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Abstract

People have more interaction with electronic devices each day, the
data-footprint this leaves behind can be used to our advantage. By
using the idea of a concept we can relate this data to a real-world
concept. These real-world concepts are then described using the Re-
source Description Framework (RDF), by creating a set of triples (a
directed graph) that describes the real-world concept. Depending on
which source of data is used, different ways of defining the concepts are
used. For textual data and sensory data the RDF-graphs representing
the concepts look very different, as for one words describe the concept
but for the other sensory data.

To be able to take advantage of this data-footprint left behind we
can now use the concepts, which is called reasoning with concepts.
The reasoning is done by defining a set of rules, where in these rules
you describe what conditions individuals of related concepts should
meet, when these meet, an action is performed. Actions are used to
manipulate individuals or obtain information from individuals.

Using these rules we can then help automate certain tasks within a
person’s daily life, thus automatically using this data-footprint to our
advantage.
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1 INTRODUCTION

1 Introduction

On an average day a person often has a lot of information needs for their
daily activities. To fulfill these needs interaction with computer software
on any electronic device is often required. This software can be at a lot of
places, think of search engines online, navigation systems in cars, monitoring
software on machines in hospitals or applications on mobile phones. There is
often interaction required with this software to find what you need, although
a lot of this interaction can be automated by predicting what the person
wants to do or wants to know in certain situations. A system that is set
up to make these predictions will require a lot of information about that
person’s daily activities and personal preferences. A great way to achieve
this is by logging most activities the person is performing.

Currently, creating predictions using software is done in a few ways, from
simple to more complex solutions. This goes from auto-complete user input
based on previous input or input by others and is often used in search engines
to solutions like Google Now, which try to predict and show information,
like traffic information before going to work. However, it would be nice to
know what the user is looking for so auto-complete becomes obsolete. Or,
whenever somebody does not work one day in a week, it would be good
not to show traffic information on those days. In present, existing solutions,
either personal preferences are barely considered or are considered too often,
which causes them to become either too obtrusive or too unreliable.

In this research the notion of reasoning with concepts (where activities
are part of the collection of concepts) is explained where you can have per-
sonal preferences and customization to improve the assisting and advising
abilities. To do this, the main question for this research will be: How can
reasoning with concepts automatically help in one’s daily life?

In this research we will first look at the state of the art research that is
already been done related to this subject in section 2. Then we will look
at the different types of data available to find details about the concepts
we want to have and how to use this data effectively (section 3). When we
know the available data types we can see which concepts can be detected
and create a method defining these concepts (section 4). When we know
how to define concepts, we want to use this to our advantage by reasoning
with these concepts to help somebody in his/her daily life (section 5). After
we know how to reason with concepts an example application is given in
section 6 and when we have seen how this work in a practical application
we can conclude this research (section 7).
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2 LITERATURE

2 Literature

The detection of concepts is something that has already been done in a
lot of areas of research. However, the most prominent of the areas are:
classification of user-data and search engines using semantic search.

User-data is basically a form of data related to the user interacting with
an electronic device. For example:

• activity recognition using data collected by multiple sensors,

• pattern recognition using location data,

• profiling using tracking data.

2.1 Activity recognition

About 10 years ago activity recognition using certain hardware on one’s
body became a popular subject to study. Blum et al. [1] have shown that
tracking human activities by using cameras, accelerometers, WiFi, GPS and
audio to detect what the person is doing.

Around that time mobile phones also started picking up more hardware,
of which the WiFi and GPS were one of the first additions. Embedding this
hardware in mobile phones gives the advantage of not having to worry about
any sensory devices placed on the body, as a phone is something a person
carries around most of the time already. Liao [2] presents a way of detecting
activities using this hardware by giving importance to location data by using
machine learning and probabilistic reasoning. This results in the detection of
a set of location-based activities that can be detected with a high accuracy.
Location-based activities are activities a person is performing depending on
where that person is, for example, a person is shopping because he is in a
supermarket or a person is working because he is at his work.

After this, accelerometers were introduced in mobile phones (especially
in smartphones) to detect things like screen rotation, but these sensors were
also precise enough to be used as an accelerometer attached to your body like
earlier studies [1] used them. Zhang et al. [3] use the accelerometer of the
smartphone to recognize six activities using Support Vector Machine (SVM)
classifiers, walking, posture transition, gentle motion, standing, sitting and
lying. These are all very distinguishable activities when it comes down to
recognizing them using accelerometer data. Bedogni et al. [4], however,
limit their set of detectable activities to transport by car, by train or on
foot. The focus there will be on transport by car and by train, because
those are very similar activities when looking at accelerometer data.
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The next step in the process of detecting activities has been the usage of
data from multiple sensors to recognize the activities. Chon et al. [5] does
this by using the accelerometer and gyroscope within the smartphone to
track indoor locations (where there is no GPS available). Others [6, 7, 4, 8, 9]
choose to combine multiple sensors to detect more specific activities, like
jogging, driving or watching TV.

2.1.1 Algorithms

There are multiple algorithms that can be used to detect activities, but in
most research the detection of activities is done using learning algorithms.
Using learning algorithms for user-data is generally a good idea because it
adapts to the data the user generates. However, learning algorithms usually
focus on one type of data from one sensor, when you use the data from
multiple sensors it is generally not possible to chose one algorithm that
can analyze all the kinds of data, as GPS data looks very different from
accelerometer data. In most research [8, 5, 4, 7, 6, 10, 11, 3, 9, 12] which
make use of multiple sensors there is usually one algorithm assigned to one
kind of data, and then there is another algorithm which then analyses the
results of the different algorithms into one result. Or the other way around,
one algorithm that looks at what type of data it is, and then selects the
right algorithm for that type accordingly.

Hidden Markov Models are mostly used for pattern recognition, audio
fragments [6, 1] or movement patterns (patterns in a series of coordinates)
[2, 9] are mostly analyzed by them. Using audio fragments a context can be
derived or excluded to enhance the precision in which activities are detected
correctly. Movement patterns are used for a different purpose, namely pre-
dicting where the smartphone user is going next, indirectly this is of course
gaining contextual information too. For accelerometer data however, SVM
and Naive Bayes classifiers are often used, which are algorithms that can
detect very specific activities and are able to differentiate between activities
that look like each other (driving in a bus or driving in a car for example),
given enough time to train the classifiers.

2.2 Practical applications

Since the first smartphones have been released with sensory hardware, es-
pecially the ability to get the location of the smartphone, there have been
applications which attempt to do something with that information. All of
these apps have their advantages and disadvantages, as all they all focus on
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a certain feature at which they excel at. However, none of these really focus
on activity/concept detection, they all focus on directly relating user-data
to pre-defined actions to perform, like putting a mobile phone on silence at
a certain location, or showing weather information for the area you are in.

Llama Llama [13] is an application which focused on location based data
when it first was released. So, whenever the smartphone is at a certain
preset location, a preset action is performed.

When using Llama you can basically set different areas you want the
application to remember. You can ask it to learn a location when you are at
the location itself. It will then save cell tower information for that location,
whenever this is not accurate enough you can use GPS or WiFi locations at
the cost of battery life. After these events can be defined where you can use
the location information to switch between profiles when an event occurs.
For example, when you leave the ”Home” location you can change the profile
to a profile named ”Normal”. For each profile certain phone settings can be
changed, like volume control or the ringtone itself.

Tasker Tasker [14] is a tool that checks a fixed number of events and
creates tasks that the phone should perform whenever a set of rules (rule-
based approach) tells that a set of actions conform to the task should be
executed. The set of actions that Tasker can perform is one of the biggest
on a smartphone these days.

When using Tasker you mainly have the notion of tasks, and for each
task you can perform a set of simple sub-tasks. These sub-tasks can be
compared to a simple programming language that the developer of Tasker
has created. An example of steps in which an alarm is played whenever you
receive a text message containing the word ”test”:

1. Set the variable %BODY to what is in the predefined Tasker variable
of what was in the last text message (%SMSRB).

2. Perform a search on the variable %BODY and search for the word
”test” and store these in the variable %MATCHES.

3. Stop the script if no matches are found.

4. Play an alarm if a match is found.
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Google Now Google Now distinguishes itself from other applications as
it does not perform any action based on certain data, but it shows informa-
tion based on data collected on Google services that can link to a Google
account (like email, search and Android, which is an example of profiling
using tracking data). So whenever the smartphone is at a certain location,
useful information for that location is shown. Besides location based in-
formation it also uses accelerometer data to distinguish between walking,
cycling or taking another method of transportation. It also checks emails
and search queries performed by the smartphone user to give useful infor-
mation on the smartphone (mail package tracking using a tracking number
from an email for example). All these pieces of information shown are called
cards, because they show up in a card format.

CommonSense CommonSense [15] offers a solution to track and analyze
data collected by a smartphone using all available sensors. The data col-
lected using the Sense application is stored on the cloud and is accessible
or analyzable on a website made by the CommonSense developers. From
every sensor or combination of sensory data new states for that data can
be created, this will give the possibility to create virtual sensors. Activity
tracking can also be done, this is basically the same as creating a state, but
now with the type activity.

2.3 Resource Description Framework

Guha et al. [16] use a technology called Resource Description Framework
(RDF) [17] to model information found on the web in a structured manner.
RDF does this in the form of triples, these are expressions build out of three
parts, a subject, a predicate and an object, in which the subject is related
to an object using the predicate:

subject
predicate−−−−−−→ object

Using triples as the basic components, a model of almost any information
can be made by combining multiple triples for which each triple describes a
piece of information. RDF defines defaults using RDF Schema (see table 1),
which (similar to what XML and XML Schema do) describes what is possible
in specific RDF models. Like in XML, RDF uses namespaces to differen-
tiate between elements from different vocabularies of definitions, making
them unique. For RDF this namespace is http://www.w3.org/1999/02/22-
rdf-syntax-ns# and for RDF Schema it is http://www.w3.org/2000/01/rdf-
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schema#. To denote an element e in either of these namespaces it is con-
ventional to write: rdf:e for RDF or rdfs:e for RDF Schema. However, for
readability reasons no namespaces will be used throughout this research.

Element Description

Resource
Everything defined in RDF are member of
the class Resource

Class
Is the type/category of a newly defined
concept

Property
A property is the type of resource that
denote a property

Literal
Literals are resources that denote a fixed
value (for example strings, numbers,
dates)

x
type−−−→ y x is of type y

x
domain−−−−−→ y x belongs to domain y

x
range−−−−→ y x has an element of concept y

x
subClassOf−−−−−−−−→ y x is a more specific concept than y

x
subPropertyOf−−−−−−−−−−→ y x is a more specific property than y

x
label−−−→ y x denotes a human-readable name of y

x
subClassOf−−−−−−−−→ y x is a more specific concept than y

Table 1: Available elements in RDF

There are many syntaxes available for RDF of which each focuses on
different elements:

• Turtle; compact and easy to read

• N-Triples; compact and easy to parse

• JSON-LD; JSON-formatted triples

• RDF/XML; XML-formatted triples

An example in Turtle would look like this:

@prefix eric: <http :// www.w3.org/People/EM/contact#> .

@prefix contact: <http :// www.w3.org /2000/10/ swap/pim/contact#> .

@prefix rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#> .

eric:me contact:fullName "Eric Miller" .

9
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eric:me contact:mailbox <mailto:em@w3.org > .

eric:me contact:personalTitle "Dr." .

eric:me rdf:type contact:Person .

where you can see that it is about the person named Eric Miller, along
with his email and personal title. The name, email and personal title all
are properties of the instance called ”me”, because ”me” is defined for the
namespace called ”contact”, in which the properties ”fullName”, ”mailbox”
and ”personalTitle” are available. To find the properties that became avail-
able there is an RDF file that describes these properties for ”contact”, lo-
cated conveniently at the URL defined as the namespace prefixed ”contact”:
http://www.w3.org/2000/10/swap/pim/contact#.

2.3.1 Web Ontology Language

In RDF almost anything can be expressed due to the flexibility of the lan-
guage, this also means that besides RDF Schema there can be more exten-
sions, as long as it is defined in its own namespace. Web Ontology Language
(OWL) [18] does this and creates the ability to reason with the situations
defined in the RDF-models, making OWL a Description logic language. Be-
cause OWL is just an extension on RDF, it is just an addition of elements
to RDF (see appendix A) which are used for reasoning with the concepts
you have already defined in RDF.

2.3.2 SPARQL

SPARQL [19] is a query language created to be used on situations defined
using RDF. SPARQL can do all the things expected from a query language:

• SELECT; extracts values from an RDF graph

• CONSTRUCT; creates new RDF from a set of results

• ASK; provides a boolean result for a query

• DESCRIBE; extracts an RDF graph from a query

• DELETE; deletes values

• INSERT; inserts values

An example of a query used on the example defined in section 2.3 which
will give a result in table format (see table 2) looks like this:
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PREFIX contact: <http ://www.w3.org /2000/10/ swap/pim/contact#>

SELECT ?fullName ?mailbox

WHERE {

?x a contact:Person .

?x contact:fullName ?fullName .

?x contact:mailbox ?mailbox .

}

fullName mailbox

”Eric Miller” 〈mailto:em@w3.org〉

Table 2: Results of the query

2.4 Discussion

Each of the subjects in the previous sections will have its use in this research
and each of these subjects will have their use and limitations.

2.4.1 Activity recognition

Activities in itself can always be seen as concepts, this makes the field of
activity recognition very useful for this research, since we want to reason
concepts. Using these activities creates a lot of possibilities, because they
are concepts that are closely related to the user performing these activities,
thus automatically creating personalized concepts.

2.4.2 Applications

The applications all have their own advantages of which some are usable for
this research. Generally, applications like Tasker only actually do something
whenever its user creates actual tasks. This method of personalizing, by
actually letting the user tell what the application should do, can become
very powerful when used in conjunction with concepts.

Other applications, like Google Now, are very powerful in information
representation, using its cards system it has a great method of informing
the user what is going on.

2.4.3 Resource Description Framework

This method of storing and representing concepts is very flexible, as it is
basically XML (or variants of XML created for RDF, like the languages
Turtle, JSON or N-Triples), and expandable the way you want to expand it,

11
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as the definitions the terms that can be used in RDF are defined using RDF
Schema (variant to XML Schema). The possibility of having an ontology
(your own namespace) helps a lot as well, because it creates the possibility
of creating your own domain for your own concepts, in which you can create
concepts of the same name as other ontologies.

12



3 OBTAINING DATA

3 How and why is data obtained?

There are a lot of kinds (types) of data which can be used in an automated
informative or helpful way for a person. To collect this data often sensors
or logs have to be collected and if needed, converted. Sometimes the data
is already available in its correct format for an algorithm to use. Because
in this research we want to be informative or helpful to a person, the types
of data are kept limited for that focus, but can be expanded for alternative
usage.

3.1 Types of data

Most of the data about a person, can be gained from that person. This makes
the sensors in a smartphone a great choice to obtain data from. Another
big source is a person’s digital activity, not only on a smartphone but also
a computer at home or work.

3.1.1 Location data

Location data can be gained in multiple ways, most important of these are:
GPS, cellular network, WiFi, IP location tables, HTML5 location sharing.

Format: (longitude, latitude) a pair that gives the longitude and latitude
coordinates.

GPS The GPS gives a very accurate location (within 5 meters) of the GPS
device. GPS can only use satellite locations whenever nothing is blocking
the signal, in or in between buildings GPS can be unreliable.

Cell towers The cellular network (usually used by phones) can provide a
device location, this is derived from the positions of cellular towers, when-
ever there are three or more towers nearby the location can be calculated
accurately (within 50 meters) using triangulation. However, when there are
fewer towers in range of the device, the accuracy decreases rapidly.

WiFi Through WiFi a device location can be found as well. Whenever
the location of the router to which your are connected is known, you know
the proximity of that device. Multiple providers, like Google provide a
database of routers and their locations, so whenever a WiFi node from one

13



3.1 Types of data 3 OBTAINING DATA

of these databases is nearby the phone, you know the location of the phone
as accurate as the range on the WiFi signal.

IP location tables There are databases where the location of certain IPs
are located. Whenever an IP and location are fixed, this can give a very
accurate position.

HTML5 location When a browser supports this HTML5 feature the
browser offers a feature to request the location of the device the browser is
on. It depends on the browser on how the location is acquired.

3.1.2 Body movement data

Body movement can only be gained using accelerometers, which can be
placed on different parts of the body, but there is also one in most smart-
phones. There are single-axis accelerometer, which only detect movement
in one direction, but more common are the multi-axis accelerometers, which
detect movement in multiple directions, usually three.

Format: (x, y, z) for a 3-axis accelerometer, where x, y, z give the accel-
eration in their respective directions (in m/s2).

The direction can be gained using a gyroscope, which can give the ro-
tation of the gyroscope on multiple axis, often three axis are used like an
accelerometer.

Format: (x, y, z) for a 3-axis gyroscope, where x, y, z give the acceleration
in their respective directions (in rad/s, radian per second).

3.1.3 Sound

Sound can be gained from using microphones, almost every smartphone has
a microphone which can be probed to record sound.

Format: x in dB.

3.1.4 Temperature

The temperate can be gained from a thermometer, these are included in
the newer smartphones. However, thermostats and other devices can also
acquire the current temperature.

14
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Format: c in degree Celsius (◦C).

3.1.5 Light

Measuring light levels is usually done using light meters, however, using any
camera can also be used to detect levels of light in a less precise manner, by
analyzing images or videos it records.

Format: l in lux.

3.1.6 Nearby devices

Detecting nearby devices can be done multiple ways, whenever a smartphone
is used, Bluetooth devices, WiFi nodes and NFC chips are popular ways of
detecting nearby devices, as those all have short range on their wireless
communication.

Format: all have identifiers to know which device is who, WiFi nodes can
use names, but is only uniquely identified with a MAC address. Bluetooth
uses an device ID. NFC chips do not necessarily have identifiers, however,
software solutions often use identifiers, which then could vary depending on
what the NFC chips are used for.

3.1.7 Usage statistics

Using information about what application a person is using on a computer
or smartphone, one can often derive what the person is doing.

3.1.8 Textual

Textual data is another kind of data as this does not come from any sensor,
(useful) textual data is often produced by humans in the structure of words
and sentences, saved as a document. Using this structure we can derive
what that document is about and what the important elements of that
document are using multiple techniques. From this conclusion we can use
these documents to find information about the elements that they contain.

Format: HTML (webpages), PDF, Word, Plain text, and more of these
standard formats to save a text document in a structured manner.

15
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3.2 Combining data types

Some data types on their own are often less useful as when they are com-
bined with another. The most obvious type which can be used with almost
any other type is time. Keeping track of when a type had certain values
is the most important combination to have, this allows most classification
algorithms to work and allows us to combine certain values into a new data
type. This is of course only true if you can access the values a certain type
had previously, so the storage of all values is important (also known as data
logging).

3.2.1 Virtual data types

The notion of virtual data types is combining two values of any type of data
(either the same or a different type) and combining it into one new value,
creating a new data type.

Historical data Whenever you are able to combine time with the val-
ues that you have recorded you can often combine data values previously
recorded with data values you are recording at the moment. This gives the
possibility to create a new data type out of two values of one data type. An
example of this is when you keep track of location data, you have the option
to calculate the distance between the two points of location data and you
can calculate the difference in time between those two points. Whenever
you have the distance and time traveled, you can also calculate the speed
you were going during that period of time and is an indication of your cur-
rent speed if you take the the current and previous positions. This example
creates a new data type which can be called speed.

Combining data Another way of combining data into a virtual data type
is taking multiple values from one sensor, the accelerometer for example,
and combine those values into a new single value. Taking the accelerometer
as an example calculating what force is working on an accelerometer by
calculating the Euclidean norm for the vector of the acceleration on the
multiple axis the accelerometer returns. This will give a generalized form
of the direction and acceleration working on the accelerometer, if the device
with the accelerometer would lay still somewhere on planet earth, the only
force affecting the device would be the gravity (9.8 m/s downward).

Not only can you combine data from the same sensors, but also from
multiple sensors. For example in smartphones, they have no compass, but
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can still get the direction of which the smartphone is laying/moving by
combining the data of the accelerometer and the data of the gyroscope, this
can then be transformed into a general direction of which the smartphone
is pointing.

3.3 Data logging

Being able to get the most out of the available data for a person, it is
essential to log all or most of it. Whenever you have historical data available
it creates the possibility of detecting patterns in your data which is essential
to be able to recognize concepts within the data using machine learning
algorithms. Also, it gives the possibility of creating a virtual data type out
of data values of the same data type, like the usage of location data to
calculate speed.

Having all possible values for data at any given time gives the possibility
of having a data set and data points, resulting in the terminology used like
in table 3.

Term Description

Data point A value of some type of data, at a given time

Data set, data
sample

A set of data points, from one time to and including
another time ([ts, tf ], where tb is the start time and tf
is the finish time).

Data
A general notion of data, referring to any or multiple
data point(s)

Data type A type of data, like described in section 3.1

Table 3: Terms related to data used throughout the research

3.4 Data patterns

Whenever you have the ability to extract previous recorded values for certain
data types (by logging them), you have the ability to find patterns in them.
However, patterns in data is not only limited to loggable data, basically
any data that can be analyzed could also contain patterns, examples are
webpages, books, videos and images.

Patterns in data can be useful because they tell something about the data
which helps the process of identifying what that data is about. Examples
are:

17



3.4 Data patterns 3 OBTAINING DATA

Body movement data (accelerometer) For movement data, patterns
can be the length of the period of the oscillation in a set of data. This might
tell something about the movement of the person, as if the period is shorter,
it is likely the person is doing a repetitive movement at a fast pace.

Then there is the average maximum and minimum value within a data
set, which tells something about how ”big” the movements are. As when I
am walking there are little forces detected by the accelerometer, but when I
start running these forces become bigger (a bigger acceleration in a certain
direction).

Textual For textual data a pattern can be the number of times a word
occurs in a document, but not in any other, then it is more likely that the
document is about that word. The tf-idf algorithm works using this principle
and can be a useful pattern to have for textual data.

For machine learning algorithms these patterns are often called features,
which these algorithms use to compare two data samples with each other.
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4 Conversion from data to concept

To make the collected data useful it is good to convert them to the notion
of a concept, these concepts are very similar to the real-world concepts used
by Guha et al. [16].

4.1 What is a concept?

There are many methods of describing concepts in a formal way, depending
on the field of research. For object oriented programming languages, a single
class represents a concept. For data storage solutions (like SQL databases)
tables represent concepts. For information retrieval, specifically semantic
search, RDF was introduced to describe concepts. RDF was then extended
by for example RDF Schema and OWL to add additional functionality.

Using RDF, there is certain a terminology which is used to describe
aspects of a concept, an overview of these terms have been given in table 4,
all of these terms can be described using triples.

Terms Description

ontology collection of concepts/classes

concept, class, type a description of a real-world concept, a collection of
individuals

individual, instance one identifiable realization of a concept

value, literal similar to an individual, except there is no emphasis
on the concept

relations describes how classes and/or individuals are related to
one another

predicate the name of a relation, telling something about it

attribute, property, role a relation between two individuals or an individual
and a value, often describing aspects of an individual

Table 4: Terminology used in ontology languages

Triples are three elements that represent information, often a sentence
(see section 2.3). A triple consists of a subject and object, linked by a
predicate:

subject
predicate−−−−−−→ object

For example, when looking at the sentence ”the sky is blue” could be
translated to a triple where you have ”the sky” as the subject, ”blue” the
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object and ”is” the predicate. The triple is about the sky, where the predi-
cate tells something about how the object relates to the subject, in this case
the sky is blue.

Using this we can translate any real-world situation to a list of triples,
which are a representation of that situation. These triples can then be
combined in a directed graph. This gives us:

G = 〈N,E〉 (1)

where graph G is the combination of a set of nodes (N) and a set of
directed edges with a predicate (E).

Edges An edge is a relation between two nodes, with a direction and
a predicate. Most predicates related to the edges are dependent on the
mapping of the real-world situation, however, there are a few predefined
edges in RDF (see section 2.3), for which the most important for this research
are:

Edge Description

x
type−−−→ y x is of type y

x
domain−−−−−→ y x belongs to domain y

x
range−−−−→ y x has an element of concept y

Nodes The nodes in the graph can represent a lot of things, depending on
what edges are connected to it. For example, when looking at this situation:

x
type−−−→ y

type−−−→ z

when you only look at the first triple (x
type−−−→ y), x will have the type

y. But when you look at the second triple (y
type−−−→ z), y gets a different

meaning, namely: type z. Combine this and y is the type of x and has the
type z, giving it multiple purposes. By having multiple edges going to or
coming from a node, it describes the node more precisely, which leads to a
more detailed description of the real-world concept the node is intended to
describe.

For this research, there are also a few important nodes which are already
defined in RDF:
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Node Description

Class
Is the type of a newly defined con-
cept

Property
A property is the type of a node that
denote a property

Literal
Literals denote a fixed value (for ex-
ample strings, numbers, dates)

4.1.1 Concept modeling

Using a graph to model a real-world concept two things are required:

• Intension; the definition of a concept, defining what properties and
relations are allowed

• Extension; the description of our real-world instance/individual of the
concept according to the intension

Properties Properties are needed to create defining elements of a concept.
Defining a property can be done by creating the following triples:

1. The subject is a property, some p. So it has the superficial type ”Prop-
erty”.

2. p has a domain in which it can be used. This is usually the concept
we want to create our property for. (some c)

3. p has a range to what kind of literal it relates to (for example string,
number or date).

These can be translated into the following triples:

p
type−−−→ Property

p
domain−−−−−→ c

p
range−−−−→ Literal

An example of a concept with a property could be the concept dog-breed
with an individual of that concept, say the breed Newfoundland. If I want
to say the actual name of the breed Newfoundland is ”Newfoundland”, I
could create the following set of triples:
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Dog
type−−−→ Class

name
type−−−→ Property

name
domain−−−−−→ Dog

name
range−−−−→ string

Newfoundland
type−−−→ Dog

Newfoundland
name−−−−→ ”Newfoundland”

These triples can be displayed like we want to, using a graph where the
predicate in the triples define the edges and the subject/object define the
nodes (see figure 1).

Figure 1: Dog-breed example

4.2 How do concepts relate to each other?

Being able to describe any concept in the way you want to, it gives a lot of
possibilities. However, in a lot of cases you want to know what the relation
of a concept is to another concept. Describing a relation for a concept is
done the same way properties are defined for concepts. The only difference
is that the property is now related to a range that describes a concept:
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p
type−−−→ Property

p
domain−−−−−→ c

p
range−−−−→ d

here, a property p defined for concept c, which is related to an individual
of concept d. This property is a one on one relation between an individual
of concept c and an individual of concept d.

Whenever you take c and d as the same concept, and you define a relation
between c and d then it will be a recursive relation where individuals of the
same concept are related to each other. With recursion, more complicated
situations can be modeled, an example of this is given in figure 2.

Figure 2: Example that uses recursion

4.3 Finding concepts

The ability to find concepts from data depends on the type of data you use
to recognize this concept from. RDF has been been created to be able to
do this for web pages, however this is not the case in more different types
of data, like images, video or movement data. A lot of other methods have
been created to recognize concepts out of these types of data, for example
machine learning algorithms are often used to derive activities from body
movement data, in which the activities can be seen as concepts.
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Supervised Most of the concept recognition algorithms in this research
are supervised algorithms. Supervised algorithms attempt to find a concept
and its relations within a given set of data. So, whenever we know how the
concept (and its relations) is structured within a set of data, a supervised
algorithm will try and find the same structure in another set of data.

Unsupervised Unsupervised algorithms do the opposite as supervised
algorithms as they try to find a structure in a set of data. Because unsuper-
vised algorithms are able to do this they can help supervised algorithms by
finding the structure the supervised algorithm needs to be able to recognize
a concept. For example, an unsupervised algorithms are able to recognize
certain elements on a webpage and tag it with metadata (web scrapers),
which then can be used by a supervised algorithm to match with a concept.
Unsupervised algorithms are also used to predict what future sets of data
are going to look like, in this way they attempt to predict what is going to
happen next. This is something that is used for weather forecasting.

4.3.1 Semantic search concepts

Concepts related to the field of semantic search are defined using the same
methodology as shown in section 4.1. For semantic search storing these
graphs is important so they become easily accessible and searchable. To
be able to search through them serialization formats are used, of which
RDF/XML, N-Triples or Turtle are popular examples.

Using these formats, query languages are created to look through this
serialized content to find concepts, relations to concepts or properties of
concepts, SPARQL is the language that is often used for this.

Data types used: Textual

4.3.2 Machine learning concepts

Machine learning algorithms are used to find similarities in two different
sets of data of the same type. Body movement data is a great example for
this, as if you are walking, the data measured with an accelerometer over a
period of time will never look the exactly the same, but just very similar,
this makes machine learning approaches very suitable to detect concepts
from body movement data.

The general approach of machine learning algorithms is to compare data
where it is known what the data represents, to unknown data set from which
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you want to know if it compares with any known data set. This results in
either no classification at all or a classification to a known concept. If the
algorithm results in no classification but should have, then the data can be
annotated to know what that data represents in the future. This way the
algorithm ”learns” more representations from this data the more it will be
used.

Figure 3: Concept recognition by machine learning algorithms

The most popular approaches to machine learning for recognizing con-
cepts are Support Vector Machines (SVMs), Naive Bayes and variants on
these approaches. These approaches make use of features extracted from
data sets, the usefulness of features is decided from what type of data they
are extracted. For body movement data you have certain features which can
be useful: total data sample time, average acceleration on each axis, maxi-
mum/minimum acceleration on each axis and more. But when you look at
usage of these algorithms in textual classification, features like the average
acceleration do no apply. In textual classification the words the document
contains are the features, but it can also include the document length or the
number of occurrences of certain words. Textual classification is often used
in spam filtering. (as seen in section 3.4)

Finding concepts in certain types of data, like body movement data, is
very different from finding them using textual data. When looking at RDF
to describe the relation between movement data and a certain concept, it
might be difficult to realize this for these types of data. This can be solved by
saving the movement data of all the axis related to a certain body movement
concept, by storing the sensory data and the time frame of that sensory data
as a property of an individual. For example, when you have an individual
called walking (with walking as the concept as well), there will be a relation
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between that individual and the values of body movement data which have
described the idea of walking in the past, similar to how SQL databases do
this.

In figure 4 we can see an example of how a machine learning concept
can be represented using triples. We have the machine learning concept
c, which has an individual i. For individual i a property p which has a
relation to value v which has the type ”ML value property”. An ”ML value
property” concept is a concept which always has a value of a literal type
and a timestamp for when it was stored.

Figure 4: Machine learning concept

Data types used: Textual, body movement, location data, sound, tem-
perature, light, nearby devices, usage statistics

4.3.3 API concepts

An API concept is a concept that is not defined locally with the algorithm,
but actually represents the concept in question. Examples of this can be a
concept bus, as an individual ”line 300” or a concept heater, as an individual
”my heater”.

Bus While taking a look at busline 300, which could be the bus I want
to take to work, then I might want to know something about that busline.
For example, how busy it is at the moment or if it is delayed. Using an
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API this can be requested at real time, as long as the API can provide the
information (or property of individual ”line 300”). As it currently stands for
many countries, an API to do this to see if the buses are delayed is available
in many countries. However, to see how busy it is in a bus, it is not (yet)
available in most countries (if not all).

Heater The same situation as with the bus can be created for ”my heater”,
which actually represents my own heater at home. When my heater has an
API available, not only information can be provided, like with the bus. But
controlling the heater through an API can be possible as well, where as
changing the temperature is the most obvious thing you want to control.

API concepts are very different from other concepts, as they do not have
actual property-values stored locally, but rather the URL or method to call
to get or set a certain property for an individual of that concept. This makes
API concepts the only means of controlling real-world concepts as they can
change property values. In the definition of an API concept a method of
accessing the real-world concept or property of a concept has to be stored,
in figure 5 a method of doing this is shown. Where you define a concept p
of type ”API Property” which has a property that tells where the API is
located. Now it is possible to use the concept p as a relation to the concept
c, so any individual i of type c can have an edge with predicate p. Then, the
value v will be the value obtained from the API through the API location
defined on p.

Data types used: none, used to represent real-world concepts
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Figure 5: API concept
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5 Reasoning with concepts

When you have defined a lot of concepts, we want to do something with
these concepts. Semantic search looks for information within these concepts
and its relations, but we can do more with these concepts, by reasoning with
concepts. The process of reasoning with concepts will be explained in this
section.

5.1 What is reasoning with concepts?

Reasoning with concepts is a method of talking about concepts in a logical
way. OWL (see section 2.3.1) adds some of the functionality to RDF which
helps with this process, because OWL can define restrictions, axioms and
facts about the concepts we have defined. By doing this we can infer some
non-trivial information automatically. Using OWL can merely help to rea-
son with our concepts, often description logic languages like OWL are not
needed.

Given the following statements, an example of this inference process is
given:

1. Cat owners have cats as pets.

2. ”has pet” is a sub-property of ”like”

3. Cat owners must like a cat.

Here you infer from the sub-property that cat owners like their pets and
conclude, whenever you want to know, ”Do cat owners like their cats?”, you
can infer it from the first two statements (mentioned above).

Elements in OWL, like a sub-property, which is used as the predicate of
a triple give a restriction to the subject, in this example the subject ”has
pet” is always a sub-property of ”like”, in which the restriction lies in that
having a pet implies you like the pet.

5.2 Why is reasoning with concepts useful?

There are a lot of situations in which the detection of concepts related to the
user who wants to reason with these concepts. In this research the notion
of rules will be used to reason with concepts, a rule either fulfills an infor-
mation need or is does information manipulation. For both of information
representation and information manipulation methods have been developed
already, which can be seen in the practical applications discussed in section
2.2. For example the following set of rules:
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1. Do I do enough to keep my condition up?

2. I want to be at work at 0900.

3. Is my bus delayed?

4. Make sure the heater is turned down when nobody is home.

5. An email should be read within one hour of arrival.

6. I do not want to be disturbed when I am in a meeting.

All of these rules have a supporting impact on that person’s life, but in
the case of some situations it has also an impact on external factors. Take
for example the fourth situation, whenever somebody forgets to turn down
the heater it not only increases their bills but it is also indirectly bad for
the environment.

Rules 1, 2, 3 and 5 are examples of rules that fulfill an information need,
whereas rules 4 and 6 are examples of information manipulation. An infor-
mation need gives information about concepts, for example in rule 3, where
the user wants to know if his/her bus is delayed. Information manipulation
changes values that are related to concepts, for example in rule 4, where the
heater is turned down whenever nobody is home.

5.3 How to make reasoning with concepts feasible?

OWL, the description logic language we will use, is able to define the example
rules mentioned in the previous section (section 5.2). However, there are a
lot of possible ways to define these rules using OWL, this makes it difficult to
create an universal method of letting a algorithm perform the things defined
in these rules. Not limiting the amount of concepts and what is allowed with
these concepts in a specific rule can lead to an uncomputable algorithm.

Being able to keep the algorithm computable some limitations are re-
quired. To do this, the syntax for a generic rule will be given, which limits
the expressiveness for a rule, but keeps them computable.

The algorithm presented in this research consists of a few important
parts:

• Rules - The translation of what the user of the algorithm wants and
what the algorithm should do

• Automation - The actions the rules can perform

• Distribution - Whoever performs what within the algorithm
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5.3.1 Rules

The rules provide an interface between the user and the algorithm, defining
a rule has to be simplistic enough and still be able to let the algorithm work
with the concepts that we want the algorithm to interact with.

Syntax To do this a predefined format for a rule is used, where there is
a limitation on the number of individuals used in each rule, to keep the
algorithm computable and to make it easier for the user to define a rule.
The syntax for a rule looks as follows:

1. when individual i1 condition c1
2. [ then when individual i2 condition c2 ]
3. then perform action a using (i1, i2, i3, id, t)

where i1 and i2 are individuals of certain concepts, both i1 and i2 have
a relation to c1 and c2 respectively where ci∈{1,2} is the condition that must
hold for the algorithm to continue on that rule. The second line is between
brackets because it is optional, when left empty the ε is used. a is the action
attached to the rule, which can be any of these: a resulting value, a property
change for individuals, a query related to the individuals. i3 and id are the
individuals where the action is performed on, where i3 is optional and id is
usually the individual where information for a query is displayed on. t is
the action type.

To give an impression on how this looks on realistic rules two examples,
one including the optional part and one excluding the optional part will look
as follows. The rule ”I do not want to be disturbed when I am in a meeting.”
could look like (could, because another person might define this in another
way):

1. when my calendar in a meeting

2. ε

3.
then perform silent mode using (my calendar , ε, ε,
my phone, state)

The one including the optional part of the syntax, ”I want to be at work
at 0900.”:

1. when my location near bus-stop

2. then when busline 300 delayed

3.
then perform notification on how much the bus is delayed
using (my location, busline 300 , ε, my phone, at start)
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Semantics The resulting semantics for the steps of each part of the rules
are:

1. Checks if condition c1 hold for individual i1.

2. Checks if condition c2 hold for individual i2, whenever i2 and c2 are
defined.

3. Perform the action, involving the individuals i1, i2, i3, id as the action-
type t.

Conditions The conditions are always related to the individual in the
same part of the rule. Within conditions we can define a comparison with a
property-value or relation of the individual. Basic arithmetic is also allowed
within these conditions so more advanced conditions become available.

Rule priority Whenever two rules use the same individuals, for which at
least one of the rules changes a property of an individual to a different value,
it might happen that the changes are conflicting with each other. To solve
this problem a rule priority can be added, so that only the value defined in
the rule with the highest priority applies, or that a property-value is only
read when another rule did not change it (yet).

Rule definition Because the concepts we want to reason with are defined
in RDF, we can also define our entire rules in RDF, so existing advantages
of using RDF still exist when working with these rules. A translation from
the syntax defined earlier to an RDF definition has been given in figure 6 on
page 39 (intension) and figure 7 on page 40 (extension). For the intension
the green nodes are of type Class and the orange nodes are of type Property,
these nodes (and relating edges) are left out for so the graph is easier to read.

5.3.2 Automation

The automation in each rule is the action, these actions can be a resulting
value, a property change for individuals or a query related to any of the
individuals.

Resulting value Whenever an action is a resulting value, the rule can
also be seen as a new individual of an unspecified concept. This allows for
the possibility of recursion, thus using rules as individual for another rule.
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Property change An action that changes a property allows for the con-
trolling of real-wold concepts. For example, the heater that is turned off, or
the garage door to be opened or closed. Because description logic does not
give the ability to change and control an individual related to the action, a
method of doing this has been introduced in section 4.3.3.

Query A query can fulfill an information need for the subject interacting
with the algorithm. There are many query languages which are compatible
with RDF, the language we use to describe the relations of different elements
within our rules. However, there might be elements which are not queryable
locally, and have to be queried through an API, which is not something these
languages can do, so whenever a resulting query gives an API as a result,
the monitor can then query the result from the API.

5.3.3 Distribution

There are multiple methods of evaluating the rules, each of these methods
have their advantages and disadvantages.

Distributed In a distributed method, whenever an individual in a rule
represents a real-world device that is able to evaluate the condition or action
related to the rule, we can let that device do the evaluation and then report
to other devices whenever the evaluation or action is done. This way each
device only has to keep track of its own actions and each device will need
very little computing power to perform the actions it is capable of. However,
every individual will need to be a device and a protocol of communicating
between the devices is required.

Advantages:

• Modular, if one individual fails, the rest can still continue

• Each individual only needs to know about its own actions

Disadvantages:

• Communication protocol needed

• Overhead as there is more communication needed and each devices has
to run the algorithm, even though it is just a part of the algorithm.

• An individual needs to be able to run the algorithm
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Centralized A centralized method, where we have one device that con-
trols all individuals and performs all actions defined in the rules. This would
require only one device that evaluates all the rules, this is also the only de-
vice that would need to know about communicating with other devices, so
there is no need for a communication protocol.

Advantages:

• Easy to install, because only one device needs to run the algorithm

• No communication protocol for individuals needed

Disadvantages:

• If the centralized device fails, the whole algorithm will not run

In this research the centralized method of evaluating the rules will be
taken, simply because the distributed method has the requirement that all
individual need to be a device, which is not something we want. In this
centralized method the device that controls all individuals will be called the
monitor, because it has to monitor (and sometimes change) the behavior of
individuals using the conditions and actions. When the rules only contain
individuals that are (representing) devices the distributed method should be
considered, because having a modular system is a great fail-safe when one
device fails.

5.4 The reasoning algorithm

The input and algorithm are split up in the following steps:

1. Convert the information interaction of individuals to rules (Rules)

(a) Create a description of an information interaction in a natural
language

(b) Mapping of sentences to elements in the rule

2. Have the monitor validate the first element of each rule on an interval
(eval)

(a) If the condition of the first part of the rule validates to ’true’,
perform the rest of the rule

i. If the condition of the second part of the rule exists, and does
not validate to ’true’, continue to the next rule
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ii. If the second part of the rule does not exist, perform the
action

(b) If the first part of the rule does not validate to ’true’, go to the
next rule

func t i on eva l (Rules) {
f o r each (R in Rules as ( i1 , c1 , i2 , c2 , a , i3 , id , t ) ) {

i f (c1 ) {
i f ( i2 ∧ ¬c2 ) cont inue ;
a(i1, i2, i3, id, t)

}
}

}

5.4.1 Rule execution

As seen in the algorithm the execution of a single rule, which is the inside
of the foreach-loop, is done in two or three steps depending on if the second
rule is defined. The steps that take up significant computing time are the
evaluation of the c1 condition, c2 condition and the action a, where c2 is
not executed in some cases. The evaluation of these conditions consists
of evaluating a predicate defined in a description logic language (which is
translated from the definition the user sets in the rule). Predicates defined
in the rules are simple queries to see if a certain individual has a property
or relation with another individual. However, when an individual is a API
concept a simple query will not suffice, as the individuals for these concepts
will need to make an API request to get the required value.

Because we are working with a rule that is defined in RDF-format, we
can use SPARQL (section 2.3.2) to query the different elements from the
situation the rule describes, but also the parts of the rules. Say we want
to find what the conditions and actions of all rules are, we can perform the
following query:

PREFIX rule: <http :// www.example.org/ExampleNamespace#>

SELECT ?whenCondition ?thenWhenCondition ?action

WHERE {

?r a rule:Rule .

?r rule:when ?whenCondition .

?r rule:thenWhen ?thenWhenCondition .

?r rule:perform ?action .

}

which can then be used by the algorithm to be evaluated.
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Recursive conditions Whenever a rule returns a value, this value can be
seen as a new individual, so the whole rule can be seen as a concept. Using
rules within a condition (in other words: using rules recursively) gives more
expressiveness in a lot of cases.

The usage of recursion also causes some difficulties. For example, when-
ever you have two rules r1 and r2, and you use rule r2 in a predicate of rule
r1, and the other way around, the evaluation will never stop, leading to an
infinite loop. This can be prevented in multiple ways:

1. Keeping track of what rules were used, and then never calling the same
rule twice.

2. Only allow the usage of rules in predicates if that rule does not have
a predicate with another rule in it. (In other words: no recursion that
goes deeper than one)

5.4.2 Action execution

Within the algorithm actions are only performed whenever the conditions
hold. So the number of actions executed is at maximum the amount of rules
that are executed. As said, actions can perform multiple things, queries on
individuals, property changes on individuals or simply returning a value. An
action is defined as a function with five parameters. So, the action function
call looks like: a(i1, i2, i3, id, t).

Query actions Query actions are the actions that give the user informa-
tion, how this information is given depends on the third parameter of the
function, this is the method the information is shown to the user, described
as an individual. So, if the individual is the notification center on a mobile
device, that is used to give the user the result of the query.

The query itself can use the first and second parameter of the query
function to display the information needed. Similar to in section 5.4.1,
querying API concepts requires the usage of an API call to get the necessary
information.

Property changing actions As said, actions that can change proper-
ties of individuals are able to control real-world concepts. First a query is
performed to find the property of an individual, which in this case is likely
another individual, that describes how to change the property of the real-
world concept (using an API for example). Then this API is called to update
the value defined in the rule.
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The action function call also has a parameter t which tells something
about the type of action it is, the type tells something about when and how
often it is performed. The type usually depends on the implementation,
however, some examples are:

Action type Description

State
The action is performed continuously, whenever the
conditions hold, it is performed.

At start

The action is only performed at the start, a condi-
tion can hold over a period of time (think of walking),
this action is then performed when you just started
walking.

At end
This is the same as ”At start”, with the difference that
the action is only performed at the end of the period
of time.

5.5 Rule and preference modeling

As almost everything is defined using rules, it is essential to get the trans-
lation from, what the user wants and what the rules do, right. By breaking
down the examples given in section 5.2, it becomes visible that there are
certain steps required to translate these rules from a normal sentence.

When looking at ”I do not want to be disturbed when I am in a meeting.”
you can split this up in a subject and a predicate:

Subject Predicate

I
do not want to be disturbed when I
am in a meeting.

So the subject is what (or who) the sentence is about, the predicate tells
something about the subject. After this the predicate can be split up into
two parts, the condition and the event.

Condition Event

subject in a meeting
subject does not want to be dis-
turbed

Now if this would be translated to a rule, with the condition ”subject
in a meeting” the subject would have to tell somehow that he/she is in a
meeting. The subject could do that himself/herself, but this would not be
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done automatically then, so when defining the rule condition, it is required
to think about where that information can be found. In the case of this
rule it can be the calendar for the subject, thus making the subject of the
sentence more specific.

For the event the same translation goes, depending on the interpretation
of ”subject does not want to be disturbed” this can be translated to ”put
my phone on silent”.

This results in two subjects, one for the condition and one for the event:

Subject condition Subject event

my planning my phone

From here it is possible to translate this directly to the rule as seen in
section 5.3.1:

1. when my planning in a meeting

2. ε
3. then perform on silent using (my calendar , ε, my phone, my phone, state)

The actual sentence is translated from ”I do not want to be disturbed
when I am in a meeting.” to ”I want my phone to be silent whenever my
planning says I am in a meeting”. The only relation to the subject ”I” from
the beginning are the individuals ”my planning” and ”my phone” (”my
planning” and ”my phone” are properties of ”I”). The general steps to use
to translate from a sentence to a rule are displayed in figure 8 on 41.
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Figure 8: From sentence to rule
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6 Application

The algorithm presented in section 5 can be applied for many practical
applications. The approach on how to apply the algorithm to a practical
application will be described in this chapter, for which the algorithm will be
used to create a personal assistant.

6.1 Introduction

Creating a personal assistant for the algorithm used in this paper is a prac-
tical application that is an obvious choice for the simple reason: a personal
assistant automates things in your life which are convenient to have. In
section 5.2 the examples for this were:

1. Do I do enough to keep my condition up?

2. I want to be at work at 0900.

3. Is my bus delayed?

4. Make sure the heater is turned down when nobody is home.

5. An email should be read within one hour of arrival.

6. I do not want to be disturbed when I am in a meeting.

These are all helpful to have and can all be summarized under the cate-
gory ”personal assistant”, because nearly always these rules are related to a
person, a smartphone is the most obvious tool to use the algorithm on. This
is because a smartphone can tell a lot about that person using its sensors,
as it is the person that is nearly always carrying the smartphone on him.

Creating an implementation for a personal assistant for the algorithm
described in section 5.4 a few considerations have to be made on who or
what will play which role within the system. For the algorithm to reach its
full potential it has to run in an environment where it can communicate with
multiple other individuals, for the algorithm to work as a personal assistant
application a smartphone environment is a good choice.

The system will need to be able to define rules (section 5.3.1), have
a monitoring ability in some way (section 5.3.3) and perform actions to
automate and control other interactive individuals (section 5.3.2).
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Rules An interface can be designed for a smartphone application where
you can define the rules in the predefined format. It would require knowledge
of whichever individuals, a smartphone can interact with, so the ability to
select these individuals becomes possible. When looking at the format of
the rule (section 5.3.1), you can easily create a smartphone interface where
you can select an individual from a list for the first and second part of the
rule. Then a predicate for these individuals can be created which give the
condition on what the state of an individual should be.

For each rule an action has also to be defined, this can again be done
by creating an interface where you can select an individual and then the
property that has to be changed, including the value it should change to, or
the property that has to be displayed.

Automation Automation for a personal assistant is the most important
part as it defines the way it assists you in certain tasks.

Distribution The distribution for this application will be centralized, as
said, the smartphone is a great candidate to fulfill the role of controlling all
of the concepts.
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6.2 Rules

For each of the examples we want to define we can translate them to rules
using the method defined in section 5.5. Where I first split up my sentence
is the relevant parts, then apply my personal translation so it fits in our rule
syntax.

6.2.1 Rule 1

Rule Do I do enough to keep my condition up?

Subject Do I do enough to keep my condition up?

Condition Do I do enough to keep my condition up?

Event
Notification with the information that answers
this question

Translation First, the translation of the condition. Using the resources
we have and knowing I go for a run each day, I would want to know if I run
more than 30 minutes each day (when 30 minutes is the recommended norm
of exercise a day needed). However, before I go for a run I do not want to
be alerted that I did not fulfill the exercise requirement for that day, so as
an additional condition I want the action in this rule only to be performed
at 2100. This extended description gives us the following translation:

• i1: ”at 2100”, translated to the individual representing the current
time

• c1: ”at 2100”, translated to the condition ”2100”, denoting the current
time should be 2100

• i2: ”I run”, translated to the individual ”my running”

• c2: ”more than 30 minutes each day”, translated to the condition ”less
than 30 minutes today”, whenever the c1 holds I know it has been a
day, so I want to be alerted when I did not meet the required exercise
time, which is less than 30 minutes that day.

Second, the action has to be translated, which should be the answer
to the question asked in the rule. A general overview about the amount of
exercise can be given for that day. This extended description gives us the
following translation:
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• a: ”notification about exercise today”, using i2 it is possible to derive
how much time I spent running today

• i3: ε, no additional individual is required

• id: ”my phone”, the notification can be shown on my phone

• t: it does not matter if the action for this rule is performed at the
start of 2100, during 2100 or at the end of 2100, it is just one moment
in time

Definition This leads to the following definition:

1. when time 2100

2. then when my running less than 30 minutes today

3.
then perform notification about exercise today using

(time, my running , ε, my phone, at start)
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6.2.2 Rule 2

Rule I want to be at work at 0900.

Subject I want to be at work at 0900

Condition I want to be at work at 0900

Event I want to be at work at 0900

Translation First, the translation of the condition. At 0900, I want to be
at work, this means that whenever I am not yet at work, I want to be notified
that I should go to work. So, at a time before 0900, when my location is
not at work and I have to travel a certain time to work I want to be notified
in time, so I can start traveling in time. This extended description gives us
the following translation:

• i1: ”my location”, translated to the individual representing the current
time

• c1: ”not at work”, translated to the condition ”2100”, denoting the
current time should be 2100

• i2: ”time”, translated to the individual ”my running”

• c2: ”current time + travel time to work = 0900”, whenever the current
time plus the travel time to work results in 0900

Second, the action, which can be directly translated as a notification
about having to go to work. This extended description gives us the following
translation:

• a: ”notification about exercise today”, using i2 I can derive how much
time I spent running today

• i3: ε, no additional individual is required

• id: ”my phone”, the notification can be shown on my phone

• t: it does not matter if the action for this rule is performed at the
start of 2100, during 2100 or at the end of 2100, it is just one moment
in time

Definition This leads to the following definition:
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1. when my location not at work

2.
then when time current time + travel time to work
= 0900

3.
then perform notification about having to go to work
using (my location, ε, ε, my phone, at start)

where the condition i2 is a recursive condition, because I want to know
what my travel time is, which is not a property of the individual ”time”.
Making the ”travel time from current location” a new rule, as follows:

• i1: ”my location”, arbitrary individual to check if the same first part
of the rule still holds as the first part of its parent rule

• c1: ”not at work”, arbitrary condition defined for i1

• i2: ε, no second individual needed

• c2: ε, no second condition needed

• a: ”travel time to work”, using i3 we can return the exact time required
to travel to work

• i3: ”my navigation”, using a navigation API concept we can derive
how much time it takes to travel to work

• id: ε, not needed for rules that return a value

• t: for rules that return a value, this is always a state-type

1. when my location not at work

2. ε

3.
then perform travel time to work using (my location, ε,
my navigation, ε, state)
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6.2.3 Rule 3

Rule Is my bus delayed?

Subject Is my bus delayed?

Condition Is my bus delayed?

Event
Notification with the information that answers
this question

Translation First, the translation of the condition. Whenever we trans-
late this condition directly then the action would be performed every time
the bus is delayed, this is not something we want. Because we are only inter-
ested in the bus being delayed, if we are going to travel by bus, so another
implied condition is added so the we will only get this information when-
ever we are at a bus-stop. This extended description gives us the following
translation:

• i1: ”my location”, my current location

• c1: ”near bus-stop”, where i1 is near a bus-stop

• i2: ”busline 300”, an API for information about busline 300

• c2: ”delayed”, is the next bus delayed

Second, the action has to be translated, which should be the answer to
the question asked in the rule. A notification of the amount of time that
the bus is delayed, gained through the API of busline 300. This extended
description gives us the following translation:

• a: ”notification on how much the bus is delayed”, using i2 it is possible
to get the time on how much the bus is delayed

• i3: ε, no additional individual is required

• id: ”my phone”, the notification can be shown on my phone

• t: the action type will be ”at start”, so whenever the condition holds
the first time the notification will be given.

Definition This leads to the following definition:
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1. when my location near bus-stop

2. then when busline 300 delayed

3.
then perform notification on how much the bus is delayed
using (my location, busline 300 , ε, my phone, at start)
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6.2.4 Rule 4

Rule Make sure the heater is turned down when nobody is home.

Subject
Make sure the heater is turned down when no-
body is home.

Condition
Make sure the heater is turned down
when nobody is home.

Event
Make sure the heater is turned down when no-
body is home.

Translation First, the translation of the condition. This is a direct trans-
lation of what is in the rule, when nobody is home, so whenever I am not
home (when living alone) the action should be performed. This extended
description gives us the following translation:

• i1: ”my location”, individual indicating my own location

• c1: ”not at home”, whenever i1 is not at home

• i2: ε, no second part of the rule needed

• c2: ε, no second part of the rule needed

Second, the action has to be translated. Which is also a direct translation
of the rule: turning down the heater to a certain temperature, we just add
our preference that this is 16◦C. This extended description gives us the
following translation:

• a: ”turn heater at 16◦C”, using i3 the heater can be put to 16◦C

• i3: ”heater”, additional individual used only by the action

• id: ”my phone”, the phone controls the heater individual

• t: ”state”, this is an action with a state, during the whole time the
condition holds, the action should hold

Definition This leads to the following definition:
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1. when my location not at home

2. ε

3.
then perform turn heater at 16◦C using (my location, ε,
heater , my phone, state)

Using the priority for the rules we can define a rule with a higher priority
than this rule, which defines the following:

1. when my location in a certain radius of home

2. ε

3.
then perform turn heater at 20◦C using (my location, ε,
heater , my phone, state)

which, whenever a person is near his/her home, the heater will stay
on, because this rule has a higher priority for the changes applied to the
individuals. So when this person approaches home the heater is already
warming up the home.

51



6.2 Rules 6 APPLICATION

6.2.5 Rule 5

Rule An email should be read within one hour of arrival.

Subject
An email should be read within one hour of ar-
rival.

Condition
An email should be read
within one hour of arrival .

Event
An email should be read within one hour of ar-
rival.

Translation First, the translation of the condition. The condition can
be directly translated as the email arriving has a time-stamp, we can see
whether the time is within one hour of arrival. This extended description
gives us the following translation:

• i1: ”my mailbox”, the mailbox for which we want to track our mails

• c1: ”receives email”, whenever i1 receives an email

• i2: ”received email”, the received email which we want to have read
within one hour

• c2: ”unread”, whenever i2 is unread

Second, the action has to be translated, where in this case it is not
immediately clear what action the rule defines. A device like a smartphone
cannot force somebody to read their email, however it can keep insisting the
user to read it. This makes our action a sticky notification (a notification
which cannot be removed), which forces the user to read the email or look
at this notification all the time. This extended description gives us the
following translation:

• a: ”sticky notification that the user should read the email”, using i2 it
is possible to derive if the email is read and if it is read, the notification
can be removed

• i3: ε, no additional individual is required

• id: ”my phone”, the notification can be shown on my phone

• t: ”state”, this is an action with a state, during the whole time the
conditions hold, the action should hold
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Definition This leads to the following definition:

1. when my mailbox receives email

2. then when received email unread

3.
then perform sticky notification that the user should read the email
using (my mailbox , email , ε, my phone, state)
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6.2.6 Rule 6

Rule I do not want to be disturbed when I am in a meeting.

Subject
I do not want to be disturbed when I am in a
meeting.

Condition
I do not want to be disturbed
when I am in a meeting .

Event
I do not want to be disturbed when I am in a
meeting.

Translation First, the translation of the condition. Which in this case
it is almost a direct translation of what is defined in the rule, the only
difference is that the subject is combined with the condition. This gives
that my calendar (which holds my planning) should state that I am in a
meeting. This extended description gives us the following translation:

• i1: ”my calendar”, translated to the individual representing the cur-
rent time

• c1: ”in a meeting”, translated to the condition ”2100”, denoting the
current time should be 2100

• i2: ε, no second part of the rule is needed

• c2: ε, no second part of the rule is needed

Second, the action has to be translated, which can be translated in the
same way as the condition is translated, by combining the subject with,
in this case, the event. This gives us that my phone should be put on
silence whenever the conditions hold. This extended description gives us
the following translation:

• a: ”silent mode”, using i2 I can derive how much time I spent running
today

• i3: ε, no additional individual is required

• id: ”my phone”, the phone should be put to silent mode

• t: ”state”, this is an action with a state, during the whole time the
condition holds, the action should hold

54



6.2 Rules 6 APPLICATION

Definition This leads to the following definition:

1. when my calendar in a meeting

2. ε

3.
then perform silent mode using (my calendar , ε, ε,
my phone, state)

This (and any other) rule can also be defined in a different way, depend-
ing on your personal preferences. I could for example decide that I do not
automatically want the phone set to silent mode, but actually giving me a
notification at the start of a meeting, so I can put the phone to another
mode manually:

1. when my calendar in a meeting

2. ε

3.
then perform notification reminding to put silent mode on
using (my calendar , ε, ε, my phone, on start)
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7 Conclusion and future work

In this research we started off by looking at different types of data to give an
idea of which data types are useful to have when looking at the interaction of
a user with electronic devices. Using these data types we can find different
types of concepts which are modeled using RDF, resulting in a model of
a real-world concept which can be used efficiently by computer algorithms.
The different types of concepts are: semantic search concepts (for which
RDF was made), machine learning concepts, for which sensory data is used
to describe them instead of text and API concepts, which represent concepts
that have an API to communicate with them.

To make use of these RDF models a method has been presented that
is able to reason with the concepts used in these models. This reasoning
with concepts is done by letting a user define a set of rules. For which
each rule defines two conditions and an action, whenever the two conditions
hold, the action can be performed. An action either changes a property of a
concept (or an individual of a concept) or looks up information of a concept.
Whenever the algorithm, which processes these rules, is performed in real-
time, it can perform the tasks within the rules whenever these conditions
hold in real-time.

Because the rules are a translation of what the user wants, the evaluation
of these rules causes them to help the user by automating some of the tasks
he wants to have performed. Because the rules are a formal method of
reasoning with concepts, the reasoning with concepts can automatically help
the user in his/her daily life.

Now that it is possible to have an application automatically help a per-
son in his/her daily activities some subjects can be considered for future
research.

Privacy Data collection is needed to detect a lot of the concepts related to
a person (see section 4.3.2) it is important to keep this data secure, because
a lot of details about that person’s life can be derived from that data, as
shown in this research. For future research, logging and accessing this data
using a secure method has to be looked at to prevent unwanted details about
somebody to be leaked to the wrong people.

Automated rules For now, all of the rules have to be specified by the
user, but since a lot of data about the life of a person is collected some habits
may automatically be derived. These habits might lead to the creation of
rules, or more specificity to them. For example, when you have a rule which
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contains the individual ”at work”, which is usually bound to a location
to know if you are at work. Being at work is done in a repeated pattern
depending on the job you have, which can lead to the individual ”at work”
having an additional property called which describes how many hours you
work. Using this property we can then reliably give navigation information
to your home whenever you are at work for the suggested number of hours.

This method of automatically defining rules might save time in translat-
ing the rules for each new user using the algorithm presented in this research,
as it can simply suggest some rules that somebody is likely to want to have.
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A OWL DEFINITION

A OWL Definition

In the OWL reference [18] the following definition can be found.

A.1 Features

• Class: A class defines a group of individuals that belong together
because they share some properties. For example, Deborah and Frank
are both members of the class Person. Classes can be organized in
a specialization hierarchy using subClassOf. There is a built-in most
general class named Thing that is the class of all individuals and is a
superclass of all OWL classes. There is also a built-in most specific
class named Nothing that is the class that has no instances and a
subclass of all OWL classes.

• rdfs:subClassOf: Class hierarchies may be created by making one or
more statements that a class is a subclass of another class. For ex-
ample, the class Person could be stated to be a subclass of the class
Mammal. From this a reasoner can deduce that if an individual is a
Person, then it is also a Mammal.

• rdf:Property: Properties can be used to state relationships between
individuals or from individuals to data values. Examples of prop-
erties include hasChild, hasRelative, hasSibling, and hasAge. The
first three can be used to relate an instance of a class Person to an-
other instance of the class Person (and are thus occurences of Object-
Property), and the last (hasAge) can be used to relate an instance of
the class Person to an instance of the datatype Integer (and is thus
an occurence of DatatypeProperty). Both owl:ObjectProperty and
owl:DatatypeProperty are subclasses of the RDF class rdf:Property.

• rdfs:subPropertyOf: Property hierarchies may be created by making
one or more statements that a property is a subproperty of one or
more other properties. For example, hasSibling may be stated to be a
subproperty of hasRelative. From this a reasoner can deduce that if
an individual is related to another by the hasSibling property, then it
is also related to the other by the hasRelative property.

• rdfs:domain: A domain of a property limits the individuals to which
the property can be applied. If a property relates an individual to
another individual, and the property has a class as one of its domains,
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then the individual must belong to the class. For example, the prop-
erty hasChild may be stated to have the domain of Mammal. From
this a reasoner can deduce that if Frank hasChild Anna, then Frank
must be a Mammal. Note that rdfs:domain is called a global restric-
tion since the restriction is stated on the property and not just on
the property when it is associated with a particular class. See the
discussion below on property restrictions for more information.

• rdfs:range: The range of a property limits the individuals that the
property may have as its value. If a property relates an individual
to another individual, and the property has a class as its range, then
the other individual must belong to the range class. For example,
the property hasChild may be stated to have the range of Mammal.
From this a reasoner can deduce that if Louise is related to Deborah
by the hasChild property, (i.e., Deborah is the child of Louise), then
Deborah is a Mammal. Range is also a global restriction as is do-
main above. Again, see the discussion below on local restrictions (e.g.
AllValuesFrom) for more information.

• Individual : Individuals are instances of classes, and properties may be
used to relate one individual to another. For example, an individual
named Deborah may be described as an instance of the class Person
and the property hasEmployer may be used to relate the individual
Deborah to the individual StanfordUniversity.

A.2 Equality or inequality

• equivalentClass : Two classes may be stated to be equivalent. Equiv-
alent classes have the same instances. Equality can be used to create
synonymous classes. For example, Car can be stated to be equiva-
lentClass to Automobile. From this a reasoner can deduce that any
individual that is an instance of Car is also an instance of Automobile
and vice versa.

• equivalentProperty: Two properties may be stated to be equivalent.
Equivalent properties relate one individual to the same set of other
individuals. Equality may be used to create synonymous properties.
For example, hasLeader may be stated to be the equivalentProperty
to hasHead. From this a reasoner can deduce that if X is related to
Y by the property hasLeader, X is also related to Y by the property
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hasHead and vice versa. A reasoner can also deduce that hasLeader is
a subproperty of hasHead and hasHead is a subProperty of hasLeader.

• sameAs: Two individuals may be stated to be the same. These con-
structs may be used to create a number of different names that refer
to the same individual. For example, the individual Deborah may be
stated to be the same individual as DeborahMcGuinness.

• differentFrom: An individual may be stated to be different from other
individuals. For example, the individual Frank may be stated to be
different from the individuals Deborah and Jim. Thus, if the individ-
uals Frank and Deborah are both values for a property that is stated
to be functional (thus the property has at most one value), then there
is a contradiction. Explicitly stating that individuals are different can
be important in when using languages such as OWL (and RDF) that
do not assume that individuals have one and only one name. For ex-
ample, with no additional information, a reasoner will not deduce that
Frank and Deborah refer to distinct individuals.

• AllDifferent: A number of individuals may be stated to be mutually
distinct in one AllDifferent statement. For example, Frank, Deborah,
and Jim could be stated to be mutually distinct using the AllDifferent
construct. Unlike the differentFrom statement above, this would also
enforce that Jim and Deborah are distinct (not just that Frank is dis-
tinct from Deborah and Frank is distinct from Jim). The AllDifferent
construct is particularly useful when there are sets of distinct objects
and when modelers are interested in enforcing the unique names as-
sumption within those sets of objects. It is used in conjunction with
distinctMembers to state that all members of a list are distinct and
pairwise disjoint.

A.3 Property characteristics

• inverseOf: One property may be stated to be the inverse of another
property. If the property P1 is stated to be the inverse of the property
P2, then if X is related to Y by the P2 property, then Y is related
to X by the P1 property. For example, if hasChild is the inverse of
hasParent and Deborah hasParent Louise, then a reasoner can deduce
that Louise hasChild Deborah.

• TransitiveProperty: Properties may be stated to be transitive. If a
property is transitive, then if the pair (x,y) is an instance of the tran-
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sitive property P, and the pair (y,z) is an instance of P, then the pair
(x,z) is also an instance of P. For example, if ancestor is stated to be
transitive, and if Sara is an ancestor of Louise (i.e., (Sara,Louise) is an
instance of the property ancestor) and Louise is an ancestor of Deb-
orah (i.e., (Louise,Deborah) is an instance of the property ancestor),
then a reasoner can deduce that Sara is an ancestor of Deborah (i.e.,
(Sara,Deborah) is an instance of the property ancestor).

• SymmetricProperty: Properties may be stated to be symmetric. If
a property is symmetric, then if the pair (x,y) is an instance of the
symmetric property P, then the pair (y,x) is also an instance of P. For
example, friend may be stated to be a symmetric property. Then a
reasoner that is given that Frank is a friend of Deborah can deduce
that Deborah is a friend of Frank.

• FunctionalProperty : Properties may be stated to have a unique value.
If a property is a FunctionalProperty, then it has no more than one
value for each individual (it may have no values for an individual).
This characteristic has been referred to as having a unique property.
FunctionalProperty is shorthand for stating that the property’s mini-
mum cardinality is zero and its maximum cardinality is 1. For exam-
ple, hasPrimaryEmployer may be stated to be a FunctionalProperty.
From this a reasoner may deduce that no individual may have more
than one primary employer. This does not imply that every Person
must have at least one primary employer however.

• InverseFunctionalProperty: Properties may be stated to be inverse
functional. If a property is inverse functional then the inverse of the
property is functional. Thus the inverse of the property has at most
one value for each individual. This characteristic has also been re-
ferred to as an unambiguous property. For example, hasUSSocialSe-
curityNumber (a unique identifier for United States residents) may be
stated to be inverse functional (or unambiguous). The inverse of this
property (which may be referred to as isTheSocialSecurityNumberFor)
has at most one value for any individual in the class of social security
numbers. Thus any one person’s social security number is the only
value for their isTheSocialSecurityNumberFor property. From this a
reasoner can deduce that no two different individual instances of Per-
son have the identical US Social Security Number. Also, a reasoner
can deduce that if two instances of Person have the same social security
number, then those two instances refer to the same individual.
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A.4 Property restrictions

• allValuesFrom: The restriction allValuesFrom is stated on a property
with respect to a class. It means that this property on this particu-
lar class has a local range restriction associated with it. Thus if an
instance of the class is related by the property to a second individ-
ual, then the second individual can be inferred to be an instance of
the local range restriction class. For example, the class Person may
have a property called hasDaughter restricted to have allValuesFrom
the class Woman. This means that if an individual person Louise is
related by the property hasDaughter to the individual Deborah, then
from this a reasoner can deduce that Deborah is an instance of the
class Woman. This restriction allows the property hasDaughter to be
used with other classes, such as the class Cat, and have an appropriate
value restriction associated with the use of the property on that class.
In this case, hasDaughter would have the local range restriction of Cat
when associated with the class Cat and would have the local range re-
striction Person when associated with the class Person. Note that a
reasoner can not deduce from an allValuesFrom restriction alone that
there actually is at least one value for the property.

• someValuesFrom: The restriction someValuesFrom is stated on a prop-
erty with respect to a class. A particular class may have a restriction
on a property that at least one value for that property is of a cer-
tain type. For example, the class SemanticWebPaper may have a
someValuesFrom restriction on the hasKeyword property that states
that some value for the hasKeyword property should be an instance
of the class SemanticWebTopic. This allows for the option of having
multiple keywords and as long as one or more is an instance of the
class SemanticWebTopic, then the paper would be consistent with the
someValuesFrom restriction. Unlike allValuesFrom, someValuesFrom
does not restrict all the values of the property to be instances of the
same class. If myPaper is an instance of the SemanticWebPaper class,
then myPaper is related by the hasKeyword property to at least one
instance of the SemanticWebTopic class. Note that a reasoner can not
deduce (as it could with allValuesFrom restrictions) that all values of
hasKeyword are instances of the SemanticWebTopic class
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A.5 Property cardinality

• minCardinality: Cardinality is stated on a property with respect to a
particular class. If a minCardinality of 1 is stated on a property with
respect to a class, then any instance of that class will be related to at
least one individual by that property. This restriction is another way
of saying that the property is required to have a value for all instances
of the class. For example, the class Person would not have any min-
imum cardinality restrictions stated on a hasOffspring property since
not all persons have offspring. The class Parent, however would have a
minimum cardinality of 1 on the hasOffspring property. If a reasoner
knows that Louise is a Person, then nothing can be deduced about a
minimum cardinality for her hasOffspring property. Once it is discov-
ered that Louise is an instance of Parent, then a reasoner can deduce
that Louise is related to at least one individual by the hasOffspring
property. From this information alone, a reasoner can not deduce any
maximum number of offspring for individual instances of the class par-
ent. In OWL Lite the only minimum cardinalities allowed are 0 or 1.
A minimum cardinality of zero on a property just states (in the ab-
sence of any more specific information) that the property is optional
with respect to a class. For example, the property hasOffspring may
have a minimum cardinality of zero on the class Person (while it is
stated to have the more specific information of minimum cardinality
of one on the class Parent).

• maxCardinality: Cardinality is stated on a property with respect to a
particular class. If a maxCardinality of 1 is stated on a property with
respect to a class, then any instance of that class will be related to
at most one individual by that property. A maxCardinality 1 restric-
tion is sometimes called a functional or unique property. For example,
the property hasRegisteredVotingState on the class UnitedStatesCiti-
zens may have a maximum cardinality of one (because people are only
allowed to vote in only one state). From this a reasoner can deduce
that individual instances of the class USCitizens may not be related to
two or more distinct individuals through the hasRegisteredVotingState
property. From a maximum cardinality one restriction alone, a rea-
soner can not deduce a minimum cardinality of 1. It may be useful to
state that certain classes have no values for a particular property. For
example, instances of the class UnmarriedPerson should not be related
to any individuals by the property hasSpouse. This situation is repre-
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sented by a maximum cardinality of zero on the hasSpouse property
on the class UnmarriedPerson.

• cardinality: Cardinality is provided as a convenience when it is use-
ful to state that a property on a class has both minCardinality 0 and
maxCardinality 0 or both minCardinality 1 and maxCardinality 1.
For example, the class Person has exactly one value for the property
hasBirthMother. From this a reasoner can deduce that no two dis-
tinct individual instances of the class Mother may be values for the
hasBirthMother property of the same person.

A.6 Class intersection

• intersectionOf: OWL Lite allows intersections of named classes and
restrictions. For example, the class EmployedPerson can be described
as the intersectionOf Person and EmployedThings (which could be
defined as things that have a minimum cardinality of 1 on the hasEm-
ployer property). From this a reasoner may deduce that any particular
EmployedPerson has at least one employer.

A.7 OWL Full additions

• oneOf: (enumerated classes): Classes can be described by enumera-
tion of the individuals that make up the class. The members of the
class are exactly the set of enumerated individuals; no more, no less.
For example, the class of daysOfTheWeek can be described by simply
enumerating the individuals Sunday, Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday. From this a reasoner can deduce the
maximum cardinality (7) of any property that has daysOfTheWeek as
its allValuesFrom restriction.

• hasValue: (property values): A property can be required to have a
certain individual as a value (also sometimes referred to as property
values). For example, instances of the class of dutchCitizens can be
characterized as those people that have theNetherlands as a value of
their nationality. (The nationality value, theNetherlands, is an in-
stance of the class of Nationalities).

• disjointWith: Classes may be stated to be disjoint from each other. For
example, Man and Woman can be stated to be disjoint classes. From
this disjointWith statement, a reasoner can deduce an inconsistency
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when an individual is stated to be an instance of both and similarly a
reasoner can deduce that if A is an instance of Man, then A is not an
instance of Woman.

• unionOf, complementOf, intersectionOf (Boolean combinations): OWL
DL and OWL Full allow arbitrary Boolean combinations of classes and
restrictions: unionOf, complementOf, and intersectionOf. For exam-
ple, using unionOf, we can state that a class contains things that are
either USCitizens or DutchCitizens. Using complementOf, we could
state that children are not SeniorCitizens. (i.e. the class Children is
a subclass of the complement of SeniorCitizens). Citizenship of the
European Union could be described as the union of the citizenship of
all member states.

• minCardinality, maxCardinality, cardinality (full cardinality): While
in OWL Lite, cardinalities are restricted to at least, at most or ex-
actly 1 or 0, full OWL allows cardinality statements for arbitrary non-
negative integers. For example the class of DINKs (”Dual Income, No
Kids”) would restrict the cardinality of the property hasIncome to a
minimum cardinality of two (while the property hasChild would have
to be restricted to cardinality 0).

67


	Introduction
	Literature
	Activity recognition
	Algorithms

	Practical applications
	Resource Description Framework
	Web Ontology Language
	SPARQL

	Discussion
	Activity recognition
	Applications
	Resource Description Framework


	Obtaining data
	Types of data
	Location data
	Body movement data
	Sound
	Temperature
	Light
	Nearby devices
	Usage statistics
	Textual

	Combining data types
	Virtual data types

	Data logging
	Data patterns

	Data to concept
	What is a concept?
	Concept modeling

	How do concepts relate to each other?
	Finding concepts
	Semantic search concepts
	Machine learning concepts
	API concepts


	Reasoning with concepts
	What is reasoning with concepts?
	Why is reasoning with concepts useful?
	Feasibility
	Rules
	Automation
	Distribution

	The reasoning algorithm
	Rule execution
	Action execution

	Rule and preference modeling

	Application
	Introduction
	Rules
	Rule 1
	Rule 2
	Rule 3
	Rule 4
	Rule 5
	Rule 6


	Conclusion and future work
	OWL Definition
	Features
	Equality or inequality
	Property characteristics
	Property restrictions
	Property cardinality
	Class intersection
	OWL Full additions


