquired, as stakeholders usually don’t
know what a Use Case is, or what usability testing is about.

Stakeholders often do not know how to solve the core problem that the information architect
wants to solve or support with an information system and instead focus on what nice features

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 1

. I
nt

ro
du

ct
io

n

14

and digital trinkets they want to be implemented. This can be a problem, as the information
system is built to support the end-users, who are also stakeholders.

The functional specification
It is clear that stakeholders of an information system fulfil two functions. Firstly, the system is
built to support a process in their business or organization, and they are at the receiving end
of the systems engineering process. Secondly, they are a source of information and input that
can be used in engineering that system, so they contribute to the systems engineering
process as well. This second point is of great importance, as the stakeholders usually have
lots of information concerning the processes that the system will support. Complex design
such as abstraction layers in software are too technical for stakeholders to participate in, but
there are several subjects on which stakeholders can provide useful input, such as the
functional specification.

Definition

 Functional specification
 A detailed description of what the system will look like and how it will behave. This
 is seen from an external perspective, which shows what external parties, like end-
 users, other computers and the organization in which the system is
 implemented will observe when the system is functional.

The functional specification is an aid in conceptual modelling, supporting the analysis and the
design phases in systems engineering. It is a document that clearly describes the technical
structure of a system and its components and its functions. It can be used as a reference
document and to allow consistent communication between people involved in the process of
systems engineering. The functional specification is made by the information architect in
cooperation with the stakeholders. All parties work together to form an accurate functional
specification which will help avoid inconsistencies in the system, as well as duplication of
code, redundancy and to establish a shared understanding of the workings of the system.

The functional specification serves several purposes:
 - The project team can discuss and reach an accord with the customer and
 stakeholders on exactly what will actually be built, based on their list of requirements.
 - It gives instructions to system engineers on what to build.
 - It serves as a basis for estimating what work has to be done.
 - It serves as a point of synchronising workloads and activities for the whole project
 team.

The details that are documented in the functional specification are understandable for the
information architect, the systems engineers and the other stakeholders. The functional
specification contains information about the structure and the functions at an abstract level.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 1

. I
nt

ro
du

ct
io

n

15

Actions such as “When button A is pressed, process A2 will commence and the dialog screen
will close” are documented, but not the real code that is required to implement that action,
which would require technical knowledge to understand. This keeps the functional
specification clear and understandable for all parties and as such, it is very helpful in building
the right system with the right functionalities to solve the right problem.

Operational structure
Even stakeholders who lack technical knowledge have knowledge about how the processes
work that the system will support, and therefore are able to provide useful input in
constructing the functional specification.

To communicate with stakeholders and colleagues and to transfer knowledge about the
information system, the information architect can use models, textual or graphical
representations of parts of the domain of interest. These models can be basic or complex,
depending on the recipient’s level of technical knowledge. Modelling, the construction of
these models, is done alongside the analysis and design phases in systems engineering.
During analysis, existing business processes are analysed and documented, which serve as a
basis on which the design of the intended solution in the form of an information system is
based.

The operational structure of a functional specification is the description of all elements that
are crucial for the main processes to be carried out. It gives an oversight of the several
processes within the main process of an information system, its sub-processes and, for each
(sub-)process, its required inputs and outputs. Furthermore, it shows how goods, assets and
information are transformed in the processes and how they flow from one process to
another. The operational structure is usually fabricated by making models of the structure
with pen and paper, communicating about the models with peers, and then digitizing the
models.

The operational structure of a functional specification can be constructed and visualised by
all stakeholders who understand the main processes. These models are declaratively
specified, which describes what has to happen, as opposing to imperatively specifying, which
describes how it has to happen. This declaratively specifying aspect of the models enables
stakeholders with little or no technical knowledge to contribute to building the model.
Because the main processes that are being described are very abstract, like ‘Serving the
customer’ or ‘Looking up information’, virtually any employee can fill them in.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 1

. I
nt

ro
du

ct
io

n

16

Figure 1.1. Example of an operational structure.

Figure 1.1 illustrates an example of a model of an operational structure. Inputs and outputs
can be anything from goods to information and money. In this system, Input 1 is interpreted
by Process 1 (which can be a specific function like “Retrieve information from several
sources”, or even the system itself, which can be seen as a process as well) as input A for
Process 4. Input 2 is interpreted as input B for Process 2, which has two outputs, B’, which
serves as an input for Process 4, and C, which serves as an input for Process 3. Input 3 is
interpreted as input D and together with C, Process 3 generates an output E, which serves as
an input for Process 4. Process 4 at last, turns inputs A, B’ and E into output F, which
ultimately is interpreted and exported as output X.

From an external view of this system, it seems that it consists of Process 1, which requires
Inputs 1, 2 and 3 and delivers an Output X. From the internal view, a model of the operational
structure, the inner workings of the system and its sub functions are made visible and
structured.

To complete the functional specification, more details about the system are documented, like
extensive declarative descriptions of the processes, screenshots of the intended design of the
graphical user interface, lists of functional and non-functional requirements that are or are
not realised and Use Cases. More details are documented or some are omitted, according to
the project situation.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 1

. I
nt

ro
du

ct
io

n

17

1.5 The research problem

An operational functional specification application
In this thesis, we are going to design and construct an application that helps to realise a part
of the functional specification for an information system, specifically the operational
structure. Functional specifications are processed as digital textual documents. The
manufacturing of these documents is usually done in meetings between the information
architect and the users and stakeholders. During these meetings, verbal communication
between several parties and writing down the proceedings of the communication lead to the
realization of the functional specification document. Until now, there aren’t any freely
available tools that help information architects and stakeholders to design the operational
structure, which leaves room for research and realization and which will be focused upon in
this thesis.

An operational functional specification Serious Game
To make the operational functional specification application work, it has to be fully functional
and relatively easy to use for people with little or no technical knowledge, for reasons that
are explained earlier on. Serious Gaming is a concept in which information and knowledge
are transferred, real life skills are learned and actions are performed in a game-like
environment, using game-like elements like a graphical interface, game rules and mechanics
and a gaming world. The difference with regular games is that these games are tailored to
specifically suit situations in which interactive training can be beneficial. Serious Games are an
attractive way to let users undergo experiences with little guidance, while still keeping control
of the experience and exerting influence on its outcome by using mechanics that can also be
seen in games. The concept behind Serious Gaming and all its benefits will be discussed
further on, in Chapter 2: Serious Gaming.

An iterative operational functional specification Serious Game…?
Iteration, the act of repeating a process until the desired outcome is achieved, is an important
part of this thesis. Iteration is found in all kinds of processes in all kinds of business sectors.
Iterative ways of design and implementation are widely used in agile systems and software
development. Most applications that help build models work in a straight-on manner, going
in a linear path from start to finish. By accommodating iteration in our application, we enable
users to work in an incremental way, starting with a small operational structure of the
functional specification, and iteratively building a model, being able to reflect and change
things after every addition. The different kinds of iteration and how to handle them are
discussed in Chapter 3: Iteration.

The Orange Case
Students of Computer Science and Information Science studies at the Radboud University in
Nijmegen, the Netherlands, are taught the foundations of functional decomposition by
playing a game called the Orange Case, a Serious Game which is an exercise in functional
decomposition. The backstory of the Orange Case is “Your uncle in Spain has a lot of left-

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 1

. I
nt

ro
du

ct
io

n

18

over oranges which he can’t sell on the Spanish market. You can have them for free and want
to sell orange juice in Nijmegen, the Netherlands.”

The students then have to specify the needs for a system which is needed to achieve their
goal. This is done by hand with paper and pen, but there is a need for a digital version of the
game. The iterative specification game mentioned that we intend to research and build could
be used for that purpose, with minor adjustments according to the story of the Orange Case.
We will not do that in this thesis however, but propose it beforehand as a subject for future
work and research.

1.5.1 The research goal

The subject is now narrowed down from a general view of information systems to a detailed
one. To prevent scope creep in this thesis, we will narrow down our field of interest: systems
engineering => information systems design => functional specification => operational
structure. This operational part of the functional specification will be our main point of
interest.

To conclude, in short, the research goal of this thesis is the design and construction of an
operational functional specification game.

This will be done by achieving two sub-goals:

1. The analysis and design of a theoretical framework based on game-like elements
to guide a player through a Serious Game in which an existing system is
declaratively specified through functional decomposition. The guidance is
provided in such a way so that iteration is facilitated.

2. The implementation of this framework in the form of a Serious Game prototype to
demonstrate a basic showcase of the framework’s rules and guidelines.

During the research that accompanies this thesis, we will discuss several ways of designing a
Serious Game which enables users to build a model of the operational structure of an
information system. We will then code and implement that Serious Game with accompanying
game mechanics and a graphical user interface.

1.5.2 Thesis structure

Chapter 2: Serious Gaming
This chapter will provide a comprehensive theoretical background on the subject of Serious
Gaming, a certain type of software which enables users to acquire information and new skills

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:

19

through a game-like application. The application we intend to research, design and
implement will be a Serious Game.

Chapter 3: Iteration
Chapter 3 is about the concept of iteration, the several different types of iteration and how to
cope with it in business processes. It also explains how iteration can be used to build our
Serious Game.

Chapter 4: Functional Decomposition and the Chinese Boxes principle
This chapter is the introduction of the concept of functional decomposition, a method to
model complex problems by breaking it down into smaller, simpler problems. The chapter
then illustrates the Chinese Boxes principle, a principle that combines the concepts of
iteration and functional decomposition to help produce a functional specification.

Chapter 5: The Orange Case
In this chapter, the existing Orange Case is introduced, a procedure that teaches students of
Information Science and Computer Science at the Radboud University in Nijmegen, the
Netherlands, the principles of functional decomposition. The Orange Case is an example of a
real life situation in which a Serious Game that we develop in this thesis can be used.

Chapter 6: Creating the Game
The actual design and implementation of our application is done in this chapter. Combining
iteration and functional decomposition with concepts of Serious Gaming, we intend to devise
a game-play mechanic that guides players through our Serious Game with as little as possible
external guidance. A framework for the application will be fabricated, which can be used for
both the Orange Case and a more general use of functional specification of systems.

Chapter 7: Results
The results of the design and implementation are documented. A walkthrough of our game is
given, demonstrating the game mechanics and how the user is affected by them by showing
screenshots of the game and providing textual explanation.

Chapter 8: Conclusion
The results are analysed, we draw our final conclusions concerning the subject, and the
results are discussed with suggestions for future work and research.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:

20

2. Serious Gaming

erious Gaming is a relatively new concept in the world of computing. However, the
idea behind it, a game in which the main goal isn’t entertainment, but functionality or
transfer of knowledge, isn’t new; indeed, it has been in existence for hundreds of years.

Serious Gaming offers lots of benefits, including conveying serious matter in a playful way to
the user and to motivate that user.

2.1 Introduction to Serious Games

Serious Gaming can be a powerful aid to help solve problems within the world of learning.
Learning new skills and gaining new knowledge takes a lot of time, money and motivation.
Serious Gaming is a relatively new concept, in which people are trained, business processes
simulated and information and knowledge transferred through use of a game-oriented
environment.

This game-oriented environment includes a virtual game world within an application, in
which the user of the application (also called ‘player’) plays the main part. Through executing
actions in the game world, which are bound to certain rules, the user undergoes an
interactive experience of a learning process. Within the game world, there is interaction
between the user and the environment, so the consequences of his or her actions are clear.

There are several different definitions for the term Serious Game, of which the definition of
Mike Zyda (Zyda05) is mentioned most often:

Definition

 Game
 "A physical or mental contest, played according to specific rules, with the goal of
 amusing or rewarding the participant."

S

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 2

. S
er

io
us

 G
am

in
g

21

 Video Game
 “A mental contest, played with a computer according to certain rules for amusement,
 recreation, or winning a stake.”

 Serious Game
 “A mental contest, played with a computer in accordance with specific rules that uses
 entertainment to further government or corporate training, education, health, public
 policy, and strategic communication objectives.” - Mike Zyda, (Zyda05).

This three-step definition clearly illustrates the different layers within the concept of Serious
Gaming; it is an entertaining, virtual computer contest that strives to learn the players new
insights. This definition is only one of many however, and a paper version of a Serious Game
is considered a Serious Game too, so it’s not totally constrained to use of computers.

Because the current generation professionals work more and more with communications-
and information technology, as stated in chapter 1, it is a logical development that learning
methods also move towards the virtual world of computing. According to Garris et al., games
can be effective tools for enhancing learning and understanding of complex subject matter
(Garris02). Serious Gaming is a developing niche in the world of computer applications. It
responds to the shift towards virtual learning methods by offering an attractive, involving,
game-oriented environment that acts as a complex simulation with a serious message. The
player is served a complex problem that he or she has to solve in an active manner.

The goals of Serious Gaming are to stimulate involvement in the subject, to stimulate
cooperation in different fields of work and to transfer and retain information and knowledge.
This is all done in a pleasant way, which causes the skills and knowledge that are learned in
the Serious Game to be learned in less time and will be retained for longer periods of time.
The idea is that though nobody wants to take a boring test, everybody wants to join a game
show, while it’s about the same matter.

2.2 Benefits of Serious Gaming

Serious Gaming provides various benefits, suiting different groups of people. Whether they’re
used by end-users, financers, domain experts or the information architect, practice has
proven many times that the experience that is presented in a Serious Game has a positive
influence on the design of an information system.

Interaction
Serious Games provide an interactive experience to the user, usually in the form of training or
a simulation. The user is given some instruction or practice, and then stimulated to take
action and to act for themselves, instead of receiving step-by-step instruction. This form of

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 2

. S
er

io
us

 G
am

in
g

22

learning requires active participation and stimulates user involvement in the subject at
matter, which leads to longer retention of knowledge and skills.

Motivation
Learning new skills or receiving information can be a tedious job. Even if the subject at matter
is crucial to the everyday activities of a user, that user can still be unmotivated to develop
knowledge about it. By offering graphically and mentally attractive applications and making
the learning or training process fun to perform, the process shifts from a ‘must do’ activity to
a ‘play’ activity. This can also be done by adding engaging goals and rules, adding challenges
and mystery to the game and to make the user feel like he or she is in charge of the situation
(Corti06). Serious Games can be used to both intrinsically and extrinsically motivate the user,
which stimulates the user to take an active role in learning the subject’s matter. Serious
Games can be used to develop learners who are self-directed and self-motivated, who are
interested in the activity itself and because they think achieving a positive outcome is
important (Garris02).

Control
Serious Gaming enables companies to offer employees or clients a safe, controlled and
repeatable manner to experience a virtual version of an experience that in practice can be
dangerous and expensive (Verbraeck09). Because the games can be a simulation of any
situation, situations which otherwise would require expensive instruments, like learning to fly
an airplane, can take place in a seat with controls and a screen instead of a full-fledged
airplane. Hazardous situations, such as practicing how to control a meltdown in a nuclear
power station, can be simulated as well, training users how to act in a real situation, but in a
safe, controlled situation.

Time reduction
By intensely involving users in a learning process or letting them learn new skills, Serious
Games reduce the time that is required to acquire those new skills. Instead of constantly
giving the users instructions on what to do in the form of commands, they are taught how to
act in a certain situation so they are able to act on their own if that situation occurs again.
They are then encouraged to perform those actions in a controlled environment. This
‘learning by doing’ approach makes the subject easier to understand and master than simply
taking in information from a screen or book, which leads to time reduction.

Another way in which Serious Games lead to time reduction is the simulation of business
processes. The virtual version of these processes can be sped up to see what the effect of an
action or intervention is over a period of time, without having to wait in ‘real’ time.

Cost reduction
Costs can be reduced by Serious Games by the above mentioned time reduction. Less time
spent training or learning means more time spent on productivity, which leads to lower costs.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 2

. S
er

io
us

 G
am

in
g

23

Of course, the costs for developing a Serious Game have to be taken in account, but a well-
designed game can recover those costs over time.

The simulation aspect of Serious Games also enable the users to practice with virtual versions
of expensive hardware, facilities and instruments. This training establishes a strong mind-to-
matter link so that after some training, the users will be able to interact with those
instruments in real life as if they had trained with the real instruments all the time.

A third cost reduction aspect of Serious Games is the fact that digital matters can be
distributed very easily through communications technology worldwide. A trainer in Sydney
can train a domain modeller in India and an end-user in France at the same time, without the
need to travel to their physical locations. This enables companies to outsource their training
and learning facilities to countries where labour is cheaper, while being able to remotely keep
control of the learning process.

2.3 History

Serious Games have been in use for quite some time in the world of computers and software.
Records of Serious Games go back tens of years. In 1980, even before the personal computer
had made its introduction at home, ‘Battlezone’ was published, a computer game for the
Atari game computer, in which one was driving a 3d version of a battle tank. A year after, the
game was published as the first Serious Game called ‘The Bradley Trainer’, which was used by
the US Army to train its troops to operate the Bradley military vehicle (Stone05).

Through the years, commercial games were published with an accompanying software
development kit (SDK), enabling users and third-parties to modify the games. A version of
Doom II was used to train US Marines at the Marine Corps Modelling and Simulation
Management Office in Quantico Base, Virginia. After the events of September 11th, 2001,Tom
Clancy's Rainbow Six, was modified using maps and scenarios by the US Army to train troops
to fight terrorists in urban terrain (Stone06).

Serious Games were mainly used by governments and armies to train their personnel, but
commercial organizations such as Intel and IBM nowadays have discovered the power of a
gripping game that can be fun, but also serve as a platform to promote services and
products.

In 2002, the Serious Gaming Initiative (SGI) was presented by the Woodrow Wilson
International Center for Scholars. This American initiative stimulates the development of
games which address political and management issues. Since the establishment of the SGI, it
has published lots of articles about the development of Serious Games and held workshops

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 2

. S
er

io
us

 G
am

in
g

24

to promote the awareness of Serious Games, which lead to the development of Serious
Games for non-profit organizations, hospitals and high schools.

Though it might seem as a relatively new concept, the history of Serious Gaming goes back
much further in time. Nobody knows how far exactly. Long ago, practices of Serious Gaming
were already to be found, like the popular game Backgammon, the Japanese strategy game
Go and the modern Settlers of Catan. These are all examples of games which taught people
the principles of gambling, strategy and mercantilism.

2.3 Serious Game Characteristics

Serious Gaming is a general concept which can be implemented according to the situation.
Virtually any simulation can be built with virtually any possibilities. Therefore, there aren’t any
specified rules to which a Serious Game designer has to accord while designing or
implementing. Some simulations are so highly detailed that they aren’t distinguishable from
the hardware or process they simulate. In other occasions, only an abstract version of a
process with minimal gaming elements is needed. Even so, there are some typical
characteristics that are represented in most Serious Games.

The player
The player is the main executor of the game and is a virtual representation of the Serious
Game user. He or she plays an active actor role in the game, interacts with the gaming
environment and has the possibility to execute predefined actions. Sometimes the player is
portrayed as a digital character on screen in the game called an avatar, to enhance
immersion. Some Serious Games involve multiple players, who can compete or collaborate
on a subject.

The game world
A unique gaming world in which a problem is presented to the player. The gaming world has
definitions of gaming elements, like movable or editable objects, a set of predefined actions
that the player can undertake and a set of game rules to which the player must keep.

The user interface
The user interface is a gaming element which enables the Serious Game user to interact with
the player and the gaming world and to see what is going on in the game. It often provides
basic statistics that the player can use to monitor his or her current status in the game and
controlling elements to execute actions. The user interface can be customized to suit the
situation, whether a full 3D representation of the game world is needed, or just a plain screen
with some buttons and text. It often has performance indicators which indicate how well the
player is playing the game. These indicators vary per type of game and can range from

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 2

. S
er

io
us

 G
am

in
g

25

financial performance to moral decision making, depending on what goal the Serious Game
is trying to achieve.

Guidance and feedback
Apart from these gaming elements, guidance is also provided, usually in textual or graphical
form. This guidance explains the whereabouts of the gaming world to the user of the Serious
Game and informs him about the rules that govern that gaming world and what actions the
user can take in the game through his virtual representation, the player.

Feedback is another important gaming element. It informs the user in textual, audible or
graphical form of the consequences of his actions in the game, on which the user can base
his next actions. Feedback can be given directly within the game trough the user interface, or
afterwards as an evaluation. This evaluation points out whether the user has learned
something about the game, which the user then can use to apply to his loop of judgement,
behaviour and feedback. After some iterations of this loop, the player is able to devise new
strategies, which help him perform better over time. Feedback from the game can also be a
tool for game developers to adjust the learning goals of the Serious Game or to fine-tune
processes within the game.

2.4 Genres and application

Serious Games are used in different sectors, in all kinds of customized versions to suit the
specific need that the Serious Game has to fulfil. We can distinguish several different genres
within the concept Serious Games, which all serve their own purposes, for example:

- Advergames, games with a primary focus on commercial offering of goods.
- Edutainment, games with a focus on learning skills or training the player.
- Infotainment, games with a focus on transferring information and knowledge to the
 player.
- Therapeutic games, games which are used as an alternative therapy for treatment of
 diseases or illnesses.
- Propaganda, games with a focus on transfer a certain thinking pattern or behaviour to
 the player.

This list is non-exhaustive, as Serious Games can be put to use in virtually any public or
business sector, as long as the purpose is to teach skills and transfer information and
knowledge to the user. Serious Games can contain multiple genres and serve multiple
purposes. Most sectors in society use Serious Games to train and inform their employees.
Following are some examples in practice.

While creating our Serious Game, we will focus on the Edutainment and Infotainment genres.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 2

. S
er

io
us

 G
am

in
g

26

Educational sector
The applications of Serious Games within the educational sector are endless. Serious Games
can be used as a supportive tool to teach subjects like languages, math and even physical
education. Sports coaches use adapted versions of sports manager games like FIFA Manager
(soccer) and NFL Head Coach (American Football) to enhance organisational skills, invent and
visualise new tactics and to present them to their players using a simulation. Virtually any
subject can be taught in an interactive way through a Serious Game.

Commercial sector
Big companies like Intel, Coca Cola and MacDonald’s use Serious Games as a playful way to
inform customers of their products. Intel put visitors of their IT Manager 3 website in the role
of an IT Manager within a fictive company using Intel technology, and gave them
responsibility of decision making and managing cash flows. Proper use of commercial Serious
Games teaches people to work with virtual representations of existing goods as if they were
using it in real life and can be beneficial for a company’s public image.

Public sector
Companies within the public sector use Serious Games to cultivate knowledge and public
awareness of their subject.

The Netherlands is a country that is worldwide renowned for their construction of structures
to manage the flow and containment of large bodies of water. A group of Dutch companies
led by Tygron has developed Watergame, a Serious Game that trains players in water
management and offers them information about developing water management projects,
thereby increasing their awareness of the subject and spreading knowledge (Tygron).

Medical sector
Companies in the medical sector use Serious Games to train medical professionals in
specialised medical techniques and to teach them how to use medical products like vaccines
and medicine.

TruSim, a division of the British Blitz Game Studios, has developed Interactive Triage Trainer,
a three-dimensional virtual representation of a crisis situation in which medical professionals
are trained how to prioritize treatment of victims of a biological or environmental disaster
(Keegan08 and Trusim).

Military sector
Armies and military intelligence from around the world train their soldiers using virtual
simulations of actual battlefield situations. This prepares them to execute procedures in
stressful situations in areas they have never been to, in a controlled, fail-safe environment.

In 2005, America’s Army, a Serious Game that was based on Epic’s Unreal engine, was
originally developed to allow young Americans to explore military career opportunities and
to make them aware of the purpose of military actions. The game was a 3D online shooter,

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 2

. S
er

io
us

 G
am

in
g

27

developed by the Moves Institute for the US Army and made it possible for thousands of
players to experience a day in the life of an army soldier. The game was used for recruitment
and training and was considered one of the most successful online games at the moment
(Stone06).

2.5 Evolution of the learning process

The success of Serious Gaming and the use of it is correlated to the change in learning and
thinking processes of the current generation, who were exposed to technology during
growing up. This so-called ‘Gaming Generation’ was described in 2001 by Marc Prensky in his
influential book Digital Game-Based Learning (Prensky01), and grew up in a world in which
media played a big role in daily life. Prensky states that of the group of people that were
born after 1961, most didn’t use an analogue telephone, haven’t known a time in which
music wasn’t portable, and have never lived without being exposed to hundreds of thousands
of visual impulses per day. This Gaming Generation currently makes up a big part of the
professional world population. Members of this generation simply can’t imagine a world
without digital media, computers, computer games and the Internet. This new generation has
undergone a total different collection of experiences than the previous generations, more
specifically a digital collection of experiences. The changes in thinking patterns following the
introductions of modern digital technologies and media have led to a variety of new
demands and preferences, especially in the field of learning.

By solving mysteries and puzzles, building and maintaining cities, running corporations,
building civilizations and conducting strategically fought wars, all through playing games,
employees of corporations worldwide have become keen in taking in lots of information,
processing multiple inputs at a time and perform complex mental tasks. Prensky states that
there are ten important changes in the cognitive processes of the Games Generation, which
all contribute to the fact that the Games Generation can process a larger stream of
information and is more adapted to digital learning methods. These changes are described in
short below.

Twitch speed vs. conventional speed
The Games Generation grew up with information that is fed at high speeds. Television
channels which broadcast video clips and television shows with lots of images per second
and computer games in which information is to be taken in quickly, processed and action is
to be undertaken, have trained the current generation in processing more information at a
time, and at a higher speed.

Parallel processing vs. linear processing
The use of multiple information agents at a time, like listening to music while browsing
webpages, or the use of mobile phones while watching television, have led to a better

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 2

. S
er

io
us

 G
am

in
g

28

performance in multitasking of the Games Generation. The so-called ‘tickers’ at the bottom of
the screen in business television programmes, make use of this; parallel to the usual news
broadcast, extra information about global events or stock value is shown on screen.

Random access vs. step-by-step
The Games Generation was the first generation that experienced the usage of hypertext and
hyperlinks, providing interactive links between multiple digital sources of information. By
using these methods, the Games Generation has become used to acquiring information from
multiple sources and in a less sequential manner. This has made the members of the
generation aware of the fact that there are multiple ways to acquire information and enabled
them to find and combine multiple, less structured sources information, requiring them to
think in structures and patterns.

Graphics first vs. text first
The generations preceding the Games Generation were shown graphical illustrations as an
addition to text and to help explain matter. In the current situation, it is the exact opposite;
text is provided to make the subject that is first presented in graphical form, more tangible.
The current generation has been exposed from childhood by television, video and computer
games that show very expressive images in high quality, with no or little accompanying text.
This has led to a growing preference for graphical material as a source for learning.

Connected vs. standalone
The Games Generation was raised with possibilities for global connection by email, bulletin
boards, newsgroups, chat, multiplayer games and instant messaging. This resulted in the
Games Generation finding new ways to acquire information and to solve problems, by
connecting with others. For instance, instead of using direct communication like a phone call
to propose a question, they post a question on an online forum, where it is read by
thousands of people and at which a huge source of combined knowledge is available. This
connectedness of the Games Generation has also taught them to work outside of their
physical location and encouraged them to work in virtual teams, consisting of team members
worldwide, who cooperate through digital communication channels.

Active vs. passive
Games Generation members are active learners. They have grown up developing a great
curiosity for new things, and want to experiment much more than their previous generations,
who usually read the manual for a new appliance thoroughly before trying it out. The Games
Generation click a button without fear, press something, and execute something, simply to
see the results of their actions. They play with software, try any possibility until they
understand how it works. This leads to less support of passive situations like lectures and
traditional board meetings, and they prefer active experiences like chat, posting messages on
the internet and using digital learning tools. This keeps them busy in an active way, but they
also feel more in control of what’s going on.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 2

. S
er

io
us

 G
am

in
g

29

Play vs. work
By using modern digital media, the Games Generation is used to see everything as a game.
To them, gaming is work. The fact that those games are played in the real world and have
bigger, more serious impact than the virtual games, doesn’t matter to them. The achievement
of goals, winning and beating competition are part of their ethics and processes. Prensky
states that managers and trainers have to find a way to incorporate the playful attitude of the
younger generation in the ‘real’ world of business.

Payoff vs. patience
One of the most important lessons that growing up with computer games has taught the
Games Generation is that if you spend sufficient time on a game and master all skills, you
shall be rewarded with a next level to play, a victory or a place on the list of high scores. Your
actions in the game decide what you’ll get, and what you’ll get is worth the effort you’ve put
into it. This development has caused an intolerance in the Games Generation for activities
that reward insufficient according to their expectations. Why finish college when you can start
a company in high school and become like Bill Gates, a Harvard university dropout, who
turned out to become the richest man in the world? Members of the Games Generation
expect excellent long-term rewards for their work, but good short-term rewards in the
meanwhile to keep them interested.

Fantasy vs. reality
The Games Generation has been exposed to the fantasy and science fiction genres for a long
time. Indeed, fantasy has always excited young people, but in the generation that grew up
with computers, a virtual fantasy world is easier and more realistic to construct than ever. A
communal fantasy world can be seen as a way to bind with others, like in massively
multiplayer online role playing games like World of Warcraft, Lineage and Final Fantasy.
These games have million players worldwide and a large online community, in which people
learn to play and work together. Some technology companies like Google and Microsoft take
this fact in account, which can be seen in working environments in which employees are
placed in a more or less fantasy place like an alpine mountain cabin as brainstorm location
and places where employees can play computer games when they take a break from work.
Fantasy-based Serious Games are an accepted and inspiring method to train and guide
employees.

Technology as friend vs. technology as foe
Generations preceding the Games Generation are mostly not used to modern technology.
Growing up, it was in their thinking process to shun new things. This is caused mostly by the
introduction of the new technology at a greater age than with the Games Generation, which
has used technology since childhood. The Games Generation sees technology as a friend, one
that is always available if there’s a need for pleasure or to play and relax. This generation sees
the accessibility of modern technology as a birth right and it is in this generation in which a
generation switch occurs: parents ask their children for advice about using their own

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 2

. S
er

io
us

 G
am

in
g

30

expensive appliances. Trainers and managers can stimulate employees from older
generations to use modern technology for purposes which suit their own generation, like
webpages and computer models, or to let them work in a team which uses modern
technology. This leads to more technological acceptance and awareness in older generations.

‘Attitude’
In addition to all previously described changes in thinking processes relating to work and
using modern media, according to Prensky, the Games Generation has a lot of ‘attitude’, a
direct, often sarcastic view of the world. They point out faults in others directly and are less
afraid to criticise peers than older generations. To communicate effectively with this
generation, one has to be direct and hold no taboos.

All these cognitive changes, which are consequences of years of ‘new media socialization’, as
Prensky describes it, have had a lot of effect on the way of learning and acquiring skills in the
Games Generation. Though it’s not the only available method, computer games and video
games are common information structures which the Games Generation is acquainted with
and are able to support the changed needs and demands in learning. This is one of the
reasons that digital learning methods, and especially Serious Gaming, is being put to practice
and is a thriving business.

2.6 Preview of our Serious Game

We conclude this chapter with a preview of our own Serious Game, of which the design and
implementation will be elaborated upon in a later chapter, chapter 5.

The concept of Serious Games is very general; each implementation of the concept results in
a different game, according to the end user’s wishes and the purpose of the game. In light of
Mike Zyda’s definition of a Serious Game at the beginning of this chapter, we can determine
that the Serious Game we will develop will be a mental contest, which makes use of specific
rules to reach our communication objectives of providing education on the subject of
functional specification and to provide training on that same subject.

Concerning the subject of this thesis, we will incorporate the mentioned aspects of
interaction, motivation and control while designing the game mechanics. The game will be
targeted at the educational sector and will focus on transfer of knowledge and information
and ‘on the fly’ training. While the design and implementation of the game takes place in a
later chapter, we can already ascertain that the game is going to use certain Serious Games
characteristics to reach its educational goal, like an attractive looking graphical user interface,
textual and graphical feedback on user input and predefined modelling or gaming elements,
each with their own behaviour.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:

31

3. Iteration

teration is a concept which is defined by the Merriam-Webster dictionary as:
“The action or a process of iterating or repeating: as […] a procedure in which repetition of
a sequence of operations yields results successively closer to a desired result.”

In other words, iteration consists of continuously repeating (parts of) a process until the
desired end result is achieved. Iteration is part of, but not limited to several agile software
development methods. In this chapter, iteration in processes and specifically, iteration within
the context of information systems modelling and engineering is discussed.

3.1 Introduction to Process Iteration

Iteration in practice can be explained by example of the technique that a sculptor uses to
produce a marble sculpture. He starts out with a cube shaped chunk of marble and hacks and
shaves away at the surface of the chunk on all sides, turning the angular surfaces into curves.
After the first round of sculpting, he then inspects the sculpture to see the changes that he
has made and to see what actions he has to perform next. With each following round of
review and refinement, more and more details of the sculpture emerge as the sculptor hacks
away pieces of marble, one piece at a time. After rounds and rounds of sculpting, he is
finished; the sculpture has transformed from a rough-hewn chunk of marble into a beautiful,
detailed masterpiece during each repetition, each iteration of the sculptor’s modification of
the chunk of marble.

Iteration is a common concept which is applied in many processes in many industries, as it
has many uses. Within the field of information system engineering, it forms a powerful
concept for analysing, modifying and reviewing an existing artefact (a document or model) or
object in a cyclical manner. This enables people to work on the artefact in small, iterative
cycles and build an overall more complete artefact than using straight-forward production
processes. This iterative way of developing software and information systems requires the
modellers and developers to continuously review the artefact in a changed setting. This

I

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 3

. I
te

ra
tio

n

32

change occurs in the modified artefact itself as well as the environment in which the previous
version of the artefact was conceived, as the introduction of a modified artefact affects its
direct environment.

While iteratively building an artefact, the modeller or developer views the situation from a
different perspective with each iteration, adding or omitting functionality or functional
structure until the desired goal, a complete and correctly functioning artefact is achieved.
Iteration usually results in higher quality end products, because the requirements, design and
implementation of the product are open to change and evolve over time.

In system development terms, iteration is often used in Agile information system
development methods like Scrum, eXtreme Programming and the Rational Unified Process.
These methods start out with a basic, but functioning version of the system. This system is
carefully designed and implemented, but often does not yet include all desired functionality.
The system is then run through multiple sequences of the whole or partial system
development cycle, called iterations, to increasingly add complexity to the system
(Jacobson92). These iterations result in a stable, working system that becomes increasingly
more complete with each version or release (Pressman05).

An example of an iteration is depicted in figure 3.1, which illustrates an example in which the
initial planning is formed and the product that is developed is continuously run through the
phases of Planning, Requirements, Analysis and Design, Implementation, Test and Evaluation.
When the product’s requirements are met sufficiently, the iteration cycles stop and the
product carries over into the Deployment phase. As is stated, each iteration results in an
executable release.

Figure 3.1. Iteration example as used in the Rational Unified Process in (Kruchten04).

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 3

. I
te

ra
tio

n

33

3.2 Waterfall process vs. Iterative process

The conventional Waterfall approach is an old but still widely used system development
method which completes each of the requirements gathering, analysis, design,
implementation, and testing phases in succession with limited possibility of changing
anything in a previous phase. In contrast to the serial succession of the phases in the
Waterfall approach, iteration uses a little of all phases in a smaller development cycle. This
provides much more feedback from the development process, which is illustrated in figure
3.2.

The Waterfall approach can be applied in systems development if the problem that the
information system is meant to solve, is well-documented and well-planned in advance. The
big disadvantage of the Waterfall approach is that it doesn’t cope well with changes in the
developing environment. If a project carries over to a later phase in the development process
and changes in the environment demand that something in a previous phase has to be
changed, the whole process has to be started from the beginning again; there is little
flexibility. An example of this is the fact that stakeholders usually aren’t clear about what they
exactly want of the information system at the beginning of systems development. This can
lead to faults in the system design and subsequent implementation, which are hard to correct
in a late phase because of the linear approach; all phases previous to the one that has to be
corrected, have to be run through again to check for inconsistencies.

Figure 3.2. Waterfall process vs. Iteration

It is unrealistic that all documents and models are complete and error-free upon the first
creation. Especially the system requirements are often not clear before the customers can put

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 3

. I
te

ra
tio

n

34

their hands on a system prototype. Therefore, Waterfall-based projects tend to require very
much rework at the very end (Kruchten00).

Another great disadvantage of the Waterfall approach is that no working version of the
system is available to the stakeholders until the final phase of the development cycle is
completed. Iteration, on the other hand, builds small, functional system components that can
directly be tested, presented to the stakeholders and integrated into a whole, working
information system.

3.3 Iteration benefits

Iteration does not necessarily mean less work and shorter schedules than the Waterfall
approach, but it brings more predictability to the outcome and the schedule of the process .
An additional benefit of working in iterations is that the development cycles are relatively
easy to plan, control and execute because of their smaller size, which result in a more
complete end result.

In (Kruchten04), Kruchten mentions even more benefits of iterative system development,
among which are most important:

- Serious misunderstandings are made evident early in the lifecycle when it’s possible
to react to them.

- Iteration enables and encourages user feedback so as to elicit the system’s real
requirements.

- The development team is forced to focus on those issues that are most critical to the
project and are shielded from those issues that distract them from the project’s real
risks.

- The project team can leverage lessons learned and therefore can continuously
improve the process.

- Stakeholders in the project can be given concrete evidence of the project’s status
throughout its lifecycle.

3.4 Process iteration steps

The standard steps in an iterative process are quite simple, but very useful:

The initial iteration
The process starts with the inception phase of the process, the initial iteration. In this
iteration, the initial artefact is created, which will grow incrementally with each iteration. The
first iteration of a new process is usually the hardest. Many aspects in the process are

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 3

. I
te

ra
tio

n

35

elaborated upon in theory, yet undiscovered in practice, such as getting used to using system
software, learning to cope with problems, understanding a new domain et cetera.

The first iteration is about establishing a basis for future iterations, creating a basic
architecture upon which the next iterations will be based. If the first iteration is too complex
or too large, meaning there are too many operations in the iteration cycle or steps that
require too many effort, you risk delaying the completion of the first iteration and reducing
the total number of iterations planned in a fixed time schedule. It is of great importance that
the functionality of the first iteration is reduced to a minimum when dealing with a new or
unknown development environment and/or methods. The focus should be on integrating
and tuning the environment and becoming proficient with the tools, before planning to build
in lots of functionality in subsequent iterations.

An iteration
An iteration is the repetition of a process or sequence of operations. During each iteration,
certain steps in the iterative process are repeated. Usually, the artefact that is focused upon
will be examined, modified, and reviewed to see if the modification has contributed
something useful to reaching the main goal. After reviewing, it can be decided upon to
permanently implement the changes or to omit them if the results aren’t sufficiently
satisfying. The iteration cycles can be of different lengths, as the information architect can
choose to add or omit an operation within an iteration cycle.

The ending step
An ending step stops the sequence of iterations. The conditions that have to be reached to
initiate an ending step can be determined by many factors, for instance when the number of
iterations reaches a specified number or a system value reaches a specified quantity. This
ending step is optional and not necessarily present in all iterative development cycles, as
some systems are continuously developed and their evolution never stops.

3.5 Types of iteration

Hoppenbrouwers et al. discussed in (Hoppen09) the idea that there are three types of
iterations, namely planned, triggered and ad-hoc iterations, each occurring on different
occasions.

3.5.1 Planned iteration

Planned iterations are scheduled into a process in advance. They start off with a planned
initial step at a certain phase in a process or at a certain time, go through a certain amount of
iterations and usually have a planned ending step with a clearly defined end result. Planned
iterations are relatively easy to execute, because all changes to system variables during the

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 3

. I
te

ra
tio

n

36

iterations have been taken into account in advance during the planning of this set of iteration
cycles. In this way, the outcome of a process can be controlled with relative ease.

Planned iterations can also occur when a process is completed and a final round of reviewing
is required in addition to the in-cycle reviews. Furthermore, a planned iteration can be used
to refine a rough artefact into a tighter, more formally specified artefact with each iteration.

In a Serious Game, a planned iteration can be seen as reaching a new level after completing a
set of objectives. Upon reaching this level, the tasks that are presented to the player are more
or less the same, but with increased complexity or difficulty, making the game more
challenging.

3.5.2 Triggered iteration

Triggered iterations occur when a specific event takes place that acts as a trigger for the
iteration. They share some characteristics with planned iterations in that they usually occur
when an artefact has to be modified because another, related artefact has changed, or when
a specific date and time, or a specific system value is reached. The trigger that sparks the
iteration can be either internal or external and doesn’t have to be planned to occur at a
certain moment in advance, which distinguishes it from a planned iteration.

From a Serious Game perspective, a triggered iteration can be seen as the reviewing of a list
of tasks when a certain task is completed and adding a new task to that list. This moment can
occur at several occasions during the process, but the handling of the triggered iteration
remains the same.

3.5.3 Ad-hoc iteration

Ad hoc iterations are iterations that can occur ‘out of the blue’. An information system should
be able to handle ad-hoc iterations, which take place after a user has made a change that
wasn’t planned in the basic course of events. These ad hoc events are usually user
instantiated, for instance if a user has to input some data of a certain type. If he or she
changes his or her ideas about the subject at hand and tries to enter a totally different input
than was anticipated, the system has to decide whether these ad-hoc changes are allowed
according to its rules. If this is done in an iterative manner, the situation can be specified as
an ad-hoc iteration. The initiative with ad-hoc iterations lies with the user in contrary to
planned and triggered iterations, which are initiated by the system.

An example of ad-hoc iteration in a Serious Game is when a player is performing tasks
belonging to one level, then realises that some step at a certain level or stage that has been
completed before, has to be modified due to new insights. The player then suddenly switches
from one level in the game to another, performing and finishing the modification. In doing
so, the player makes use of iteration because the step has been completed before. After the

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 3

. I
te

ra
tio

n

37

modification has been finished, the game should provide feedback and guidance about what
steps to perform next.

The division of the term iteration into these three different types of iterations is not always
clearly distinctive; iterations can be of multiple types, depending on their behaviour and
characteristics.

3.6 Preview of our iterative Serious Game

Iteration is a versatile concept that can be used to add lots of added value to the design and
implementation of a system. In light of this thesis’ subject, we will use the concept of iteration
to create a Serious Game that lets its players perform actions and tasks in an iterative way,
providing them with several ‘chances’ to refine their model more and more with each
iteration.

One of the foremost aspects of a Serious Game is the level of immersion and interaction that
the game provides. Iteration will enable us to incorporate non-linear game-like mechanics
into our Serious Game framework, like providing clear feedback on the player’s actions and
then enabling the user to use that feedback to repeat their tasks like before, but with new
insights.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:

38

4. Functional decomposition
and the Chinese Boxes
principle

unctional decomposition is a powerful technique that is used in modelling of
information systems, but also in modelling in general. Functional decomposition
enables the breakdown of a complex process or system into smaller parts, which are

easier to comprehend, design and control. This chapter explains the concept of functional
decomposition, a method to reverse it called function composition and the Chinese Boxes
principle, a modelling principle that combines both functional specification and iteration.

4.1 Functional Decomposition

The functional specification itself is a quite straightforward document. In contrary, the system
that the functional specification is written for, is often complex, with lots of system
components, and connections and cross-references between those components. Functional
decomposition can help a modeller or developer to model all of these system parts in a clear
and understandable manner.

The technique focuses on the functional relationships within an information system and
divides them up into several, basic elements (or subfunctions) in such a way that the original
function can be reconstructed from those elements by function composition. In systems
specification, functional decomposition is done by performing three steps, which can be seen
in figure 4.1:

1. Initially, the high-level processes of a system are identified, which can be considered
functions with known inputs and outputs. The system architect has to identify all
system critical functions to ensure all key processes are considered.

F

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 4

. F
un

ct
io

na
l d

ec
om

po
si

tio
n

an
d

th
e

Ch
in

es
e

Bo
xe

s
pr

in
ci

pl
e

39

2. These high-level functions are broken down or split up into lower-level processes.
Each high-level function, which represents a general process, can be broken down
into smaller functions which represent more specific processes, which can be seen as
changing the perspective from a more abstract level to a more concrete level. The
resulting functions are also broken down when possible, until a single identifiable task
is reached that cannot be broken down any further, or after a certain number of splits.

3. These single identifiable functions are then modelled as basic elements, building
blocks which each have their own inputs, function and outputs. After this step, the
complex system is modelled into small, controllable and manageable parts.

Figure 4.1: Example of Functional Decomposition

The main benefit of using functional decomposition is that a complex problem can be
gradually broken down into easily understandable, implementable and maintainable
elements in multiple steps, which eases the interpretation and analysis of the system. The
parts themselves don’t lose any functionality in their split up form, because they can be
combined to form complex functions.

Furthermore, stakeholders with little to no technical information can help in the process of
modelling using functional decomposition. The splitting of high-level functions and filling in

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 4

. F
un

ct
io

na
l d

ec
om

po
si

tio
n

an
d

th
e

Ch
in

es
e

Bo
xe

s
pr

in
ci

pl
e

40

the properties of the basic elements can be done with help of the stakeholders by asking
them comprehensible questions like “What does this step in the process require to be
fulfilled?” and “Can this step be split into multiple steps?”.

Therefore, functional decomposition can be used by a variety of persons. People who lack
technical knowledge can split and specify processes known to them in easy to understand,
high level basic elements, whereas people with advanced domain knowledge can divide
those basic elements further into specialized elements. In this way, stakeholders can interact
with and consult each other during the modelling process.

4.2 Function composition

After the basic elements are individually modelled and constructed, a check can be executed
to see if the elements, when grouped together to form a composed entity, logically produce
the same outcome as the original higher-level function.

Function composition, which can function as such a check, is the concept of using the
outcome of one function as the input for another function to create a new, composed
function. The outcome of this composed function can then be used as input for another
function, and so on, until the targeted level of composition or functionality is reached. When
a high-level function is split up into several lower-level functions, the outcome of the
composed function based on lower-level functions combined through function composition
should give the same output of the high-level function they represent. If that fails, the high-
level function is decomposed in an erroneous way, or the function composition is done in
wrong order. The denotation of a function composition is done using the composition-
symbol (ⴰ).

Example

In the example modelled in figure 4.1, a high-level function, function A, is split up into two
lower level functions A1 and A2, each with their own inputs and outputs.

If we consider function A as a function FA: (X, Y) -> Z, which transforms its inputs X and Y into
output Z, the constituent sub-functions A1 and A2 perform the actions FA1: X1 -> X2, and

FA2: (X2, Y1) -> Z1. In step 2 of the model, it is visible that the output X2 of FA1 acts as an

input X2 for FA2. FA2 in turn transforms that input, and another input Y1, into its own output
Z.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 4

. F
un

ct
io

na
l d

ec
om

po
si

tio
n

an
d

th
e

Ch
in

es
e

Bo
xe

s
pr

in
ci

pl
e

41

So, we have:

FA: (X, Y) -> Z

FA1: X1 -> X2 FA2: (X2, Y1) -> Z1

Function composition check
Is high-level function FA (X, Y) equal to the function composition of low-level functions FA1
and FA2, in other words, FA (X, Y) == FA1 ⴰ FA2?

Using the inputs and outputs from the example in figure 3.3:

FA1: X1 -> X2 FA2: (X2, Y1) -> Z1

FA1 ⴰ FA2 = FA2 (FA1(X1), Y1) -> Z1

FA1 ⴰ FA2 = FA2 (X2, Y1) -> Z1

FA (X1, Y1) -> Z1

FA (X1, Y1) == FA1 ⴰ FA2

We can see that the results of the composed function of FA1 and FA2 equals the results of
function A, and therefore can say that the logical processing of the function composition is
correct.

4.3 The Chinese Boxes principle

The Chinese Boxes principle is a method for hierarchical decomposition and combines the
concepts behind functional decomposition and iteration. The principle helps specifying
complex problems according to a few simple rules and steps.

An information system is constructed from lots of different parts, which exist at different
levels of detail, which we will call levels of abstraction. Not only the information system’s
virtual services are constructed, but the operational or physical structure has to be
constructed as well. This physical structure, consisting of connected computers and
infrastructure, in turn exists of separate components like silicon chips and copper wire.

Specifying the system at a too high level yields little to no information about the system
components. Specifying a system at a too low level gives us millions of loose parts to account
for. The Chinese Boxes principle chooses to initially specify parts at a higher, more abstract

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 4

. F
un

ct
io

na
l d

ec
om

po
si

tio
n

an
d

th
e

Ch
in

es
e

Bo
xe

s
pr

in
ci

pl
e

42

level, then iteratively dissects those parts into smaller parts, specifying the system at a more
refined, lower level.

The eponymous Chinese Boxes represent a traditional style in Chinese design, which features
a set of boxes of graduated size, each fitting inside the next larger box.

4.4 Chinese Boxes principle building blocks

The principle itself is a general concept and can be interpreted in many ways. In our
interpretation of the Chinese Boxes principle, we use certain building blocks or components
to model a system. We will now first elaborate upon those building blocks before we explain
how the principle can be used for our research goal:

System context
The system context encompasses all components that are part of the system that is being
specified. Components within the system context will be called internal components,
whereas components out of system context, which exist beyond the system boundary, which
delimits our system context, will be called external components.

Abstraction levels
Abstraction is the act of simplifying details. In our case, the system and its system context can
be seen from different points of view. These range from a very abstract level, showing as little
detail possible, to a very concrete level, providing lots of detail. These abstraction levels can
be used to communicate at which level of ‘deep-diving’ into details one can see the model.

An example of a system view with a high level of abstraction is one in which the entire system
is seen as one ‘machine’ which simply transforms its inputs into its outputs, whereas a system
view with low level of abstraction describes the system in much detail, stating subsystems,
internal process flows et cetera.

In our interpretation of the Chinese Boxes principle, we see system components at a certain
level of abstraction, a certain level of detail. To be able to distinguish abstraction levels in an
easy to communicate manner, we denote these abstraction levels with a number, starting at
level 0 for the system level , the highest level of abstraction, and adding one level for each
level deeper than the system level.

The abstraction level denotation is thus inverse to the level of abstraction, meaning that a
higher abstraction level denotation represents more levels of ‘deep-diving’ into details is
performed. In this fashion, in a parent-child relationship between system components, the
parent is of abstraction level N and the child of abstraction level (N+1).

A subsystem of the system itself would thus be seen at abstraction level 1. A subsystem of
such a subsystem would be seen at abstraction level 2, and so on. It is also possible to see

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 4

. F
un

ct
io

na
l d

ec
om

po
si

tio
n

an
d

th
e

Ch
in

es
e

Bo
xe

s
pr

in
ci

pl
e

43

parts the system from a combined view, in which system components of different abstraction
levels are visible.

Functions
Functions are important components that are used in the Chinese Boxes principle which
represent a system process or one of its subprocesses. Functions can be seen as miniature
systems themselves, with only one simple operational function: to transform its function
inputs into its function outputs. This means that a complete, fully operating function needs
at least one function input and one function output. Furthermore, functions have a
declarative function name, which briefly describes what the function as a whole does (like
‘Transport Fruit to the store’).

As explained earlier, a function can be functionally decomposed. The elementary actions that
are the result of a functional decomposition from a function are called its subfunctions.
Keeping the several levels of abstraction in mind, the subfunctions exist at a lower level of
abstraction than the original function because they provide more detail, and therefore have a
higher abstraction level denotation.

See figure 4.2 for an example in which the system function Transport Fruit to the store, a high
level function at the system level, or abstraction level 0, is functionally decomposed into the
subfunctions Load the Fruit into the Truck, Drive the Truck to the store and the Unload Fruit
from the Truck, which exist at one lower level of abstraction, or abstraction level 1.

Figure 4.2: Example of subfunctions and level of abstraction.

View of abstraction levels 0 and 1.

If one of these subfunctions were to be functionally decomposed themselves into sub-
subfunctions (for instance, by functionally decomposing the subfunction Load the Fruit into
the Truck into sub-subfunctions Open the Truck door and Loading the Fruit), those sub-
subfunctions would exist on two lower levels of abstraction, of ‘deep-diving’ into details, than
the system function Transport Fruit to the store, meaning those sub-subfunctions would exist
at abstraction level 2.

Transport Fruit to the store
(function)

Load the Fruit into the Truck
(subfunction)

Drive the Truck to the store
(subfunction)

Unload Fruit from the Truck
(subfunction)

Level of abstraction

Higher

Lower

Level of abstraction
denotation

Higher

Lower

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 4

. F
un

ct
io

na
l d

ec
om

po
si

tio
n

an
d

th
e

Ch
in

es
e

Bo
xe

s
pr

in
ci

pl
e

44

Inputs, outputs and transactions
A transaction represents something that is passed on between exactly two system
components. Such a transaction can be virtually anything, ranging from an action that is
performed by one component on the other, a physical object or virtual piece of information
that is passed on from the supplying party to the receiving party of the transaction.

We call the supplying party the supplier of the transaction and the receiving party the
customer of the transaction, or in short, the supplier and the customer. Each transaction is
seen as unique in our case, so multiple transactions between the same supplier and the same
customer are seen as individual transactions.

The aforementioned function inputs and function outputs are seen as transactions between
two parties that are involved in executing the function. A function output can also act as a
function input for another function, or the other way around. This is why we use the term
transaction in addition to the terms function input and function output.

A system interacts with its direct environment, so the inputs at system level have to originate
from an external source, that is, a source out of system context. The same goes for the
receiving end of the system outputs.

Finally, the parties that represent suppliers or customers can be either internal parties, as
part of the system, like a function or subfunction, or external parties, like a third party
supplier that isn’t part of the system itself. Following that logic, transactions can originate
from either internal or external suppliers and target internal or external customers.

Now that the most important components have been described and introduced, we will
explain how the Chinese Boxes principle can be used to perform functional decomposition in
an iterative way.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 4

. F
un

ct
io

na
l d

ec
om

po
si

tio
n

an
d

th
e

Ch
in

es
e

Bo
xe

s
pr

in
ci

pl
e

45

4.5 Chinese Boxes principle sequence

The Chinese Boxes principle in its most simple form works as follows:

4.5.1 Step 1: View the System function as a Black Box

The main subject that will be functionally decomposed, whether it is a single artefact, an
entire system or a process, is seen as the system function. The system function transforms
its inputs, the system inputs, into its outputs, the system outputs. Some of these system
inputs and outputs are known from the start, others will be identified during further stages of
the Chinese Boxes principle. The system function exists at the system level of abstraction, or
abstraction level 0.

In this step of the Chinese Boxes principle, nothing much happens, except that the system
function is considered a black box, a single artefact that transforms its inputs into its
outputs, but doesn’t disclose any information about how the transformation takes place. In
iteration terms, this step could be seen as the initial iteration.

Aside from the system function which is within system context, other concepts that can be
seen in figure 4.3 are the external parties Supplier 1 and Customer 1 which are out of system
context, the transaction or system input System input 1, the transaction or system output
System output 1 and the system boundary.

We can assume that the model of the system in this state is not complete yet. If the system
were indeed such a simple system that it would be complete in this first step already, with the
bare minimum of modelled system components, then there would be no use for modelling it
with the tool that we will construct.

Figure 4.3: Overview: the system function as a Black Box.
View of abstraction level 0.

System context
System function

(Main process)
Supplier 1

(external party)
Customer 1
(external party)

System
input 1

System
output 1

System boundary

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 4

. F
un

ct
io

na
l d

ec
om

po
si

tio
n

an
d

th
e

Ch
in

es
e

Bo
xe

s
pr

in
ci

pl
e

46

4.5.2 Step 2: Turn the Black Box into a Glass Box

In this step, the system function itself is viewed from a different perspective; the black box
that is the system function, is ‘opened up’ and now considered a glass box, a transparent
system which shows its inner structure at one deeper level of abstraction, as shown in figure
4.4.

In this step, system components from the highest level of abstraction are visible at
abstraction level 0, in this case System input 1, the System function and System output 1.
According to our framework, abstraction level 1 and its components should also be shown in
this step because we are now one level of ‘deep-diving’ deeper. There aren’t any system
components modelled at that level yet, but this will take place in the next step of the Chinese
Boxes principle.

Figure 4.4: Opened up: the system function as a Glass Box.
View of abstraction levels 0 and 1.

4.5.3 Step 3: Subfunction identification

The next step is to flesh out the model by filling in the inner workings of the system function,
step by step. Through functional decomposition, several subfunctions will be added to the
model in this step. These subfunctions combined will offer the same functionality of the
system function through function composition, that is, transforming the existing system
inputs into the existing system outputs.

The criterion for exactly what system component or collection of system components could
effectively make up a subfunction depends on the person who is doing the modelling. For
example, a system architect could group together different system components from his
perspective than a financial director, but both models would provide useful information
about the process that will be modelled.

To be able to keep a general oversight, a system usually is split up into a maximum of 7±2
main parts or elements per abstraction level. Counting exceptions, the rule of thumb is that
the maximum number of internal artefacts at each abstraction level doesn’t exceed 9

System
input 1

System function

System
output 1

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 4

. F
un

ct
io

na
l d

ec
om

po
si

tio
n

an
d

th
e

Ch
in

es
e

Bo
xe

s
pr

in
ci

pl
e

47

elements. In a common system, there is a theoretical maximum of 9n artefacts in total for n
abstraction levels.

Breaking down the system function into subfunctions will be done by questioning which
subfunctions or subsystems combined offer the same functionality as that system function.

Questions that can help identify subfunctions are:

“Which system critical operations have to be performed by the system to modify its system
inputs into its system outputs and are therefore in any case necessary?”
“Is a logical division of system components that make up the system function possible?”
“Which system component is the component that will take in the system inputs from the
supplier?”
“Which system component is the component that will transfer the system outputs to the
customer?”

It is clear to see that to identify and model the subfunctions, communication between
stakeholders and the modeller is of great importance to reach a mutual understanding of the
correct subfunctions that will be used.

The rule of thumb is that every high level function, be it the system function or another
function, when functionally decomposed into lower level functions, will result in at least two
of those lower level functions. If, for instance, the system function could not be functionally
decomposed into more than one subfunction, there would be no use for functional
decomposition at all.

When a new subfunction is identified, it is added to the model. See figure 4.5 for an example
in which Subfunction A and Subfunction B are added to the existing model. As stated before,
these subfunctions are one level of ‘deep-diving’ into details deeper, and therefore exist at
abstraction level 1.

Figure 4.5: Adding subfunctions A and B
View of abstraction levels 0 and 1.

Subfunction ASystem
input 1

System function

System
output 1

Subfunction B

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 4

. F
un

ct
io

na
l d

ec
om

po
si

tio
n

an
d

th
e

Ch
in

es
e

Bo
xe

s
pr

in
ci

pl
e

48

Function table
A simple way to denote a function and its transactions is by using a function table, a visual
overview of all information belonging to a certain function or subfunction. An example of a
function table is shown in figure 4.6.

The name of the function or subfunction is clearly visible, as are two columns below the
name. When the function table is completely filled in, table cells in the column marked ‘IN’
will contain its incoming transactions and the cells in the column marked ‘OUT’ will contain
its outgoing transactions.

Subfunction A
IN OUT

Figure 4.6: Example of a function table

It is quite unrealistic to assume that a model of an entire system will be produced in one go.
The stakeholders and experts that participate in modelling the system will have to discuss
and align ideas about which system component exists on which level of abstraction, which
inputs and outputs will have to be added at what position in the entire process, et cetera.
From this perspective, it is possible that some of the subfunctions at this level of abstraction
can easily be specified already, whereas other subfunctions will emerge at a later moment in
the modelling process.

Because the Chinese Boxes principle works iteratively, there will be many moments in the
process during which additional subfunctions can be identified and modelled, one of the
aforementioned benefits of using an iterative modelling approach.

4.5.4 Step 4: Transaction identification

After identifying a new subfunction, its function inputs and function outputs will have to be
identified and specified. As stated before, a function requires at least one function input and
one function output, because even functions like ‘remove X’ will have a function output like ‘X
removed’.

As in identifying subfunctions, a lot of communication between the stakeholders and the
modeller has to take place to reach a mutual agreement on the model. Questions have to be
asked concerning which subfunction requires which inputs or outputs, how many, who are
the suppliers and the customers of that transaction, are two existing transactions the same, et
cetera.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 4

. F
un

ct
io

na
l d

ec
om

po
si

tio
n

an
d

th
e

Ch
in

es
e

Bo
xe

s
pr

in
ci

pl
e

49

An example of the addition of new transactions is depicted in figure 4.7. Newly specified
Subfunction A transforms its input, Transaction 1, into its output, Transaction 2. Subfunction
B then transforms its input Transaction 2 into its output Transaction 3. Function tables for
Subfunction A and Subfunction B are added, supplemented with their incoming and
outgoing transactions.

Subfunction A
IN OUT

Transaction 1 Transaction 2

Subfunction B
IN OUT

Transaction 2 Transaction 3

Figure 4.7: Adding Transactions 1, 2 and 3 to the model
View of abstraction levels 0 and 1.

Hierarchical passing of transactions
An important thing to notice is that inputs and outputs can be passed on hierarchically from
higher levels of abstraction to lower levels of abstraction and vice versa. In light of the
Chinese Boxes principle, the system function, the system as a whole, is seen as a Black Box.
External inputs that are required for a function or subfunction which exists at a lower level
than system level, still enter the system context at that system level. This is because from an
external perspective at system level, the subfunction that requires the inputs isn’t visible at all.
The system level will take the external inputs in and passes it on to its subfunction. The same
principle is valid for outputs from subfunctions which have an external customer. Therefore, a
hierarchical passing of those inputs and outputs takes place.

Example:

System input 1 in figure 4.7 originates from an external supplier and is seen as an external
transaction that is executed between the external supplier and the system function, as shown
in figure 4.8 top. However, the moment the system function passes the system input down to
Subfunction A, it becomes an internal transaction between the system function and the
subfunction, as depicted in figure 4.8 bottom.

Subfunction ASystem
input 1

System function

System
output 1

Transaction 3 Transaction 1 Subfunction BTransaction 2

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 4

. F
un

ct
io

na
l d

ec
om

po
si

tio
n

an
d

th
e

Ch
in

es
e

Bo
xe

s
pr

in
ci

pl
e

50

Figure 4.8: Hierarchical passing of transactions
Top : passing of System input 1 to System function

Bottom : external passing of System input 1 to System function and internal passing from
System function to Subfunction A

Concerning abstraction levels in the situation of figure 4.7, external transactions System input
1 and System output 1 exist at system level, or abstraction level 0, and internal transactions
Transaction 1, 2 and 3 exist at the level of Subfunctions A and B, or at abstraction level 1.

Identifying even more transactions
We proceed to identify new transactions and adding them to our model example. Let’s say
that after careful analysis, it seems that Subfunction A needs more than only Transaction 1 as
an input. In this case it requires a new transaction, which we will call Transaction 4. It also
seems that Subfunction B has another output, which we will call Transaction 5. These are
added in figure 4.9.

As explained before, hierarchical passing of transactions takes place, because Transaction 4
enters and Transaction 5 exits the current abstraction level through the system level. For both
internal transactions there has to be an external transaction that connects Transaction 4 and
5 to the external supplier and customer of the transactions. These are also added and called
System input 2 and System output 2.

And a loose end
It is also possible that a function has a function output that isn’t used as a function input
somewhere else in the system. This kind of transactions is called a loose end.

For example, let’s say that Subfunction A is discovered to have a second function output,
called Transaction 6. If it isn’t used as an input anywhere else at the same abstraction level, it
becomes an output of the system level, because hierarchical passing takes place and it is
seen to the external environment as an output of the system function. Consequently,
Transaction 6 becomes System output 3. This is also depicted in figure 4.9.

Supplier 1
(external party)

System
input 1

System
function

Supplier 1
(external party)

System
input 1

(external)

Subfunction A

System function

Transaction 1
(internal)

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 4

. F
un

ct
io

na
l d

ec
om

po
si

tio
n

an
d

th
e

Ch
in

es
e

Bo
xe

s
pr

in
ci

pl
e

51

Subfunction A
IN OUT

Transaction 1 Transaction 2

Transaction 4 Transaction 6

Subfunction B
IN OUT

Transaction 2 Transaction 3

 Transaction 5

Figure 4.9: Adding even more transactions and a loose end
View at abstraction levels 0 and 1.

4.5.5 Step 5: (Optional) Formal proof of the model

As our model takes shape through functional decomposition, the need for a formal proof of
the model may arise. This can be done by applying the aforementioned function
composition, and formal logic, inductive and deductive reasoning to the model and its
components, resulting in a formal proof that validates the functionality of each of the
individual functional system components.

However, this formal proof is not in scope of this thesis, because a formal proof is only of
added value for certain specific persons or roles within a process of system development. As
it is a very technical and theoretical matter, it doesn’t serve the general target audience, the
non-technical stakeholders that want to build the right system that solves the right problem.

Formal proof failure
We will not dig further into the subject of applying formal logic to the model, but we do want
to point out an important fact: if it turns out that the model cannot be formally proven or
fails the formal proof checks, it might identify a gap between the current model and the end
product, a correct and fully detailed model of the system function. Possible causes for a failed
formal proof check can be that more subfunctions have to be added or some have to be
removed, the functionality of some subfunctions has to be changed or transactions have to
be added or removed.

Subfunction A

System
input 1

System function

System
output 1

Transaction 3 Transaction 1

Subfunction BTransaction 2

Transaction 6 Transaction 4
System
input 2

System
output 3

System
output 2 Transaction 5

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 4

. F
un

ct
io

na
l d

ec
om

po
si

tio
n

an
d

th
e

Ch
in

es
e

Bo
xe

s
pr

in
ci

pl
e

52

Either way, the model has to be modified to reflect the correct functionality. To achieve this,
there can be no loose ends in the model, meaning that each transaction has an identified
supplier and customer and each subfunction has at least one input and one output. This
modification can be done immediately after the identification of a gap, or at a later moment
in the process, when the iteration cycle goes through this step again.

It is also important to note that while a model constructed using the Chinese Boxes principle
always has to pass a formal proof check to be fully complete, it is also fully possible that it is
the intention of the modeller to construct a version of the model that isn’t functionally fully
complete yet, and that it is planned to be fixed in a later iteration.

4.5.6 Step 6: Turn the Glass Box into the Black Box

In the first step of the Chinese Boxes principle, we viewed the system function as a Black Box,
an artefact that didn’t show its inner workings and processes. By ‘opening up’ the Black Box
into a Glass Box and performing the subsequent steps of the Chinese Boxes principle, we
identified and modelled the system’s subfunctions, the transactions and their dependencies.
We also identified a new external supplier to and a new external customer of the system
function. Step by step, we have enriched the initial Black Box model.

This step is about ‘closing’ the Glass Box, which will result in the Black Box view of the system
function again. To do this, we revert the model view back to only show the system
components that exist at system level, or abstraction level 0. We retain all information and
data that we gained at the Glass Box level, so we can always use it as reference
documentation for the system function’s inner workings.

Figure 4.10 shows the new Black Box version of the system function. This new Black Box view
of the system function differs a great deal from the initial version of the Black Box in step 1 of
the Chinese Boxes principle. The new Black Box has a ‘hidden’ information layer in the form of
the information and data at the Glass Box level, describing the functionally decomposed
system components that make up the system function at one level of ‘deep-diving’ deeper,
and the logical processing of all system inputs into system outputs by the system
components at that level. If some information about that level is needed, all that needs to be
done is to turn the Black Box into the Glass Box again and all details of the subfunctions at
abstraction level 1 are shown again.

At system level itself, we also added a newly defined transaction that led to the definition of a
new system input and external supplier, two newly defined transactions that led to the
definition of new system outputs and a new external customers, and a function table which
describes the logical processing of the system inputs into the system outputs.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 4

. F
un

ct
io

na
l d

ec
om

po
si

tio
n

an
d

th
e

Ch
in

es
e

Bo
xe

s
pr

in
ci

pl
e

53

System function
IN OUT

System input 1 System output 1

System input 2 System output 2

 System output 3

Figure 4.10: New overview of the system function as a Black Box and its function table
View at abstraction level 0.

After we turn the system Glass Box back into the system Black Box, we have completed the
functional decomposition part of the standard sequence of the Chinese Boxes principle. Next
up is the concept of iteration.

4.5.7 Step 7: Doing it all over again

As mentioned before, it is very much possible that the model that was created in steps 1 to 6
of the Chinese Boxes principle of iterative functional decomposition is not entirely complete
yet, as the modelling of a system usually requires several rounds of modelling and review and
feedback sessions in order to improve the model. In this step, the modeller will iterate
through steps 1 to 6 again to navigate the model towards more completeness.

Desired number of abstraction levels
An important aspect to think about when using the Chinese Boxes principle is that of the
desired number of abstraction levels. In the previous explanation of the principle, we only
performed ‘deep-diving’ of one level deep, that of going from abstraction level 0, the system
level, to abstraction level 1, the subfunction level.

Keep in mind that these subfunctions are still Black Boxes themselves too. A function table
for a subfunction can help to understand and make explicit which function inputs get
transformed by the subfunction into which function outputs, to help perform the high level
system function, but it doesn’t say anything about how the subfunction itself works internally.

These subfunctions themselves can be turned into Glass Boxes and functionally decomposed
as well, resulting in system components of abstraction level 2, or sub-subfunctions. These
sub-subfunctions can be modelled into the model too, and also require correct functional

System context
System function

(Main process)

Supplier 1
(external party)

System
input 1

System boundary

Customer 2
(external party)Supplier 2

(external party)
System
input 2

Customer 1
(external party)

System
output 2

System
output 1

Customer 3
(external party)

System
output 3

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 4

. F
un

ct
io

na
l d

ec
om

po
si

tio
n

an
d

th
e

Ch
in

es
e

Bo
xe

s
pr

in
ci

pl
e

54

composition checks before their ‘parents’ at the subfunction level can be correctly
functionally composed into the system function. An example of this is given by figure 4.11.

Figure 4.11: Left : System function Black Box, view at abstraction level 0, Middle : System
function Glass Box, subfunctions Black Boxes, view at abstraction levels 0 and 1,

Right : System function and subfunctions Glass Boxes, sub-subfunctions Black Boxes, View at
abstraction levels 0, 1 and 2.

Iteration variations
Each system is different, and different situations require different methods to completely
model a system through functional decomposition. The iteration steps that the modeller will
follow after performing the first six steps will differ per system as well, so we cannot provide a
step-by-step instruction of what iteration steps or sequences have to be performed in this
step. We would like to provide some guidelines for the iterations, however.

During the first run of steps 1 to 6, it is possible that iteration takes place already. For
instance, imagine a system function that is modelled as a Black Box, which is then turned into
a Glass Box, and subfunctions are identified and added to the model. In the following step,
identifying transactions, it is quite likely that while thinking about inputs and outputs, a new
subfunction comes to light. It is entirely possible within the Chinese Boxes principle to then
iterate back to the subfunction identifying step, add a new subfunction, add transactions and
then perform an optional formal check before closing the Glass Box again.

The Chinese Boxes principle enables full iteration cycles, in which steps 1 to 6 (with step 5,
formal proof of the model, as an optional step) have to be performed a first time to set a
‘baseline’ model (an initial iteration), after which it is refined step by step by performing
iteration cycles of steps 1 to 6 over and over again to come to a incrementally complete
model by each iteration. After performing steps 1 to 6 of the Chinese Boxes principle, the
modellers are free to repeat the cycle over and over again in an iterative fashion, adding or
removing subfunctions or transactions each cycle.

Because the principle is very flexible, it also enables iteration sub cycles, which don’t span the
entire process of performing steps 1 to 6, but only the steps that have to be performed. An
example of this is a model which is the result of performing steps 1 to 6, which then appears
to be lacking only one extra transaction from the last subfunction to a supplier. The next
iteration could consist of only performing four steps: turning the system function into a Glass

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 4

. F
un

ct
io

na
l d

ec
om

po
si

tio
n

an
d

th
e

Ch
in

es
e

Bo
xe

s
pr

in
ci

pl
e

55

Box, adding the transaction, performing an optional formal function composition check and
then turning the system function into a Black Box again.

4.6 Final thoughts

We have now modelled an entire system, initially specified in rough, abstract terms, the single
entire system Black Box. The Black Box is refined and becomes more detailed by opening it
and turning it into a Glass Box, revealing smaller boxes inside, which we call subfunctions. By
gradually adding details to the model and going through a number of iterative cycles, we
deliver a detailed model which can be used to document the operational model of a
functional specification of a system.

The framework we will setup in the next chapters will enable a modeller to specify the
operational structure at a high level of abstraction and then iteratively break it down to
smaller pieces until the desired level of detail is reached. This operational structure can be
incorporated in the functional specification for an existing system, or one that has not yet
been built. Working with this framework will include iterative specification cycles and enables
stakeholders with no or little technical knowledge to contribute to the model.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:

56

5. The Orange Case

tudents at the Faculty of Computer Science and Information Science at the Radboud
University in Nijmegen, the Netherlands, learn the fundamentals of Computer Science
and its key concepts through all kinds of learning methods. Some of these methods

are more practically oriented, like programming, some are more theoretical like formal logic.
One of the key concepts that is taught is the concept of functional decomposition, which is
taught by taking part in ‘de Sinaasappelcasus’, or in English, ‘the Orange Case’.

5.1 Introduction to The Orange Case

The Orange Case is a case built around a story, which incorporates workflow modelling and
the Chinese Box principle, which relies on functional decomposition. The background story is
as follows:

“Your uncle in Spain has an orange orchard. Each year, lots of oranges are harvested and
taken to the Spanish fruit markets, where they are sold. Not every orange is suitable to be
sold, however, as during harvest and logistics, some oranges get bruised or even worse
damaged. Your uncle, who thinks of you as one of his favourite relatives, makes you an offer:
You can have those bruised oranges for free, so you can sell the orange juice. You accept his
offer and start making plans to sell the orange juice in your hometown, Nijmegen, in the
Netherlands. And so the story begins…”

This story is told to the new students, who then have to come up with an idea to transport
those oranges to the Netherlands from Spain, a distance of about 1600 kilometres. However,
every thinkable solution can be used, whether it concerns a realistic, feasible and commonly
used method of extracting the juice from the oranges in Spain, freezing the juice,
transporting it to the Netherlands and once arrived, add water to make juice from
concentrated juice, to absurd, out-of-the-box ideas like laying a pipeline from Spain through
France to the Netherlands and pumping the juice through that.

S

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 5

. T
he

 O
ra

ng
e

Ca
se

57

The objective of this exercise is to come up with a highly original idea that has to be worked
out in detail. Besides developing the idea, the students have to describe several other things:

Operational specification
This describes in natural language what the entire system has to do. The result will be a
finished product that arrives at the right destination.

‘Recipe’
The recipe describes which steps in the production process have to be passed to deliver one
batch of the final product at the final destination.

Functional network
A diagram which shows which services are needed to execute the recipe and the congruence
between those services.

Functional specification
The functionality of the separate services are described here in detail, stating inputs and
outputs and the workings of the services and optional sub services.

These are all documented with paper and pen, and by working together in groups of up to 4
persons.

5.2 Orange Case mechanics

The workings of the Orange Case are quite simple. The students have to think up an idea or
plan, clarify it in simple terms in the operational specification, divide the plan into detailed
steps in the recipe, state the basic functional needs for each of the steps to work and map the
functionality of the separate steps together in the functional specification. The step we are
interested in is the generation of the functional specification. The other steps will be
elaborated upon, but are not within the main scope of this thesis.

Functional decomposition
The concept of functional decomposition was introduced earlier in Chapter 4, in which the
usage of it to break down complex functionality into easy to understand subfunctions was
explained. Functional decomposition comes into play with the functional specification step of
the Orange Game, in which it can be used to functionally decompose the processes of the
functional specification. Because a detailed description of the separate services is required,
functional decomposition not only delivers that description of the services themselves, but
also their inputs and outputs and maps those between the separate services.

The whole idea behind the Orange Game is to teach new students the concept of functional
decomposition. As functional decomposition using paper and pen can be a tedious job, we
seek to find a suitable method to facilitate the process, making it engaging, inviting and
challenging, which brings us to the subject of Serious Games.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 5

. T
he

 O
ra

ng
e

Ca
se

58

5.3 The Orange Case Game

It is already mentioned that the current version of the Orange Case is performed with paper
and pen. This way of working enables the students to correct mistakes with little effort,
allowing them to develop a conceptual idea and work it out before handing in the final
version. In the current version of the Orange Case, students have to learn the matter of
functional decomposition by the ‘learning by doing’ approach.

There are many students however, and limited lecturers and teaching assistants. This can lead
to students receiving less coaching and feedback on their models than needed, and
misunderstanding of the teaching material. The goal of the Orange Case is to teach the
students the principle of functional decomposition, but as this is totally new matter to them,
they need a lot of feedback or guiding, to tell them they’re heading into the right direction
with their models, or if they need to modify anything.

The Orange Case is a good example in which a Serious Game can help the students
understand the theory of functional decomposition, with added benefits that Serious Games
provide, such as an attractive graphical user interface, direct feedback on the students’ input,
a digital workspace with easy exporting options (screen prints, email, even social media), and
visual guidance on tasks that still have to be performed to deliver a correct functional
decomposition model.

In the next chapter, we will take our thoughts on information systems modelling, functional
specification, Serious Games, iteration, functional decomposition and the Chinese Boxes
principle and construct a framework which will result in a Serious Game in which iterative
functional decomposition is incorporated. This game will be made in such a manner that it
will be a helping hand for anyone who wants to perform functional decomposition, so it will
be as general as possible, but with some minor tweaks, like graphical and textual changes, it
can be made into a Serious Game that Orange Case users can use.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:

59

6. Creating the Game

o far, we have delved into several innovative concepts, all of which will be combined in
this chapter. We will analyse our situation and goal, specify the game elements that we
need to reach our goal, make a design for each of those game elements and then

implement them, constructing our Iterative Specification Game.

6.1 Research Goal and starting point

The research goal of this thesis is the design and construction of an operational functional
specification game, as stated in the introductory chapter. To reach this goal, we will achieve
these two sub-goals:

1. The design and construction of a theoretical framework based on game-like
elements to guide a player through a Serious Game in which an existing system is
declaratively specified through functional decomposition. The guidance is
provided in such a way so that iteration is facilitated.

2. Apply the rules of the theoretical framework to the current state of the Orange
Case.

Method
We will break down these high-level sub-goals into tangible steps for better
comprehension:

- We will decide upon certain design and implementation aspects of the game
beforehand, like the functional scope of the game, the intended audience and
implementation methods we will use.

- We define the theoretical framework, a collection of rules and guidelines which
enable a user to specify an (information) system through functional
decomposition.

- For each of these rules and guidelines:

S

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 6

. C
re

at
in

g
th

e
G

am
e

60

o We analyse and substantiate how each of these rules and guidelines
enable the player to reach the main goal of the game, that is, modelling
the system through iterative functional decomposition;

o We shortly describe which game-like mechanics are required to enforce
this rule or guideline and which concepts of functional composition,
iteration or other methods can be used to implement it;

- We then construct an implementation of the theoretical framework, resulting in
our Serious Game.

In the previous chapters, we have covered the topics of models and their importance, the
involvement of stakeholders and their technical limitations in a systems engineering process,
the functional specification and its operational model, Serious Games and how they benefit
learners and trainers, iteration and how it’s used in systems engineering, functional
decomposition and functional composition, and the Chinese Boxes principle and how it
combines both iteration and functional decomposition.

6.2 Preparation

Before we get to the actual analysis, design and implementation of our game, we make some
design decisions and assumptions in advance. This will help us to stay focused on the task at
hand and to build the right application to solve our research problem.

Game name
We choose the name Fun2Build for our game. It is a simple name, which indicates that the
game will be ‘fun to play’ and that there’s a building aspect involved, the building of a model
for the functional specification.

Intended audience
The intended audience of our game is everyone who is involved in constructing a functional
specification of an information system, be it a modeller, a stakeholder or an end user. Anyone
who delivers direct input for the system’s functional specification can learn the process of
functional specification through use of the game. The main player of the game will be
referred to as the player of the Fun2Build game.

Analysis and design scope
During analysis and design of the game, only the aspects of Serious Games, iteration and
functional decomposition and their related matters are in scope. Our mission is to provide
the end user with a game to combine these aspects in order to reach the main goals, and we
will keep that in mind the whole time to prevent wandering off.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 6

. C
re

at
in

g
th

e
G

am
e

61

Implementation focus on functionality, not technical performance
During the implementation of our game, we will focus on the core task, that is the realisation
of an operational functional specification game and its characteristics. As this is the first time
we perform this task, we will not focus on technical details like implementing the most
efficient functions possible or using the least data bandwidth. The application is what counts,
CPU loads or timing are not in focus.

Used techniques
As stated before, our game will involve the techniques of functional specification, Serious
Games, iteration and functional decomposition.

Used technologies
As a manner of implementing, we have chosen to use the server-side scripting language PHP
(abbreviation of PHP: Hypertext Processor), specifically PHP version 5.3.3. PHP is an open
source, freely available language which runs on various operating systems, is approachable
through a web browser and is a proven scripting language. Large websites like Facebook,
Wikipedia, Yahoo, Digg and Wordpress are implemented for the greatest part or even
entirely in PHP, providing output for dynamic web pages and the ability to implement
‘programming’ functions.

For our data structure, we have chosen to use XML (eXtensible Markup Language). XML is a
data structure that is easy to read and understand for both information systems and humans,
very flexible and extensible as you can add new XML tags at any moment in time, facilitates
comparison and aggregation of data through its internal tree structure and is open source.
All of these properties are beneficial for implementing our game.

For our Fun2Build Serious Game, the combination of PHP and XML will provide us with
means to implement our own, carefully designed functions, a flexible data structure and a
way to display the data and visible output in a visually attractive manner.

Functional decomposition number of abstraction levels
Functional decomposition will play an important role in realising our game. As explained
before in chapter 4, functional decomposition can be performed at several abstraction levels,
with each level providing a different level of detail. We choose to delimit the number of
abstraction levels for functional decomposition at 3 levels. This provides us high level
information of the main process that we will model at abstraction level 0 or the system level,
detailed information about the subprocesses that make up the main process at abstraction
level 1 and even more specialized, detailed information about the sub-subprocesses at
abstraction level 2.

Using the three internal levels of abstraction and the principle to use 7±2 functions or system
components at each level to keep a good oversight, this gives us a theoretical maximum of

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 6

. C
re

at
in

g
th

e
G

am
e

62

93 = 729 functions, subfunctions and sub-subfunctions that make up the functionally
decomposed model of the dissected system.

6.3 Serious Game vs. ‘standard tool’

The main concept that we will use as a basis is that of a Serious Game. In the end, the game is
what the end user will use. But why do we use a game in this particular situation and not a
standard tool, in the form of ‘static’ software? What makes a Serious Game so explicitly
appropriate to help our target audience, the stakeholders and other non-technical people
that are involved, in knowledge transfer and training?

Technical subject
The technical framework we will create and the subsequent game that will be based on that
focuses on creating a functional specification. Creating the functional specification is a vital
task in the process of information systems engineering. The functional specification itself
describes the technical structure of the system that will be built, its system components and
its functions.

Although it is of great importance for a good result, the specification itself in its traditional
form is nothing more than a document with a lot of text, a document that clearly describes
the technical structure of an information system and its system components and its functions,
inputs, outputs and system behaviour. While all of these terms may sound familiar to a
technical specialist like an information architect or a programmer, most of the stakeholders in
a system development project lack the technical knowledge to directly point out the
information sought after by the modeller.

They are a great source of information however, so the task that our framework and game
will have to accomplish is actually two-fold: on one hand, we will try to teach stakeholders
the concepts behind functional decomposition, so they can provide useful input for the
model that will help build the functional specification, on the other hand, it is to provide the
modeller with an instrument to actually build that model. A Serious Game is a perfect
medium to accomplish both tasks, providing several benefits that suit our situation.

Serious Games for motivation
Teaching the concept of functional decomposition to people with little to no technical
background can prove a tedious job. Even though functional decomposition is a fairly simple
technical subject which can be applied to all kinds of situations, even outside of the domain
of systems engineering, it still is a technical concept which needs careful instruction.

To keep non-technical stakeholders motivated throughout the process of learning-by-doing,
Serious Games encompasses lots of game-like mechanics to present players with an
entertaining experience, offering them challenges, visual feedback, and short and long term

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 6

. C
re

at
in

g
th

e
G

am
e

63

gratification , which helps to keep them motivated. A problem that is presented as dry matter
is less attractive than the same problem, presented as a television show with exciting visuals.

Serious Games for engagement
Games can be used to teach a particular topic to its players, providing active transfer of
knowledge. Standard tuition of a subject is usually a static, one direction activity. A game is
dynamic and interactive, and lures the player into actively participating in solving the
problem, or in our case, providing information about system functions, transactions, et
cetera.

If executed well, a Serious Game which engages the player actively in the process of learning
by doing, the game can also leave a cognitive impression on the learners apart from the
communicated message. This cognitive impression can possibly lead to better mastery of
skills and strategies concerning the subject taught (Gros07, Salomon91). Part of a Serious
Game is the ‘fun factor’, and although it isn’t the most important factor, if a game has a
sufficient fun factor to be enjoyable to the player, it can lead to an increased level of
engagement in the game, and subsequently, an increased understanding of the game’s rules,
procedures, et cetera.

In our game, an increased understanding of the main subject, the concept of functional
decomposition, gives the player control over the situation. Instead of just providing the
answers to the questions that the modeller asks them, they can use their knowledge they
gained by playing the game to engage in the modelling process themselves. The visual
aspect of a Serious Game enables it to be played on a screen that is visible to multiple
players, and in such, it also encourages simultaneous engagement in the modelling process
by a group of players.

Serious Games for better understanding
Functional decomposition is a subject that is best learned by practising it, as mentioned
before. Our game will be focused on one main problem, that is that a particular system hasn’t
been modelled through functional decomposition yet. The player then will have to actually
use the concept of functional decomposition himself to solve the problem, and in doing so,
learns the theory by performing it in practice, providing them with hands-on experience and
better understanding of the theory. Serious Games also offer the player feedback in many
forms, to help guide the player towards the correct learning goals of the game.

According to Whitton (Whitton07), if a Serious Game is problem-based and it is clear to the
player which problem to solve, it allows the player to experiment with game components and
it actively engages the player, it has the potential to be a very effective environment for
learning, not because it’s a game, but because it exhibits the characteristic of constructivist
learning environments. All in all, we pick a Serious Game above a static piece of software
because it offers much added value to the user than only the transfer of knowledge itself.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 6

. C
re

at
in

g
th

e
G

am
e

64

6.4 Analysis and Design

For Fun2Build, our Serious Game, we will need to implement certain functionality,
instruments and game mechanisms to ensure that the player will be able to play the game
we intend them to. As stated before, the concept of a Serious Game is very general; each
Serious Game has its own characteristics, unique feel and look.

6.4.1 Hoppenbrouwers, van Bommel and Järvinen’s comparison

In (Hoppen08), Hoppenbrouwers, van Bommel and Järvinen review some of their own work in
the field of Method Engineering, a collections of concept that make up a framework for an
interaction system which brings forth models. These concepts are then compared to a
gaming framework for analysis and design by Järvinen (Järvinen07).

The comparison which is part of the end result of (Hoppen08), supports Hoppenbrouwers et
al.’s vision of analysis and design of systems that embody and support the creation of models
as if it concerns the design of games. As this is very in line with our own vision for our Serious
Game, which will support the creation of models to contribute to a functional specification of
a system, the comparison of (Hoppen08) seems a viable reference and possible starting point
for the analysis and design of our game.

Hoppenbrouwers et al. mention these concepts for ‘games for modelling’ in their resulting
comparison. Following is a short summary of their concepts:

Components
These are defined as the intermediary deliverables and end deliverables of the game, and all
related elements. This general description includes elements like objects, relations, processes,
textual descriptions, et cetera.

Rule set
A distinction between two types of rule sets is made:

Goals – A modelling games should have a logical ultimate goal that is to produce a specific
model, with underlying sub-goals to complete other requirements of the model. These sub-
goals can also be intermediary steps and deliverables in a process, or even time-related
process goals.

Procedures – Advised or prescribed ways for the participants to structure and fulfil their tasks
as well as rules that apply to the game system.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 6

. C
re

at
in

g
th

e
G

am
e

65

Environment
‘The stage for gameplay’, as the authors call it. The environment exists of views, visualizations
and other surroundings in which the game mechanics are acted out.

Game Mechanics
Game mechanics are the interaction types that can be applied to modelling, translated to a
sort of functionality that the system or game offers. Examples are arranging, building,
choosing and storytelling. In addition, more complex, compound game mechanics may be
specified that amount to tasks, which the player can choose to perform as part of the
gameplay.

Theme
A theme is the domain context in which helps the player to focus the mode of
communication.

Information
The authors mention information about modelling events, agents/participants, objects and
information about system rules, scores et cetera, which are present all around.

Interface
The objects or deliverables need to be acted upon, which requires operationalization of game
mechanics in the form of basic interactions. The interface enables the player to initiate and
execute these interactions.

Players
There are several aspects of the players of the game that can be taken into account, like
player preferences, behaviour, competencies et cetera.

Context
The game can be set in a specific context, which relates to, among others, the purpose of the
game as a whole, backgrounds and capacities of players.

Rule-based method modelling
The authors present rule-based method modelling principles like the representation of
methods by rules, which enable techniques like automated model checking and context
checking. They also mention situational procedural regulation, the checking of a process and
providing guidance to the player by means of a dynamic ‘modelling agenda’.

Score systems
Feedback for players, presented by way of a scoring system tells them how well they are
doing. The authors want to link score systems to operational quality metrics, which enables
encouragement and guidance of the players to achieve the highest possible quality without
prescribing them what to do in every step.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 6

. C
re

at
in

g
th

e
G

am
e

66

Playability and emotive factors
The link between the game system and the emotions and experiences it creates in the players
are crucial aspects in game design. The authors mention that the main goal in a design game
is not entertainment, but it benefits from aspects like excitement and challenge to evoke
positive emotions, while also helping to avoid negative emotions like frustration and
boredom.

For our own Serious Game, we will adapt some of these definitions in our own analysis and
design, but not all of them. We will start with the concepts which we already have
information about, to derive the rules and guidelines that form our framework.

6.4.2 Technical Environment

Framework guideline
The Serious Game will be an accessible web application (based on PHP and XML) that will be
accessed through a web browser.

One of the first things we already decided upon is the environment for our Serious Game. To
make the game technically accessible to a broad audience, we will use technology that works
cross-platform. In this case, we have already chosen to implement the game in the scripting
language PHP and to use XML for our data structure. A combination of these two
technologies will result in a web application which runs on most of, if not all modern internet
browsing programs like Microsoft Internet Explorer, Google Chrome and Mozilla Firefox. The
application will thus be designed for viewing within a web browser window.

6.4.3 Gaming environment

Framework guideline
The gaming environment will be displayed in the web browser and will be visually attractive.

The gaming environment itself is the entire application as it is shown on screen. The gaming
environment contains the game’s interface (graphical user interface or GUI) and is the ‘main
stage’ in which the player’s actions will take place and its results are shown.

The environment will be visually attractive to increase the motivation of the player to actively
participate in the task at hand. To implement this, we will make use of a colourful design for
the game, using lots of visual elements like nice logo’s and icons for the GUI and providing
clear textual information. The gaming environment will also make use of a logical layout of
GUI items, grouping them together. The contents of the GUI and how the player will be able
to interact with it will be explained later on.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 6

. C
re

at
in

g
th

e
G

am
e

67

6.4.4 Goals, sub-goals and tasks

Framework guidelines
The main goal of the game is to build a model that contributes to a functional specification
of a certain system that is modelled.

The main goal can be broken down into sub-goals, which can be achieved by completing the
tasks that are linked to the sub-goals.

The main goal and the sub-goals of the game will be communicated to the player in a clear
way.

The main idea behind the game is to reach a certain goal, that is, to build a model that
contributes to a functional specification of a certain system. Therefore the main goal has to
be made clear to the player before and while playing the game. To achieve this main goal,
several sub-goals can be defined.

The sub-goals can be quite general, like ‘Complete the function table’, and can be translated
into a set of tasks that the player can perform to complete those goals or sub-goals. In the
case of a goal ‘Complete the function table’, the task at hand can be ‘Add a transaction
coming from the function’. Information about goals, sub-goals and tasks can be used in the
concept of guidance and feedback, which will be discussed later on.

To keep the player motivated and to provide sufficient feedback on the player’s performance,
it has to be clear to the player which goals and sub-goals he or she has to achieve. Possibly,
previously accomplished goals can be shown as an example in which he/she has completed
this goal successfully before.

When all of the game’s sub-goals have been completed, the main goal is reached and the
player has completed the game. Through the concept of iteration however, the player can
decide to perform actions after completion, like adding new functions to the model, which
result in new sub-goals to appear. This reverts the game from a status in which the main goal
is achieved to one in which the player has to solve new sub-goals first, after which the game
is completed again. This gives the player control of how detailed the model can become and
consequently, how many modelling iterations take place.

6.4.5 Game elements

Framework guideline
The game will present the player with several game elements, which represent elements
within the concepts of functional specification and functional decomposition.

To achieve the goals of the game, and to play it well, the player will have to make use of the
actions that he/she can perform within the game. Each of those actions perform some

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 6

. C
re

at
in

g
th

e
G

am
e

68

transformation on one of the game elements. We define several game elements and their
properties within our game:

Model
Type
XML Data structure

The model is a data structure which holds all our modelled data. Each of the gaming
elements that are modelled in the game will be added to the model. The contents of the
model can be presented through the graphical user interface at request of the player, so the
player can see what has been modelled so far.

Function
Type
Modelling element

Attributes
Function name
Function input (Type Transaction)
Function output (Type Transaction)
Parent function (Type function)

Definition
The function is the most basic building block of our game and represents a part of our
system. The player will be able to functionally decompose a function into other functions,
each representing a piece of functionality of the original function. Within our game, a
function can exist at three abstraction levels:

1. As a system function, which represents the entire system as a whole.
2. As a subfunction which is a functionally decomposed component of the system

function.
3. As a sub-subfunction which is a functionally decomposed component of a

subfunction.

Rules
1. A function is identified by an obligatory, unique function name (e.g. Produce Financial
reports), a declarative description of what the function does. The function name exists of a
maximum of 7 words.

2. A function can represent an entire system or process, or parts of that system.

3. A function can have one or more functions that it can be functionally decomposed into.

4. A function which is a functionally decomposed component of a higher level function is
called a subfunction of that higher level function. For each following level of functional
decomposition, the prefix ‘sub-‘ will be prepended (e.g. sub-subfunction for two levels of

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 6

. C
re

at
in

g
th

e
G

am
e

69

functional decomposition). The higher level function is called the parent function of the
decomposed function. The system function has no parent function, as it is at the top of the
hierarchical structure.

5. A function has at least one function input of type Transaction.

6. A function has at least one function output of type Transaction.

7. A function will be depicted as a function table, which displays the function name, the
function inputs and the function outputs.

Transaction
Type
Modelling element

Attributes
Transaction name
Transaction supplier
Transaction customer

Definition
A transaction is a flow of goods, actions, or information that is passed on from a supplier to a
customer. A transaction can act as an input or an output to a system process.

A transaction represents something that is passed on between exactly two system
components. Such a transaction can be virtually anything, ranging from an action that is
performed by one component on the other, a physical object or virtual piece of information
that is passed on from the supplying party to the receiving party of the transaction.

Rules
1. A function is identified by an obligatory, unique transaction name (e.g. firewood, product
package), a declarative description of what the transaction represents. The function name
exists of a maximum of 7 words.

2. The transaction always flows from the transaction supplier to the transaction customer.

3. Each transaction has at exactly one supplier and one customer. If there are multiple
transactions of the same type between the same supplier and customer, these are modelled
as separate entities (e.g. Bank account withdrawal 1 and Bank account withdrawal 2 for two
transactions between the same bank and the same bank customer).

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 6

. C
re

at
in

g
th

e
G

am
e

70

6.4.6 Game mechanics and actions

Framework guideline
The player will be able to interact with the game environment through actions which allows
him/her to manipulate the game elements.

All actions that are taken while playing the game are performed within the gaming
environment. The actions enable the player to add, remove or otherwise modify the game
elements. Certain core actions have to be available to the player, while others can be added
to provide the player with an enhanced gameplay experience. In this thesis, we will focus on
the core actions that are required in a functional modelling game:

Add Function
Because building a model requires the addition of our main game elements, the functions,
there has to be an action available to add a new function to the model. When adding a new
function to the model, the player is required to provide a function name, as stated in the
rules for the game element function. The abstraction level also has to be taken into account,
so the player also has to determine whether the new function is a system function, a
subfunction or a sub-subfunction. In addition, when creating a new subfunction or sub-
subfunction, the player has to indicate which function is the newly created function’s parent
function. This is done in order to set a baseline hierarchy. Note that when adding a new
function, we only look at parent-child hierarchical connections, while hierarchy concerning
siblings is of no concern to us.

Add Transaction
Transactions connect the functions, they are the inputs and outputs of the functions and get
passed on from one function to another. When adding a new transaction, two things have to
be specified, its supplier and its customer. A customer or supplier can be an existing function
within the system, or an external source, which is not part of the system that is modelled. In
the case of a transaction having an external source as a supplier or customer, that transaction
also becomes a system transaction, a transaction of the system function. The reason for this is
the hierarchical passing of transactions, as described in chapter 4.

Remove Function
When a function is deemed unnecessary in the model, it can be removed. When a function is
removed from the model that has function inputs or outputs, those transactions become
loose ends, transactions that miss either a supplier or customer, as described in chapter 4.

Loose ends themselves are not by default unnecessary or erroneous, as it is possible that the
modeller has created one on purpose. An example of this is when the removed function
remains structurally unchanged, but is placed out of system context, for instance in case of
outsourcing of the function to a third party company. The existence of the loose end

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 6

. C
re

at
in

g
th

e
G

am
e

71

transaction is then still valid, but its destination is now a system external component instead
of a system internal component.

A special case is when a function is removed and it has a function input that originates from
an external source. If the function is removed, the external input has no validity anymore and
will have to be removed as a whole.

Remove Transaction
As with unnecessary functions, unnecessary transactions will have to be removed as well.
While doing this, if there’s a function that acted as either a supplier or customer to this
transaction, it has to be re-evaluated to see whether that function or those functions still
have at least one function input and at least one function output, as stated in the function
rules described before.

Show overview
The player is building a model with several functions and transactions. The game should
contain an action that shows the current state of the model, so the player can see what has
been added to the model and to have an overview of what actions still have to be executed
to complete the model.

6.4.7 Guidance and Feedback

Framework guideline
The player will receive visual and textual feedback while playing the game, to guide him/her
towards completing the right sub-goals and the main goal.

The main goal, sub-goals, tasks, functions, subfunctions, sub-subfunctions transactions, and
most important, the model itself are all important components of the game, which have to be
constructed, monitored, added, removed et cetera meticulously to build an as complete as
possible model. All this information can be quite a lot for the player of the game to process
and retain in memory. This is the reason that the game should give the player plenty of
feedback, preferably in a visual way, as the game is visually oriented.

The overview of the model mentioned in the section above is the main feedback method for
the player. It shows the player what has been added to the model, the structure of all the
functions and how they are connected. The player can also identify information gaps like a
missing function input or output by looking at the model.

A second method of feedback is the so called To do list, a checklist type of list that shows the
player the active sub-goals and corresponding tasks that have to be fulfilled in order to build
a proper model and to complete the game. The sub-goals and the tasks in our game will be
based on several conditions, which depend on the execution of certain actions on the game
elements. The To do list will be shown in this format:

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 6

. C
re

at
in

g
th

e
G

am
e

72

To do List

Sub-goal heading
Task that has to be fulfilled to complete the sub-goal 1
Task that has to be fulfilled to complete the sub-goal 2
etc.

For example, after a function has been added while playing the game, at least one function
input and at least one function output must be added as well. This will be shown as:

To do List

Complete Function Table
Add a function input to function A
Add a function output to function A

The To do list provides direct feedback to the player after each action, and also provides the
player with an incentive to perform iteration, in a sense that the player has to review the
model, re-think his or her past actions and to execute the correct follow-up action.

6.4.8 Graphical User interface (GUI)

Framework guideline
The GUI elements which enables the player to perform actions and provide feedback for the
player to process, will be positioned on screen in a logical manner.

The GUI allows the player to execute the aforementioned actions and show the visual
feedback. Apart from having a colourful and inviting design, the GUI should be as functional
as possible, that is, providing no extra information that is not needed to perform the task of
modelling.

GUI elements that need to be displayed are the model, which is shown in the middle of the
screen, as it is the most important element, a menu component that shows all available
actions and a component that shows the To do list. We choose to display the GUI elements in
a structured, three column view, placing the action menu to the left of the model and the To
do list to the right of the model.

6.4.9 Procedure

The basic course of events will be as follows:

1. The player opens the Fun2Build game in his/her internet browser.
2. An introductory text is shown which states the purpose of the game. At the end of the

text, the player is able to choose to follow a tutorial which teaches the player the
actions available within the game and how to use them to build an example model.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 6

. C
re

at
in

g
th

e
G

am
e

73

3. (optional) The player follows the tutorial, learns the purpose of each action, and how
to combine functions and transactions.

4. The player chooses to play the game itself by pressing a ‘start modelling’ button.
5. The player is asked for the name of the main function or process that will be

modelled. This is labelled the system function and displayed as an empty function
table. The to do list is updated to show the player that a function input and function
output.

6. The game actually starts, the player adds functions and transactions to the model and
receives feedback in the form of a popup or items on the To do list. The player has to
perform tasks to complete the To do list sub-goals. Eventually, all sub-goals will be
reached and the player has completed the game.

7. The player presses a button ‘End game’ and is shown a screen, congratulating him/her
for successfully completing a task which is actually quite technical and that he/she
should be very proud.

The goal of the Fun2Build game is to build a model that contributes to the functional
specification of a system or process. At the end of the basic course of events, the player will
have succeeded in doing that.

However, the described basic course of events is just a baseline. The actual game play will
rely on what choices the player makes, for example: Will he/she model all subfunctions and
sub-subfunctions first and then complete the transactions? Or will he/she add one function,
complete it and then move on to the next function? How many levels of abstraction will the
player choose to model? How many iterations will the player execute while playing the
game?

Framework guideline
The game provides a tutorial in which the player learns how to use the game as a modelling
tool, before modelling themselves.

Chances are that the player has little to no technical knowledge and chances are even more
slim that the player has performed functional decomposition before. Therefore, we choose to
present the player with two choices when he/she starts the game. The first choice is a tutorial,
in which the functionalities are explained that the player has access to within the game. The
second is the process of modelling itself.

The tutorial will be an interactive one, according to the ‘learning by doing’ aspect of Serious
Gaming. The tutorial will explain all the functionality available within the game and introduce
the player to aspects of functional decomposition. The explanation of technical aspects within
functional decomposition, like functions and transactions, will be presented in a manner that
is not too technical.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 6

. C
re

at
in

g
th

e
G

am
e

74

By offering the player to choose whether he/she wants instruction in advance, or to choose
to start modelling right away, we can assure that the player has at least a basic understanding
of the game’s mechanics, rules and functionality, before actually starting to model.

6.5 Implementation

We will now implement this framework, its design and its rules and produce a Serious Game.
This game will guide a player through the process of functional decomposition to produce a
model which contributes to the operational structure of a functional specification of a system
or a process.

The game will be implemented in PHP and XML, development will take place in the Eclipse
Foundation Eclipse IDE and testing it will be done on Wampserver64, an open source server
package which runs PHP 5.3.3. For the complete code of the several webpages of the
Fun2Build game, refer to Appendix A. The next chapter, chapter 7, will provide you with a
walkthrough of the Fun2Build game.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:

75

7. Results

e have constructed a first version of a Serious Game, a prototype if you will,
based on the framework of rules and guidelines that we proposed in the previous
chapter. This Serious Game provides the player with a way to learn how to

construct a model that contributes to the functional specification of a system or process,
while incorporating the concept of iteration. This chapter will provide you with a walkthrough
of the game, showing its visual and functional features.

7.1 Getting started

As we stated in previous chapters, the game that we made will be played by stakeholders
who help a modeller to complete parts of a functional specification of a system or process.
The basic course of events of the game was already concisely described in section 6.4.9 and
will be now be further elaborated upon.

The game starts when the player opens an internet browser screen and opens the Fun2Build
game homepage, index.php.

W

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 7

. R
es

ul
ts

76

7.2. Index.php - Welcome to the Fun2Build Game!

Screenshot

Figure 7.1: index.php

Short description
The homepage shows the basic setup of the game’s GUI, the Menu bar with all available
player actions (Show Overview, ADD function, REMOVE function, ADD transaction and
REMOVE transaction) to the left, the page’s main content in the middle and the Todo List,
which provides feedback on the sub-goals and tasks that the player needs to fulfil to the
right of the page.

This page welcomes the player to the game, gives the player a general introduction of the
terms model and functional specification and tells the player that he/she will be guided to
‘construct and refine a model for the functional specification of a system or a process’. The
player is then presented with the choice to Follow the tutorial (See section 7.3) or to Start
modelling (See section 7.4).

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 7

. R
es

ul
ts

77

Page Transcript
Welcome to the Fun2Build Game!

In this game, we will learn you how to construct and refine a model for the functional
specification of a system or a process. Don't be scared if that sounds technical, it's actually
quite easy!

What is a model?
A model is a graphical representation of information, in this case about the structure of a
specific system or process. The term used to construct a model is called modelling.

Example of a simple model:

[image]

What is a functional specification?
A functional specification is a document which helps the system development team to
develop the right functionality of the system. It focuses on the functional process of the
system and how it works.

The model that we will make during this game will tell the team what YOU want it to be able
to do!

Don't be afraid if you have never done this before, we will help you through this!

Click on the Follow the Tutorial button if this is your first time building a functional
specification, or

Click on the Start modelling button to start right away!

[“Follow the Tutorial” button (Links to tutorial1.php)]

[“Start modelling!” button (Links to startmodelling.php)]

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 7

. R
es

ul
ts

78

7.3. Tutorial

The player can choose to follow a 17 step tutorial before starting to create the model. During
the tutorial, the player is introduced to all actions that he/she can perform to build the model
in the Fun2Build game. The tutorial is action-based, meaning that the player performs the
action that is explained right away. The instructions that are given are based on an example
process of Making a cup of instant coffee, or simply said, Making coffee.

7.3.1 Tutorial.php - Tutorial - Functions and Transactions

Screenshot

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 7

. R
es

ul
ts

79

Figure 7.2: tutorial.php

Short description
The first page of the Tutorial explains how the system or process that will be modelled in the
model is seen as a function with function inputs and function outputs. The concept of
Transactions is also explained and examples of how functions and transactions relate to each
other (the Supplier->Transaction->Customer relationship) is shown.

Page Transcript
Let's start our tutorial!
Within our game, we focus on the functionality of the system that we will model. Our models
exist of two main components, functions and transactions.

Functions
The system or process that we will model into our model is seen as a function within our
game. This function will transform its function inputs (or just inputs) into its function outputs
(you guessed it, just outputs). The system function has a function name, which describes what
functionality the system performs.

Transactions
Inputs and outputs combined are called the function's transactions.

A transaction always has these three properties, whether it's an input or an output:

1. Supplier - Where does the transaction come from?
2. Transaction - A short descriptive name which indicates what kind of transaction it is. A
transaction can be anything that is passed on within the system, ranging from information (a
document) to an action (press a button).
3. Customer - Where does the transaction go to?

An example of how functions and transactions are related to each other is given below. Input
A and Output B are Function 1's transactions. Function 1 can be any system we want to
model.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 7

. R
es

ul
ts

80

[image]

In the above example, the function input Input A has these properties:
1. Supplier - The supplier is still unknown, but let's say it is called 'Party X'.
2. Transaction - Input A.
3. Customer - Function 1.

[image]

To model this function and its transactions, we use a function table, which is a simple textual
method to capture the information from the image above. An example of a filled in function
table is shown below.

[function table]

[“Continue Tutorial >>” button (Links to tutorial2.php)]

7.3.2 Tutorial2.php - Tutorial – Your tools

Screenshot

Figure 7.3: tutorial2.php

Short description
The second page of the Tutorial explains the Menu item shown to the left of the page and
each of the menu actions that the player can use to build the model. It also introduces the
Todo list shown at the right of the page.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 7

. R
es

ul
ts

81

Page Transcript
So now we know that a function has transactions and that these are all denoted in a
function table. The collection of function tables, functions and transactions form your model.

To build elements to add to your model, the game will provide you with some tools. Take a
look around:

To the left, you'll see the Menu.
The Menu will state all actions that you can perform:

- Show Overview - Show an overview of the constructed model
- ADD Function: Add a new function to the model
- REMOVE Function: Remove a function from the model
- ADD Transaction: Add a new transaction to the model
- REMOVE Transaction: Remove transaction from the model

To the right, you'll see the Todo list.
The Todo list will state all actions that you still have to perform to complete your model.

[“Continue Tutorial >>” button (Links to tutorial3.php)]

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 7

. R
es

ul
ts

82

7.3.3 Tutorial3.php - Tutorial – Who doesn’t like coffee?

Screenshot

Figure 7.4: tutorial3.php

Short description
The third page of the Tutorial explains the example process of Making coffee that the player
will use to construct his/her first model with the Fun2Build game. The focus is on the
functionality of a system or process that is being modelled.

Page Transcript
It is now time to take your first steps in the world of modelling.

We are going to model the process Making coffee. Don't be confused that we use the term
'process' instead of the term 'system'. We model the process to show what the system that

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 7

. R
es

ul
ts

83

performs this process, has to do. In other words, we now model the functionality of a system
that will perform the process Making coffee.

Coffee exists in different kinds of types. For simplicity's sake, we will take a very simple type
of coffee, instant coffee. All you need for that is an electric kettle to boil water with, some
ground coffee and a cup. Hmm. Can you smell the fresh aroma already?

First, we will take a look at the steps that make up the process of Making (instant) coffee.

[table showing the steps for the process Making coffee:

1. Boil water
- Fill kettle
- Turn kettle on

2. Put ground coffee in cup
- Scoop coffee and put it in the cup

3. Pour water over coffee
- Pour boiling water into the cup

And done!]

We will now show you how to model this relatively easy process. After we're done, you have a
completed model and a nice cup of coffee!

[“Continue Tutorial >>” button (Links to tutorial4.php)]

7.3.4 Tutorial4.php - Tutorial – Getting started

Screenshot

Figure 7.5: tutorial4.php

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 7

. R
es

ul
ts

84

Short description
The fourth page of the Tutorial adds a reminder of the steps for the process Making coffee
to the bottom of the menu. The Todo List gives the player its first feedback and task to fulfil,
namely to add a main function to the model.

A click on the Show Overview menu item links to tutorial5.php.

Page Transcript
As a reminder, the process steps for making coffee are listed below the Menu.

Take a look at the To do list at the right side of the screen. The To do list will provide you
with feedback on what actions you have to perform to complete the model!

At the moment, it states that you have to Add a Main function

Let's start! Click on the Show Overview menu item.

7.3.5 Tutorial5.php - Tutorial – Show Overview

Screenshot

Figure 7.6: tutorial5.php

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 7

. R
es

ul
ts

85

Short description
The fifth page of the Tutorial shows the player an example of a completed model. A click on
the ADD function menu item links to tutorial6.php.

Page Transcript
This is the Overview screen. The model that you will build will be displayed here!
Below is an example of a model that you will build:

[image]

Let's start by adding our Main function! Click on the ADD Function menu item.

7.3.6 Tutorial6.php - Tutorial – ADD Main function

Screenshot

Figure 7.7: tutorial6.php

Short description
The sixth page of the Tutorial instructs the player to add a Main function to the model by
entering a name for it. The Main function name which is entered on this page will from now
on be referred to as <Main Function Name> for explanatory purposes.

Page Transcript

Add a Main function
Describe the Main function of the system or process that you want to model in at most seven
words.

Main function name: [text box for input] [“ADD function” button (Links to tutorial7.php)]

Hint: look at the reminder box at the bottom of the menu list when you look for inspiration!
Good examples for Main function names are 'Making a cup of coffee' or 'Making instant
coffee'.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 7

. R
es

ul
ts

86

7.3.7 Tutorial7.php - <Main Function Name>

Screenshot

Figure 7.8: tutorial7.php

Short description
The seventh page of the Tutorial shows the recently added Main function and a sample
function table for that main function. The Todo List is updated so the ‘Mandatory steps’ sub-
goal and its task ‘Add a Main function’ are removed from the list. Instead, a new task, ‘Add a
subfunction’, is shown to the player.

A click on the ADD function menu item links to tutorial8.php.

Page Transcript
Alright! You have now added your main function (or system function) to the model. A system
or a process almost never consists of just one function.

The Main function will therefore be split up into three subfunctions, 1. Boil water, 2. Put
ground coffee in cup and 3. Pour water over coffee.

Click on the ADD Function menu item to add the first subfunction, Boil water, to the model.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 7

. R
es

ul
ts

87

7.3.8 Tutorial8.php - <Main Function Name> – ADD Function

Screenshot

Figure 7.9: tutorial8.php

Short description
The eighth page of the Tutorial is the first page in which the player has to perform a task, the
addition of a function, on his/her own for the first time. A hint with possible inputs is shown
on screen to help.

Page Transcript
Function Type to add: [drop-down box, options: Main/Systemfunction, Subfunction, Sub-
subfunction]

If Function Type is Subfunction or Sub-subfunction:
Parent Function: [drop-down box, options: all Main/Systemfunctions, all Subfunctions]

Function Name: [text box for input] [“ADD function” button (Links to tutorial9.php)]

Hint: Pick Function Type = Subfunction, Parent Function = Making coffee and Function
Name = Boil water.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 7

. R
es

ul
ts

88

7.3.9 Tutorial9.php - <Main Function Name> – Show Overview

Screenshot

Figure 7.10: tutorial9.php

Short description
The ninth page of the Tutorial shows the effects of the addition of a subfunction. The model
now displays the Main function and its subfunction, together with an updated Todo List
which urges the player to add a function input and a function output to the newly added
subfunction, according to the framework guideline that each function should have at least
one input and at least one output, as stated in chapter 6.

A click on the ADD function menu item links to tutorial10.php.

Page Transcript
[function table for Main function]

[function table for Subfunction]

You can see that the subfunction needs an input and an output. This is shown by the No
inputs/outputs defined yet messages in the model and the Todo List tasks, marked in red.
Let's add an input first.

Click on the ADD Transaction menu item to add the first input for your subfunction.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 7

. R
es

ul
ts

89

7.3.10 Tutorial10.php - <Main Function Name> – ADD Transaction

Screenshot

Figure 7.11: tutorial10.php

Short description
The tenth page of the Tutorial reminds the player about the connections between the
supplier of a transaction and its customer. It then instructs the player to add a transaction
named Water to the newly added subfunction. Tap will be the supplier for Water.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 7

. R
es

ul
ts

90

Page Transcript
[image]

Now, add a transaction to the subfunction that you added in the previous step.

The reminder box at the bottom of the menu states that the first subfunction is about Boiling
Water. To achieve boiling water, we need at least Water from the Tap.

Start by adding a Function Input named Water.

The Function Input Water will have the Tap as its Supplier, according to the overview
displayed above.

Take notice that because Water is a Function Input, its Customer is automatically set to the
Function to which the Transaction is added, so you only need to add a Supplier.

Function to add Transaction to: [drop-down box, options: all Main/Systemfunctions, all
Subfunctions, all Sub-subfunctions]

Transaction Type: [drop-down box, options: Function Input, Function Output]

Transaction Name: [text box for input]

Only fill in a Supplier if the Transaction Type is Function Input.
Transaction Supplier: [text box for input]

Only fill in a Customer if the Transaction Type is Function Output.
Transaction Customer: [text box for input]

[“ADD Transaction” button (Links to tutorial11.php)]

Hint: Pick Function to add Transaction to = Boil water, Transaction Type = Function Input,
Transaction Name = Water and Supplier = Tap.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 7

. R
es

ul
ts

91

7.3.11 Tutorial11.php - <Main Function Name> – Show Overview

Screenshot

Figure 7.12: tutorial11.php

Short description
The eleventh page of the Tutorial shows the model again. The effects of the transaction
addition in the previous step are made visible, as the new transaction is shown in the
subfunction’s function table. The concept of hierarchical passing of transactions is explained
to the player and the Todo List is updated to only require a function output for the
subfunction.

A click on the ADD transaction menu item links to tutorial12.php.

Page Transcript
[function table for Main function]

[function table for Subfunction]

Fantastic! Notice how the Main function automatically duplicates the function input that you
entered for the subfunction as a function input for the Main function.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 7

. R
es

ul
ts

92

This is because from an external view, the Water goes into the whole system instead of only
into the subfunction!

Click on the ADD Transaction menu item to add an output for your subfunction.

7.3.12 Tutorial12.php - <Main Function Name> – ADD Transaction

Screenshot

Figure 7.13: tutorial12.php

Short description
The twelfth page of the Tutorial lets the player add a function output, just like he/she did
before when adding a function input.

Page Transcript
[image]

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 7

. R
es

ul
ts

93

Now, add another transaction to the subfunction that you have added in the previous steps.
You already added a Function Input, now it's time to add a Function Output. Take another
look at the reminder box at the bottom of the menu. The subfunction is Boil Water. What do
you get if you enter the function input Water to the function Boil water? Why, of course
Boiled Water!

Add a Function Output named Boiled Water.
A Function Output will have the Function to which the Transaction is added as its Supplier.
Therefore, we only need to fill in a Customer for this Transaction.
The Boiled Water will be held in a Kettle, so the Customer will be a Kettle.

Function to add Transaction to: [drop-down box, options: all Main/Systemfunctions, all
Subfunctions, all Sub-subfunctions]

Transaction Type: [drop-down box, options: Function Input, Function Output]

Transaction Name: [text box for input]

Only fill in a Supplier if the Transaction Type is Function Input.
Transaction Supplier: [text box for input]

Only fill in a Customer if the Transaction Type is Function Output.
Transaction Customer: [text box for input]

[“ADD Transaction” button (Links to tutorial13.php)]

Hint: Pick Function to add Transaction to = Boil water, Transaction Type = Function
Output, Transaction Name = Boiled Water and Supplier = Kettle.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 7

. R
es

ul
ts

94

7.3.13 Tutorial13.php - <Main Function Name> – Show Overview

Screenshot

Figure 7.14: tutorial13.php

Short description
The thirteenth page of the Tutorial shows the model again. The function output is added to
the subfunction and the Todo List is cleared, as the subfunction now has both a function
input and a function output. The player is now instructed to remove a transaction.

A click on the REMOVE transaction menu item links to tutorial14.php.

Page Transcript
[function table for Main function]

[function table for Subfunction]

Marvelous, we have now added a Function Input and a Function Output to the subfunction.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 7

. R
es

ul
ts

95

Now that you know how to ADD functions and transactions, let's go through the removal of
functions and transactions.

Click on the REMOVE Transaction menu item to remove the subfunction input.

7.3.14 Tutorial14.php - <Main Function Name> – REMOVE Transaction

Screenshot

Figure 7.15: tutorial14.php

Short description
The fourteenth page of the Tutorial lets the player pick a transaction and remove it.

Page Transcript
Removing a Transaction is very simple. Select the Transaction name that you want to Remove
and click on the REMOVE Transaction button.

Choose and remove the function input to the subfunction Boil water that you created just
now, called Water.

Remove Transaction [drop-down box, options: all Transactions]

[“REMOVE Transaction” button (Links to tutorial15.php)]

Hint: Pick Remove Transaction = Water

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 7

. R
es

ul
ts

96

7.3.15 Tutorial15.php - <Main Function Name> – Show Overview

Screenshot

Figure 7.16: tutorial15.php

Short description
The fifteenth page of the Tutorial is another Overview. The transaction/function input to the
subfunction has been removed, and the Todo List is updated once more to urge the player to
add a new function input, as the last one is removed now.

A click on the REMOVE function menu item links to tutorial16.php.

Page Transcript
[function table for Main function]

[function table for Subfunction]

Okay, now you have removed a Transaction. Take notice that the Todo List has been
updated and provides you with a task to add a new function input to the subfunction. The
last instruction is to remove a function.

Click on the REMOVE function menu item to remove the subfunction.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 7

. R
es

ul
ts

97

7.3.16 Tutorial16.php - <Main Function Name> – REMOVE Function

Screenshot

Figure 7.17: tutorial16.php

Short description
The sixteenth page of the Tutorial instructs the player about the danger of removing a
function which has transactions attached. These transactions will become loose ends when
the function is removed. The player is then instructed to remove the subfunction that he/she
created before.

Page Transcript
Removing a Function is also a simple action.

Be very careful when removing functions though, as removing a function that has
transactions attached (as a function output for instance), those transactions will become
Loose ends, transactions missing either a Supplier or a Customer. You will have to remove
that transaction and add it again.

For our demonstration of the REMOVE Function action, select the Function (Main Function,
Subfunction or Subsubfunction) that you want to Remove and click on the REMOVE
Function button. In this case, remove the subfunction that you created at the beginning of
the tutorial.

Remove Function [drop-down list, options: Main Function, all Subfunctions, all Sub-
subfunctions]

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 7

. R
es

ul
ts

98

[“REMOVE Function” button (Links to tutorial17.php)]

7.3.17 Tutorial17.php - Tutorial – Getting started

Screenshot

Figure 7.18: tutorial17.php

Short description
The seventeenth and last page of the Tutorial shows an empty function table, now that the
subfunction has been removed. It congratulates the player on completing the tutorial and
offers a hyperlink back to the Homepage to proceed with actual modelling a model of choice.

A click on the Home Page link in the text redirects the player to index.php.

Page Transcript
Congratulations!! You have completed the Fun2Build tutorial!
So far, you have Added a Main Function to the model, Added a Subfunction, Added a
Function Input and Function Output, Removed a Function Output, and Removed the
Subfunction.

Head back to the Home Page and start modelling! Good luck!

[function table]

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 7

. R
es

ul
ts

99

7.4. Start modelling

Instead of following the tutorial first, the player can also decide to start modelling right away.
The pages and functions that are used in the modelling part of the Fun2Build game are
identical to those used in the tutorial part of the game.

The main differences between both parts of the game are the structured guidance that the
tutorial provides and the modelling part doesn’t, and the fact that the player is free to choose
whatever actions to perform whenever in the modelling part, leaving the player to choose
his/her own way of modelling by experimenting with the functions at hand.

The pages of our game that are available in the modelling part of the game will now be
elaborated upon:

7.4.1 startmodelling.php - Fun2Build - ADD Main function

Screenshot

Figure 7.19: startmodelling.php

Short description
As is the case with the Tutorial, the graphical layout of the game remains the same; menu
and menu items to the left, main content in the middle and the Todo List to the right of the
screen. The first step in modelling is to enter a Main function and name it, so the player can
start adding functions and transactions to it.

Page Transcript

Add a Main function
Describe the Main function of the system or process that you want to model in at most seven
words.

Main function name: [text box for input] [“REMOVE Function” button (Links to
showoverview.php)]

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 7

. R
es

ul
ts

100

7.4.2 showoverview.php - <Main Function Name> - Show Overview

Screenshot

Figure 7.20: showoverview.php initial view

Description
The Show Overview page displays the contents of the entire model, its functions, and
transactions and how they all connect together. In a sense, the Show Overview page is the
main feedback method to the player, showing the current state of the model and indicating
which parts of the model are still missing or should be adjusted.

The page also contains the programming code to process all actions that the player has
performed, it adds the functions and transactions or removes them from the model. To this
end, all action pages, like ADD function, redirect to the Show Overview page after submitting
the data for that action.

All data that together forms the model is stored in an XML file called Structure.xml. The
Show Overview page parses the information from the XML file into function tables which
contain the function name, its optional parent function, its function inputs and its function
outputs. It also checks whether system critical model XML nodes are present in the XML file,
like the subfunctions node, which is the parent node of all subfunctions. If they are missing,
Show Overview will add them to the XML file.

Todo List
While constructing the function tables for display, the Show Overview page interacts with the
Todo List. The Show Overview page displays a textual message when an input or output is
missing in the relevant function table, while the Todo List sums up all pending tasks that the
player has to fulfil to reach the main goal, including those displayed in the function tables, as
depicted in figure 7.21.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 7

. R
es

ul
ts

101

Figure 7.21: Todo List interaction on the Show Overview page

There are three kinds of sub-goals that the Todo List urges the player to complete, providing
the player with an incentive to perform iteration by executing the correct menu action to
complete the sub-goals.

- Mandatory sub-goals
Mandatory goals can be set for the player to provide a general guideline of the tasks
at hand, without imposing a direct list of actions to the player (like 1. Click the Add
function button, 2. Input a name, etc.). Mandatory sub-goals are usually presented to
the player at the beginning of the modelling process and disappear from the list once
completed.
An example is the mandatory sub-goal Mandatory steps with the accompanying task
Add a subfunction, which is displayed directly after adding a Main function to the
model, as displayed in figure 7.22.

Figure 7.22: Todo List mandatory sub-goal

- Missing inputs/outputs
According to the framework rules, a function should have at least one function input
and one function output. The Todo List checks the model after the completion of each
action to see whether the model still complies with these rules. If an input or output is
missing from a function, it will be shown in both the relevant function table at the
Show Overview screen and in the Todo List, which states the sub-goal Complete the
function table and the accompanying task Add a function input/output to sub/sub-
subfunction <function name>, as seen in the example in figure 7.21.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 7

. R
es

ul
ts

102

- Loose ends

The third kind of sub-goal that the Todo List keeps track of together with the Show
Overview screen, is the checking for Loose ends. As explained before, a loose end is a
transaction that misses either a supplier or customer. When a Loose end is detected,
for instance after removing a function that had a transaction connected to it, after
which the transaction becomes a loose end, the transaction is listed in the Todo List
as a warning. It is already explained that the possibility might occur that the modeller
wants to add a loose end to the model on purpose, which is why it is shown as a
warning and not as a sub-goal that the player has to solve by all means. An example
of a loose end and how it is displayed in both the Show Overview function tables and
the Todo List can be seen in figure 7.23.

Figure 7.23: Todo List – Loose ends

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 7

. R
es

ul
ts

103

7.4.3 addfunction.php - <Main Function Name> - ADD Function

Screenshot

Figure 7.24: Add Function

Description
The Add Function page adds a function to the model.

Page transcript

Function Type to add: [drop-down list, options: Main/Systemfunction, Subfunction, Sub-
subfunction]

If Function Type is Subfunction or Sub-subfunction:
Parent Function: [drop-down list, options: Main Function, all Subfunctions]

Function Name: [text box for input] [“ADD Function” button (Links to showoverview.php)]

7.4.4 removefunction.php - <Main Function Name> - REMOVE Function

Screenshot

Figure 7.25: Remove Function

Description
The Remove Function page lets the player remove a function from the model.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 7

. R
es

ul
ts

104

Page transcript

Remove Function: [drop-down list, options: Main Function, all Subfunctions, all Sub-
subfunctions]

[“REMOVE Function” button (Links to showoverview.php)]

7.4.5 addtransaction.php - <Main Function Name> - ADD Transaction

Screenshot

Figure 7.26: Add Transaction

Description
The Add Transaction page lets the player add a transaction to the model.

Page transcript
[image]
Remember: Supplier -> Transaction -> Customer

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 7

. R
es

ul
ts

105

Function to add Transaction to: [drop-down list, options: Main Function, all Subfunctions,
all Sub-subfunctions]

Transaction Type: [drop-down list, options: Function Input, Function Output]

Transaction Name: [text box for input]

Only fill in a Supplier if the Transaction Type is Function Input.
Transaction Supplier: [text box for input]

Only fill in a Customer if the Transaction Type is Function Output.
Transaction Customer: [text box for input]

[“ADD Transaction” button (Links to showoverview.php)]

7.4.5 removetransaction.php - <Main Function Name> - REMOVE Transaction

Screenshots

Figure 7.27: Remove Transaction with no transactions present

Figure 7.28: Remove Transaction with transactions present in the model

Description
The Remove Transaction page lets the player remove a transaction from the model. If there
are no transactions present to remove, it will inform the player of that.

Page transcript

Remove Transaction [drop-down list, options: all Transactions]

[“REMOVE Transaction” button (Links to showoverview.php)]

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:

106

8. Conclusion

e started off this thesis with the intention to design a theoretical framework
based on game-like elements to guide a player through a Serious Game in which
an existing system or process is declaratively specified through functional

decomposition. Following the completion of the framework, we built a prototype of such a
game, based on the principles of the framework. In doing so, we have fulfilled the research
goal of this thesis. This final chapter discusses the outcome of the research, the final
conclusion and suggestions for future research.

8.1 Summary

After deep-diving into the subjects of Serious Games, iteration, functional decomposition and
the Chinese Boxes principle, we combined aspects from all of these subjects to form a
theoretical framework. This framework provides rules and guidelines to build a Serious Game
which enables its player to construct a model that contributes to the functional specification
of a system or process. Our version of the framework is specially tailored to suit our research
goal, but with some adjustments, the framework can be implemented to construct a Serious
Game which enables modelling of different situations.

A recollection of the framework’s guidelines as discussed in chapter 6, Creating the Game, is
given:

Technical Environment
The Serious Game will be an accessible web application (based on PHP and XML) that will be
accessed through a web browser.

Gaming Environment
The gaming environment will be displayed in the web browser and will be visually attractive.

W

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 8

. C
on

cl
us

io
n

107

Goals, sub-goals and tasks
The main goal of the game is to build a model that contributes to a functional specification
of a certain system that is modelled.

The main goal can be broken down into sub-goals, which can be achieved by completing the
tasks that are linked to the sub-goals.

The main goal and the sub-goals of the game will be communicated to the player in a clear
way.

Game elements
The game will present the player with several game elements, which represent elements
within the concepts of functional specification and functional decomposition.

Game mechanics and actions
The player will be able to interact with the game environment through actions which allows
him/her to manipulate the game elements.

Guidance and Feedback
The player will receive visual and textual feedback while playing the game, to guide him/her
towards completing the right sub-goals and the main goal.

Graphical User Interface (GCI)
The GUI elements which enables the player to perform actions and provide feedback for the
player to process, will be positioned on screen in a logical manner.

Procedure
The game provides a tutorial in which the player learns how to use the game as a modelling
tool, before modelling themselves.

These framework guidelines were then implemented in a Serious Game called the Fun2Build
game, as a prototype that acts as a proof of concept for the framework.

The Fun2Build game provided the player with a guided walkthrough through the game,
explaining the concepts of models, the functional specification and the use of the built in
actions to construct a complete and valid model.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 8

. C
on

cl
us

io
n

108

8.2 Final Conclusion

The main research goal that we posed in the introductory chapter was described as the
design and construction of an operational functional specification game.

To achieve this, two sub-goals were defined that had to be fulfilled:

1. The analysis and design of a theoretical framework based on game-like elements
to guide a player through a Serious Game in which an existing system is
declaratively specified through functional decomposition. The guidance is
provided in such a way so that iteration is facilitated.

2. The implementation of this framework in the form of a Serious Game prototype to
demonstrate a basic showcase of the framework’s rules and guidelines.

Both of these sub-goals have been fulfilled and thoroughly documented in previous chapters,
and therefore we can say that we have achieved our main research goal.

Implications
The results from the research done for this thesis are not ground-breaking or totally
innovative in the sense that it does not conjure an entire new approach to method
engineering and functional specification. The framework and the prototype game make use
of concepts that haven’t been combined that much before, though, and therefore we believe
that it adds new insights and approaches to the development of Serious Games for
specification.

Each of the chapters involving the theoretical components on which the framework was
based can act as sources for information for future research. This thesis is also one of the first
(maybe even the first) works in which the Chinese Boxes principle is combined with functional
specification.

The framework that we have proposed and elaborated upon can be used for further research
in the field of (iterative) method engineering and Serious Games development, providing
researchers with a baseline set of rules and guidelines to refine even more efficient and
effective frameworks.

8.3 Recommendations for future research

This thesis provided researchers in the field of Serious Games development with some
guidelines on how to find principles on which to base a game. It also provides a proof of
concept prototype to see how all that theory can be put into practice.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 8

. C
on

cl
us

io
n

109

There are certain topics that aren’t addressed in this thesis, but which can be good starting
points for further research.

An example is the theoretical framework that we have constructed in this thesis. The rules
and guidelines are specifically tailored to suit the purpose of modelling a Serious Game
concerning functional specifications. Such a framework could be developed further into a
more general version of the framework, so that the rules can apply to each of the moments in
systems development that requires user input (e.g. during requirements elicitation, or
creating user stories, or UX/GUI design). The resulting framework could be used by
researchers who want to further investigate the usage of Serious Games for system
development purposes, but also as a practical approach for information architects to design
applications or games by.

A second topic for future research can be the further development of the Fun2Build game
mechanics and to refine these. An example is the Todo list, that checks for three types of sub-
goals that have to be achieved during modelling, checking the mandatory sub-goals, the
checking on function inputs and outputs and checking for loose ends. The game mechanics
can be developed to also incorporate the logical checking of a model, as described in chapter
4, while explaining the Chinese Boxes principle.

8.4 Final words

We hope that you enjoyed reading this thesis and that you find it a useful addition to the
field of Information Science. Serious Gaming is a big, upcoming subject in the field of
systems engineering, and we expect to see lots of movement in this area in the coming years.
Hopefully in the future, Serious Gaming, its principles and its application in technical
education and training will lead to a more accessible IT landscape in which we can all develop
and share technical knowledge with others more easily, more attractive and more effective.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 S

ou
rc

es

110

Sources

Corti06 Corti, K. Games-based Learning; a serious business application.
PIXELearning.com White paper, 2006.

Finkelstein96 Finkelstein, A. and Dowell, J. A Comedy of Errors: the London Ambulance
Service case study. In Proceedings of the 8th International Workshop on
Software Specification and Design, pp. 2-4, 1996.

Gartner08 Shiffler, G. Forecast: PC Installed Base, Worldwide, 2004-2012.
 Gartner, Inc., 2008.

Garris02 Garris, R. et al. Games, Motivation, and Learning: A Research and Practice
 Model. In Simulation & Gaming, Volume 33, Issue 4, pp. 441-467, December
 2002.

Gros07 Gros, B. Digital Games in Education: The Design of Games-Based Learning
 Environments. In Journal of Research on Technology in Education, 40(1),
 23-38, 2007.

Hoppen08 Hoppenbrouwers, S.J.B.A. et al. Method Engineering as Game Design: an
 Emerging HCI Perspective on Methods and CASE Tools. In Workshop
 proceedings of EMMSAD08: Exploring Modeling Methods for Systems Analysis
 and Design affiliated to CAiSE08, Montpellier, France. Citeseer, 2008.

Hoppen09 Hoppenbrouwers, S.J.B.A. et al. Setting Rules of Play for Collaborative
 Modeling. In International Journal of e-Collaboration, Volume 5, Issue 4,
 pp. 37-52, 2009.

Jacobson92 Jacobson, I. et al. Object-Oriented Software Engineering - A Use Case Driven
Approach. Addison-Wesley, 1992.

Järvinen07 Järvinen, A. Games without Frontiers, Theories and Methods for Game Studies
 and Design. PhD Thesis, University of Tampere, Finland, 2007.

Keegan08 Keegan, V. Games can have a serious role to play. The Guardian, 11 December
 2008.

Kruchten00 Kruchten, P. From Waterfall to Iterative Lifecycle – A tough transition for
 project managers. Rational Software White Paper TP 173 5/00. December 2000.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 S

ou
rc

es

111

Kruchten04 Kruchten, P. The Rational Unified Process: An Introduction, Third Edition.
 Addison-Wesley, 2004.

Leveson93 Leveson, N. G. and Turner, C. S. An investigation of the Therac-25 Accidents.
 In IEEE Computer, Volume 26, Issue 7, pp. 18-41, July 1993.

Lions96 Lions, J. L. Ariane 5, Flight 501 Failure, Report by the Inquiry Board, 1996.

Mellor94 Mellor, P. CAD: computer-aided disaster. In High Integrity Systems, Volume 1,
 Issue 2, pp. 101-156. Oxford University Press, 1994.

Prensky01 Prensky, M. Digital Game-Based Learning. McGraw-Hill, 2001.

Pressman05 Pressman, R.S. Software Engineering – A Practitioner’s Approach, Sixth edition,
 pp. 83. McGraw-Hill, 2005.

Salomon91 Salomon, G. et al. Partners in Cognition: Extending Human Intelligence with
 Intelligent Technologies. In Educational researcher. Vol. 20, no. 3. pp. 2-9, 1991.

Sarter97 Sarter, N.B. et al. Automation Surprises. Handbook of Human Factors &
Ergonomics, Second edition, G. Salvendy (Ed.), Wiley, 1997.

Stone05 Stone, R.J. Serious Gaming: Virtual Reality’s Savior?. In Proceedings of Virtual
Systems and MultiMedia Conference, Ghent, Belgium, 2005. pp. 773-786,
October 2005.

Stone06 Stone, R.J., et al. Serious Gaming Technologies Support Human Factors
Investigations of Advanced Interfaces for Semi-Autonomous Vehicles. In
Proceedings of Virtual Media for Military Applications; NATO RTA HFM-136
Workshop, US Military Academy, West Point, NY, June 2006.

Trusim TruSim Interactive Trauma Trainer.
http://www.trusim.com/?page=Demonstrations

Tygron Tygron RO2 Watergame.
http://www.watergame.nl

Verbraeck09 Verbraeck, A. Serious Gaming: Tomorrow’s solution for today’s problems. In
Sun Microsystems: Noodpakket voor IT’ers Congres, 2009.

Whitton07 Whitton, N. Motivation and computer game based learning. Proceedings of
ASCILITE Singapore, pp. 1063-1067, 2007.

Zyda05 Zyda, M. From visual simulation to virtual reality to games. In IEEE Computer,
Volume 38, Issue 9, pp. 25-32, September 2005.

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 A

pp
en

di
x

A
 –

 S
ou

rc
e

Co
de

s

112

Appendix A – Source Codes

The source code for all pages of the Fun2Build game amounts to around 100 pages,
therefore it would seem impractical to include them all in this appendix. All files will be
supplied with this printed version of the thesis on an accompanying CD-ROM.

Some examples of programming code:

Index.php
<!DOCTYPE html PUBLIC " ‐//W3C//DTD XHTML 1.0 Transit ional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1 ‐

transit ional .dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http ‐equiv="Content ‐Type" content="text/html ; charset=utf‐8" />

<tit le>Fun2Bui ld</t it le>

<l ink href="css/fun2build3col .css" rel="sty lesheet" type="text/css" />

</head>

<body>

<div class="container">

 <?php include("header.php") ?>

 <div class="menubar">

 <h4>Menu</h4>

 <ul class="nav">

 <l i>Show Overview</l i>

 <l i>ADD funct ion</l i>

 <l i>REMOVE funct ion</l i>

 <l i>ADD transaction</l i>

 <l i>REMOVE transact ion</l i>

 <p> </p>

 </div>

 <div class="content">

 <div class="cadre">

 <h2 class="t it le">Welcome to the Fun2Bui ld Game!</h2>

 <div class="entry">

 <p>Welcome to the Fun2Bui ld Game!

 In this game, we wil l learn you how to construct and refine a model for the funct ional speci fi cat ion of a

system or a process. Don't be scared i f that sounds technical , i t ' s actual ly quite easy!</p>

 <p>What i s a model?

 A model i s a graphical representat ion of information, in this case about the structure of a speci f ic

system or process. The term used to construct a model i s cal led model l ing.</p>

 <p al ign=center>Example of a s imple model :

 </p>

 <p>What i s a funct ional specif icat ion?

 A funct ional speci f ication is a document which helps the system development team to develop the r ight

funct ional i ty of the system. I t focuses on the functional process of the system and how i t

works.</p>

 <p>The model that we wil l make during this game wil l tel l the team what YOU

want i t to be able to do! </p>

 <p>Don't be afraid i f you have never done this before, we wil l help you through this!

 Cl ick on the Fol low the Tutorial button i f this i s your f ir st t ime bui lding a functional

speci f ication, or

 Cl ick on the Start model l ing button to start r ight away!</p>

 <p>

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 A

pp
en

di
x

A
 –

 S
ou

rc
e

Co
de

s

113

 <button>Fol low the Tutor ia l</button>

 </p>

 <p>

 <button>Start model l ing!</button>

 </p>

 </div>

 </div>

 </div>

 <div class="todol ist">

 <h4>Todo List</h4>

 <p>Empty </p>

 </div>

 <div class="clearfloat"></div>

</div>

</body>

</html>

Showoverview.php
<!DOCTYPE html PUBLIC " ‐//W3C//DTD XHTML 1.0 Transit ional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1 ‐

transit ional .dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http ‐equiv="Content ‐Type" content="text/html ; charset=utf‐8" />

<tit le>Fun2Bui ld</t it le>

<l ink href="css/fun2build3col .css" rel="sty lesheet" type="text/css" />

</head>

<body>

<div class="container">

 <?php include("header.php")?>

 <div class="menubar">

 <h4>Menu</h4>

 <ul class="nav">

 <l i>Show Overview</l i>

 <l i>ADD function</l i>

 <l i>REMOVE funct ion</l i>

 <l i>ADD transact ion</l i>

 <l i>REMOVE transact ion</l i>

 </div>

 <?php

 /* Load XML f i le */

 $doc = new DOMDocument('1.0') ;

 $doc ‐>preserveWhiteSpace = fa lse;

 $doc ‐>load('Speci f icat ion.xml') ;

 $doc ‐>formatOutput = true;

 /* Construct an XPath for this document*/

 $xpath = new DOMXPath($doc);

 /* Help var iables */

 $subfunct ions = $doc ‐>getElementsByTagName('subfunct ion') ;

 $subsubfunct ions = $doc ‐>getE lementsByTagName('subsubfunction');

 $numsubfunct ions = $subfunctions ‐>length;

 $numsubsubfunct ions = $subsubfunct ions ‐>length;

 $speci f i cat ion = $doc ‐>getElementsByTagname('speci fi cat ion') ‐>item(0);

 /* Addit ion of a Main funct ion */

 i f (i sset ($_POST['MainFunction'])) {

 $addmain = $doc ‐>createElement('name' , (str ing)$_POST['MainFunct ion']) ;

 $doc ‐>getElementsByTagName('systemfunct ion')‐>item(0)‐>appendChild($addmain) ;

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 A

pp
en

di
x

A
 –

 S
ou

rc
e

Co
de

s

114

 // Save document

 $doc ‐>save('Speci f i cat ion.xml') ;

 }

 $mainfunct ionname = $doc ‐>getElementsByTagName('systemfunct ion') ‐>item(0) ‐

>getElementsByTagName('name') ‐>item(0) ‐>nodeValue;

 /* Check i f Subfunct ions node is present */

 $subfunct ionsnode = $doc ‐>getElementsByTagName('subfunctions')‐>item(0);

 i f (empty($subfunct ionsnode)) {

 // Construct new subfunct ions node

 $newsubnode = $doc ‐>createElement('subfunct ions') ;

 // Add subfunct ions node to the model

 $speci fi cat ion ‐>appendChi ld($newsubnode);

 // Save document

 $doc ‐>save('Speci f i cat ion.xml') ;

 }

 /* Check i f Subfunct ions node is present */

 $subsubfunct ionsnode = $doc ‐>getElementsByTagName('subsubfunct ions') ‐>item(0);

 i f (empty($subsubfunctionsnode)) {

 // Construct new sub ‐subfunct ions node

 $newsubsubnode = $doc ‐>createElement(' subsubfunctions') ;

 // Add sub ‐subfunct ions node to the model

 $speci fi cat ion ‐>appendChi ld($newsubsubnode);

 // Save document

 $doc ‐>save('Speci f i cat ion.xml') ;

 }

 /* Check i f Transactions node is present */

 $transactionsnode = $doc ‐>getElementsByTagName('transact ions') ‐>item(0);

 i f (empty($transact ionsnode)) {

 // Construct new transactions node

 $newtransnode = $doc ‐>createElement(' transact ions') ;

 // Add transact ions node to the model

 $speci fi cat ion ‐>appendChi ld($newtransnode);

 // Save document

 $doc ‐>save('Speci f i cat ion.xml') ;

 }

 /* Get values from previous page, construct funct ion and append i t to the model */

 i f (i sset ($_POST['Funct ionType'])) {

 // I f function added i s a main function

 i f ($_POST['Funct ionType'] == 'mainfunct ion') {

 //echo "MAIN ADDED";

 }

 // I f function added i s a subfunction

 i f ($_POST['Funct ionType'] == ' subfunction') {

 // Construct new subfunct ion

 $newsubfunct ion = $doc ‐>createElement('subfunction') ;

 // Construct new name node and append i t to newsubfunct ion

 $subfunct ionname = $doc ‐>createElement('name' , (str ing)$_POST['Funct ionName']) ;

 $newsubfunct ion ‐>appendChi ld($subfunctionname);

 // Construct new parent funct ion node and append i t to newsubfunct ion

 $subfunct ionparent = $doc ‐>createElement('parent ‐ funct ion' ,

(str ing)$_POST['ParentFunct ion']) ;

 $newsubfunct ion ‐>appendChi ld($subfunctionparent) ;

 // Add new funct ion to l i st of functions

 $subfunct ionsnode ‐>appendChild($newsubfunct ion);

 // Save document

 $doc ‐>save("Specif icat ion.xml") ;

 }

 // I f function added i s a sub ‐subfunct ion

 i f ($_POST['Funct ionType'] == ' subsubfunct ion') {

 // Construct new sub ‐subfunct ion

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 A

pp
en

di
x

A
 –

 S
ou

rc
e

Co
de

s

115

 $newsubsubfunction = $doc ‐>createElement('subsubfunct ion') ;

 // Construct new name node and append i t to newsubsubfunction

 $subsubfunct ionname = $doc ‐>createElement('name' ,

(str ing)$_POST['Funct ionName']) ;

 $newsubsubfunction ‐>appendChild($subsubfunctionname);

 // Construct new parent funct ion node and append i t to newsubsubfunction

 $subsubfunct ionparent = $doc‐>createElement('parent ‐ function' ,

(str ing)$_POST['ParentFunct ion']) ;

 $newsubsubfunction ‐>appendChild($subsubfunctionparent) ;

 // Add new funct ion to l i st of functions

 $subsubfunct ionsnode ‐>appendChi ld($newsubsubfunct ion);

 // Save document

 $doc ‐>save("Specif icat ion.xml") ;

 }

 }

 /* Get values from previous page, construct transaction and append i t to the model */

 i f (i sset ($_POST['Transact ionName'])) {

 // Construct new transaction

 $newtransact ion = $doc ‐>createElement(' transact ion') ;

 // Construct new name node and append i t to newtransact ion

 $transact ionname = $doc ‐>createElement('name' , (str ing)$_POST['Transact ionName']) ;

 $newtransact ion ‐>appendChi ld($transact ionname);

 // Construct new customer name and suppl ier name nodes

 i f ($_POST['TransactionType'] == ' input ') { // Handle funct ion inputs

 i f (i sset($_POST['TransactionFunction'])) {

 $transact ioncustomername = $doc ‐>createElement('name' ,

(str ing)$_POST['TransactionFunction']) ;

 }

 $transact ionsuppl iername = $doc ‐>createElement('name' ,

(str ing)$_POST['TransactionSupplier ']) ;

 }

 i f ($_POST['TransactionType'] == 'output ') { // Handle Funct ion outputs

 i f (i sset($_POST['TransactionFunction'])) {

 $transact ionsuppl iername = $doc ‐>createElement('name' ,

(str ing)$_POST['TransactionFunction']) ;

 }

 $transact ioncustomername = $doc ‐>createElement('name' ,

(str ing)$_POST['TransactionCustomer']) ;

 }

 // Construct the new transact ion node

 $newtransact ionsuppl ier = $doc ‐>createElement('suppl ier ') ;

 $newtransact ioncustomer = $doc ‐>createElement('customer') ;

 $newtransact ionsuppl ier ‐>appendChi ld($transactionsuppl iername);

 $newtransact ioncustomer ‐>appendChild($transact ioncustomername);

 $newtransact ion ‐>appendChi ld($newtransact ionsuppl ier) ;

 $newtransact ion ‐>appendChi ld($newtransact ioncustomer);

 // Add new funct ion to l i st of functions

 $transact ionsnode ‐>appendChild($newtransact ion);

 // Save document

 $doc ‐>save("Specif icat ion.xml") ;

 }

 /* Get values from previous page and remove transact ion from the model */

 i f (i sset ($_POST['Transact ionRemove'])) {

 $removename = $_POST['Transact ionRemove'] ;

 // I f the name of the transact ion matches the removename, remove the transact ion

 foreach ($transactionsnode ‐>chi ldNodes as $transact ion) {

 i f ($transaction‐>getElementsByTagName('name') ‐>item(0) ‐>nodeValue ===

$removename) {

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 A

pp
en

di
x

A
 –

 S
ou

rc
e

Co
de

s

116

 whi le ($transact ion ‐>hasChi ldNodes()) { // Remove al l Transact ion chi ld nodes

 foreach($transact ion ‐>chi ldNodes as $transact ionchi ld) {

 whi le ($transactionchi ld ‐>hasChi ldNodes()){ // Remove al l

Transact ion chi ld chi ld nodes

 $transact ionchi ld ‐>removeChild($transact ionchi ld ‐

>chi ldNodes ‐>item(0)) ;

 }

 }

 $transact ion ‐>removeChi ld($transact ion ‐>chi ldNodes ‐>item(0)) ;

 }

 // Remove the Transact ion from the Transact ions node

 $transact ionsnode ‐>removeChi ld($transact ion);

 }

 }

 // Save document

 $doc ‐>save("Specif icat ion.xml") ;

 }

 /* Get values from previous page and remove (sub/sub ‐) function from the model */

 i f (i sset ($_POST['Funct ionRemove'])) {

 $removename = $_POST['FunctionRemove'] ;

 // I f the name of a subfunction matches the removename, remove the subfunct ion

 foreach ($subfunctionsnode ‐>chi ldNodes as $subfunct ion) {

 i f ($subfunction ‐>getElementsByTagName('name') ‐>item(0)‐>nodeValue ===

$removename) {

 whi le ($subfunction ‐>hasChi ldNodes()) { // Remove al l subfunction chi ld nodes

 $subfunct ion ‐>removeChi ld($subfunct ion ‐>chi ldNodes ‐>item(0)) ;

 }

 // Remove the Subfunction from the Subfunctions node

 $subfunct ionsnode ‐>removeChild($subfunct ion);

 }

 }

 // I f the name of a subsubfunct ion matches the removename, remove the subsubfunction

 foreach ($subsubfunct ionsnode ‐>chi ldNodes as $subsubfunct ion) {

 i f ($subsubfunct ion ‐>getElementsByTagName('name') ‐>item(0) ‐>nodeValue ===

$removename) {

 whi le ($subsubfunct ion ‐>hasChi ldNodes()) { // Remove al l Sub ‐subfunct ion

chi ld nodes

 $subsubfunction ‐>removeChi ld($subsubfunct ion ‐>chi ldNodes ‐

>item(0)) ;

 }

 // Remove the Subsubfunct ion from the Subsubfunct ions node

 $subsubfunctionsnode ‐>removeChild($subsubfunct ion);

 }

 }

 // Save document

 $doc ‐>save("Specif icat ion.xml") ;

 }

 echo "

 <div class='content'>

 <div class='cadre'>

 <h2 class='t i t le'>$mainfunct ionname ‐ Show Overview</h2>

 <div class='box'>";

 i f ($numsubfunctions < 1)

 echo "<p>No subfunct ions avai lable yet. Add some subfunct ions f ir st.</p>";

 else {

echo "<div class=' funct ions'>

<table class='overview'>

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 A

pp
en

di
x

A
 –

 S
ou

rc
e

Co
de

s

117

 <tr>

 <td colspan='2'>

 <table class=' funct ion' id='mainfunct ion'>

 <th colspan='2' class='t i t le'>Main

Funct ion
".$mainfunct ionname. "</th>

 <tr>

 <td class=' inout '>IN</td>

 <td class=' inout '>OUT</td>

 </tr>

 <tr>

 <td class=' inputs'>";

foreach($subfunct ions as $subfunction){

 /* Col lect inputs */

 $subfunct ionname = $subfunct ion ‐>getElementsByTagName('name') ‐>item(0) ‐>nodeValue;

 $subinputquery = ' //transaction[customer/name="' . $subfunct ionname.'"] ' ; // Find al l transactions that

have this subfunct ion as customer

 $subinputs = $xpath ‐>query($subinputquery); // All subfunction inputs

 $subsubinputquery = ' //subsubfunction[parent ‐ function="' . $subfunct ionname.'"] ' ; // Find subfunctions

for this subfunct ion

 echo "" . $subfunct ionname . ":
";

 /* Find al l inputs for this subfunct ion */

 foreach($subinputs as $subinput) {

 echo "<div class=' i tem'><i>From: </i>". $subinput ‐

>getElementsByTagName('suppl ier ')‐>item(0)‐>getElementsByTagName('name') ‐>item(0) ‐>nodeValue . "

" . $subinput ‐>getElementsByTagName('name') ‐>item(0) ‐>nodeValue . "

 </div>

";

} // end foreach

 /* Inputs for this subfunct ion's subfunct ions */

 $subsubs = $xpath ‐>query($subsubinputquery) ;

 foreach($subsubs as $subsub) {

 $subsubname = $subsub ‐>getElementsByTagName('name') ‐>item(0) ‐>nodeValue; // Get the

name of the sub ‐subfunct ion

 $subsubtransactionsinxpath = ' //transact ion[customer/name="' . $subsubname . ' "] ' ;

 $subsubtransxpin = $xpath ‐>query($subsubtransactionsinxpath); // Find al l transact ions that

have this sub ‐subfunct ion as i t s customer / al l subsub inputs

 i f ($subsubtransxpin ‐>length > 0) { // I f there are indeed inputs for this sub‐subfunct ion, show

these

 foreach ($subsubtransxpin as $subsubtransin) {

 $subinputsupp = $subsubtransin ‐>getElementsByTagName('supplier ') ‐

>item(0) ‐>getElementsByTagName('name') ‐>item(0) ‐>nodeValue;

 i f (empty($subinputsupp)) { // I f i t ' s a loose end, display i t l ike one

 echo "<div class=' item'>Loose end:
" .

$subsubtransin‐>getElementsByTagName('name')‐>item(0) ‐>nodeValue . "</div>";

 }

 else {

 echo "<div class=' item'><i>From: </i>". $subsubtransin ‐

>getElementsByTagName('suppl ier ')‐>item(0)‐>getElementsByTagName('name') ‐>item(0) ‐>nodeValue .

"
";

 echo "" . $subsubtransin‐>getElementsByTagName('name')‐>item(0) ‐

>nodeValue . "</div>";

 }

 }

 }

} // end foreach sub ‐subfunct ions

} // end foreach subfunctions

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 A

pp
en

di
x

A
 –

 S
ou

rc
e

Co
de

s

118

echo"</td>

<td class='outputs '>" ;

foreach($subfunct ions as $subfunction){

 /* Col lect outputs */

 $subfunct ionname = $subfunct ion ‐>getElementsByTagName('name') ‐>item(0) ‐>nodeValue;

 $suboutputquery = ' //transaction[suppl ier/name="' . $subfunctionname.'"] ' ; // Find al l transactions that

have this subfunct ion as suppl ier

 $suboutputs = $xpath ‐>query($subinputquery) ; // Al l subfunct ion outputs

 $subsuboutputquery = ' //subsubfunct ion[parent ‐ funct ion="' . $subfunctionname.'"] ' ; // Find

subfunctions for this subfunction

 echo "" . $subfunct ionname . " :
";

 /* Find al l outputs for this subfunct ion */

 foreach($suboutputs as $suboutput) {

 echo "<div class=' i tem'>

 <i>To: </i>"

 . $suboutput ‐>getElementsByTagName('customer') ‐>item(0) ‐>getElementsByTagName('name') ‐

>item(0) ‐>nodeValue . "

 " . $suboutput ‐>getElementsByTagName('name')‐>item(0) ‐>nodeValue .

"

 </div>

";

} // end foreach

/* Outputs for this subfunction's subfunctions */

$subsubs = $xpath ‐>query($subsuboutputquery) ;

foreach($subsubs as $subsub) {

 $subsubname = $subsub ‐>getElementsByTagName('name') ‐>item(0) ‐>nodeValue; // Get the name of the

sub ‐subfunction

 $subsubtransactionsoutxpath = ' //transaction[suppl ier/name="' . $subsubname . ' "] ' ;

 $subsubtransxpout = $xpath ‐>query($subsubtransactionsoutxpath); // Find al l transact ions that have

this sub ‐subfunction as i t s suppl ier / al l subsub outputs

 i f ($subsubtransxpout ‐>length > 0) { // I f there are indeed outputs for this sub ‐subfunction, show these

 foreach ($subsubtransxpout as $subsubtransout) {

 $suboutputsupp = $subsubtransout ‐>getElementsByTagName('customer')‐>item(0) ‐

>getElementsByTagName('name') ‐>item(0) ‐>nodeValue;

 i f (empty($suboutputsupp)) { // I f i t 's a loose end, display i t l ike one

 echo "<div class=' i tem'>Loose end:
" . $subsubtransout ‐

>getElementsByTagName('name') ‐>item(0) ‐>nodeValue . "</div>";

 }

 else {

 echo "<div class=' i tem'><i>From: </ i>". $subsubtransout ‐

>getElementsByTagName('customer') ‐>item(0)‐>getElementsByTagName('name') ‐>i tem(0)‐>nodeValue .

"
";

 echo "" . $subsubtransout ‐>getElementsByTagName('name') ‐>item(0)‐>nodeValue .

"</div>";

 }

 }

 }

 } // end foreach sub ‐subfunct ions

} // end foreach subfunctions

echo "</td></tr></table></td>

</tr>

<tr>

 <td al ign='center '>Subfunctions</td>";

i f ($numsubsubfunct ions > 0) { // I f at least one sub ‐subfunct ion present , display heading

 echo "<td al ign='center '>Sub ‐subfunct ions</td>";

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 A

pp
en

di
x

A
 –

 S
ou

rc
e

Co
de

s

119

}

echo "</tr>

<tr>

<td>";

/* Subfunct ion function tables */

foreach($subfunct ions as $subfunction){

/* Col lect inputs and outputs */

$subfunctionname = $subfunct ion ‐>getElementsByTagName('name') ‐>item(0) ‐>nodeValue;

$subparentname = $subfunction ‐>getElementsByTagName('parent ‐ function')‐>item(0) ‐>nodeValue;

$subinputquery = ' //transaction[customer/name="' . $subfunct ionname.'"] ' ; // Find al l transactions that have this

subfunction as customer

$suboutputquery = ' //transaction[suppl ier/name="' . $subfunctionname.'"] ' ; // Find al l transactions that have this

subfunction as suppl ier

$subinputs = $xpath ‐>query($subinputquery); // All subfunction inputs

$suboutputs = $xpath ‐>query($suboutputquery) ; // Al l subfunct ion outputs

$subsubinputquery = ' //subsubfunct ion[parent ‐ function="' . $subfunct ionname. '"] ' ; // Find subfunct ions for this

subfunction

/* Funct ion table */

echo "<table class=' funct ion'>

<th colspan='2' class='t i t le '>Part of " . $subparentname . ":
" .

$subfunctionname . "</th>

<tr>

 <td class=' inout'>IN</td>

 <td class=' inout'>OUT</td>

</tr>

<tr>

 <td class=' inputs'>";

 i f ($subinputs ‐>length < 1) {

 echo "No inputs defined yet";

 }

 /* Find al l inputs for this function */

 else {

 foreach($subinputs as $subinput) {

 echo "<div class=' item'>

 <i>From: </i>". $subinput ‐

>getElementsByTagName('suppl ier ')‐>item(0)‐>getElementsByTagName('name') ‐>item(0) ‐>nodeValue . "

 " . $subinput ‐>getElementsByTagName('name')‐>item(0) ‐

>nodeValue . "

 </div>

";

 } // end foreach

 } // end else

 /* Start f inding inputs from subfunct ions */

 $subsubs = $xpath ‐>query($subsubinputquery) ;

 foreach($subsubs as $subsub) {

 $subsubname = $subsub ‐>getElementsByTagName('name') ‐>item(0) ‐>nodeValue; // Get the

name of the subfunct ion

 $subsubtransactionsinxpath = ' //transact ion[customer/name="' . $subsubname . ' "] ' ;

 $subsubtransxpin = $xpath ‐>query($subsubtransactionsinxpath);

 i f ($subsubtransxpin ‐>length > 0) { // I f there are indeed inputs from subs

 echo "" . $subsubname . ":";

 foreach ($subsubtransxpin as $subsubtransin) {

 $subinputsupp = $subsubtransin ‐>getElementsByTagName('suppl ier ') ‐>item(0)‐

>getElementsByTagName('name') ‐>item(0) ‐>nodeValue;

 i f (empty($subinputsupp)) {

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 A

pp
en

di
x

A
 –

 S
ou

rc
e

Co
de

s

120

 echo "<div class=' i tem'>Loose end:
" . $subsubtransin ‐

>getElementsByTagName('name') ‐>item(0) ‐>nodeValue . "</div>";

 }

 else {

 echo "<div class=' i tem'><i>From: </i>". $subsubtransin ‐

>getElementsByTagName('suppl ier ')‐>item(0)‐>getElementsByTagName('name') ‐>item(0) ‐>nodeValue .

"
"; echo "" . $subsubtransin‐>getElementsByTagName('name')‐>item(0) ‐

>nodeValue . "</div>";

 } } } }

echo"</td>

<td class='outputs '>" ;

 i f ($suboutputs‐>length < 1) {echo "No outputs defined yet"; }

 /* Find al l outputs for this funct ion */

 else {

 foreach($suboutputs as $suboutput) {

 echo "<div class=' item'>

 <i>To: </i>". $suboutput ‐>getElementsByTagName('customer') ‐

>item(0) ‐>getElementsByTagName('name') ‐>item(0) ‐>nodeValue . "

 " . $suboutput ‐>getElementsByTagName('name')‐>item(0) ‐

>nodeValue . "</div>

";

 } // end foreach

 } // end else

 /* Start f inding outputs from subfunct ions */

 $subsubs = $xpath ‐>query($subsubinputquery) ;

 foreach($subsubs as $subsub) {

 $subsubname = $subsub ‐>getElementsByTagName('name') ‐>item(0) ‐>nodeValue; // Get the

name of the subfunct ion

 $subsubtransactionsoutxpath = ' //transaction[suppl ier/name="' . $subsubname . ' "] ' ;

 $subsubtransxpout = $xpath ‐>query($subsubtransact ionsoutxpath);

 i f ($subsubtransxpout ‐>length > 0) { // I f there are indeed inputs from subs

 echo "" . $subsubname . ":";

 foreach ($subsubtransxpout as $subsubtransout) {

 $suboutputcust = $subsubtransout ‐>getElementsByTagName('customer')‐

>item(0) ‐>getElementsByTagName('name') ‐>item(0) ‐>nodeValue;

 i f (empty($suboutputcust)) {

 echo "<div class=' item'>Loose

end:
" . $subsubtransout ‐>getElementsByTagName('name') ‐>item(0) ‐>nodeValue . "</div>";

 }

 else {

 echo "<div class=' item'><i>To: </i>".

$subsubtransout ‐>getElementsByTagName('customer') ‐>item(0) ‐>getElementsByTagName('name') ‐>item(0)‐

>nodeValue . "
";

 echo "" . $subsubtransout ‐

>getElementsByTagName('name') ‐>item(0) ‐>nodeValue . "</div>";

 }

 }

 }

 }

echo"</td></tr></table>";

} // end foreach

/* Sub ‐subfunct ion funct ion tables */

i f ($numsubsubfunct ions > 0) {

 echo "</td><td>";

 foreach($subsubfunct ions as $subsubfunction){

 /* Col lect inputs and outputs */

 $subsubfunct ionname = $subsubfunct ion ‐>getElementsByTagName('name')‐>item(0)‐>nodeValue;

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 A

pp
en

di
x

A
 –

 S
ou

rc
e

Co
de

s

121

 $subsubparentname = $subsubfunction ‐>getElementsByTagName('parent ‐ function') ‐>item(0) ‐

>nodeValue;

 $subsubinputquery = ' //transact ion[customer/name="' . $subsubfunctionname.'"] ' ; // Find al l

transact ions that have this subsubfunct ion as customer

 $subsuboutputquery = ' //transact ion[suppl ier/name="' . $subsubfunctionname.'"] ' ; // Find al l

transact ions that have this subsubfunct ion as supplier

 $subsubinputs = $xpath ‐>query($subsubinputquery); // All subsubfunct ion inputs

 $subsuboutputs = $xpath ‐>query($subsuboutputquery) ; // Al l subsubfunction outputs

 /* Funct ion table */

 echo "<table class=' funct ion'>

 <th colspan='2' class='t i t le '>Part of " . $subsubparentname . ":
"

. $subsubfunct ionname . "</th>

 <tr>

 <td class=' inout'>IN</td>

 <td class=' inout'>OUT</td>

 </tr>

 <tr>

 <td class=' inputs '>";

 i f ($subsubinputs ‐>length < 1) {echo "No inputs defined yet"; }

 /* Find al l inputs for this funct ion */

 else {

 foreach($subsubinputs as $subsubinput) {

 echo "<div class=' item'>";

 $subsubinputsupp = $subsubinput ‐>getElementsByTagName('suppl ier ')‐

>item(0) ‐>getElementsByTagName('name') ‐>item(0) ‐>nodeValue;

 i f (empty($subsubinputsupp)) { // Loose end

 echo "Loose end:
" .

$subsubinput ‐>getElementsByTagName('name') ‐>item(0) ‐>nodeValue . "";

 }

 else {

 echo "

 <i>From: </i>". $subsubinputsupp . "

 " . $subsubinput ‐>getElementsByTagName('name') ‐

>item(0) ‐>nodeValue . "

 </div>";

 }

 } // end foreach

 } // end else

echo"</td>

<td class='outputs '>" ;

i f ($subsuboutputs ‐>length < 1) {echo "No outputs defined yet";}

/* Find al l outputs for this funct ion */

else {

 foreach($subsuboutputs as $subsuboutput) {

 echo "<div class=' i tem'>";

 $subsuboutputcust = $subsuboutput ‐>getElementsByTagName('customer')‐>item(0) ‐

>getElementsByTagName('name') ‐>item(0) ‐>nodeValue;

 i f (empty($subsuboutputcust)) { // Loose end

 echo "Loose end:
" . $subsuboutput ‐

>getElementsByTagName('name') ‐>item(0) ‐>nodeValue . "";

 }

 else {

 echo "<i>To: </i>". $subsuboutputcust . "

 " . $subsuboutput ‐>getElementsByTagName('name') ‐>item(0) ‐>nodeValue .

"

 </div>";

 }

 } // end foreach

} // end else

A
n

Ite
ra

tiv
e

Sp
ec

ifi
ca

tio
n

G
am

e:
 A

pp
en

di
x

A
 –

 S
ou

rc
e

Co
de

s

122

 echo"</td>

 </tr>

 </table>";

 } // end foreach

 }

 echo "</td></tr></table>

 </div>"; // closing DIV funct ions

 } // closing else?>

 </div>

 </div>

 </div>

 <?php include("todol ist.php")?>

 <div class="clear f loat"></div>

 </div>

 </body>

</html>

