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Abstract

Proteins are complicated molecules and their three-dimensional struc-
ture provides information about their functionality. These three-dimensional
structures are determined by specific amino acid sequences. Hidden infor-
mation in amino acid sequences, in particular homologous sequences, may
offer possibilities in obtaining the three-dimensional structures of proteins.
A common method to identify protein folding, is by using information about
amino acid residue-residue contacts. These contact pairs can, in turn, be
found by correlated mutations. If one residue changes by a mutation, its
contacting counter partner will likely be mutated too, ensuring the native
fold a protein.

Covariance in multiple sequence alignments offers a method in finding
residue-residue contacts. PSICOV is a tool which tries to find residue-residue
contacts by using a sparse inverse covariance estimation. This study inves-
tigates opportunities in further improvements in finding contact pairs using
PSICOV, based on the assumption of improved predictions by using specific
amino acid characteristics.

After an extensive study of the predictions made by PSICOV, it was
possible to calculate higher mean precision values when prediction difficulty
or pairing preferences of amino acids was used. An improvement in mean
precision up to 0.03 can be made by a linear transformation of PSICOV
predictions. It demonstrates that precise structural contact prediction can
be further improved by a combination of machine learning algorithms and
amino acid characteristics. In addition, this study shows the beginning of
more hybrid residue-residue contact predictions tools. One of the conclusions
of this thesis is that there is still a lot of profit to be made in this research
field.



Preface

“Information science (or information studies) is an interdisciplinary field
primarily concerned with the analysis, collection, classification, manipula-
tion, storage, retrieval, movement, and dissemination of information.”1 Al-
though this master thesis is about a topic within bioinformatics, it is closely
related to the information science. I will discuss a research that deals with all
the aforementioned (information science) concepts. Information science is
widely applicable and in many cases the context changes, but the approaches
or techniques are similar. Data mining or machine learning techniques are
used in information science studies as well as in bioinformatics. This does
not mean that biofinformatics is a redundant profession. As information
scientists we certainly lack essential knowledge of (molecular) biology and
therefore the focus in this thesis will be on the techniques and the improve-
ments on the techniques.

1http://en.wikipedia.org/wiki/Information science
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Chapter 1

Introduction to structural
contact prediction

1.1 Introduction

Nowadays, bioinformatics is an established research discipline. An increasing
number of scientist are aware of the need for bioinformaticians. Like the fast
growing amount of information on the internet, biological data is growing
explosively. All the information of how we (our bodies/life in general) are
build is described in our DNA. Consequently, the cause of serious diseases
are frequently the consequence of harmful mutations in DNA. If people have
serious diseases, it seems logical that we will look for an explanation in the
main source of our body. We are able to obtain our main source by several
sequencing techniques and this is becoming much cheaper and faster. The
acceleration of DNA sequencing and lower sequencing costs in the past years
can be compared with the exponential growth of the number of resistors on
a computer chip (see table 1.1). In biology, the amount of data is growing at
least as fast as computers did in the last few decades. Extracting the right

Date Cost per Mb of DNA Sequence Cost per Genome
September-2001 $5,292.39 $95,263,072
March-2002 $3,898.64 $70,175,437
September-2002 $3,413.80 $61,448,422
March-2003 $2,986.20 $53,751,684
October-2003 $2,230.98 $40,157,554
... ... ...
... ... ...
October-2010 $0.32 $29,092
January-2011 $0.23 $20,963
April-2011 $0.19 $16,712
July-2011 $0.12 $10,497
Jan-2012 (EST) $0.09 $7,950

Table 1.1: A snippet of sequencing costs from the beginning of this century
until 2012. (From: http://dnasequencing.org/history-of-dna)
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information out of all the sequence data is a crucial and difficult task for a
bioinformatician.

When we speak of sequence data, we do not necessarily mean DNA
sequences. Sequence data exists at multiple levels such as DNA, RNA,
(poly)peptides or proteins. In this thesis I will discuss an important piece of
information that is hidden in protein sequences. An important topic within
the field of bioinformatics is to make an accurate prediction of how proteins
fold using nothing else than protein sequences and algorithms. How proteins
fold and knowing the three-dimensional shape is essential for determining
out how proteins function [3]. If we are able to make an accurate prediction
of the three-dimensional shape of a protein using a computer, we may save a
lot of time and money spending on experiments. To give an impression: as
human beings we have over 20 thousands genes.1 Automating the prediction
of protein folding will be major breakthrough in biological research.

1.2 What is structural contact prediction?

A protein is a large molecule consisting of chains of individual amino acids.
There are twenty different amino acids and they can occur more than once
within a protein sequence. The reason why some amino acids appear in a
particular order is not because of random chance. Each amino acid has his
own special characteristics and all amino acids of a protein together define
the function or functions of that protein [3].

Figure 1.1: An image of residue-residue contacts (red dots), from sequence
(left) to the three-dimensional structure (right). Figure from [17].

In literature it is established that we speak of residue-residue contacts if
two amino acids of one protein sequence are connected together in the three-
dimensional structure [17]. Within the three-dimensional structure the two
residues are neighbours, but these residues may be far away from each other
in the primary structure of a protein. As you can see in figure 1.1 the
residue-residue contacts of the example are not located close to each other
in the sequence strand (left), and one residue can make contact with one

1http://en.wikipedia.org/wiki/Human genome
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or more residues. In general there is a lot of variation in proteins and their
structures.

Precise structural contact prediction is at this moment a problem within
the bigger problem of the prediction of the actual three-dimensional struc-
ture of a protein. Residue-residue contacts is closely involved in guiding
protein folding and maintaining the native fold of proteins [11, 13]. In ad-
dition to that, we also know that it is possible to elucidate the fold of the
protein with sufficient correct information about a protein’s residue-residue
contacts [9, 13, 20]. Keeping these facts in mind, we can think of a method
to predict the native fold of a protein using only the sequence. If we can
extract the residue-residue contacts out of a sequence, we can consequently
construct a complete protein.

1.3 Challenges in contact prediction

At this moment a key question is how residue-residue contacts can be found.
The basis on which almost all contact prediction research leans is about the
fact that proteins are rarely unique. Grishin states:“[...] similar sequences
typically yield similar three-dimensional structures, and experimentally de-
termined structure for one family member offers reliable structure prediction
for the rest of its members [10].” In other words, important information
about the three dimensional structure of proteins can be found within the
information of homologous families. In this study we will not compare com-
plete families with a specific experimentally determined protein. The idea is
to extract residue-residue contacts using only the homologous families. An-
other critical piece of information protein families shares, is the evolutionary
signals in sequences. How can we derive residue-residue contacts using the
evolutionary background of a protein family?

Successful approaches attempt to extract contact information from mul-
tiple sequence alignments [13]. This information can be found by inves-
tigating correlated mutations. Several research groups demonstrated that
extracting covariation information from sequences is sufficient to predict a
protein fold to reasonable accuracy [17]. Table 1.2 shows a simple exam-
ple of how you can recognize correlated mutations. For a more biological
background such as the idea behind multiple sequence alignments I refer to
chapter two.

“The underlying rationale rests on the fact that any given contact critical
for maintaining the fold of a protein will constrain the physicochemical prop-
erties of the amino acids involved. Should a given contacting residue mu-
tate and potentially perturb the properties of the contact, then its contacting
partner will be more likely to mutate to a physicochemically complementary
amino acid residue, to ensure the native fold of the protein remains stabi-
lized [13].” As shown in table 1.2 the residues of column two, five and seven

9



Residue Nr.
1 2 3 4 5 6 7 8

Sequence 1 A A A A A A C A
Sequence 2 A E A A D A A A
Sequence 3 A A A A A A A A
Sequence 4 A E A A D A C A
Sequence 5 A E A A D A C A

Table 1.2: Simple correlated mutation example. The colored columns indi-
cates possible correlated mutations. When the second residue varies in the
protein family, other residues (eg. 5) may change as well.

may have some covariance. If one residue is mutated, other residues may
change because the protein may need to ensure its stability. The biggest
challenge within the prediction of the right residue-residue contacts is han-
dling false positives based on phylogenetic effects or indirect coupling [13].
False positives that are observed, for example, when two residues contact
the same third residue but do not actually contact each other. This is called
the chaining effect [15, 17]. The chaining effect explained with reference to
table 1.2, it means that the two blue residues (column 2 and 7) both contacts
with the red residue (5) and therefore a transitive influence can be observed
between the blue residues.

1.4 Problem Statement

In this thesis I will go deeper into PSICOV, a specific method to predict co-
evolution. PSICOV uses a sparse inverse covariance estimation for amino
acid residue-residue contact prediction. I will explain the functionalities
of PSICOV and perform experiments considering the data provided by the
authors of PSICOV [13]. For benchmarking purposes we have a golden truth
for each target protein. After running experiments with PSICOV, it might
be interesting to look at outliers of residue contact prediction. Are there any
amino acids or amino acid pairs which PSICOV predict exceptionally good
or bad? Can we explain these results and are we able to optimize PSICOV
in such a way that its predictions are more accurate? One possibility is
weighting of specific output values.
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Chapter 2

Biological sequence data and
residue-residue contacts

In this chapter I will discuss about biological processes and the meaning of
biological data like sequence data. The purpose of this chapter is to give
basic background information in such way that non-biologists (like infor-
matics and information science students) obtain a better understanding of
the research topic.

Sequence data exists at multiple levels. In order to emphasize the dis-
tinction between different types of sequence data, I show very briefly the
central dogma of biology. The translation of the DNA code into a protein.
After the gene-protein introduction I will explain how multiple sequence
alignments (MSA) function. MSA is a common bioinformatics method for
analyzing sequence data. Finally I discuss how we can extract from a MSA
interesting information like residue-residue contacts.

2.1 From gene to protein

The genetic instructions for a polypeptide chain are written in the DNA
as series of non overlapping three-nucleotide codons (combinations of nu-
cleotides) [4]. 64 codons function as a base for 20 amino acids where several
codons can lead to the same amino acid (or residue). Figure 2.1 shows that,
for instance, the three-nucleotide code ACC results in the amino acid tryp-
tophan. The translation from gene to protein has several steps and each step
results in another type of sequence. Transcription of a gene, by so-called
RNA polymerase, leads to mRNA (messenger RNA) which is the messen-
ger of genetic information. After the translation (by ribosomes) of mRNA
into amino acid chains we have a polypeptide chain which is not necessarily
a protein, although the terms “protein” and “polypeptide” are sometimes
used interchangeably [19]. Proteins can consist of long polypeptide chains.

Figure 2.1 suggests that there are three types of sequences, i.e. DNA,
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Figure 2.1: Central dogma in (molecular) biology for generating of proteins
out of genes. Figure from [4].

mRNA and protein. The function of each protein molecule depends on its
three-dimensional structure. The three-dimensional structure is determined
by its amino acid sequence, which is in turn is determined by the nucleotide
sequence of the structural gene [3]. For this thesis the focus lies on protein
sequences, because finding residue-residue contacts in protein sequence may
be a way to extract the three-dimensional structure.

2.1.1 The amino acid dictionary

Figure 2.2 shows the composition of nucleotides for specific amino acids.
Some codons lead to the beginning mRNA translation (by the amino acid
methionine), and some combinations of nucleotides are stop codons [19].
There are two common abbreviations for amino acids. A notation by one
or three letters. For investigation of protein sequences we use the one-letter
code of amino acids.
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Amino acid 3-letter 1-letter
Alanine Ala A
Arginine Arg R
Asparagine Asn N
Aspartic acid Asp D
Cysteine Cys C
Glutamic acid Glu E
Glutamine Gln Q
Glycine Gly G
Histidine His H
Isoleucine Ile I
Leucine Leu L
Lysine Lys K
Methionine Met M
Phenylalanine Phe F
Proline Pro P
Serine Ser S
Threonine Thr T
Tryptophan Trp W
Tyrosine Tyr Y
Valine Val V

Figure 2.2: The amino acid dictionary. All codons resulting in amino acids.
(From: http://www.lucasbrouwers.nl/blog/2010/11/the-algaes-accent/ & wikipedia.org/wiki/Amino acid)

2.2 Multiple sequence alignment (MSA)

When we consider a protein, one of the most fundamental questions is which
other proteins are related to it, because biological sequences often occur in
families. By introducing sequences into a multiple sequence alignment, we
can define members of a gene or protein family. “The function of most
proteins is assigned on the basis of homology to other known proteins rather
than on the basis of results from biochemical or cell biological assays [22].”
How does a MSA work?

2.2.1 Principles of a sequence alignment

DNA and protein sequences change during evolution. Nucleotides and the
amino acids they encode can change as result of point mutations, and se-
quence lengths can be quite different as a result of insertions and deletions.
To find underlying similarities, an alignment is needed to maximize their
similarities [25]. The following example shows a simple alignment and how
to handle evolutionary changes.

T H I S S E Q U E N C E
| | | | | | | | | |
T H A T S E Q U E N C E

Table 2.1: Simple alignment with two hypothetical amino acid sequences.
Example from [25].

Table 2.1 shows a strong similarity between two sequences. The identical
letters are highlighted in red after the compared sequences are lined up in
the best possible way. This is a very simple example, what happens if two
sequences differ more from each other? Look at the following sequences,
THATSEQUENCE and THISISASEQUENCE.
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T H A T S E Q U E N C E
| | |
T H I S I S A S E Q U E N C E

After introducing gaps:

T H − − − − A T S E Q U E N C E
| | | | | | | | | |
T H I S I S A − S E Q U E N C E

Table 2.2: Introducing gaps into alignments. Example from [25].

You can immediately see that there are a lot of similarities between both
sequences, but you are not able to find them by simply sliding one sequence
over another. Introducing gaps into alignments is a way to handle false
matches due to different sequence lengths. In table 2.2 you can see how
introducing gaps improves an alignment.

A multiple sequence alignment is essentially series of pairwise alignments
between, for instance, a group of proteins. There are several approaches
and programs available. For more information I refer to Bioinformatics and
Functional Genomics and Understanding Bioinformatics [22, 25].

2.2.2 MSA and residue-residue contacts

What are correlated mutations, residue-residue contacts and how are these
two concepts related? Before explaining this relation, you need some knowl-
edge of the basic building principles of proteins. It is not necessary to go
deeply into protein structures, but it is good to know why we are interested
in the relation between correlated mutations and residue-residue contacts.

Basic structural principles

When we discuss protein structures, it is not always clear what we mean.
We make a distinction between different levels of structures when discussing
proteins. For a better understanding of this thesis there is no need to know
all the details about amino acids or proteins, but to avoid confusion it is
required to know about the four levels of protein structures.

After reading the first part of this chapter you should be familiar with the
primary structure of a protein. It is the amino acid sequence of a protein’s
polypeptide chain. Such a polypeptide chain (or different regions of it),
may result into units of secondary structures such as helices or strands (see
figure 2.3). Combinations of secondary structures may, in turn, form (parts
of) a tertiary structure. The final protein may contain several subunits
(tertiary structures). This is the quaternary structure. Amino acids located
far apart in the sequence are brought close together in the three-dimensional
structure, and may form a functional region [3, 19].
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Figure 2.3: Protein structures. Figure from [19].

MSA and correlated mutations

The main problem is, how can we make an accurate prediction of tertiary
or quaternary protein structures out of protein sequences? There is much
potential in this research field if you imagine using great protein (family)
databases like PFAM. PFAM contains nearly 12.000 protein families with
a growing number of families over 100.000 sequences [6]. We can extract
(evolutionary) information out of multiple sequence alignments using protein
sequences and its family.

Correlated mutations are based on the idea that most proteins want to
maintain its stability. For instance, amino acids that are brought close to-
gether to form an active site, do not mutate in a single way. If one residue
changes, then its contacting partner will be more likely to mutate to a physic-
ochemically complementary amino acid residue, to ensure the native fold of
the protein [13]. Are we able to find the so called correlated mutations in
multiple sequence alignments? We have a large amount of sequence data of
protein families, and we may be able to see these evolutionary changes by
means of correlated mutations in MSA’s.

Figure 2.4: Using a multiple sequence alignment to find correlated muta-
tions. Figure From [16].
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Finding co-evolution in multiple sequence alignments is shown in fig-
ure 2.4. Marks et al. states: “The sequence of the protein for which the 3D
structure is to be predicted [...] is part of an evolutionarily related family
of sequences that are presumed to have essentially the same fold [16].” The
colors red, green and purple are used to indicate the two residues that seems
to have correlated mutations. If the one residue mutates, it seems to affects
another residue. This could mean that, because the two residues covary, the
residues are connected in their three-dimensional structure.

Recap

There are several types of sequence data. Multiple sequence alignments are
useful for collecting more information about sequences or proteins thanks to
homologous families. From sequence variation in MSA’s we want to extract
correlated mutations, because the involved residues may have a connec-
tion in the three-dimensional structure of a protein. A sufficient amount of
residue-residue contacts offers a possible way to predict a protein’s tertiary
or quaternary structure from his primary structure.
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Chapter 3

Protein structure prediction
from sequence variation

3.1 Local versus global statistics

There are several statistical models for predicting co-evolution between pro-
tein residues. We can roughly divide all the available approaches into two
groups: local and global statistical models. The devision of approaches of
co-evolution prediction depends on the fundamental principles of the ap-
proaches.

Figure 3.1: Principles of confounding effects. There are causative correla-
tions between residues A-B, A-D and D-C, because of direct interactions.
Transitive correlations can be found between, for instance, residues B-D,
because of their direct interactions with residue A. Figure from [17].

In chapter 1 I mentioned the chaining effect and figure 3.1 shows the un-
derlying confounding problem. True evolutionary covariation can be masked
by transitive correlations and sometimes transitive correlations are even
stronger than causative correlations [17]. Presence of common neighbors
of two noninteracting residues could be a reason for transitive correlations.
The assumption of local statistical models is that pairs of residue positi-
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tions are statistically independent of other pairs of residues. This makes
local approaches less successful in contact identification for the prediction
of three-dimensional structures of proteins, because they do not take into
account that transitive correlations causes noise [17].

In contrast to local statistical models, global models assume that cor-
related residue pairs are dependent on each other. Residue pairs that are
high globally correlated are more likely to be true residue couples. Marks
et al. states: “[...] predicted contacts based on the global probability models
provide a base for the computation of three-dimensional folds [17].” In ta-
ble 3.1 an overview of local and global statistical models used for prediction
of three-dimensional structures or residue-residue contacts can be found.

Method Statistics
EVfold, EC’s Maximum entropy

Global EVfold-transmembrane Maximum entropy
(3d folds) DCA-fold Maximum entropy

FILM3 Partial correlations
Boltzmann network model Maximum entropy
Bayesian network model Conditional ratio

of spanning trees
Global PSICOV Sparse inverse
(contacts) covariance estimation

DCA-BP Maximum entropy,
belief propagation

DCA-mean field Maximum entropy
Correlated mutation analyses Correlations
MI, SCA, McBasc, OMES (Weighted) mutational

information,
Local substitution correlations

observed minus expected
MIp Phylogeny-corrected

mutational information
SCA Weighted mutual

Information

Table 3.1: Statistical models that are used for prediction of co-evolution. We
can distinguish global models in two groups. Prediction of three-dimensional
folds and prediction of residue-residue contacts. Local models focus mainly
on residue-residue contacts using mutational information. Table from [17].
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3.2 PSICOV

PSICOV is a tool that is based on a global statistical approach and tries to
tackle the problem of transitive correlations. Using a sparse inverse covari-
ance estimation PSICOV takes transitive coupling into account [13]. The
source code is freely available and supplementary data is available at Bioin-
formatics online.1 For many reasons is PSICOV the most logical choice when
it comes to a master thesis research. The reasons are the availability and
possibilities to install the software anywhere and the alternative statistical
model which is not too complex, but tries to handle transitive couplings. In
addition, we may be able to adapt the predictions after running experiments.

1http://bioinfadmin.cs.ucl.ac.uk/downloads/PSICOV/
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Chapter 4

Inferring directly coupled
sites using covariance

4.1 Mutational information

Calculating the mutational information between two specific sites can pro-
vide interesting information. It is a common method for identifying corre-
lated mutations [13].

MI =
∑
ab

f(AiBj)log
f(AiBj)

f(Ai)f(Bj)
(4.1)

The idea is to calculate with the frequency of the observed amino acid com-
bination f(AiBj) and the frequencies of the amino acids independently. By
using the following example (a very small MSA) I will explain a major prob-
lem when calculating the correlated mutations by mutational information.

1 2 3
A A A
F C A
A D E

Assume that 1-2 and 2-3 have some direct interaction, but the combi-
nation of 1-3 has not. By calculating the mutational information between 1
and 3 we might observe a correlation:

MI13 =
1

3
log(

1
3

2
3

2
3

) +
1

3
log(

1
3

1
3

2
3

) +
1

3
log(

1
3

2
3

1
3

) ≈ 0.17 (4.2)

Even when some sites are not connected in the three-dimensional structure
of their protein you can find some mutational information and think there
is some correlation.
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4.2 The covariance matrix

To avoid the false positive observation of indirect couples, PSICOV uses a
sparse inverse covariance estimation. First I explain the covariance estima-
tion and the covariance matrix. Unfortunately, even by a really small MSA
the covariance matrix will explode in size, therefore I am not able to prove
that the covariance matrix handles indirect couples much better. The best
way to explain this method is by a small MSA and a reduced set of amino
acids.

1 2
A A
D C

Suppose we have a MSA of two sequences of two residues each and a
set of three amino acids types {A,C,D}. We can compute the covariance
between specific amino acid combinations at two given alignment sites.

Sabij =
1

n

n∑
k=1

(xaki − x̄ai )(xbkj − x̄bj) (4.3)

The result (S) is the matrix representing the covariance of any amino acid
combination at any combination of two sites. n is the number of sequences
or rows in the MSA. xaki and xbkj have a value of 0 or 1, depending on the
presence of amino acid type a/b at column i/j at row k. If we want to know
the covariance between amino acid A and C for column one and two from
our example, we can calculate it in the following way:

SAC12 =
1

2

2∑
k=1

(xAk1 − x̄A1 )(xCk2 − x̄C2 )

SAC12 =
1

2
((1− 1

2
)(0− 1

2
) + (0− 1

2
)(1− 1

2
)) = −1

4

For k = 1 and k = 2, we subtract the frequency of the specific amino
acid of the number that represents the presence of the same amino acid. If
we calculate the covariance between A and C for all positions we can fill in
a matrix:

SAC =

(
s1,1 s1,2

s2,1 s2,2

)
We are not only interested in one amino acid combination at two sites, but
in all the possible variations. The matrix grows enormously, even by an
unrealistic MSA of sequences consisting of only two residues out of a subset
of three AA-types.
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sAA1,1 sAA1,2 sAD1,1 sAD1,2 sAC1,1 sAC1,2

sAA2,1 sAA2,2 sAD2,1 sAD2,2 sAC2,1 sAC2,2

sDA1,1 sDA1,2 sDD1,1 sDD1,2 sDC1,1 sDC1,2

sDA2,1 sDA2,2 sDD2,1 sDD2,2 sDC2,1 sDC2,2

sCA1,1 sCA1,2 sCD1,1 sCD1,2 sCC1,1 sCC1,2

sCA2,1 sCA2,2 sCD2,1 sCD2,2 sCC2,1 sCC2,2



=



1
4

1
4 −1

4 0 0 −1
4

1
4

1
4 −1

4 0 0 −1
4

−1
4 −1

4
1
4 0 0 1

4

0 0 0 0 0 0

0 0 0 0 0 0

−1
4 −1

4
1
4 0 0 1

4


(4.4)

Matrix S (4.4) contains all the covariances of the three types of amino acids
at any two sites of the simple MSA. Imagine how the matrix will look like
if you want to calculate covariances for a MSA consisting of thousand se-
quences, over one-hundred residues each and twenty-one possible residues
(including gaps).

If the covariance matrix is invertible, you can calculate the concentration
matrix. The matrix above is not invertible (because the determinant is zero),
but the concentration matrix (Θ) should look like this:

Θ =



θ1,1 θ1,2 θ1,3 θ1,4 θ1,5 θ1,6

θ2,1 θ2,2 θ2,3 θ2,4 θ2,5 θ2,6

θ3,1 θ3,2 θ3,3 θ3,4 θ3,5 θ3,6

θ4,1 θ4,2 θ4,3 θ4,4 θ4,5 θ4,6

θ5,1 θ5,2 θ5,3 θ5,4 θ5,5 θ5,6

θ6,1 θ6,2 θ6,3 θ6,4 θ6,5 θ6,6


By using the inverse of the covariance matrix you can obtain the partial
correlation matrix (4.5). The partial correlation matrix gives the correla-
tion between any pair of amino acids at any two sites, conditional on the
frequencies of amino acids at all other sites [13].

ρij = − Θij√
ΘiiΘjj

(4.5)

Jones et al. states that if the covariance matrix can be inverted, the inverse
covariance matrix provides information on the degree of coupling between
pairs of sites in the given MSA [13]. Excluding diagonal elements, numbers
significantly different from zero may indicate pairs of sites which have strong
direct coupling [13].
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4.3 Sparse inverse covariance estimation

The size of a covariance matrix is 21m by 21m, where m is the number of
columns or residues (to keep the matrix manageable the example of 4.4 the
matrix is 6 by 6 and not 42 by 42). Besides the size of the matrix, a second
problem is the fact that the covariance matrix contains more variables than
observations.

KVFGRCELAAAMKR-HGLDNYRGYSLGNWV-CAAKFESNFNTQATN
KVFGRCELAAAMKR-HGLDNYRGYSLGNWV-CAAKFESNFNTQATN
KVFGRCELAAAMKR-HGLDNYRGYSLGNWV-CAAKFESNFNTQATN
KVFGRCELAAAMKR-HGLDNYRGYSLGNWV-CAAKFESNFNTQATN
KVFGRCELAAAMKR-HGLDNYRGYSLGNWV-CAAKFESNFNTQATN
KVFGRCELAAAMKR-HGLDNYRGYSLGNWV-CAAKFESNFNTQATN
KVFGRCELAAAMKR-HGLDNYRGYSLGNWV-CVAKFESNFNTQATN
KVFGRCELAAAMKR-HGLDNYRGYSLGNWV-CVAKFESNFNTQATN
KVFGRCELAAAMKR-HGLDNYRGYSLGNWV-CAAKFESNFNSQATN

Table 4.1: Variables vs. observations. In a MSA, some sites have more
variation than others. If some residues do not appear at specific sites, than
you have more variables than observations (blue vs. red).

Perhaps you noticed many zero’s in the covariance matrix of 4.4. The
explanation for this can be found in table 4.1. Not every amino acid will
be observed at every site, even in very large families, and thus there will
be more variables than observations [13]. For instance, if residue K never
appears at column 17 and residue L never appears at column 33, SKL17,33 will
be zero. Thanks to the variables vs. observation problem, the covariance
matrix cannot be directly inverted.

The problem is solved by using the graphical lasso method of the sparse
inverse covariance estimation. The algorithm is implemented in PSICOV,
but a software package written in R is also freely available.1 According
to Jones et al., “where an inverse covariance estimate is constrained to be
sparse, the non-zero terms tend to more accurately relate to correct positive
correlations in the true inverse covariance matrix [13].” The user is able
to choose his own sparsity level. On average only around 3% of all residue
pairs are observed to be in direct contact [13].

d∑
ij=1

SijΘij − logdetΘ + ρ

d∑
ij=1

|Θij | (4.6)

In the glasso function (4.6), the ρ is the parameter chosen by the user. If the
user chooses a higher ρ, the number of zero elements increases until there
are only zero elements [13]. The final solution is a good estimation of the
true inverse covariance matrix. For more information see the references [1,
7, 13, 18, 24].

1http://www-stat.stanford.edu/~tibs/glasso/
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4.4 Final prediction

The final processing of the prediction is a bit complicated, also because
of the size of the inverse covariance matrix. For the following example, I
pulled apart the original inverse covariance matrix into sub-matrices. Keep
in mind that the numbers are unrealistic, extremely small matrices and I
left sub-matrices out (eg. AD). We want to make a prediction for contacts
between two specific residues. So, a score Scontact for alignment columns i
and j. Assume we have the following sub-matrices.

ΘAC =

−0.4 −0.8 0.2
−0.8 −0.6 0.4
0.2 0.4 0.4

 , and ΘDC =

−0.4 0.8 −0.2
0.8 −0.6 0.4
−0.2 0.4 0.4


We do not want to know all the scores for any specific amino acid combina-
tion, but for every combination of alignment columns.

Scontactij =
∑
ab

|Θab
ij | (4.7)

If we apply formula 4.7 on the matrices above, we can fill in the formula,
for i = 1 and j = 3 as follows:

Scontact13 =
∑
ab

|Θab
13| = |θAC13 |+ |θDC13 | = |0.2|+ | − 0.2| = 0.4

Values of the inverse covariance contain information about the degree of di-
rect coupling. The scores of the different amino acids are combined on basis
of alignment columns. Finally we have a correction of the final prediction
versus all results.

PCij = Scontactij −
S̄contact(i−) S̄contact(−j)

S̄contact
(4.8)

PCij represents the final prediction score (see formula 4.8). We subtract a
background correction from the calculated Scontactij . Mean prediction norms
of columns i and j versus all other columns divided by the mean precision
norm of all columns. The output of PSICOV may consist of negative pre-
diction values. Using parameter -p, it is possible to convert the scores into
an estimated positive prediction value. PSICOV will use a logistic function
to the observed distribution of scores [13].
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Chapter 5

Experiments using PSICOV

Can we find interesting information from the contact prediction results of
PSICOV, related to the difficulty to predict contacts for specific types of
amino acids and amino acid pairs? If we do find unexpected or interesting
results, we can try to adapt PSICOV and improve its predictions. One
possibility is weighting of specific output values. But, at first we take a look
into the contact predictions of PSICOV.

5.1 Data

5.1.1 Input data

We consider the data provided by the authors of the PSICOV software pack-
age. The data has been carefully selected, because protein contact prediction
tools like PSICOV need highly varied alignments for accurate predictions.
According to the guidelines of Jones et al., Pfam families must contain≥1000
sequences with a highly resolved X-ray crystallographic structure available,
resulting 150 target proteins. Sequences of the targets must be between 50
and 275 residues, duplicate rows in alignments are deleted and so are the
columns containing gaps in the target sequence [13].

In order to increase the scope of our analysis, we could also use the HSSP
database as input data [14]. If we do so, we must extract the alignments
from the HSSP files and stick to the mentioned guidelines.

5.1.2 PSICOV output and parameters

First we tried to replicate the results in the PSICOV paper [13]. The pro-
gram offers a set of parameters in order to manage the computation time or
the score of the results. How can we reproduce the predictions?

./psicov -d 0.03 demo.aln > output
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The parameter setting of -d 0.03 represents the target density 3% (“i.e.
3% non-zero terms in the final precision matrix”[13]). These settings leads
to iteratively adjusting ρ in the glasso function (equation 4.6). We are able
to achieve similar results, but a 100% match can not be found because the
software of PSICOV and the glasso library have changed over time. David
T. Jones wrote to us the following.

“The results supplementary material was for versions of PSICOV and
the glasso library code that existed when the paper was published (i.e. back
in mid-2011). Since then the glasso code has been improved by its authors
(Robert Tibshirani’s group). PSICOV itself probably hasn’t changed so much
- apart from fixing a few bugs here and there - but some of these changes
may have slightly changed the output. Assuming the differences you see
are minor, I would just go with whatever the current version of the code
calculates.”

Since PSICOV did not change significantly, in our analysis we use the
results from the supplementary material of [13].

5.1.3 Top-L/l and sequence separation

The output of PSICOV is a list of predicted contacts and a score for each
contact. In contact prediction it is common to look at the top-L/l scores,
where L is the length of the target sequence [5, 13]. If the sequence is 150
residues long, then we have 150 predicted contacts. The top-L/2, -L/5 and
-L/10 are also considered, which have been shown to yield more accurate
predictions [13].

Another criteria to filter the results is based on sequence separation
between two residues. By how many residues are the contacts separated in
the sequence? In the experiments we look at the same cutoffs as used in the
PSICOV paper. We assume that for each contact (with residue pair (i,j)),
the absolute distance between i and j in the sequence must be greater than
4, 8, 11 and 23 residues. These cutoffs are not chosen randomly, but they
represent characteristics of protein structures. The distance between contact
pairs in an alpha helix, separated by one rotation is about four residues [3].
Eight represents two rotations. In other studies sequence separations of >12
and >23 are used, mainly because long distance contacts are more valuable
as structure constraints in 3D structure predictions [5].

5.2 Experimental setup

5.2.1 Defining a contact pair

What is the definition of a contact pair in a fully folded protein? The
following definition is used in the PSICOV paper and CASP8 experiment:
a pair of residues whose C-beta to C-beta distance is <8Å [5, 13]. Å stands
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Figure 5.1: Single amino acid molecule where R stands for the R-group or
side chain [19].
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Figure 5.2: The amino acid lysine. Additional carbons in an R-group are
named (started from the alpha carbon in the middle) C-beta, C-gamma,
C-delta and so on. Figure and theory from [19].

for the Angstrom unit. One Angstrom is equal to 0.1nm (or 10−10m) and
called after physicist Anders J. Angstrom [19].1 Now we will briefly explain
what C-beta, and C-beta to C-beta distances are.

Figure 5.1 shows a single amino acid. The R-group is different for any
of the twenty amino acids and it is attached to the alpha carbon in the
middle. Figure 5.2 shows the amino acid lysine and how additional alpha
carbons are called. All amino acids, except glycine, have an C-beta atom in
their R-group. Glycine only contains a hydrogen atom in its side chain. We
look into the distances between the C-beta atoms of the considered amino
acids. In case of glycine we use the C-alpha atoms. For more information
see chapter 3.1 of Lehningner, Principles of Biochemistry [19].

In literature you can find more definitions of residue-residue contacts [23].
For instance another method used by the authors of PSICOV considers mini-
mum distances between any two heavy atoms as definition of residue-residue
contacts. Results of PSICOV are slightly better for this more sensitive def-
inition. Nevertheless, the first experiments of this research have been done
with the C-beta to C-beta contact definition. The C-beta definition is still
a common method and differences are expected to be minor.

1http://en.wikipedia.org/wiki/Angstrom
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5.2.2 Golden truth:
experimentally determined contact pairs

In order to assess the results of PSICOV and contact prediction tools in
general, we need the real three-dimensional structure of proteins. We use
the crystallographic structures which are experimentally determined protein
3D structures. X-ray structures can be determined at different levels of
resolution. “At low resolution only the shape of the molecule is obtained,
whereas at high resolution most atomic positions can be determined to a
high degree of accuracy. The quality of the final three-dimensional structure
depends on the resolution of the X-ray data and the degree of refinement [3].”
Brandon and Tooze state that a highly refined structure at a resolution
around 2.0Å, the amino acid sequence is known. Since Jones et al. use a
resolution threshold of ≤1.9Å, we assume that we have a reliable benchmark.

Atomic coordinates

Information about a protein 3D structure can be found in so-called pdb
(format) files. “A typical pdb format file contains atomic coordinates for a
diverse collection of proteins, small molecules, ions and water. Each atom
is entered as a line of information that starts with a keyword: either ATOM
or HETATM [2, 21].” These atomic coordinates are used to calculate the
absolute distance between any two atoms. Therefore pdb files can be directly
used to calculate the ’true’ residue-residue contacts, for various types of
contact pair definitions.

Keyword Nr.in file Name AA Chain-id Res nr X Y Z
ATOM 1 N LEU A 4 -3.883 41.780 40.071 N
ATOM 2 CA LEU A 4 -4.394 42.817 39.132 C
ATOM 3 C LEU A 4 -5.413 42.211 38.178 C
ATOM 4 O LEU A 4 -5.799 42.876 37.208 O
ATOM 5 CB LEU A 4 -3.265 43.498 38.355 C
ATOM 6 CG LEU A 4 -3.604 44.793 37.605 C
ATOM 7 CD1 LEU A 4 -4.290 45.783 38.535 C
ATOM 8 CD2 LEU A 4 -2.372 45.423 36.968 C
ATOM 9 N PHE A 5 -5.860 40.976 38.465 N
ATOM 10 CA PHE A 5 -6.835 40.387 37.540 C

Table 5.1: A snippet of the atomic contacts and coordinates in a pdb file
(pdb-id 1a3a). The abbreviation AA represent the three letter code of amino
acids. Chain-id specifies the chain if the protein is oligomeric (a molecular
complex).

Table 5.1 shows part of the description of atomic coordinates. Each line
consists of an atom and the information related to its residue (number) and
coordinates.
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5.2.3 Comparison of predicted
and experimentally determined contacts

Interatomic contacts vs. PSICOV output

The WHAT IF servers of the CMBI provide many different functions around
protein data calculations [12]. One is the calculation of C-beta pairs <10Å
out of atomic contact information of pdb files. C-beta pairs within a smaller
threshold can be filtered afterwards.

seq nr. AA pdb nr. seq nr. AA pdb nr. Å
1 LEU ( 4 )A - 2 PHE ( 5 )A 5.358
1 LEU ( 4 )A - 3 LYS ( 6 )A 8.838
1 LEU ( 4 )A - 73 LYS ( 76 )A 9.874
1 LEU ( 4 )A - 74 THR ( 77 )A 5.247
1 LEU ( 4 )A - 75 GLY ( 78 )A 7.254
1 LEU ( 4 )A - 76 VAL ( 79 )A 9.641
1 LEU ( 4 )A - 103 ALA ( 106 )A 8.314
1 LEU ( 4 )A - 107 GLU ( 110 )A 7.507
1 LEU ( 4 )A - 110 GLN ( 113 )A 6.981
1 LEU ( 4 )A - 111 VAL ( 114 )A 6.741
1 LEU ( 4 )A - 114 SER ( 117 )A 7.432
1 LEU ( 4 )A - 144 ARG ( 147 )A 9.819

Table 5.2: All results of interatomic contacts <10Å for the first amino acid
leucine in pdb file 1a3a. Each row represents a contact pair with associated
distance in Angstrom.

Pos i Pos j Score
96 129 0 8 17.366371
25 100 0 8 12.980494
43 100 0 8 12.909767
12 80 0 8 11.863224
23 40 0 8 11.837438
46 52 0 8 10.869245
26 40 0 8 10.746915
25 79 0 8 10.317855
75 102 0 8 10.081199
84 96 0 8 9.303587

Table 5.3: Top ten results of a PSICOV prediction. Each row stands for a
predicted contact pair between positions i and j. All results are sorted by
score. Column three and four contain dummy values.

As can be seen in table 5.2, the sequence number does not correspond
with the pdb number. The supplementary data of PSICOV includes fixed
pdb files, where sequence number and pdb number are matched correctly. As
illustrated in table 5.2 and 5.3 one can relate the predictions of PSICOV to
the golden truth, and compute the true positive and false positive predictions
of amino acids (or pairs) used in our analysis.
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5.2.4 True positives and false positives

The computation of the set of true positives and false positives depends on
two parameters, here called selected number of ranked predictions (denoted
by l) and distance between the residues of a pair in the protein sequence
(denoted by d). We used the parameter settings considered in [13], with
l ∈ {L,L/2, L/5, L/10} and d ∈ {4, 8, 11, 23}. So, for a given target protein
p, the list O consisting of the contact pairs output by PSICOV and sorted
according to their score, is processed as follows to compute true and false
positives.

Algorithm 1 Define true and false positives

Input: PSICOV predictions and interatomic contacts (golden truth)
Output: Determined true and false positive PSICOV predictions
1: true positive = [ ];
2: false positive = [ ];
3: set the values of parameters l and d;
4: k = 1;
5: while k < l do
6: (i,j) = k-th pair in 0;
7: if sequence distance between i and j > d then
8: if prediction(i,j) in interatomic contacts then
9: true positive = [ true positive ; (i,j) ];

10: else
11: false positive = [ false positive ; (i,j) ];
12: end if
13: end if
14: k = k + 1;
15: end while

With interatomic contacts is meant the list of interatomic contacts calcu-
lated by the WHAT IF webservers. For the considered 150 target proteins,
and for each pair of values of the parameters l and d we calculate the true
and false positives, for a total of 4800 experiments.
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Chapter 6

Analysis of PSICOV
predictions

We want to analyze the results of PSICOV in order to determine whether
sequence properties of an amino acid and/or of an amino acid pair can be
linked to the difficulty of their prediction. The findings could be used to im-
prove the prediction of PSICOV by incorporating the discovered properties
as bias in the method (predictions).

We investigated correlations between vectors using Pearson and Spear-
man correlations. A Spearman correlation coefficient is a rank ordered based
test. Two datasets are ranked by value and both rankings are tested. We
also use a Pearson correlation coefficient to test the linear relationship be-
tween two datasets. For both tests, a Python library called Scipy provided
the functionality.1

6.1 Analysis of true positives

We first investigated true positives. For each amino acid, we correlate the
distribution of the number of true positives and of the true contact pairs
containing that amino acid, over the 150 target proteins. Amino acids that
do not yield a positive correlation are considered as outliers and could have
peculiar biological characteristics. Specifically, for each target protein p,
sequence separation d ∈ {4, 8, 11, 23}, and selected number of predictions l ∈
{L,L/2, L/5, L/10}, we construct a 20x20 matrix Mp

d,l such that Mp
d,l(i, j)

contains the number of true positive pairs which are equal to the pair of
amino acids (i, j) (or (j, i)).

Consider the vector V j
d,l such that V j

d,l(k) is
20∑
i=1

Mk
d,l(i, j), that is, the

number of amino acid pairs occurring in the set of true positives and contain-
ing amino acid j for the k-th target protein PSICOV experiment (see 6.1).

1http://www.scipy.org/
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V j
d,l = (

20∑
i=1

M1
d,l(i, j),

20∑
i=1

M2
d,l(i, j),

20∑
i=1

M3
d,l(i, j), ...,

20∑
i=1

M150
d,l (i, j)) (6.1)

Analogously we consider the vector Cjd (see equation 6.2), where I de-
notes the matrix containing the number of true interatomic contacts for each
pair of amino acids. Cjd(k) is the number of amino acid pairs occurring in
the set of true interatomic contacts of the k-th target protein and containing
amino acid j. We compute a Pearson and Spearman correlation between V j

d,l

and Cjd.

Cjd = (

20∑
i=1

I1
d(i, j),

20∑
i=1

I2
d(i, j),

20∑
i=1

I3
d(i, j), ...,

20∑
i=1

I150
d (i, j)) (6.2)

Example of true positive analysis

Consider the following matrices, for sequence separation 4 and number of
predictions L/1, we have fictional true positive predictions (M) and a fic-
tional golden truth (I). In all examples we pretend that there are only three
types of amino acids (∈ {A,C,D}). Sorted by name, 1a3a is the first pdb-id
and 5ptp the hundred fiftieth.

M1a3a
4,L/1 =

A C D
A 3 0 2
C 0 1 2
D 2 2 1

, ...,M5ptp
4,L/1 =

A C D
A 1 1 2
C 1 3 1
D 2 1 1

I1a3a
4 =

A C D
A 3 2 2
C 2 4 2
D 2 2 3

, ..., I5ptp
4 =

A C D
A 1 3 2
C 3 4 1
D 2 1 1

In this example, each amino acid can form three types of pairs instead of
twenty pairs in the original experiment. Therefore, the sum consists of three
elements.

V A
4,L/1 = (

3∑
i=1

M1a3a
4,L/1(i, A), ...,

3∑
i=1

M5ptp
4,L/1(i, A))

= ((M1a3a
4,L/1(A,A)) +M1a3a

4,L/1(C,A)) +M1a3a
4,L/1(D,A)),

...,

(M5ptp
4,L/1(A,A)) +M5ptp

4,L/1(C,A)) +M5ptp
4,L/1(D,A))

= ((3 + 0 + 2), ..., (1 + 1 + 2)) = (5, ..., 4)

CA
4 = (

3∑
i=1

I1a3a4 (i, A), ...,

3∑
i=1

I5ptp4 (i, A)) = ((3 + 2 + 2), ..., (1 + 3 + 2)) = (7, ..., 6)

Finally, we compute a Pearson and Spearman correlation between vectors
V A

4,L/1 and CA4 . For amino acids C and D we can do the same.
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6.2 Analysis of false positive analysis

Besides true positives, we can also try to find information in the results
of the false positive predictions. Our hypothesis is that the difficulty of
predicting a contact containing a given amino acid is related to how often
it occurs in the target protein. When amino acids occur fewer times, they
are more difficult to predict.

We test this hypothesis by means of the following two methods.

1. Amino acid false positive vs frequency analysis. For each amino acid,
we correlate the distribution of its false positives and its frequency over
the target sequences. We would expect this analysis to yield positive
correlations.

2. Amino acid prediction difficulty vs frequency analysis. We quantify
the difficulty to predict a contact pair containing a given amino acid.
Specifically, for a given target protein, we subtract the number of true
positives from the number of false positives of pairs containing that
amino acid. Then we correlate the vector obtained by considering
all target proteins, with the amino acid frequency vector. We would
expect this analysis to yield negative correlations.

In the sequel we describe these methods in detail.

6.2.1 Amino acid false positive vs frequency analysis

For each target protein sequence p, sequence separation d ∈ {4, 8, 11, 23},
and selected number of predictions l ∈ {L,L/2, L/5, L/10}, construct a
20x20 matrix M ′kd,l such that M ′kd,l(i, j) contains the number of false positive
pairs which are equal to the pair of amino acids (i, j) (or (j, i)).

Consider the vector V ′jd,l such that V ′jd,l(k) is
20∑
i=1

M ′kd,l(i, j), that is, the

number of amino acid pairs occurring in the set of false positives and con-
taining amino acid j for the k-th target protein PSICOV experiment. We
want to correlate this vector with the vector F j of the amino acid frequen-
cies in the 150 target protein sequences, such that F j(p) is the number of
times amino acid j occurs in protein sequence p divided by the length of p.
We compute Pearson and Spearman correlation between V ′jd,l and F j .

Example of the frequency vector

Vector V ′jd,l is created in the same way as shown in the example of the true

positive analysis, but for V ′jd,l we use matrices with false positive predictions.

Fictional targets:

1a3a: CCDAAADDACADDCA, ...,5ptp: ADCADDDACADDACCD

FA = (FA(1a3a), ...,FA(5ptp)) = (6/15, ..., 5/16)
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We compute Pearson and Spearman correlation between V ′A4,L/1 and FA (FA

as illustrated above, all target sequence frequencies for amino acid A).

6.2.2 Amino acid prediction difficulty vs frequency analysis

Dj
d,l(k) =

20∑
i=1

(M ′kd,l(i, j)−Mk
d,l(i, j)) (6.3)

Consider the vector Dj
d,l (see equation 6.3), where Dj

d,l(k) is the relative
difference of amino acid occurrence j in the false positive and true positive
predictions of the k-th target protein. We compute Pearson and Spearman
correlation between Dj

d,l and frequency vector F j (for F j see section 6.2.1).

Example of amino acid prediction difficulty vs frequency analysis

In amino acid prediction difficulty we look at both true positive and false pos-
itive matrices. We calculate the vector element for pdb-id 1a3a (k = 1a3a).
The final vector Dj

d,l consist of 150 elements or targets (sorted alphabeti-
cally).

M1a3a
4,L/1 =

A C D
A 3 0 2
C 0 1 2
D 2 2 1

M ′1a3a
4,L/1 =

A C D
A 1 1 0
C 1 3 1
D 0 1 1

DA
4,L/1(1a3a) =

3∑
i=1

(M ′1a3a
4,L/1(i, A)−M1a3a

4,L/1(i, A)))

= (

3∑
i=1

M ′1a3a
4,L/1(i, A))− (

3∑
i=1

M1a3a
4,L/1(i, A)))

= (1 + 1 + 0)− (3 + 0 + 2)

= 2− 5 = −3

We can simplify the formula so that parts are similar to the example of
the true positive analysis. It is a complex way to describe that we subtract
the sum of one column of false positives from the sum of one column of
true positives (for amino acid A). The final score can be either negative or
positive. When it is positive, it means that there are more false positive
predictions than true positive predictions (for amino acid A). These amino
acids are more difficult to predict. By calculating a Pearson and Spearman
correlation between DA

4,L/1 and FA (example of 6.2.1) we can check if the

amino acid prediction difficulty (of A) is related to the frequency in the
golden truth.
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6.3 Analysis of pairs

Another method of analysis is looking at specific amino acid pairs, instead of
single amino acids in PSICOV predictions. The major difference in analysis
is that we are not creating a vector for a single amino acid, but a vector for
any possible pair of amino acids. We have similar expectations for results
of predicted pairs as for single amino acids.

6.3.1 Analysis of predicted true positive pairs

For each target protein sequence p, sequence separation d ∈ {4, 8, 11, 23},
and selected number of predictions l ∈ {L,L/2, L/5, L/10}, construct a
20x20 matrix Mp

d,l such that Mp
d,l(i, j) contains the number of true positive

pairs which are equal to the pair of amino acids (i, j) (or (j, i)).

V i,j
d,l = (M1

d,l(i, j),M
2
d,l(i, j), ...,M

150
d,l (i, j)) (6.4)

Consider a vector V i,j
d,l (see 6.4), such that V i,j

d,l (k) is the number of true
positive predictions of amino acid pair i, j for the k-th target protein PSI-
COV experiment. Analogously we create a vector Ci,jd , where Ci,jd (k) is
Ikd (i, j), that is the true interatomic frequency of amino acid pair (i, j) for
the k-th target protein. We compute a Pearson and Spearman correlation
between V i,j

d,l and Ci,jd .

Example of true positive pair analysis

We consider the same fictional matrices as shown in the example of the true
positive analysis (true positive predictions M , golden truth I). Again we
have only two of the 150 targets.

M1a3a
4,L/1 =

A C D
A 3 0 2
C 0 1 2
D 2 2 1

, ...,M5ptp
4,L/1 =

A C D
A 1 1 2
C 1 3 1
D 2 1 1

I1a3a
4 =

A C D
A 3 2 2
C 2 4 2
D 2 2 3

, ..., I5ptp
4 =

A C D
A 1 3 2
C 3 4 1
D 2 1 1

This time it is just a matter of matching the right predictions with the right
vector elements. It seems easier, but the amount of vectors (one for every
amino acid pair) may cause a bottleneck.

V A,C
4,L/1 = (M1a3a

4,L/1(A,C), ...,M5ptp
4,L/1(A,C))

= (0, ..., 1)

CA,C
4 = (I1a3a4 (A,C), ..., I5ptp4 (A,C))

= (2, ..., 3)

A Pearson and Spearman correlation can be calculated between V A,C
4,L/1 and

CA,C4 .
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6.3.2 Analysis of predicted false positive pairs

For the analysis of predicted false positive pairs we make again a distinction
between the false positive frequencies and prediction difficulties.

Amino acid pairs, false positive vs frequency analysis

We construct again a 20x20 matrix M ′kd,l (for each target protein p, sequence

separation d, and selected number of predictions l), such that M ′kd,l(i, j)
contains the number of false positive pairs which are equal to the pair of
amino acids (i, j) (or (j, i)). Consider a vector V ′i,jd,l , such that V ′i,jd,l (k) is

equal to M ′kd,l(i, j), that is the occurrence of false positive predicted amino
acid pair (i, j) of the k-th target protein.

We want to correlate vector V ′i,jd,l with frequency vector F i,j , where

F i,j(p) is the product of amino acid frequencies i and j, divided by the
square of the lenght of p. Thereto, we compute a Pearson and Spearman
correlation between V ′i,jd,l and F i,j .

Example of the frequency vector for pairs

Vector V ′i,jd,l is similar to V i,j
d,l (see section 6.3.1 for the example). For V ′i,jd,l

we use matrices of false positive predictions.

Fictional targets:

1a3a: CCDAAADDACADDCA, ...,5ptp: ADCADDDACADDACCD

FA,C = (FA,C(1a3a), ...,FA,C(5ptp)) = ( 6·6
152

, ..., 5·4
162

)

We compute Pearson and Spearman correlation between V ′A,C4,L/1 and FA,C

(FA,C as illustrated above, all target sequence frequencies for amino acid
pair A,C).

Amino acid pairs, prediction difficulty vs frequency analysis

D′i,jd,l (k) = (M ′kd,l(i, j)−Mk
d,l(i, j)) (6.5)

Vector D′i,jd,l (see 6.5) is similar to equation 6.3. D′i,jd,l (k) is the relative
difference of amino acid pair occurrence (i, j) in the false positive and true
positive predictions of the k-th target protein. We compute a Pearson and
Spearman correlation between D′i,jd,l and frequency vector for pairs F i,j .
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Example of amino acid prediction difficulty vs
frequency analysis for pairs

We consider the same fictional matrices as in the example for the non pair
predictions difficulty vs frequency analysis. We have a matrix of false posi-
tive predictions (M ′1a3a

4,L/1) and one of true positive predictions (M1a3a
4,L/1).

M1a3a
4,L/1 =

A C D
A 3 0 2
C 0 1 2
D 2 2 1

M ′1a3a
4,L/1 =

A C D
A 1 1 0
C 1 3 1
D 0 1 1

For one element (k = 1a3a) of vector D′i,jd,l we can fill in:

D′A,C4,L/1(1a3a) = (M ′1a3a
4,L/1(A,C)−M1a3a

4,L/1(A,C))

= 1− 0 = 1

If we have a complete vector (150 elements or targets) for DA,C
4,L/1, we can

correlate this vector with the frequency vector for pairs FA,C .
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Chapter 7

Using the results of the
analysis to adjust the output
of PSICOV

After analyzing the true and false positive PSICOV predictions, we want
to use our findings for improving the predictions. We will briefly discuss
the results of the analysis of PSICOV predictions. For the complete set of
results, I refer to the supplementary data of this thesis.1

7.1 Predictions versus frequency correlation
results

Figure 7.1: The (Pearson) correlation values out the prediction analysis.
True positives versus golden truth and false positives versus frequency, as
described in sections 6.1 and 6.2.1 (by sequence separation D > 4).

1https://www.dropbox.com/s/isv4wrzyyzwsw0w/analysis%26adjustments.zip
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In general we observe only positive correlations between the predicted
pairs of amino acids and the frequency in the golden truth or target sequence.
We expected such positive correlations, but we were hoping for the presence
of few outliers. A negative correlation of predicted pairs versus golden truth
or target sequence frequency would have indicated amino acids that are
difficult to predict. Figure 7.1 shows these correlation values. These results
are somewhat expected, and do not provide relevant knowledge that could
be used to improve PSICOV predictions.

7.2 Prediction difficulty versus frequency
correlation results

Figure 7.2: The (Pearson) correlation values between the prediction dif-
ficulty of amino acids and their target sequence frequency (by sequence
separation D > 4).

Figure 7.2 shows how amino acid prediction difficulty correlates with
the amino acid frequency in target sequences. We observe a higher number
of negative correlations for larger values of l in the top-L/l lists. Results
indicate that our conjecture of a negative correlation between prediction
difficulty and amino acid frequencies is substantiated by the considered ex-
periments. Interestingly, amino acid prediction difficulty versus frequency
correlations strongly depend on the amino acid composition. Therefore it
seems that we could use this information to adjust the output of PISCOV.
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7.2.1 A closer look at prediction difficulty

Figure 7.3: For amino acid valine and asparagine, top-L predictions and
sequence separation D > 4, prediction difficulty values ((#false positives-
#true positives)/top-L) are plotted versus frequencies are plotted for all 150
target sequences.

If we take a closer look at the analysis on prediction difficulty, we can
make interesting observations. Prediction difficulty of an amino acid versus
the frequency of the same amino acid in its target yield positive or negative
correlations for different amino acids (figure 7.3). This type of variety can
be used to distinguish amino acids that are easier or harder to predict. By
means of adjustments to the output of PSICOV, we could ’help’ amino acids
that are harder to predict by PSICOV.
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7.3 Methods to adjust PSICOV predictions

We try to apply our results to adjust the predictions of PSICOV using the
following simple linear transformation. For each pair (i, j) the adjusted
output APSICOV (i, j) is

APSICOV (i, j) = PSICOV (i, j)− γT (i, j) (7.1)

The term T (i, j) quantify how easy pairs containing one of the amino acids
at position i and j are to be predicted by PSICOV, and the γ determines
the impact of term T (i, j).

We consider four definitions of T , yielding four variants of APSICOV.

1. Average Frequency. −T (i, j) = the average frequency of the amino acids at
positions i, j.

2. Average Correlation. −T (i, j) = the average (Pearson) correlation of true
positives versus golden truth of amino acids occurring at positions i, j. See
section 6.1 for the explanation about retrieving the correlation values.

3. Average Prediction Difficulty. T (i, j) = the average prediction difficulty
(Pearson correlation of prediction difficulty versus frequency) of the amino
acids at positions i, j. See section 6.2.2 for the explanation about retrieving
the correlations values.

4. Pairing Preference. −T (i, j) = R(i, j) , where R(i, j) is the pairing preference
of the amino acids at positions i, j, as described in [8].

The pairing preference values are fitted into positive values by a logistic
function for a suitable scale.

7.3.1 Adjustments in practice: calculation of APSICOV

Recalculated PSICOV predictions

The analysis on PSICOV predictions is based on the likelihood score of
predicted contact pairs, which has a range of approximately −3 till +19.
The proportions of correlation coefficients and the likelihood are not the
same and can not be compared. We recalculated the predictions using the
parameter −p for an estimated positive predictive value by fitting a logistic
function to the observed distribution of scores [13]. These results are scores
with values between 0 and 1. Little has changed in the top-L/l lists, but we
were not able to recalculate four targets (1d4o,1kqr,1mug and 1xkr) due to
lack of sequences in their MSA and/or lack of sequence diversity.
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Training and testing the model

For a proper implementation of the adjustments in practice, we use a non-
overlapping training and testing set. Here we use a leave-one-out cross
validation (LOOCV) procedure. Specifically, all but one target protein are
used to compute the values of T . The remaining target protein is used for
prediction using APSICOV.

The following example based on prediction difficulty of amino acids, il-
lustrate the LOOCV procedure. Consider the following vectors. For every
target p and amino acid aa we can fill a vector X with frequencies F , and
vector Y using prediction difficulties D. When creating a vector for tar-
get px, we use all available information except frequencies and prediction
difficulties found in px.

Xpx
aa = [F p1aa , ...F

p146
aa ]− F pxaa

Y px
aa = [Dp1

aa, ...D
p146
aa ]−Dpx

aa

The following step is calculation of correlation coefficients Cpxaa (Xpx
aa , Y

px
aa )

for all combinations of targets and amino acids. Using this information we
want to improve the predictions.

AP pxi,j = P pxi,j − γ
Cpxaa(i) + Cpxaa(j)

2
(7.2)

As you can see in equation 7.2, we use the average of correlation values of
the involved amino acids. aa(i) and aa(j) represents the amino acids type
aa at position i or j.
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Chapter 8

Results of APSICOV

In this chapter will be shown the results of the proposed methods to adjust
PSICOV’s predictions.

Quality assessment: mean precision

When comparing different methods of contact pair prediction we use mean
precision as a measure for quality:

1

146

146∑
p=1

TppL/l

TppL/l + FppL/l
=

1

146

146∑
p=1

TppL/l

L/l
(8.1)

For every target p we divide the number of true positives by the sum of
all true and false positives (equation 8.1). This is equal to the deviation of
true positives by the top-L/l, which includes all predictions. By subtracting
the mean precision of PSICOV to the mean precision of APSICOV (for a
given T , and γ), the difference in performance called gain(mean precision)
quantifies the gain achieved by APSICOV.
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8.1 Adjustments by method

8.1.1 Average frequency

Figure 8.1: Gain of mean precision on PSICOV predictions using average
frequencies of amino acids for different values of γ, by sequence separation
D.

The first adjustment method results in very small gains, that is, the
difference of the mean precision of APSICOV with the mean precision of
PSICOV across various values of γ is often small. For L/10 we observe a
higher improvement than for other top-L lists, but even in that case the
gain of mean precision is rather small (< 0.01). This shows that APSICOV
based on average frequency adjustment is not effective.
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8.1.2 Average correlation (of TP versus golden truth)

Figure 8.2: Gain of mean precision on PSICOV predictions using average
correlation value of amino acids (true positives predictions versus frequency
in the golden truth) for different values of γ, by sequence separation D.

If we look at the adjustments based on average correlation values, we
see great differences in performance if we change the sequence separation
threshold D. Especially for sequence separation D > 23 we see that this
method leads to better mean precision values, but the gain is rather small.
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8.1.3 Average prediction difficulty

Figure 8.3: Gain of mean precision on PSICOV predictions using prediction
difficulty of amino acids for different values of γ, by sequence separation D.

Prediction difficulty of amino acids clearly offers opportunities in im-
provement of PSICOV predictions. A stable growth in gain of mean precision
shows the best impact of weighing the PSICOV predictions by prediction
difficulty of amino acids.

46



8.1.4 Pairing preference

Figure 8.4: Gain of mean precision on PSICOV predictions using pairing
preference of amino acids for different values of γ, by sequence separation
D.

We found that adjusting PSICOV by pairing preference has some mini-
mal improvements on the mean precision values. The gain of mean precision
is maybe lower than expected, but the results do show that characteristics
such as pairing preference can be helpful in predicting contact pairs.
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8.2 A summary of all results

Table 8.1 shows an overview of the gain in average precision after corrections
on PSICOV predictions. The value of γ is chosen by the best gain for
sequence separation of 4 and top-L predictions.

[i - j] > 4 [i - j] > 8
L L/2 L/5 L/10 L L/2 L/5 L/10

PSICOV 0.4606 0.6045 0.7406 0.7916 0.4280 0.5783 0.7279 0.7844
Avg Freq (γ = 0.05) 0.4614 0.6041 0.7406 0.7927 0.4274 0.5779 0.7285 0.7840
Avg Corr (γ = 0.15) 0.4626 0.6057 0.7405 0.7933 0.4312 0.5809 0.7317 0.7866
Pred Diff (γ = 0.15) 0.4709 0.6142 0.7513 0.8083 0.4364 0.5888 0.7415 0.8000
Pair Pref (γ = 0.10) 0.4636 0.6060 0.7409 0.7981 0.4298 0.5816 0.7307 0.7885

[i - j] > 11 [i - j] > 23
L L/2 L/5 L/10 L L/2 L/5 L/10

PSICOV 0.4053 0.5571 0.7098 0.7777 0.3343 0.4748 0.6503 0.7367
Avg Freq (γ = 0.05) 0.4064 0.5577 0.7088 0.7779 0.3342 0.4754 0.6519 0.7366
Avg Corr (γ = 0.15) 0.4099 0.5604 0.7155 0.7815 0.3381 0.4814 0.6560 0.7441
Pred Diff (γ = 0.15) 0.4142 0.5668 0.7265 0.7934 0.3408 0.4890 0.6671 0.7467
Pair Pref (γ = 0.10) 0.4088 0.5602 0.7130 0.7825 0.3345 0.4793 0.6559 0.7391

Table 8.1: Mean precision scores compared. For PSICOV and the improved
methods the mean precision values for the top-L/l contacts divided by se-
quence separation ranges where Cβ-Cβ distance < 8Å.

Looking at all the mean precision values, we observe that the correc-
tion based on prediction difficulty scores the best. Corrections by other
adjustment methods improves the PSICOV predictions barely.
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8.3 Wilcoxon signed-rank test

To test whether or not the improvements are significant, we use a Wilcoxon
signed-rank test. We use a Python library to implement the statistical
tests. As stated in the Scipy documentation: “The Wilcoxon signed-rank test
tests the null hypothesis that two related paired samples come from the same
distribution and in particular, whether the distribution of the differences x -
y is symmetric about zero.”1

Consider the following vectors:

Id,l = [MpIp1d,l, ...,MpIp146
d,l ]

Pd,l = [MpP p1d,l , ...,MpP p146
d,l ]

Vector Id,l consists of adjusted precision values for each target with top-
L/l predictions l and sequence separation d. Vector Pd,l consists of original
precision values of PSICOV predictions, using the same parameters. We
calculate the Wilcoxon signed-rank test Wd,l(Id,l, Pd,l) between these vectors.

[i - j] > 4 [i - j] > 8
L L/2 L/5 L/10 L L/2 L/5 L/10

PSICOV vs. Avg Freq (γ = 0.05) 2.70−2 4.74−1 3.97−1 5.75−1 1.22−1 5.73−1 6.12−1 5.75−1

PSICOV vs. Avg Corr (γ = 0.15) 2.17−2 2.42−1 6.87−1 4.47−1 3.86−4 4.06−3 2.61−2 1.89−1

PSICOV vs. Pred Diff (γ = 0.15) 2.48−9 3.31−7 4.69−4 3.10−4 3.36−7 2.75−7 1.34−5 1.26−4

PSICOV vs. Pair Pref (γ = 0.10) 2.61−3 4.45−1 9.93−1 2.89−2 7.46−2 9.33−3 1.56−1 5.42−2

[i - j] > 11 [i - j] > 23
L L/2 L/5 L/10 L L/2 L/5 L/10

PSICOV vs. Avg Freq (γ = 0.05) 5.42−3 4.71−1 2.60−1 8.93−1 4.91−1 4.40−1 5.93−2 8.93−1

PSICOV vs. Avg Corr (γ = 0.15) 5.24−6 4.26−3 6.06−3 4.29−2 2.29−4 3.18−5 7.88−4 3.33−2

PSICOV vs. Pred Diff (γ = 0.15) 2.62−7 2.35−6 5.16−7 1.08−4 5.13−6 5.68−7 4.29−7 1.67−2

PSICOV vs. Pair Pref (γ = 0.10) 2.21−4 2.29−2 1.02−1 4.37−2 2.91−1 1.06−2 1.68−2 5.66−1

Table 8.2: The Wilcoxon signed-rank test applied to PSICOV and variants
of APSICOV. For all top-L/l predictions and sequence separations we tested
the difference in the precisions of the adjusted method versus those of the
original PSICOV over the considered targets. P-values greater than 0.05 are
in bold.

We see that the results after adjusting PSICOV using prediction diffi-
culty are significant, with most of the p-values smaller than 0.05. For the
other adjustment methods the improvement is not overall significant.

1http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wilcoxon.html
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8.4 Prediction difficulty: best practice

In the above comparison we chose a fixed value of γ for each adjustment
method by hand. However, we could use the training data, that was em-
ployed to compute the value of the adjustment, also for estimating a best
value of γ for each target protein, l and D. In this section I will show
the problem retrieving the best results using top-L and Top-L/10 lists by a
sequence separation of D > 4.

Figure 8.5: Mean precision values, of all targets individually, of the adjusted
(APSICOV, using prediction difficulty) predictions versus the original PSI-
COV predictions.

In figure 8.5 we observe the variety in mean precision values if we change
the influence by different values for γ. To ensure that adjusted PSICOV
predictions provide the maximum precision for any set of parameters, we
must implement a smarter algorithm.
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8.4.1 Proposed γ∗ algorithm

Algorithm 2 Compute maximum precision using γ∗

Input: all targets and chosen adjustment method,
by l ∈ {L,L/2, L/5, L/10} and d ∈ {4, 8, 11, 23}

Output: maximum precision for any set of parameters
1: for target t, l, d do
2: compute training model Tt,l,d, without using target t;
3: for γ ∈ {0.05, 0.1, ..., 1} do
4: compute precision value P γt,l,d, using γTt,l,d;
5: end for
6: choose γ∗ with the maximum precision P γt,l,d;
7: use γ∗ and Tt,l,d to adjust PSICOV predictions on t, l, d;
8: end for

Algorithm 2 estimates a best value of γ for every target protein and and
any set of parameters using the training data. For this reason it is a compu-
tationally intensive and time consuming task. Given any set of parameters,
the γ∗ algorithm calculates the greatest average APSICOV precision on the
training set.

8.4.2 Results using γ∗ algorithm

[i - j] > 4 [i - j] > 8
L L/2 L/5 L/10 L L/2 L/5 L/10

PSICOV 0.4606 0.6045 0.7406 0.7916 0.4280 0.5783 0.7279 0.7844
Avg Freq (γ∗) 0.4595 0.6050 0.7424 0,7933 0.4274 0.5768 0.7304 0,7908
Avg Corr (γ∗) 0.4626 0.6029 0.7393 0.7936 0.4314 0.5799 0.7334 0.7839
Pred Diff (γ∗) 0.4709 0.6207 0.7616 0.8216 0.4364 0.5913 0.7460 0.8164
Pair Pref (γ∗) 0.4636 0.6075 0.7420 0.8059 0.4313 0.5835 0.7313 0.7831

[i - j] > 11 [i - j] > 23
L L/2 L/5 L/10 L L/2 L/5 L/10

PSICOV 0.4053 0.5571 0.7098 0.7777 0.3343 0.4748 0.6503 0.7367
Avg Freq (γ∗) 0.4048 0.5565 0.7141 0.7783 0.3332 0.4762 0.6541 0.7437
Avg Corr (γ∗) 0.4109 0.5610 0.7158 0.7896 0.3385 0.4836 0.6633 0.7494
Pred Diff (γ∗) 0.4124 0.5654 0.7222 0.8064 0.3416 0.4890 0.6684 0.7536
Pair Pref (γ∗) 0.4057 0.5606 0.7151 0.7836 0.3354 0.4798 0.6509 0.7441

Table 8.3: Mean precision scores using γ∗. For PSICOV and the improved
methods the mean precision values for the top-L/l contacts divided by se-
quence separation ranges where Cβ-Cβ distance < 8Å.

By introducing γ∗ we expect the best results for any set of parameters.
In general we see higher mean precisions, but for some parameters there
are some lower precisions than by using γ = 0.15. For some targets and
parameters the LOOCV procedure does not find the ’best’ γ.
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8.4.3 Performance of the γ∗ algorithm

Figure 8.6: Mean precision values, of all targets individually, of APSICOV
(γ = 0.15) vs APSICOV (γ∗). Adjusted by prediction difficulty.

The first results of this study were based on a self chosen value for γ
(see table 8.1). Our γ∗ algorithm selects a γ for every target, without prior
knowledge. Figure 8.6 shows that the performance of the γ∗ algorithm
hardly decreases in comparison to a self chosen ’best’ value for γ. At the
same time, we see better results for other sets of parameters.

Figure 8.7: Mean precision values, of all targets individually, of PSICOV vs
APSICOV (γ∗). Adjusted by prediction difficulty.

When we compare the results of the γ∗ algorithm versus the original
PSICOV predictions, we see improved mean precisions for almost all targets.
Using γ∗ we obtain results comparable with the ’best’ performances as shown
in figure 8.5.
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Chapter 9

Discussion

In this chapter I discuss the most important observations of this study and
considerations for further research.

Dataset

The quality of contact pair predictions made by PSICOV is strongly depen-
dent on several properties of the input data. Length of a protein and the
size of its family are two of them. These properties may lead to larger and
more varied multiple sequence alignments, which in turn, makes it easier to
find covariance. Also, the quality of MSA algorithms is a factor that affects
contact pair predictions made by PSICOV.

For this study we used the same input data as provided by the PSICOV
tool. The targets are carefully selected, because of the quality of their MSA’s
and benchmark purposes. Four out of 150 targets were not suitable for this
study according the new versions of PSICOV. An interesting question is how
PSICOV performs in a broader perspective. How does PSICOV perform
when we use more less strictly selected targets?

Interpretation of contact pairs

As a non-biologist it is hard to keep track of the biological meaning of the
data and related research questions. Contact pair prediction is a complicated
working field, even within bioinformatics. One of the main issues concerns
the interpretation of contact pairs. Information about contact pairs loses
value if we consider the single amino acids occurring in the pair. A contact
pair within a protein is a unique and specific piece of information and it is not
necessarily related to other pairs. In other words, if a contact pair containing
amino acids A-D is located at position (i, j), it does not necesarily mean that
another pair with the same amino acids A-D but at position (i+15, j+15) is
also a contact pair. This fact makes it harder to implement machine learning
algorithms that are only based on the amino acid composition of pairs.
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Pairs of amino acids are also considered in the analysis of the PSICOV
predictions. Unfortunately, the prediction difficulty analysis of pairs showed
no significant correlations. The analysis on single amino acids did result in
more significant correlations. Another argument for choosing single amino
acids over pairs, is the available computing capacity. The amount of vectors
grows by a factor 10.5 when using pairs of amino acids in the adjusted
method.

Prediction difficulty as a correction model

Using prediction difficulty is an ad-hoc adjustment model for improving
structural contact prediction with PSICOV, it is a straightforward method
that measures the quality of all significant (top-L/l) PSICOV predictions.
The output of PSICOV is a likelihood where the top-L/l list is considered
as true contact pair. We separate the false positives (FP) from the true
positives (TP) and define prediction difficulty by (TP-FP). You could say
that the analysis of predictions has more value if we take the whole spectrum
including also true negatives and false negatives into account. The problem
that then arises is how you would define true and false negatives. There is
no defined prediction score of bottem-L lists that determined a true negative
contact pair.

Comparison of results

For improvements on PSICOV’s contact pair prediction we used four dif-
ferent adjustment models for PSICOV. In particular, prediction difficulty is
based on our own prediction analysis, and pairing preference which is based
on the study of Glaser et al., showed (potential) improvements in structural
contact prediction [8]. It is obvious that prediction difficulty scores bet-
ter than pairing preference, which is not surprising because this model has
been generated using knowledge on contact pairs and PSICOV performance
on a training set. Adjustments based on amino acid frequency in target
sequences and their correlations with predictions did not yield very good re-
sults. The Wilcoxon test also indicated that the improvements of this type
of adjustment are not significant.

There are opportunities to improve the adjustments for both prediction
difficulty and pairing preference. As discussed in the interpretation of con-
tact pairs, we could consider a broader perspective of contact pair prediction.
We can incorporate information about true and false negatives into predic-
tion difficulty. An adjustment model based on pairing preference could also
be extended. Amino acid features such as hydrophobic/hydrophilic, charged
residues, and simply size are important factors which could be analyzed and
used to adjust the output of PSICOV. Unfortunately, as information sci-
entist I feel to lack fundamental knowledge in biochemistry and molecular
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biology to develop a thoroughly biologically grounded pairing preference
adjustment model.

Problem of using different parameters

In table 8.1 the results for a fixed value of γ are shown, where this value was
selected by hand by looking at the highest improvements for top-L,D > 4.
The reason for this is that the most improvements are expected to be made
on the largest set of predictions, that is, by using top-L,D > 4. This ensures
that we do not see the best results for the other parameter settings. The
problem that arises is shown in figure 8.5.

A solution is the implementation of algorithm 2 (γ∗). We are able to
choose the ’best’ γ for any set of parameters (the highest peak in the graphs
of adjustments) using γ∗.We compute the γ with the greatest improvements
for every target by any set of parameters. For some targets, the algorithm
does not find the optimal value for γ, but figure 8.6 and 8.7 shows that the
γ∗ algorithm performs almost as good as picking a γ with prior knowledge.
It even shows that it handles the variation in parameters very well.

Future work

There are still a lot of improvements to make on precise structural con-
tact prediction. This is only the beginning of combining covariances in
MSA’s and residue/protein characteristics for contact pair prediction pur-
poses. Like Jones et al. states, it is likely that PSICOV reaches a higher
accuracy when further research combines structural information such as pre-
dicted secondary structures [13].

In further research we could look at specific pairs instead of single amino
acids and also consider true and false negatives. As a threshold on true
and false negatives, we could consider a top-L/l list where the number of
predictions is equal to all contact pairs defined by the golden truth. For
any pair of residues, we could fill in the spectrum of true/false positives and
true/false negatives.

It would also be interesting to look at the behavior of PSICOV using new
input data. Instead of using carefully selected data, we could use all proteins
where its three-dimensional structure is known by experiments. How would
PSICOV perform and what are the improvements after implementation of
our findings?

55



Chapter 10

Conclusions

PSICOV is a powerful tool for precise structural contact prediction using
sparse inverse covariance estimation on large multiple sequence alignments.
This study shows that there is still room for improvement in the used predic-
tion methods. The assumption that there is a PSICOV prediction difficulty
for every amino acid turns out to be a relevant piece of information. To a
lesser extent, we have shown that other amino acid characteristics such as
pairing preference, may also be useful and improve residue-residue contact
predictions.

Jones et al. states that PSICOV could be further improved by incor-
porating it in a more general machine learning-based contact prediction
method [13]. Information like predicted secondary structures, better align-
ment algorithms or sequence weighting would significantly improve the re-
sults. We have demonstrated that the assumption of Jones et al. can be
confirmed. Improvements in mean precision from 0.01 to just over 0.03 are
made by a correction model based on prediction difficulty. This comes down
to a few (approximately from 1 up to 4) more true positive predictions for
each target protein, where the sequence length of the proteins varies from
50 residues till 266 residues.

Unfortunately, our method also leads to some targets with a higher false
positive rate. The discussed methods and further work must result in greater
improvements in further studies. At this time, we can at least conclude
that there are opportunities to be exploited to improve structural contact
prediction.

A hybrid approach

Grishin noticed: “Algorithm development studies usually reported ’post,-’
rather than ’predictions,’ benchmarked on proteins with know spatial struc-
tures [10].” The biggest problem within contact pair prediction is that in
all studies we use already known protein structures. There is no such thing
as testing truly blind predictions. Besides Jones et al., Marks et al. sug-
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gest a combined approach of experimental and computational structural
biology [17]. This study and the suggested improvements by Jones et al.
and Marks et al., comes down to a hybrid algorithm using more and more
available information. We must keep in mind that the main goal of contact
pair prediction is the actual prediction of an unknown structure. Of course
we should use the already available information, but the trained algorithms
must perform just as good on ’truly’ unknown protein structures.
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