

MASTER’S THESIS INFORMATION SCIENCE

BY

ROGER USMANY

CONCEPTUAL MODELING
FOR BUSINESS PROCESS SEMANTICS

RADBOUD UNIVERSITY NIJMEGEN
FACULTY OF SCIENCE

INSTITUTE OF COMPUTING AND INFORMATION SCIENCES

July 13th, 2012

SUPERVISOR:
PROF. DR. IR. T.P. (THEO) VAN DER WEIDE, RADBOUD UNIVERSITY
REFERENT:
DR. P. (PATRICK) VAN BOMMEL, RADBOUD UNIVERSITY

THESIS NUMBER: 125 IK

i

Abstract

Nowadays in an ever changing world, enterprises transform themselves in
order to increase their flexibility, effectiveness and efficiency. Enterprise
transformation is a model-intensive activity. Such transformation involves
models in different roles with regard to the value chain of modeling
activities. When taking the return on modeling effort (ROME) perspective,
enterprises are able to achieve their expected returns. As there exist various
different modeling languages, they focus on a specific architectural domain
with their own characteristics concepts for expressing it. One such language
that integrates these architectural domains is ArchiMate that emphasizes the
enterprise architecture. In contrast to Business Process Modeling Notation
(BPMN) that is specifically designed and used for process modeling. The
master thesis examines the architecture underlying these two modeling
languages in which the business process aspect is translated into Petri Nets
for analyzing the semantic of processes.

ii

Acknowledgements

I want to thank my supervisor Prof. Dr. Ir. T.P van der Weide for supporting
me during my research. He provided me with feedback to govern and to
assess the progress of my thesis research. At times when I was struggling to
find my way in the research, he gave me back incentives which I appreciate
enormously. The distant supervision with timely discussions gave me also
the freedom to explore new and creative ideas, which made my period as a
student very pleasant. These all were supported by intensive discussions
about IT related subjects, which eventually results in the architecture of
modeling languages and their semantics.

Roger Usmany
July 13th, 2012

iii

Contents

Introduction ..1

1.1 Research Questions ..3
1.2 Relevance ..4
1.3 Research Approach ..5
1.4 Related Work ..6

Literature study ..9
2.1 Relating ArchiMate and BPMN ..9

2.1.1 Enterprise Architecture .. 10
2.1.2 Business Processes Modeling .. 10

2.2 Design Principals of Modeling Languages ... 11
2.2.1 Simplicity .. 11
2.2.2 Uniqueness ... 11
2.2.3 Consistency ... 11
2.2.4 Seamlessness ... 12
2.2.5 Reversibility .. 12
2.2.6 Scalability .. 13
2.2.7 Supportability ... 13
2.2.8 Reliability .. 14
2.2.9 Space economy ... 14
2.2.10 Underlying modeling principals of ArchiMate and BPMN 15

Modelling languages: architecture of ArchiMate, BPMN & Petri Nets 18
3.1 The ArchiMate Modeling Language ... 19

3.1.1 A Language for Modeling the Enterprise Architecture 20
3.1.2 Describing Coherence .. 20
3.1.3 Service Orientation and Layering ... 21
3.1.4 Dimensions of modeling .. 21
3.1.5 The Business Layer ... 24
3.1.6 The Application Layer ... 31
3.1.7 The Technology Layer.. 34
3.1.8 Relations.. 37
3.1.9 Language Extension Mechanisms ... 38
3.1.10 Summary of the ArchiMate Architecture 39

3.2 The Business Process Modeling Notation Language 41
3.2.1 A Language for Modeling the Business Architecture 41
3.2.2 Business Process Definition Metamodel ... 42
3.2.3 Business Process Modeling .. 43
3.2.4 Business Process Modeling Notation (BPMN) concepts 43
3.2.5 Execution Languages (WS-BPEL, XPDL) .. 54
3.2.6 Summary of the BPMN Architecture .. 56

3.3 The Petri Net Language ... 58

iv

3.3.1 Petri Nets .. 58
3.3.2 High-Level Petri Net Graph (HLPNG) Concepts 59
3.3.3 High-Level Petri Net Graph (HLPNG) Syntax 62
3.3.4 High-Level Petri Net Graphs Examples.. 63
3.3.5 Petri Net Markup Language (PNML) for Petri Nets 69
3.3.6 Summary of the Petri Net Architecture .. 71

Concept Modeling .. 73
4.1 Abstract syntax of BPMN and ArchiMate .. 75

4.1.1. Abstract syntax of BPMN ... 75
4.1.2. Abstract syntax of ArchiMate ... 78

4.2 Mapping to Petri Nets (Directly) ... 81
4.2.1 BPMN 83 .. ܤߨ
4.2.2 ArchiMate 88 ..ܣߨ

4.3 Translating BPMN and ArchiMate (Indirectly) 93
4.3.1 BPMN to ArchiMate 	߬ܤ, 93 ... (ܤ)ܣ
4.3.2 ArchiMate to BPMN ߬101 ... ܣܤ,ܣ

4.4 Comparing Concepts via Operational Semantics 111
4.4.1 A Concept from ArchiMate to BPMN ... 111
4.4.2 Some Concepts from BPMN to ArchiMate 114

4.5 Expressiveness .. 115
4.5.1 Frameworks (AM – BPMN) ... 115
4.5.2 Business Processes .. 116

Discussions ... 120
Conclusions... 122
References ... 125
Glossary .. 130
Appendix A. ArchiMate Metamodel .. 136
Appendix B. ArchiMate Graphical Notation .. 137
Appendix C. ArchiMate Relations .. 138
Appendix D. BPMN Metamodel ... 139
Appendix E. BPMN Graphical Notation .. 140
Appendix F. Petri Net Metamodel .. 141
Appendix G. Petri Nets Graphical Notation .. 142

Pagina 1 van 148

Chapter 1

Introduction

Many companies are using various domain architectures such as
organization, products, business process, application, information, and
technical architectures. In each of these architectural domains, specific
concepts are defined, which model and visualize their internal coherence.
These specific models and visualizations simplify communication, discussion
and analysis within the domain.

In transformation processes a lot of models are produced in several stages,
while each individual model deals with the same domain. It takes a lot of
time and money to produce models during one stage of the transformation
processes. Increasing coherence between models would, for example, enable
the re-use of investments made in models earlier on in a transformation
processes.

It is often the case that models have to be re-drawn or even re-modelled from
one stage of the transformation process, such as an ArchiMate model, to
some other languages at a later stage of the transformation process e.g.
BPMN. This leads to unfavourable situations such as enormous costs and
delays. An alternative to this problem is to create a coherent modeling
landscape, which underlines the integration of modeling concepts at
different levels. This prevents unnecessary delays and costs during
transformation processes.

Two aspects are considered valuable when mapping from an ArchiMate
model to a BPMN model:

1. Integration of both the ArchiMate and the BPMN metamodel which
make such transformations much easier. A BPMN model provides a
more detailed view on business processes, whereas an ArchiMate
model provides a global view on the enterprise’s activities of the
enterprise architecture. It might be useful to consider the BPMN
metamodel as a specialisation of (relevant parts of) the ArchiMate
model.

Pagina 2 van 148

2. Standardising the needed transformations between, for example, an
ArchiMate model towards/backwards a BPMN model. This can
become a part of the body of standards and increases the portability
of these transformations between different modeling tools.

Unfortunately, creating one integrated modeling language would not be
effective at all, due to the fact that at different stages of the enterprise’s
transformation different sets of modeling concepts are needed. Therefore, it
is much better to use the more specific modeling languages with their own
characteristic features. ArchiMate can be used [Jonk 11] to elaborate the
enterprise architecture towards IT support for the enterprise’s activities,
while BPMN can be used to refine things even further to the level of specific
applications and business processes. In spite of this, it is possible to have
coherence between these different models used by distinctive modeling
languages.

As a consequence, it is unclear how concepts used in various modeling
languages are interrelated. It is quite difficult to interrelate the different
architectural domains (see Fig. 1.1), although there exists some
interdependencies [Tuli 09]. Moreover, it is unclear whether the views are
compatible with each other. This means that the relationship between the
concepts in these different architectural domains is in many cases unclear
[Land 09]. As a matter of fact, these domains often partially overlap, but use
different notions to express the same ideas. In some cases people who are
involved in this, do not even know resulting in ambiguity. This might have
consequences for the flexibly and efficiently operating organizations.

Fig. 1.1. Heterogeneity of architectural domains.

Pagina 3 van 148

In order to see the coherence of metamodels of the distinctive modeling
languages as well as the produced models, these models need to be
interrelated [Lind 11]. This can be achieved by applying a disciplined naming
convention for the concepts used in modeling languages. A way to realise
this is to use persistent naming of concepts (e.g. actors, processes, functions)
across the different models. This requires a relationship by matching the
concepts according to the metamodels. In addition to this, the use of a
domain model of different domain concepts, and consequent use of the
concepts, could provide advantages to modellers to create more specific
models which arise from the fact that they can start from a thorough
understanding of the domain.

1.1 Research Questions
To cope with the previous mentioned issues, this master thesis examines the
underlying architecture of the language ArchiMate and Business Process
Modeling Notation (BPMN). These modeling languages have their own
characteristic concepts for describing their architectural domain(s) [Hopp 05].

The following concept modeling approach can be simply graphically
represented as:

ArchiMate Concepts BPMN Concepts

ArchiMate Model BPMN Model

Petri Nets Petri Nets

Semantically
identical?

Pagina 4 van 148

When models need to be transformed or translated into similar models in a
different modeling language at some stage, the following research question
arises, with respect to business domains, and is formulated as:

‘To what extent do the semantics of business process models, arising from
the ArchiMate language, correspond to similar business process models
originating from Business Process Modeling Notation (BPMN), using their
own typical framework underlying its architecture?’

The research question can be divided into two subquestions, leading to the
following questions:

 ‘To what extent does the architecture of the ArchiMate modeling
language and the Business Process Modeling Notation (BPMN)
language relate to each other with respect to its internal structure
and underlying principles?’

 ‘To what extent does it seem to be possible to perform a mapping of
architectural concepts among ArchiMate and BPMN mutually, with
respect to semantics of business concepts?’

1.2 Relevance

It is often the case that model transformations, i.e. mapping architectural
domain concepts to a similar model with preservation of the semantic model,
cannot be completed, as relating architectures [Odeh 03] have to deal with
implicitness.

In line with this, it means that each of the architectural domains is developed
by distinct stakeholders with their own concerns. Therefore it is preferable to
have views which are in some sense consistent with each other [Land 09]. An
architectural language is not only needed for the description of integrated
architectures, but also as a prerequisite for linking the different tools used in
the various architectural domains [Lank 09b].

On the other hand, the more concepts are used in a modeling language, the
more ways a situation can be expressed [Prop 05]. As ArchiMate is designed
to be simple in learning and use, it has been limited to the concepts that
suffice in the most modeling practical cases.

Pagina 5 van 148

1.3 Research Approach

In order to gain more insight and to provide more in depth-knowledge, this
master thesis will concentrate on how to deal with the complexity of
architectures with respect to concept mapping of enterprise architecture
concepts (ArchiMate) and project level (i.e. detailed specific) concepts
(BPMN).

The hierarchy started from a set of relatively generic concepts (higher up in
the pyramid). These were then specialized towards application at different
architectural layers, as explained below.

Fig. 1.3. Hierarchy of concepts at different levels of specialisation.

The concept hierarchy (see Fig. 1.3) describes at each level the core concepts,
from generic concepts at the top to specific concepts at the bottom of the
triangle. Concepts at the top of the triangle comprise ‘concepts’ and
‘relations’ in the domain modeling. Then the more specific concepts can be
found at the level of the dynamic systems.

At the second layer, dynamic systems [Tuli 09] encompasses the ‘passive’,
‘behaviour’ and ‘active’ concepts, which inherit the characteristics of the
layer above. Further down below, enterprise architecture concepts are
expressed in terms of ‘services’, ‘roles’, ‘interfaces’, ‘objects’, ‘actors’ and
‘contracts’.

At the base of the triangle the metamodels of the project level modeling
concepts are used by specific organizations such as BPMN. A variety of
existing modeling languages and standards can be found here as well.
The ArchiMate concept is found between the two extremes, the ‘project level’
layer and the ‘domain model’, namely the ‘dynamic system’ and ‘enterprise
architecture’. ArchiMate is designed in such a way that it is easy to use and
to learn.

Pagina 6 van 148

Arising from the relationship between enterprise architecture and project
level concepts, the master thesis focusses on the semantics of concepts with
respect to business processes that cover both modeling languages.

Underlying architecture of ArchiMate, BPMN and Petri Net
In order to provide a thorough understanding of the architectures of the
ArchiMate, BPMN and Petri Net language, it is required to look at their
metamodel and their internal structure. This runs parallel with the relevant
concepts in Business Process Modeling Notation (BPMN). There are several
different modeling languages ranging from architecture models to specific
designs. To start, BPMN can serve as an example.
As ORM [Halp 96], [Halp 98],[Over 07],[Tuli 09] can be used for modeling, as
it provides a comprehensive view of the domain. It is also well suited for the
representation of metamodel due to precise modeling and elaborated
verbalisations.

Mapping business concepts directly and indirectly to Petri Net
The mapping from an ArchiMate/BPMN concept to Petri Nets requires a
well-formed definition that describes the semantics of concepts. Therefore, in
such situations transformation [Soar 08] might be suitable and needed to
establish a connection among ArchiMate and BPMN business concepts. The
mapping of concepts can be done at both sides, namely from ArchiMate to
BPMN and conversely from a BPMN concept towards an ArchiMate concept,
in order to map these concepts properly and mutually to Petri Nets. The
connectedness will not always be strictly done in terms of transformations, as
sometimes the bridge is a bit loose. This bridging can be expressed in terms
of textual/graphical expressions. Supplementary a glossary is listed, which
describes the semantics of the core concepts used within the architecture of
the modeling languages.

1.4 Related Work

In the past years there have been several researches in model transformations
and providing formal semantics [Dijk 08] for specific architectural domains.
Enterprise architecture provides concepts and techniques to support
enterprise architects in the visualization, communication and analysis of
integrated architectures [John 07]. Several researches have already shown the
importance of models which have a strong connection to enterprise
transformations.

Information System Engineering
As many enterprises want to aim for new challenges, they are enforced due
to future changes to develop enterprise systems which are flexible and

Pagina 7 van 148

integratable i.e. system integration, in such a way to create a coherent
landscape of enterprise systems. Therefore a method with a Meta Model
integration technology has been introduced [Wang 05] to integrate several
different enterprise systems such as Electronic commerce (EC) and enterprise
resource planning (ERP).

Enterprise Engineering
Enterprises are constantly changing due to the dynamic nature of the
environment in which they are operating. Enterprise (re-)engineering is
brought to understand and optimize the enterprise operations. [Kosa 07]
discusses enterprise engineering as an enterprise life-cycle oriented
discipline for identification, design, and implementation of enterprises and
their continuous evolution. Enterprise modeling will play an important role
in creating the knowledge base and in using it for enterprise integration and
operational decision support.

Model transformations
Transformations of models [Wier 04],[Soar 08],are in some cases essential to
provide insight by deriving views from models. It is often the case that a
model has to be redrawn or transformed to a similar model conforming to a
given metamodel. Models mostly are not kept up-to-date which is an
enormous waste of engineering effort. Therefore all relevant stakeholders
(technical, business, operational) need to be involved in modeling tasks to
take advantage of the modeling efforts.

Model Driven Architecture (MDA)
Model driven architecture is a new way to develop applications and writing
applications. Due to the increasing complexity of enterprise computing
systems, a model driven Web service development framework is presented
to combat challenges in system development, integration, and maintenance
[Yu 07].

Modeling linguistically
There exists a lot of variety in modeling techniques such as ORM, UML,
BPMN, DEMO E3Value etc. Each language has their characteristic concepts,
ontologies, terminologies that are related to a typical metamodel for
describing the architecture of different domains e.g. business processes,
applications or technical infrastructures. The paper [Hopp 04] stated that
some specific languages, for instance ORM, are well suited for modeling
complex business domains. Domain modeling is intended to support
consensus and to achieve conceptual clarity among stakeholders involved in
software development projects.

Pagina 8 van 148

Pagina 9 van 148

Chapter 2

Literature study

With literature study one can obtain the knowledge to deal with the
comparison of two various modeling techniques. This chapter describes the
relationship between the architecture of the ArchiMate and the BPMN
language, including the key design principals and properties of these
languages. Furthermore existing modeling methods are discussed to clarify
the comparison of these two modeling languages.

2.1 Relating ArchiMate and BPMN
To understand the relationship between ArchiMate and BPMN, we first
clarify the key designs of ArchiMate and BPMN separately.

Fig. 2.1. Relationship between architectural domains.

ArchiMate provides a means for integration, by allowing the creation of
models that show high-level structures within domains and the relationship
between domains. Based on the work of [Jonk 03],[Buur 04] it is clear that
there is a strong need for an integrated architecture language which focuses
on concepts of modeling the relationships between architectural domains
(see Fig. 2.1). The design of the ArchiMate language encompasses concepts
that make it possible to inter-relate models used in other languages.

Pagina 10 van 148

2.1.1 Enterprise Architecture
ArchiMate is a standard for modeling enterprise architectures. Modeling
tools based on enterprise architecture merely focus on interdomain relations.
Thereby domain interdependencies exist, which have to be drawn and which
are needed to align designs in the different domains. When taking this
perspective into account using an enterprise architecture language, it makes
it possible to:

1) model any global structure within each domain, showing the main
elements and their dependencies, in a way that is easy to understand
for non-experts of the domain and consequently,

2) model the relevant relations between the domains. Another important

property of an enterprise modeling language is a formal foundation.

This means that models can be interpreted in an unambiguous way, and that
they are suitable to automated analysis [Boer 05]. The concepts of this
language are sufficiently generic and expressive to model many of the
aspects within specific domains. Although, it is clearly not the intention to
introduce a language that can replace all the domain-specific languages that
nowadays exist. For specific (detailed) designs of, for example, business
processes or applications of the existing languages, these are likely to be
more suitable. However, it is remarkable that ArchiMate fits itself as much
possible into the modeling standards that exist in the different domains.

2.1.2 Business Processes Modeling
The Business Process Modeling Notation (BPMN) is a standard part of the
Object Management Group (OMG). The main purpose of BPMN is to provide
a uniform notation for modeling business processes in terms of their
activities and relationships. BPMN itself only defines a concrete syntax, i.e., a
uniform (graphical) notation for business process modeling concepts.
However, there is a formal mapping to the XML-based business process
execution language WSBPEL. It serves as a common basis for a variety of
business process modeling and execution languages. BPMN is restricted to
the process modeling, which means that when modeling applications or
infrastructure, the language is not suitable since these domains are not
covered by the language. Chapter 3, in Sect. 3.2, describes BPMN in more
detail for a wide comprehensive understanding of its design features.

Pagina 11 van 148

2.2 Design Principals of Modeling Languages
When we compare two or more related modeling methods or techniques, it is
convenient to look at earlier comparisons and discuss them. A better
understanding can be done in a more appropriate way, when selecting
relevant parts of the modeling languages. A number of principles need to be
taken that are of important value [Paig 00], when designing modeling
languages and are applicable to new and for improving existing modeling
languages. Recent work shows an approach and accompanying process for
the development and use of architecture principles [Gree 11]. Underlying
these principles, modeling languages need to be practical, usable, accepted
and of lasting value. The key design principals are elaborated in this section.

2.2.1 Simplicity
Starting with the first principle, simplicity keeps the language simple and
more suitable in use. When designing a modeling language this should be
taken into account. If a modeling language is simple, then it will be small,
much easier to remember the operations to accomplish a task (memorable),
and it can be learned in its entirety by its users (simple). It is easier to aim for
simplicity of a modeling language than it is to aim for a language that satisfies
the goal of modularity (i.e. applying languages by understanding only a
subset of it), because it is more difficult to achieve modularity. One of the key
design principles of ArchiMate is the fact that the language should be as
compact as possible, but still suitable for the most modeling tasks [Lank 09a].

2.2.2 Uniqueness
The principle of uniqueness, also called as orthogonality, can be expressed
easily. A language that holds the principle of uniqueness provides one good
way to express every concept of interest, and it avoids providing more than
one. Modeling languages need to kept concepts as small as possible due to
the fact of avoiding duplication of features. Consequently, the language will
be more explainable. A feature should be included in a modeling language if
it is necessary for modeling a required concept and if there is no way of
modeling it using current features. The intent with uniqueness is to have
languages defined by a small number of powerful features that may be useful
in more than one context. By keeping the number of features small, it is
easier to understand the consequences of using the features together. The
formal modeling language Petri Net, which is described in more detail in
Sect. 3.3, fulfills the property of uniqueness.

2.2.3 Consistency
[Meye 92] clarifies the consistency principle. Consistency means that there is
a purpose to the design of the language. All features that are included or are

Pagina 12 van 148

to be added to the language must contribute to this purpose. Any feature that
does not support the purpose must be discarded. ArchiMate is an obvious
example that shows the principle of consistency. Its purpose is to support
seamless and reversible development. Any other feature which is not in line
with seamless and reversible development should be discarded.
Unfortunately there are some languages in which the consistency principle is
not clear (yet). This lies in the fact that there are no precise design goals.
Consistency of language should not be confused with consistency of the
models produced using the language. Implementation of these models needs
to be checked for consistency and to automate this process is questionable.
For that reason, it is difficult to check on consistency of models due to
ambiguity of the constructed models with many different relationships and
abstractions.

2.2.4 Seamlessness
The seamlessness principle contributes to being able to generate codes from
models, and also is a significant contribution towards producing
maintainable software. Seamlessness allows the mapping of abstractions in
the problem space to be implemented in the solution space without changing
notation, thus avoiding the impedance mismatches that often arise
throughout the development process. In all stages of the software lifecycle,
developers work with the same kind of abstraction, e.g. classes, processes,
etc. At the end of development, a tool - typically a compiler - will have to
render some executable code from the design. Modeling languages for OO
development are well-suited to satisfy this principle. As described earlier,
BPMN supports the principle of seamlessness, mentioned as seamless
development. Different views of the models may automatically be generated.
This model contains an implementation of other pieces of information. So,
seamlessness is guaranteed. A contrasting language and method that
supports seamlessness is the formal language Petri Net, where abstract
machines are used throughout development until codes are generated
automatically by a specialized tool.

2.2.5 Reversibility
The principle of reversibility contributes to the production of a maintainable
software, and to producing better documentation for software systems. The
principle of reversibility requires that changes made during one stage of the
development lifecycle can be automatically reflected back to earlier stages.
To clearly explain this design characteristic, reversibility means that a
modification made to an implementation class written, e.g. JAVA can be
reflected in diagrammatic models written in e.g. UML. So, this captures the
notion of feeding back to the design level pragmatic constraints from the
implementation. Reversibility, combined with seamlessness, allows

Pagina 13 van 148

programs and models to be kept in sync, and thus helps to create and
maintain system documentation. Changes made to models can be reflected in
code; and the other way around, changes made to the code can automatically
be reflected in changed models. This is exactly what is required in the
maintenance process, as well as to further future maintenance. The rationale
for this is that models will be kept up to date with the code; otherwise the
code will be maintained and the documentation provided by the models will
be of less use without reversibility. A requirement for reversibility is that it
can be supported by tools. BPMN (WS-BPEL) based tools support this
principle that also generates code for particular programming languages
(XML). The primary focus of these tools and languages is to support
production of architectural descriptions from programs. With formal
modeling languages generally, it is difficult to support reversibility, as this
would require automatic production of formal specifications from programs.
Several reasons can be given to the above-mentioned complexity: a program
may deal with many different formal specifications or elements of a specific
type from a program cannot be mapped or transformed to concepts available
in a specification language, for example.

2.2.6 Scalability
Scalability focuses on the extent to which the modeling language can be used
for a wide range of systems. Ideally a modeling language should be used for
both simple, small systems as well as advanced, large systems. This means,
that the modeling language can be used for relatively simple modeling
systems with a few components and interrelations, but also for modeling
systems with large numbers of components and interrelations. Therefore,
modeling languages must meet certain requirements to deal with scalability.
First of all, they must provide a concise mechanism for describing the
fundamental abstractions for their problem domain. Besides, the modeling
language must also cope with several levels of abstractions to hide the
details. Eventually the language must also provide a grouping mechanism that
allows the modeler to collect abstractions, name them, and hide their details.
Formal methods of formal modeling languages like Petri Net can cope with
large problems due to scalability. BPMN provides a structuring mechanism
by having the ability to hide details related to abstractions.

2.2.7 Supportability
The principle of supportability states that a modeling language should be
designed to be implementable by humans and supportable by software tools.
Modeling languages are designed to provide the modeler a set of modeling
concepts in order to produce models (for a specific domain) graphically. A
quick way to draw models is done by the modeler himself using a pencil and
paper or a classical whiteboard. Sometimes it can be useful to use software

Pagina 14 van 148

tools to support or help the modeler in his work in producing correct models,
in generating programs from models and in producing models from code i.e.
for reverse engineering purposes. It is inevitable that large software systems
need software tool support, because they can provide help in drawing,
managing, and maintaining models during the several stages in the
modeling process. This places restrictions on the notation syntax (i.e. it
should also be easy to draw and display on a computer screen, it should be
concise) and the semantics (i.e. it should be defined in such a way that it can
be (semi-)automatically translated into code, and possibly the other way
around in terms of reverse engineering, although to do this appropriately it
requires in certain cases human adjustment. With formal modeling
languages like Petri Net, it has been designed with tool support in mind.
Arising from this, the modeling language ArchiMate has aimed to provide a
foundation for visualization and analysis techniques.

2.2.8 Reliability
The goal of software development is to produce quality software. There are
many definitions to what is meant by quality, but a common factor is that
quality software is reliable. This firstly means that reliable software meets
their specifications e.g. via formal analysis or traceability combined with
testing; and secondly reliable software reacts appropriately in case the user
is given unexpected or erroneous input e.g. via design-by-contract
mechanisms, or by use of error and exception handling. Reliable software is
therewith robust. Modeling languages should provide support for ensuring
that the models being produced are consistent as discussed in section 2.2.3 to
eliminate the ambiguity. Methods for producing software must emphasize
quality. Therefore it is important that modeling languages support the
production of reliable programs. In the past, few improvements have been
made on developing correct software in part by adding formal semantics to
ensure reliability.

2.2.9 Space economy
The final principle, space economy, is quite simple. Space economy states
that models should be as concise as possible to limit the space on the printed
page. This has to do with the understandability of the language; smaller
models have less to understand. In addition to these, the maintainability of
the models performed by modelers and tools require less work. This
principle has no delineation as long as space economy preserves its
simplicity and understandability of the language as well.

Pagina 15 van 148

2.2.10 Underlying modeling principals of ArchiMate and BPMN
From the modeling perspective, some principals reflect both the architecture
of ArchiMate and BPMN language that were a primary source for the design
of the language.

Concept Coverage - Scalability
Several domains for grouping concepts have been identified, such as
product, process, organization, information, application, and technology
(infrastructure, system development, and maintenance). The concepts in the
ArchiMate language must cover the concepts in these domains [Lank 05],
while the BPMN language covers only the process aspect.

Enterprise level and project level concepts – Simplicity
At an enterprise level, it is important to be able to represent the core elements
from the different domains such as product, process, et cetera, as well as the
coherence between these aspects. In enterprise architecture models, coherence
and overview are more important than specificity and detail. This also implies
the need for more coarse grained modeling concepts. At a project level, it is
important to represents the core elements from a specific domain (in this case
business processes). Thus, specificity and detail are more of importance in
business architecture models.

Concept mapping – Supportability
ArchiMate is intended to connect heterogeneous architectural domains such
as processes (i.e. the fine-grained business concepts in BPMN) and
applications (i.e. the fine-grained application concepts in UML), rather than
replacing them. Organizations or individual architects must be able to keep
using their own concepts and descriptions in development projects. This
requires a mapping from the coarse grained concepts in ArchiMate to the
fine-grained concepts used in languages at project level.

Unambiguous definitions of concepts - Uniqueness, Consistency
The meaning and definition of the modeling concepts offered by the
language is unambiguous. Each concept of both ArchiMate and BPMN
visualization techniques is required to be unambiguous with respect to
informal description, specialization, notation, properties, structuring, rules
and restrictions and guidelines for use.

Structuring mechanisms - Scalability, Space economy
ArchiMate supports the use of composition / decomposition, generalization /
specialization, and aggregation of concepts. BPMN supports a structuring
mechanism in terms of grouping concepts based on common properties by
means of grouping relation, pools and lanes.

Pagina 16 van 148

Abstraction - Consistency
ArchiMate models the relations at different abstraction levels, which is one of
the key designs by means of formulating relations between concepts, groups
of concepts or different architectural domains. BPMN abstract only the
process domain.

Analysis of architectural properties - Seamlessness
ArchiMate is designed with the principle that it offers the possibility to
perform qualitative and quantitative analysis [Lank 09b] of properties of
architectures.

Impact of change analysis - Supportability, Reliability
Impact of change analysis must be supported. In general, such an analysis
describes or identifies effects that a certain change has on the architecture or
on characteristics of the architecture.

Executable environment - Seamlessness
The underlying executable mechanism of BPMN, which one part is WS-
BPEL, generates code that is applicable for execution of business processes.

The principles can be summarized in table 2.1 thus:

Table 2.1. Modeling design principles
Principles Description
Simplicity No unnecessary complexity is included in the

language.
Uniqueness There are no redundant or overlapping features.
Consistency Language features cooperate to meet language

design goals.
Seamlessness The same abstractions can be used throughout

development.
Reversibility Implementation changes can be propagated into

the model.
Scalability Large and small systems can be modeled.
Supportability The language is usable by humans, and

supportable by tools.
Reliability The language encourages the production of

reliable software.
Space economy Concise models are produced.

Pagina 17 van 148

Pagina 18 van 148

Chapter 3

Modelling languages:
architecture of ArchiMate,
BPMN & Petri Nets

This chapter describes the underlying architecture of the ArchiMate
modeling language. The core concepts of the languages ArchiMate, Business
Process Modeling Notation and Petri Nets are described in further detail. In
order to understand its architecture framework the metamodel has been
explicitly formulated using visualizing technique (ORM). Moreover,
modeling concepts at different levels, i.e. the enterprise and project level are
introduced and relations between concepts are discussed. Also examples are
provided, which cover (parts of) the modeling language in order to
understand the underlying architecture.

ArchiMate
ArchiMate is a modeling language for describing the architecture of the
enterprise by providing visualization techniques. It is a design tool which
supports IT architects as a basis for visualizing and analyzing techniques to
describe the enterprise's architecture. This language technique has been
constructed in such a way that it offers a set of generic concepts within
domains and its relationship between these different domains that allows
coherent modeling of enterprise architecture descriptions. As a result,
describing and relating architectural domains has been made possible by
providing a fundamental uniform structure. Such an integrated architectural
approach, allow enterprises in assessing the impact of design choices and
changes.

ArchiMate uses the perspective that enterprises are considered as a set of
layered systems. Resulting that the ArchiMate metamodel distinguishes
three layers. The first layer is the business layer, following the application layer
and the technology layer. Thereby the framework consists of the extended
concepts active structure, behaviour and the passive structure. The set of
concepts are further extended including the internal/external view and the

Pagina 19 van 148

individual/collective view which forms the three dimensions of architectural
concepts.

Enterprises require an architecture modeling language that fulfills
consistency in alignment and to simplify coherent modeling of enterprise
architectures. There is a strong need for integrating models and to describe
the coherence between them. ArchiMate plays in model integration thereby a
central role.

Coherent Modeling
Many existing architectural approaches are used in practice to model the
enterprise's architecture with respect to different domains of expertise.
ArchiMate focus on heterogeneity of architectural domains that are used to
describe the architecture, which makes it much easier to inter-relate these
different domains (see Fig. 1.1). ArchiMate has clearly not the intention to
replace existing domain specific modeling techniques but merely wants to
model the global structure within each domain and to address the relevant
relations between the domains. However, ArchiMate encompasses sufficient
generic expressive concepts to model many of the aspects within specific
domains. The role of the ArchiMate modeling language aims to provide
high-level modeling within a domain and modeling relations between
domains (Sect. 3.1.2). Furthermore it acts as an instrument for visualization
and analysis techniques.

3.1 The ArchiMate Modeling Language

ArchiMate Modeling the Enterprise Architecture
ArchiMate is a standard for enterprise modeling for describing the enterprise
architecture. The core of this language lies in the coherence / relations
between concepts. In particular how the relations between different layers or
aspects of an architecture can help to gain insight into the alignment between
for example the business processes and their supporting application or the
applications and the technical infrastructure [Lank 09a]. ArchiMate has his
own typical architecture framework where all concepts can be defined and
consists of three layers that are connected to each other through the so-called
services as described earlier. Five core modeling concepts (object, service,
behaviour, interface and structure elements) can be discerned at each level.
The boundaries between these layers are not strict and are reflecting the
enterprise’s division. Layers are only explicitly related to layers directly
above or below them.

Pagina 20 van 148

3.1.1 A Language for Modeling the Enterprise Architecture
To handle the complexity of modern information-intensive enterprises,
architects need ways to express architectures as clearly as possible for their
own understanding and for communication with other stakeholders. But
often the case is that architects coming from different domains use their own
description techniques and conventions. Sometimes their descriptions are too
detailed such as UML that it is difficult to understand for non-experts or
contains informal pictures in which the meaning is not well defined. This
leads to misunderstandings that interrupt the collaboration of architects and
other stakeholders. Besides, it makes it very hard to provide tools for
visualization and analysis of these architectures. ArchiMate needs to bring
some added value to these similar existing model integration problems. In
these section concepts will be introduced of the ArchiMate modeling
language and some examples will be given to illustrate how they can be
used. As mentioned before, special attention is paid to the relations between
concepts.

3.1.2 Describing Coherence
Within many of the different domains of expertise that are present in an
enterprise, some sort of architectural practice exists, with varying degrees of
maturity. However, due to heterogeneity of the methods and techniques
used to document the architectures, it is very difficult to determine how the
different domains are interrelated. Still, it is clear that there are strong
dependencies between the domains. For example, the goal of the business
processes of an organization is to realize their products and software
applications support business processes, information is used in the business
processes and processed by the applications. For optimal communication
between domain architects, needed to align designs in the different domains,
a clear picture of the domain interdependencies is indispensable. With these
observations in mind, we conclude that a language for modeling enterprise
architectures should focus on interdomain relations (see Fig. 3.1).

Fig. 3.1. The role of ArchiMate language.

Pagina 21 van 148

3.1.3 Service Orientation and Layering
Services play a central role in ArchiMate as these services are the 'connectors'
in the ArchiMate framework between the different layers. The ArchiMate
framework is based on service-oriented models as this means that services
are used by the higher layers which are provided by the lower layers. In line
with this, services can be provided by organizations to their customers, by
applications to business processes or by technological facilities to
applications. Service layers with services made available to higher layers are
interleaved with implementation layers that realize the services. Within a
layer, there may also be internal services, e.g., services of supporting
applications that are used by the end-user applications. This leads to a stack
of service layers and implementation layers (see Fig. 3.2).

Fig. 3.2. Service orientation as a layered view.

These layers are linked by used by relations and realization relations, showing
how services are used and realized. Before concretizing more concepts, that
are specific for a certain layer, we can now distinguish three layers which are
from top down the business layer, the application layer and the technology
layer as described earlier (Sect. 1.1).

3.1.4 Dimensions of modeling
The general structure of the models within the different layers is similar.
Same types of concepts and relations are used, but their nature and
granularity differs from each other. Due to this uniformity, models that are
created, derived from different layers, can easily be aligned with each other.

Pagina 22 van 148

Fig. 3.3. Three dimensions of architectural concepts.

The picture as depicted in Fig. 3.3 illustrates how architectural concepts can
be identified that makes use of the same general structure.

Fig. 3.4. Core concepts of the AM language.

The example in Fig. 3.4 illustrates the core concepts that are found in each
layer of the language. On the right side we see the structure aspect. In the
center state the behavioral aspect. There is a close relationship between these
two aspects: behavioral concepts are assigned to structural concepts, to
depict who or what performs the behaviour. The active structure elements -
which can be found on the right side - show the actual behaviour. On the left
side stated the passive structural elements, which means objects on which
behaviour is performed in terms of information objects or physical objects as
the focus lies in the domain of information intensive organizations. Further
distinctions are made between an external view (depicted as the top side) and
an internal view (depicted as the bottom side) of systems. These views reflect
the service orientation principles as described earlier (Sect. 3.1.2). The service
concept represents a unit of essential functionality that some entity e.g.
system, organization or department makes available to its environment. The
exposed service has some value for certain entities in the environment which
can be denoted as the ‘service users’. For the functional aspects such as the
quality of service or costs are relevant and can be specified in a contract or
service level agreement (SLA). Services are accessible through interfaces
which are depicted in Fig. 3.4 as the external view of the structural aspect.

Pagina 23 van 148

Looking at the internal realization of services and interfaces, a distinction can
be made between behaviour that is performed by an individual structural
element and collective behaviour (i.e. interaction) that is performed by a
collaboration of multiple structural elements. Interaction can trigger other
behaviour elements or interactions but can also be triggered by them as well.
In line with this, an interaction can be treated as a specialization of a
behaviour element likewise collaboration can be treated as a specialization of
a structure element which enables recurrence. An addition hereby is that this
collaboration mechanism besides individual structure elements, may also
aggregate other more fine-grained collaborations. The structure of the
ArchiMate language and the relevant layer-specific concepts are summarized
in Fig. 3.5.

Fig. 3.5. Main concepts of the ArchiMate language.

Some additional concepts located in the three layers will be further
explained. Concise example models are used to illustrate the use of these
concepts that holds the general structure that make use of the three
dimensions of architectural concepts, but differs from each other with respect
to their exact nature and granularity.

Pagina 24 van 148

3.1.5 The Business Layer

Fig. 3.6. Business layer metamodel.

Business Behaviour Concepts
We start from a business layer model where the use of the business concepts
and their relations are illustrated through the example models concerning a
fictitious insurance company called ‘ArchiSurance’. The example models
concerns about how to handle the claims in an insurance when customers or
assurers report a damage that has occurred to determine if the claim will be
accept for receiving their compensation. The metamodel illustrated in Fig 3.6
gives a metamodel of the language at the business layer. The business layer
concepts and its relations conform to the core concepts that make up the
general structure discussed in the previous section. Taking this approach, at
this layer-specific concept we distinguish business structure concepts. See
Chapter 9 ‘Glossary’ for the definitions of the layer specific concepts, which
are underlined with a superscript star.

Pagina 25 van 148

Fig. 3.7. Example of a business layer model.

An example of a business layer model is depicted in Fig. 3.7. The structure
aspect at this layer refers to the organization structure. A business actor* (e.g.
‘Customer’) makes up the organization and their relationships and it can be
fulfilled by a single person (e.g. a customer or an employee) but also a group
of people and resources that have a permanent status in the organization
(e.g. department or a business unit).

This type of actor assumes a certain role in the organization which is closely
related to the work the actor fulfills: a business role* (e.g. ‘Insurant’). It is
preferably to use a noun* for the name of a business concept. Mostly all
names of the business concepts should preferably use by a noun. Often the
name of business collaboration is left open. The possibility exists that
multiple actors fulfill the same role and the other way around that a single
actor can fulfill multiple roles. A business process or function (in the example
business layer model: ‘Register’, ‘Accept’, ‘Valuate’, ‘Pay’, ‘Reject’) can be
seen as the internal behaviour that is assigned to a (single or multiple)
business role(s).
When more than one business roles are involved in this situation, typically a
collaboration occurred, than this will leads to a collective behaviour, which is
exactly the aggregation of the single roles separately: a business
collaboration*.

In comparison with a business actor such as a business unit, which may
contain also multiple roles, collaboration has not a permanent status within
the organization. An interaction is aimed at a specific interaction or set of
interactions between roles. As we know that services are accessible possibly
through a number of interfaces, like mail, telephone, or internet, these are
typically business interfaces*. The picture depicted in Fig. 3.7 on the right

Pagina 26 van 148

side we see the business object that represent the information in which the
business consider as relevant in their point of view.

Commonly a business object* is used to model an object type, where several
instances may exist in the organization. In this case a ‘Letter’ exists which is
an instance of the object type ‘Notification’. Business object are passive as
they undergo some behaviour which are performed by business actors; they
cannot trigger or perform processes. A business object can be accessed in
terms of (e.g. created, read, or written) by a business process, function,
interaction, event or service. In the example model the business object are
accessed by only two business processes (‘Pay’ and ‘Reject’). Different
specializations exist at the business layer (see Sect. 3.1.9).

Representations* can take different forms in terms of medium (e.g.,
electronic, paper, audio, or video) or format (e.g., HTML, PDF, or charts). In
the used example model a paper form is perceptible. A single business object
can contain multiple representations. A remarkable point is that a
representation always belongs to one specific business object.

Business Behaviour Concepts
Business services* are used to expose business functionality to its
environment which is realized by business behaviour including a number of
business concepts: business process, business function or business
interaction. The name of a business service should contain a verb ending
with ‘-ing’ or explicitly contain the word service e.g., ‘Claim registration
service’, ‘Customer information service’ and ‘Claim payment service’). A
distinction can be made between ‘external’ business services and ‘internal’
business services. The external business services are aimed to external
customers outside the ‘business’, whereas internal business services aimed to
supporting functionality to processes or functions within the organization.
To exclude confusion of a function and a process, - because some
organizations use the term business service to refer to application services
used by the ‘business’ and (business) function to indicate an external unit of
behaviour that is implementation-independent - we now distinguish a
process view from a function view of behaviour. The example of Fig. 3.8
illustrate that botch concepts can group activities.

Pagina 27 van 148

Fig. 3.8. Business processes versus business functions.

The difference between these two lies in the grouping criteria. ‘Managing
Customer Relations’ designate a business function that contains the activity
‘Receive request’ and ‘Receive claim’. The business process ‘Handle request’
contains by using their grouping criteria ‘Receive request’ followed by
‘Collect premium’. The name of a business process should contain a verb in
the present tense e.g., ‘Receive request’. It is clear that business processes can
relate more than one business functions and conversely.

A business process* groups internal behaviour with the intention to produce
a defined set of products and services, whereas a business function* groups
internal behaviour based on e.g., required skills, capabilities, resources or
support. The name of a business function should keep the following
convention: a verb ending with ‘-ing’. In the example of Fig. 3.9 this would
be ‘Managing Customer Relations’, ‘Claims processing’ and ‘Financial
Handling’. Thus, business processes are defined based on the products and
services that the organization offers, while the business functions are the basis
for the assignment of resources to tasks and for the application support.

A business interaction* can be regard as a unit of behaviour which is
performed by two or more business roles within the organization. The
example of Fig. 3.9 illustrates how an interaction and collaboration can be
used together to model a business transaction. This can be modeled in the
same way using service and interface concepts. Two views, respectively
symmetrical and asymmetrical view, can be interpreted of the same process.
On the left side of Fig. 3.9 the buyer and seller interact with each other i.e.
collaborative behaviour to build a transaction, while on the right side of Fig.
3.9 illustrate the selling of a product is being considered as a service that the
seller offers to the buyer.

Pagina 28 van 148

Fig. 3.9. Interaction versus service use.

Business event* is an event which may happen un- or expectedly within the
organization (generated by other processes) or inside the environment of the
organization (such like events coming from a customer) that influences the
business behaviour in terms of business processes, functions, and
interactions. It can be used to model events that trigger the behaviour. It is
even possible to use other types of events to e.g. interrupt a process. The
name of a business event should contain a verb in the past or present tense
e.g. ‘Claim received’ or ‘Claim has arrived’. Typical to a business event is that
they are instantaneous, which means that it does not have duration unlike
business behaviour.

The example of Fig. 3.10 illustrates how processes can be decoupled by using
an event. The left upper part shows how ‘Claim received’ event, an ingoing
event, starts a process called ‘Assess claim’ and eventually leaves with a
‘Payment request sent’ event which is considered to be an outgoing event.
The right upper part shows how the ‘Payment request sent’ event triggers
the process ‘Pay compensation’. These two processes are separately modeled.
When combining these two separately processes, the linking event can be
omitted by replacing it by the triggering relationship between these two
processes. This will leads to the bottom part process.

Pagina 29 van 148

Fig. 3.10. Event to decouple processes.

Higher-Level Business Concepts
The higher-level business concepts have been introduced to seamlessly
connect the operational side of an organization with its business goals. A
product* is the whole collection of all interrelated services including the rules
which encompasses guidelines or set of agreements on how to use these
services which is offered as a complete package to customers in- or
externally. An example is given in Fig. 3.11 where a product has been
defined, by grouping services with the accompanied contract as a guideline
for using the services. The collection of services associates with the offered
product often concerns business services, but application services are also
conceivable. In general, the product concept is used to specify a product
type. Some organizations have a number of product types, which grouped
associated services belonging to that specific product type. Compared to the
underlying processes that realize the product, product types are quite stable.
When a customer decides to insure their travel, the customer becomes an
insurer of the travel insurance. This ‘buying’ activity is one of the services
associated with a product, which results in a new instance of that product.
This introduces the possibility that some services exists to modify or cease a
product. The name of a product is usually for communication purposes
towards the customers or a generic noun. In the example of Fig. 3.11 the
product name is called ‘Travel Insurance’.

Pagina 30 van 148

Fig. 3.11. Services grouped into a product.

A contract* concept can be used to model a contract (legally or informally),
that is part of a product. A contract, which is a specialization of a business
object, sometimes includes or takes the form of a Service Level Agreement
(SLA), a specification of agreement concerning the functionality and quality
of the services associated with the product.

The value* of a product or service is that which makes a party appreciate it.
In the value chain of a product or service a value applies to what a party
acquires by offering some product or service, or by obtaining access to it. It
can be either way expressed in money, but also in non-monetary value e.g.
practical/functional value, the value of information or knowledge. In the
proposed example in Fig. 3.11 the value is more of protective nature i.e. “be
insured”/ (security). The name of a value can vary, but there are guidelines
for the designation of the name in case of ‘functional’ value of a service is
concerned; express it as an action or state that can be performed or reached
as a result of the corresponding service being available.

A meaning* is associated with a business object or its representation and
represents the informative value of a business object for a user of such an
object. Meaning is sometimes aimed for a specific user or for a particular
category of users, when interpreting a representation of the object. The name
of a meaning should be a noun or noun phrase that clarifies this to
distinguish them from business object and representation.

Pagina 31 van 148

3.1.6 The Application Layer

 Fig. 3.12. Application layer metamodel.

The example of Fig. 3.13 illustrates the use of the application concepts. In the
previous section we discussed the business layer concepts, now the concepts
of the application layer are explained in more detail. We gradually built up
the metamodel of the application layer still using the fictitious
‘ArchiSurance’ example which is elaborated, to clarify the relationship
between these layer specific concepts. Eventually an overview of the
metamodel can be modeled. After explaining these central concepts, the
relationship between the application layer and the business layer (i.e.
alignment) can be then modeled.

Fig. 3.13. An example of an application layer model.

Pagina 32 van 148

Application Structure Concepts
The main structural concept is the application component* that is used to
model any structural entity in the application layer. Any structural entity
refers to software components (might reusable), which can be part of one or
more applications, complete software applications, subapplications, or
information systems. As we can see in Fig. 3.13, an application component
can possess application functions e.g., the ‘Policy creation’ and makes the
functionality of its contents available through a service and an interface (see
also Fig. 3.9). The name of the application component is preferred to be a
noun.

Another concept is an application collaboration* which is like the business
collaboration an interrelationship, but between components. In the
application architecture this is an important feature. Thus, application
collaborations are aimed to perform application interactions between two or
more application components. In the example the application components
that cooperate are ‘Policy administration’ and ‘Financial administration’;
they are communicating through the application service ‘Policy access
service’ and the application interface. Also the name of application
collaboration is preferred to be a noun.

Cooperation of application components can be done through the application
interface* that is the location where the services of a component can be
accessed to provide its functionality. It also defines some fundamental
characteristics of behaviour namely a set of operations or events that are
made available by the component. Conversely, a set of operations or events
that is required from the environment. It is useful to make a distinction
between a provided interface and a required interface in order to model
application-to-application interfaces and application-to-business interfaces.
The first one provides the application services internally (to components),
while the latter one provides application services externally (to e.g. the
business processes).

Generally, we can say that an application interface provide components a
way to connect with its environment. The name of an application interface is
preferred to be a noun. Similarly to business object in the business layer, the
application layer used a data object* associated with a component, which is a
unit of coherent information that can be perfectly used for automated
processing. Like business objects, data objects have a passive character. The
name of the data object is preferred to be a noun.

Pagina 33 van 148

Application Behaviour Concepts
In the previous section business services are provided by the processes. In
the application layer these services are provided by the components.
Similarly to an application service*, it provides a way to describe explicitly
the functionality that components share with each other and the functionality
that they make available to the environment. The name of an application
service is preferred to be a verb ending with ‘-ing’ or contained the word
‘service’ explicitly. Application services expose application functions to its
environment.

Application function* can be used to model the internal behaviour of an
application. The name of an application function is preferred to be verb
ending with ‘-ing’ such as ‘Accounting’. Application interaction* The name
of an application interaction is preferred to be a verb in the present tense.

Business-Application Alignment
The relationship types between business layer and the application layer
concepts are:

1. Used by relationships, which are located between application service
and the different types of business behaviour elements, and between
application interface and business role, representing the behavioural
and structural aspects of the support of the business by applications.

2. Realization relationship from a data object to a business object,

indicating that the data object is a digital representation of the
corresponding business object.

3. Assignment relationships, which are located between application
component and the different types of business behaviour elements,
and between application interface and business service, indicating
that, for example, business processes or business services, are
completely automated.

The example of Fig. 3.14 illustrates the interrelationship (i.e. business
application alignment) between the business layer concepts and the
application layer concepts, which is realized by the relationship type 1 and 2.

Pagina 34 van 148

Fig. 3.14. An example of a business application alignment model.

3.1.7 The Technology Layer

Fig. 3.15. Technology layer metamodel.

Technology Structure Concepts
In the previous section we discussed the application layer concepts, now the
concepts of the technology layer can be explained in more detail. The
metamodel of the technology layer is shown in Fig. 3.15, where all relevant
concepts are modeled in ORM. As the fictitious ‘ArchiSurance’ example can
still be used, this section describes how the relationships between these
relevant layer-specific concepts are related. The example of Fig. 3.16,

Pagina 35 van 148

illustrates the use of the technology concepts. Consequently, the relationship
between the technology layer and the application layer (i.e. alignment) can
be then modeled analogues to the business-application alignment (see Fig.
3.17).

Fig. 3.16. An example of a technology layer model.

In the technology layer the main structural concept is the node*, which
models the structural aspect of an infrastructure. A node represents a
(logical) resource with computing capability, which may be assigned to an
artifact for its execution purposes (e.g. ‘IBM System z’, ‘Sun Blade’). An
infrastructure interface*, similarly to business and application interfaces,
specifies how the infrastructure services of a node makes available to other
nodes or application components to provide its functionality, or conversely
which functionality of the node can be required from its environment.

A specialization of a node can be denoted as a device* (e.g. ‘Sun Blade’). It is
a physical resource with processing capability, which can be also used by an
artifact for its execution purposes. Typically, a device is used to model
hardware systems e.g. mainframes, PC, or routers. It is allowed that a device
Nodes possibly encapsulate subnodes e.g. a server and an execution
environment to model the operating system as shown in the example of Fig.
3.16.

To model the interrelationships between technology components, two types
can be discerned: a communication path* and a network*. The first one
concerns about the exchange of information through a logical connection
between two or more nodes, while the latter one realizes a connection
between two or more devices (‘LAN’). For modeling the representation of
files, data objects, applications components. Artifacts are suitable to
represent e.g. files, data objects, or application components and can be
assigned to a node.

Pagina 36 van 148

An artifact* represents a unit of physical information that can be used or
realized in software development processes or by systems (e.g. ‘Database
tables’ and ‘Fin. Application EJBs’). There are no strict rules for naming
conventions of the technology structure concepts, but rather taken directly
from the corresponding product e.g. ‘Sun Blade’.

Fig. 3.17. An example of applications supported by infrastructure.

Technology Behaviour Concepts
Another specialization of a node is system software* that is used to model
the software environment in which artifacts run. It can be also used to
represent communication middleware. Typically, system software is
combined with a device representing the hardware environment to form a
general node. Services that are exposed from the technology layer used by
applications are denoted with the infrastructure service* concept.
Infrastructure services are realized by nodes that exposes the functionality to
its environment through interfaces. Only external behaviour of the
infrastructure components are relevant due to abstractions at the enterprise
level. The naming convention for an infrastructure service either must
contain a verb in the ‘-ing’ or the word ‘service’. In the example given,

Application-Technology Alignment
As the central concepts of the technology layer has been explained, the
application layer and the technology layer can be aligned using the two types
of relations (see Fig. 3.17), similarly to business-application alignment (see
Sect. 3.1.6):

1. Used by relationship; infrastructure services can be used by application
functions and infrastructure interfaces are used by application
components, which means that the application layer is supported by
the technology layer,

Pagina 37 van 148

2. Realize relationship; artifacts can realize data objects and application

components, indicating that the technology layer (i.e.
implementation layer towards the application layer) realizes these
application concepts.

3.1.8 Relations
A fundamental view on the enterprise architecture is that it describes the
coherences within different as well as among domains. We can define a
limited number of structural relations. These set of relation concepts with
their properties are summarized in ascending order by ‘strength’ (excluding
grouping) in table 3.1 which is elementary for describing the relationships.
Some of the structural relations are derived from other existing standards
like UML (composition, association, specialization) and BPMN (triggers).
Table3.2 shows the behavioral relations.

Table 3.1. Structural relations.
Relation | Weight Description (property)
Association | 1

Association relation concept is aimed to model a
relation between objects.

Access | 2

Access relation concept is aimed to model the access
of behaviour concepts to business or data objects.

Used by | 3

Used by relation concept is aimed to model the use of
services by processes, functions, or interactions and
the access to interfaces by roles, components, or
collaborations.

Realization | 4

Realization relation concept is aimed to link a logical
entity with a more concrete entity that realizes it.

Specialization

Specialization relation concept is aimed to indicate
that an object is a specialization of another object.

Assignment | 5

Assignment relation concept is aimed to link units of
behaviour with active elements (e.g. roles,
components) that perform them, roles with actors that
fulfill them, or artifacts that are deployed on nodes.

Aggregation | 6

Aggregation relation concept is aimed to indicate that
an object groups a number of other objects.

Composition | 7

Composition relation concept is aimed to indicate that
an object consists of a number of other objects.

Grouping | N.A.

Grouping relation concept is aimed to indicate that
objects belong together based on elementary
characteristics.

Pagina 38 van 148

Table 3.2. Behavioral relations.
Relations Description
Triggering

The ‘triggering’ relation describes the temporal or
causal relations between behavioral elements,
processes, functions, interactions, and events.

Flow

The ‘flow’ relation describes the exchange or transfer
of, for example, information, goods, or value between
processes, function, interactions, and events.

Junction

A ‘junction’ is used to connect dynamic relations of
the same type. It can be used to model splits or joins
of triggering or flow relations.

3.1.9 Language Extension Mechanisms

Specialization of Concepts
Specialization can be used to define new concepts based on the existing ones.
These types of concepts inherit the properties of their ‘parent’ concepts and
possibly may have additional restrictions. In some cases, relationships might
only apply to the ‘parent’ concept, while it is forbidden or not applicable for
the specialization concept. An essential characteristic of these types enables
extra flexibility in means of customizing the language to the users’
preferences and needs, while holding the exact nature of its ‘parent’ concept.
In practice the commonly used the possible situations, where specializations
might be needed (see Fig. 3.18). Some slight graphical changes or
modification of the icon at the ‘parent’ concept might lead to a new graphical
notation for the specialized concept.

Adding Attributes to Concepts
Predefined profiles: these are profiles that have a predefined attribute structure
and which can be attached to concept and relations and implemented
beforehand in any tool supporting the ArchiMate language.
User defined profiles: via a profile definition language, the user should be able
to define his own profiles, and subsequently to extend the definition of any
ArchiMate concept or relation with supplementary attribute sets.

Composition of Concepts
Composite concepts can be considered as the combination of two or more
concepts of the ArchiMate language, which may be core concepts, specialized
concepts or even composite concepts themselves. A composition of a number
of concepts may be seen as multiple inheritances. This means that the
composite concept inherits the properties of more than one ArchiMate
concept. Such as a UML class concept can be implicitly assumed as the

Pagina 39 van 148

composition of Application function, Application component, Data Object of
the ArchiMate concepts.

Fig. 3.18. Common used concepts of specialization.

3.1.10 Summary of the ArchiMate Architecture
ArchiMate is a language for describing the enterprise architecture, which
allows enterprises to integrate architectural models. ArchiMate focusses on
interdomain relations, which means that it is able to either model the global
structure within each domain (i.e. high-level modeling) and the relevant
relations between the domains (i.e. modeling relations). This approach seems
to be meaningful to also inter-relate modeling tools. In the field of model
based system development this could serve as a fundamental basis. One of
the key designs in this language is the service orientation aspect, where
services are exposed at the three distinct layers respectively the business layer,
the application layer and the technology layer. The services act as an inter-layer
binding concept that is introduced for alignment purposes with respect to the
domain specific layers. Through this service oriented character, different
domains can be integrated that are essential for providing coherency in the
description of enterprise architectures. Each layer comprises central concepts
that are essential to model relevant aspects of the enterprises’ architecture. It
also provides a basis for visualization and analysis techniques [Boer 06], [Gust
09]. A full metamodel of the enterprise modeling language is given (see also
Appendix A). Also a graphical notation of the language (see Appendix B.)
and the permitted relations of the completed core concepts are provided (see
Appendix C).

Pagina 40 van 148

Pagina 41 van 148

3.2 The Business Process Modeling Notation Language

Business Process and Workflow Modeling
One of the contemporary enterprise modeling approaches is the BPMN
language developed by the recently merged Business Process Management
Initiative (BPMI) with the Object Management Group (OMG). The Business
Process Management Notation (BPMN) [02] is a standard restricted for
process modeling for describing the business processes as well as the
workflows of an enterprise. In comparison with ArchiMate, the BPMN
standard are not covered the application and technology aspects. The core of
this language focuses on the processes and workflows [Zang 07] that are
associated with the ‘businesses’ to be modeled and has been designed to
provide a uniform notation for modeling business processes in terms of
activities and their relationships. The BPMN standard provides also a
mapping between the graphical notation of BPMN and the underlying
constructs of execution languages, particularly Web Services for Business
Process Execution Language (WS-BPEL) and XML Process Definition
Language (XPDL). Furthermore, the Business Process Definition Metamodel
(BPDM) has been (partly) defined to provide a formal underpinning for
BPMN.

3.2.1 A Language for Modeling the Business Architecture
BPMN is a modeling language for describing the business architecture
(scalability principle) by providing visualization techniques. The primary goal
of the BPMN language is to provide a common understanding and generate
easily understandable models to business users from business analytics till
technical developers [Whit 04a], [Chin 12]. BPMN is designed to model the
business architecture of enterprises and provides a set of graphical notations
and data structures that is formally and expressively sufficient for its end
users. Besides, the BPMN language is aimed to create a mechanism for
drawing simple business models by using a limited number of concepts
(simplicity principle), while at the same time not losing the complexity of the
business. BPMN defines a Business Process Diagram (BPD), based on a
flowcharting technique, which is aimed for creating graphical models with
respect to business process operations. A Business Process Model (BPM) is
denoted as a composition of objects, which are in essence activities (i.e.,
work), and flow controls that defines the relationship between objects and
their order of performance. To span the bridge to process implementation,
BPMN contains a mechanism that generates executable environments in
terms of BPELs and XLPD’s for automated purposes. From this, BPMN
provides a way to create a connection between business process design and

Pagina 42 van 148

process implementation (i.e. achieving the principle of seamlessness and
reversibility).

3.2.2 Business Process Definition Metamodel
The BPDM is a standard definition of concepts used to express business
process models (a metamodel), adopted by the OMG. Metamodels define
concepts, relationships, and semantics for exchange of user models between
different modeling tools. The exchange format is defined by XSD (XML
Schema) and XMI (XML for Metadata Interchange), a specification for
transformation of OMG metamodels to XML. Pursuant to the OMG's
policies, the metamodel is the result of an open process involving
submissions by member organizations, following a Request for Proposal
(RFP). BPDM provides abstract concepts as the basis for consistent
interpretation of specialized concepts used by business process modelers. For
example, the ordering of many of the graphical elements in a BPMN diagram
is depicted by arrows between those elements, but the specific elements can
have a variety of characteristics. For example, all BPMN events have some
common characteristics, and a variety of specific events are designated by the
type of circle and the icon in the circle. The abstract BPDM concepts ensure
implementers of different modeling tools will associate the same
characteristics and semantics with the modeling elements to ensure models
are interpreted the same way when moved to a different tool. BPDM extends
business process modeling beyond the elements defined by BPMN and BPEL
to include interactions between otherwise-independent business processes
executing in different business units or enterprises (choreography). A
choreography can be specified independently of its participants, and used as
a requirement for the specification of the orchestration implemented by a
participant. BPDM provides for the binding of orchestration to choreography
to ensure compatibility. Many current business process models focus on
specification of executable business processes that execute within an
enterprise (orchestration). For exchange of business process models, BPDM is
an alternative to the existing process interchange format XPDL (XML Process
Definition Language) from the Workflow Management Coalition (WfMC).
The two specifications are similar in that they can be used by process design
tools to exchange business process definitions. They are different in that
BPDM provides a specification of semantics integrated in a metamodel, and
it includes additional modeling capabilities such as choreography. In
addition, XPDL has many implementations needed for interchanging BPMN.
BPDM implementations are in preparation, including support for BPMN,
and translation to XPDL.

Pagina 43 van 148

3.2.3 Business Process Modeling
The BPMN is the standard to represent in an expressive graphically way the
business processes of an enterprise. End users may model or describe the
business process informally (e.g. business analysts) using a set of graphical
notations (flow objects, connecting objects, swimlanes and artifacts), which allow
users to produce easily models. Thereby, some specific users (e.g.
developers, business experts) want to describe the business process in a more
formal way (elements). To this end, a formal graphical notation should ensure
the need to execute a process in a distributed environment like web services.
This introduces the technical-oriented part of the BPMN language, which
allows process implementation (i.e. execution capabilities to generate
machine readable standard language). Well-known machineries are WS-
BPEL and XPDL (see Sect. 3.2.6). BPMN focuses also on the workflow of an
enterprise [Whit 04a] i.e. that is the flow in which the work as a set of
activities takes place in an organization: the work somehow flow through the
process in order to exchange the required or produced work.

3.2.4 Business Process Modeling Notation (BPMN) concepts
BPMN itself only defines a concrete syntax, i.e. a uniform (graphical)
notation for business process modeling concepts. A partial overview of the
concepts of the BPMN language for the graphical notation is given (see
Appendix E). This section describes the relevant basic concepts of the BPMN
language that enables the creation of models tailored to business processes
(i.e. BPD’s). The examples that are given are inspired from [With 04] to
clarify the use of the different concepts. The BPMN consists of a number of
core concepts that are relevant to model business processes and workflows:
Event, Activity, Gateway, Sequence Flow, Message, Flow, Association, Pool,
Lane, Data Object, Group and Annotation. Several examples are given to
illustrate the use of these concepts. For principal modeling reasons (i.e.
enabling consistency and simplicity), a distinction is made in four basic
categories to subdivide the enumerated concepts.

The abstract syntax of BPMN is given, which contains the formal definition
of the language in terms of a metamodel, expressed in ORM. The metamodel
are built up step wisely to provide more insight for understanding the
characteristics of each language constructs. It also aims to clarify the
relationships to other language constructs. Modeling is an extensive effort
and the result of the desired model depends on the modeler’s domain of
interests or concerns. Therefore, some important modeling decision needs to
be made, while modeling the metamodel.

Modeling Decisions

Pagina 44 van 148

It is not the intention to provide an entire view of the complete BPMN
language concepts, but merely has the intention to only delve into the parts
that are of relevant value regarding this thesis research. The following
decisions have been made with respect to underlying architecture of the
BPMN language:

1. Covering basic aspects of the BPMN specification instead of
providing complex models with many details of available concepts.
This idea needs to clarify the concepts at a higher abstraction level
(conceptual) that restricts the BPMN models. Hereby, relative simple
models are given, to illustrate the use of these basic concepts.

2. The focus lies on the basic concepts of the BPMN language, rather
than providing abundance of specific concepts. Only similar subsets
of concepts are considered to be valuable for comparing the
ArchiMate business coverage.

3. The BPMN specification does not provide a metamodel, but it is
useful with respect to the modelers’ point of view and relating
concerns to determine the language metamodel for a well
understanding of BPMN models.

Flow Objects
The first category is the flow object, in which the active process occurs.
Typically, a flow object* contains the actual work that has to be performed by
business entities (e.g. a unit like the organization, or a single person e.g. a
doctor or a patient). They are connected to each other through connecting
objects to indicate a sequence. Flow objects can be partitioning a number of
core elements which comprises the following ones:

1. Event;
An event* affects the flow of the process with respect to the business.
They have a cause (i.e. trigger), and can graphically modeled with a
‘start event’ that starts the process actually. Within the process, it is
also possible to have triggers that influence the flow within the
process, which are affected by the ‘immediate event’. Eventually the
outcome of the entire process (i.e. an impact) results in an ‘end event’.

2. Activity;
An activity* can be atomic or non-atomic (i.e. compound). It consists
of two types that is denoted as a ‘Task’ and a ‘Sub-Process’.

3. Gateway;
A gateway* controls the divergence and convergence of Sequence
Flows (SF). Internal markers that are graphically displayed in the
diamond indicate the type of the behaviour control.

Pagina 45 van 148

The example of Fig. 3.19 illustrates the use of the flow object concepts
concerning about the handling of a payment process in order to provide a
package to a customer. A ‘Start Event’ (e.g. a customer wants to pursue a
good) triggers the initial process to start the first Activity that is a Task
(‘Identify Payment Method’). The relationship between theses flow objects
are explained at a later section (see Connection Objects). After determination
of the payment method, using a Gateway (e.g. a “decision” must be taken)
that forked the incoming flow, one of the two Activities is treated (‘Check or
Cash’ or ‘Credit Card’). The two branched Activities, which are also of type
Task (‘Accept Cash’ or ’Check’,) and the Activity (‘Process Credit Card’), are
merging together by the next Activity (‘Prepare Package for Customer’). At
this moment it is clear that the desired package is prepared after payment is
done by the customer, resulting in an ‘End Event’ that indicates the end of
the payment process.

Fig. 3.19. An example of a business process model using flow objects.

An abstract model is given (see Fig. 3.27) that represents a part of the entire
BPMN language metamodel and defines the flow objects and their
relationships. A flow object is subdivided in three elements, which is of type
gateway, event, and activity. Gateways are specialized in data-based gateway or
event-based gateways. An event can be of type: start event, intermediate event or
end event. Furthermore, an activity can be either way an atomic activity (i.e. a
task) or part of a set of grouped non-atomic activities, i.e. compound activity
comprising multiple tasks.

Pagina 46 van 148

Fig. 3.27. The structure of flow objects.

Pagina 47 van 148

Connecting Objects
The second category is called the connecting object*, which represents the
connection between flow objects. These connecting objects are divided into:

1. Sequence flow;
A sequence flow* shows the order of activities to be performed in a
process. Sequence flows may cross the boundaries of lanes within a
pool.

2. Message flow;
A message flow* shows the flow of messages between two separate
process participants, which can be business entities or business roles.
A participant is represented as a pool separately, which constitute a
process. It is not permitted that message flows are being used
between flow objects in lanes of the same pool.

3. Association;

An association* binds data, text and artifacts with flow objects. It
shows the inputs and outputs of the activities.

The example of Fig. 3.20 illustrates the use of the flow objects and connecting
objects in a more advanced way with details. The depicted process, which
comprises a part of the entire business process, concerning about the
handling of quotes if suppliers are involved in order to find an optimal
quote. A sequence flow connects the input of a Gateway (‘Any Suppliers?’); if
any suppliers are involved in this issue, then the subprocess activity (‘Repeat
for Each Supplier’) has to be performed. This subprocess includes multiple
activities (‘Send RFQ’, ‘Receive Quote’ and ‘Add Quote’). An additional
feature is the initial marker, denoted in the bottom of the center rectangle
with a black arrow circling around: the subprocess may be iteratively
performed depends on the number of suppliers. An intermediate event (‘time
event’) displays a time limit that is given for a certain time of period. When
the time exceeds, the sequence flow (‘Time Limit Exceed’) goes to the next
activity. Then, after the subprocess is performed, the next Activity (‘Find
optimal Quote’) can be determined leaving with a sequence flow.

Fig. 3.20. A business process using advanced constructs.

Pagina 48 van 148

The metamodel of connecting objects (see Fig. 3.28), defines the associated
elements that describes the flow, which is either a sequence flow or a message
flow and the association. Subtypes of supertypes can inherent (behaviour)
properties of their supertypes, but constraints imposed on subtypes can be
exclusive applicable to the subtype itself.

Fig. 3.28. The structure of a connecting object component.

Swimlanes
The third main category is swimlanes*, which is used to categorize and
organize activities into pools and lanes to illustrate different capabilities or
responsibilities associated with participants in the process. Swimlanes are
divided into two different types:

1. Pools
A pool* represents one or more participants in terms of comprising
multiple lanes in a process. Thus, a pool acts as a container for
partitioning a set of activities from other pools.

2. Lanes

A lane* represents also a participant in a process but is part of a pool.
So, a lane can be seen as a subpartition within a pool. Lanes can
extend the length of the pool either vertically or horizontally. Lanes
are often used to separate the activities associated with a specific
company function or role.

The example of Fig. 3.21 illustrates the use of swimlane concepts discerning
participants inherent to activities in which they are responsible for or capable
of doing so. Two pools, representing participants (‘Doctor’s Office’ and
‘Patient’) are involved in this business process, where they interact with each
other through the connection object message flow. The message flow is

Pagina 49 van 148

depicted as a dashed line with an open arrowhead. Typically, a message flow
may not cross the boundaries of a lane between objects within a pool.

Fig. 3.21. An example of a business process illustrates the use of pools.

A patient becomes ill (i.e. the trigger) and request a doctor (Activity: ‘Send
Doctor Request’). The patient wants to see a doctor (Message Flow: 1. ‘want
to see a doctor’). The doctor’s office receives the request for a doctor from the
patient (Activity: ‘Receive Doctor Request’). Subsequently, the doctor’s office
makes an appointment and sends it to the patient (Activity: ‘Send Appt.’)
with the message that the patient sees the doctor at the agreed appointment
(Message Flow: 5. ‘Go see doctor’). The patient then receives the appointment
coming from the doctor’s office (Activity: ‘Receive Appt.’). Now, the patient
states which symptoms are shown by his complaints (Activity: ‘Send
Symptoms’) and pointed out to be sick (Message Flow: 6. ‘I feel sick’). At the
doctor’s office the complaint is received (Activity: ‘Receive Symptoms’) and a
prescription is created, which the doctor’s office provides it to the patient
(Activity: ‘Send Prescription Pickup’). Next, the patient is told that the
medicine can be picked up (Message Flow‘: 8. ‘Pickup your medicine and
you can leave’). Afterwards, the patient receives the prescription at the
doctor’s office (Activity: ‘Receive Prescription Pickup’) and ask for the
prescribed medicine (Activity: ‘Send Medicine Request’): the patient wait
until the medicine is given (Message Flow: 9. ‘Need my medicine’). In turn,
the doctor’s office receives the patient’s need for a medicine (Activity:
‘Receive Medicine Request’) and provided the patient (Activity: ‘Send
Medicine’) with a medicine (Message Flow: 10. ‘Here is your medicine’).
Eventually, the patient receives the prescribed medicine (Activity: ‘Receive
Medicine’) and use it.

Pagina 50 van 148

Fig. 3.22. Modeling processes with lanes concept.

The example given in Fig. 3.22 illustrates the use of lanes that are part of a
specific pool to clarify the responsibility of multiple business roles or -
functions e.g. the specific departments of the enterprise (‘Web Server’,
Management’ and ‘Administration’). Lanes are used for the distribution of
activities over these roles/functions. In this case, a web server performs its
activity (Activity: ‘Dispatch to Approver’) that is related to the management
and administration part of the enterprise’s division for the approval. Next,
the management department needs to approve the request (Activity:
‘Approve Request’). At the same time, the administration department then,
prepares the associated work to dispatch personal & organization issues
(Subprocess: ‘Prepare PO’). With regard to flows, in particular sequence flows;
the above example shows that these types of flows may cross the boundaries
of lanes within a pool.

Fig. 3.29. Subtyping of the swimlane component.

Pagina 51 van 148

Artifact
The last main category is the artifact, which composed of the following
elements:

1. Data Object;
A data object* aims to represent data that is required or produced by
activities. Typically, data objects are connected to activities through
associations.

2. Group;
A group* is graphically represented as a rounded corner rectangle
with a dashed line. The grouping mechanism is used for
documentation or analysis purposes, while at the same time not
affecting the sequence flow. It aggregates elements that shares
common properties.

3. Annotation;
An annotation* aims to provide the modeler additional text for
communicative purposes. It is supposed for the ‘business reader’ that
enhanced the readability of the BPMN diagram.

To illustrate the use of artifacts concepts, the previous example is expended
and can be graphically represented (see Fig. 3.23). Data objects are
graphically represented as a rectangle with a folded corner (Data Object:
‘Purchase Info’ and ‘Data Object: ’Approval Request Email’). They are even
produced or required by the associated activity: the webserver produced the
data objects that both the management and the administration require for
performing their activities appropriately. The grouping mechanism
aggregates flow objects to enable analysis on the grouping part or providing
comments. In this example, the group concept is used to provide the end
user with additional text that the grouped activities can be performed
simultaneously. The annotation, represented graphically with a dashed line
attached to a black open parenthesis including additional text, is intended for
the business user of the BPD that aims for communication purposes: to
support the readability of the business process models.

Fig. 3.30. Subtype of the artifact component.

Pagina 52 van 148

Fig. 3.23. Modeling artifacts.

Business Process Levels
Sometimes, it is useful to only provide a certain level of detail. Two types of
levels can be discerned: a business process can be either way (see Fig. 3.24)
modeled at a high-level, showing only relevant parts (subprocesses) and their
relations without any detail, and the low-level business process providing
details of the performed activities (see Fig. 3.25). If the business user wants to
see an overview of compound activities performed in a process, high-level
models are more suitable. If they require inter-relations within subactivities
or its relationship with high-level processes (i.e. internal behaviour of
business processes), business processes at the low-level are more preferred.

Fig. 3.24. An example of a high-level business process.

When zooming in on the subprocesses at the high-level (see Fig. 3.24),
several lanes from another pool are involved and are connected through
associations (see Fig. 3.25).

Pagina 53 van 148

Fig. 3.25. An example of a low-level business process.

One of the main goals of BPMN is to connect the gap between business
process design and process implementation. Process implementation
executes the business processes define in the BPD’s: it concerns about the
ability to enable the generation of executable BPEL by using a BPMN
Diagram.

Fig. 3.26. BPMN concepts and their related WSBPEL concepts.

The execution language Web Services for Business Process Execution
Language (WSBPEL) is explained in detail (see Sect. 3.2.5). The example
given (see Fig. 3.26) illustrates the correlation between BPMN concepts and
WSBPEL concepts. Table 3.1 summarizes the BPMN concepts used in the
example for mapping to the technical-oriented execution language concepts.
The opportunity to map concepts from BPMN Diagrams to BPEL is designed
to support alignment between business and IT: this approach translates the

Pagina 54 van 148

BPD’s into an executable environment in order to implement the processes
within a business process management system (BPMS).

Table 3.1. Concept mapping from BPMN Diagrams to WSBPEL based on Fig. 3.26.
BPMN concepts WSBPEL concepts
Group (entire set) Sequence
Receive Task Receive
Task Invoke
Gateway Switch
Gateway (alternative) Switch / Case
Gateway (default alternative) Switch / Otherwise

Some parts of the above constructed metamodel needs further explanations
(see Appendix D.1). A trigger has many types, which are the enumerated
triggers: Message Trigger, Time Trigger, Rule Trigger, Link Trigger, Error
Trigger, Cancel Trigger, and Compensation Trigger. These triggers may
influence the behaviour of flow objects, in particularly the activities. An
intermediate event may affect the associated activity. Commonly, a trigger is
something that happens suddenly or expected by its environment. The
gateway has also many types that consist of a XOR gateway, OR gateway,
AND gateway, and a Complex gateway. Finally, XOR gateways are divided
in event-based gateways and data-based gateways.

3.2.5 Execution Languages (WS-BPEL, XPDL)
One of the underlying architecture of the BPMN language is the execution
language by Web Services Business Process Execution Language (WS-BPEL),
which supports business process modeling to enable implementation of
business processes. From this point, a mapping from BPMN to WS-BPEL
then can be performed [Whit 05a], [Whit 05b]. Mainly, the BPMN
specification v2.0 used the block structure (the sequence element), while it is
possible to persist the graph structure (the flow element).

Web Services
Web services interactions can be discerned in two types:

1. Executable business processes; executable business processes model
actual behavior of a participant in a business interaction. It serves a
executable role.

2. Abstract business processes; abstract business processes are partially
specified processes that are not intended to be executed. An abstract
process may hide operational details and fulfills a descriptive role.

Pagina 55 van 148

WS-BPEL is intended to model the behavior of both executable and abstract
processes: it allows specifying the executable and abstract business processes.
In line with this, WS-BPEL enables the support of business transactions and
defines a model including a grammar for describing the behaviour of the
business process. In addition, WS-BPEL provides a mechanism for handling
business exceptions and process faults. It also contains a mechanism to
define how activities (either atomic or compound) have to be compensated in
exceptional cases or when a reversal is required. Related to the earlier
mentioned fact of deploying BPMN (Sect. 3.2.3), WS-BPEL has been chosen
by the BPMI to be a preferred serialization format for BPMN diagrams. Thus,
WS-BPEL is considered to be the best suitable one as execution language for
BPMN diagrams.

Another extension of the BPMN standard is the XML Process Definition
Language (XPDL). XPDL is suitable for interchanging business process
definitions between workflow products, i.e. between different modeling tools
and Business Process Management Systems (BPMS). XPDL defines an XML
schema for specifying the declarative part of workflow and business process.
This machinery language is designed to exchange the process definition, both
the graphics and the semantics of a workflow and business process.
Currently, XPDL seems to be the most suitable file format for exchange of
BPMN diagrams; due to the fact that it has been designed specifically to store
all aspects of a BPMN diagram. Thus, XPDL is particularly used to retain
graphical aspects, such as the X- and Y- coordination of the objects, as well as
the executable aspects that can be used to run a process. The differences
between XPDL and WS-BPEL could be explained as follows: WS-BPEL does
not contain elements to represent the graphical aspects of a process diagram,
whereas XPDL contains elements to represent botch the graphical and the
executable aspects. This distinguishes XPDL from BPEL which focuses
exclusively on the executable aspects of the process. From this, it can be
assumed that XPDL is the XML Serialization of BPMN. Depending on the
enterprises’ goal, one might deploy BPMN in several different purposes. For
descriptive purposes only, BPMN itself is likely to be useful. When
simulation purposes are considered, BPMN could be used in combination
with XPDL, while for execution purposes WS-BPEL seems be fruitful to
translate BPMN diagrams into directly executable code.

Pagina 56 van 148

3.2.6 Summary of the BPMN Architecture
The Business Process Management Initiative (BPMI), part of the Object
Management Group (OMG), developed a modeling language, the BPMN
standard, which specifies a graphical notation aimed to provide a common
basis for business process modeling and execution languages. BPMN focused
exclusively on the processes and workflows at the business level that are the
domain of interest. The main purpose is to provide a uniform notation for
modeling business process in terms of activities and their relationships. The
Business Process Definition Metamodel (BPDM) defines a standard
definition of concepts used to express business process models. Since the
metamodel can be derived from the BPMN standard, the abstract syntax of
the BPMN language is given in terms of a metamodel. Finally, the result of
the complete metamodel of the language, described in ORM, is shown (see
Appendix D). The BPMN metamodel serves as a starting point, where all
core concepts can be abstracted from. The underlying architecture of BPMN
provides a way to create a bridge between business process design and
process implementation, in which the execution language WS-BPEL and
XPDL plays a central role.

Pagina 57 van 148

Pagina 58 van 148

3.3 The Petri Net Language

Petri Nets
The International Standard provides a well-defined semi-graphical technique
for the specification, design and analysis of systems. The technique, High-
level Petri Nets (HLPN) is mathematically defined [01], and may be used to
provide unambiguous specifications and descriptions of applications. It is
also an executable technique, allowing specification prototypes to be
developed to test ideas at the earliest phase of system development.
Specifications written in the technique may be subjected to analysis methods
to prove properties about the specifications, before implementation begins,
thus saving on testing and maintenance time. Petri Nets can be supported by
the Petri Net Markup Language (PNML), which is a standard, an XML-based
interchange format for Petri nets [Webe 03], [Bill 03].

3.3.1 Petri Nets
Petri Nets has been proven to be a useful technique for verification purposes
e.g. for ensuring correctness of configurable process models by presenting a
novel verification approach used for partner synthesis, which seems to be
very complex [Aals 11]. But also for analysis purposes [Aloi 12], that shows
how Colored Petri Nets (CPNs) can be used to model risk factors in ERP
projects in order to deal with the problem of interdependence in risk
assessment. These Petri net based approaches, allows practitioners to
perform different kind of analysis on systems. Fields of applications where
Petri net based approaches can be deployed for:

 requirements analysis;
 development of specifications, designs and test suites;
 descriptions of existing systems prior to re-engineering;
 modeling business and software processes;
 providing the semantics for descriptive (non-formal) languages;
 simulation of systems to increase confidence;
 formal analysis of the behaviour of critical systems;
 development of Petri net support tools.

As there are a variety of discrete event and distributed systems in the
mentioned generic fields of application of Petri nets, it is obviously that the
underlying language architecture provides the formal underpinning to
achieve this.

Pagina 59 van 148

3.3.2 High-Level Petri Net Graph (HLPNG) Concepts
High-level Petri Nets - (HLPN) - are represented in a graphical form, which
allows visualization of system dynamics e.g. flows of data and control. This
approach is taken, that is most appropriate for industrial use. The graphical
form is referred to as a High-level Petri Net Graph (HLPNG). It provides a
graphical notation for places and transitions and their relationships, and
determines the inscriptions of the graphical elements.

High-level Petri Net Graph Components
A High-level Petri Net Graph (HLPNG) comprises the following number of
components:

 A Net Graph, which consists of sets of nodes of two different kinds:
The first kind are places and transitions and the second kind are arcs
that connects places to transitions and transitions to places.

 Place Types, which are non-empty sets. One type is associated with
each place.

 Place Marking, which is a collection of elements (data items), chosen
from the place’s type and associated with the place. It is allowed to
repeat items. A collection of items that allows repetitions is known in
mathematics as a multiset. The items associated with places are
called tokens.

 Arc Annotations, whereby arcs are inscribed with expressions that
may comprise constants, typed variables (e.g., ݕ > ݔ) and function
images (e.g. f(x))). The expressions are evaluated by assigning values
to each of the variables. When an arc’s expression is evaluated, it
must result in a collection of items taken from the type of the arc’s
place. The collection may have repetitions.

 Transition Condition, which is a Boolean expression (e.g., ݕ > ݔ) that
inscribes a transition.

 Declarations, which comprises definitions of place types, typing of
variables, and definitions of functions.

Net execution
HLPNGs are executable in terms of visualizing the flow of tokens in the Petri
net. To this end, HLPNGs are used to illustrate the flow of control and the flow
of data within the same model. Both enabling and the occurrence of transitions
controls the execution (see Glossary ‘transitions occurrence’ and ‘enabling a
transition’).

Pagina 60 van 148

Enabling
The enabling of transitions are closely related to the set of all place markings
of the HLPN. Transitions are enabled in a particular transition mode, which
means that values are assigned to the transition variables that satisfies the
transition condition. Variables that occur in the expressions associated with
the transition are called transition’s variables. These transition’s variables are
the transition condition and the annotations of arcs that involve the
transition. To enable a transition, it’s input places must be marked. An input
place of a transition is a place connected by an arc, that connect that place
with the transition. This connecting arc is called an input arc of the transition.
A transition is enabled in a specific transition mode, for a particular set of all
place markings of the HLPN. When an input arc expression is evaluated, this
leads to a multiset of tokens. The tokens originate from a transition mode are
of the same type as the tokens in the input place. Transitions are enabled in a
specific mode, if the multiset of tokens of input place’s marking have at least
the multiset of tokens of the input arc, i.e. the input arc’s enabling tokens.
Transition modes are concurrently enabled if each input place’s marking
have at least the sum of each of its input arc multiset of tokens that are linked
to the input place’s. An example is given (see Fig. 3.32) to illustrate the
enabling of transitions.

Transition Rules for a Single Transition Mode
When an enabled transition occurs, tokens are removed from its input places,
and tokens are added to its output places. An output place of a transition is a
place which is connected to the transition by an arc directed from the
transition to the associated place. An arc that leads from a transition to a
place (an output place of the transition) is called an output arc of the
transition. If a transition is enabled in a mode, it may occur in that mode. On
the occurrence of the transition in a specific mode, the following actions
occur:

1. For each input place of the transition the following rule applies:
 The enabling tokens of the input arc with respect to that

mode are subtracted from the input place’s marking,
2. For each output place of the transition the rule applies:

 The multiset of tokens is added to the marking of the output
place. The added multiset of tokens results from the
evaluation of the output arc expression for the mode. It is
possible that a place fulfills both an input place and at the
same time an output place of the same transition.

Pagina 61 van 148

Fig. 3.32. HLPN graph with transition conditions.

The graphical representation of the net graph is illustrated by the simple
example of a HLPNG (see Fig. 3.32). This example comprises two places,
named 1݌ and 2݌ one transition called 1ݐ, and two arcs from 1݌	݋ݐ	1ݐ and
from 1ݐ	݋ݐ	2݌ . The places are represented by circles, the transition by a
square, and the arcs by arrows.

The declarations define two types ܣ and ܤ that are different subsets of
positive integers. Variable x is of type ܣ whereas variable ݕ is of type ܤ. The
transition is inscribed with the Boolean expression ݕ > ݔ, where the less than
operator is defined in the declarations.

Arc (1݌, ,1ݐ) is annotated with the variable x, while arc	(1ݐ is annotated (2݌
with y. Place 1݌	is typed by ܣ and has an initial marking ܯ଴(1݌) = 3’2+1’1.
This states that associated with the place 1݌ are the value 1 (one) and two
instances of the value 3 (three). Place 2݌ is typed by ܤ, and is empty
representing the empty multiset ܯ଴(2݌) = ∅.

A convention adopted in high-level nets, is that arcs may be annotated by
variables or constants of the same type as the arc’s place. The evaluation of
the arc expression is thus an element of the place’s type. By convention, this
is interpreted as the corresponding singleton multiset over the place’s type.
For example, for ݔ bound to 1, and ݕ bound to 3, the value associated with
arc (1݌, is 1, which is interpreted to mean the multiset 1’1. Similar to the (1ݐ
value associated with arc (1ݐ, is 3 which are interpreted to mean the (2݌
multiset 1’3. Where there is any possibility of ambiguity, the multiset
conversion operator (’) should be used. For example, more formally, the
annotation on the arc (1݌, .ݔ should be 1’x instead of (1ݐ

In the initial marking, t1 can be enabled in the following modes:
{(1,3),(1,4), (1,5), (1,7), (3,4), (3,5), (3,7)}

The first element of each pair represents a binding for x, while the second
represents a binding for ݕ, which satisfies the transition condition ݕ > ݔ. It
can be seen that the multiset of modes, 1’(1,3) + 2’(3,5), is concurrently

Pagina 62 van 148

enabled. Another example of the concurrent enabling of modes is the
multiset 1’(1,5) + 1’(3,4) and yet another is 1’(1,7) + 1’(3,5) + 1’(3,7).

If transition 1ݐ occurred in mode 1’(3,5) then the resultant marking would
be:
 3’1+1’1 = (1݌)ܯ
M(2݌) = 5’1

Alternatively, if the multiset of modes 1’(1,3) + 2’(3,5) occurred concurrently,
the resultant marking would be:
 ∅ = (1݌)ܯ
M(2݌) = 5’2 + 3’1.

3.3.3 High-Level Petri Net Graph (HLPNG) Syntax
As Petri Nets has many (formal) notations, this section describes the
graphical form which comprises two parts: a Graph, which represents the net
elements graphically with textual inscriptions, and a Declaration, defining all
the types, variables, constants and functions that are used to annotate the
graph part. The declaration may also include the initial marking and the
typing function if these cannot be inscribed on the graph part, because of the
limited space. There needs to be a visual association between an inscription
and the net element to which it belongs.

Places
Places are graphically represented by ellipses or might often use by circles.

A place has the following associated annotations:
 the place name;
 the name of the type associated with the place൫ܶ(݌)݁݌ݕ൯;
 the initial marking ܯ଴(݌).

A mechanism is needed to unambiguous regarding the association of these
annotations with the correct place. There are no strict rules for positioning
the annotations with regard to places. To give an example, the initial
marking might be shown inside the ellipse/circle and its name and type
outside or vice versa. If the initial marking is empty, then it might be leaving
out.

Transitions
A transition is graphically represented by a rectangle and is annotated by a
name and an expression that is of Boolean type; the Transition Condition. If
the Transition Condition turns to be true, i.e. (TC (t) = true), it can be leave
out. An example of a transition can be given as follows;

Pagina 63 van 148

 1ݐ

It represents a transition with a name appointed as
ݔ ,and a transition condition ,1ݐ < where the ,(inside the rectangle) ݕ
variables	ݔ and ݕ		and the operator < (less than) are defined in the
declaration part. Also a mechanism is required that prevents ambiguity with
respect to the association of these annotations with the correct transition. The
position of the annotations with respect to transitions is not mandated: e.g.,
the transition condition might be shown inside the rectangle and its name
outside or vice versa.

Arcs
An arc is graphically represented by an arrow. For (݌, F an arrow is ∋ (ݐ
drawn from place p to transition t and conversely, (ݐ, F, an arrow is ∋ (݌
drawn from transition t to place p. It may possible to represent a single arc
with an arrowhead at both ends including an annotation by a single
inscription, when the following situation occurs:

If (݌, ,ݐ) and (ݐ has the same notation, then the formula holds the equation	(݌
A(݌, ,ݐ)A = (ݐ Arcs are annotated with terms for which the notation is not .(݌
mandated by the International Standard. However, usual mathematical
conventions might be determined if desirable.

Markings & Tokens
A token is a member of ⋃ ∈ ܲ௣ Type(݌). A marking of the net may be shown
graphically by annotating a place with its multiset of tokens M(݌) using the
symbolic sum representation.

3.3.4 High-Level Petri Net Graphs Examples
This section provides some basic key examples to explain the use of
HLPNG’s.

Net Graphs
In HLPNGs, an action is modeled by a transition, which is graphically
represented by a rectangle. A collection is modeled by a place, which is
graphically represented by a circle or an ellipse. Places and transitions are
called the nodes of a net graph. Arrows, called arcs, show which places a
transition operates on. Each arc connects a place and a transition in one
direction. Arcs never connect a place with a place nor a transition with a
transition. The graphical representations of components of a net graph can be
illustrated as follows (see Fig. 3.32):

x < y

Pagina 64 van 148

Fig.3.32. Components of a net graph.

Place & Tokens
The objects of the system are modeled by (arbitrarily complex) data items
called tokens. Tokens reside in places. The contents (i.e. the tokens) of a place
are called the marking of the place. The tokens form a collection (known in
mathematics as a multiset), i.e., several instances of the same token can reside
in the place. A marking of a net consists of the markings of each place. A net
graph (see Fig. 3.33) consists of a single place, AlicesPurse, which models that
Alice’s purse contains two 1 cent, three 10 cent and two 50 cent coins. The set
of coins is defined in a textual part of the HLPNG called the Declarations.
The place, AlicesPurse, is typed by the set, Coins. This means that only coins
(belonging to Coins) can reside in Alice’s purse. In this example, the tokens
correspond to coins.

Fig.3.33. Example of a graph net to illustrate tokens which representing coins.

The net graph (see Fig. 3.33) has no transitions and no arcs. As no actions are
modeled, nothing ever happens and nothing ever changes in this system.
When a particular instance of HLPNG is defined, each place is defined with a
special marking, called the initial marking, because other markings will
usually evolve, once a net is executed. As a place can be marked with a large
number of tokens, the initial marking may be declared textually instead of
pictorially. Thus, Alice’s present coin collection can be written as the initial
marking, ܯ଴(AlicesPurse) = 2’1c + 3’10c + 2’50c and the net graph is then
drawn without tokens. The number of each of the coins in the purse is
separated from the value of the coin by a back prime (‘) to avoid any
confusion. To address this issue, there may be both a 5c and a 25c coin. In
order to distinguish these different coins respectively two 5c coins and a 25c
coin, a suitable separator is needed; otherwise the notation 25c can be
ambiguously interpreted.

Pagina 65 van 148

Transitions

Fig.3.34. An example of a simple transition.

Modeling transitions can be simple graphically represented as shown in Fig.
3.34. It models the dripping of a tap. Transition Drip can always happen, any
number of times. This simple transition example is considered to be a net,
even though no arcs and places are involved in this model.

Arcs
An arc from a place to a transition indicates that this transition consumes
objects from the place. An arc in the opposite direction indicates that this
transition produces tokens on the place. The following example is given (see
Fig. 3.35), which models the spending’s behaviour of Alice purse. Alice purse
comprising a collection of coins: one ten cent and two fifty cent coins. In this
example Alice are allowed to spend any number of coins at a time. Arc
annotations determine the kinds and numbers of tokens that are produced or
consumed. Here, the annotation x indicates that any coin (from Alice’s purse)
can be spent. However, it has to be declared in the textual part of Example C
that x denotes a variable for coins. Alice could spend: a ten cent coin; a fifty
cent coin; a ten cent and a fifty cent coin; two fifty cent coins; and all her
coins in one transaction that is by the occurrence of transition spend.

Fig.3.35. Example of the function of an arc.

Coins = {1c, 2c, 5c, 10c, 50c}
x: Coins
 ∅ = (݁ܿݎݑܲݏ݈݁ܿ݅ܣ)	଴ܯ

Net Graphs
Mathematical descriptions of a net graph are often used to provide
ambiguity. Graphically, the size and position of the nodes, as well as the size
and shape of the arcs, that together forms the net graph, contributes to the
readability of net graphs. These aspects are considered irrelevant to
mathematical descriptions of nets. Informally, the net has one place, called
AlicesPurse, one transition called Spend, and one arc starting from the place

Pagina 66 van 148

AlicesPurse to the transition Spend. Thus, formally the model can be expressed
as:

P = {AAlicesPurse}
T = {Spend}
F = {(AlicesPurse, Spend)}

The International Standard uses the abbreviations P, T and F, where P
represents the set of places, T denotes the set of transitions, and F denotes the
set of arcs. Typically, each arc is described as the pair consisting of its node
where it starts flowing from AlicesPurse and its node where it ends flowing to
the transition called Spend.

Transition Conditions
The graph net (see Fig. 3.36) concerns about Bob receiving coins, which he
collects in his purse. The model shows that Bob purse starts with an empty
purse and subsequently collects 10 cent coins. It is not relevant from where
the coins may come from as this is not been modeled. It only shows what
happens to Bob’s purse as a consequence of an arbitrary number of
occurrences of Receive.

Fig.3.36. A graph net illustrates a transition condition.

Coins = {1c, 2c, 5c, 10c, 50c}
 ∅ = (݁ݏݎݑܲݏܾ݋ܤ)	଴ܯ

In the next example (see Fig. 3.37), an expanded version of the previous
example, Alice becomes the initiator of giving Bob any of her coins from her
purse. However as a transition condition, Bob accepts only 10c coins from
Alice to collect in his purse.

Fig.3.37. Expanded graph net illustrating the transition condition.

Pagina 67 van 148

Coins = {1c, 2c, 5c, 10c, 50c}
x : Coins
 10c + 2’50c’1 = (݁ݏݎݑ݈ܲ݁ܿ݅ܣ)	଴ܯ
 ∅ = (݁ݏݎݑܲݏܾ݋ܤ)	଴ܯ

A transition condition has been added, requiring that x = 10c. The transition
Donate takes place when the condition is satisfied. If there are no appropriate
tokens (i.e., 10c) in AlicesPurse, then Donate cannot be occurred. In order to
prevent that Bob (see Fig. 3.37) can collect coins infinitely to his purse, some
modification is made. This results to the updated graph net (see Fig. 3.38)
that restricts the number of 10 cent coins in such a way that Bob can receive
200c maximal by the transition condition ‘n < 200’.

Fig. 3.38. Transition condition defines restrictions of places.

ℕ set of natural numbers
Coins = {1c, 2c, 5c, 10c, 50c}
n : ℕ
<: N × N → Boolean (normally used as ‘less than’)
+ : N × N → N is used as an arithmetic addition
 ∅ = (݁ݏݎݑܲݏܾ݋ܤ)	଴ܯ
 0’1 = (ݏ݊݅݋ܥ݂ܱݎܾ݁݉ݑܰ)	଴ܯ

Two companies respectively Company A and Company B are located at
different places. Company A distributes big crates to Company B one by one
and all of them have the same size. Company B stores the crates in a store
room. From the store room, crates are used for processing e.g., distributed to
consumers. B’s Company store room has a certain storage capacity of crates
denoted as MAX. To prevent the store room to be overcrowded, Company B
concludes an agreement with Company A on a protocol that controls the flow
(see Fig. 3.39).

 Fig. 3.39. Procedure for controlling the distributed crates.

Pagina 68 van 148

Company A implements the agreed protocol by keeping a record of
SendingCredits, while Company B keeps a record of empty slots available for
storing crates in the store room. Any time that there are empty slots, Company
B may reserve them and give the number, via a letter by setting the number
of unreserved slots to 0, of reserved (and empty) crates as sending credits for
crates to Company A. Whenever Company A receives such a letter, it increases
Sending-Credits by the number written in it. Sending a crate, which is only
possible if SendingCredits is 1 or more, lowers SendingCredits by 1, and
processing a crate raises the number of empty and hence unreserved slots by
one. Initially, the situation is as follows: no crate or letter is in transit; the
store room is empty; there is no sending credit; and all slots are empty and
unreserved (see Fig. 3.40). Note that this HLPNG models infinitely many
different systems. It is a parameterized HLPNG with a parameter MAX, that
may take any natural number as a value. Each such value val, substituted for
MAX instantiates an ‘ordinary’ HLPNG without parameters.

Fig.3.40. An extended distributed system with respect to the agreed protocol.

Crates = {Cr}
ℕ = {0, 1, 2…} the natural numbers
ℤ = {} the set of integers
n, new, sc: ℕ
+: Z × Z → Z is an arithmetic addition
- : Z × Z → Z is an arithmetic substraction
MAX: N
 ∅ = (݉݋݋ܴ݁ݎ݋ݐܵ)	଴ܯ = (ݐ݅ݏ݊ܽݎܶ݊ܫݏݎ݁ݐݐ݁ܮ)	଴ܯ = (ݐ݅ݏ݊ܽݎܶ݊ܫݏ݁ݐܽݎܥ)	଴ܯ
 0’1 = (ݏݐ݅݀݁ݎܥ݃݊݅݀݊݁ܵ)	଴ܯ
 MAX’1 = (ݏݐ݋݈ܵ݀݁ݒݎ݁ݏ݁ݎܷ݊)	଴ܯ

Pagina 69 van 148

3.3.5 Petri Net Markup Language (PNML) for Petri Nets
The standardization process of HLPNs was one of the main reasons for
developing PNML. Arising from the previous sections, this standard defines
HLPNGs as a syntactic representation of HLPNs. PNML is designed to be a
Petri net interchange format that is independent of specific tools and
platforms [Kind 06].

PNML Design Principles
The design of PNML was governed by the principles of flexibility, ambiguity
and compatibility.

Flexibility is related to the PNML specific extensions and features that
contribute to representing any kind of Petri net. Petri nets can be converted
to PNML and to this fact it provides the possibility to record all relevant
specific information extracted from a Petri net, while not losing any detail.
Furthermore, PNML has the ability to offer features to be applied by all
kinds of Petri nets. Since PNML considers a Petri net as a labeled graph,
additional information are stored in labels, which are attached to the net
itself, to the nodes of the net, or to its arcs.

Ambiguity is achieved by ensuring that the original Petri net and its particular
type can be traced precisely from its PNML representation. Consequently,
PNML supports the definition of different Petri net types. A Petri net type
definition (PNTD) declares the allowable labels for a particular Petri net type.
PNML assigns a fixed type to each Petri net. Through this way the
description are interpreted to be unambiguous.

Compatibility has to deal with information exchange of different types of Petri
nets. PNML ensures this exchange of information as much as possible
between different types of Petri nets by using conventions on how to define a
label with a certain meaning. The syntax as well as the intended meaning of
all kinds of extensions is predefined in a Conventions Document. To add a new
Petri net type, labels are selected from this Conventions Document. When a
new Petri net type conforms to these conventions for defining its own labels,
the meaning of its labels is well-defined. Thus, Petri net based tools are
allowed to interpret the net, even when the new Petri net type is unknown.

PNML Structure
PNML consists of several components that together form the internal
structure of the PNML language (see Fig. 3.32). From a bottom-up view, the
metamodel component, positioned in the PNML technology, defines the
basic structure of a PNML file. A PNML file conforms to its metamodel.

Pagina 70 van 148

PNML Technology components (metamodel, feature definition interface, type
definition interface) are fixed.

Fig. 3.32. Components of the Petri Net Markup Language.

The Type Definition Interface allows the definition of new Petri net types,
whereas the Feature Definition Interface allows the definition of new features.
To this end, the component states how the files must be structured.

The Conventions Document is extensible in the sense of adding new labels to
the standard collection including description of their semantics and their
typical use. From here, a new Petri Net Type Definition (PNTD) then can be
built based on these predefined labels or possibly new ones. In contrast to the
PNML Technology part, the Conventions Document, part of the PNML
Types and Features layer, evolves. It contains definitions of a set of standard
features. Similar to Standard Petri Net Types that defines a standard collection
of types. These both conforms the feature and type definition interface. New
features can be added to the Conventions Document and new types to the
Standard Petri Net Types, which uses features from the Conventions
Document. Due to this fact, the Conventions Document can be distributed
and maintained efficiently through a web-based medium.

Pagina 71 van 148

3.3.6 Summary of the Petri Net Architecture
The International Standard provides a well-defined semi-graphical technique
for the specification, design and analysis of systems. The technique, High-
level Petri Nets (HLPN), is mathematically defined. A more syntactical
graphical way of HLPN is the High-Level Petri Net Graphs (HLPNG) that
allows practitioners to describe the behaviour of a wide variety of discrete
events and distributed systems; it allows visualization of system dynamics
(i.e. flows of data and control). In practice Petri Nets can be deployed in
different application fields, which could provide costs benefits and
governance of systems. Petri Nets are executable by the Petri Net Markup
Language [Kind 06], an XML based Petri net interchange format that is
independent of specific tools and platforms.

Pagina 72 van 148

Pagina 73 van 148

Chapter 4

Concept Modeling

This chapter describes the concept mapping of business process from the
ArchiMate modeling language directly to Petri Nets and indirectly via
BPMN. It can be done analogously to the BPMN language with ArchiMate as
intermediary language. Concept mapping [Wier 04],[03] between ArchiMate
and BPMN is needed to concretize and to explicit the relation with respect to
the integration of business processes. The semantics of concepts [04] are
evaluated by comparing the directly and indirectly mappings. An basic
example is given to clarify the key elements in mapping business process
concepts.

Semantic Modeling using Petri Nets
Transformation of BPMN models to a formal modeling language such as
Petri Nets could enable behavior analysis [Raed 07], [Dijk 08],[Chri 10]. This
is very useful for verification and validation purposes. In this chapter, the
modeling approach could provide a way for model verification and
validation by transforming equivalent ArchiMate and BPMN models into
Petri Nets. Each modeling language describes their architecture for a specific
domain such as processes, products, infrastructure, organizations etc. by
using their own characteristic elements. At different stages of transformation
processes, models are required to be remodeled: modeling architectures of
domains deals with different stakeholders from different backgrounds and
their concerns. By doing this, it is important that semantically the models are
equivalent in order to ensure quality of models without losing any
information. Petri Net models are ambiguous and suitable for analysis. For
this reason, the applied modeling approach should ensure whether the
semantics of the remodeled ArchiMate / BPMN models are semantically
identical by checking the correctness of the models using Petri Net.

Pagina 74 van 148

Fig. 4.1. Architecture covers symbolic and semantic models.

For a fundamental understanding of modeling enterprises, it is indispensable
to consider the following approach in terms of symbolic models and semantic
models (see Fig. 4.1). Enterprises may have architectures ranging from generic
architectural models till specific architectural designs each expressed by their
own characteristic symbolic models representing the real world as the
domain of interests and abstracted by semantic models that are
interpretations of symbolic models i.e. the actual meaning of the symbolic
models in which they are used.

Semantics in Model Transformations by Means of Concepts
In Chapter 2 the underlying principles of ArchiMate and BPMN are already
explained. The architecture of these languages, described in Chapter 3,
differs in granularity (i.e. level of detail: generalization vs. specialization) and
abstraction levels from each other, but shares some common similarities. The
ArchiMate covers business, application and technology aspects, while BPMN
comprises only the business part. From this perspective, BPMN can be seen
as a specialization of ArchiMate and conversely, ArchiMate could be seen as
a generalization of BPMN. When modeling the domain of interests, inter-
relating these architectural domains could support modeling tools to easily
collaborate: to model ArchiMate models in BPMN modeling tools and
conversely, to model BPMN models in ArchiMate modeling tools. Applying
the modeling approach of integration should effectuate this goal.

Pagina 75 van 148

4.1 Abstract syntax of BPMN and ArchiMate
First of all, the syntax of both BPMN and ArchiMate are defined. The mixed
constructs of both ArchiMate and BPMN makes it is possible to obtain
models with a range of semantic errors. The ability to check the semantic
correctness of models is a desirable feature for modeling tools based on these
modeling techniques.

4.1.1. Abstract syntax of BPMN
It is necessary to demarcate what to be considered as to be part of a core
BPMN process. Based on the metamodel of the BPMN language in Chapter 3
(Sect. 3.23), the abstract syntax of BPMN is defined. For this reason, some
concepts from the BPMN specification have been omitted as such with
respect to the overlapping parts in the ArchiMate language.

Definition of a well-formed core BPMN process:
A core BPMN process is a tuple, i.e. an ordered list of elements, where

࣪ =	൬ࣩ,ࣛ, ℰ, ࣡, ࣰ, ࣴ, ℛ,࣮, ࣭, ℰ࣭ , ℰ ℐ , ℰℰ, ࣲ࣡ , ࣡ℐ , ࣡࣪ , ࣰ࣪ , ࣰℒ , ࣴࣞ ,
, ࣴ࣡ , ℛ࣭ , ℛℳ , ℛࣛ ൰

Notation Meaning
ࣩ A set of objects which can be partitioned into disjoint sets of

activities	ࣛ, events	ℰ, gateways	࣡, swimlanes ࣰ and artifacts	ࣴ.
ࣛ A set of activities (an activity can be an atomic activity or non-

atomic activity (compound)) can be partitioned into disjoint
sets of tasks ࣮ and subprocesses	࣭.

ℰ A set of events ℰ can be partitioned into disjoint sets of start
events	ℰ࣭, intermediate events ℰ ℐ and end events	ℰℰ.

࣡ A set of gateways can be partitioned into disjoint sets of
exclusive-gateways	ࣲ࣡ , inclusive-gateways	࣡ℐ and parallel
gateways	࣡࣪.

ࣰ A set of swimlanes can be partitioned into disjoint of
pools	ࣰ࣪ and lanes	ࣰℒ.

ࣴ A set of artifacts can be partitioned into disjoint of data
objects	ࣴࣞ and groups	ࣴ࣡.

ℛ A set of connecting objects can be partitioned into disjoint
sets of sequence flow relations	ℛ࣭ , message flow relations	ℛℳ
and associations	ℛࣛ.

ℛ ⊆ .The set of relations between flow objects ࣩ	ݔ	ࣩ

Pagina 76 van 148

Requirements
ݏ	∀ ∈ ℰ࣭ , (ݏ)݃݊݅݉݋ܿ݊݅ = ∅	 ∧ |(ݏ)݃݊݅݉݋ܿݐݑ݋	| = 1
∀	݁ ∈ ℰℰ, (݁)݃݊݅݉݋ܿ݊݅ = 1	 ∧ |(݁)݃݊݅݉݋ܿݐݑ݋	| = ∅
∀	݅	 ∈ ℰ ℐ , (݅)݃݊݅݉݋ܿ݊݅ = 	1	 ∧ |(݅)݃݊݅݉݋ܿݐݑ݋	| = 1
∀	݃ ∈ ࣲ࣡ ∪ ࣡ℐ ∪ ࣡࣪ , (݃)݃݊݅݉݋ܿ݊݅ = 	1	 ∧ |(݃)݃݊݅݉݋ܿݐݑ݋	| 	> 1 (SPLITS)
∀	݃ ∈ ࣲ࣡ ∪	࣡ℐ ∪	࣡࣪ , (݃)݃݊݅݉݋ܿ݊݅ 	> 	1	 ∧ |(݃)݃݊݅݉݋ܿݐݑ݋	| = 1 (JOINS)
ݔ		∀ ∈ ࣩ, ݏ	∃ ∈ ℰ࣭ , ∃	݁	ℰℰ, 	ݔℛݏ ݁∗ℛݔ ∧

ݏ	∀ ∈ ℰ࣭ , (ݏ)݃݊݅݉݋ܿ݊݅ = ∅	 ∧ |(ݏ)݃݊݅݉݋ܿݐݑ݋	| = 1, means that every single
start event has not an incoming flow denoted by the empty collection	∅. A start
event does have an outcoming flow, thus has the value 1.

When looking at end events ∀	݁ ∈ ℰℰ, (݁)݃݊݅݉݋ܿ݊݅ = 1	 ∧ |(݁)݃݊݅݉݋ܿݐݑ݋	| =
∅, it shows the opposite of start events. End events have an incoming flow
with value ‘1’ and not having an outcoming flow denoted by the empty
collection	∅.

Further reasoning, ∀	݅	 ∈ ℰூ , (݅)݃݊݅݉݋ܿ݊݅ = 	1	 ∧ |(݅)݃݊݅݉݋ܿݐݑ݋	| = 1 has both
the value 1 for incoming and outcoming flows in the case of an intermediate
event. Advanced mechanism of this event type is excluded (e.g. exception
handling, intermediate timer or message events that cause an exception).

Gateways are a special mechanism that join or split the incoming flows. In case
of	∀	݃ ∈ ࣲ࣡ ∪ ࣡ℐ ∪ ࣡࣪ , (݃)݃݊݅݉݋ܿ݊݅ = 1	 ∧ |(݃)݃݊݅݉݋ܿݐݑ݋	| 	> 1, for each
gateway ݃ that is an element of the union of gateways		ࣲ࣡ ∪ ࣡ℐ ∪ ࣡࣪, have a
single incoming flow, thus 1 and an outgoing flow that is	> 1.

∀	݃ ∈ ࣲ࣡ ∪	࣡ℐ ∪	࣡࣪ , (݃)݃݊݅݉݋ܿ݊݅ 	> 	1	 ∧ |(݃)݃݊݅݉݋ܿݐݑ݋	| = 1. With regards
to joins, it shows the opposite way of the previous one; it has for incoming
flow the condition > 	1 and when a join occurs, outgoing flow results in the
condition	= 1.

Finally, for all start events there exists a path to an object and each object is on a
path from a start event to an end event denoted with		ݏℛݔ	 ℛ∗݁, i.e. aݔ ∧
reflexive transitive relation of			ℛ. Thus, ∀		ݔ ∈ ࣩ, ݏ	∃ ∈ ℰ࣭ , ∃	݁	ℰℰ, 	ݔℛݏ ∧ ݁∗ℛݔ
determines the above mentioned relationship.

A BPMN process might have multiple start events and end events. These
situations are excluded to facilitate the translation process having only single
events and single end events. The following requirements must be satisfies in
order to be considered as a well-formed core BPMN model.

Pagina 77 van 148

Definition of a well-formed core BPMN model:
A core BPMN model is a tuple ℳ஻ = (߮, ߶, ߰, ߱) where;

Notation Meaning
߮ A set of core BPMN processes

(ଵ࣪, ଶ࣪,			…	 ௡࣪,)
߶ = 	∪࣪∈ఝ 	࣭࣪ A collection of all subprocesses

࣭ (i.e. compound activities). ܵ࣪
Indicates the set of all
subprocesses in	࣪.

߰:	߶	 → 	߮ (one-to-one mapping)

∀	߶,߮	 ∈ 	߰ ∶ 	߰(߶) = ߰(߮) 	→ 	߶ = 	߮

An injective function that
maps each subprocess ࣭ (߶)
(atomic or non-atomic activity) to
a core BPMN process(߮).

߱ = ൛	൫ ௫࣪ , ௬࣪൯ ∈ 	߮	 × 	߮	ห∃௦∈࣭࣪ೣ (ݏ)߰		 = ௬࣪}

The relationship between a core
BPMN process and its subprocess
(i.e. compound activity) is a
connected graph.

	ℛெ 	⊆ ቌ
∪

೛ࣰ
࣪∈ఝ (࣮࣪ 	 ∪ ࣭࣪)

×	
∪

೛ࣰ
࣪∈ఝ (࣮࣪ 	 ∪ ࣭࣪)

ቍ	

or

	ℛெ 	⊆ ൫∪࣪∈ఝ (ܸ࣪࣪) ×	∪࣪∈ఝ (ܸ࣪࣪)൯	

The set of message flows
between processes in terms of
pools.

Requirements Meaning
∀߱	 ∈ 	߮	|	߱ = Each ߱ is a directed acyclic graph ܩܣܦ

(DAG)

A well-formed core BPMN model might consists of multiple business
processes. Therefore ߮ is introduced that is a collection of defined sets of core
BPMN processes. Distinction is made for subprocesses (i.e. compound
activities), which is also considered as a set of core BPMN processes denoted
with	߶.

An injective function called ߰ maps each subprocess ࣭ from the collection of ߶
to a core BPMN process that adds to the collection of	߮. In addition, when
dealing with relations between a well-formed core BPMN processes with
respect to its subprocess	࣭, they have to be connected with each other as a
connected graph.

A well-formed core BPMN model satisfies the requirement of a directed
acyclic graph. In fact, a core BPMN process is a directed graph of flow objects ङ

Pagina 78 van 148

and connecting objects	ℛ, in particular sequence flows	जࡿ. Furthermore, it is not
allowed that there exists a path in the BPMN model such that the model in
consideration is cyclic, i.e. there is no path starting at a certain subprocess झ
that follows a sequence of flows	जࡿ and eventually return back to the
originate subprocess झ again. In line with this, the path of the BPMN model is
considered as a directed acyclic graph (DAG) in order to be a well-formed core
BPMN model.

4.1.2. Abstract syntax of ArchiMate
At the same way the abstract syntax of the ArchiMate language can be
defined, based on its metamodel described in Chapter 3 (Sect. 3.1.5). As
much as possible the ArchiMate business layer concepts, which are relevant
for translating ArchiMate to BPMN, are included. Both the business service
and the business interface aspect are not part of the definition, since it cannot
be expressed in the BPMN language. This leads to the ArchiMate definition
of well-formed core business process.

Definition of a well-formed core ArchiMate business process:
A core ArchiMate business process is a tuple of elements where ℙ =

൬ℬℰ, ℬ࣭ℰ, ℬℬℰ, ℬࣩ, ࣤ,ℛ࣮, ℬ࣪,ℬℱ, ℬ࣭ℰࣛ , ℬ࣭ℰℛ , ℬℬℰℰ, ࣤࣨ , ࣤࣛ , ࣩࣤℬ࣪ࣛ ,ℛ࣮࣮,
ℛ࣮ℱ ,ℛ࣮ࣝ, ℛ࣮࣭ ,ℛ࣮࣡ ൰

Notation Meaning
ℬℰ A set of business elements which can be partitioned into

disjoint sets of business structure elements	ℬ࣭ℰ, business
behaviour elements	ℬℬℰ and business objects	ℬࣩ.

ℬ࣭ℰ A set of business structure elements can be partitioned
into disjoint sets of business actors	ℬ࣭ℰࣛ, business
roles	ℬ࣭ℰℛ.

ℬℬℰ A set of business behavioral elements can be
partitioned into disjoint sets of business events	ℬℬℰℰ
business processes ℬ࣪ and business functions	ℬℱ.

ℬࣩ A set of business objects.
ࣤ A set of junctions can be partitioned into disjoint sets of

Junctions	ࣤࣨ, AND-junctions	ࣤࣛ and OR-junctions	ࣩࣤ.
ℬ࣪ࣛ 	⊆ ℬ࣪ A set of business activities (specialization of ℬ࣪)
ℛ࣮ A set of relation types can be partitioned into disjoint

sets of trigger relations	ℛ࣮࣮, flow relations	ℛ࣮ℱ and access
relations	ℛ࣮ࣝ, association relations	ℛ࣮࣭ and grouping
relations	ℛ࣮࣡.

ℛ࣮ ⊆ ℬℰ × ℬℰ A set of all relation types between business elements.
ℛ࣮࣮ ⊆ 	ℛ࣮ Trigger relations are a subset of relations.

Pagina 79 van 148

ℛ࣮ℱ ⊆ 	ℛ࣮ Flow relations are a subset of relations.
ℛ࣮ࣝ ⊆ 	ℛ࣮ Access relations are a subset of relations
ℛ࣮࣭ ⊆ 	ℛ࣮ Association relations are a subset of relations.
ℛ࣮࣡ ⊆ 	ℛ࣮ Grouping relations are a subset of relations.

The following requirements must be satisfies in order to be a well-formed core
ArchiMate business process.
Requirements
,ݔ	∀ ݕ ∈ 	ℬℰ, |	ݕℛ࣮࣮ݔ
if incoming(x) = {ℬ࣪ࣛ|ℬℬℰℰ|ℬ࣪|ℬℛ}, ݅݊ܿ(ݕ)݃݊݅݉݋ = 	 {ℬ࣪ࣛ|	ℬℬℰℰ|ℬ࣪|ℬℱ}
Otherwise ݅݊ܿ(ݔ)݃݊݅݉݋ = {ℬ࣭ℰࣛ ,ℬℱ}, (ݕ)݃݊݅݉݋ܿ݊݅ =	 {ℬ࣪ࣛ|ℬℛ}
,ݔ	∀ ݕ ∈ 	ℬℰ, |	ݕℛ࣮ℱݔ
(ݔ)݃݊݅݉݋ܿ݊݅	݂݅ = {ℬ࣪ࣛ|ℬℬℰℰ|ℬ࣪}, (ݕ)݃݊݅݉݋ܿ݊݅ = {ℬ࣪ࣛ|ℬℬℰℰ|ℬ࣪|ℬℱ}
(ݔ)݃݊݅݉݋ܿ݊݅	݂݅ = {ℬ࣭ℰࣛ|ℬℛ}, (ݕ)݃݊݅݉݋ܿ݊݅ = {ℬ࣪ࣛ|ℬℛ	|ℬℱ}
(ݔ)݃݊݅݉݋ܿݐݑ݋	݁ݏ݅ݓݎℎ݁ݐ݋ = {ℬℱ}, (ݕ)݃݊݅݉݋ܿ݊݅ = {ℬ࣪ࣛ|ℬ࣪|ℬ࣭ℰࣛ|ℬℛ|ℬℱ}
,ݔ	∀ ݕ ∈ 	ℬℰ, |	ݕℛ࣮ࣝݔ
outcoming(ݔ) = {ℬ࣪ࣛ|ℬℬℰℰ|ℬ࣪|ℬ࣭ℰࣛ|ℬℛ|ℬℱ}, (ݕ)݃݊݅݉݋ܿ݊݅ = {ℬࣩ}
,ݔ	∀ ݕ ∈ 	ℬℰ, |	ݕℛ࣮࣭ݔ
(ݔ)݃݊݅݉݋ܿ݊݅	݂݅ = {ℬ࣪ࣛ|ℬℬℰℰ|ℬ࣪|ℬ࣭ℰࣛ|ℬℛ|ℬℱ}	ݐℎ݁݊	
(ݕ)݃݊݅݉݋ܿ݊݅ = 	 {ℬ࣪ࣛ|ℬℬℰℰ|ℬ࣪|ℬ࣭ℰࣛ|ℬℛ|ℬℱ|ℬࣩ}
,ݔ	∀ ݕ ∈ 	ℬℰ, ,ݕݕࣤݔ ,ݕࣤݔݔ ,ݔ)݁݌ݕ݈ܴܶ݁ :(ݕ ݔ		⋀	ݎ݁݃݃݅ݎݐ	|	ݓ݋݈݂ = ,ݕ
(ݔ)݃݊݅݉݋ܿ݊݅	݂݅ = {ℬ࣪ࣛ|ℬℬℰℰ	|ℬ࣪|ℬ࣭ℰࣛ|ℬℛ|ℬℱ|ࣤ}	ݐℎ݁݊
(ݕ)݃݊݅݉݋ܿݐݑ݋ = {ℬ࣪ࣛ|	ℬℬℰℰ|ℬ࣪|ℬ࣭ℰࣛ|ℬℛ|ℬℱ|ࣤ}
∀	݆ ∈ ࣤࣨ ∪ ℐࣛ ∪ ࣩࣤ , (݆)݃݊݅݉݋ܿ݊݅	ℎ݁݊ݐ	ݐ݈݅݌ݏ	݂݅ = 	1	 ∧ |(݆)݃݊݅݉݋ܿݐݑ݋	| 	> 1
∀	݆ ∈ ࣤࣨ ∪ ℐࣛ ∪ ࣩࣤ , (݆)݃݊݅݉݋ܿ݊݅	ݏ݊݅݋݆	݂݅ 	> 	1	 ∧ |(݆)݃݊݅݉݋ܿݐݑ݋	| 	= 1
,ݔ		∀ ݕ ∈ ℬℰ, ∃	݁ ∈ ℬℬℰℰ, ݁ℛ࣮ݔ ∧ ݕℛ࣮ݔ	
ℛ࣮࣡ =	∪ℬ࣪∈ℙ ℬℰℬ࣪

According to the definition of a well-formed ArchiMate business process, its
structure reflects the core of the ArchiMate language (see Sect. 3.1.4). An
ArchiMate business process is in fact a relation between business structure
elements that triggers the behaviour, business behaviour elements that shows the
actual behaviour which is assigned to a business structure element (i.e.
initiator) and business objects on which behaviour is performed.

A business activity is a special business behaviour element that is created via
specialization of the business process (i.e. parent). Furthermore, five special
kinds of relations are considered to be important: trigger, flow, access,
association, and grouping relations.

To become a well-formed core business process, the above defined
requirements needs to apply in order to prevent unwell-formed erroneous
business processes. The trigger relation requirement ∀	ݔ, ݕ ∈

Pagina 80 van 148

	ℬℰ, -means that there exists a path from a ℬℰ-element to another ℬℰ	ݕℛ࣮࣮ݔ
element.

For a precise definition that governs the permitted relations of trigger
relations, some constraints are added. The requirement
ݔ	∀ ∈ 	ℬ࣪ࣛ , (ݕ)݃݊݅݉݋ܿ݊݅ = 	 {ℬ࣪ࣛ ,ℬℬℰℰ, ℬ࣪, ℬℱ} indicates that a business
activity only may connect to another business activity, a business event, a
business process, or a business function.

This is done at the same way for all associated business elements of different
relation types. ArchiMate is able to handle dynamic relationships. A junction
is used to connect dynamic relationships of the same type. It is used in a
number of situations to connect dynamic (triggering or flow) relationships of
the same type to indicate splits or joins.

Three types can be discerned into joins, AND-joins and OR-joins. Joins can
split and join both incoming and outcoming flows, whereby at least one of the
two flows needs to be activated before it proceeds. AND-joins mean that both
incoming and outcoming flows are required to activate, while OR-joins
proceeds when exactly one of the in- and outcoming flow satisfies. Splits have
incoming flows that results in = 	1 and an outcoming flow of	> 1. Joins is
exactly the opposite. Joins can handle only flow or trigger relations for in-
and outcoming flows, where it is permitted to use different relations types
for each incoming and outcoming flows.

Next, ∀		ݔ, ݕ ∈ ℬℰ, ∃	݁ ∈ ℬℬℰℰ, ݁ℛ࣮ݔ ∧ states that there exists a path ݕℛ࣮ݔ	
from a business event to a business element. From then, there is a path from
a certain business element that finally ends with another business element.
The requirement ℛ࣮࣡ =	∪ ℬℰ declares that objects of the same type or
different types belong together (based on some common characteristic).

Definition of a well-formed core ArchiMate business model:
A core ArchiMate model is a tuple ℳࣛ = (ߜ, :where (ߣ

Notation Meaning
 A set of core ArchiMate processes ߜ

(ℬ ଵ࣪,ℬ ଶ࣪,			…	ℬ ௡࣪,)
ߣ = {൫ℙଵ,ℙଶ൯ ∈ 	ߜ	 × A relation between ArchiMate processes is a 	{ߜ	

connected graph.

A well-formed core ArchiMate business model might consists of multiple
business processes. Therefore ߜ is introduced that is a collection of defined
sets of core ArchiMate processes. Eventually, the relation between ArchiMate

Pagina 81 van 148

processes mutually is a connected graph to satisfy a well-formed core
ArchiMate business model.

4.2 Mapping to Petri Nets (Directly)
The abstract syntax is given in the previous section of both ArchiMate and
BPMN languages. Furthermore, a definition of well-formed core business
model serves as a basis for models being created in these languages and thus
a way to restrict models. To this end, selecting those parts as being
considered to be an essential part can be demarcated. As the mapping to
Petri Nets can be performed, the semantic modeling approach are simply
graphically represented as:

ArchiMate Concepts ஺ࣝ BPMN Concepts ࣝ஻

ArchiMate Model BPMN Model

Petri Nets Petri Nets

Table 4.1 Notation and their meaning are summarized.
Notation Meaning

஺ࣝ From the perspective of an ArchiMate concept.
ࣝ஻ From the perspective of a BPMN concept.
 .஺ The semantic of an ArchiMate concept in terms of Petri Netsߨ
 .஻ The semantic of a BPMN concept in terms of Petri Netsߨ
߬஺,஻ The transformation from an ArchiMate concept towards a

BPMN concept.
߬஻,஺ The transformation from a BPMN concept towards an

ArchiMate concept.

 ࡮࣊ ࡭࣊

 ࣎஺,஻

 	࣎஻,஺

semantic
identical?

Pagina 82 van 148

When checking the semantic correctness of both the ArchiMate and BPMN
concepts in terms of Petri Nets, the equation of semantic correctness can be
described as follow:

Hypotheses

)஺ߨ .1 ஺ࣝ) ≡? ߨ஻(߬஺,஻(஺ࣝ))

 ஺(߬஻,஺(ࣝ஻))ߨ ?≡ 	஻(ࣝ஻)ߨ .2

The hypothesis 1 and 2 holds when ⊨	ߨ஻ ቀ߬஺,஻(஺ࣝ)ቁ)஺ߨ	↔ ஺ࣝ) and ⊨

஺ߨ	 ቀ߬஻,஺(ࣝ஻)ቁ ↔)஺ߨ ஻(ࣝ஻) on the assumption thatߨ	 ஺ࣝ) ≡ ஻ߨ	 ቀ߬஺,஻(஺ࣝ)ቁ and

஻(ࣝ஻)ߨ	 ≡ ஺ߨ ቀ߬஻,஺(ࣝ஻)ቁ satisfies.

Instead of starting with complex ArchiMate or BPMN models, this section
introduces the comparison at a conceptual level as well as the operational
level in terms by checking the semantics in terms of Petri Net concepts. These
two comparison mechanism provides a much better understanding of the
distinct modelling concepts. At this way, the features of each concept can be
unambiguously defined and graphically expressed. Thereby it is much easier
to gain a comprehensive view of the development of constructing an entire
Petri Net model. Each single concept needs to translate to another equivalent
concept. The translation describes a way from both ArchiMate and BPMN
concepts to Petri Net equivalent concepts which has two ways:

Directly translation at conceptual level
Using concepts from ArchiMate can directly translate to equivalent Petri Net
concepts	ߨ஺(ࣝ஻). At the same way, concepts from BPMN can directly
translate to Petri Net concepts, denoted by the notation	ߨ஻(ࣝ஻).

Indirectly translation at operational level
Using concepts from ArchiMate can indirectly translate via the BPMN
language concepts denoted by	߬஺,஻(஺ࣝ). At the same way, concepts from
BPMN can indirectly translate to Petri Net concepts via ArchiMate as
intermediate language denoted by the notation		߬஻,஺(ࣝ஻).

Comparison (Conceptual vs. Operational)
When taken this semantic modelling approach, it is possible to see what are
either the differences or similarities. Based on the translation process, the
hypotheses 1 and 2 can be evaluated by doing so.

Pagina 83 van 148

4.2.1 BPMN ߨ஻
In this stage, BPMN concepts are directly mapped to equivalent Petri Net
concepts.

Petri Net notation
௟௘௧௧௘௥݌ = ݏ݈݁ܿܽ݌
௟௘௧௧௘௥ݐ = (݁݉ܽ݊	ܽ	ℎݐ݅ݓ	݈ܾ݈݀݁ܽ)	ݏ݊݋݅ݐ݅ݏ݊ܽݎݐ
௟௘௧௧௘௥݌) , (௟௘௧௧௘௥ݐ = ,ݏ݊݋݅ݐ݅ݏ݊ܽݎݐ	݋ݐ	ݏ݈݁ܿܽ݌	݉݋ݎ݂)ݏܿݎܽ ݊ܽ݉݁)
௟௘௧௧௘௥ݐ) , (௟௘௧௧௘௥݌ = ,ݏ݈݁ܿܽ݌	݋ݐ	ݏ݊݋݅ݐ݅ݏ݊ܽݎݐ	݉݋ݎ݂)ݏܿݎܽ ݊ܽ݉݁)
(௟௘௧௧௘௥݌)଴ܯ = ݈݁ܿܽ݌	݊݅ܽݐݎ݁ܿ	ܽ	݂݋	݃݊݅݇ݎܽ݉	݈ܽ݅ݐ݅݊݅ − ௟௘௧௧௘௥݌

ଵܥ	ݐ݁ܮ :݀݁ݐ݈ܽݏ݊ܽݎݐ	ܾ݁	݊ܽܿ	ݏݐܿݑݎݐ݊݋ܿ	݃݊݅ݓ݋݈݈݋݂	ℎ݁ݐ	ℎ݁݊ݐ	࣪	݉݋ݎ݂	ݏݐ݌݁ܿ݊݋ܿ	ܾ݁	ଵହܥ…

NOTE: Let the variable	ݔ	݀݊ܽ	ݕ be input and output places. Sometimes
 .are used for places that represents the start place and the end place ݁	݀݊ܽ	ݏ
Letters used for transitions starts with one or two letter(s) of the concept
name (e.g., ݐௌ௉ for sub-process and ݐ௦ for start event).

Start event
஻ߨ ℰ࣭	= (ଵܥ)	
A start event triggers ‘others’, so a flow direction is included where the
desired next destination is called	ݕ. This leads to the following notation in
Petri Net: ℰ࣭ =	ቀ(݌௦ , ,(௦ݐ ൫ݐ௦ , with the assumption that the initial marking	௬൯ቁ݌
is		ܯ଴(݌௦) = 	 ௦ݐ൫	݅݊	௬݌ ௦. Note thatݐ , ௬൯ illustrates the destination place that is݌
on the background (graphically displays a dotted eclipse or circle).
Transitions are intended to model the execution of the concepts behaviour, in
this case the trigger originating from a start event. The associated transition
is used to signal when the process starts. Thus, ߨ஻(ℰ࣭) =	 ቀ(݌௦ , ,(௦ݐ ൫ݐ௦ , .௬൯ቁ݌

Intermediate event
஻ߨ (ଶܥ)	 = 	ℰ ℐ
An intermediate event is distinguished from start/end events by having an
incoming and an outcoming flow. In Petri Net: ℰ ℐ =	ቀ(݌௫ , ,(௜ݐ ൫ݐ௜ , with	௬൯ቁ݌
the assumption that the initial marking is	ܯ଴(݌௫) = 	 ௜. Note that variableݐ
௫݌ ௫݌)	݊݅	 , ௜ݐ൫	݅݊	௬݌	݀݊ܽ	(௜ݐ , ௬൯ illustrates both the originating and destination݌
place that plays on the background (graphically displays a dotted eclipse or
circle). In this case the invoked trigger (such as message or time trigger event)
conveys the tokens (e.g. message or the time) to place	݌௬ .
Thus, ߨ஻(ℰ ℐ) = 	 ቀ(݌௫ , ,(௜ݐ ൫ݐ௜ , .௬൯ቁ݌

Start event

y

Pagina 84 van 148

End event
஻ߨ (ଷܥ)	 = 	ℰℰ
An end event is similar to start events, but in reverse. This leads to the
following notation in Petri Net: ℰℰ =	൫(݌௫ , ,(௘ݐ ௘ݐ) , with the assumption	௘)൯݌
that the initial marking is	ܯ଴(݌௘) = 	 ௫݌ ௘. Note that variableݐ ௫݌)	݊݅	 , (௘ݐ
illustrates the input place that serves on the background (graphically
displays a dotted eclipse or circle). The transition ݐ௘ is intended to signal the
end of the associated task or process, resulting in an end event denoted with
the place	݌௘ . Thus, 	ߨ஻(ℰℰ) = 	 ൫(݌௫ , ,(௘ݐ ௘ݐ) , .௘)൯݌

Task
(ସܥ)஻ߨ = 	࣮
A task ࣮ in Petri Net is given by ࣮ = ቀ(݌௫ , ,(௧௔௦௞ݐ ൫ݐ௧௔௦௞ , ௬൯ቁ with the݌
assumption that the initial marking is	ܯ଴(݌௫) = 	 ௧௔௦௞. Note that variableݐ
௫݌ ௫݌)	݊݅	 , ௧௔௦௞ݐ൫	݅݊	௬݌ ௧௔௦௞) andݐ , illustrates the input and output place that	௬൯݌
graphically displays a dotted eclipse or circle, since it is not known what the
associated places are.
The translation would be		ߨ஻(࣮) = 	 ቀ(݌௫ , ,(௧௔௦௞ݐ ൫ݐ௧௔௦௞ , .௬൯ቁ݌

Subprocess
(ହܥ)஻ߨ = 	࣭
A Subprocess ࣭ in Petri Net is given by:

࣭ = ൬൫(݌௫ , ,(ௌ௉௖௔௟௟ݐ ௌ௉௖௔௟௟ݐ) , ௘݌)௦)൯…ቀ݌ , ,(ௌ௉௥௘௧௨௥௡ݐ ൫ݐௌ௉௥௘௧௨௥௡ , ௬൯ቁ൰݌

Assume that the initial marking is	ܯ଴(݌௫) = 	 ௌ௉௖௔௟௟. A subprocess ࣭ is invokedݐ
by the transition ݐௌ௉௖௔௟௟ and after accomplishing the associated subprocess, it
returns to the next object by the transition	ݐௌ௉௥௘௧௨௥௡. Note that the variable
௫݌ 	݅݊	൫݌௫ , ௌ௉,௥௘௧௨௥௡ݐ൫	݅݊	௬݌ ௌ௉,௖௔௟௟൯ andݐ , illustrate the input and output place	௬൯݌
that graphically displays a dotted eclipse or circle, since it is not known what
the associated places are. This leads to the following translation of a
subprocess:
(࣭)஻ߨ	 = ൬൫(݌௫ , ,(ௌ௉௖௔௟௟ݐ ௌ௉௖௔௟௟ݐ) , …௦)൯݌ ቀ(݌௘ , ,(ௌ௉௥௘௧௨௥௡ݐ ൫ݐௌ௉௥௘௧௨௥௡ , .௬൯ቁ൰݌

…

y x

Pagina 85 van 148

Exclusive Gateway
(଺ܥ)஻ߨ = 	ࣲ࣡
An exclusive gateway ࣲ࣡ in Petri Net is given by

ࣲ࣡ = ൬൫݌௫ , ,ாீଵݐ) ,ாீଶ)൯ݐ ቀ൫ݐாீଵ, ,௬ଵ൯݌ ൫ݐாீଶ, ௬ଶ൯ቁ൰. This applies for single݌

inputs. Assume that the initial marking is	ܯ଴(݌௫) = 	 ,ாீଵݐ ாீଶ. The Petri Netݐ
formulation for joining two flows is given by:
ࣲ࣡ = ൬൫(݌௫ଵ, ,(ாீଵݐ ,௫ଶ݌) ,ாீଶ)൯ݐ ቀ൫ݐாீଵ, ,௬ଵ൯݌ ൫ݐாீଶ, ௬ଵ൯ቁ൰. Assume that the݌

initial markings are	ܯ଴(݌௫ଵ) = 	 (௫ଶ݌)଴ܯ	ாீଵ andݐ = 	 .ாீଶݐ
For splits	ߨ஻(ࣲ࣡) = ൬൫݌௫ , ,ாீଵݐ) ,ாீଶ)൯ݐ ቀ൫ݐாீଵ, ,௬ଵ൯݌ ൫ݐாீଶ, ௬ଶ൯ቁ൰ and݌

for joins ߨ஻(ࣲ࣡) = ൬൫(݌௫ଵ, ,(ாீଵݐ ,௫ଶ݌) ,ாீଶ)൯ݐ ቀ൫ݐாீଵ, ,௬ଵ൯݌ ൫ݐாீଶ, ௬ଵ൯ቁ൰݌

Parallel Gateway
(଻ܥ)஻ߨ = 	࣡࣪
A parallel gateway ࣡࣪ in Petri Net is given by:
࣡࣪ = ቀ(݌௫ , ,(௉ீݐ ൫ݐ௉ீ , ,௬ଵ݌) ௬ଶ)൯ቁ. This is the case of splitting flows. Assume݌
that the initial marking is	ܯ଴(݌௫) = 	 ௉ீ. The Petri Net formulation for joiningݐ
two flows is given by ࣡࣪ = ቀ((݌௫ଵ, ,(௫ଶ݌ ,(௉ீݐ ൫ݐ௉ீ , ௬൯ቁ. Assume that the݌
initial markings are			ܯ଴(݌௫ଵ) = 	 (௫ଶ݌)଴ܯ	௉ீ andݐ = 	 .௉ீݐ
With regards to splits ߨ஻(࣡࣪) = 	 ቀ(݌௫ , ,(௉ீݐ ൫ݐ௉ீ , ,௬ଵ݌) .௬ଶ)൯ቁ݌

For joins ߨ஻(࣡࣪) = 	 ቀ((݌௫ଵ, ,(௫ଶ݌ ,(௉ீݐ ൫ݐ௉ீ , .௬൯ቁ݌

Inclusive Gateway
(଼ܥ)஻ߨ = 	࣡ℐ
An inclusive gateway ࣡ℐ in Petri Net is given by:

࣡ℐ =	൬൫݌௫ , ,ூீଵݐ) ,ூீଶ)൯ݐ ቀ൫ݐூீଵ, ,௬ଵ൯݌ ൫ݐூீଶ, .௬ଶ൯ቁ൰This is the case for splits݌

Assume that the initial marking is	ܯ଴(݌௫) = 	 ,ூீଵݐ ூீଶ. The Petri Netݐ
formulation for two joining flows is given by ࣡ℐ = ቀ((݌௫ଵ, ,(௫ଶ݌ ,(ூீݐ ൫ݐூீ , .௬൯ቁ݌
The two paths should have been activated to proceed. Assume that the initial
markings are	ܯ଴(݌௫ଵ) = 	 .ூீݐ
With regards to splits ߨ஻(࣡ℐ) = ൬൫݌௫ , ,ூீଵݐ) ,ூீଶ)൯ݐ ቀ൫ݐூீଵ, ,௬ଵ൯݌ ൫ݐூீଶ, 	.௬ଶ൯ቁ൰݌

For joins the translation is		ߨ஻(࣡ℐ) = ቀ((݌௫ଵ, ,(௫ଶ݌ ,(ூீݐ ൫ݐூீ , .௬൯ቁ݌

Pagina 86 van 148

Pool
(ଽܥ)஻ߨ = 	ࣰ௉
A pool ࣰ࣪ is used for grouping a number of tasks or subprocesses to
participants. When considering the pool singly, it cannot be defined one-to-
one in a Petri Net graph as a pool does not considered to be an event type
that triggers ‘others’. Assigning relationships cannot be defined in Petri Net
semantics.

Lane
(ଵ଴ܥ)஻ߨ = 	ࣰℒ
A lane ࣰℒ is used for grouping a number of tasks or subprocesses to
participants within pools. When considering the lane singly, it cannot be
defined neither one-to-one in terms of a Petri Net graph due to the fact that a
lane refer to an assigning relationship.

Data Object
(ଵଵܥ)஻ߨ = 	ࣴࣞ
A data object ࣴࣞ can be considered as a message. A data object represents
information that flows through the process, including business documents, e-
mail or letters. A data object (e.g. e-mail) flows into an activity, i.e. tasks or
subprocess, by means of message start events. ࣴࣞ = ൫݌௦ , ௬݌ ௧௔௦௞,஽ை൯. Note thatݐ
∈ 	࣮, ࣭ in		(ݐ௧௔௦௞,஽ை , ௦݌൫		ℰ࣭ in	௦ ∈ message݌ ௬) and݌ , ௧௔௦௞,஽ை൯ illustrate theݐ
input/output place that graphically displays a dotted eclipse or circle. The
initial marking of		ܯ଴(݌௦) = ஻ߨ		௧௔௦௞,஽ை that leads toݐ	 	(ࣴࣞ) =	 ௦݌) , ஽ை). Whenݐ
data objects are exchanged from tasks/subprocess the following notation applies
where a data object (e.g. an e-mail) is exchanged		ߨ஻ 	(ࣴࣞ) = 	 ൫ݐ௧௔௦௞,஽ை , ௬൯ and݌
the initial marking of		ܯ଴൫݌௬൯ = 	 ௧௔௦௞,஽ை. The same holds for subprocesses byݐ
replacing task by SP.

Group
(ଵଶܥ)஻ߨ = 	ࣴ࣡
A group artifact ࣴ࣡ is used for demarcation. Therefore a group concept in
Petri Net is not possible to define separately, because it depends on which
objects belongs to the group including its relations.

Sequence Flow
(ଵଷܥ)஻ߨ = 	ℛ࣭
A sequence flow ℛ࣭ in Petri Net is associated with objects and therefore cannot
be defined separately, as the relation in Petri Net does not differentiate.

Message Flow
(ଵସܥ)஻ߨ = 	ℛℳ
A message flow ℛℳ in Petri Net is associated with objects and therefore cannot
be defined separately, as the relation in Petri Net does not differentiate. Note,

Pagina 87 van 148

a pool as a coherent whole of tasks/subprocesses and events that is assigned to a
participant allows the transmission of messages between pools in terms of
message flows. When this situation occurs, the transmissions of messages can
be discerned into (a) task to task/subprocess, subprocess to subprocess/task
(b) end event to task/subprocess, (c) task/subprocess to start event and (d)
end event to start event.

 	݁݃ܽݏݏ݁݉	ܽ	ݕܾ	݀݁ݐܿ݁݊݊݋ܿ	݁ݎܽ	ݐℎܽݐ	ݏ݈݋݋݌	ݐ݊݁ݎ݂݂݁݅݀	݉݋ݎ݂	ݐ݌݁ܿ݊݋ܿ	ܾ݁	ݕ	݀݊ܽ	ݔ	ݐ݁ܮ
,ݓ݋݈݂ ,ݔ)	ℎ݁݊ݐ :ݏݐܽ݉ݎ݋݂	݃݊݅ݓ݋݈݈݋݂	ℎ݁ݐ	݂݋	݁݊݋	݊݅	ݏ݅(ݕ
(a) (ݐ௧௔௦௞(௫), ,(௧௔௦௞(௬)ݐ ,ௌ௉(௫)ݐ) ,(ௌ௉(௬)ݐ ,௧௔௦௞(௫)ݐ) ,(ௌ௉(௬)ݐ ,ௌ௉(௫)ݐ) 	(௧௔௦௞(௬)ݐ
(b)	(݌௘ , ,(௧௔௦௞ݐ ௘݌) , 	(ௌ௉ݐ
(c)	(ݐ௧௔௦௞ , ,(௦݌ ௌ௉ݐ) , 		(௦݌
(d)	(݌௘ , (௦݌

Thus, ߨ஻(ℛℳ) = (a	⋀	ܾ ⋀ 	ܿ	⋀ 	݀)

Association
(ଵହܥ)஻ߨ = 	ℛࣛ
An association ℛࣛ is associated with objects and therefore cannot be defined
separately, as the relation in Petri Net does not differentiate.

Table 4.2 BPMN objects and its equivalent Petri Net modules
BPMN object Petri Net equivalent module
Start event ℰ࣭ ℰ࣭ = ቀ(݌௦ , ௦ݐ௦)൫ݐ , ௬൯ቁ݌

Intermediate
event

ℰ ℐ ℰ ℐ = ቀ(݌௫ , ,(௜ݐ ൫ݐ௜ , ௬൯ቁ݌

End event ℰℰ ℰℰ = ൫(݌௫ , ,(௘ݐ ௘ݐ) , ௘)൯݌
Tasks ࣮ ࣮ =	ቀ(݌௫ , ,(௧௔௦௞ݐ ൫ݐ௧௔௦௞ , ௬൯ቁ݌

Subprocess ࣭
࣭ = 	ቌ

൫(݌௫ , ,(ௌ௉௖௔௟௟ݐ ௌ௉௖௔௟௟ݐ) , ௦)൯݌
…

ቀ(݌௘ , ,(ௌ௉௥௘௧௨௥௡ݐ ൫ݐௌ௉௥௘௧௨௥௡ , ௬൯ቁ݌
ቍ

Exclusive
Gateway

ࣲ࣡
ݏݐ݈݅݌ݏ = ቌ

ቀ൫݌௫ , ,ாீଵݐ) ாீଶ)൯ቁݐ ,

ቀ൫ݐாீଵ, ,௬ଵ൯݌ ൫ݐாீଶ, ௬ଶ൯ቁ݌
ቍ

ݏ݊݅݋݆ = ൭
൫(݌௫ଵ, ,(ாீଵݐ ,௫ଶ݌) ,ாீଶ)൯ݐ

ቀ൫ݐாீଵ, ,௬ଵ൯݌ ൫ݐாீଶ, ௬ଵ൯ቁ݌
൱

Parallel
Gateway

ݏݐ݈݅݌ݏ ࣪࣡ = ቀ(݌௫ , ,(௉ீݐ ൫ݐ௉ீ , ,௬ଵ݌) ௬ଶ)൯ቁ݌

ݏ݊݅݋݆ = 	 ቀ((݌௫ଵ, ,(௫ଶ݌ ,(௉ீݐ ൫ݐ௉ீ , ௬൯ቁ݌

Inclusive
Gateway

࣡ℐ ݏݐ݈݅݌ݏ = 	 ൬൫݌௫ , ,ூீଵݐ) ,ூீଶ)൯ݐ ቀ൫ݐூீଵ, ,௬ଵ൯݌ ൫ݐூீଶ, ௬ଶ൯ቁ൰݌

ݏ݊݅݋݆ = ቀ((݌௫ଵ, ,(௫ଶ݌ ,(ூீݐ ൫ݐூீ , ௬൯ቁ݌

Pool ࣰ࣪ Not available (N.A.)

Pagina 88 van 148

Lane ࣰℒ Not available (N.A.)
Data Object ࣴ஽ ࣴ஽ = ቀ൫݌௦ , ,௔,஽ை൯ݐ ൫ݐ௔,஽ை , ௔ݐ ௬൯ቁ݌ = ௧௔௦௞ݐ} 	{ௌ௉ݐ|	

Group ࣴࣛ Not available (N.A.)
Sequence flow ℛ࣭ Not available (N.A.)
Message flow ℛℳ ℛℳ = (a	⋀	ܾ ⋀ 	ܿ	⋀ 	݀)

(a) (ݐ௧௔௦௞(௫), ,(௧௔௦௞(௬)ݐ ௌ௉(௫)ݐ) , 	,(ௌ௉(௬)ݐ
,௧௔௦௞(௫)ݐ) ,(ௌ௉(௬)ݐ ௌ௉(௫)ݐ) , 	(௧௔௦௞(௬)ݐ
(b)	(݌௘ , ,(௧௔௦௞ݐ ௘݌) , 	(ௌ௉ݐ
(c)	(ݐ௧௔௦௞ , ,(௦݌ ௧௔௦௞ݐ) , 		(ௌ௉݌
(d)	(݌௘ , (௦݌

Association ℛࣛ Not available (N.A.)

4.2.2 ArchiMate ߨ஺
Previous section already shows the mapping from BPMN core concepts to
Petri Net semantics. Now, the ArchiMate concepts are directly mapped to the
semantics of Petri Net at the same way. Table 4.3 summarizes the
comparison of graphical symbols between ArchiMate and Petri Nets.

ଵܥ	ݐ݁ܮ :݀݁ݐ݈ܽݏ݊ܽݎݐ	ܾ݁	݊ܽܿ	ݏݐܿݑݎݐ݊݋ܿ	݃݊݅ݓ݋݈݈݋݂	ℎ݁ݐ	ℎ݁݊ݐ	ℙ	݉݋ݎ݂	ݏݐ݌݁ܿ݊݋ܿ	ܾ݁	ଵହܥ…

Business Actor
(ଵܥ)஺ߨ = ℬ࣭ℰࣛ
A business actor ℬ࣭ℰࣛ is similar to participants in BPMN, so it cannot be
defined in Petri Net terms. Business actors fulfill a certain business role in a
business process, so a business actor is assigned to a business role.

Business Role
(ଶܥ)஺ߨ = ℬ࣭ℰℛ
A business role ℬ࣭ℰℛ is not applicable in terms of a Petri Net graph for the
reason that a business role can be assigned to a business actor (assigning
relationship) that indicates that resources (i.e. the actors) are granted or
deployed for business tasks, which are related to which positions the actors
hold (i.e. roles).

Business Event
(ଷܥ)஺ߨ = 	ℬܤℰℰ
A business event ℬℬℰℰ in Petri Net is given by:
ℬℬℰℰ =	ቀ(݌௦ , ,(௕௘ݐ ൫ݐ௕௘ , . A business event triggers or triggered by a	௬൯ቁ݌
business process, but internal triggers may occur. The initial marking
is		ܯ଴(݌௦) = 	 ௕௘ݐ . Note that ݌௬ ௕௘ݐ൫	݅݊	ℬ࣪	ܽ	ܾ݁	݈݀ݑ݋ℎݏ)	 , ௬൯) illustrates the݌
destination place that is on the background (graphically displays a dotted
eclipse or circle). The translation is		ߨ஺(ℬℬℰℰ) = 	ቀ(݌௦ , ,(௕௘ݐ ൫ݐ௕௘ , ௬൯ቁ for݌

Pagina 89 van 148

events that triggers others. For intermediate triggers
஺(ℬℬℰℰ)ߨ = 	 ቀ(݌௫ , ,(௕௘ݐ ൫ݐ௕௘ , ௬൯ቁ and business events that are triggered by݌
others that ends the entire business process ߨ஺(ℬℬℰℰ) = 	 ൫(݌௫ , ,(௕௘ݐ ௕௘ݐ) , .௘)൯݌

Business Process / Business Activity
(ସܥ)஺ߨ = ℬ࣪
A business process ℬ࣪ / business activity ℬ࣪ࣛ 	in Petri Net is given by:
ℬ࣪ = ቀ൫݌௫ , ,௕௣൯ݐ ൫ݐ௕௣ , ௬൯ቁ and ℬ࣪ࣛ݌ = ቀ(݌௫ , ,(௕௔ݐ ൫ݐ௕௔ , ௬൯ቁ Note that variable݌
,௫ should be of type ℬ࣭ℰℰ݌ ℬ࣪,ℬℱ in	൫݌௫ , ௫݌) ௕௣൯ andݐ , .(௕௔ݐ

It represents the related place, where the incoming flow starts from. The
variable ݌௬ in ൫ݐ௕௣ , ௕௔ݐ௬൯ and ൫݌ , ,ℬ࣭ℰℰ		should be of type		௬൯݌ ℬ࣪, ℬℱ. These
places are graphically depicted as a dotted eclipse or circle. The initial
marking is		ܯ଴(݌௫) = 	 .௕௔ݐ/	௕௣ݐ

A business process is triggered by / or triggers a business event, a business
function or other business processes. This leads to the translation 		ߨ஺(ℬ࣪) =
ቀ൫݌௫ , ,௕௣൯ݐ ൫ݐ௕௣, ஺(ℬ࣪ࣛ)ߨ ௬൯ቁ and݌ = ቀ(݌௫ , ,(௕௔ݐ ൫ݐ௕௔ , .௬൯ቁ݌

The differences between a process and a activity is that an activity is a
specialization of business process, and considers as the smallest peace of
work in a business process.

Initial phase would be described as
஺(ℬ࣪)ߨ = ቀ൫݌௦ , ,௕௣൯ݐ ൫ݐ௕௣ , ஺(ℬ࣪)ߨ	 ௬൯ቁ or݌ = ቀ൫݌௦ , ,௕௣൯ݐ ൫ݐ௕௣, ௘൯ቁ when݌
consider one business process. For the final phase this leads to ߨ஺(ℬ࣪) =
ቀ൫݌௫ , ,௕௣൯ݐ ൫ݐ௕௣, .This also applies to a business activity	௘൯ቁ.݌

Business Function
(ହܥ)஺ߨ = 	ℬℱ
A business function ℬℱ in Petri Net is given by:
ℬℱ = ቀ൫݌௫ , ,௕௙൯ݐ ൫ݐ௕௙ , ௬൯ቁ. See requirements for the permitted starting and݌
destination places of variable		݌௫ and	݌௬ based on the selected relation type.

y

y x

Pagina 90 van 148

Since it includes all relations, an abstraction is needed to obtain relevant
objects by means of sequence flows and message flows. These places are
graphically depicted as a dotted eclipse or circle. The initial marking
is	ܯ଴(݌௫) = 	 .௕௙ݐ
A business function captures business processes for supporting purposes.
Derived from this, a business process is part of a business function. The
translation would be		ߨ஺(ℬℱ) = ቀ൫݌௫ , ,௕௙൯ݐ ൫ݐ௕௙ , .௬൯ቁ݌

Business Object
(଺ܥ)஺ߨ = 	ℬࣩ
A business object ℬࣩ in Petri Net is given by:
ℬࣩ = ൫݌௫ , .ℬ࣪	௫ should be a business process݌ ஻௉,஻ை൯. Note that the variableݐ
This illustrates the access relation from a business process to a business object.
Conversely, the perspective of a business object seems to be irrelevant due to
the assigning relationship. The initial marking is		ܯ଴(݌௦) = 	 ஻௉,஽ை. Theݐ
translation becomes		ߨ஻(ℬࣩ) = 	 ቀ൫݌௫ , .஻௉,஻ை൯ቁݐ

Junction
(଻ܥ)஺ߨ = ࣤࣨ
A junction ࣤࣨin Petri Net is given by:

ࣤࣨ = ൬ቀ݌௫ , ൫ݐ௃ଵ, ௃ଶ൯ቁݐ , ቀ൫ݐ௃ଵ, ,௬ଵ൯݌ ൫ݐ௃ଶ, ௬ଶ൯ቁ൰. This is the case for splits and the݌

initial marking is	ܯ଴(݌௫) = 	 ,௃ଵݐ ௃ଶ. At least one incoming path should beݐ
activated in order to proceed. When paths are joining, the following Petri
Net applies		ࣤࣨ =	ቀ൫(݌௫ଵ, ,(௫ଶ݌ ,௃൯ݐ ൫ݐ௃ , ௬൯ቁ. At least one outcoming path݌
should be activated to continue the flow. Looking at ൫(݌௫ଵ, ,(௫ଶ݌ ௃൯ ,the initialݐ
marking of place ݌௫ is ܯ଴(݌௫ଵ) = 	 (௫ଶ݌)଴ܯ ௃ andݐ = 	 .௃ݐ

For splits ߨ஺(ࣤࣨ) = ൬ቀ݌௫ , ൫ݐ௃ଵ, ௃ଶ൯ቁݐ , ቀ൫ݐ௃ଵ, ,௬ଵ൯݌ ൫ݐ௃ଶ, .௬ଶ൯ቁ൰݌

For joins ߨ஺(ࣤࣨ) = ቀ൫(݌௫ଵ, ,(௫ଶ݌ ,௃൯ݐ ൫ݐ௃ , .௬൯ቁ݌

AND-Junction
(଼ܥ)஺ߨ = ࣤࣛ
An AND-junction ࣤࣛin Petri Net is given by:
ࣤࣛ = ቀ൫݌௫ , ,஺௃൯ݐ ൫ݐ஺௃ , ,௬ଵ݌) ௬ଶ)൯ቁ. This is the case of splitting flows. Assume݌
that the initial marking is	ܯ଴(݌௫) = 	 ஺௃. The Petri Net formulation for joiningݐ
two flows is given by		ࣤࣛ = ቀ൫(݌௫ଵ, ,(௫ଶ݌ ,஺௃൯ݐ ൫ݐ஺௃ , ௬൯ቁ. Assume that the݌
initial markings are			ܯ଴(݌௫ଵ) = 	 (௫ଶ݌)଴ܯ			஺௃ andݐ = 	 .஺௃ݐ
For splits ߨ஺(ࣤࣛ) = 	 ቀ൫݌௫ , ,஺௃൯ݐ ൫ݐ஺௃ , ,௬ଵ݌) .௬ଶ)൯ቁ݌

For joins the translation is ߨ஺(ࣤࣛ) = 	 ቀ൫(݌௫ଵ, ,(௫ଶ݌ ,஺௃൯ݐ ൫ݐ஺௃ , .௬൯ቁ݌

Pagina 91 van 148

OR-Junction
(ଽܥ)஺ߨ = ࣩࣤ
An OR-junction ࣩࣤ in Petri Net is given by:

ࣩࣤ =	൬൫݌௫ , ,ைோଵݐ) ,ைோଶ)൯ݐ ቀ൫ݐைோଵ, ,௬ଵ൯݌ ൫ݐைோଶ, .௬ଶ൯ቁ൰. This applies for splits݌

Assume that the initial marking is	ܯ଴(݌௫) = 	 ,ைோଵݐ ைோଶݐ . The Petri Net
formulation for joining two flows is described as

ࣩࣤ = ൬൫(݌௫ଵ, ,(ைோଵݐ ,௫ଶ݌) ,ைோଶ)൯ݐ ቀ൫ݐைோଵ, ,௬ଵ൯݌ ൫ݐைோଶ, ௬ଵ൯ቁ൰. Assume that the݌

initial markings are	ܯ଴(݌௫ଵ) = 	 ைோଵݐ and	ܯ଴(݌௫ଶ) = 	 .ைோଶݐ

So splits		ߨ஺(ࣩࣤ) = ൬൫݌௫ , ,ைோଵݐ) ,ைோଶ)൯ݐ ቀ൫ݐைோଵ, ,௬ଵ൯݌ ൫ݐைோଶ, .௬ଶ൯ቁ൰݌

For joins ߨ஺(ࣩࣤ) = ൬൫(݌௫ଵ, ,(ைோଵݐ ,௫ଶ݌)) ,ைோଶ)൯ݐ ቀ൫ݐைோଵ, ,௬ଵ൯݌ ൫ݐைோଶ, .௬ଵ൯ቁ൰݌

Business Activity
(ଵ଴ܥ)஺ߨ = ℬ࣪ࣛ
A business activity	ℬ࣪ࣛin Petri Net is given by:
ℬ࣪ࣛ = ቀ(݌௫ , ,(௕௔ݐ ൫ݐ௕௔ , ௫ should be of type݌ ௬൯ቁ. Note that variable݌
ℬ࣭ℰℰ, ℬ࣪, ℬℱ in	(݌௫ , ௕௔). It represents the related place, where the incomingݐ
flow starts from. The variable ݌௬ in ൫ݐ௕௔ , ,ℬ࣭ℰℰ	௬൯ should be of type݌ ℬ࣪,ℬℱ.
These places are graphically depicted as a dotted eclipse or circle. The initial
marking is		ܯ଴(݌௫) = 	 .௕௔ݐ

A business activity is a specialization of a business process and inherits the
property of its parent. Business activities are triggered by / or triggers a
business event, a business function or other business processes. This leads to
the translation 		ߨ஺(ℬ࣪ࣛ) = ቀ(݌௫ , ,(௕௔ݐ ൫ݐ௕௔ , .௬൯ቁ݌

Trigger Relation
(ଵଵܥ)஺ߨ = ℛ࣮࣮
A trigger relation ℛ࣮࣮ is associated with business elements and therefore
cannot be defined separately, as the relations in Petri Net do not differentiate.

Flow Relation
(ଵଶܥ)஺ߨ = 	ℛ࣮ெ
A flow relation ℛ࣮ெ in comparison to other relation types can be translated
into a Petri Net graph. Consider the flow relations as an exchange of messages
between business elements. See the requirements of the flow relation type
that shows the permitted incoming and outcoming flows. The places ݌௫ and
௬݌ can be traced by the definition of its constraints.
ℛ࣮ெ =	ቀ൫݌௫ , ,௙௥,௠൯ݐ ൫ݐ௙௥,௠ , ௬൯ቁ. Note that the places are depicted as a dotted݌
eclipse or circle as the focus is on flow relations.

Pagina 92 van 148

The initial marking of place ݌௫ is		ܯ଴(݌௫) = 	 ௙௥,௠. This would lead to theݐ
following translation ߨ஺(ℛ࣮ெ) = 	 ቀ൫݌௫ , ,௙௥,௠൯ݐ ൫ݐ௙௥,௠ , .௬൯ቁ݌

Access Relation
(ଵଷܥ)஺ߨ = 	ℛ࣮ࣝ
An access relation ℛ࣮ࣝ is used to model access to passive elements e.g.
business objects associated with business processes or business functions. An
access relation is a structural relation where it seems not to be considered as
an ‘event’ flow in terms of tokens in Petri Nets. Therefore it cannot be
defined separately, as the relations in Petri Net do not differentiate.

Association Relation
(ଵସܥ)஺ߨ = 	ℛ࣮࣭
An association relation ℛ࣮࣭ is associated with business elements and therefore
cannot be defined separately, as the relation in Petri Net does not
differentiate. An association indicates simply the ‘passive’ relationship
between business elements without having tokens.

Grouping Relation
(ଵହܥ)஺ߨ = 	ℛ࣮࣡
A grouping relation ℛ࣮࣡ is used for (de)composition and aggregation of
business elements. Therefore a grouping relation concept in Petri Net is not
possible to define separately, because it concentrates on the flow of ‘events’.
Petri Net considers the relationship between places and transitions as a
directed graph in terms of sequence flows (whereby message flows is
considered to be a special one), capturing the relation by means of directed
arcs.

Table 4.3 ArchiMate business elements and its equivalent Petri Net modules
ArchiMate business
elements

Petri Net equivalent modules

Actor ℬ࣭ℰࣛ Not available (N.A.)
Role ℬ࣭ℰℛ Not available (N.A.)
Business event ℬℬℰℰ ߨ஺(ℬℬℰℰ) = ቀ(݌௦ , ,(௕௘ݐ ൫ݐ௕௘ , ௬൯ቁ start events݌

஺(ℬℬℰℰ)ߨ = ቀ(݌௫ , ,(௕௘ݐ ൫ݐ௕௘ , ௬൯ቁ interm. events݌
஺(ℬℬℰℰ)ߨ = ൫(݌௫ , ,(௕௘ݐ ௕௘ݐ) , ௘)൯ end events݌

Business process ℬ࣪ ߨ஺(ℬ࣪) = ቀ൫݌௫ , ,௕௣൯ݐ ൫ݐ௕௣, ௬൯ቁ݌

Business function ℬℱ ߨ஺(ℬℱ) = ቀ൫݌௫ , ,௕௙൯ݐ ൫ݐ௕௙ , ௬൯ቁ݌

Business object ℬࣩ ߨ஺(ℬࣩ) = 	 ൫(݌௫ , ஻ை)൯ݐ
Junction ࣤࣨ Splits

(ࣨࣤ)஺ߨ = ൬ቀ݌௫ , ൫ݐ௃ଵ, ௃ଶ൯ቁݐ , ቀ൫ݐ௃ଵ, ,௬ଵ൯݌ ൫ݐ௃ଶ, ௬ଶ൯ቁ൰݌

Pagina 93 van 148

Joins
(ࣨࣤ)஺ߨ = ቀ൫(݌௫ଵ, ,(௫ଶ݌ ,௃൯ݐ ൫ݐ௃ , .௬൯ቁ݌

AND-Junction ࣤࣛ Splits ߨ஺(ࣤࣛ) = 	 ቀ൫݌௫ , ,஺௃൯ݐ ൫ݐ஺௃ , ,௬ଵ݌) ௬ଶ)൯ቁ݌

Joins	ߨ஺(ࣤࣛ) = 	 ቀ൫(݌௫ଵ, ,(௫ଶ݌ ,஺௃൯ݐ ൫ݐ஺௃ , ௬൯ቁ݌

OR-Junction ࣩࣤ Splits
(ࣩࣤ)஺ߨ =
൬൫݌௫ , ,ைோଵݐ) ,ைோଶ)൯ݐ ቀ൫ݐைோଵ, ,௬ଵ൯݌ ൫ݐைோଶ, ௬ଶ൯ቁ൰݌

Joins
(ࣩࣤ)஺ߨ =
൬൫(݌௫ଵ, ,(ைோଵݐ ,௫ଶ݌)) ,ைோଶ)൯ݐ ቀ൫ݐைோଵ, ,௬ଵ൯݌ ൫ݐைோଶ, ௬ଵ൯ቁ൰݌

Business Activity
specialization of
ℬ࣪

ℬ࣪ࣛ ߨ஺(ℬ࣪ࣛ) = ቀ(݌௫ , ,(௕௔ݐ ൫ݐ௕௔ , ௬൯ቁ݌

Trigger relation ℛ࣮࣮ Not available (N.A.)
Flow relation ℛ࣮ℳ ߨ஺(ℛ࣮ℳ) = 	 ቀ൫݌௫ , ,௙௥,௠൯ݐ ൫ݐ௙௥,௠ , .௬൯ቁ݌

Access relation ℛ࣮ࣝ Not available (N.A.)
Association
relation

ℛ࣮࣭
Not available (N.A.)

Grouping
relation

ℛ࣮࣡ Not available (N.A.)

4.3 Translating BPMN and ArchiMate (Indirectly)
Previous sections 4.1 and 4.2 already show the direct translation to Petri Nets
from both the BPMN and ArchiMate concepts. This section concerns about
the indirect translation that is on the right side (bold) of the hypothesis:

)஺ߨ .1 ஺ࣝ) ≡? ࣊࡮(࣎࡮,࡭(ऍ࡭))
 ((࡮ऍ)࡭,࡮࣎)࡭࣊ ?≡ ஻(ࣝ஻)ߨ .2

Concepts in ArchiMate (஺ࣝ) are taken for translation to BPMN equivalent
concepts that is the	߬஺,஻(஺ࣝ) part. Analogous to the indirect translation back
starting from BPMN concepts (ࣝ஻) and its equivalent ArchiMate
concepts		߬஻,஺(ࣝ஻). Then, the translation occurs arising from the result
	߬஺,஻(஺ࣝ) and 	߬஻,஺(ࣝ஻) as a starting point towards the semantics of Petri Nets
in terms of places (݌), transitions (ݐ) and flows indicating the relationship
between places and transitions (݌, .(ݐ

4.3.1 BPMN to ArchiMate 	߬஻,஺(ܤ)
This section shows the perspective from the BPMN language specific
concepts. Table 4.4 summarizes the core concepts part that are essential in

Pagina 94 van 148

mapping concepts into the ArchiMate related business process concepts.
Each concept then are further translated into Petri Nets.

An event in BPMN is defined as something that “happens” during the course
of a business process. These events affect the flow of the process and usually
have a cause (trigger) or an impact (result). This closely matches the business
event concept in ArchiMate. However, BPMN defines a large number of
specializations of the concept. The main specializations are start event, stop
event and intermediary events, but several subtypes of all of these exist. This
is in agreement with the focus of BPMN on detailed process modeling, which
differs from ArchiMate’s goal, i.e., to model the overall structure of an
enterprise.

The notation are taken from section 4.2. The notation ߨ஻ᇱ means that
஻ߨ ቀ߬஻,஺(ࣝ)ቁ is mapped to equivalent concepts in ArchiMate. Conversely, the

notation ߨ஺ᇱ means that	ߨ஺ ቀ߬஺,஻(ࣝ)ቁ is mapped to equivalent concepts in
BPMN.

Start Events

஻ߨ ቀ߬஻,஺(ࣝଵ)ቁ = 	ℰ࣭ 	

߬஻,஺(ℰ࣭) ≡ ℬℬℰℰ further translation would be ߨ஻ ቀ߬஻,஺(ℰ࣭)ቁ ≡ ஻ᇱ(ℬℬℰℰ)ߨ	
In Petri Net terms the translation is:
ቀ(݌௦ , ௦ݐ௦)൫ݐ , ௦݌) ≡ ௬൯ቁ݌ , ,(௕௘ݐ ൫ݐ௕௘ , ௬൯݌

Intermediate Events

஻ߨ ቀ߬஻,஺(ࣝଶ)ቁ =	ℰ ℐ 	

߬஻,஺(ℰ࣭) ≡ ℬℬℰℰ further translation would be ߨ஻ ቀ߬஻,஺(ℰ ℐ)ቁ ≡ ஻ᇱ(ℬℬℰℰ)ߨ
In Petri Net terms the translation is:
ቀ(݌௫ , ௜ݐ௜)൫ݐ , ௫݌) ≡ ௬൯ቁ݌ , ,(௕௘ݐ ൫ݐ௕௘ , ௬൯݌

End Events

஻ߨ ቀ߬஻,஺(ࣝଷ)ቁ =	ℰℰ	

߬஻,஺(ℰ࣭) ≡ ℬℬℰℰ further translation would be ߨ஻ ቀ߬஻,஺(ℰℰ)ቁ ≡ ஻ᇱ(ℬℬℰℰ)ߨ
In Petri Net terms the translation is:
൫(݌௫ , ௘ݐ)(௘ݐ , ௫݌)௘)൯ ≡ ൫݌ , ,(௕௘ݐ ௕௘ݐ) , ௘)൯݌
An activity is a generic term for representing work that needs to be done in
an organization. The types of an activity is either way atomic or non-atomic
(i.e. compound activities). In ArchiMate terms, the actual work that must be
performed (by actors and their associated roles), can be compared with the
generic business behaviour concept. Specializations of the activity concept

Pagina 95 van 148

are (sub-)processes and tasks, defined as an (non-)atomic activity that is
included within a process. In a similar way these concepts matches in
succession to the business process/function and the business activity in
ArchiMate.

Tasks

஻ߨ ቀ߬஻,஺(ࣝସ)ቁ = 	࣮	

߬஻,஺(࣮) ≡ ℬ࣪ࣛ further translation would be ߨ஻ ቀ߬஻,஺(࣮)ቁ ≡ ஻ᇱ(ℬ࣪ࣛ)ߨ	
In Petri Net terms the translation is:
௫݌) , ,(௧௔௦௞ݐ ൫ݐ௧௔௦௞ , ௫݌) ≡ ௬൯݌ , ,(௕௔ݐ ൫ݐ௕௔ , ௬൯݌

The semantics in Petri Nets of sub-processes and business process is the same,
but syntactical it differs from each other in the graphical sense.

Sub-Processes

஻ߨ ቀ߬஻,஺(ࣝହ)ቁ = 	࣭

߬஻,஺(࣭) ≡ ℬ࣪ further translation would be ߨ஻ ቀ߬஻,஺(࣭)ቁ ≡ ஻ᇱ(ℬ࣪)ߨ	
In Petri Net terms the translation is:

൫(݌௫ , ,(ௌ௉௖௔௟௟ݐ ௌ௉௖௔௟௟ݐ) , ௘݌)௦)൯…ቀ݌ , ,(ௌ௉௥௘௧௨௥௡ݐ ൫ݐௌ௉௥௘௧௨௥௡ , ௬൯ቁ݌
≡	

ቀ൫݌௫ , ,௕௣൯ݐ ൫ݐ௕௣, ௬൯ቁ݌
When take a closer look on business process this results in:

ቀ൫݌௫ , ,௕௣൯ݐ ൫ݐ௕௣ , …௫ଵ൯݌ ൫݌௫ଶ, ,௕௣൯ݐ ൫ݐ௕௣, ௬൯ቁ݌

A gateway is used to control the divergence and convergence of sequence
flow. Thus, it determines the splitting and joining of paths. The gateway
concept is intended for detailed process modeling underlying BPMN’s
principle. BPMN defines several specializations types of the gateway
concept. Icons within the diamond shape of the gateway indicate the type of
flow control behavior that can be partly divided in to the following types of
control: exclusive gateway performs the exclusive decision and merging,
inclusive gateway performs decisions and merging and parallel gateway
that performs forking and joining. Each type of control affects both the
incoming and outgoing flow.

The junction relation in ArchiMate, which is used to model splits or joins of
relations, can be seen as an abstraction of the gateway concept. Three types
can be discerned: Junction, AND-Junction, OR-Junction. An important factor
is that the gateway concept often implies behaviour. In the event that the
behaviour are considered to be relevant, most obvious a concept mapping to

Pagina 96 van 148

a business activity might be used, possibly with multiple outgoing
triggering relations or followed by a junction to express this.

Exclusive Gateways

஻ߨ ቀ߬஻,஺(ࣝ଻)ቁ =	࣡ℰ 	
 Joins

߬஻,஺(࣡ℰ) ≡ ࣩࣤ further translation would be ߨ஻ ቀ߬஻,஺(࣡ℰ)ቁ ≡ (ࣩࣤ)஻ᇱߨ	
In Petri Net terms the translation is:

൫(݌௫ଵ, ,(ாீଵݐ ,௫ଶ݌)) ,ாீଶ)൯ݐ ቀ൫ݐாீଵ, ,௬ଵ൯݌ ൫ݐாீଶ, 	௬ଵ൯ቁ݌
≡

൫(݌௫ଵ, ,(ைோଵݐ ,௫ଶ݌)) ,ைோଶ)൯ݐ ቀ൫ݐைோଵ, ,௬ଵ൯݌ ൫ݐைோଶ, ௬ଵ൯ቁ݌

 Splits
߬஻,஺(࣡ℰ) ≡ ࣩࣤ further translation would be ߨ஻ ቀ߬஻,஺(࣡ℰ)ቁ ≡ (ࣩࣤ)஻ᇱߨ	
In Petri Net terms the translation is:

൫݌௫ , ,ாீଵݐ) ,ாீଶ)൯ݐ ቀ൫ݐாீଵ, ,௬ଵ൯݌ ൫ݐாீଶ, ௬ଶ൯ቁ݌
≡

൫݌௫ , ,ைோଵݐ) ,ைோଶ)൯ݐ ቀ൫ݐைோଵ, ,௬ଵ൯݌ ൫ݐைோଶ, ௬ଶ൯ቁ݌

Parallel Gateways

஻ߨ ቀ߬஻,஺(଼ࣝ)ቁ =	࣡࣪ 	
 Joins

߬஻,஺(࣡࣪) ≡ ࣤࣛ further translation would be ߨ஻ ቀ߬஻,஺(࣡࣪)ቁ ≡ (ࣛࣤ)஻ᇱߨ	
In Petri Net terms the translation is:
ቀ((݌௫ଵ, ,(௫ଶ݌ ,(௉ீݐ ൫ݐ௉ீ , ௬൯ቁ݌ ≡ ቀ൫(݌௫ଵ, ,(௫ଶ݌ ,஺௃൯ݐ ൫ݐ஺௃ , ௬൯ቁ݌

 Splits
߬஻,஺(࣡࣪) ≡ ࣤࣛ further translation would be ߨ஻ ቀ߬஻,஺(࣡࣪)ቁ ≡ (ࣛࣤ)஻ᇱߨ	
In Petri Net terms the translation is:
ቀ(݌௫ , ,(௉ீݐ ൫ݐ௉ீ , ,௬ଵ݌) ௬ଶ)൯ቁ݌ ≡ ቀ൫݌௫ , ,஺௃൯ݐ ൫ݐ஺௃ , ,௬ଵ݌) ௬ଶ)൯ቁ݌

Inclusive Gateways

஻ߨ ቀ߬஻,஺(ࣝଽ)ቁ = 	࣡ℐ 	
 Joins

߬஻,஺(࣡ℐ) ≡ ࣤࣨ further translation would be ߨ஻ ቀ߬஻,஺(࣡ℐ)ቁ ≡ (ࣨࣤ)஻ᇱߨ	
In Petri Net terms the translation is:
ቀ((݌௫ଵ, ,(௫ଶ݌ ,(ூீݐ ൫ݐூீ , ௬൯ቁ݌ ≡ ቀ൫(݌௫ଵ, ,(௫ଶ݌ ,௃൯ݐ ൫ݐ௃ , ௬൯ቁ݌

 Splits
߬஻,஺(࣡ℐ) ≡ ࣤࣨ further translation would be ߨ஻ ቀ߬஻,஺(࣡ℐ)ቁ ≡ (ࣨࣤ)஻ᇱߨ	
In Petri Net terms the translation is:

Pagina 97 van 148

൬൫݌௫ , ,ூீଵݐ) ,ூீଶ)൯ݐ ቀ൫ݐூீଵ, ,௬ଵ൯݌ ൫ݐூீଶ, ௬ଶ൯ቁ൰݌
≡

ቀ݌௫ , ൫ݐ௃ଵ, ௃ଶ൯ቁݐ , ቀ൫ݐ௃ଵ, ,௬ଵ൯݌ ൫ݐ௃ଶ, ௬ଶ൯ቁ݌

A pool is a swimlane and a graphical container for partitioning a set of
activities from other pools, usually in the context of business-2-business
situations. A lane is a sub-partition within a pool and will extend the entire
length of the pool, either vertically or horizontally. Lanes are used to
organize and categories activities. Pools and lanes can be used to group
activities based on arbitrary criteria. In a similar way this matches the
grouping relation in ArchiMate. However, they are most commonly used to
represent the actors or roles that perform certain activities. In that case, they
can be interpreted as the business actor or business role concept in
ArchiMate. Message flow relations are the only relationship that are allowed
to cross the boundary of pools to exchange messages to other pools. Placing
activities within a pool or lane can be seen as a way to specify the assignment
between behaviour and business roles and business actors in ArchiMate.

Pools & Lanes

஻ߨ ቀ߬஻,஺(ࣝଵ଴)ቁ =	ࣰ࣪ 	
߬஻,஺(ࣰ࣪) ≡ (ℬ࣭ℰࣛ 	∪ 	ℬ࣭ℰℛ 	∪ 	 	ℛ࣮࣡)	 further translation would be
஻ߨ ቀ߬஻,஺(ࣰ࣪)ቁ ≡ ஻ᇱ(ℬ࣭ℰࣛߨ	 	∪ 	ℬ࣭ℰℛ 	∪ 	 	ℛ࣮࣡)
Not Applicable (N.A) in Petri Net terms.
஻൫߬஻.஺(ࣝଵଵ)൯ߨ = 	ࣰℒ 	
߬஻,஺(ࣰℒ) ≡ (ℬ࣭ℰࣛ 	∪ 	ℬ࣭ℰℛ 	∪ 	 	ℛ࣮࣡)	 further translation would be
஻ߨ ቀ߬஻,஺(ࣰℒ)ቁ ≡ ஻ᇱ(ℬ࣭ℰࣛߨ	 	∪ 	ℬ࣭ℰℛ 	∪ 	 	ℛ࣮࣡)
Not Applicable (N.A) in Petri Net terms.

BPMN defines three types of artifacts:
an annotation is a textual annotation that can be associated with any concept
in order to provide additional information e.g., comments. There is no
comparable separate concept in ArchiMate that can express this behaviour. A
data object represents data that can be accessed by activities, which is very
similar to the business object in ArchiMate. Finally, a group artifact can be
used to group arbitrary concepts, that are in the same manner used as the
grouping relationship in ArchiMate.

Data Objects and Groups

஻ߨ ቀ߬஻,஺(ࣝଵଶ)ቁ =	ࣴࣞ	

߬஻,஺(ࣴࣞ) ≡ ℬࣩ further translation would be ߨ஻ ቀ߬஻,஺(ࣴࣞ)ቁ ≡ ஻ᇱ(ℬࣩ)ߨ	

Pagina 98 van 148

൫݌௦ , ௫݌௧௔௦௞,஽ை൯ ≡ ൫ݐ , ஻௉,஻ை൯ݐ

஻ߨ ቀ߬஻,஺(ࣝଵଷ)ቁ =	ࣴ࣡ 	

߬஻,஺(ࣴ࣡) ≡ ℛ࣮࣡ further translation would be ߨ஻ ቀ߬஻,஺(ࣴ࣡)ቁ ≡ ஻ᇱ(ℛ࣮࣡)ߨ	
Not Applicable (N.A) in Petri Net terms.

A sequence flow is used to model the relations that are intended to display
the order of activities that are being performed in a process. In ArchiMate the
triggering relationship corresponds to the sequence flow that expresses the
control flow in a quite similar way.

Sequence flow

஻ߨ ቀ߬஻,஺(ࣝଵସ)ቁ =	ℛ࣭ 	

߬஻,஺(ℛ࣭) ≡ ℛ࣮࣮ further translation would be ߨ஻ ቀ߬஻,஺(ℛ࣭)ቁ ≡ ஻ᇱ(ℛ࣮࣮)ߨ	
Not Applicable (N.A) in Petri Net terms.
A message flow is used to model the flow of messages between two entities
that are prepared to send and receive them. In BPMN, two separate pools in
a Business Process Diagram represents the two participants. In ArchiMate,
the corresponding flow relation is used to express the exchange of messages.

Message flow

஻ߨ ቀ߬஺,஻(ࣝଵହ)ቁ =	ℛℳ 	

߬஻,஺(ℛℳ) ≡ ℛ࣮ℳ further translation would be ߨ஻ ቀ߬஻,஺(ℛℳ)ቁ ≡ ஻ᇱ(ℛ࣮ℳ)ߨ	

In Petri Net terms the translation is:
(a) (ݐ௧௔௦௞(௫), ,ௌ௉(௫)ݐ)	∪ (௧௔௦௞(௬)ݐ (ௌ௉(௬)ݐ 	∪ ,௧௔௦௞(௫)ݐ) (ௌ௉(௬)ݐ 	∪ ௌ௉(௫)ݐ) , 	(௧௔௦௞(௬)ݐ
(b)	(݌௘ , ௘݌)	∪	(௧௔௦௞ݐ , 	(ௌ௉ݐ
(c)	(ݐ௧௔௦௞ , (௦݌ ௌ௉ݐ)	∪	 , 		(௦݌
(d)	(݌௘ , (௦݌
(a’)	൫(݌௫ , ,௕௔,௠൯ݐ ൫ݐ௕௔,௠ , ௬)൯݌ 	∪ ൫(݌௫ , ,௕௣,௠൯ݐ ൫ݐ௕௣,௠ , ௬)൯݌ ∪
							൫(݌௫ , ,௕௔,௠൯ݐ ൫ݐ௕௣,௠ , ௬)൯݌ ∪ ൫(݌௫ , ,௕௣,௠൯ݐ ൫ݐ௕௔,௠ , ௬)൯݌
(b’) (݌௕௘ , (௕௔ݐ ௕௘݌)	∪	 , (௕௣ݐ
(c’) (ݐ௕௔ , (௕௘݌ 	∪ ,௕௣ݐ)	 (௕௘݌
(d’) (݌௕௘ , ∪	(௕௘ݐ ௕௘ݐ) , (௕௘݌
(ܽ		⋀	ܾ	⋀	ܿ	⋀	݀) ≡ 	 (ܽ′	⋀	ܾ′	⋀	ܿ′	⋀	݀′)

An association is used to associate information with flow objects. Text and
graphical non-flow objects can be associated with the flow objects.
Depending on the exact use, this is represented by the access relation or the
association relation in ArchiMate.

Pagina 99 van 148

Association

஻ߨ ቀ߬஺,஻(ࣝଵ଺)ቁ =	ℛࣛ 	

߬஻,஺(ℛࣛ) ≡ ℛ࣮࣭ further translation would be ߨ஻ ቀ߬஻,஺(ℛࣛ)ቁ ≡ ஻ᇱ(ℛ࣮࣭)ߨ	
Not Applicable (N.A) in Petri Net terms.

This resulted in the represented example BPMN model (see Fig. 4.1). It is
clear that only the business layer can be modeled, since BPMN does not offer
concepts for modeling the application or technical infrastructure. In contrast
to ArchiMate, BPMN cannot model services either. In ArchiMate actors and
roles are depicted with different separately concepts respectively ‘business
actor’ and ‘business role’, while in BPMN the actors or roles that perform
certain processes or activities can be graphically drawn by means of pools.

Fig. 4.1. Example model in BPMN.

BPMN models only restricted to the business layer, thus only the business
architecture can be modeled as BPMN has lack of concepts for modeling
applications or technical infrastructure with respect to ArchiMate. Another
‘imperfection’ is representing the services, which cannot be modeled either.
The actors or roles that perform certain processes or activities can be shown
by means of pools and therefore also in terms of lanes, because they are
modeled within the pools. Moreover, there is a strong emphasis on the
behaviour aspect; actors/roles that perform the behaviour that can be
modeled in a limited way by means of pools and lanes. All main BPMN
concepts have an equivalent concept in ArchiMate except the Annotation
summarizes in Table 4.4, while on the other hand not all of the ArchiMate
concepts, such as application and technology concepts have a counterpart in
BPMN. However, BPMN has a large number of more specific concepts,
which are defined as specializations of the main concepts. This is in

Pagina 100 van 148

agreement with the objectives of the two languages: while ArchiMate is
designed to describe the high-level architecture of the whole enterprise,
BPMN focuses on the detailed description of business processes.

Table 4.4. BPMN symbols related to equivalent ArchiMate symbols.
BPMN notation ArchiMate equivalent notation
Events Business Elements

Start Intermediate End

Activity (generic)

Task (specialization)

Sub-Process
(specialization)

Gateways Junctions

Exclusive Gateway OR-Junction

Parallel Gateway AND-Junction

Inclusive Gateway Junction

Relationships Dynamic Relationships
Sequence flow Triggering relation
Message flow Flow relation

Association
Structural Relationships
Access relation;
Association relation

Pagina 101 van 148

Swimlanes Business Elements / Relationships
Pools & Lanes

Pool

Lane

Artifact

 Data Object

Annotation Not Available (N.A)

4.3.2 ArchiMate to BPMN ߬(ܣ)ܤ,ܣ
Previous section summarizes the BPMN graphical notation and its
equivalent ArchiMate notation. This section shows the perspective from the
ArchiMate language concepts. Table 4.5 summarizes the core concepts part
that are essential in mapping concepts into the BPMN related process
concepts. Each concept then are further translated into Petri Nets.

A business event in ArchiMate is defined as something that “happens” and
may influences business processes and business functions. Typically, a
business event is most commonly used to model something that triggers
behaviour. Business processes and other business behaviour may be triggered
or interrupted by a business event.

Pagina 102 van 148

Via specialization mechanisms, other types of events can be defined such as
message or time triggers events that exchange information or interrupts a
process. Furthermore, a business event is momentary, which means that the
event occurred and then ceased. Business events may come from the
environment of the organization for instance from a customer, but may also
come from internal events that arise from for instance other processes within
the organization. In line with this, business processes may raise events that
trigger other business processes and/or business functions.

The business event closely matches the event type in BPMN, but specialize
the main event type into start events, intermediate events and end events,
as it concentrates on detailed process modeling.

Business Events

஺ߨ ቀ߬஺,஻(ࣝଵ)ቁ = 	ℬℬℰℰ	
߬஺,஻(ℬℬℰℰ) ≡ (ℰ࣭ ∪ ℰ ℐ ∪ ℰℰ) further translation would be formulated as
஺ߨ ቀ߬஺,஻(ℬℬℰℰ)ቁ ≡ ஺ᇱ(ℰ࣭ߨ	 ∪ ℰ ℐ ∪ ℰℰ)
In Petri Net terms the translation is:

൬ቀ(݌௦ , ,(௕௘ݐ ൫ݐ௕௘ , ௬൯ቁ݌ ∪ ቀ(݌௫ , ,(௕௘ݐ ൫ݐ௕௘ , ௬൯ቁ݌ ∪ ൫(݌௫ , ,(௕௘ݐ ௕௘ݐ) , ௘)൯൰݌
≡

൬ቀ(݌௦ , ,(௦ݐ ൫ݐ௦ , ௬൯ቁ݌ ∪ ቀ	(݌௫ , ,(௜ݐ ൫ݐ௜ , ௬൯ቁ݌ ∪ ൫(݌௫ , ,(௘ݐ ௘ݐ) , ௘)൯൰݌

A business process can be used to group more detailed business processes
(i.e. subprocesses) based on common grouping criteria. A business process
can be seen as a set of interrelated business processes and/or business
functions performed by a business role, with one or more clear starting
points in terms of business events that leads to an expected or desired sets of
products and services as a result.

Business processes might be sometimes referred to ‘customer-to-customer’
relation, where a ‘customer’ might originate from the external environment
that triggers the business process or from an ‘internal customer’ in the case of
subprocesses within an organization. For a consumer the required behaviour
is not of interest so a process is designated "internal". In this sense, it most
closely matches the specific activity concept including the underlying
concepts task and subprocess in BPMN.

Business Processes

஺ߨ ቀ߬஺,஻(ࣝଶ)ቁ = 	ℬ࣪	
߬஺,஻(ℬ࣪) ≡ (࣮ ∪ ࣭) further translation would be formulated as
஺ߨ ቀ߬஺,஻(ℬ࣪)ቁ ≡ ࣮)஺ᇱߨ	 ∪ ࣭)

Pagina 103 van 148

In Petri Net terms the translation is:

ቆቀ(݌௫ , ,(௕௔ݐ ൫ݐ௕௔ , ௬൯ቁ݌ ∪ ൬ቀ൫݌௫ , ,௕௣൯ݐ ൫ݐ௕௣ , …௦൯ቁ݌ ቀ൫݌௬ , ,௬൯ݐ ൫ݐ௬ , ௬൯ቁ൰ቇ݌

≡

ቌ
ቀ(݌௫ , ,(௧௔௦௞ݐ ൫ݐ௧௔௦௞ , ௬൯ቁ݌ ∪

൬൫(݌௫ , ,(ௌ௉௖௔௟௟ݐ ௌ௉௖௔௟௟ݐ) , ௘݌)௦)൯…ቀ݌ , ,(ௌ௉௥௘௧௨௥௡ݐ ൫ݐௌ௉௥௘௧௨௥௡ , ௬൯ቁ൰݌
ቍ

A business function offers certain functionality that is useful for one or more
business processes. A business function aggregates behaviour based on for
instance required skills, knowledge, capabilities, resources and (application)
support. In comparison with business processes that aggregate behaviour
based on products and services that the organization offers, a business
function serves the basis for the assignment of resources to tasks and the
application support.

A business function may be triggered by, or trigger, any other business
behaviour element (business event, business process or business function).
Compared to the equivalent BPMN concept, a business function matches the
activity concept, whereby task and subprocesses are types of atomic and
non-atomic (i.e. compound) activities. Quite similar to the business process
concept in ArchiMate, but with the addition that pools and lanes are
involved due to the aggregation criteria and the assignment of resources to
tasks.

Business Functions

஺ߨ ቀ߬஺,஻(ࣝଷ)ቁ = 	ℬℱ	
߬஺,஻(ℬℱ) ≡ (ࣛ ∪ ࣰ࣪ ∪ ࣰℒ) further translation would be formulated as
஺ߨ ቀ߬஺,஻(ℬℱ)ቁ ≡ ࣮)஺ᇱቀߨ	 ∪ ࣭)	∪ ࣰ࣪ ∪ ࣰℒቁ
In Petri Net terms the translation is:
൫݌௫ , ,௕௙൯ݐ ൫ݐ௕௙ , ௬൯݌
When take a closer look, i.e. the internal behaviour, on business functions this
results in:

൬ቀ(݌௫ , ,(௕௔ݐ ൫ݐ௕௔ , ௬൯ቁ݌ ∪ ቀ൫݌௫ , ,௕௣൯ݐ ൫ݐ௕௣, …௦൯݌ ൫݌௬ , ,௬൯ݐ ൫ݐ௬ , ௬൯ቁ൰݌
≡

ቌ
ቀ(݌௫ , ,(௧௔௦௞ݐ ൫ݐ௧௔௦௞ , ௬൯ቁ݌ ∪	

൬൫(݌௫ , ,(ௌ௉௖௔௟௟ݐ ௌ௉௖௔௟௟ݐ) , ௘݌)௦)൯…ቀ݌ , ,(ௌ௉௥௘௧௨௥௡ݐ ൫ݐௌ௉௥௘௧௨௥௡ , ௬൯ቁ൰݌
ቍ

A business actor in ArchiMate is defined as the active entities (i.e. the
subjects) that perform behaviour such as business processes or functions.
Business actors may be individual persons (e.g. customers or employees), but

Pagina 104 van 148

also groups of people and resources that have a permanent (or at least long-
term) status within the organizations.

It's important to separate the actor from the role because a business actor can
perform more than one business role, and a business role can be performed by
more than one business actor. Business actors are humans, departments, and
business units; they may be individuals i.e. persons e.g., customers or
employees or groups such as departments and business units.

Similarities are the swimlane concept in BPMN that are subdivided into
lanes, used to organize and categories activities, and pools, a graphical
container for partitioning a set of activities. Both mechanisms are inextricably
linked or assigned to a participant as pools and lanes represent it therewith.

Business Actors

஺ߨ ቀ߬஺,஻(ࣝସ)ቁ = 	ℬ࣭ℰࣛ
߬஺,஻(ℬ࣭ℰࣛ) ≡ ࣰ further translation would be formulated as
஺ߨ ቀ߬஺,஻(ℬ࣭ℰࣛ)ቁ ≡ ࣰ࣪)஺ᇱߨ	 ∪ࣰℒ)
Not Applicable (N.A) in Petri Nets.

A business role is defined as a specific behaviour of a business actor
participating in a given context. The actor performs the behaviour of the role.
A business role can be fulfilled by more than one business actor. Conversely,
a business actor may fulfill more than one business role. A business role will
usually exist in an organization whether or not a given actor fulfills it or not.
A business role may be assigned to one or more business processes or
business functions. BPMN does not explicitly discern an actor from a role, so
pool and lanes concept covers the business role concept in ArchiMate at the
same way.

Business Roles

஺ߨ ቀ߬஺,஻(ࣝହ)ቁ = 	ℬ࣭ℰℛ
߬஺,஻(ℬ࣭ℰℛ) ≡ ࣰ further translation would be formulated as
஺ߨ ቀ߬஺,஻(ℬ࣭ℰℛ)ቁ ≡ ࣰ࣪)஺ᇱߨ	 ∪ ࣰℒ)
Not Applicable (N.A) in Petri Nets.

A business object is defined as passive entities that are manipulated by
behaviour such as business processes or functions. Business objects represent
the important concepts in which the business thinks about a domain, which
is similar to data objects in BPMN. A business object is defined as a unit of
information that has relevance from a business perspective. A business object
is used to model an object type of which several instances may exist within

Pagina 105 van 148

the organization. In this case, it may be realized as a data object. It may also be
specialized by another business object. Business objects are passive. They do
not trigger or perform processes. Business objects are very similar to data
objects in BPMN, which represents data that can be accessed by activities.

Business Objects

஺ߨ ቀ߬஺,஻(ࣝ଺)ቁ = 	ℬࣩ
߬஺,஻(ℬࣩ) ≡ 	ࣰℒ further translation would be as follows
஺ߨ ቀ߬஺,஻(ℬࣩ)ቁ ≡ (ࣞࣴ)஺ᇱߨ	
In Petri Net terms the translation is:

ቀ൫݌௫ , ஻௉,஻ை൯ቁݐ ≡ ቀ൫݌௦ , ௧௔௦௞,஽ை൯ݐ ∪ ൫ݐ௧௔௦௞,஽ை , ௬൯ቁ݌

A trigger relationship describes the temporal or causal relations between
processes, functions, interactions, and events. It is used to model the causal
relationships between behavioral concepts in a process. Compared to BPMN,
it matches the sequence flow relationship in BPMN.

Trigger Relationships

஺ߨ ቀ߬஺,஻(ࣝ଻)ቁ = 	ℛ࣮࣮
߬஺,஻(ℛ࣮࣮) ≡ ℛ࣭ further translation would be as follows
஺ߨ ቀ߬஺,஻(ℛ࣮࣮)ቁ ≡ ஺ᇱ(ℛ࣭)ߨ	
Not Applicable (N.A) in Petri Nets.

A flow relationship describes the exchange or transfer of information or
value between processes, function and events. Flow relationships are used to
model the flow of information between behavioral concepts in a process. A
flow relationship does not imply a causal or temporal relationship, while a
trigger relationship does. The flow relationship matches the message flow
relationship in BPMN.

Flow Relationships

஺ߨ ቀ߬஺,஻(଼ࣝ)ቁ = 	ℛ࣮ℱ
߬஺,஻(ℛ࣮ℱ) ≡ ℛℳ further translation would be as follows
஺ߨ ቀ߬஺,஻(ℛ࣮ℱ)ቁ ≡ ஺ᇱ(ℛℳ)ߨ	
In Petri Net terms the translation is:

ቀ൫݌௫ , ,௙௥,௠൯ݐ ൫ݐ௙௥,௠ , ௬൯ቁ݌
≡

൬
,௧௔௦௞(௫)ݐ) (௧௔௦௞(௬)ݐ ∪ ,ௌ௉(௫)ݐ) (ௌ௉(௬)ݐ ∪ ,௧௔௦௞(௫)ݐ) ∪	(ௌ௉(௬)ݐ ,ௌ௉(௫)ݐ) (௧௔௦௞(௬)ݐ ∪

௘݌) , ௘݌)	∪	(௧௔௦௞ݐ , ∪	(ௌ௉ݐ ௧௔௦௞ݐ) , (௦݌ 	∪ ௌ௉ݐ) , (௦݌ ∪ ௘݌) , (௦݌ ൰

Pagina 106 van 148

An access relationship models the access of behavioral concepts to business
or data objects. The access relationship indicates that a process, function,
interaction, service, or event "does something" with a (business or data)
object. The arrow indicates the flow of information. There is no equivalent
relationship in BPMN.

Access Relationships

஺ߨ ቀ߬஺,஻(ࣝଽ)ቁ = 	ℛ࣮ࣝ

߬஺,஻(ℛ࣮ࣝ) becomes ߨ஺ ቀ߬஺,஻(ℛ࣮ࣝ)ቁ
NOTE: there exists not an equivalent relationship in BPMN

An association relationship models a relationship between objects that is not
covered by another, more specific relationship. It is used to model
relationships between business objects or data objects that are not modeled by
the standard relationships. Association relationships match the same
association relationships in BPMN.

Association Relationships

஺ߨ ቀ߬஺,஻(ࣝଵ଴)ቁ =	ℛ࣮࣭
߬஺,஻(ℛ࣮࣭) ≡ ℛࣛ further translation would be as follows
஺ߨ ቀ߬஺,஻(ℛ࣮࣭)ቁ ≡ ஺ᇱ(ℛࣛ)ߨ	
Not Applicable (N.A) in Petri Nets.

A group relationship indicates that objects, of the same type or different
types, belong together based on some common characteristic. BPMN might
group activities by means of pools and lanes, and by the grouping
mechanism that groups activities based on arbitrary criteria. ArchiMate
defines a concept that controls the relationships. A junction is used to
connect dynamic relationships of the same type. A junction is used in a
number of situations to connect dynamic (triggering or flow) relationships of
the same type e.g., to indicate splits or joins. One condition is to ensure that
only relationships of the same type (flow or triggering) are used to connect
elements and junctions.

Group Relationships

஺ߨ ቀ߬஺,஻(ࣝଵଵ)ቁ =	ℛ࣮࣡
߬஺,஻(ℛ࣮࣡) ≡ ࣴ࣡ further translation would be as follows
஺ߨ ቀ߬஺,஻(ℛ࣮࣡)ቁ ≡ (࣡ࣴ)஺ᇱߨ	
Not Applicable (N.A) in Petri Nets.

Pagina 107 van 148

ArchiMate defines three types of junctions:

1. Junctions either proceed if at least one in- or outcoming path is
activated. A junction can serve as an AND-junction, but also as an
OR-Junction. This is because activation of minimal one path splits or
joins meets the condition.

2. AND-junctions whereby the condition satisfies, when all in- or
outcoming paths are activated. So, an AND-junction only functions
when all the requirements are met.

3. OR-junctions require only one of the in- or outcoming paths to be
activated in order to proceed. OR-junctions are exactly the opposite
way of AND-junctions.

A gateway in BPMN matches the junction concept in ArchiMate that
controls the flow of both diverging and converging sequence flows. BPMN
distinguishes many several types of gateways, whereas ArchiMate restricts
to three types. Gateways are used to control how the process flows (i.e. flow
of tokens) through sequence flows as they converge and diverge within a
process. If the flow does not need to be controlled, then a gateway is not
needed. The term gateway implies that there is a gate-mechanism that either
allows or disallows passage through the gateway. As tokens arrive at a
gateway, they can be merged together on input and/or split apart on output
as the gateway mechanisms are invoked. Junctions are related to the
combination of exclusive and parallel gateways. AND-junctions matches the
parallel gateway and for the OR-junction the equivalent inclusive gateway.

Junctions

஺ߨ ቀ߬஺,஻(ࣝଵଶ)ቁ =	ࣤࣨ
 Joins

߬஺,஻(ࣤࣨ) ≡ (࣡ℐ) further translation would be as follows
஺ߨ ቀ߬஺,஻(ࣤࣨ)ቁ ≡ ஺ᇱ(࣡ℐ)ߨ	
In Petri Net terms the translation is:

ቀ൫(݌௫ଵ, ,(௫ଶ݌ ,௃൯ݐ ൫ݐ௃ , ௬൯ቁ݌ ≡ ቀ((݌௫ଵ, ,(௫ଶ݌ ,(ூீݐ ൫ݐூீ , ௬൯ቁ݌

 Splits
߬஺,஻(ࣤࣨ) ≡ (࣡ℐ) further translation would be as follows
஺ߨ ቀ߬஺,஻(ࣤࣨ)ቁ ≡ ࣡ℐ)		஺ᇱ(ߨ	
In Petri Net terms the translation is:

ቀ݌௫ , ൫ݐ௃ଵ, ௃ଶ൯ቁݐ , ቀ൫ݐ௃ଵ, ,௬ଵ൯݌ ൫ݐ௃ଶ, ௬ଶ൯ቁ݌
≡

൬൫݌௫ , ,ூீଵݐ) ,ூீଶ)൯ݐ ቀ൫ݐூீଵ, ,௬ଵ൯݌ ൫ݐூீଶ, ௬ଶ൯ቁ൰݌

Pagina 108 van 148

AND-Junctions

஺ߨ ቀ߬஺,஻(ࣝଵଷ)ቁ =	ࣤࣛ
 Joins

߬஺,஻(ࣤࣛ) ≡ (࣡࣪) further translation would be as follows
஺ߨ ቀ߬஺,஻(ࣤࣛ)ቁ ≡ (࣪࣡)஺ᇱߨ	
In Petri Net terms the translation is:

ቀ൫(݌௫ଵ, ,(௫ଶ݌ ,஺௃൯ݐ ൫ݐ஺௃ , ௬൯ቁ݌ ≡ 	 ቀ((݌௫ଵ, ,(௫ଶ݌ ,(௉ீݐ ൫ݐ௉ீ , ௬൯ቁ݌

 Splits
 further translation would be as follows (ऑच) ≡ (औऋ)࡮,࡭࣎
࡭࣊ ቀ࣎࡮,࡭(औऋ)ቁ ≡ ऑच)	ᇱ(࡭࣊	
In Petri Net terms the translation is:

൫࢞࢖, ,൯ࡶ࡭࢚ ൫࢚ࡶ࡭, ,૚࢟࢖) ૛)൯࢟࢖ ≡	 ቀ(࢞࢖, ,(ࡳࡼ࢚ ൫࢚ࡳࡼ, ,૚࢟࢖) ૛)൯ቁ࢟࢖

OR-Junctions

஺ߨ ቀ߬஺,஻(ࣝଵସ)ቁ =	ࣩࣤ
 Joins

߬஺,஻(ࣩࣤ) ≡ 	࣡ℰ further translation would be as follows
஺ߨ ቀ߬஺,஻(ࣩࣤ)ቁ ≡ ஺ᇱ(࣡ℰ)ߨ	
 In Petri Net terms the translation is:

൬൫(݌௫ଵ, ,(ைோଵݐ ,௫ଶ݌)) ,ைோଶ)൯ݐ ቀ൫ݐைோଵ, ,௬ଵ൯݌ ൫ݐைோଶ, ௬ଵ൯ቁ൰݌
≡

൬൫(݌௫ଵ, ,(ாீଵݐ ,௫ଶ݌) ,ாீଶ)൯ݐ ቀ൫ݐாீଵ, ,௬ଵ൯݌ ൫ݐாீଶ, ௬ଵ൯ቁ൰݌

 Splits
߬஺,஻(ࣩࣤ) ≡ (࣡ℰ) further translation would be as follows
஺ߨ ቀ߬஺,஻(ࣩࣤ)ቁ ≡ ஺ᇱ(࣡ℰ)ߨ	
In Petri Net terms the translation is:

൬൫݌௫ , ,ைோଵݐ) ,ைோଶ)൯ݐ ቀ൫ݐைோଵ, ,௬ଵ൯݌ ൫ݐைோଶ, ௬ଶ൯ቁ൰݌
≡	

൬൫݌௫ , ,ாீଵݐ) ,ாீଶ)൯ݐ ቀ൫ݐாீଵ, ,௬ଵ൯݌ ൫ݐாீଶ, ௬ଶ൯ቁ൰݌

A business activity in ArchiMate is defined as a specialization of a more
generic business process. BPMN used therefore the task concept, which is a
specialization of the activity concept. A task can be an atomic-activity or
non-atomic activity (i.e. compound).

Pagina 109 van 148

Business Activities

஺ߨ ቀ߬஺,஻(ࣝଵହ)ቁ =	ℬ࣪ࣛ
߬஺,஻(ℬ࣪ࣛ) ≡ ࣮ further translation would be as follows
஺ߨ ቀ߬஺,஻(ℬ࣪ࣛ)ቁ (࣮)஺ᇱߨ	≡
In Petri Net terms the translation is:
ቀ(݌௫ , ,(௕௔ݐ ൫ݐ௕௔ , ௬൯ቁ݌ 	≡ 	 ቀ(݌௫ , ,(௧௔௦௞ݐ ൫ݐ௧௔௦௞ , 	௬൯ቁ݌

Table 4.5. ArchiMate symbols related to equivalent BPMN symbols.
ArchiMate graphical notation BPMN equivalent graphical notation
Structure/Behaviour/Passive elements Events

 start intermediate end

Activities, Pools & Lanes

 Pool

Lane

 Pools & Lanes

Pool

Lane

Pagina 110 van 148

Pool

Lane

 Data Objects

 Data Object

Relationships Relationships

Dynamic Relationships
Triggering relation Sequence flow
Flow relation Message flow
Structural Relationships
Access relation Not Available (N.A.)
Association relation Association
Other Relationships Groups / Pools & Lanes
Grouping

Pool

Lane

Junction Gateways

Junction

Inclusive Gateway

AND-Junction

Parallel Gateway

OR-Junction

Exclusive Gateway

Pagina 111 van 148

Specialization Activities

4.4 Comparing Concepts via Operational Semantics
Previous section 4.2 defined the concept mapping directly from both
ArchiMate as well as BPMN to Petri Net, while section 4.3 is done indirectly
via BPMN/ArchiMate as intermediary language. This section compares both
ArchiMate and BPMN languages via operation semantics. This means that
the semantic of BPMN after translating via ArchiMate are compared to the
direct translation of BPMN to Petri Nets. Conversely, ArchiMate concepts
after translating via BPMN are compared to the directly concept mapping
from ArchiMate to Petri Nets.

4.4.1 A Concept from ArchiMate to BPMN
Now an ArchiMate concept is taken to give a first attempt and serves as an
starting point for other concepts that should be elaborated in the same way.
As the business concept in practice most commonly used, the comparison
would be as follows:

Business Processes (ऌच)

 ݐܿ݁ݎ݅ܦ

 ݃݊݅݌݌ܽܯ

⎝

⎛
ቀ൫݌௫ , ,௕௣൯ݐ ൫ݐ௕௣ , ௬൯ቁ݌

∪
൬ቀ൫݌௫ , ,௕௣൯ݐ ൫ݐ௕௣ , ,௫ଶ݌௫ଵ൯ቁ…ቀ൫݌ ,௕௦௣൯ݐ ൫ݐ௕௣, ⎠௬൯ቁ൰݌

 ஺(ℬ࣪)ߨ ⎞

≡ ≡

 ஻(߬஺,஻(ℬ࣪))ߨ

⎝

⎛
ቀ(݌௫ , ,(௧௔௦௞ݐ ൫ݐ௧௔௦௞ , ௬൯ቁ݌

∪
൬൫(݌௫ , ,(ௌ௉௖௔௟௟ݐ ௌ௉௖௔௟௟ݐ) , …௦)൯݌ ቀ(݌௘ , ,(ௌ௉௥௘௧௨௥௡ݐ ൫ݐௌ௉௥௘௧௨௥௡ , ⎠௬൯ቁ൰݌

⎞
 ݐܿ݁ݎ݅݀݊ܫ
 ݃݊݅݌݌ܽܯ

In Petri Net the semantics are matching as the business process in ArchiMate
may comprises multiple ‘smaller’ business processes i.e., a subprocess denoted

with ൬ቀ൫݌௫ , ,௕௣൯ݐ ൫ݐ௕௣, …௫ଵ൯ቁ݌ ቀ൫݌௫ଶ, ,௕௦௣൯ݐ ൫ݐ௕௣ , ௬൯ቁ൰ and a process without݌

considering subprocesses simplified by ቀ൫݌௫ , ,௕௣൯ݐ ൫ݐ௕௣ , ௬൯ቁ. The result of the݌
indirect mapping of a business process, from the perspective of ArchiMate via
BPMN, semantically means the same in Petri Net terms, but the HLPNG
might differ from each other in terms of the number of places transitions and
arcs. Unfolding the subprocess in BPMN shows the internal behaviour of
activities that are translated into the following way:

Pagina 112 van 148

൫(݌௫ , ,(ௌ௉௖௔௟௟ݐ ௌ௉௖௔௟௟ݐ) , ௘݌)௦)൯…ቀ݌ , ,(ௌ௉௥௘௧௨௥௡ݐ ൫ݐௌ௉௥௘௧௨௥௡ , ௬൯ቁ, that invokes the݌
actual subprocess (ݐௌ௉௖௔௟௟ , ௘݌)...(௦݌ , ௌ௉௥௘௧௨௥௡) in the BPD. Simplifying thisݐ
subprocess leads to ቀ൫݌௫ , ,௣௥௢௖௘௦௦൯ݐ ൫ݐ௣௥௢௖௘௦௦ , ௬൯ቁ (see Fig. 4.5) which matches݌
the simplified version of a business process in ArchiMate.

The example (see Fig. 4.2) shows the process for handling claims in an
insurance company called ‘ArchiSurance’. The business process concept
‘Handle Claim’ contains the business concepts ‘Register’, ‘Accept’, ‘Valuate’,
‘Pay’ and ‘Reject’ concept. Clearly, these concepts together represents the
Handle Claim concept. If damage occurs, then it triggers the Handle Claim
business process as a whole and the internal business process Register is
receiving the damage by register the occurred damage of the insurer.

Fig. 4.2. Example of a business process for handle claims.

Concepts Places

(P)
Transitions
(T)

Arcs (P,T)
(F)

Handle
Claim

,ଵ݌)ଵ ቀ൫ݐ,଴ݐ ૙࢖ = ,(ଵݐ ,ଵݐ) ,଴)൯݌ ൫(݌଴, ,(଴ݐ ,଴ݐ) ଻)൯ቁ݌

Damage
occurred

 ଵݐ ૚࢖ =
൫(݌ଵ, ,(ଵݐ ,ଵݐ) ଶ)൯݌

Register = ࢖૛ ݐଵ, ,ଵ݌)ଶ ቀ൫ݐ ,(ଵݐ ,ଵݐ) ,ଶ)൯݌ ൫(݌ଶ, ,(ଶݐ ,ଶݐ) ଷ)൯ቁ݌

Accept = ࢖૜ ݐଶ, ,ଶ݌)ଷ ቀ൫ݐ ,(ଶݐ ,ଶݐ) ,ଷ)൯݌ ൫(݌ଷ, ,(ଷݐ ,ଷݐ) ସ)൯ቁ݌

Valuate = ݌ଷ
 ૝࢖
 ହ݌
 ଺݌

 ଷݐ
 ௃ଵݐ
 ௃ଶݐ

⎝

⎜
⎛

൫(݌ଷ, ,(ଷݐ ,ଷݐ) ,ସ)൯݌

ቌ
ቀ݌ସ, ൫ݐ௃ଵ, ௃ଶ൯ቁݐ ,

ቀ൫ݐ௃ଵ, ,ହ൯݌ ൫ݐ௃ଶ, ଺൯ቁ݌
ቍ

⎠

⎟
⎞

Pay = ࢖૞,݌଻ ݐସ ൫(݌ହ, ,(ସݐ ,ସݐ) ଻)൯݌
Reject = ࢖૟,݌଻ ݐହ ൫(݌଺, ,(ହݐ ,ହݐ) ଻)൯݌
Notification = ݌ହ

 ଺݌
 ૠ࢖

,ସݐ ହݐ
ቀ൫(݌ହ, ,(ସݐ ,ସݐ) ,଻)൯݌ ൫(݌଺, ,(ହݐ ,ହݐ) ଻)൯ቁ݌

Pagina 113 van 148

Junction
(SPLIT)

,ସ݌ = ,ହ݌ ଺݌ ,ସ݌௃ଶ ൬ቀݐ,௃ଵݐ ൫ݐ௃ଵ, ௃ଶ൯ቁݐ , ቀ൫ݐ௃ଵ, ,ହ൯݌ ൫ݐ௃ଶ, ଺൯ቁ൰݌

Markings of a net
The set of all initial place markings of a net:
 (௣଺)ܯ,(௣ଵ)ܯ =(௣଴)ܯ
 .the damage that can be claimed according to the insurance policy =(௣ଵ)ܯ
 .detailed damage info, the insurance policy data of the insurer =(௣ଶ)ܯ
 .preparing data for further processing =(௣ଷ)ܯ
 .requirements with respect to compensation in the insurance policy =(௣ସ)ܯ
 .the amount is reimbursed via the bank account of the insurer =(௣ହ)ܯ
 .requirements of damage coverage according to the insurance policy =(௣଺)ܯ
 a letter that states the motivation whether the damage is being =(௣଻)ܯ
compensated or the insurer needs to compensate the damage by himself as a
consequence of his insufficient damage coverage insurance policy.

ArchiSurance Model in Petri Net terms
for handle claim concept

ቀ൫(݌ଵ, ,(ଵݐ ,ଵݐ) ,଴)൯݌ ൫(݌଴, ,(଴ݐ ,଴ݐ) ଻)൯ቁ݌

for internal concepts within the handle claim concept

⎝

⎜
⎛൫(݌ଵ, ,(ଵݐ ,ଵݐ) ,ଶ)൯݌ ൫(݌ଶ, ,(ଶݐ ,ଶݐ) ,ଷ)൯݌ ൫(݌ଷ, ,(ଷݐ ,ଷݐ) ,ସ)൯݌ ቌ

ቀ݌ସ, ൫ݐ௃ଵ, ௃ଶ൯ቁݐ ,

ቀ൫ݐ௃ଵ, ,ହ൯݌ ൫ݐ௃ଶ, ଺൯ቁ݌
ቍ ,

൫(݌ହ, ,(ସݐ ,ସݐ) ,଻)൯݌ ൫(݌଺, ,(ହݐ ,ହݐ) ଻)൯݌ ⎠

⎟
⎞

Fig. 4.3. The Petri Net graph of the business process for handle claims.

 Fig. 4.4. The Petri Net graph extended business process for handle claims.

Pagina 114 van 148

4.4.2 Some Concepts from BPMN to ArchiMate
This section reflects the opposite way of the previous section and takes some
BPMN specific concepts that is equivalent to the business process concept in
ArchiMate. Now, the activity (task, process, subprocess) concept is compared.
Due to time limitations, this section only provides the comparison, but
should be done in the same way as described in section 4.4.1. The
ArchiSurance model in the previous section is equivalent with the BPMN
Diagram (see Fig. 4.5 and 4.6).

Tasks
 ݐܿ݁ݎ݅ܦ

 ݃݊݅݌݌ܽܯ

 (࣮)஻ߨ

ቀ(݌௫ , ,(௧௔௦௞ݐ ൫ݐ௧௔௦௞ , ௬൯ቁ݌

 ≡ ≡
 ݐܿ݁ݎ݅݀݊ܫ

 ݃݊݅݌݌ܽܯ
஺(߬஻,஺(࣮))ߨ ቀ(݌௫ , ,(௕௔ݐ ൫ݐ௕௔ , ௬൯ቁ݌

Sub-Processes

௫݌)஻(࣭) ቆ൬൫ߨ , ,(ௌ௉௖௔௟௟ݐ ௌ௉௖௔௟௟ݐ) , …௦)൯݌ ቀ(݌௘ , ,(ௌ௉௥௘௧௨௥௡ݐ ൫ݐௌ௉௥௘௧௨௥௡ , ௬൯ቁ൰ቇ݌

≡ ≡
௫݌஺(߬஻,஺(࣭)) ቀ൫ߨ , ,௕௣൯ݐ ൫ݐ௕௣, ,௫ଶ݌௫ଵ൯…൫݌ ,௕௣൯ݐ ൫ݐ௕௣ , ௬൯ቁ݌

 Fig. 4.5. The BPMN Diagram of the business process for handle claims.

Fig. 4.6. The BPMN Diagram of the handle claims subprocess.

Pagina 115 van 148

4.5 Expressiveness
Most modeling languages are designed to model or describe a specific
architectural domain such as applications e.g. UML or business e.g. BPMN.
The expressiveness of such modeling languages is related to its concepts
[Prop 05]. ArchiMate is designed to describe the high-level architecture of the
enterprises architecture, while BPMN focuses on the detailed description of
business processes. ArchiMate concepts are thus of general nature, while
concepts of BPMN are more designed for detailed process modeling.

4.5.1 Frameworks (AM – BPMN)
ArchiMate focuses on the architecture of the enterprise which encompasses
business, application and technology domains, whereas BPMN concentrate on
process modeling within the business domain.

Fig. 4.4. ArchiMate’s framework covering integrated architectural domains.

An architectural framework of the ArchiMate language (see Fig. 4.4) defines
the structure of the concepts and its mutual relationship into the business,
application and technology layer, in which the passive, behaviour and active
aspects are an essential part. One of the driving forces to develop the
ArchiMate language is to define any global structure within each domain and
to define the relevant relations between the domains. Concepts defined in the
ArchiMate language are intended for the integration of business, application,
and technology domains; the detailed concepts that are used for modeling
specific domains, such as UML for modeling software architecture and
BPMN that is used for business process modeling, which can be closely
related to ArchiMate concepts. In the ArchiMate’s framework, BPMN covers
only the process domain (see Fig. 4.5). BPMN is restricted to the business

Pagina 116 van 148

layer with a strong emphasis on the behavioral aspect. BPMN’s main
purpose is to provide a uniform notation for modeling business processes in
terms of activities and their relationships. The language specific concepts:
pool, lane and artifact do not cover the structural and informational aspects
associated with the business processes. Thus, the BPMN concepts offer
limited possibilities with respect to both the informational and structural
aspects, due to its business specific detailed concepts.

Fig. 4.5. BPMN’s framework covers the process domain.

4.5.2 Business Processes
BPMN can be used for modeling detailed business processes as it is
specifically designed for process modeling. ArchiMate models the global
structure, i.e. high level architecture within and between architectural
domains. The expressiveness of concepts from these languages are evaluated
with respect to modeling business processes. To this end, only the business
layer of the ArchiMate language is abstracted, since these layer-specific
concepts are closely related to BPMN basic concepts.

ArchiMate contains a considerable number of concepts and relationships
[Jonk 04]. Which relationships may be modeled between two concepts is
precisely defined in ArchiMate, but in practice it is difficult to find the right
choice within the permissible purposes. The question is what relationships
between concepts in most cases should be modeled. This section describes
the most common situations in which relationships should be modeled. Not
all relationships between ArchiMate concepts discussed, only the
relationships that are most commonly used.

Pagina 117 van 148

Fig. 4.6. Expressiveness of ArchiMate business process concept.

Business process has the following relationship with its associated concepts
(see Fig. 4.6):

 A business process exchange data with other business processes via
the flow relation;

 A business process is triggered by / or triggers a business event, a
business function or other business processes;

 A business process is assigned to a business role;
 A business process is part of a business function;
 A business process has access to a business object; a business process

creates, reads, edit or destroy a business object.

Fig. 4.7. Relationship of the business role concept.

Pagina 118 van 148

Business role has the following relationship with its associated concepts (see
Fig. 4.7):

 A business role can be assigned to a business actor;
 A business role can be assigned to a business process, a business

function or associated with a business event;

Fig. 4.8. Relation between business role and business actor concept.

Business actor has the following relationship with its associated concepts (see
Fig. 4.9):

 A business actor is assigned to a business role;

Business object has the following relationship with its associated concepts
(see Fig. 4.10):

 A business object is created, read, edited, or removed by a business
process or business function via the access relation.

 A business object can have specializations;
 A business object can refer to other objects (aggregation relation)
 A business object may contain other objects (composition relation)

Fig. 4.10. Relationship of the business object concept.

Pagina 119 van 148

NOTE: For BPMN, only description of parts of the relevant concepts with respect
to the expressiveness are given.

Task has the following relationship with its associated concepts:

 A task is a specialization of the generic activity concept that
represents the smallest peace of work in an organization that needs to
be performed;

 A task may associate pools (including lanes) for denoting sources
(i.e. participants) that are responsible for the tasks to be performed;

 A task triggers/may be triggered by other processes, tasks or
subprocesses by using the sequence flow relation;

 Tasks are atomic or non-atomic activities.

Subprocess has the following relationship with its associated concepts:

 A subprocess is also a specialization of an activity concept and
represents the detailed internal activities in terms of tasks, processes,
and subprocesses;

 Subprocess itself may associate participants by the use of pools
(including lanes);

 A subprocess triggers/may be triggered by other tasks, processes, or
subprocesses by using the sequence flow relation;

 Subprocesses are atomic or non-atomic activities.

Pools & Lanes has the following relationship with its associated concepts:
 A swimlane concept is a generic term for assigning (human or

systems) resources to activities that are responsible for performing
the work flow;

 Pools may comprise lanes and pools mutually exchange messages by
the message flow relations;

 Pools can contain tasks, processes and subprocesses;
 Lanes are subparted of pools and can contain tasks, processes and

subprocesses.

Data objects has the following relationship with its associated concepts:

 Data objects represents the information that are accessed by activities
via message flow relations.

 Data objects may exchange from message start events, tasks and
(sub)processes.

Pagina 120 van 148

Chapter 5

Discussions

This section discusses the resulting Petri Nets semantics originated from
ArchiMate and BPMN concepts. Some clues are discussed to enhance the
semantic modeling approach that are of relevant value for analyzing the
behaviour of nets [Bern 02] in future work.

Semantics of concepts in business processes:
The ArchiMate business process can be seen as a generalization of the BPMN
language, while BPMN is designed for a detailed business process with
specific business concepts. Some concepts cannot be translated such as
business actor, business roles in ArchiMate and the pools and lanes in BPMN.
Such incomplete translation of ArchiMate/BPMN business concepts means in
essence loss of information, but that is the price to be paid. Also the grouping
mechanism in both languages needs to be compensated to some extent.

These issues are abstracted in Petri Net terms as the focus lies on event
processing [Zang 08],[Shen 04] by means of activities and processes (i.e. the
actual work). Besides, the transformation of relations is a difficult one,
because a message flow in BPMN means an exchange of messages between
pools, while in ArchiMate a flow relation in graphical sense does not
differentiate from other relations. Since Petri Net does not differentiate
relationships, a BPMN message flow is interpreted as an event process. Thus,
as long the business concepts are reflecting behavior of activities, such
constructs can be modeled.

A formal definition of the mapping of BPMN/ArchiMate to Petri Net (let’s
say P’ for places, T’ for transitions and F’ for flow relations) defined in terms
of ArchiMate and BPMN formal semantics, should be provided that
contributes to a better understanding.

Analyzing Petri Nets (HLPNG’s) to determine its behaviour properties:
For future work the semantics of ArchiMate/BPMN models in Petri Net
terms should be analyzed [Khom 07] by the following properties to obtain
useful information (by tools) about the behaviour of such models being

Pagina 121 van 148

created in ArchiMate and BPMN within the business domain and
transformed to nets:

 Reachability
For a directed (acyclic) graph (DAG), the reachability can be
calculated to detect whether certain states cannot be reached with
respect to place markings. The reachability set of a net is the set of all
markings reachable from initial markings. This might be very helpful
to find erroneous states in the net with having many places and
transitions.

 Liveness
Liveness of nets is one of the property in Petri Net to detect whether
transitions can be ‘fired’ in the sense that transitions are activated. A
transition is deadlocked if it can never fire and a transition is live if it
can never deadlock. By doing this, the relevant transitions behaviour
of the net can be traced back to ArchiMate/BPMN models.

 Boundedness
The boundedness of a net concerns the distribution of tokens with
regards to markings of nets. A Petri Net with initial markings (i.e. the
set of all place markings) is safe if places always hold at most 1-
token. A marked net is (k-)bounded if places never hold more than k
tokens. A marked net is conservative if the number of tokens is
constant. When taken this property in account, the development of
the ‘work’ can be seen during its performance and might facilitate
the decision making processes.

 Number of places, transitions, and arcs

A desirable feature is to calculate how many places, transitions and
arcs are used to construct the Petri Net model resulting from
equivalent ArchiMate/BPMN models. It is interesting to evaluate
how empirical data is related to the semantic of the
ArchiMate/BPMN models.

Pagina 122 van 148

Chapter 6

Conclusions

This thesis proposes a mapping from a relevant set of core ArchiMate and
BPMN concepts to Petri Net in order to test the hypothesis in how these
concepts are related with respect to their semantics. Based on the results of
the modelling approach the hypothesis are evaluated.

Hypotheses

)஺ߨ .1 ஺ࣝ) ≡)஻(߬஺,஻ߨ ஺ࣝ))
஻(ࣝ஻)ߨ .2 ≡ ஺(߬஻,஺(ࣝ஻))ߨ

The results of the comparing method (see Sect. 4.4) can be divided in to the
following argumentation. This concerns the mapping concepts indirectly
given an specific concept in ArchiMate/BPMN that leads to elementary or
composite concepts in BPMN/ArchiMate.

 Elementary concepts
Business Activity concept in ArchiMate and the BPMN Task concepts
are matching. These concepts are at both sides elementary,
i.e.,	߬஺,஻(ℬ࣪ࣛ)	ܽ݊݀	߬஻,஺(࣮), because the semantics are identical and the
HLPNG are reflecting each other. Thus, it can be concluded that when
taking a business activity concept in ArchiMate that is directly mapped
into Petri Nets, the semantics of ߨ஺(஺ࣝ) is identical to the indirect mapping
of a business process concept ߨ஻(߬஺,஻(஺ࣝ) from the perspective of
ArchiMate via BPMN as intermediary language.

 Composites concepts
The business process concept in ArchiMate is mapped to BPMN resulting
in composite concepts of respectively (activity) task and subprocess
concepts. This arises the question how one concept (in this case the business
process concept) in ArchiMate is related to equivalent concept from the
BPMN perspective and vice versa.

Pagina 123 van 148

If composite concepts are not found in the direct mapping of ArchiMate & BPMN,
the following should be performed as such that:
 (࡮,࡭࣎ enhance) ࢏࡯	ࢊ࢔ࢇ	૚࡯	࢙࢚࢖ࢋࢉ࢔࢕ࢉ	ࢋ࢚࢏࢙࢕࢖࢓࢕ࢉ	ࢌ࢕	࢔࢕࢏࢚ࢉ࢔࢛ࢌ	ࢇ	ࢋ࢈	ࢌ	࢚ࢋࡸ

Hypotheses 1
(࡯)࡭࣊ ≡ ࡮࣊ ቀ࣎࡮,࡭(ऍ࡭)ቁ࢝ࢊ࢒࢛࢕	ࢋ࢈	࡭࣊(ऌच)	≡ ࡮࣊	 ቀࢌ൫࣊࡮(ञ),࣊࡮(झ)൯ቁ	and

(ऌच)࡭࣊	 ≡ ࡮࣊ ቆ࣎࡭,࡮ ൬࡭,࡮ࢌ ቀ࣎࡭,࡮(ञ), ቁ൰ቇ(झ)࡭,࡮࣎ 	= ऌच

Hypotheses 2
This applies for the opposite way (enhance ߬஻,஺)
(ܥ)࡮ߨ ≡ ࡭ߨ ቀ߬஻,(࡮ࣝ)࡭ቁ (࡯)࡮ߨ		ࢋ࢈	ࢊ࢒࢛࢕࢝	 	≡ ࡭ߨ	 ቀࢌ൫࣊࡭(ܥଵ),࣊࡭(ܥ௜)൯ቁ

(ܥ)࡮࣊ ≡ ࡭࣊ ቆ࣎஺,஻ ൬࡮,࡭࣎ࢌ ቀ࣎஺,஻(ࣝଵ), ࣎஺,஻(ࣝ௜)ቁ൰ቇ 	= ܥ

The above method should be as such that II(I) reflects I, which means that
constructs in II(I) should be at some way traced back in the constructs of I.

If composites concepts are found in ߨ஺(஺ࣝ)	ݎ݋	ߨ஻(ࣝ஻) concepts
If the above mentioned cannot be enhanced, it can be concluded that from the
perspective of ArchiMate/BPMN the concept seems not as elementary as in first
sight.

In graphical sense it can be depicted as:

The equation ߨ஺(஺ࣝ) ≡)஻(߬஺,஻ߨ ஺ࣝ)) ⊨ ஻ߨ	 ቀ߬஺,஻(஺ࣝ)ቁ)஺ߨ	↔ ஺ࣝ) holds for a
(ArchiMate) business activity / (BPMN) task as well as the equation
஻(ࣝ஻)ߨ ≡ ஺(߬஻,஺(ࣝ஻))ߨ ⊨ ஺ߨ	 ቀ߬஻,஺(ࣝ஻)ቁ ஻(ࣝ஻). For the business conceptߨ	↔
business process in ArchiMate, the direct mapping of a business concept
(hypothesis 1) is semantically identical to the indirectly mapping ߨ஺(஺ࣝ) ≡
࡮࣊ ቀ࣎࡮,࡭(ऍ࡭)ቁ. This lies in the composite concepts that can be found in I. If
function ࢌ is mapped to ArchiMate, it results in a business process concept
corresponding to the hypothesis. But when mapping back to ArchiMate,
hypothesis 2 would result in elementary concept in ArchiMate, namely the
business process or activity concept if considers ࣊࡮(ञ) and ࣊࡮(झ) separately.
We can conclude that the semantics of the ArchiMate business/BPMN
language concepts are the same. This makes integration of models possible.

 ஺(ℬ࣪)ߨ

I

࡮ߨ ቀࢌ൫࣊࡮(ञ),࣊࡮(झ)൯ቁ	
II

஻ߨ ቆ߬஻,஺ ൬ࢌఛ࡭,࡮ ቀ߬஻,஺(ञ), ߬஻,஺(झ)ቁ

III

Pagina 124 van 148

Pagina 125 van 148

References

[Aals 11] Aalst, W.M.P. van der, Lohmann, N., La Rosa, M., Ensuring

correctness during process configuration via partner
synthesis, Information Systems, volume 37, Issue 6, pp. 574-
592, September 2011.

[Aloi 12] Aloini, D., Dulmin, R., Mininno, V., Modelling and assessing
ERP project risks: A Petri Net approach, European journal of
operational research, volume 220, issue 2, pp. 484 -495,
February 2012.

[Bern 02] Bernardo, M., Busi, N., Ribaudo, M., Integrating TwoTowers
and GreatSPN through a compact net semantics, vol. 50,
issue 2-3, pp. 153-187, 2002.

[Bill 03] Billington, J., Christensen, S., Hee, K. van, Kindler, E.,
Kummer, O., Petrucci, L., Post, R., Stehno, C., Weber, M.,
The Petri Net Markup Language: Concepts, Technology and
Tools, Lecture notes in computer science ISSN 0302-9743, vol.
2679, pp. 483-506, 2003.

[Boer 05] De Boer, F.S., Bonsangue, M.M., Groenewegen, L.P.J., Stam,
A.W., Stevens, S., van der Torre, L., Proceedings of the 2005
IEEE International Conference on Information Reuse and
Integration (IRI -2005), Change Impact Analysis of Enterprise
Architecture, pp. 177-181, 2005.

[Boer 06] de Boer, F.S., Bonsangue, M.M., Jacob, J.F., Stam, A., van der
Torre, L., Using XML Transformation for Enterprise
Architecture, Lecture notes in computer science [ISSN 0302-
9743], vol. 4313, pp. 42 - 56, 2006.

[Buur 04] van Buuren, R., Jonkers, H., Iacob, M., Stratings, P.
Composition of Relations in Enterprise Architecture Models,
Lecture Notes in Computer Science (LNCS), vol. 3256, pp. 39-53,
2004.

[Chin 12] Chinosi, M., Trombetta, A., BPMN: An introduction to the
standard, Computer standards & interfaces: an international
journal, vol. 34, pp. 124-134, 2012.

[Chri 10] Christiansen, D.R., Carbone, M., Hildebrandt, T., Formal
Semantics and Implementation of BPMN 2.0 Inclusive
Gateways, Proceeding WS-FM'10: Proceedings of the 7th

international conference on Web services and formal methods, pp.
146-160, 2010.

Pagina 126 van 148

[Dijk 08] Dijkman, R.M., Dumas, M., Ouyang, C., Formal semantics
and analysis of business process models in BPMN, Journal
Information and Software Technology archive, vol. 50 Issue 12,
pp. 1281-1294, November, 2008.

[Gree 11] D. Greefhorst and H.A. Proper. A Practical Approach to the
Formulation and Use of Architecture Principles. In
Proceedings of the 6th Trends in Enterprise Architecture Research
(TEAR) workshop, held in conjunction with the 15th International
EDOC Enterprise Computing Conference, pages 330-339,
Helsinki, Finland, September 2011.

[Gust 09] Gustafsson, P., Höök, D., Franke, U., Johnson P., Modeling
the IT Impact on Organizational Structure, IEEE International
Enterprise Distributed Object Computing Conference (edoc 2009),
pp. 14-23, 2009.

[Halp 96] Halpin, T., Business rules and Object-Role modeling,
Database Programming and Design, vol. 9 no. 10, pp. 66-72,
1996.

[Halp 98] Halpin, T., Object-Role Modeling (ORM/NIAM), Handbook on
Architectures of Information Systems (Ch.4), Springer,
Heidelberg, 1998.

[Hopp 04] Hoppenbrouwers, S.J.B.A., Bleek, A.I., Proper, H.A., Modeling
Linguistically Complex Business Domains, Technical Report
NIII-R0405, Nijmegen Institute for Information and
Computing Sciences, University of Nijmegen, The
Netherlands, EU, 2004.

[Hopp 05] Hoppenbrouwers S.J.B.A., Proper, H.A., van der Weide,
Th.P. (eds.): Conceptual Modelling ER-2005, A Fundamental
View on the Process of Conceptual Modeling, Lecture Notes in
Computer Science (LNCS), vol. 3716, pp. 128-143, 2005.

[Jonk 03] Jonkers, H, van Buuren, R., Arbab, F., de Boer. F., Bonsangue
M., Bosma, H., ter Doest, H., Groenewegen, L., Scholten J.G.,
Hoppenbrouwers S., Iacob, M., Janssen W., Lankhorst, M.,
van Leeuwen, D., Proper, H.A., Stam, A., van der Torre, L.,
Veldhuijzen van Zanten, G., Towards a Language for
Coherent Enterprise Architecture Descriptions, Proceedings of
the 7th International Conference on Enterprise Distributed Object
Computing, pp. 28-37, 2003.

[John 07] Johnson, P., Lagerström, R., Närman, P., Simonsson, M.,
Enterprise architecture analysis with extended influence
diagrams, Journal of Information Systems Frontier, vol. 09, pp.
163-180, 2007.

Pagina 127 van 148

[Jonk 11] H. Jonkers, M.M. Lankhorst, D.A.C. Quartel, H.A. Proper,
and M.-E. Iacob. ArchiMate for Integrated Modelling
Throughout the Architecture Development and
Implementation Cycle. In Proceedings of the 13th IEEE
Conference on Commerce and Enterprise Computing (CEC2011),
pages 294-301, Luxembourg-Kirchberg, Luxembourgu, 2011.

[Jonk 04] Jonkers, H., Lankhorst, M., van Buuren, R., Hoppenbrouwers
S., Bonsangue M., van der Torre, L., Concepts for Modelling
Enterprise Architectures, International Journal of Cooperative
Information Systems, 2004.

[Kind 06] Kindler, E., (2006). Concepts, Status, and Future Directions.
In E. Schnieder (ed.): Entwurf Komplexer
Automatisierungssysteme, EKA 2006, 9. pp. 35-55, May 2006.

[Khom 07] Khomenko, V., Koutny, M., Verification of bounded Petri
nets using integer programming, Formal methods in system
design, vol. 30, Issue 2, pp. 143 - 176, 2007.

[Kosa 07] Kosanke, K., Vernadat, F., Zelm, M., CIMOSA: enterprise
engineering and integration, Computers In Industry, vol. 40,
pp. 83-97, 1999.

[Land 09] Op ‘t Land, M., Proper, H.A., Waage, M., Cloo, J., Steghuis,
C., Enterprise Architecture: Creating Value by Informed
Governance, Springer, Berlin, 2009.

[Lank 05] Lankhorst, M.M., van Buuren, R., van Leeuwen, D., Jonkers,
H., ter Doest, H., Enterprise architecture modelling—the
issue of integration, Advanced Engineering Informatics:
Enterprise Modelling and System Support, vol. 18 (Issue 04), pp.
205-216, January 2005.

[Lank 09a] Lankhorst, M.M., Proper, H.A., Jonkers, H., The Architecture
of the ArchiMate Language, Lecture Notes in Business
Information Processing, vol. 29, pp. 367-380, June 2009.

[Lank 09b] Lankhorst M. et al., Enterprise Architecture at Work: Modelling:
Communication and Analysis, Springer, Berlin, 2009.

[Lind 11] D.J.T. Van der Linden, S.J.B.A. Hoppenbrouwers, A.
Lartseva, and H.A. Proper. Towards an Investigation of the
Conceptual Landscape of Enterprise Architecture. In T.
Halpin, editor, BPMDS 2011 and EMMSAD 2011 proceedings,
pp. 526-535. Springer, Heidelberg, number 81 in LNBIP, pages
526-535. Springer, Berlin, Germany, 2011.

[Odeh 03] Odeh, M., Kamm, R., Bridging the gap between business
models and system models, Information and Software
Technology, volume 45, Issue 15, pp. 1053-1060, December
2003.

Pagina 128 van 148

[Over 07] Overbeek, S.J., van Bommel, P., Proper, H.A. (Erik).,
Rijsenbrij, D.B.B., Visualizing Formalisms with ORM Models,
In Proceedings of the 2007 OTM confederated international
conference on the move to meaningful internet systems LNCS
4805, vol. (Part I), pp. 709-718, 2007.

[Paig 00] Paigea, R.F., Ostroffa, J.S., Brooke, P.J., Principles for
modeling language design, Information and Software
Technology, volume 42, Issue 10, pp. 665–675, March 2000.

[Prop 05] Proper, H.A., Verrijn-Stuart, A., Hoppenbrouwers, S.,
Towards Utility-based Selection of Architecture-Modelling
Concepts, Proceedings of the Second Asia-Pacific Conference on
Conceptual Modelling APCCM, vol. 42, pp. 25-36, 2005.

[Raed 07] Raedts, I., Petković, M., Usenko, Y.S., van der Werf, J.M.,
Groote, J.F., Somers, L., Transformation of BPMN models for
Behaviour Analysis, In Proceeding of: Modeling, Simulation,
Verification and Validation of Enterprise Information Systems
(MSVVEIS 2007), pp. 126-137, June 2007.

[Shen 04] Shen, H., Wall, B., Zaremba, M., Chen, Y., Browne, J.,
Integration of business modelling methods for enterprise
information system analysis and user requirements
gathering, Computers in Industry, volume 54, Issue 3, pp. 307-
323, August 2004.

[Soar 08] Dos Santos Soares, M., Jos Vrancken, A Meta-modeling
Approach to transform UML 2.0 Sequence Diagrams to Petri
Nets, Proceeding SE '08 Proceedings of the IASTED International
Conference on Software Engineering, pp. 159-164, 2008.

[Tuli 09] P. Tulinayo, S.J.B.A Hoppenbrouwers, P. Bommel Van
Bommel, and H.A. Proper. Integrating System Dynamics
with Object-Role Modeling and Petri Nets. In J. Mendling, S.
Rinderle-Ma, and W. Esswein, editors, Enterprise Modelling
and information systems Architectures, pages 41-54, Ulm,
Germany, September 10-11 2009.

[Wang 05] Wang, C-B., Chen, T-Y., Chen, Y-M., H.C., Chu, Design of a
Meta Model for integrating enterprise systems, Computers in
Industry, vol. 56, Issue 3, pp. 305-322, 2005.

[Webe 03] Weber, M., Kindler, E., The Petri Net Markup Language, In
Proceeding of: Lecture Notes in Computer Science ISSN 0302-
9743, vol. 2472, pp. 124-144, 2003.

[Whit 04a] White, S.A., Process Modeling Notations and Workflow
Patterns, IBM Corp., United States, January 2004.

[Whit 04b] White, S.A., Introduction to BPMN, www.bptrends.com, IBM
Corporation, July 2004.

[Whit 05a] White, S.A., Using BPMN to model a BPEL process,
www.bptrends.com, IBM Corporation, July 2005.

Pagina 129 van 148

[Whit 05b] White, S.A., mapping BPMN to BPEL example,
www.bptrends.com, IBM Corporation, February 2005.

[Wier 04] Wiering M.J., Bonsangue M.M., van Buuren R., Groenewegen
L.P.J., Jonkers H., Lankhorst M.M., Investigating the
mapping of an Enterprise Description Language into UML
2.0, Electronic Notes in Theoretical Computer Science 101
(ENTCS), pp. 155–179, 2004.

[Yu 07] Yu, X., Zhang, Y., Zhang, T., Wang, L., Hu, J., Zhao, J., Li,
Xuandong, A model-driven development framework for
enterprise Web services, Information Systems Frontier, vol. 09,
pp. 391-409, July 2007.

[Zang 07] Zang, C., Fan, Y., Liu, R., Architecture, implementation and
application of complex event processing in enterprise
information systems based on RFID, Information Systems
Frontiers, vol. 10, Issue 5, pp. 543 - 553, 2008.

Reports / Documentation

[01] Documentation, International Standard ISO/IEC 15909

version 4.7.1, High-level Petri Nets Concepts, Definitions and
Graphical Notation Final Draft, October 28, 2000.

[02] Business Process Model Notation (BPMN) Specification 2.0,
http://www.omg.org/spec/BPMN/2.0, January 2011.

[03] Mapping ArchiMate and standards ArchiMate Deliverable
ArchiMate Deliverable 2.2.3b, 2004.

[04] Concepts for Architectural Descriptions ArchiMate
Deliverable 2.2.1 v4.1, 2007.

Pagina 130 van 148

Glossary
A

Activity - an activity is a generic term for work that company performs in a
process. An activity can be atomic or non-atomic (compound). The types of
activities that are a part of a process model are: sub-process and task, which
are rounded rectangles. Activities are used in standard processes.
Application collaboration - a configuration of two or more application
components that cooperate to jointly perform application interactions.
Application component - a modular, deployable, and replaceable part of a
system that encapsulates its contents and exposes its functionality through a
set of interfaces.
Application function - a coherent unit of internal behaviour of an
application component.
Application interaction - a unit of behaviour performed by a collaboration of
two or more application components.
Application interface - declares how a component can connect with its
environment.
Application service - an externally visible unit of functionality, provided by
one or more components, exposed through well-defined interfaces, and
meaningful to the environment.
Arc annotation - an expression that may involve constants, variables and
operators used to annotate an arc of a net. The expression must evaluate to a
multiset over the type of the arc’s associated place.
Artifact - a physical piece of information that is used or produced in a
software development process, or by deployment and operation of a system.
Association - an association is used to link information and artifacts with
BPMN graphical elements. Text annotations and other artifacts can be
associated with the graphical elements. An arrowhead on the association
indicates a direction of flow (e.g., data), when appropriate.

B

Business actor - an organizational entity capable of (actively) performing
behaviour.
Business collaboration - a (possibly temporary) configuration of two or
more business roles resulting in specific collective behavior (interactions) in a
particular context).
Business event - something that happens (internally or externally) and may
influence business behaviour (business processes, functions, interactions).

Pagina 131 van 148

Business function - a unit of internal behaviour that groups behaviour
according to (for example) required skills, knowledge, resources, etc.
Business interaction - a unit of behaviour performed in collaboration by two
or more business roles.
Business interface - declares how a business role can connect with its
environment.
Business object - a unit of information relevant from a business perspective.
Business process - a unit of internal behaviour or collection of causally-
related units of internal behaviour intended to produce a defined set of
products and services.
Business role - a named specific behavior of a business actor participating in
a particular context.
Business service - the externally visible (‘logical’) functionality, which is
meaningful to the environment and is realized by business behaviour
(business process, business function or business interaction).

C

Communication path - a logical link between two or more nodes, through
which these nodes can exchange information.
Contract - a formal or informal specification of agreement that specifies the
rights and obligations associated with a product.

D

Data Object (ArchiMate) - a coherent, self-contained piece of information
suitable for automated processing.
Data Object (BPMN) - provide information about what activities require to
be performed and/or what they produce. Data Objects can represent a
singular object or a collection of objects.
Declaration - a set of statements which define the sets, constants, parameter
values, typed variables and functions required for defining the inscriptions
on a High-level Petri Net Graph.
Device - a physical computational resource upon which artifacts may be
deployed for execution.

E

Enabling (a transition) - a transition is enabled in a particular mode and net
marking, when the following conditions are met: The marking of each input
place of the transition satisfies the demand imposed on it by its arc
annotation evaluated for the particular transition mode. The demand is

Pagina 132 van 148

satisfied when the place’s marking contains (at least) the multiset of tokens
indicated by the evaluated arc annotation.
Enabling Tokens - the multiset of values obtained when an input arc
annotation is evaluated for a particular binding to variables.
End Event - indicates where a process will end.
Enterprise Architecture - a coherent whole of principles, methods, and
models that are used in the design and realization of an enterprise's
organizational structure, business processes, information system and
infrastructure.
Event - something that “happens” during the course of a process. These
events affect the flow of the model and usually have a cause (trigger) or an
impact (result). Events are circles with open centers to allow internal markers
to differentiate different triggers or results. There are three types of events,
based on when they affect the flow: start event, intermediate event, and end
event.

G

Gateway - used to control the divergence and convergence of sequence flows
in a process. Thus, it will determine branching, forking, merging, and joining
of paths. Internal markers will indicate the type of behavior control.

H

High-level Petri Net Graph - a net graph and its associated annotations
comprising Place Types, Arc Annotations, Transition Conditions, and their
corresponding definitions in a set of Declarations, and an Initial Marking of
the net.

I

Infrastructure interface - a point of access where the infrastructural services
offered by a node can be accessed by other nodes or by application
components.
Infrastructure service - externally visible unit of functionality, provided by
one or more nodes, exposed through well-defined interfaces, and meaningful
to the environment.
Initial Marking (of the net) - the set of initial place markings
Initial Marking of a place - a special marking of a place
Input Arc (of a transition) - an arc directed from a place to the transition.
Input Place (of a transition) - a place connected to the transition by an input
arc.

Pagina 133 van 148

Intermediate Event - occurs between a start event and an end event. They
will affect the flow of the process, but will not start or (directly) terminate the
process.

L

Lane - a lane is a sub-partition within a process, sometimes within a pool,
and will extend the entire length of the process, either vertically or
horizontally. Lanes are used to organize and categorize activities.

M

Marking (of a net) - the set of the place markings for all places of the net.
Marking of a place - a multiset of tokens associated with (‘residing in’) the
place.
Meaning - the knowledge or expertise present in (the representation of) a
business object, given a particular context. A message flow is used to show the
flow of messages between two participants that are prepared to send and receive
them.
Message - a message is used to depict the contents of a communication between two
participants
Mode - a value taken from the transition’s type. When considering a High-
level Petri Net Graph, a mode may be derived from an assignment of values
to the transition’s variables that satisfies the transition condition.

N

Net - a general term used to describe all classes of Petri nets.
Network - a physical communication medium between two or more devices.
Node - a logical computational resource upon which artifacts may be
deployed for execution.
Node (of a net) - a vertex of a net graph (i.e., a place or a transition).

O

Output Arc (of a transition) - an arc directed from the transition to a place.
Output Place (of a transition) - a place connected to the transition by an
output arc.

P

Place - a node of a net, taken from the place kind, normally represented by
an ellipse in the net graph. A place is typed.

Pagina 134 van 148

Place Type - a non-empty set of data items associated with a place.
Pool - the graphical representation of a Participant. It also acts as a
“swimlane” and a graphical container for partitioning a set of Activities from
other Pools, usually in the context of B2B situations. A pool may have internal
details, in the form of the Process that will be executed. Or a pool may have
no internal details, i.e., it can be a "black box."
Product - a coherent collection of services accompanied by a contract/set of
agreements, which is offered as a whole to (internal or external) customers.

R

Representation - the perceptible form of the information carried by a
business object.

S

Service - a service is defined as a unit of functionality that some entity (e.g.
system, organization or department) makes available to its environment, and
which has some value for certain entities in the environment (typically the
'service users').
Sequence Flow - a sequence flow is used to show the order that Activities
will be performed in a Process.
Start Event - indicates where a particular process will start.
Sub-Process - is a compound activity that is included within a. It is
compound in that it can be broken down into a finer level of detail (a
process) through a set of sub-activities.
System software - a software environment for specific types of application
components and data objects that are deployed on it in the form of artifacts.

T

Task - a task is an atomic activity that is included within a process. A Task is
used when the work in the process is not broken down to a finer level of
process detail.
Token - a data item associated with a place and chosen from the place’s type
Transition - a node of a net, taken from the transition kind, and represented
by a rectangle in the net graph.
Transition condition - a Boolean expression (one that evaluates to true or
false) associated with a transition.
Transition mode - a pair comprising the transition and a mode.
Transition occurrence (Transition rule) - if a transition is enabled in a mode,
it may occur in that mode. On the occurrence of the transition, the following
actions occur indivisibly:

Pagina 135 van 148

 For each input place of the transition: the enabling tokens of the

input arc with respect to that mode are subtracted from the input
place’s marking, and

 For each output place of the transition: the multiset of tokens of the
evaluated output arc expression is added to the marking of the
output place.

NOTE: A place may be both an input place and an output place of the same
transition.

Transition Variables - all the variables that occur in the expressions
associated with the transition. These are the transition condition, and the
annotations of arcs surrounding the transition.
Type - a set.

V

Value - that which makes some party appreciate a product or service.

Pagina 136 van 148

Appendix A. ArchiMate Metamodel

A summary of the ArchiMate concepts and their relationships is shown in
Fig. A.1 guided by the determined permitted relationships in Appendix C.

Fig. A.1. Metamodel of the ArchiMate language.

Pagina 137 van 148

Appendix B. ArchiMate Graphical
Notation

The symbols of the ArchiMate language are shown in Fig. B.1.

Fig. B.1. Symbols of the ArchiMate language

Pagina 138 van 142

Appendix C. ArchiMate Relations

The table below lists all permitted relationships between elements of the ArchiMate language, which is based on the ArchiMate metamodel in Appendix A.

Table C.1. Permitted relations between ArchiMate concepts.

Pagina 139 van 142

Appendix D. BPMN Metamodel

A summary of the BPMN concepts and their relationships is shown in Fig.
D.1 guided by the descriptions in Chapter 3 (see Sect. 3.2).

D.1. Metamodel of the BPMN language.

Pagina 140 van 142

Appendix E. BPMN Graphical
Notation

The elements of the basic BPMN modeling language are shown in Fig. E.1.

BPMN notation
Events Activities

Gateways
Exlusive, Parallel, Inclusive

Exclusive Gateway

Parallel Gateway

Inclusive Gateway

Relationships
Sequence flow
Message flow

Association

Swimlanes
Pools & Lanes

Artifacts
Data Object, Group, Annotation

Fig. E.1. Symbols of the BPMN language.

Pagina 141 van 142

Appendix F. Petri Net
Metamodel

A summary of the Petri Net structure and their relationships is shown in Fig.
F.1 guided by the descriptions in Chapter 3 (see Sect. 3.3).

Fig. F.1 Petri Net metamodel.

Constraints that needs to be added (see Fig. F.1):

1. Node 1…*
2. Arc 1…*
3. Predicate 1 (to Condition)
4. Operator 1 (to Condition)
5. Place 1…* (Arc)
6. Transition 1…* (Arc)

Pagina 142 van 142

Appendix G. Petri Nets
Graphical Notation

Petri Net graphical notations are summarized in Fig. G.1.

Petri Net notation
Places

Transitions

Arcs

Fig. G.1 Petri Net graphical symbols.

