
RADBOUD UNIVERSITY NIJMEGEN

MASTER THESIS

Efficient Delegation of Idemix
Credentials

Author:
Manu DRIJVERS

s3040429

Supervisor:
Jaap-Henk HOEPMAN

Second Reader:
Bart JACOBS

June 25, 2014

Abstract

Attribute-based credential systems like Idemix are a form of identity man-
agement that protects the user’s privacy. The user has credentials containing
his own attributes, which he can selectively and unlinkably disclose to a verifier.

In many scenarios one would like to delegate tasks and authority, e.g. a fi-
nancial director might want to delegate the task and authority to file company
taxes to a subordinate. Currently Idemix does not support delegation of creden-
tials, and can therefore not be used in scenarios where delegation is required.

We extend Idemix to allow one step of delegation of credentials. This means
one can delegate his credentials to a delegatee, but the delegatee cannot dele-
gate this credential any further. Our construction is efficient, showing a dele-
gated credential takes 24 modular exponentiations. In order to achieve this, we
introduce RSA signatures with a half-domain hash, RSA-HDH, which we prove
secure.

iii

Contents

1 Introduction 1
1.1 Identity Management . 1
1.2 Attribute-Based Credentials . 3

1.2.1 Goal of ABCs . 3
1.2.2 How ABCs work . 3

1.3 Problem Statement . 5
1.4 Motivation . 5

1.4.1 IRMA project . 6

2 Cryptographic Preliminaries 7
2.1 Notation . 7
2.2 Probability Theory . 7
2.3 Indistinguishability . 7
2.4 Bilinear Pairings . 8
2.5 Complexity Assumptions . 8
2.6 Commitment Scheme . 9

2.6.1 Pedersen commitment . 10
2.7 Digital Signatures . 11

2.7.1 Plain RSA signature . 12
2.7.2 Plain RSA with multiple exponents 13
2.7.3 Weak Boneh-Boyen signature . 13
2.7.4 CL-signature . 14

3 Zero-knowledge Proofs 15
3.1 Magic Cave example . 15
3.2 Interactive Proofs . 16

3.2.1 Schnorr’s identification protocol 19
3.2.2 Okamoto’s identification protocol 20
3.2.3 Sigma protocol composition . 20
3.2.4 Discrete logarithms in groups of unknown order and interval

proofs . 23
3.2.5 Secret modular arithmetic . 24

3.3 Non-interactive proofs . 26
3.3.1 Fiat-Shamir Heuristic . 26
3.3.2 Groth-Sahai proofs . 27

v

4 Cryptographic Overview of Idemix 31
4.1 Users . 31

4.1.1 Pseudonyms . 32
4.2 Credentials . 32

4.2.1 Issuance . 32
4.2.2 Showing Credentials . 32

5 Delegation of Idemix Credentials 35
5.1 Security Requirements . 35
5.2 High level overview . 36
5.3 Construction . 37

5.3.1 Signature scheme for authenticator 37
5.3.2 Hash function to mitigate existential forgery of authenticator 37
5.3.3 Delegation credential . 40
5.3.4 Full construction . 40
5.3.5 Efficiency Analysis . 41

5.4 Security Analysis . 42

6 Related Work 45
6.1 Delegatable Credentials from Randomizable Proofs 45
6.2 Delegatable Credentials from Malleable Signatures 46

7 Conclusion 49

vi

Chapter 1

Introduction

With technological progress, we’ve seen more and more services move from the
physical to the digital world. For users this is very convenient, but it also endan-
gers their privacy. In the digital world the user are often required to register some
personal information, which allows tracking of their behavior. Often this informa-
tion is identifying, which allows multiple services to combine their user profiles and
learn more about their customers. All this information about the user is stored at
the services, outside of control of the user.

Users should therefore be very careful about the personal information they dis-
close. Attribute-based credential systems like Idemix can protect the user’s privacy
by limiting the information disclosed and by hiding usage patterns. The user is in
charge of his own identity, and decides when and where to disclose personal in-
formation. In this thesis, we will investigate ways to efficiently delegate Idemix
credentials, such that we can use this privacy protecting technique in more scenar-
ios. First, a short introduction to identity management and attribute-based creden-
tials is given, after which we will state the problem and motivate the need for this
research.

1.1 Identity Management

To use services, users are often required to register first. The domain that offers
the service wants to know some attributes of the users. For example, a prospective
student must first register at the university (the domain), in which the user will tell
his name and address (attributes). We will refer to such a collection of attributes at
a domain as an identity. One person will have many different identities, as he uses
services of many different domains.

Identity Management (IdM) governs the processes of creating, managing and
using digital identities. Three parties are involved in an IdM system: users, relying
parties (RP), and identity providers (IdP). The user wants to use a service offered
by a RP, and the RP relies on the IdP to verify identities from users. When a user
requests a service at a RP, he will have to authenticate at the IdP. In case of a network-
based IdM system, the IdP will give the user a token, which the user shows to
the RP proving that he has authenticated. The RP may request more information
on the user’s identity from the IdP directly. In a claim-based IdM system, before
authentication the RP states what information about the user’s identity he wants.

1

The user authenticates at the IdP and the IdP returns so-called claims, which contain
the requested information, which the user can forward to the RP.

Over the years, IdM has become more complex. Users use more and more dig-
ital services and consequently gain more identities at different domains, for which
they often have to remember their username and password. Also, domains want to
allow identities from other domains. For example, university A now also wants to
let members of university B access their digital library. This introduced Federated
Identity Management (FIdM), in which a single identity is used in multiple domains,
the circle of trust, as shown in Figure 1.1. This is very popular, partly due to the
ease of use: a user authenticates at a IdP once, and can then use services from all
RPs in the circle of trust.

User

RP

IdP RP

RP

RP

RP

IdP

Domain A

Domain B

Circle of Trust

Figure 1.1: Federated Identity Management

Federated IdM has its downsides. Users must put a great amount of trust in the
IdP, as he knows everything about them. The IdP can impersonate any user, and
is an interesting target for data theft, because of all the valuable data it has. The
IdP is also capable of monitoring all actions of the users, which is a violation of
the user’s privacy. In some instantiations of Federated IdP (e.g. DigiD, the identity
management system by the Dutch government), the RPs will also be able to identify
the user, as the IdP gives a unique identifier of the user. This allows RPs to track a
user’s behavior. An overview of current problems in IdM is presented in [AHS13].

2

1.2 Attribute-Based Credentials

Attribute-based credentials (also known as pseudonym systems and anonymous
credentials) take a different approach to IdM. The concept has been introduced
by Chaum [Cha85], and many improved constructions have been introduced since
[CE87, Dam90, LRSW00, Bra99, CL01, CL03, CL04]. This section explains which
problems attribute-based credentials solve, followed by a high-level overview of
how these systems work.

1.2.1 Goal of ABCs

In many everyday scenarios you have to authenticate before you are authorized to
perform an action. Traditionally this involves identification: revealing your identity.
When buying alcohol at a liquor store, the customer must prove that he is of age. To
do so, he must show his passport. This passport indeed shows whether the customer
is of age or not, but also reveals more information: it contains a full name, social
security number, and document number. All of this information is irrelevant to the
storekeeper, and violates the privacy of the customer. Even the date of birth should
not be disclosed, as this tells the shopkeeper the exact age of the customer, whereas
all he needs to know is whether his age is over a certain limit.

The second violation of privacy is linkability. Because the shopkeeper can uniquely
identify the customer (by e.g. his name, social security number, or passport num-
ber), he will notice when the same customer returns. This allows the shopkeeper to
keep track of what you buy. Even worse, the shopkeeper could collude with other
shopkeepers and combine their profiles. Since the customer is uniquely identified,
his actions in different stores can be linked which gives the shopkeepers more in-
formation about the customer.

Attribute-based credentials (ABCs) allow users to authenticate without identifi-
cation. Instead, a user can directly prove that he has certain attributes. Attributes
are pieces of information about the owner, such as “is of age over 18”, “my nation-
ality is ...”, or “my name is ...”. Note that some attributes will identify you (in this
example, your name), whereas others do not (over 18 and nationality). Let us re-
visit the liquor store example. In an ABC setting, the customer proves he has the “is
of age over 18” attribute. The first problem (revealing too much information) does
not occur, as the customer shows exactly what he needs to. The second problem is
also mitigated. Because the user only shows a non-identifying attribute, the shop-
keeper cannot recognize the same customer returning, and therefore cannot build
user profiles.

1.2.2 How ABCs work

How can a user prove that he has some attribute, without revealing anything else?
This is achieved by using credentials. A set of attributes is signed by an issuer. The
issuer must be an authority on the subject of the attributes, as depicted in Figure 1.2.
For example, the university could issue credentials containing attributes “is a stu-
dent”, “has student ID 1234”, “studies computer science”, at level “MSc”. Suppose
this student now visits a museum and wants to get receive a student discount. He
can now show the credential issued by the university, which states that he is a stu-
dent. Since this has been signed by the university, the museum is convinced that he
indeed is a student.

3

user
secret m1

time stamp is a student 1234
Computer
Science

MSc

Signed

by uni-

versity

Figure 1.2: Graphical representation of a student credential1

An important property of attribute-based credential systems is selective disclo-
sure, which allows a user to choose which attributes of a credential are revealed to a
relying party. The student that wants the student discount only needs to prove that
he is a student. Selective disclosure allows him to prove just that, and hide the other
attributes. Another important property is multi-show unlinkability. When the stu-
dent returns to the museum and again shows his student credential, the museum
should not be able to tell that this is the same student. Finally we need issuer-
unlinkability, which ensures that an issuer cannot link the issuance of a credential
to the showing of that credential.

Issuer

User

Relying Party

Issue credential

Show credential

Figure 1.3: IdM using attribute-based credentials

Compared to other forms of IdM, the role of IdP is replaced by credential issuers.
As shown in Figure 1.3, this form of IdM places the user in the center: issuers talk to
users, and users talk to RPs, but issuers never talk to RPs. This has many advantages.
The security risks of a corrupt IdP that uses one of the identities he has stored is
treated, as there no longer is an IdP with stored identities, the user stores his own
identities in the form of credentials. This also removes the risk of data theft at an
IdP. This setup also helps protect the user’s privacy. A credential issuer cannot keep

1Figure by Tim van de Kamp, used with permission

4

track of where credentials are being used, so he cannot monitor the behavior of
users.

1.3 Problem Statement

In some scenarios, one would like to delegate authority or privileges. This is cur-
rently not possible with Idemix credentials. In this thesis, we want to answer the
following question: “Can we extend Idemix to allow efficient delegation of creden-
tials?” To answer this question, we answer the following subquestions:

1. What zero-knowledge proof techniques are available?

2. How does Idemix work?

3. What are the requirements on delegation of attribute-based credentials?

4. Which constructions of credential delegation are already available?

An overview of zero-knowledge proof techniques is provided in Chapter 3, fol-
lowed by a cryptographic overview of Idemix in Chapter 4. In Chapter 5 we set the
requirements on delegatable credentials. In this chapter we also answer the main
question and propose a way to delegate Idemix credentials. Chapter 6 provides an
overview of other constructions of delegatable credentials.

1.4 Motivation

We now motivate why we need delegation of attribute-based credentials, why we
want to delegate Idemix credentials, and why it must be efficient.

Delegation of tasks and authority happens every day. In software development,
the lead developer that must sign-off all the code might authorize some senior de-
veloper to sign-off code in one specific branch of the project. We imagine a pri-
vacy friendly world where ABCs are used for many tasks, including the example of
signing-off code. The lead developer has attributes that allow him to sign-off code
for the entire project. He could delegate the task of signing-off code for a project
branch to a senior developer by delegating a credential. Another example is filing
taxes for a company. Suppose the financial officer is responsible for filing the com-
pany’s taxes. He might delegate this task to a subordinate, and by delegating his
credential, give this subordinate the authority required to do so.

Delegation is not only useful for person-to-person delegation. Suppose a user
has Idemix on a smart card that he uses to access his email. He will have to insert his
smart card into his laptop such that the email client can fetch the new messages.
The user however wants his laptop to fetch email messages also when he is not
using his laptop and his smart card is not inserted. We can image that the laptop
is an individual Idemix user (e.g. using an extended trusted platform module that
supports Idemix). The user could solve the problem by delegating his email access
credential to the laptop.

Privacy could also be increased using delegatable credentials. Driver’s licenses
are often handled by some national authority. This authority has local offices that
issue driver’s licenses. When using ABCs for driver’s licenses, the public key of the
local office still reveals which office issued the driver’s license and therefore reveals

5

roughly where the owner lives. Using delegation, the national authority could issue
credentials that allow issuance of driver’s licenses. Every local office has such a
credential. To issue a driver’s license to a person, the local office delegates the
credential to this person. Now all driver’s licenses will be a delegated credential of
a credential issued by the national authority, that does not reveal which local office
was involved.

Another area that could benefit from delegatable attribute-based credentials is
the health care system, explained in detail in [CL11]. Health insurers issue creden-
tials to their customers, which allows them to prove they have health insurance.
After seeing a doctor, the patient delegates this credential to the doctor, indicating
that he has received a certain form of health care from this doctor. The doctor bills
the insurance company, showing the delegated credential, proving that one of their
customers indeed received health care. One of the advantages of this approach is
that health insurers do not know which of their customers received which form of
health care.

There are constructions of ABCs specifically designed to allow delegation of cre-
dentials [CL06, BCC+09, CKLM13]. However, these constructions heavily rely on
computationally expensive bilinear pairings. Also, at this point these systems are
unused. Two ABC systems are being used: IBM’s Idemix [IBM13] and Microsoft’s
U-Prove [Bra99, Paq13]. The main difference is that Idemix offers multi-show un-
linkability, whereas U-Prove does not. We therefore prefer Idemix.

We always want cryptographic systems to be efficient, but the IRMA project is
extra motivation to create an efficient solution.

1.4.1 IRMA project

The IRMA project2, short for “I Reveal My Attributes”, aims to put Idemix into prac-
tice by creating an efficient smart card implementation of Idemix [VA13]. A smart
card implementation can bring extra security as the key material is stored securely,
while it can also improve usability, as showing a smart card is very easy. Delega-
tion of Idemix credentials could also contribute to the IRMA project, but only if the
construction is efficient enough to run on smart cards.

2see www.irmacard.org for more information

6

www.irmacard.org

Chapter 2

Cryptographic Preliminaries

In this chapter we introduce the required cryptographic preliminaries.

2.1 Notation

Let G be a multiplicative cyclic group. We use 〈g〉 to denote the set of elements
generated by applying the group operation repeatedly on g: {g, g · g = g2, g3, ...}.
If this results in the entire group G, i.e. 〈g〉=G, we call g a generator of G.

Checking whether an equality holds will be denoted using a
?
= b, which checks

whether a is equal to b.
A group of Quadratic Residues modulo n will be denoted by QR(n), which is

equal to {q | ∃x x2 = q (mod n)}. We use {0,1}l to denote the set of integers
{0, ..., 2l − 1}, and ±{0, 1}l the set {−2l + 1, ..., 2l − 1}.

2.2 Probability Theory

Let V be a finite set. We write x ∈R V to denote that x is taken uniformly at random
from V : Pr[x = v] = 1

|V | for all v ∈ V . We use the statistical distance ∆ to compare
two random variables. The statistical distance between random variables X and Y
with set of possible values V is defined as ∆(X , Y) = 1

2

∑

v∈V
|Pr[X = v]−Pr[Y = v]|,

so two equally distributed random variables will have a statistical distance of 0, and
two random variables that share no possible outcome have a distance of 1.

2.3 Indistinguishability

A function f : N → R is called negligible if for every positive polynomial p there
is a constant c ∈ N such that for all k ≥ c we have f (k) ≤ 1

p(k) . We denote this by
f (k)∼= 0.

Let {X i}i∈I and {Yi}i∈I be families of random variables with |X i | and |Yi | of size
polynomial in |i|. We have the following notions of indistinguishability:

Perfect Indistinguishable when the random variable families are equally distributed:
∆(X i , Yi) = 0.

7

Statistically Indistinguishable when they are almost equally distributed: ∆(X i , Yi)∼=
0.

Computationally Indistinguishable if probabilistic polynomial time (PPT) algo-
rithm has non-negligible success at distinguishing the two random variables:
for all PPT -distinguishersD the advantage AdvD(X i , Yi)∼= 0, with AdvD(X i , Yi) =
|Pr[D(X i) = 1]− Pr[D(Yi) = 1]|.

2.4 Bilinear Pairings

Suppose we have additive groups G1, G2, and multiplicative group GT . A pairing
e : G1 ×G2→GT is a function such that we have

Bilinear e(aP, bQ) = e(P,Q)ab

Non-degenerate 〈P〉=G1 ∧ 〈Q〉=G2 =⇒ 〈e(P,Q)〉=GT

Generally three types of pairings are considered. The first has G1 = G2. The
second type G1 6= G2, but there is an isomorphism ψ : G2 → G1. The third type
also has G1 6= G2 but there is no such isomorphism. There are no known pairings
such that G1 =G2 =GT .

The non-degeneracy requirement prevents a pairing that maps all elements to
a single element in GT . G1 and G2 are often called the gap groups, and GT the
target group. In practice, G1 and G2 are typically subgroups of elliptic curves over
F∗p, and GT is an extension field of F∗p. Since elliptic curve groups are usually written
additively, we choose to write the gap groups additively as well.

In type 1 pairings, it is easy to solve the DDH-problem in the gap group: given

g, g x , g y , gz , we can decide z
?
= ab by checking e(g x , g y)

?
= e(g, gz). This demon-

strates that groups with bilinear pairings may require different complexity assump-
tions.

2.5 Complexity Assumptions

The following problems are often assumed to be hard. This means that we assume
an attacker cannot compute certain things. Under these assumptions we can create
secure cryptographic primitives. Table 2.1 shows the names of those assumptions
and the corresponding problems.

Given a multiplicative group G generated by g:

Discrete Log Problem Given g x , output x .

Diffie-Hellman Problem Given ga and g b, output gab.

Decisional Diffie-Hellman Problem Given ga, g b, gz , output whether ab
?
= z holds.

Formal definitions of the DH and DDH problems can be found in [Bon98].

Given n, the product two large primes p, q:

RSA Problem Given e and c, output the e-th root m = c
1
e .

Flexible RSA Problem Given c, output any e > 1 and the e-th root m = c
1
e

8

Assumption Problem
DL Discrete Logarithm Problem
DH Diffie-Hellman Problem
DDH Decisional Diffie-Hellman Problem
RSA RSA Problem
Strong RSA Flexible RSA Problem
DLIN Decision Linear Problem
BDDH Bilinear Decisional Diffie-Hellman Problem
qSDH q-Strong Diffie-Hellman Problem
SD Subgroup Decision Problem
SXDH Symmetric External Diffie-Hellman Problem

Table 2.1: Names of complexity assumptions and the corresponding problems as-
sumed to be hard

Given 〈g1〉=G1, 〈g2〉=G2 of prime order p and bilinear pairing e : G1×G2→
GT :

Decision Linear Problem given arbitrary generators u, v, h of G1, and ua, vb, hc ,

output whether a + b
?
= c. This problem is introduced in [BBS04].

q-Strong Diffie-Hellman Problem Given (g1, g2, g2
x , ..., g2

xq
, output a pair (c, g1

1/(x+c))
with c ∈ Z∗p. This problem is introduced in [BB08].

Symmetric External Diffie-Hellman Problem Solve the DDH problem in G1 or
G2. A formal definition is given in [ACHdM05].

Given G of composite order n with secret factorization n = pq, GT and pairing
e:

Subgroup Decision Problem Given an element u ∈ G, output whether 〈u〉 has
order n or q. This problem is introduced in [BGN05].

2.6 Commitment Scheme

Alice and Bob like to play the game battleship. In the beginning of this game, both
players must commit to the arrangement of their ships. They do so by writing this
arrangement down on a piece of paper, and fold the paper. An example of this is
shown in Figure 2.1. The outside of this paper does not reveal the arrangement
of the ships, it is hiding. But by writing the locations down, Alice and Bob cannot
change the locations during the game, it is binding. At the end of the game, both
players will open their folded paper and they can verify that the other player did
not cheat. Now suppose Alice and Bob want to play battleship over email. To do
so, they need a digital version of the piece of paper: a cryptographic commitment
scheme.

More generally, a cryptographic commitment scheme allows one to choose a
value without revealing it, yet such that everyone is ensured that the value will not
be changed later. This concept is introduced in [Blu83]. A commitment scheme
defines a function Commit. Such a scheme consists of two rounds:

9

A B C D E F G H I L

1

2

3

4

5

6

7

8

9

10

Figure 2.1: A battleship arrangement of ships. Source: http://commons.wikimedia.
org/wiki/File:Battleship_game_board.svg

Commit To commit to value x , the committer chooses random u and calculates
c = Commit(x , u).

Reveal To reveal that c was a commitment to x , the committer publishes x and the

opening u. The commitment can now be checked by c
?
= Commit(x , u).

A commitment scheme must be binding and hiding. Binding requires that after
committing to c = Commit(x , u), the committer cannot change his mind and open
the commitment to c = Commit(x ′, u′) with x �= x ′. When this is computationally
infeasible, we call the scheme computationally binding. If this is impossible even
with unlimited computing power (i.e. ¬∃u, x , u′, x ′ : x �= x ′ ∧ Commit(x , u) =
Commit(x ′, u′)), the scheme is called information-theoretically binding.

A commitment scheme is hiding if one cannot extract x from Commit(x , u) with
non-negligible probability. When this is computationally infeasible, the scheme is
computationally hiding. If commitments to x and x ′ are statistically indistinguish-
able for all x , x ′, the scheme is information-theoretically hiding.

Note that a scheme cannot be be both information-theoretically binding and
information-theoretically hiding. Suppose that the scheme is information-theoretically
hiding. This means that commitments to x are statistically indistinguishable from
commitments to x ′. This can only hold if there exist u and u′ such that Commit(x , u) =
Commit(x ′, u′), but this prevents information-theoretical binding. Therefore the
best we can have is a scheme that is information-theoretically binding and computa-
tionally hiding, or one that is computationally binding and information-theoretically
hiding.

2.6.1 Pedersen commitment

A Pedersen commitment [Ped92] is a commitment scheme that is information-theoretically
hiding and computationally binding under the DL assumption. Take p and q large

10

http://commons.wikimedia.org/wiki/File:Battleship_game_board.svg
http://commons.wikimedia.org/wiki/File:Battleship_game_board.svg

primes such that q divides p−1. Let G be a subgroup of Z∗p generated by g of order
q. Take h ∈R G \ {1}. Now both g and h are generators of G: the order of 〈h〉 must
be a divisor of q, and because q is prime and h 6= 1, the order of 〈h〉 must be q. To
commit to x , a user chooses u ∈R Zq, and calculates Commit(x , u) = g xhu.

The commitment is information-theoretically hiding, because for every x , the
commitment is a value uniformly distributed over G. It is computationally binding,
because suppose one can find x , u, x ′, u′ with x 6= x ′ (mod q) such that Commit(x , u) =

Commit(x ′, u′). This implies that u 6= u′. Now g
x−x′
u′−u = h, so the discrete log of h

has been calculated. This contradicts the DL-assumption, so the commitment is
computationally binding.

Note that Pedersen does not explicitly state that h = 1 must be prevented. How-
ever, when h = 1, the commitment scheme is not information-theoretically hiding,
as a commitment to x will always be g x , clearly not uniformly distributed over G.

2.7 Digital Signatures

A digital signature allows a signer to sign a message using a secret key, such that
anyone can verify the authenticity of the message using the signer’s public key. A
digital signature scheme consists of three algorithms: KeyGen, Sign, and Verify. The
KeyGen algorithm generates the public and secret key. Sign takes as input a message
to be signed, and using the secret key is outputs a signature on the message. Verify
takes as input a message and a signature, and using the public key it verifies the
validity of the signature.

The security of a digital signature is defined by the hardness of creating a signa-
ture without the secret key. In [GMR88], categories of attacks on digital signatures
and attack results are defined. They define the following attack categories:

Key-Only attack The adversary only knows the signer’s public key pk

Known Message attack The adversary is given the public key pk and a number of
messages with corresponding signatures {mi ,σi : Verifypk(mi ,σi) = 1}i , but
the messages are not chosen by the adversary.

Generic Chosen Message attack The adversary may choose a number of messages
{mi}i , after which he receives the public key pk and signatures {σi : Verifypk(mi ,σi) =
1}i .

Directed Chosen Message attack The adversary is given the public key pk, and
may choose a number of messages {mi}i , after which he receives signatures
{σi : Verifypk(mi ,σi) = 1}i .

Adaptive Chosen Message attack The adversary receives the public key pk and
may repeatedly choose a message mi and receive a signatureσi with Verifypk(mi ,σi) =
1. The choice of the next message may depend on the signatures on previous
messages.

Note that the adversary is allowed more with every next attack category. There-
fore, security for e.g. directed chosen message attacks implies security for known
message attacks and key-only attacks.

Attack results are categorized as follows:

11

Total Break The adversary can derive the signer’s secret trap-door information
(e.g. his secret key).

Universal Forgery After the attack the adversary can sign any message.

Selective Forgery The adversary can sign any message that he chose before the
attack.

Existential Forgery The adversary can find some message-signature pair that is
valid and this message has not been signed by the signer. The adversary does
not need to have control over which message this is.

Strong existential forgery The adversary can find some message-signature pair
that is valid and this pair has not been signed by the signer. The adversary
does not need to have control over which message-signature pair this is.

The notion of strong existential forgery has been added by [ADR02], and adds
the requirement that a forger cannot forge a new signature on a message (that
may previously have been signed). This only differs from existential forgery for
signature schemes that allow multiple valid signatures per message. The attack
results are given in decreasing order of strength, so every next attack result is im-
plied by the previous result. When using these as security requirements, they are
given in increasing degree of security, e.g. if a scheme is universally unforgeable,
it is also resistant to a total break. When we say a signature scheme is secure, we
often require it to be existentially unforgeable against adaptive chosen message at-
tacks. This guarantees that whenever someone shows a valid signature σ on m, the
signer must have signed m before. In some applications a signature that is strongly
existentially unforgeable against adaptive chosen message attacks is required. This
guarantees that whenever someone shows a valid signatureσ on m, the signer must
have created this pair. Note that a randomizable signature cannot be strongly ex-
istentially unforgeable against a known message attack, as anyone that has a valid
message-signature pair can randomize the signature.

A different notion of unforgeability is F-unforgeability [BCKL08]. Now given
some efficiently computable bijection F an attacker must output F(m),σwith Verifypk(m,σ) =
1, for an m for an m on which he has not previously received a signature. If this is
infeasible the scheme is existentially F-unforgeable.

We now describe some frequently used digital signature schemes.

2.7.1 Plain RSA signature

The plain RSA signature [RSA78] is the one of the first instantiations of public key
cryptography as proposed in [DH76].

KeyGen Choose large primes p, q and take n = pq. Choose e with 1 < e < (p −
1)(q−1) and gcd(e, (p−1)(q−1)) = 1, and calculate d = 1

e (mod (p−1)(q−
1)). The public key is (n, e), the secret key is d. Delete p, q.

Sign(m) To sign m ∈ Zn, take σ = md (mod n).

Verify(m;σ) σe ?
= m (mod n)

12

Plain RSA signatures are existentially forgeable by a key-only attack: take σ ∈R
Zn, and let m = σe. Now σ is a valid signature on m.

Plain RSA signatures are homomorphic, which allows selective forgery by a
generic chosen message attack. The forger wants to forge a signature on m. He
takes m1, m2 such that m1 ·m2 = m (mod n), and queries the signing oracle for valid
signatures σ1,σ2 on m1, m2 respectively. Now σ = σ1 ·σ2 = md

1 md
2 = (m1 ·m2)d =

md (mod n) is a signature on m.
Both attacks can be mitigated by signing a cryptographic hash of a message

instead of the message. Intuitively, this can be seen from the fact that by using the
mentioned ways to forge signatures, the attacker must now still find a preimage of
the hash function, which is infeasible. Using a secure hash function this signature
is generally considered to be secure and standardized in PKCS#1 [JK03], although
the security has not been proven. RSA-FDH uses a full domain hash H : {0, 1}∗ →
Z∗n. This construction is existentially unforgeable against adaptive chosen message
attacks under the RSA assumption in the random oracle model, as shown in [BR96,
Cor00]. The random oracle model models the output of a hash function as truly
random numbers uniform in the range of the hash function (but it is still a function,
so hashing the same input multiple times will yield the same output) [BR93]. RSA-
PSS uses a probabilistic hash function and can be more tightly reduced to the RSA
problem, again using the random oracle model [BR96].

2.7.2 Plain RSA with multiple exponents

In order to mitigate the homomorphic properties of RSA signatures, one can use a
fresh e and d for every signature.

KeyGen Choose large primes p, q and take n = pq. The public key is n, the secret
key is (p, q).

Sign(m) To sign m ∈ Zn, take e with 1< e < (p− 1)(q− 1) and gcd(e, (p− 1)(q−
1)) = 1, compute d = 1

e (mod (p − 1)(q − 1)) and set σ = md (mod n). The
signature is (σ, e).

Verify(m;σ, e) σe ?
= m (mod n)

The probability that the attacker can get two messages with the same e is neg-
ligible, so he cannot abuse the homomorphic properties. In this setup the signer
has to take care that the private exponents d are large. As shown in [HGS99] and
[SM10], if the attacker can get e1, ..., ek with corresponding (but to the attacker
unknown) decryption exponents d1, ..., dk such that di < n

3k−1
4k+4 , the modulus n can

be factored. Note that as k grows, di must be at least n
3
4 . However, for a large

(say 2048 bit) modulus, this is not a problem, since the probability that di for a
randomly chosen ei is that small is negligible.

The existential forgery by a key only attack of the plain RSA signature occurs
here too, which again can be mitigated by using a hash function.

2.7.3 Weak Boneh-Boyen signature

The weak Boneh-Boyen signature [BB04] is existentially unforgeable against generic
chosen message attacks under the q-SDH assumption. Unlike RSA-signatures, it

13

does not rely on the random oracle model. It is proven to be existentially F-unforgeable
against adaptive chosen message attacks with F(m) = (g2

m, um), with u some fixed
element in G1 [BCKL08].

KeyGen Let G1 = 〈g1〉,G2 = 〈g2〉 of prime order p with bilinear pairing e : G1 ×
G2 → GT . Take x ∈R Z∗p. The public key is pk = (g1, g2, v = g2

x), the secret
key sk = x

Sign(m) σ = g1
1/(x+m)

Verify(m;σ) e(σ, v · g2
m)

?
= e(g1, g2)

2.7.4 CL-signature

The CL-signature [CL03] is a randomizable signature scheme secure under the
strong RSA assumption, and can sign L messages in a single signature.

KeyGen The signer chooses two large safe primes p = 2p′ + 1, q = 2q′ + 1, n = pq.
Let S ∈QR(n) be a generator of a subgroup of QR(n) of order p′q′. Finally, he
takes Z , R1, ..., RL ∈R 〈S〉. The public key is (n, S, Z , R1, ..., RL), the secret key
is (p, q).

Sign(m1, ..., mL) Let the message space be {0, 1}lm (i.e. every message mi ∈ {0, 1}lm).
Choose a random fresh prime e of bit length le such that le ≥ lm + 2, and a
random v. Compute A= (Z

Sv
∏L

i=1 R
mi
i

)1/e. The signature is (A, e, v).

Verify(A, e, v; m1, ..., mL) Ae ?
= Z

Sv
∏L

i=1 R
mi
i

(mod n), and verify the bit lenghts: mi ∈

{0, 1}lm , e ∈ {0, 1}le .

Note that we need that e has a bit length greater than the acceptable interval of
mi , otherwise we can existentially forge signatures using a known message attack.
Suppose attacker knows signature (A, e, v) on m1, ..., mL . He could alter the value
of mi by taking a random r and setting A′ = A ·Rr

i . This would yield a signature on
m′i = mi − r · e. However, when e has a length greater than the allowed range of
messages, m′i can no longer be in the correct range, so verification fails.

14

Chapter 3

Zero-knowledge Proofs

Zero-knowledge proofs are a concept introduced in [GMR89] and allow one to
prove that a statement is true, without revealing anything more than the fact that
the statement is true. In practicular, the verifier cannot convince anybody else of
the fact that this statement is true. We start this section by explaining the con-
cept using the ‘magic cave’ example from [QQQ+90]. After this, interactive and
non-interactive proof systems are considered individually. Interactive proofs in-
volve multiple rounds of communication between a prover and verifier, whereas a
non-interactive proof is a single message from the prover to the verifier.

3.1 Magic Cave example

This example involves a very special and famous cave. After the entrance, it splits
into two paths, that lead to different sides of a magic door, as depicted in Figure 3.1.
This secret door only opens by saying the correct password. Peggy knows this pass-
word, and wants to convince Victor of this. However, she only wants to convince
Victor, not anyone else, because she does not want the world to know she can open
the famous magic door.

Peggy and Victor proceed as follows. Peggy will enter the cave and walk through
path A or B to the magic door, leaving her at the A-side or the B-side of the magic
door respectively. After Peggy entered the cave, Victor will walk through the en-
trance to the intersections (not knowing which way Peggy chose) and flips a coin.
He will shout “exit A” in case of heads, and “exit B” in case of tails. Peggy can hear
this and will exit the cave through this path. If she is on the A-side of the door and
has to exit through A, she can simply walk out. If she’s on the A-side but has to
exit B, she must pass the secret door, using her password. In the same way, if Peggy
chose B and has to exit B, she just walks out, and if she chose B and must exit A,
she will go through the door (see Figure 3.2).

Victor will only see Peggy exiting through the correct path, but he does not
know whether Peggy went through the magic door or not. However, when doing
this repeatedly, Victor will be convinced that Peggy is able to pass the secret door,
because otherwise she would fail to exit through the correct path in half of the cases.

Victor is so amazed that he decides to record everything he sees: he flips a
coin, and Peggy comes out of the correct path. He shows his recorded video to
his friend Trent, in order to convince him that Peggy knows the password to the

15

Path A

Path B

Entrance Magic door

Figure 3.1: The magical cave

secret door. Trent, however, is not convinced: Victor could easily have simulated
the whole thing, since anyone that does not know the password will still be able to
exit through the correct path in half of the cases. All the failed attempts will simply
be cut out of the recording. This is the zero-knowledge aspect of Peggy’s proof:
everything she shows to Victor could have been simulated by Victor alone, such
that a third party could not distinguish Peggy’s proof (as recorded in Victor’s video)
from a simulation (a video involving someone that cannot pass the door, with all
the failed attempts cut out). Peggy therefore managed to fully convince Victor that
she is able to pass the door, but Victor cannot convince anyone else.

3.2 Interactive Proofs

Given a relationR ⊆ V×W , and corresponding language LR = {v ∈ V : ∃w∈W (v, w) ∈
R} with LR ∈ N P, a prover needs to prove to a verifier that some statement v is
in this language. Both the prover P and the verifier V are probabilistic polynomial
time (PPT) algorithms.

In an interactive proof system, prover P and verifier V exchange messages, in
order to convince V that x ∈ LR. Eventually V accepts or reject the proof, denoted
by (P,V)[x] = Accept and (P,V)[x] = Re ject. Let view(P,V)[x] denote all the
messages exchanged between prover P and verifier V in P ’s attempt to prove to V
that x ∈ LR. Since P and V are probabilistic algorithms, view(P,V)[x] is a random
variable. From now, we use P and V to denote an honest prover and verifier, and P∗
and V∗ to denote a possibly cheating prover and verifier. An honest participant will
always stick to the protocol, a cheating participant may deviate from the protocol.
We always require:

Completeness A proof from an honest prover will always be accepted by an honest
verifier: ∀x ∈ LR : Pr[(P,V)[x] = Accept] = 1.

Soundness A cheating prover has a small probability of being accepted by an hon-
est verifier: ∀x /∈ LR : Pr[(P∗,V)[x] = Accept] ≤ 1

2 . By doing repetitions of

16

V
P

Exit B!

(a) Peggy can simply walk out path B

V
P

Open
Sesame!

Exit A!

(b) Peggy has to use the magic door

Figure 3.2: Peggy exits the way Victor names

17

the interactive proof, we can get the success probability of cheating arbitrarily
small.

For some relations, we do not only want to prove that some x ∈ LR, but also that
we know some witness w such that (x , w) ∈ R. Such proofs are called proofs-of-
knowledge [BG93]. For such proof systems, the soundness requirement is replaced
with the knowledge soundness requirement. Informally, this requirement states that
a prover that is able to convince a verifier that he knows a witness, must actually
know this witness. This is enforced by the fact that an efficient extractor algorithm
that has oracle access to the prover, must be able to compute a witness.

Knowledge Soundness A probabilistic extractor E with oracle access to a cheating
prover (as rewindable turing machine) can compute a witness if the cheat-
ing prover has a success probability larger than the knowledge error: let
ε(x) = Pr[(P∗,V)[x] = Accept], we require ∃PPTE∀PPTP∗ε(x) > κ(x) →
(x ,EP∗(x)) ∈R, in at most |x |c

ε(x)−κ(x) steps, for some constant c.

There are multiple notions of zero-knowledge, but the idea always involves sim-
ulation. If anyone can simulate conversations between an honest prover and a ver-
ifier, such that simulated conversations look just like actual conversations, then a
verifier cannot learn anything from a prover, as he can simulate proofs on his own.
The formal definitions are:

Perfect zero-knowledge Simulated conversations and actual conversations are equally
distributed:
∀PPTV∗∃PPT S : ∀x ∈ L : ∆(view(P,V∗)[x], S[x]) = 0

Statistical zero-knowledge Simulated conversations and actual conversations are
statistically indistinguishable:
∀PPTV∗∃PPT S : ∀x ∈ L : ∆(view(P,V∗)[x], S[x])∼= 0

Computational zero-knowledge Simulated conversations and actual conversations
are computationally indistinguishable, i.e. all PPT binary distinguishers D
have a negligible advantage distinguishing simulated from actual conversa-
tions:
∀PPTV∗∃PPT S : ∀PPTD : ∀x ∈ L : AdvD(view(P,V∗)[x], S[x])∼= 0

Perfect Honest verifier zero-knowledge Simulated conversations and actual con-
versations between an honest prover and verifier are equally distributed: ∃PPT S :
∀x ∈ L : ∆(view(P,V)[x], S[x]) = 0

Statistical Honest verifier zero-knowledge Simulated conversations and actual
conversations between an honest prover and verifier are statistically indis-
tinguishable: ∃PPT S : ∀x ∈ L : ∆(view(P,V)[x], S[x])∼= 0

Computational Honest verifier zero-knowledge Simulated conversations and ac-
tual conversations between an honest prover and verifier are computationally
indistinguishable, i.e. all PPT binary distinguishers D have a negligible ad-
vantage distinguishing simulated from actual conversations:
∃PPT S : ∀PPTD : ∀x ∈ L : AdvD(view(P,V)[x], S[x])∼= 0

A weaker notion than zero-knowledge is witness indistinguishability. This states
that all valid witnesses for a statement will result in indistinguishable conversa-
tions. Note that proofs for languages with a single witness for a statement are

18

Prover Public Verifier
h = g x g,G h

u ∈R Zq

t = gu t
−−−−−−→

c
←−−−−−−− c ∈R {0,1}

s = u+ cx (mod q)
s

−−−−−−→
gs ?

= thc

Figure 3.3: Schnorr’s identification protocol

always witness-indistinguishable, because all witnesses are equally likely. A zero-
knowledge proof is always witness indistinguishable, because if you learn nothing
from the proof, you cannot learn anything about the witness.

3.2.1 Schnorr’s identification protocol

Schnorr’s identification protocol [Sch91] is an interactive proof system for language
LR with R = {(h, x) : h = g x}, given a multiplicative group G of order q with
generator g. The protocol is shown in Figure 3.3.

Completeness holds trivially: gu+cx = gu g cx = thc .
Schnorr’s identification protocol is a proof-of-knowledge with knowledge error

κ(x) = 1
2 . We show that if an attacker can answer two distinct challenges on the

same t-value, we can extract a witness. [Dam02] shows that special soundness
implies proof-of-knowledge with knowledge error 2−|c|, with |c| the challenge size.
Given two accepting conversations (t; c1; s1) and (t; c2, s2) with c1 6= c2, we can
extract a witness. W.l.o.g. c1 = 0 and c2 = 1. Because these are accepting conver-
sations, we have gs1 = t and gs2 = th, so gs2−s1 = h, and logg(h) = s2 − s1 = x
(mod q).

This protocol is perfect zero-knowledge. The simulator first takes a random
c ∈R {0, 1}. If c = 0, the simulator sets t = gu, and s = u would be a correct answer
for the challenge. If c = 1, the simulator sets t = gu/h, and s = u. The simulator
sends t to V∗. V∗ sends challenge c′ in return. If c = c′, the simulator has simulated
an accepting conversation. If c 6= c′, the simulator rewinds V∗ and starts over by
making a new guess for c. Since c = c′ in half of the cases, on average it will take
2 attempts to simulate a conversation.

Since a prover that does not know logg(h) can pass half the challenges, this
protocol needs to be repeated k times, such that a cheating verifier has probability
2−k to pass them all. This is unpractical. To improve efficiency, one can take c ∈R Zq
instead of c ∈R {0, 1}. A cheating prover can still prepare t = gu/h−c for one chal-
lenge, but now the probability of guessing c correctly is 1/q: the knowledge error
is now only 1/q. However, this protocol is no longer perfect zero-knowledge. To
simulate conversations, the simulator must guess c correctly, which is now infea-
sible in polynomial time. If we assume the verifier to be honest, the verifier will
take c ∈R Zq. Conversations between a prover and an honest-verifier have distri-
bution {(t; c; s) : u, c ∈R Zq, t = gu, s = u + cx (mod q)}. These can be simulated:
{(t; c; s) : s, c ∈R Zq, t = gsh−c} is the same distribution. Because this protocol
is perfect honest verifier zero-knowledge, this protocol is referred to as Schnorr’s
honest verifier zero-knowledge protocol.

19

3.2.2 Okamoto’s identification protocol

Okamoto’s identification protocol [Oka93] is a variantion on Schnorr’s honest-verifier
zero knowledge protocol. It is an interactive proof system for proving discrete log-
arithm representations: LR with R = {(h; x1, x2) : h = g x1

1 g x2
2 }, given a multiplica-

tive group G of order q with generator g1 and g2 (this protocol can actually prove
discrete log representations for a list of L generators, for simplicity we show it with
two generators). The protocol is shown in Figure 3.4.

Completeness: gu1+cx1
1 gu2+cx1

2 = gu1
1 g cx1

1 gu2
2 g cx2

2 = thc .
Witness extraction works the same as in Schnorr’s HVZK protocol: if a prover

can answer two distinct challenges, he must know some x1, x2 with h = g x1
1 g x2

2 .
Suppose a cheating prover could answer both challenges c, c′ with c 6= c′ for some

t, the prover must know s1, s2, s′1, s′2 with gs1
1 gs2

2 = thc and g
s′1
1 g

s′2
2 = thc′ . This

means the prover knows g
s1−s′1
1 g

s2−s′2
2 = hc−c′ , so he knows representation x1 =

s1−s′1
c−c′

(mod q), x2 =
s2−s′2
c−c′ (mod q). Again by [Dam02], this is a proof-of-knowledge with

knowledge error κ= 1/q.
Okamoto’s identification protocol is perfect HVZK: we can simulate conversa-

tions {(t; c; s1, s2) : s1, s2, c ∈R Zq, t = gs1
1 gs2

2 h−c}, which is equal to actual conversa-
tions {(t; c; s1, s2) : u1, u2, c ∈R Zq, t = gu1

1 gu2
2 , s1 = u1 + cx1 (mod q), s2 = u2 + cx2

(mod q)}, as every conversations occurs with probability q−3.

Prover Public Verifier
h = g x1

1 g x2
2 g1, g2,G h

u1, u2 ∈R Zq

t = gu1
1 gu2

2
t

−−−−−−→
c

←−−−−−−− c ∈R Zq
s1 = u1 + cx1 (mod q)
s2 = u2 + cx2 (mod q)

s1,s2−−−−−−→
gs1

1 gs2
2

?
= thc

Figure 3.4: Okamoto’s identification protocol

3.2.3 Sigma protocol composition

Sigma protocols [CDS94, Cra97] are a generalization of Schnorr’s honest verifier
zero-knowledge protocol. These protocols can be composed in multiple ways, which
yields sigma protocols for more complex relations. A sigma protocol has three steps:
the prover sends the t-values to the verifier, the verifier responds with a challenge
c, and the prover answers the challenge in the s-values, and must fulfill three re-
quirements: completeness, honest-verifier zero-knowledge, and special soundness.
Special soundness requires that if an attacker can answer two distinct challenges
for a single t-value, we can extract a witness. As shown before, this also guaran-
tees that it is a proof-of-knowledge with knowledge error 2−c , with c the challenge
size. Sigma protocols can easily be created for relations about discrete logarithms
in multiplicative groups. Schnorr’s honest-verifier zero knowledge protocol and
Okamoto’s protocol are instances of sigma protocols.

20

Prover Public Verifier
h1 = g1

x1 , h2 = g2
x2 g1, g2,G h1, h2

u1, u2 ∈R Zq
t1 = g1

u1

t2 = g2
u2

t1,t2−−−−−−−→
c ∈R Zq

c
←−−−−−−−

s1 = u1 + cx1 (mod q)
s2 = u2 + cx2 (mod q)

s1,s2−−−−−−−→
g1

s1
?
= t1h1

c

g2
s2

?
= t2h2

c

Figure 3.5: And-composition of sigma protocols

And-composition

Given sigma protocols for relations R1 and R1, we can create a sigma protocol for
relation R = {(v1, v2, w1, w2) | (v1, w1) ∈ R1 ∧ (v2, w2) ∈ R2}. Let the t-values
be the t-values of the protocols for R1 and R2 combined. The verifier sends a
single challenge, and the s-values are the s-values from the protocols of R1 and
R2 combined. The verifier checks both relations individually, and accepts when
both hold. Completeness holds, because completeness holds for the sub protocols
used. Soundness holds, because we can extract a witness for both relations (using
the witness extraction of the sub protocols) given two accepting conversations on a
single t-value. We can simulate by combining the simulators of the sub protocols.

An example is shown in Figure 3.5.

Equality-composition

Given sigma protocols for relations R1 and R1, we can create a sigma protocol that
proves knowledge of a single witness that satisfies both relations:
R = {(v1, v2, w) | (v1, w) ∈ R1 ∧ (v2, w) ∈ R2}. This works very similarly to the
and-composition, but now we use the same randomness for both t-values, and the
prover can therefore send a single s-value such that both relations are satisfied. This
single s-value allows us to extract one witness that satisfies both relations. Similar
to and-composition, completeness and simulation follows form the completeness
and simulation of the sub protocols.

An example is provided in Figure 3.6. This composition was introduced in
[CP93].

Or-composition

We can also create sigma protocols for a relation that is a disjunction of two relations
for which we have sigma protocols: R= {(v1, v2, w1, w2) | (v1, w1) ∈R1∨(v2, w2) ∈
R2}. The prover only needs to know a witness for one of the relations, but the proof
must hide which relation that is. In order to do so, the prover must prove both

21

Prover Public Verifier
h1 = g1

x , h2 = g2
x g1, g2,G h1, h2

u ∈R Zq
t1 = g1

u

t2 = g2
u

t1,t2−−−−−−→
c ∈R Zq

c
←−−−−−−−

s = u+ cx (mod q)
s

−−−−−−→
g1

s ?
= t1h1

c

g2
s ?
= t2h2

c

Figure 3.6: Equality-composition of sigma protocols

Prover Public Verifier
h1 = g1

x1 g1, g2,G h1, h2

c2, u1, s2 ∈R Zq
t1 = g1

u1

t2 = g2
s2h−c2

t1,t2−−−−−−−→
c ∈R Zq

c
←−−−−−−−

c1 = c − c2 (mod q)
s1 = u1 + c1 x1 (mod q)

c1,c2,s1,s2−−−−−−−→
c1 + c2

?
= c (mod q)

g1
s1

?
= t1h1

c1

g2
s2

?
= t2h2

c2

Figure 3.7: Or-composition of sigma protocols

statements as in and-composition, but is allowed to ‘cheat’ in one of them. The
prover receives a challenge c, and then picks c1 and c2, with c1 + c2 = c (mod q),
and uses challenge c1 for proving R1 and c2 for R2. Suppose the prover knows a
witness for R1, he must simulate a proof for R2. He can do this by choosing c2
before receiving c, and use the simulation of the sub protocol for R2 to simulate
this part of the proof. He then receives c, and sets c1 = c − c2 (mod q). Along with

the s-values, he sends c1 and c2, and the verifier will check c1 + c2
?
= c. The verifier

cannot distinguish whether the prover fixed c1 or c2 first. An or-composition for
relation R = {(v1, v2, w1, w2) | v1 = g1

w1 ∨ v2 = g2
w2} is shown in Figure 3.7. The

prover knows witness (h, x) for R1, and simulates a proof for R2.
Extraction now works slightly different. Given two accepting conversations

(t1, t2; c; c1, c2, s1, s2) and (t1, t2; c′; c′1, c′2, s′1, s′2) with c 6= c′, we must have c1 6= c′1
or c2 6= c′2. In the first case, we use the extractor of the first sub protocol to extract
a witness for R1. In the second case, we use the extractor of the second sub pro-

22

tocol and get a witness for R2. Either witness is sufficient for R because this is a
disjunction.

We will use the notation introduced in [CS97] to denote sigma proofs-of-knowledge
proving knowledge of witnessχ1, ...χn with (v1, ..., vm;χ1, ...,χn) ∈R: PK{(χ1, ...,χn) :
(v1, ..., vm;χ1, ...,χn) ∈R}, although in some cases we will not use Greek letters for
all the values we prove knowledge of.

3.2.4 Discrete logarithms in groups of unknown order and in-
terval proofs

So far we only considered proving statements about discrete logarithms in groups
of known order. This allows us to take t uniformly at random in the group, and
the s-value modulo the order of the group. However, when using QRn groups with
secret factorization n = pq = (2p′ + 1)(2q′ + 1), this is not possible. The order of
the group generated by g is p′q′, but this cannot be published as this would factor
n. We will show how PK{(χ) : gχ = h (mod n)} changes when it takes place in a
composite order group. Let ln denote the bit length of the modulus n, lc the length
of the challenge. Constant lφ is used to gain statistical zero-knowledge.

1. The prover chooses u ∈R {0,1}ln+lc+lφ , and sends t = gu (mod n) to the veri-
fier

2. The verifier chooses challenge c ∈R {0, 1}lc

3. The prover computes s = u− cx (in Z)

4. The verifier checks t
?
= gshc (mod n)

We cannot take u ∈R QRn, as we do not know the order of the group. However,
we still need to take t and s such that they do not reveal information about the
witness. By taking lφ sufficiently large, the s-value is statistically close to uniform
random in {0, 1}ln+lc+lφ . This way we can simulate proofs that are statistically close
to real proofs, making this statistically honest-verifier zero-knowledge.

This is a proof-of-knowledge for lc = 1. Given (t; c; s), (t; c′; s′) accepting con-
versations, w.l.o.g. we have c = 0 and c′ = 1, then the prover knows logg(h) =
s − s′ = x . Because lc = 1, we need many repetitions, which is impractical. For
lc > 1, formally this is not a proof-of-knowledge. Again, we have (t; c; s), (t; c′; s′)
accepting conversations, c 6= c′. Assume (w.l.o.g.) that c′ > c, then logg(h) =

s−s′

c′−c
(mod p′q′), but the extractor cannot compute this since it does not know p′q′. Un-
der the Strong RSA assumption a prover that does not know p′q′ can only create
proofs with c′ − c a divisor of s − s′, as proven in [CS02]. Let u(c′ − c) = (s − s′),
we have gu(c′−c) = hc′−c = gs−s′ , so we have extracted logg(h) = u. A prover with
knowledge of the factorization of n can create s, s′ such that it is not divided by
c′ − c, and consequently the extractor cannot extract a witness. Such a prover ex-
ists, because there is a PPT algorithm which has the factorization of n encoded into
the machine. However, since this only concerns provers that know the factorization
of n, which we assume to be secret, we still call this a proof-of-knowledge.

In groups of unknown order, we can enhance proofs such that we also prove
things about the bit length of the witness, as introduced in [CFT98]. To prove that

x ∈ ±{0,1}lx , the verifier also checks s
?
∈ ±{0,1}lx+lc+lφ+1 in the final step of the

23

proof. Only a prover that knows a sufficiently small witness can create such proofs
with a high probability. Again this is formally not a proof-of-knowledge, but we
denote this by PK{(χ) : gχ = h∧χ ∈ ±{0, 1}lx }.

Using this, we can prove that the witness lies in some interval. To prove that
the witness must lie in range [a, b], we first move the witness to the middle of
the interval by changing the statement we prove. For example, instead of proving
PK{(χ) : gχ = h}, we prove the equivalent PK{(χ) : gχ = h

g(a+b)/2 }. If the prover

knows g x = h, then he also knows g x− a+b
2 = h

g(a+b)/2 . If the witness was in the range

[a, b] for the original statement, it will be in the range [− b−a
2 , b−a

2]. Suppose b−a
2

has bit length lr , we can prove that the witness lies in interval [a, b] by proving
PK{(χ) : gχ = h

g(a+b)/2 ∧χ ∈ ±{0, 1}lr }. This proof will be denoted by PK{(χ) : gχ =
h∧χ ∈ [a, b]}.

3.2.5 Secret modular arithmetic

In [CM99] a way to do modular arithmetic in proofs of knowledge is described.
Again we use a composite order group, and a group for Pedersen commitments.

To prove knowledge of a, b, d, n with a + b = d (mod n) without revealing any
of the values, the prover first creates Pedersen commitments to a, b, d, n giving ca =
gahua , cb = g bhub , cd = gdhud , cn = gnhun , and sends these to the verifier. The prover
proves knowledge of all openings and that a, b, d, n have the correct size. Finally
he shows that d − (a + b) = kn for some k, by proving knowledge of k,λ such that

cd
cacb

= cn
khλ. More precise, let a, b, c, d ∈ ±{0,1}l , the prover proves

PK{(a, b, d, n, ua, ub, ud , un, k,λ) :

ca = gahua ∧ a ∈ ±{0,1}l ∧

cb = g bhub ∧ b ∈ ±{0,1}l ∧

cd = gdhud ∧ d ∈ ±{0,1}l ∧

cn = gnhun ∧ n ∈ ±{0,1}l ∧
cd

cacb
= cn

khλ ∧ k ∈ ±{0, 1}l

}

This proof will be denoted by PK{(a, b, d, n) : a + b = d (mod n)}.
In a similar way, we can prove that a · b = d (mod n). The prover knows a · b =

d + k · n, so (ga)b = gd · (gn)k. We now prove

PK{(a, b, d, n, ua, ub, ud , un, k,λ) :

ca = gahua ∧ a ∈ ±{0,1}l ∧

cb = g bhub ∧ b ∈ ±{0, 1}l ∧

cd = gdhud ∧ d ∈ ±{0,1}l ∧

cn = gnhun ∧ n ∈ ±{0,1}l ∧

cd = cb
acn

khλ ∧ k ∈ ±{0, 1}l

}

24

We will refer to this proof by PK{(a, b, d, n) : a · b = d (mod n)}
Finally, we can create proofs-of-knowledge of ab = d (mod n). Let bi denote the

binary representation of b, b =
∑l−1

i=0(bi · 2i), so we have ab (mod n) =
l−1
∏

i=0
(bi · a2i

)

(mod n).
The prover starts by calculating {λi = a2i

(mod n)}0<i≤l−1, and proves knowl-
edge of this using the secret modular multiplication:

PK{(a,λ1 . . .λl , n) :

a · a = λ1 (mod n) ∧
λ1 ·λ1 = λ2 (mod n) ∧

... ∧
λl−2 ·λl−2 = λl−1 (mod n)

}

Next, the prover proves that bits bi indeed form b, by proving PK{(b1 . . . bl−1, b) :
b =

∑l−1
i=0(bi · 2i)} using secret modular multiplication.

Now the prover will prove knowledge of ab (mod n) =
∏l−1

i=0(bi · a2i
) (mod n)

bit by bit: Let πi =
∏i

j=1(b j ·a2 j
) (mod n). The first step is proving (b0 = 0)∧(π0 =

1)∨(b0 = 1)∧(π0 = a). For every next bit of b we show (bi = 0)∧(πi = πi−1)∨(bi =
1)∧ (πi = πi−1 ·λi (mod n)). Because πl−1 = ab (mod n) = d, the last step of the
proof is (bl−1 = 0)∧ (d = πl−2)∨ (bl−1 = 1)∧ (d = πl−2 ·λl−1 (mod n)).

All these steps combined will be denoted by PK{(a, b, d, n) : ab = d (mod n)}.
Such a proof requires about 7l modular exponentiations.

Secret modular exponentiation with public exponent

[CM99] only considers proofs where all values are kept secret. In some scenarios
only part of these values is required to remain secret. We now show how the se-
cret modular exponentiation changes and becomes much more efficient when the
exponent is public.

We can create proofs of ab = d (mod n) where we keep a, d, n secret, and b is a
public constant of bit length l. Because b is public, we no longer have to commit to
the bits of b and prove that the bits together form b. The or-composition based on
whether bit bi is 0 or 1 is no longer needed, again because the bits are public. This
yields an efficient protocol. This allows us to prove knowledge of an RSA signature
σ3 = m (mod n), while keeping all values secret, using only two secret modular
multiplications:

PK{(σ, m, n,α) :

σ ·σ = α (mod n) ∧
σ ·α= m (mod n)
}

Let us write out the full proof:

25

PK{(σ, m, n,α, uσ, um, un, uα, k, k′λ,λ′) :

cσ = gσhuσ ∧σ ∈ ±{0, 1}l ∧

cm = gmhum ∧m ∈ ±{0, 1}l ∧

cn = gnhun ∧ n ∈ ±{0,1}l ∧

cα = gαhuα ∧α ∈ ±{0,1}l ∧

cα = cσ
σcn

khλ ∧ k ∈ ±{0, 1}l

cm = cα
σcn

k′hλ
′
∧ k′ ∈ ±{0, 1}l

}

We will later see that this proof requires the prover to take only 16 modular
exponentiations.

3.3 Non-interactive proofs

For non-interactive zero-knowledge (NIZK) proofs, we want the same three prop-
erties that we require for interactive proofs: completeness, soundness and zero-
knowledge. However, we cannot have all three trivially, as shown in [GO94]. Sup-
pose we have such a system for language LR and we have probabilistic polynomial
time algorithms Prove, Verify, and Simulate, then LR is a trivial language. We can
decide whether x ∈ LR by simulating a proof for x and running the Verify algorithm
on it. If x ∈ LR, by the fact that a simulated proof is indistinguishable from a real
proof and by completeness, the Verify will accept. If x /∈ LR, by soundness Verify
will not accept x . Because these three algorithms are polynomial time, anyone can
decide whether x is in the language in polynomial time.

To construct NIZK for more than trivial languages, the notion of a common-
reference string (crs) has been introduced by Blum et al. [BFM88]. In this setting,
the prover and verifier must fist have some shared random bits, the crs. Later,
the prover can create a NIZK proof for some statement using this crs, which will
convince the verifier. This crs can either be created using some secure multiparty
computation, or generated by a trusted third party, as long as the crs is truly random
and cannot be influenced by either the prover of the verifier. In other constructions
the crs may describe a group or group elements.

The Prove and Verification algorithms now include an argument crs. When the
prover uses the correct random crs, he cannot simulate so we have soundness. To
simulate proofs (and achieve zero-knowledge), a simulation crs is generated, which
also gives a trapdoor τ. Using this crs and τ, a verifier can simulate a proof. When
the simulated crs is (computationally) indistinguishable from a real crs, simulated
proofs are indistinguishable from real proofs, so we have simulation.

3.3.1 Fiat-Shamir Heuristic

For some applications we prefer non-interactive proofs over interactive proofs. The
Fiat-Shamir heuristic [FS87] can be used to transform any sigma-protocol into a
non-interactive proof. Let H be a secure hash function that maps to the challenge
space. Instead of asking the verifier for a challenge in the second step, the challenge

26

is computed as the hash of the t-values. For the non interactive variant of Schnorr’s
HVZK protocol the challenge would be c =H(t). The resulting proof is (c; t) which

is verified by c
?
=H(gsh−c).

We can use non-interactive sigma proofs as a digital signature by adding a mes-
sage m to the input of the hash function: c = H(t, m). Verification is done by

c
?
= H(gsh−c; m). This is called a signature proof-of-knowledge, and written ab-

stractly as SPK{(χ) : h = gχ}(m), again using the notation from [CS97].

If H is modeled as a random oracle, this is equivalent to the interactive version,
because the prover must first choose t-values, and then receive a challenge uni-
formly random in the challenge space. A security proof in the random oracle model
[BR93] was provided in [PS96].

This is zero-knowledge when we let the crs describe the random oracle H. A
simulator can fix the challenge c beforehand and can prepare his t-value accordingly
(using the simulation of the interactive version of the proof).

3.3.2 Groth-Sahai proofs

Groth and Sahai [GS08] constructed a way to create NIZK proofs of statements
about bilinear group elements. These statements could already be NIZK proved,
since there are constructions that allow NIZK proofs of NP-complete languages
such as circuit satisfiability (e.g. [GOS06, GOS12]). Any NP statement can then
be proven using a NP reduction to circuit satisfiability. Although this reduction is
polynomial, it is still highly inefficient.

GS-proofs can prove many different statements in bilinear groups under differ-
ent assumptions. We will first focus on proofs about pairing product equations un-
der the subgroup decision assumption, after which we describe the construction in
a more generic way. A pairing product equation in multiplicative groups G1,G2,GT
and pairing e : G1 ×G2→GT has the following form:

n
∏

i=1

e(ai , yi) ·
m
∏

i=1

e(x i , bi) ·
m
∏

i=1

n
∏

j=1

e(x i , yi)
γi, j = tT

where constants ai ∈ G1, bi ∈ G2,γi, j ∈ Zn, tT ∈ GT define the pairing product
equation, and x i ∈G1, yi ∈G2 are variables.

Let us consider a small example. The crs describes a composite order group
〈g〉 = G of order n = pq with p, q secret primes, GT , bilinear pairing e : G ×
G→ GT . In such a group, some elements will generate G, some will generate the
order q subgroup Gq and some will generate the p order subgroup Gp. The crs also
describes an element u which generates the order q subgroup Gq. Suppose a prover
wants to prove knowledge of x , y such that the simple pairing product equation
e(a, y)e(x , y) = tT holds. The prover first commits to x and y by creating cx =
xur , cy = yus with r, s ∈R Zn. These commitments are perfectly binding in subgroup
Gp, because u only has effect on Gq. To prove that the values inside commitments
cx and cy satisfy the equation, the prover creates a proof π = as x s y rurs, which is

27

verified by e(a, cy)e(cx , cy)
?
= tT e(u,π). Completeness holds:

e(a, y)e(x , y) = tT

e(a, yus)e(xur , yus) = tT e(a, us)e(ur , y)e(xur , us)
e(a, yus)e(xur , yus) = tT e(u, as)e(u, y r)e(u, x surs)

e(a, cy)e(cx , cy) = tT e(u, as x s y rurs)

e(a, cy)e(cx , cy) = tT e(u,π)

This solution is sound: let λ= λ2 (mod n) with λ= 1 (mod p),λ= 0 (mod q).
By raising both sides to λ2, all powers of u disappear and we have soundness in Gp:

e(a, cy)e(cx , cy) = tT e(u,π)

e(a, cy)
λ2

e(cx , cy)
λ2

= tT
λ2

e(u,π)λ
2

e(aλ, cy
λ)e(cx

λ, cy
λ) = tT

λe(uλ,πλ)

e(aλ, yλ)e(xλ, yλ) = tT
λ

Note that the secret factorization of n is required to efficiently compute λ. This
means that we have soundness, but a verifier cannot extract the witness.

We now show that this proof is zero-knowledge when tT = 1. For zero-knowledge
we use a simulation crs. This crs only differs in the order of 〈u〉, which now has or-
der n instead of q. A simulation trapdoor τ with g = uτ is also generated. By the
subgroup decision assumption this is indistinguishable from a real crs. In this set-
ting, commitments are perfectly hiding. They are not binding, since using τ one
can come up with many openings for a single commitment: Commit(x , open) =
Commit(x−δτ, open+δ). For some commitments cx , cy , there is one unique π that
satisfies e(a, cy)e(cx , cy) = tT e(u,π). This shows that it is independent of the open-
ings of cx , cy , all the witnesses used map to the same proof. Therefore, the proof is
witness-indistinguishable. However, we still need one witness to simulate a proof.
For tT = 1 = e(g, g)0, we know such a witness: x i = yi = 1, so we can generate
a valid proof. Since we can do so for every commitment, and the proof is valid
for every valid opening of the commitments, we can simulate proofs and we have
zero-knowledge.

We now describe the GS proof in a more generic way, which allows multiple
instantiations under different assumptions. We have some ring R and R-modules
A1, A2, AT , B1, B2, BT , C1, C2, CT (using additive notation) with bilinear maps fA :
A1 × A2 → AT , fB : B1 × B2 → BT , fC : C1 × C2 → CT . We also have an efficiently
computable linear maps ι1, ι2, ιT that map elements from A1, A2, AT into B1, B2, BT
respectively, and not efficiently computable linear maps p1, p2, pT that map ele-
ments from B1, B2, BT into C1, C2, CT respectively. Figure 3.8 shows this abstract
setup and how the concrete example for pairing product equations using the SD
assumption instantiates the abstract setup.

The witnesses are in A1 and A2. The proof will take place in the B-modues.
Soundness will be in the C-modules. The crs describes u1, ..., uI ∈ B1, v1, ..., vJ ∈ B2.
A commitment to a value x ∈ A1 is ι1(x) ·

∑I
i=1 riui , with r1, ..., rI ∈R R. Similarly,

a commitment to y ∈ A2 is ι2(x) ·
∑J

j=1 r j v j , with r1, ..., rJ ∈R R. The commitments

28

A1 × A2
fA→ AT

ι1 ↓ ι2 ↓ ιT ↓

B1 × B2
fB→ BT

p1 ↓ p2 ↓ pT ↓

C1 × C2
fC→ CT

(a) Overview of the modules and maps of
Groth-Sahai proofs

G × G e
→ GT

id ↓ id ↓ id ↓

G × G e
→ GT

λ ↓ λ ↓ λ ↓

Gp × Gp
e
→ GT,p

(b) Instantiation for pairing product
equations with SD-assumption

Figure 3.8: Groth-Sahai setup

to values in the A-modules are elements of the B-modules. A real crs will have
p1(ui) = 0 and p2(v j) = 0 for all i and j. A proof is created by taking the desired
equation on the commitments instead of the witnesses, and moving all randomness
from the commitments to one side of the equation. This yields soundness, since
by taking the p-maps to the C-modules, all this randomness will disappear, and the
equation therefore holds for the values inside the commitments.

A simulation crs will have ι1(A1) ⊆ 〈u1, ..., uI 〉 and ι2(A2) ⊆ 〈v1, ..., vJ 〉. This crs
must be indistinguishable from a real crs. Commitments are now perfectly hiding,
but not binding, as they can be opened any way the prover likes. However, every
opening to commitments for which a proof can be created will yield the same proof.
This shows that we have witness indistinguishability. By having one valid witness
(e.g. for pairing product equations, when tT = 1 we have witness x i = yi = 1), we
can simulate proofs. Proofs can be simulated for all commitments (by opening them
the right way) and the resulting proof will be equal to all other possible openings
for those commitments, so we have zero knowledge.

[GS08] also describes how to proof multi-scalar multiplications and quadratic
equations, and every type of equation can be proven using the SD assumption, the
SXDH assumption or the DLIN assumption.

29

Chapter 4

Cryptographic Overview of
Idemix

Idemix [CL01, CL03, CvH02, IBM13] (short for identity mixer) is an attribute-based
credential system designed and implemented at IBM Zürich. In this section a cryp-
tographic overview of Idemix is provided. A list of symbols and their meaning in
Idemix is given in Table 4.1.

4.1 Users

Every Idemix user has a master secret m1. Organizations know users by pseudonyms,
which are commitments to m1. This secret will also be the first attribute value of
every credential of this user, which prevents users from sharing credentials without
sharing the master secret. This also allows a user to prove that two different cre-
dentials both belong to him (and e.g. show that he is a Dutch student by showing
that he has the Dutch nationality using one credential, and prove he is a student
using a second credential), by proving that both credentials contain the same m1.

Symbol meaning
Γ modulus of pseudonym group
ρ order of pseudonym group
mi attribute values
lm bit length of attribute values
lφ constant that governs statistical zero-knowledge
le bit length of e in CL-signatures
l ′e size of interval e in CL-signatures is taken from
lH bit length of hash range used for Fiat-Shamir heuristic
Ah indices of attributes hidden to the issuer during issuance
Ar incides of attributes revealed while showing a credential
Ar̄ indices of attributes hidden while showing a credential

Table 4.1: Idemix symbols and their meaning

31

4.1.1 Pseudonyms

Organizations know users by pseudonyms. The user chooses whether he will reuse a
pseudonym and build up reputation with the organization, or use a new pseudonym
every time and remain fully anonymous. Pseudonyms are computed in group 〈g〉=
〈h〉, a subgroup of Z∗Γ of prime order ρ. Pseudonyms are Pedersen commitments to
m1: Nym= gm1hu (mod Γ).

For some applications the organization must be sure that every user can only
create one pseudonym with that organization, a domain pseudonym. For example,
in an electronic voting scenario, eligible voters could have a credential that allow
them to vote, but they should only be allowed to vote once. Since credentials can
be shown unlinkably, a relying party cannot determine whether the voter has voted
before. They can require the voters to show a domain pseudonym, which allows
them to block a voter that tries to vote twice. Domain pseudonyms are computed
by DNym = gdom

m1 , with gdom = H(dom)(Γ−1)/ρ (mod Γ), and H a hash function with
range ZΓ , and dom an identifier of the domain.

4.2 Credentials

Idemix credentials are a CL-signature on a list of L attributes, with the user’s master
secret m1 as first attribute of every credential. Credential issuers generate a key
using the key generation process of the CL-signature. Messages have bit length lm.

4.2.1 Issuance

To get a credential, the user must first convince the issuer that he is eligible for
this credential. This can be done in many ways, face-to-face, or by showing other
credentials the user already owns. After this, suppose a user known by pseudonym
Nym = gm1hu (mod Γ) wants a credential containing m1, ..., mL . He cannot simply
send these values to the issuer, because m1 is his personal secret, and perhaps the
other attribute values contain private information as well. During the signing pro-
cess, let Ah denote the indices of attributes that are not disclosed to the issuer. We
never reveal m1, so we always have 1 ∈ Ah.

The user creates U = Sv′ ·
∏

j∈Ah
R

m j

j (mod n). The issuer cannot extract the
message values from this commitment. The prover creates a proof that U is well
formed, and that m1 is used both in the credential and the secret in this pseudonym
Nym. Freshness of the proof is guaranteed by using a nonce generated by the issuer.
The issuer checks the proof, and adds the other attribute values. Finally he creates
the CL-signature, and proves knowledge of the secret exponent e−1 mod p′q′. This
proof’s freshness is guaranteed by nonce n2, chosen by the user. The user now
receives the credential, which he can verify. The protocol is shown in Figure 4.1.

4.2.2 Showing Credentials

To achieve multi-show unlinkability, every time a prover shows his credential it must
appear different. A prover can randomize signature (A, e, v) to (A′, e, v′) by taking
random rA, and computing A′ = A · S rA, and v′ = v − erA. A prover cannot random-
ize e, as he needs the factorization of n to calculate e−1 (mod φ(n)). To prevent
a verifier from linking multiple shows of a credential by recognizing the same e,

32

User Public Issuer
{mi}i∈Ah

{mi}i /∈Ah
n = pq = (2p′ + 1)(2q′ + 1)

n1 ∈R {0,1}lφ
n1←−−−−−

v′ ∈R {0,1}ln+lφ

U = Sv′ ·
∏

j∈Ah
R

m j

j (mod n)
σ1 = SPK{({mi}i∈Ah

, v′, r) :
U = ±Sv′

∏

j∈Ah
R

m j

j (mod n)
∧nym = gm1hr (mod Γ)
∧
∧

i∈Ah

mi ∈ {0,1}lm}(n1)

n2 ∈R {0,1}lφ
U ,σ1,n2−−−−−→

verify σ1

prime e ∈R [2le−1, 2le−1 + 2l ′e−1]
v′′ ∈R {0,1}lv−1

Q = Z
USv′′

∏

i /∈Ah
R

mi
i

(mod n)

A= Qe−1 (mod p′q′) (mod n)
σ2 = SPK{(e−1) :

A= ±Qe−1
(mod n)}(n2)

A,e,v′′,σ2←−−−−−
v = v′ + v′′

verify CL-signature (A, e, v)
verify σ2

Figure 4.1: Credential Issuance Protocol

the prover cannot simply show e. By proving knowledge of e instead of revealing
it, a verifier cannot recognize the same e being used multiple times. Finally, we
need selective disclosure: the user must be able to choose which attributes will be
shown to the verifier, and which remain private. Let Ar be the indices of attributes
disclosed, and Ar̄ the attributes that remain secret. The user proves knowledge of
{mi}i∈Ar̄

, such that they are not shown to the verifier. He must also proof that the
attribute values have the correct length, and that e is taken from the right interval.
Formally he proves:

SPK{(e, {mi : i ∈ Ar̄}, v) :
Z

∏

i∈Ar
Ri

mi
= AeSv

∏

i∈Ar̄

Ri
mi

∧
∧

i∈Ar̄

mi ∈ {0,1}lm

∧ e− 2le−1 ∈ {0,1}l
′
e

}

The full proof is shown in Figure 4.2.

33

Prover Public Verifier
Z

∏

i∈Ar

Ri
mi = AeSv

∏

i∈Ar̄

Ri
mi n, Ri , S, Z {mi}i∈Ar

rA ∈R {0, 1}ln+lφ

A′ = A · S rA

v′ = v − erA
e′ = e− 2le−1

ee ∈R ±{0,1}l
′
e+lφ+lH

ev′ ∈R ±{0,1}lv+lφ+lH

fmi ∈R ±{0,1}lm+lφ+lH (i ∈ Ar̄)
eZ = A′ee

�

∏

i∈Ar̄
Ri
fmi

�

S ev′

A′,eZ
−−−−−−−−→

c ∈R {0, 1}lH

c
←−−−−−−−

be = ee′ + ce
Òv′ = ev′ + cv′

cmi =fmi + cmi (i ∈ Ar̄)
be,Òv′,{cmi}i∈Ar̄−−−−−−−−→

A′beSÒv′
∏

i∈Ar̄

Ri
cmi

?
=

eZ

�

Z
A′2le−1 ∏

i∈Ar

Ri
mi

�c

cmi ∈ ±{0, 1}lm+lφ+lH+1 (i ∈ Ar̄)
be ∈ ±{0,1}l

′
e+lφ+lH+1

Figure 4.2: The interactive ProveCL protocol

34

Chapter 5

Delegation of Idemix
Credentials

In the previous chapters we’ve introduced many cryptographic primitives, proof
techniques and described how Idemix works. In this chapter we use all these build-
ing blocks to present our main result: we propose an extension to Idemix which
allows a single step of delegation. We start by defining the security requirements,
after which we give a high level overview. Finally we present the full cryptographic
construction, and analyze its effectiveness.

5.1 Security Requirements

Based on the delegation examples provided in the introduction (see Section 1.4), we
have the following requirements on a delegation construction. Note that a formal
security proof will not be provided, so we present the requirements in an informal
way.

Correctness A delegated credential will always be accepted by an honest verifier.

Delegation evident A verifier can distinguish delegated credentials from non-delegated
credentials.

Delegated selective disclosure A prover can selectively disclose attributes from a
delegated credential.

Delegated multi-show unlinkability Delegated credentials are multi-show unlink-
able.

Delegator unlinkability A delegator cannot link showings of a credential he dele-
gated.

Delegator anonymity A verifier cannot link proofs of delegated credentials dele-
gated by the same delegator.

Unforgeability An adversary has negligible probability of successfully proving he
has a delegated credential which has not been delegated to him.

35

The need for these requirements should be trivial, except perhaps for delegation
evidence. This is required for delegation to be usable in a practical way. When a
verifier is unable to distinguish delegated from non-delegated credentials, a user
could e.g. delegate his student credential, such his non-student friends also receive
a student discount. However, a delegated student credential might be acceptable
as a ‘visitor pass’ to access the university.

The issuer can prevent delegation of his credentials by refusing to hand out
delegation credentials. In case of the student credential, we have solved the student
discount problem, but also lost the functionality of university visitor passes. When a
verifier can distinguish delegated from non-delegated credentials, the relying party
can choose whether it makes sense to accept delegated credentials. The relying
party that offers a student discount could reject delegated student credentials, while
the university would still accept the visitor passes.

Another reason for delegation evidence is the driver’s licence example covered
in the introduction (Section 1.4). Driver’s licences are delegated credentials of
some sort, whereas the non-delegated version means you have the right to hand
out driver’s licences. In such a scenario, the non-delegated version has a different
meaning that the delegated version, so a verifier must be able to distinguish the
two.

5.2 High level overview

To allow delegation of credentials, we introduce a new type of credential, the del-
egation credential. For a credential the user owns, he can request a delegation cre-
dential. Such a credential contains the same attribute values {mi}1<i≤L as the nor-
mal credential, but it also contains the public key pk of a key pair chosen by the
user. The intuitive meaning of this credential is ‘whoever knows the secret key cor-
responding to public key pk has the right to allow someone to use the attribute
values {mi}1<i≤L ’.

To delegate a credential, the delegator will create an autenticator. This authenti-
cator is a signature on the delegatee’s identity, using the secret key corresponding to
the public key in the delegation credential. The delegatee receives the delegation
credential including the attribute values and the public key, and the authentica-
tor. Together this forms the delegated credential. Using the delegated credential,
the delegatee can use attributes that the delegator has by showing the delegation
credential (‘the delegator has the right to delegate these attributes’) and show the
authenticator (‘the delegator allowed me to use it’).

The main challenge is that a delegated credential must still be multi-show un-
linkble. Both the delegation credential and the authenticator must therefore shown
unlinkably. A delegatee cannot simply show the public key by which the authentica-
tor is verified, as showing this would make the delegatee (to some extend) linkable.
We therefore need a signature scheme that allows us to unlinkably show the signa-
ture and public key, by e.g. randomization and proofs of knowledge, and prove that
this is the public key in the delegation credential.

This construction differs from other delegation constructions (which we will
cover in Chapter 6) in the sense that this construction involves delegation creden-
tials. Why do we need this extra credential? Note that the user’s secret m1 is not part
of the delegation credential. This is the main reason to introduce a new credential.
A delegatee must prove that his delegator is authorized to delegate every time he

36

shows his delegated credential. He must do so unlinkably (as we require delegated
multi-show unlinkability). Suppose we want to use the delegator’s normal creden-
tial for this purpose. The delegator could give a non-interactive proof-of-knowledge
of his this credential, but such a proof cannot be randomized by the delegatee, so
he cannot show this unlinkably. In other constructions this is possible, as they use
randomizable proofs. This is why they do not need delegation credentials. The
delegatee cannot create proofs-of-knowledge of the delegator’s normal credential
either, because for this he needs the credential (A, e, v) and all the attribute values
of the delegator, including his secret m1, which the delegator cannot disclose. By
introducing a delegation credential that does not contain secret values, the delega-
tor can share all information on this credential with the delegatee, such that he can
create unlinkable proofs-of-knowledge of it.

5.3 Construction

We now show how we instantiate the delegation credentials and authenticator.

5.3.1 Signature scheme for authenticator

We need a signature scheme that can be shown unlinkably, and that can be verified
using a proof of knowledge of the public key. A plain RSA signature fulfills these
requirements. The public key is (n, e), with n the product of primes p, q. A signature
on m is σ such that σe = m (mod n). Since (n, e) is the public key, we cannot show
any of this. If e is the same for all public keys, then this is simply a system parameter
and we only need to hide n in order to achieve unlinkability. We can do so by setting
e = 3. The only requirement on e is that it is relatively prime with (p − 1)(q − 1).
A user can easily make sure this holds for e = 3, e.g. by taking two safe primes
p = 2p′ + 1, q = 2q′ + 1. Now (p − 1)(q − 1) = 4p′q′, and when p′, q′ are primes
greater than 3, e = 3 will be relatively prime to this.

We still need to keep the modulus secret, meaning we have to prove statements
about modular arithmetic without revealing the modulus. Using the techniques
described in Section 3.2.5, we can create such proofs. The number of modular
exponentiations required for such proofs is linear in the bit length of the exponent,
but by taking e = 3 this is still feasible, as shown in Section 3.2.5. Still, these proofs
are computationally expensive. A signature scheme for which the modulus is not
part of the public key (e.g. signature schemes in the discrete logarithm setting,
where the group and modulus can be fixed for all key pairs) could possibly yield
much more efficient constructions, but we know no such scheme that fulfills our
unlinkability requirements. Suppose we use an ElGamal signature [ElG85]: (r, s)
with gm = y r rs (mod p) where public key y = g x . To have unlinkability, we would
need to keep y secret as it is the public key, (r, s) because it is the signature and m, as
this is some form of the user’s identity. We know no efficient proof PK{(m, (r, s), y) :
gm = y r rs (mod p)}.

5.3.2 Hash function to mitigate existential forgery of authenti-
cator

Many signature schemes are existentially forgeable, RSA is no exception. This
forgery is problematic, as a user could forge an authenticator for some (non chosen)

37

master secret, and then start using this new master secret. As a result non-delegated
users could use a delegated credential, if they manage to obtain the delegation cre-
dential.

Existential forgery can be mitigated by hashing the message before it is signed.
However, hash functions destroy mathematical structure that we need in the proofs
of knowledge. A solution is to assign one authority which issues ‘hash credentials’
containing a hash function of a domain pseudonym. Every user that wants to be
able to receive delegated credentials must at some point go to this authority and
receive a credential containing h = H(DNym). The hash value h is bound to user
secret m1 as they are together in a credential. Now he can prove that he has a
signature on H(DNym) by showing that he has a signature on some h, and that this
value is in the hash credential.

All hash credentials have the following form:

(AH, eH, vH) : AH
eH =

ZH

SH
vHRH,1

m1RH,2
H(DNym)

(mod nH)

We would like to use a full domain hash or a probabilistic hash for this hash
function, which results in provably secure RSA signatures (RSA-FDH and RSA-PSS).
Unfortunately, this is not possible. We cannot use a full domain hash since such a
hash function depends on the modulus of the public key the hash will be used with,
and we want to use this hash value with multiple public keys (such that this value
can be signed by multiple delegators). We cannot use a probabilistic hash to get
RSA-PSS either, as this scheme defines that signing involves creating a new hash
first. We cannot take new hash values because we want to store a single hash value
in the hash credential.

We therefore introduce a new RSA signature that uses a half-domain hash (RSA-
HDH). Let k be the bit lenght of the RSA modulus, we use a hash function H :
{0,1}∗→ {0,1}k−1. The output of a half-domain hash can be signed using any RSA
key with a k-bit modulus n, which implies n > 2k−1. We can sign any value in Zn,
and every element in {0, 1}k−1 is also element of Zn. We call this a half-domain
hash, as it covers at least half of Zn: Since n is a k-bit RSA modulus, we know
n< 2k. H maps to 2k−1 distinct elements of Zn, and 2k−1 = 1

2 2k, so H covers more
than half of Zn.

Theorem 1. RSA-HDH is existentially unforgeable against an adaptive chosen message
attack under the RSA assumption in the random oracle model.

Proof. We prove this by reducing forgery of an RSA-HDH signature to breaking
the RSA problem. This reduction is adapted from the security proof of RSA-FDH
by Coron [Cor00], which is an improvement of the proof by Bellare and Rogaway
[BR96].

We call RSA (t ′,ε′)-broken if an attacker given some y ∈R Z∗n and RSA public
key (n, e) can with probability at least ε′(k) compute y1/e (mod n), in time t ′(k).
Here k is the bit length of the modulus n. If no such attacker exists, we call it
(t ′,ε′)-secure. We call an RSA-HDH signature (t, qsig, qhash,ε)-secure if no attacker
that is allowed qhash(k) hash queries, qsig(k) signature queries can compute a forged
signature on a new message m with probability at least ε(k) in running time t(k),
where k is the bit length of the modulus.

Suppose forger F (t, qsig, qhash,ε)-forges RSA-HDH signatures. We create in-
verter I that executes F on his own (and answers all oracle queries F makes) and

38

Reduction Security
RSA-FDH [BR96] ε(k) = (qsi g(k) + qhash(k) + 1) · ε′(k)

t(k) = t ′(k)− (qhash(k) + qsi g(k) + 1) ·O(k3)
RSA-FDH [Cor00] ε(k)∼= qsi g(k) · ε′(k)

t(k) = t ′(k)− (qhash(k) + qsi g(k) + 1) ·O(k3)
RSA-HDH (this work) ε(k)∼= qsi g(k) · ε′(k)

t(k) = t ′(k)− 2 · (qhash(k) + qsi g(k) + 1) ·O(k3)

Table 5.1: Security of RSA signatures assuming RSA is (t ′,ε′)-secure

breaks the RSA problem. I is given public key (n, e) and y ∈ Z∗n, and has to invert
the RSA function on y and output y1/e (mod n).

I runs the forger and has to answer the hash queries. When forger makes a
hash query on mi , with probability 1− 1

qsi g+1 , I takes ri ∈R Zn and calculates hi = ri
e

(mod n). If this value is in {0, 1}k−1, I has created a valid oracle answer and returns
hi to F . If not, I takes a new ri and tries again. Since the half domain hash covers
at least half of Zn, on average this takes less than 2 attempts. With probability 1

qsi g+1

I takes ri ∈R Zn and calculates hi = y · ri
e (mod n). Again, with probability at least

1
2 this is in {0,1}k−1 and is a valid oracle answer. Otherwise I takes a new ri and
tries again, and on average less than 2 attempts are required.

When F makes a signing query on mi , we assume he made the hash query on mi
before (and if not, I will create the hash query itself). I therefore knows the hash
hi corresponding to mi , and with probability 1− 1

qsi g+1 he has hi = ri
e (mod n), so he

can successfully answer the oracle query with ri . With probability 1
qsi g+1 , hi = y · ri

e

(mod n). In this case I cannot answer the signing query and fails.
Finally F outputs an attempted forgery σ on some message mi . If he was suc-

cessful, and corresponding hash hi = y · ri
e (mod n), I can compute y1/e (mod n)

by taking σ
ri
(mod n), and successfully inverted RSA. The probability that F suc-

ceeded is ε(k), the probability that I answers all signing queries correctly is (1 −
1

qsi g+1)
qsi g . The probability that I can extract y1/e (mod n) from forged signature

σ is 1
qsi g+1 = 1

qsi g
· qsi g

qsi g+1 = 1
qsi g
· (1 − 1

qsi g+1). This means that I has probability

ε′(k) = (1 − 1
qsi g+1)

qsi g+1 · 1
qsi g
· ε(k) of inverting RSA. For a large qsi g , we have

ε′(k) ∼= 1
qsi g
· ε(k). The time this takes is the running time of F and the time I

needs to answer all queries. The time required to answer a query is mainly com-
puting (on average) 2 modular exponentations, which takes O(k3). This makes the
running time of I equal to t ′(k) = t(k) + 2 · (qsi g + qhash + 1) ·O(k3). As shown in
Table 5.1, this reduction is as tight as the original reduction for RSA-FDH by Coron
[Cor00], and only differs in the time the attacker is given.

Existentially forging RSA-HDH signatures using an adaptive chosen message
attack implies breaking the RSA problem, and we assume breaking the RSA problem
to be infeasible, so the RSA-HDH signature is existentially unforgeable against an
adaptive chosen message attack.

The output of this hash function is suitable for every RSA modulus of some fixed
length. This allows one hash value to be signed by multiple delegators. Theorem 1
shows that the resulting signature scheme is provably secure.

39

5.3.3 Delegation credential

Delegation credentials will have the same form as other Idemix credentials. This
means that an issuer now has to create two key pairs, one for normal credentials
and one for delegation credentials. Let n1, S1, Z1, R1,1, ..., R1,L be the public key
for normal credentials and n2, S2, Z2, R2,i the public key for delegation credentials.
The delegator has a credential with attribute values {mi}0<i≤L: (A1, e1, v1) : A1

e1 =
Z1

S1
v1
∏L

i=1 R1,i
mi

(mod n1). The delegation credential must contain the same attribute

values. However, the delegatee must be able to show the delegation credential un-
linkably. In order to prove knowledge of an Idemix credential, the prover must
know A, e, v and all attributes {mi}0<i≤L . Since m1 is the delegator’s master secret,
revealing this to the delegatee is not possible. We therefore exclude m1 from the
delegation credential. We put a fresh public key n for the RSA signatures in its
place. Note that the modulus must only be used in one delegation credential, such
that authenticators are bound to the delegation credential. By reusing the modulus
(and corresponding secret key), an authenticator might be used with a different
delegation credential than intended. The resulting delegation credential will be
(A2, e2, v2) : A2

e2 = Z2

S2
v2 R2,1

n
∏L

i=2 R2,i
mi

(mod n2).

5.3.4 Full construction

Suppose Alice wants to delegate a credential to Bob, and Bob has master secret
m1. Alice has delegation credential (A2, e2, v2) : A2

e2 = Z2

S2
v2 R2,1

n
∏L

i=2 R2,i
mi

(mod n2)

with her public key n in it. Bob has hash credential (AH, eH, vH). Bob shows his
hash credential and h =H(DNymBob) to Alice, and Alice sends her public key n and
places a RSA signature on h, giving Bob the authenticator σ. Bob also receives the
delegation credential with attribute values.

To show subset Ar of the attributes from this delegated credential, Bob makes
the following proofs.

PK{(mb, {mi}i∈Ar̄
, (A2, e2, v2), (AH, eH, vH), h, n,σ)} :

Z2
∏

i∈Ar

R2,i
mi

= A2
e2 S2

v2R2,1
n
∏

i∈Ar̄

R2,i
mi ∧

ZH = AH
eHSH

vHRH,1
m1RH,2

h ∧

σ3 = h (mod n)}

This proof is a conjunction of three parts. In the first part of the proof, the
delegatee selectively discloses the delegation credential. Modulus n will never be
disclosed. In the second part, he shows that h is his hash value by showing his
hash credential. In the third part, he shows that he knows the authenticator, a
signature on h signed by the owner of the delegation credential. The third part of
the proof uses the secret modular arithmetic as described in Section 3.2.5. This
technique internally proves statements about Pedersen commitments, so the prover
discloses commitments ch = g1

h g2
u1 and cn = g1

n g2
u2 . This allows the use of and-

composition to enforce that the value signed is indeed h from the hash credential,
and the modulus used is indeed the modulus from the delegation credential.

40

Task Cost

Show delegation credential 3+ L − |Ar |
Show hash credential 5
Show authenticator 16

create commitments 4
prove commitments 8
multiplications 4

Total 24+ L − |Ar |

Table 5.2: The amount of modular exponentiations required to show a delegated
credential

5.3.5 Efficiency Analysis

Let us analyze how efficient this construction is. The computational complexity is
measured by counting the occurences of the most expensive operation, the modular
exponentiation, that the prover must compute. We are interested in the complex-
ity for the prover, because this involves secret keys and should be run on secure
hardware such as a smart card, which often means limited computational power.
The complexity is shown in Table 5.2. Showing an Idemix credential takes 2 mod-
ular exponentiations, plus one for every attribute that is not disclosed, because the
prover must prove knowledge of it. The signature must also be randomized, which
takes one exponentiation. This is equal to 3 + L − |Ar |. This also holds for the
hash credential, but we know that this credential has only 2 attribute values, both
of which will remain hidden, so the cost is 3 + 2 = 5. Showing the authentica-
tor consists of creating the required commitments, and proving that the values in
the commitments have the desired relation. We need to commit to four values:
σ, h, n,λ. Creating such a commitment takes only one modular exponentiation, if
we precompute the values of the g-generator and only add the randomness with
the h-generator. For four commitments this will take 4 exponentiations. Proving
the representation of the commitment takes 2 modular exponentiations, making a
total of 8 exponentiations for the four commitments. The last step is to prove that
σ2 = λ (mod n) and σ · λ = h (mod n). These secret multiplications cost 2 each,
adding 4 modular exponentiations to the total. All steps combined cost 24+ L−|Ar |
modular exponentiations.

Note that not all modular exponentiation are equally expensive, because the
modulus size differs. The issuer must use different parameters for delegation cre-
dentials, as the message length lm must be large enough to hold an RSA modulus.
For security, le (the length of exponents e used in CL-signatures) must be larger than
lφ + lH + lm + 4, which requires the RSA modulus of the issuer to be even larger.
This makes the modular exponentiations of showing the delegation credential and
hash credential more expensive than the others, and means that selective disclo-
sure of delegated credentials will result in a bigger performance hit than selective
disclosure of normal credentials. The secret modular arithmetic requires the group
order to have a bit length of more than twice the maximum bit length of the num-
bers of which the prover proves knowledge. All these modular exponentiations are
therefore more expensive than the modular exponentiations of showing a normal
Idemix credential.

Let us consider a very rough estimate of the computation time this would take

41

on a smart card. Showing an Idemix credential that contains five attributes without
disclosing any attribute can be done in 1.5 seconds on a smart card, and a sin-
gle modular exponentiation takes 100ms, both using a 1024 bit modulus [VA13].
Showing a credential that contains only 2 attributes, without disclosing either, takes
1.1 second. Suppose we use a 2048 bit RSA modulus for delegation credentials and
hash credentials (to allow a sufficiently large message space for the public keys
and the hash values), and suppose doubling the modulus doubles the computation
time. This would mean showing a delegation credential takes 2.2 seconds, showing
a delegation credential with 5 attributes would take between 1.9 and 2.7 seconds
(depending on the amount of attributes disclosed). If we also use a group with a
modulus of 2048 bits to show the authenticator, and assume that modular expo-
nentiations now take 200ms, the modular exponentiations alone take 3.2 seconds.
Adding time for other computation and communication, showing the authenticator
might take 5 seconds. This very rough estimate suggests that it takes about 10 sec-
onds to show a delegated credential. For many applications (e.g. using a credential
as a public transport ticket), 10 seconds is way too slow. However, it is close to
being practical. With progress on smart card technology and an efficent implemen-
tation we can imagine this number decreasing to a couple of seconds, which would
suffice for some applications.

5.4 Security Analysis

We now analyze the security properties the proposed construction satisfies. Here
we assume that users do not share their user secrets m1, because sharing m1 allows
sharing of delegated credentials (and non-delegated credentials too). We therefore
consider knowing a user secret m1 as being the owner of m1. We also assume
that delegators follow the protocol and use a new public key for each delegation
credential. We assume that that the issuer only issues delegation credentials to
users that are allowed to delegate, and the hash authority only issues credentials
with attributes m1,H(DNym) with DNym a domain pseudonym of user with secret m1.
Finally we assume that the attribute values are not identifying and do not reveal
the identity of the user or delegator.

Lemma 1. A prover that has non-negligible probability of successfully proving knowl-
edge of a delegated credential must know a delegated credential
{mi}0<i≤L , (A2, e2, v2), (AH, eH, vH), h, n,σ, with Z2 = A2

e2S2
v2R2,1

n
∏

1<i≤L R2,i
mi , ZH =

AH
eHSH

vHRH,1
m1RH,2

h, and σ3 = h (mod n).

Proof. This follows directly from the knowledge soundness property of the proofs-
of-knowledge.

Lemma 2. A user with secret m1 can only get one h-value with valid hash credential
(AH, eH, vH) such that ZH = AH

eHSH
vHRH,1

m1RH,2
h.

Proof. By unforgeability of the CL-signature, only the hash authority can create hash
credentials. In order to receive a hash credential, the user must give his domain
pseudonym, which is a function of his secret m1. A user can only create a single DNym
with m1, and the hash authority will only issue h = H(DNym) (by the assumption
that the hash authority is honest).

42

We now describe how this construction satisfies the requirements given in Sec-
tion 5.1.

Correctness
Suppose a user has hash credential (AH, eH, vH)with AH

eH = ZH
SH

vHRH,1
m1 RH,2

H(DNym)

(mod nH). He knows his secret m1 and h. When a delegator delegates to this
user, he receives a delegation credential (A2, e2, v2)with A2

e2 = Z2

S2
v2 R2,1

n
∏L

i=2 R2,i
mi

(mod n2), attribute values {mi}, n and authenticator σ with σ3 = h. All these
values together form a witness for the relation of the proof for showing a
delegated credential. By completeness of the proofs, an honest verifier will
accept this delegated credential.

Delegation evident
Delegated credentials clearly differ from non-delegated credentials and use a
different proof protocol. A verifier can therefore easily distinguish the two.

Delegated selective disclosure
The attribute values come from the delegator credential, and this is a standard
Idemix credential. Selective disclosure for delegated credentials therefore
works just like it works for other Idemix credentials.

Delegated multi-show unlinkability
When showing a delegated credential, the user shows the delegator creden-
tial, his hash credential, and proves knowledge of the authenticator. The first
two are Idemix credentials, and these are multi-show unlinkable. Since we
create a zero-knowledge proof of knowledge of the authenticator (and only
reveal freshly randomized commitments), the combination is also multi-show
unlinkable.

Delegator unlinkability
The delegator knows the delegation credential and the authenticator. How-
ever, he is not able to recognize uses of this delegated credential, due to the
witness indistinguishability of the proofs. He is unable to recognize the au-
thenticator, because the prover creates a zero-knowledge proof of knowledge,
and only freshly randomized commitments are revealed.

Delegator anonymity
The difference between two delegation credentials (other than the attribute
values) is the public key n it contains, and consequently the public key under
which the authenticator is valid. A verifier will not learn anything about n,
since the prover only proves knowledge of it. It is not disclosed from the
delegation credential, and only a fresh commitment to n is revealed while
showing the authenticator.

Unforgeability
By Lemma 1, a prover with non-negligible probability of successfully prov-
ing knowledge of a delegated credential must know {mi}0<i≤L , (A2, e2, v2),
(AH, eH, vH), h, n,σ, with Z2 = A2

e2S2
v2 R2,1

n
∏L

i=2 R2,i
mi , ZH = AH

eHSH
vHRH,1

mb RH,2
h,

and σ3 = h (mod n).

By unforgeability of the CL-signature, the delegation credential has to be is-
sued by the issuer and the owner of public key n is indeed authorized to del-
egate (since we trust the issuer). The adversary is therefore unable to forge

43

a delegation credential with his own public key. The adversary may however
obtain valid delegation credentials with public keys {ni}. By Lemma 2, a user
with secret m1 can only obtain a single hash credential, which contains some
hash value h. An adversary can use many user secrets {m1,i}, and for each
get a hash credential with hash value {hi}, and he needs a signature valid
under some public key in {ni} on some hi . By unforgeability of RSA-HDH
(Theorem 1), signatures can only be created by the owner of the public key
that knows the secret factorization. The owner of the delegation credential is
the only one that knows the factorization of n, so only he can delegate using
his delegation credential. Because the adversary does not know this for any
ni , he cannot create such a signature.

The adversary cannot use the authenticator of a different user, as the proba-
bility that this signature is on h′ which is any of the hi values is negligible. The
adversary cannot use an authenticator of some other delegation credential,
because the public key n′ of this signature is not n (as we require delegators
to use a new RSA modulus for every delegation credential).

Since the adversary cannot create an authenticator and cannot use one in-
tended for someone else, he does not know a valid delegated credential and
has negligible probability of convincing a verifier he does.

44

Chapter 6

Related Work

Chase and Lysyanskaya were the first to construct delegatable credentials [CL06].
In order to do so, they first define signatures of knowledge. They instantiate these
using general NIZK proofs (authors suggest [Sah99] and [dSdCO+01]) and use NP
reduction, which makes this construction quite inefficient. Moreover, credentials in
this construction have exponential size in the delegation level. As the authors state,
this construction is not efficient enough to be used in practice. Belinky et al. cre-
ated delegatable credentials from randomizable proofs, in which credentials grew
linearly in the delegation level [BCC+09]. Chase et al. created a similar construc-
tion, but based on malleable signatures instead of randomizable proofs [CKLM13].
Since the constructions by Belinky et al. and Chase et al. are more efficient, we
discuss these in a bit more detail.

6.1 Delegatable Credentials from Randomizable Proofs

Belenkiy et al. start by showing that Groth-Sahai proofs [GS08] are randomizable:
let π be a proof and c1, ..., cn the commitments. Now anyone can randomize com-
mitment ci = Commit(x i , openi) to c′i = Commit(x i , open′i), and create π′ such
that this is a valid proof again. Note that this can be done without knowing the wit-
ness {x i} or the openings to the commitments. The delegatable credentials heavily
rely on these randomizable proofs.

Every user U has a secret key skU . Pseudonyms, Groth-Sahai commitments to
the user’s secret key, are also used as public keys. There is no difference between
users and authorities. To become an authority, a user simply publishes a public key.

Suppose an authority O issues a credential to user A, known to him by NymA.
This is called a level 1 credential, as it comes directly from an issuer. The issuer O
creates a signature on skA using his secret key. Secure two party computation is used
to create this signature, such that O will not learn skA (Fuchsbauer built upon this
work which allows non-interactive issuing [Fuc10]). The signature scheme used
is a combination of multiple weak Boneh-Boyen signatures. These signatures can
be represented as a pairing product equation, which allows the use of Groth-Sahai
proofs of knowledge of a signature. The authority O does not send the signature to
A, but instead sends a NIZK proof of knowledge of this signature, called πA. Now
NymA and πA form A’s credential.

To use this credential, A cannot simply show NymA and πA every time, as this

45

would be linkable. To prevent this, A first randomizes NymA and πA using the ran-
domizability of Groth-Sahai proofs, such that multi-show unlinkability is guaran-
teed.

To delegate her credential to B with pseudonym NymB, A does the same thing the
issuer did: she signs NymB using her secret key, and creates a NIZK proof of knowl-
edge πB of this signature. She sends πB to B, together with her own (randomized)
credential (Nym′A, π′A). Now B has a proof that NymA has a level 1 credential from
issuer O, and a proof that she delegates this credential to him, giving him a level
2 credential. To show his credential, B must not only randomize NymB and πB, but
also randomize (Nym′A, π′A). He can do this, since no knowledge about the secret
key or witness is needed to do so.

Generally, a user with a level L credential can issue a level L + 1 credential by
creating a signature on the receiver’s pseudonym and sending a proof-of-knowledge
of this signature, and by showing that he has a level L credential. To show this level
L credential, the entire credential chain must be randomized every time. Since ev-
erything can be randomized, multi-show unlinkability and delegator unlinkability
hold. The size of a credential grows linearly in the level of the credential, because
every delegation adds one proof. This means that it is practical to have long dele-
gation chains.

The signature scheme used is based on the weak Boneh-Boyen signature scheme
[BB04]. This signature cannot be used as-is. A signature using signing key skA on
someone else’s key skB is equal to a signature using key skB on skA. Also, we want
to sign a list of messages, and the standard signature would require a larger group
if more messages must be signed. To solve these problems, the signer first signs
a temporal key K∗. Using this key, the signer can sign multiple other temporal
keys Ki . Now using keys Ki a list of message mi can be signed. The F-unforgeable
way (as described in Section 2.7.3) is used, with F(m) = (hm, um). This gives the
following way to sign a list of messages: Auth(params, sk, m1, ..., mL) = (A∗ =
g

1
sk+K∗ , B∗ = hK∗ , C∗ = u∗K∗, {Ai = g

1
K∗+Ki , Bi = hKi , Ci = uKi

i , Di = g
1

Ki+mi }1≤i≤L). Note
that different u-values in the F function are being used. This prevents an attacker
from changing the order of the messages.

Let (A∗, B∗, C∗, {Ai , Bi , Ci , Di}) be the signature. Verification is done by checking

• e(A∗, hskB∗)
?
= e(g, h)

• e(B∗, u∗)
?
= e(h, C∗)

• e(Ai , B∗Bi)
?
= e(g, h)

• e(Bi , ui)
?
= e(h, Ci)

• e(Di , Bih
mi)

?
= e(g, h)

All these statements be proved using Groth-Sahai proofs. This construction of
this signature also allows selective disclosure.

6.2 Delegatable Credentials from Malleable Signatures

A malleable signature scheme allows one given message m and signatureσ to create
a signature σ′ on message T (m), where T is some allowable transformation. The

46

transformation is context hiding, which means that σ′ does not reveal anything
about the original message m.

Again every user has a secret key, and pseudonyms are commitments to this
secret. An issuer is simply a user that published his public key. Credentials are
signatures under the public key of an issuer, on messages of the following form:
m = (nym, l, f lag). The owner’s pseudonym is nym, the level is l. The flag is
either credential or proof.

Suppose an issuer I issues a credential to A with pseudonym nymA. I will
create a signature on (nymA, 1,credential). To show a credential, a user is re-
quired to show a signature on (m, l,proof). Note that we now need the flag proof,
whereas the user has signature on flag credential. Luckily, the signature the issuer
places is malleable. We have an allowed transformation T (nym, l,credential) =
(nym′, l,proof)where nym and nym′ are pseudonyms of the same user. To use this
transformation, the user must know sk, open, open′ with nym = Commit(sk, open)
and nym′ = Commit(sk, open′). This allows the owner of the pseudonym (i.e. the
person that knows the opening) to prove he owns the credential. Note that he can
change the pseudonym, so he can also proof possession of the credential to a rely-
ing party that knows him nym′′, by transforming the signature to a statement on
nym′′. By the context hiding property, this is provides unlinkability.

Delegation involves another transformation. Let user A with nym nymA =
Commit(skA, openA) have a level l credential. Using skA and openA, he can use
transformation T (nymA, l,credential) = (nymB, l + 1,credential). When using
this credential, one cannot learn anything about the delegator, again by the context
hiding property.

Chase et al. continue give an instantiation of malleable proofs from NIZK proofs.
Groth-Sahai proofs can be used for this instantiation.

47

Chapter 7

Conclusion

Attribute-based credentials can greatly protect users’ privacy, by limiting the infor-
mation disclosed and doing so unlinkably. The ability to delegate such credentials
would allow even more use cases to be executed in a privacy-friendly way. We
have constructed a way that allows one step delegation of Idemix credentials. This
enables many new use cases for attribute-based credentials. Our construction is
efficient, as it does not require pairings, and only uses a limited number modular
exponentiations. We estimate that showing a delegated credential on current smart
cards takes 10 seconds. It is an extension, as it can be added to Idemix to offer
extra functionality, but nothing will change for users that do not want to use dele-
gation. This would also simplify the introduction of delegation to existing Idemix
systems. In addition, we have shown how the RSA-FDH construction can be used
with multiple moduli by introducing the half-domain hash, and proved RSA-HDH
to be secure in the random oracle model.

For future work, we obviously need an implementation of this construction.
This would also allow to measure the efficiency and verify our estimated timings.
The Idemix proofspec needs to be extended such that it allows proofs of delegated
credentials. Our delegation construction leaves room for improvement. It could
be improved by preventing users from sharing delegation keys, e.g. by using some
form of revocable privacy, such that publishing your public key means sharing your
secret key. The addition of selective delegation (delegate only certain attributes of a
credential) and multiple levels of delegation (delegation of delegated credentials) to
this construction are other improvements that would make this more useful. Finally,
this construction could be made more efficient if one can find a signature scheme
for the authenticator that fulfills the unlinkability requirements, without relying on
the inefficient secret modular arithmetic. A signature scheme that is secure without
a hash function would remove the need for a hashing authority.

49

Bibliography

[ACHdM05] Giuseppe Ateniese, Jan Camenisch, Susan Hohenberger, and Breno
de Medeiros. Practical group signatures without random oracles.
Cryptology ePrint Archive, Report 2005/385, 2005.

[ADR02] Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the security of joint
signature and encryption. In LarsR. Knudsen, editor, Advances in Cryp-
tology - EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer
Science, pages 83–107. Springer Berlin Heidelberg, 2002.

[AHS13] Gergely Alpár, Jaap-Henk Hoepman, and Johanneke Siljee. The iden-
tity crisis - security, privacy and usability issues in identity manage-
ment. Journal of Information System Security, 9(1):23–53, 2013.

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random or-
acles. In Christian Cachin and Jan L. Camenisch, editors, Advances
in Cryptology - EUROCRYPT 2004, volume 3027 of Lecture Notes in
Computer Science, pages 56–73. Springer Berlin Heidelberg, 2004.

[BB08] Dan Boneh and Xavier Boyen. Short signatures without random ora-
cles and the sdh assumption in bilinear groups. Journal of Cryptology,
21(2):149–177, 2008.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group sig-
natures. In Matt Franklin, editor, Advances in Cryptology - CRYPTO
2004, volume 3152 of Lecture Notes in Computer Science, pages 41–
55. Springer Berlin Heidelberg, 2004.

[BCC+09] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss,
Anna Lysyanskaya, and Hovav Shacham. Randomizable proofs and
delegatable anonymous credentials. In Shai Halevi, editor, Advances
in Cryptology - CRYPTO 2009, volume 5677 of Lecture Notes in Com-
puter Science, pages 108–125. Springer Berlin Heidelberg, 2009.

[BCKL08] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyan-
skaya. P-signatures and noninteractive anonymous credentials. In
Ran Canetti, editor, Theory of Cryptography, volume 4948 of Lecture
Notes in Computer Science, pages 356–374. Springer Berlin Heidel-
berg, 2008.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications. In Proceedings of the Twentieth Annual

51

ACM Symposium on Theory of Computing, STOC ’88, pages 103–112,
New York, NY, USA, 1988. ACM.

[BG93] Mihir Bellare and Oded Goldreich. On defining proofs of knowl-
edge. In ErnestF. Brickell, editor, Advances in Cryptology - CRYPTO
92, volume 740 of Lecture Notes in Computer Science, pages 390–420.
Springer Berlin Heidelberg, 1993.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas
on ciphertexts. In Joe Kilian, editor, Theory of Cryptography, volume
3378 of Lecture Notes in Computer Science, pages 325–341. Springer
Berlin Heidelberg, 2005.

[Blu83] Manuel Blum. Coin flipping by telephone a protocol for solving im-
possible problems. SIGACT News, 15(1):23–27, January 1983.

[Bon98] Dan Boneh. The decision diffie-hellman problem. In JoeP. Buhler,
editor, Algorithmic Number Theory, volume 1423 of Lecture Notes in
Computer Science, pages 48–63. Springer Berlin Heidelberg, 1998.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Proceedings of the 1st
ACM Conference on Computer and Communications Security, CCS ’93,
pages 62–73, New York, NY, USA, 1993. ACM.

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of digital
signatures-how to sign with rsa and rabin. In Ueli Maurer, editor, Ad-
vances in Cryptology - EUROCRYPT 96, volume 1070 of Lecture Notes in
Computer Science, pages 399–416. Springer Berlin Heidelberg, 1996.

[Bra99] Stefan Brands. Rethinking public key infrastructures and digital certifi-
cates: building in privacy. PhD thesis, Eindhoven University of Tech-
nology, 1999.

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs
of partial knowledge and simplified design of witness hiding proto-
cols. In Yvo G. Desmedt, editor, Advances in Cryptology - CRYPTO
94, volume 839 of Lecture Notes in Computer Science, pages 174–187.
Springer Berlin Heidelberg, 1994.

[CE87] David Chaum and Jan-Hendrik Evertse. A secure and privacy-
protecting protocol for transmitting personal information between or-
ganizations. In Andrew M. Odlyzko, editor, Advances in Cryptology -
CRYPTO 86, volume 263 of Lecture Notes in Computer Science, pages
118–167. Springer Berlin Heidelberg, 1987.

[CFT98] Agnes Chan, Yair Frankel, and Yiannis Tsiounis. Easy come - easy
go divisible cash. In Kaisa Nyberg, editor, Advances in Cryptology -
EUROCRYPT’98, volume 1403 of Lecture Notes in Computer Science,
pages 561–575. Springer Berlin Heidelberg, 1998.

[Cha85] David Chaum. Security without identification: Transaction systems
to make big brother obsolete. Commun. ACM, 28(10):1030–1044,
October 1985.

52

[CKLM13] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah
Meiklejohn. Malleable signatures: Complex unary transformations
and delegatable anonymous credentials. Cryptology ePrint Archive,
Report 2013/179, 2013.

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-
transferable anonymous credentials with optional anonymity revoca-
tion. In Birgit Pfitzmann, editor, Advances in Cryptology Ů EUROCRYPT
2001, volume 2045 of Lecture Notes in Computer Science, pages 93–
118. Springer Berlin Heidelberg, 2001.

[CL03] Jan Camenisch and Anna Lysyanskaya. A signature scheme with effi-
cient protocols. In Stelvio Cimato, Giuseppe Persiano, and Clemente
Galdi, editors, Security in Communication Networks, volume 2576 of
Lecture Notes in Computer Science, pages 268–289. Springer Berlin
Heidelberg, 2003.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anony-
mous credentials from bilinear maps. In Matt Franklin, editor, Ad-
vances in Cryptology - CRYPTO 2004, volume 3152 of Lecture Notes in
Computer Science, pages 56–72. Springer Berlin Heidelberg, 2004.

[CL06] Melissa Chase and Anna Lysyanskaya. On signatures of knowledge.
In Cynthia Dwork, editor, Advances in Cryptology - CRYPTO 2006, vol-
ume 4117 of Lecture Notes in Computer Science, pages 78–96. Springer
Berlin Heidelberg, 2006.

[CL11] Melissa Chase and Kristin Lauter. An anonymous health care system.
Cryptology ePrint Archive, Report 2011/016, 2011.

[CM99] Jan Camenisch and Markus Michels. Proving in zero-knowledge that
a number is the product of two safe primes. In Jacques Stern, edi-
tor, Advances in Cryptology - EUROCRYPT 99, volume 1592 of Lecture
Notes in Computer Science, pages 107–122. Springer Berlin Heidel-
berg, 1999.

[Cor00] Jean-Sebastien Coron. On the exact security of full domain hash. In
Mihir Bellare, editor, Advances in Cryptology - CRYPTO 2000, volume
1880 of Lecture Notes in Computer Science, pages 229–235. Springer
Berlin Heidelberg, 2000.

[CP93] David Chaum and Torben Pryds Pedersen. Wallet databases with ob-
servers. In Ernest F. Brickell, editor, Advances in Cryptology - CRYPTO
92, volume 740 of Lecture Notes in Computer Science, pages 89–105.
Springer Berlin Heidelberg, 1993.

[Cra97] Ronald Cramer. Modular design of secure yet practical cryptographic
protocols. PhD thesis, CWI & University of Amsterdam, 1997.

[CS97] Jan Camenisch and Markus Stadler. Efficient group signature schemes
for large groups. In Burton S. Kaliski Jr, editor, Advances in Cryptol-
ogy - CRYPTO ’97, volume 1294 of Lecture Notes in Computer Science,
pages 410–424. Springer Berlin Heidelberg, 1997.

53

[CS02] Jan Camenisch and Victor Shoup. Practical verifiable encryption and
decryption of discrete logarithms. Cryptology ePrint Archive, Report
2002/161, 2002.

[CvH02] Jan Camenisch and Els van Herreweghen. Design and implementa-
tion of the idemix anonymous credential system. In Proceedings of the
9th ACM Conference on Computer and Communications Security, CCS
’02, pages 21–30, New York, NY, USA, 2002. ACM.

[Dam90] Ivan Damgård. Payment systems and credential mechanisms with
provable security against abuse by individuals. In Shafi Goldwasser,
editor, Advances in Cryptology - CRYPTO 88, volume 403 of Lecture
Notes in Computer Science, pages 328–335. Springer New York, 1990.

[Dam02] Ivan Damgård. On σ-protocols. 2002. http://www.cs.au.dk/
~ivan/Sigma.pdf.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptogra-
phy. Information Theory, IEEE Transactions on, 22(6):644–654, Nov
1976.

[dSdCO+01] Alfredo de Santis, Giovanni di Crescenzo, Rafail Ostrovsky, Giuseppe
Persiano, and Amit Sahai. Robust non-interactive zero knowledge.
In Joe Kilian, editor, Advances in Cryptology - CRYPTO 2001, volume
2139 of Lecture Notes in Computer Science, pages 566–598. Springer
Berlin Heidelberg, 2001.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. In GeorgeRobert Blakley and David
Chaum, editors, Advances in Cryptology, volume 196 of Lecture Notes
in Computer Science, pages 10–18. Springer Berlin Heidelberg, 1985.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko,
editor, Advances in Cryptology - CRYPTO 86, volume 263 of Lecture
Notes in Computer Science, pages 186–194. Springer Berlin Heidel-
berg, 1987.

[Fuc10] Georg Fuchsbauer. Commuting signatures and verifiable encryption
and an application to non-interactively delegatable credentials. Cryp-
tology ePrint Archive, Report 2010/233, 2010.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signa-
ture scheme secure against adaptive chosen-message attacks. SIAM
J. Comput., 17(2):281–308, April 1988.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof systems. SIAM Journal on Computing,
18(1):186–208, 1989.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-
knowledge proof systems. Journal of Cryptology, 7(1):1–32, 1994.

54

http://www.cs.au.dk/~ivan/Sigma.pdf
http://www.cs.au.dk/~ivan/Sigma.pdf

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive
zero knowledge for np. In Serge Vaudenay, editor, Advances in Cryp-
tology - EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer
Science, pages 339–358. Springer Berlin Heidelberg, 2006.

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for
noninteractive zero-knowledge. J. ACM, 59(3):11:1–11:35, June
2012.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems
for bilinear groups. In Nigel Smart, editor, Advances in Cryptology -
EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science,
pages 415–432. Springer Berlin Heidelberg, 2008.

[HGS99] Nicholas Howgrave-Graham and Jean-Pierre Seifert. Extending
wiener’s attack in the presence of many decrypting exponents. In Se-
cure Networking - CQRE [Secure] ’99, volume 1740 of Lecture Notes in
Computer Science, pages 153–166. Springer Berlin Heidelberg, 1999.

[IBM13] IBM. Specification of the identity mixer cryptographic library v2.3.40.
Technical report, IBM Research Zurich, 2013.

[JK03] Jakob Jonsson and Burt Kaliski. Public-key cryptography standards
(pkcs)# 1: Rsa cryptography specifications version 2.1. 2003.

[LRSW00] Anna Lysyanskaya, RonaldL. Rivest, Amit Sahai, and Stefan Wolf.
Pseudonym systems. In Howard Heys and Carlisle Adams, editors,
Selected Areas in Cryptography, volume 1758 of Lecture Notes in Com-
puter Science, pages 184–199. Springer Berlin Heidelberg, 2000.

[Oka93] Tatsuaki Okamoto. Provably secure and practical identification
schemes and corresponding signature schemes. In ErnestF. Brickell,
editor, Advances in Cryptology - CRYPTO 92, volume 740 of Lecture
Notes in Computer Science, pages 31–53. Springer Berlin Heidelberg,
1993.

[Paq13] Christian Paquin. U-prove technology overview v1.1 revision 2. Tech-
nical report, Microsoft Technical Report, 2013.

[Ped92] Torben Pryds Pedersen. Non-interactive and information-theoretic se-
cure verifiable secret sharing. In Joan Feigenbaum, editor, Advances
in Cryptology - CRYPTO 91, volume 576 of Lecture Notes in Computer
Science, pages 129–140. Springer Berlin Heidelberg, 1992.

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature
schemes. In Ueli Maurer, editor, Advances in Cryptology - EUROCRYPT
96, volume 1070 of Lecture Notes in Computer Science, pages 387–398.
Springer Berlin Heidelberg, 1996.

[QQQ+90] Jean-Jacques Quisquater, Myriam Quisquater, Muriel Quisquater,
MichaÃńl Quisquater, Louis Guillou, MarieAnnick Guillou, GaÃŕd
Guillou, Anna Guillou, GwenolÃl’ Guillou, and Soazig Guillou. How

55

to explain zero-knowledge protocols to your children. In Gilles Bras-
sard, editor, Advances in Cryptology - CRYPTO 89, volume 435 of Lec-
ture Notes in Computer Science, pages 628–631. Springer New York,
1990.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Commun.
ACM, 21(2):120–126, February 1978.

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adap-
tive chosen-ciphertext security. In Foundations of Computer Science,
1999. 40th Annual Symposium on, pages 543–553, 1999.

[Sch91] C.P. Schnorr. Efficient signature generation by smart cards. Journal
of Cryptology, 4(3):161–174, 1991.

[SM10] Santanu Sarkar and Subhamoy Maitra. Cryptanalysis of RSA with
more than one decryption exponent. Information Processing Letters,
110(8-9):336 – 340, 2010.

[VA13] Pim Vullers and Gergely Alpár. Efficient selective disclosure on smart
cards using idemix. In Simone Fischer-Hübner, Elisabeth Leeuw, and
Chris Mitchell, editors, Policies and Research in Identity Management,
volume 396 of IFIP Advances in Information and Communication Tech-
nology, pages 53–67. Springer Berlin Heidelberg, 2013.

56

	Introduction
	Identity Management
	Attribute-Based Credentials
	Goal of ABCs
	How ABCs work

	Problem Statement
	Motivation
	IRMA project

	Cryptographic Preliminaries
	Notation
	Probability Theory
	Indistinguishability
	Bilinear Pairings
	Complexity Assumptions
	Commitment Scheme
	Pedersen commitment

	Digital Signatures
	Plain RSA signature
	Plain RSA with multiple exponents
	Weak Boneh-Boyen signature
	CL-signature

	Zero-knowledge Proofs
	Magic Cave example
	Interactive Proofs
	Schnorr's identification protocol
	Okamoto's identification protocol
	Sigma protocol composition
	Discrete logarithms in groups of unknown order and interval proofs
	Secret modular arithmetic

	Non-interactive proofs
	Fiat-Shamir Heuristic
	Groth-Sahai proofs

	Cryptographic Overview of Idemix
	Users
	Pseudonyms

	Credentials
	Issuance
	Showing Credentials

	Delegation of Idemix Credentials
	Security Requirements
	High level overview
	Construction
	Signature scheme for authenticator
	Hash function to mitigate existential forgery of authenticator
	Delegation credential
	Full construction
	Efficiency Analysis

	Security Analysis

	Related Work
	Delegatable Credentials from Randomizable Proofs
	Delegatable Credentials from Malleable Signatures

	Conclusion

