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Abstract

The amount and diversity of malware keeps growing [M. Fossi| while
the same basic attack techniques are being used [M.v.j.]. This renders
security defenses ineffective such that millions of computers are infected
with malware in the form of computer viruses, internet worms and Trojan
horses. This cost the society money [G. Lovetl, [M. Clement], [C. Kanich).
Intrusion detection is a critical component when fighting cybercrime in the
area of network security. Intrusion detection systems (IDS) look at char-
acteristics of network packets or series of packets to determine whether
the packets are malicious or not. The goal of this thesis is to show how
better and more complex firewall rules can be created with the use of ma-
chine learning algorithms. These new firewall rules contribute to better
computer intrusion detection systems. This thesis looks at existing ma-
chine learning methods such as random forests [L. Breiman| and neural
networks [K. Hornik] and how firewall rules can be extracted from the
resulting models. The models are trained and tested on a novel labeled
network data set containing malicious and normal packets. This data set
was created for this thesis and has not been used before. How the data
set is created is also presented in this thesis. However, as machine learn-
ing techniques work well on networks with similar traffic such as SCADA
networks, a special chapter in Appendix A is included to this thesis on
SCADA networks.
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1 Introduction

This chapter explains how machine learning techniques can help in the area of
IDS and motivates the development of IDS systems.

1.1 Motivation

Secure computer systems should assure the following services: integrity, authen-
tication, non-repudiation, confidentiality and availability|A. Simmonds]. In-
tegrity assures that no cyber criminals change data that is stored on computer
systems or being transmitted between computers. Confidentiality assures that
no information is disclosed to unauthorized people. Availability assures that
the information on a network can be requested if it is needed. If cyber criminals
violate these services this costs our society money. It is hard to estimate how
much money because it is hard to see what costs need to be taken into account
and what costs should not be taken into account: there is no framework to
access the economic costs [M. Eeten]. What also makes it harder to estimate
the costs is that corporations do not like to make it public when they suffer
from computer intrusions [B. Cashell|]. However, cost estimates have been made
|G. Lovetl, M. Clementl, [C. Kanich]. A report of McAfee reports that the global
cybercrimes costs range from $300 billion to $1 trillion and from $ 24 billion to
$120 billion in the US alone [McAfee].

Intrusion detection systems are needed to put a stop to cyber attacks. These
systems require a model of intrusion: what should the IDS look for? This model
that distinguishes between an attack and normal data is created with machine
learning techniques. Research on computer security with machine learning algo-
rithms has been done before, for example, by Konrad Rieck [K. Rieck|]. Others
have tried to discover patterns or features that can be used to recognize anoma-
lies and known intrusions [S. Mukkamala]. Using machine learning algorithms
to detect intrusions has several advantages; zero-day malware can be detected
through statistical analysis of previous examples. Machine learning can also
help data analysts to analyze large amounts of data by classifying programs
or data in groups that might be malicious or not. Traditionally data analysts
looked at patterns in connections from certain IP addresses with histories of
intrusive behavior. However, intrusions have become more complex. For ex-
ample, intrusions can be low and slow which means that an attack consists of
intrusive behavior over hours, days or weeks and they can have more than one
network source. Machine learning can be used to help the data analyst by doing
complex pattern recognition. Automating this work has the advantage that it
can monitor and correlate large numbers of intrusive signatures or patterns.

1.2 Our contributions

This thesis contributes to the war against cybercrime. This is done by creating
more complex firewall rules with the use of machine learning algorithms. This
paper contributes by giving insight in how to use machine learning algorithms



to create these better firewall rules. This method is novel in the sense of how
the dataset is created on which the machine learning algorithms are applied.
How the data set is created is also described in this paper.

The goal of this thesis is to to create a model using machine learning tech-
niques that can differentiate between malicious and normal network traffic, ex-
tract a set of rules from this model and then extract useful firewall rules from
this set. The model can not directly be used in a real environment or as a
firewall because it is unrealistic to assume that a model can be created of which
the false positive rate of this model is low enough while still having a good true
positive rate. The research Question therefore is:

Can one use machine learning techniques to build a model that differentiates
between malicious and normal traffic, extract a set of rules from these models
and then create useful firewall rules from this set that can be used in a real
environment?

This question is answered by creating the model, testing its performance,
extracting a set of rules and investigating these rules.

1.3 Organisation of this thesis

The introduction of this thesis explains why it is important to invest in computer
intrusion detection systems and briefly motivates the goal of using machine
learning methods to automate intrusion detection. The research question is
also introduced in the first chapter. Chapter 2 describes the machine learning
methods that are being used in this thesis. The third chapter describes the
methodology for achieving the answer of the research question. In particular,
it explains how the data set is created and how to apply the machine learning
methods. The fourth chapter describes the data sets that are used to train and
test the models on. The experiments that are run on the data set and their
results are given in chapter 5. The empirical evaluation and the conclusions
of the experiments are also presented in chapter 5. In chapter 6 the resulting
firewall rules are given. The conclusions are discussed in Chapter 7. Appendix
A suggests to create firewall rules for SCADA networks with machine learning
techniques. Appendix D contains visualisations of models that resulted from
the machine learning techniques.



2 Machine learning methods

Machine learning concerns the construction of systems that can learn from data.
A broad definition of machine learning is given by [M. Toml|: ”A computer
program is said to learn from experience £ with respect to some class of tasks
T and performance measure P, if its performance at tasks in 7', as measured by
P, improves with experience E.” In our case a machine learning system learns
to distinguish between malicious and normal network traffic.

Its performance gets increased each time it trains on another example or
instance during the training phase. Inputting a training instance can be seen as
an experience. There are various kinds of machine learning methods. Machine
learning can be supervised or unsupervised. If it is supervised the data that
the computer program learns form is labelled. In other words, the computer
program can learn from examples with the right answer. If the data does not
have labels this means that the data does not contain the class to which the
instance belongs. This is also called clustering. In our research the data is
labeled, so it is a supervised machine learning task. In the subsections below
some supervised machine learning approaches are discussed.

2.1 Multilayer perceptron

A multilayer perceptron (MLP) or neural network is a computational model
that consists of interconnected perceptrons or nodes that can recognize pat-
terns. Warren McCulloch and Walter Pitts were the first (1943) to create a
computational model for neural networks based on mathematics and algorithms
[S. Warren]. An MLP consists of at least 2 columns of nodes. On the first col-
umn the input is clamped and the last column outputs the results. The output
neuron that has the biggest output is the class to which the input is classified.
Each node is fully connected to all nodes in the column after it, the connections
between them have weights. An MLP learns by adjusting these weights w. A
network with only 2 column is called a pattern associator (PA). The PA is a
linear classifier. When the PA is working correctly the output unit j linked to
the correct class should have the highest activation. The activation a is calcu-
lated by taking the net-input n through sigmod function where the net input n
is the sum of the input units 7, times its weight w:

1

a; = ——
J 1 —e Maj

where
i
Naj = E a; * Wi
1

A PA cannot solve all input patterns. For example, the XOR~problem cannot
be learned by the PA [M. Eldracher]. A multilayer perceptron network is used
in this thesis. This is different from a pattern associator in the sense that it



has one or more hidden layers: the multilayer perceptron network has at least
3 columns of nodes. This network can learn the XOR-problem.

Before the MLP network is capable of linking the input data to the correct
class, the correct weights should be determined. This is done by training the
network with the supervised data set and updating the weights. How this works
is explained with just one hidden layer. The learning process in an MLP is called
back propagation. Back propagation has three stages:

1. Forward propagation. The network calculates the output o by subse-
quently computing:

The activation of the hidden units &

1
a =
P T enan
where
k
Nak = E A Wik
i=1
1
0, = ———
Tl — e
where

J
naj = Z hk . wkj
i=1
This is illustrated in figure
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Figure 1: Illustration of forward propagation

2. Backward propagation

In the back propagating phase the learning takes place. The weights learn
through the error e (= activation Output o minus the desired outcome t (the
target) computed at the output layer:

e=o0—1t

The weight is then changed by e times the activation output a; times the acti-
vation of the hidden neuron hy. e Is a variable is a variable defined by the user.
If it is higher it trains faster but it could jump over a global optimum.

Awg; =e-aj-hy



3. Update weights

The new weight will become:
Wi = Wrj + Awkj

The learning will stop after some termination criteria (a number of epochs
for example) or when certain recognition performances have been reached.

As mentioned earlier the MLP is good at being able to learn not only from
linear but also nonlinear data. A quote from Hornik: ”The MLP is capable of
approximating any measurable function to any desired degree of accuracy, in a
very specific and satisfying sense.” [K._ Hornik]. Hornik even goes as far as calling
the MLP a universal approximator. The MLP also has disadvantages. For one,
there are difficulties in implementing and training the network [M._ W. Gardner].
For example a common mistake is leaking information from the test set to the
training set. Creating easy to use programs might solve this problem or make
it easier but background knowledge of MLP is still required when using MLP’s.
Another disadvantage of the MLP is the difficulty of interpreting the MLP. The
resulting model of the training phase is complex and it is hard to see why certain
instances are classified into a certain class. There do however exist visualization
methods for MLP’s [F. Piekniewski].

The last disadvantage of the MLP classification method is the complexity
of the classification process. Using an MLP in combination with large data
sets requires alot of time to perform classification. Below the complexity of the
forward propagation of the MLP is evaluated.

First the node net-input needs to be computed. The complexity of this is
2dn where d the number of training instances and n the number of features.
The number of features is also the amount of input neurons.

Then the input is evaluated, this is done by activating each node in each
layer. The complexity of the node activation is:

N
dy P,
s=2

where Py is the number of nodes at layer s. The activation of the nodes generates
output. This needs to be evaluated. This is done with a residual evaluation.
The residual evaluation gives simply the distance between the right outcome and
the outcome given by the model. This needs to be calculated for each output
node and for each training instance. The complexity of this is dPy. We also
need to calculate the Error. The complexity of Calculating the SSE is: 2dPy
The complexity of residual evaluation is dPy. The complexity of the backward
pass is also primarily dependant on the number of instances, the number of
features and the number of nodes [E. Mizutani]. So when using large data sets
with a large amount of features, this gives problems. Also using large amounts
of hidden units in the MLP increases the complexity drastically.



2.2 Decision tree

Next to MLPs also decision trees were used to learn patterns from the network
data. The decision tree takes as input the attributes of the messages and returns
a ”decision” - the predicted output value for the input. The input values can
be discrete or continuous, this is an advantage over the MLP where the input
cannot be continuous. The decision tree makes its decision by performing a
sequence of tests. Each node in the tree corresponds to a test of the value of
one of the attributes. The values of the leaves of the tree are returned and
represent the class to which the instance belongs.

The basic idea behind decision tree learning is to test the most important
attribute first. The most important attribute is the attribute that makes the
biggest difference to the classification of a sample, put in other words, the at-
tribute that has the highest information gain. The measure for information gain
is called entropy. If an instance can be classified into C different values, then
the entropy of S relative to this c-wise classification is defined as:

c
Entropy(S) = Z P; log, pi
i=1

where p; is the proportion of instance S belonging to class ¢ and the logarithm
is base 2. [M. Tom)].

By testing the most important attributes it is hoped that one gets the right
classification with a small number of tests (small tree). As mentioned before,
one advantage is that input values can be discrete or continuous. The output
values of the decision tree are discrete. Another advantage is that decision trees
are robust to errors. The training data may contain missing attribute values. A
challenge in decision trees is determining the depth of the decision tree. If the
tree becomes too large and the depth to high the tree is overfitted on the training
data. If there is some noise in the data or when the number of training examples
is too small to be representative for the real data set the overtrained model will
not perform well on real data. The solution would be to stop at the correct
tree size or stop the training early. The correct tree size could be determined
by using separate data from the training data to evaluate the decision tree.
This technique was also used in this research and is also called training and
validation set approach. A simpler solution that was also used in this research
is to determine a maximum depth to which one lets the decision tree expand
or use another explicit measure to measure the complexity of the tree and halt
at a certain threshold. Another option would be to use a statistical test to
estimate whether the expanding of a particular node will improve the decision
tree. For example, the chi-square test can be used. This method was not used
in this research. Choosing the shortest decision tree for the observed data is
also in line with Occams Razor. Occams Razor is a principle that states that
among competing hypotheses (decision trees), the hypothesis with the fewest
assumptions should be selected [A. Blumer].

The learning algorithms differ for each technique and will be discussed below.



2.2.1 Random tree

A Random decision tree is a decision tree where the input is not only the in-
stances but also some random vector Ok. An example of a random tree is using
split selection where at each node the split is selected at random from among the
K best splits. Another approach to introduce randomness is to use bagging. If
one has a training set S of size N, one creates m new training sets S; each of size
N. These subsets S; are created by taking samples from D. It is possible that
there are duplicate elements in the subsets. Bagging has several advantages.
Bagging works good when there is classification noise [T. Dietterich|]. Classifi-
cation noise means that a small amount of the labels are wrong. Bagging also
helps to avoid overtraining, this is shown in section 2 of [L._Breiman].

2.2.2 Random forests

A random forest is an ensemble of multiple random decision trees, in other
words, a bag of random trees. In our setup we used an ensemble of 10 random
trees. Each random tree in the forest is fully grown (no pruning). The definition
of a random forest is given by Breiman [L. Breimanl|: ”A random forest is a
classifier consisting of a collection of tree structured classifiers h(x, Oy), k =1, ...
where the Oy are independent identically distributed random vectors and each
tree casts a unit vote for the most popular class at input z.”

The output of all trees is combined with a combination rule. One example
of such a combination rule is majority voting. In majority voting, for each
instance, the majority voting rule lets each classifier classify it into a class. It
then just outputs the class that most of the trees classified it into. An advantage
of majority voting is that it is straightforward.
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3 Methodology

The methodology of this thesis is explained in the following six steps:
1. Create data
2. Feature extraction of data

Combine data

Train model

Test model

A

Visualize and interpret results

The methodology that is explained in this chapter is depicted in figure

Classification model,
Rule extraction,

Decision tree labeled packets

Classification model,
Neural network =  Rule extraction,
labeled packets

malicious and dimensionality

data reduction

Generate H Feature extraction

Human
interpretation and

Combine

Classification model,

data ] ]
Generate Feature extraction Random forest :{alﬂzlzgtrz‘::tll:?sl translation to
normal and dimensionality P firewall rules
data reduction

Classification model,
Random tree — Rule extraction,
labeled packets

Classification model,
Jripper = Rule extraction,
labeled packets

Figure 2: Based on the generated data mathematical models are created that
can classify packets. These models can also be visualized. From these visualized
models firewall rules can be created.

The main advantage of the machine learning methodology used is that at-
tacks and exploits similar to the ones used in Kali [Kali] or Metasploit [Metasploit]
will be detected. Another advantage is that the packets that are similar to nor-
mal data will not be marked as an attack thus reducing false positives. It is
suspected that many attacks these days are run with tools like Kali or Metas-
ploit. If the attack is not performed by a tool the chance is big that the attack
is an altered existing attack from Kali or Metasploit or a similar tool.
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3.1 Creating the data set

One way data is created is by placing 2 computers next to each other on a
LAN and generating traffic. The attacking computer that is running Kali is
called the attacking machine and the computer that is being hacked is called
the target machine. The traffic generated needs to be both normal traffic and
malicious traffic. To achieve this a specific setup was used. On one laptop
the special hacking operating system Kali Linux was installed. This operating
system contains the Metasploit framework that contains over 1,200 exploits and
an average of 1.2 new exploits are added every day. These exploits can be
executed against the target machine. In order for the exploits to work, certain
services and programs that contain vulnerabilities need to be running on the
target machine. For this, Metasploitable 2.0 is used. A list of some of the
vulnerabilities of Metasploitable 2.0 can be read here [vulns]. Some examples
of vulnerable applications that run on Metasploitable 2.0 are phpMyAdmin,
tikiwiki and webdav.

During the attack of the attacking machine on the target machine, all net-
work data is logged on the target machine. This is done by making tcpdumps
on the target machine. tcpdump is a command in unix that captures
all network traffic from a specified ethernet adapter. By setting the -s flag to 0
we make sure that we capture the whole packet (65535 bytes is the maximum
size of a packet). When all attacks are run and the PCAP file is created that
contains all packets, the PCAP file is loaded into Wireshark to visualize and
inspect the data. Wireshark is also used to filter out everything but TCP/IP
traffic: all traffic that is not TCP/IP is thrown away. A sample of resulting
data is shown in figure

314788504 192.168.178.28 192.168.178.43 TP 74 49304 > cs0 [SYN] seq=0 win=29200 Len=0 MS5=1460 SACK_PERM=1 Tsval=3432749 Tsecr=0 ws=1024
324.788881 192.168.178.43 192.168.178.28 54 cs0 > 40304 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0

33 4.788507 192.168.178.28 192.168.178.43 TCP 74 34195 > hosts2-ns [SYN] Seq=0 Win=29200 Len=0 MS5=1460 SACK_PERM=1 TSval=3432750 TSecr=0 WS=1024
34 4.788033  192.168.178.43 192.168.178.28 54 hosts2-ns > 34195 [RST, ACK] Seq=1 Ack=1 win=0 Len=0

35 4.788033  192.168.178.28 192.168.178.43 TCP 66 51796 > http [ACK] Seq=L Ack=1 Win=29696 Len=0 Tsval=3432750 Tsecr=1452629

36 4.788033  192.168.178.28 192.168.178.43 TCP 66 51796 > http [FIN, ACK] Seq=l Ack=1 Win=29696 Len=0 TSval=3432751 TSecr=1452629

37 4.788933 192.168.178.28 192.168.178.43 TCP 66 50979 > telnet [ACK] Seq=1 Ack=1 Win=29696 Len=0 TSval=3432751 TSecr=1452629

38 4.796753 192.168.178.43 192.168.178.28 TCP 66 http > 51796 [ACK] Seq=l Ack=2 win=3792 Len=0 TSval=1452630 TSecr=3432751

A4 700R%3 1A% 120 470 0 innazo 170 10 — £2 VIEAR < cmen Pari] mam 4 anb 4 e AAERE 1 am A wroal TUANTEA Trame 44E7ETA
Frame 49: 96 bytes on wire (768 bits), 96 bytes captured (768 bits)
[ Ethernet IT, Src: Vmware_03:ba:d3 (00:0c:29:03:ba:d3), Dst: IntelCor_1f:43:98 (58:94:6b:1f:43:98)
[ Destination: Intelcor_1f:43:98 (58:94:6h:1f:43:98)
Address: Intelcor_1f:43:98 (58:94:6b:1f:43:98)
P .. = LG bit: Globally unique address (factory default)
= IG bit: Individual address (unicast)
= Source: vmware_03:ha:d3 (00:0c:29:03:ba:d3)
Address: vmware_03:ba:d3 (00:0c:29:03:ba:d3)
P N = LG bit: Globally unique address (factory default)
....... 0.vevv veve wves vow. = 16 bit: Individual address (unicast)
Type: Ip (0x0800)
[ Internet Protocol Version 4, Src: 192.168.178.43 (192.168.178.43), Dst: 192.168.178.28 (192.168.178.28)

Figure 3: Sample of 38 TCP packets in Wireshark

The normal data is generated by normally using the target machine and
perform activities such as web-browsing, downloading files, and e-mailing. In
this case the pcap files containing the packets are also created using the tcpdump
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command.

3.2 Feature extraction of data

The network traffic that is captured consists of packets. They can be seen as
letters being send over a network. These packets also have things like an address
and sender. Information like the address, sender, the time the packet was sent
and the time to live are in header information. We want to separate the header
information from the actual message of the packet. The actual message of a
packet is called the payload. Figure [d] displays one packet. In the top of the
image one can see all the header information and the payload starts with the
blue selected text GET. The blue selection matches the hexadecimal selected
bytes and with the corresponding ASCII characters that these bytes represent:
47 45 54. In the ASCII figure [5| we can see that the hexidecimal numbers 47,
45 and 54 indeed correspond to the capital letters G,E and T.

B Frame 1: 160 bytes on wire (1280 bits), 160 bytes captured (1280 bits)
# Ethernet II, src: 00:00:00_00:00:00 (00:00:00:00:00:00), DsT: 00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocel version 4, src: 127.0.0.1 (127.0.0.1), Dst: 127.0.0.1 (127.0.0.1)
= Transmission Control Protocol, src Port: 43964 (43964), Dst Port: http (80), seq: 1, Ack: 1, Len: 94
source port: 43964 (43964)
Destination port: http (80)
[stream index: 0]

Sequence number: 1 (relative sequence number)
[Next sequence number: 95 (relative sequence number)]
Acknowledgment number: 1 {relative ack number)

Header length: 32 bytes
E Flags: 0x018 (PSH, ACK)
window size value: 1104
[calculated window size: 1104]
[window size scaling factor: -1 (unknown)]
# Checksum: 0xfe&6 [validation disabled]
B options: (12 bytes), No-Operation (NOP), No-Operation (NOP), Timestamps
No-Operation (NOP)
[ No-Operation (NOP)
= Timestamps: Tsval 7311969, Tsecr 7311969
kKind: Timestamp (8)
Length: 10
Timestamp value: 7311969
Timestamp echo reply: 7311969
& [SEQ/ACK analysis]
= Hypertext Transfer Protocol
= GET /scripts/..%%35%63. . /winnt/system32/cmd. exe?/c+dir HTTP/1.0\n
® [Expert Info (Chat/Sequence): GET /scripts/..%%35%63../winnt/system32/cmd. exe?/c+dir HTTP/1.0%\n]
Request Method: GET
Request URI: /scripts/..%%35%63.. /winnt/system32/cmd. exe?/c+dir
Request version: HTTP/1.0
HOST: wiww'\n
connnection: close'n
\n
[Full request URI: http://www/scripts/..%%35%63.. /winnt/system32/cmd. exe?/c+dir]
[HTTP request 1/1]

0000 00 00 00 00 00 00 00 0O 00 00 00 00 OB 00 45 00 ........ ...... E
0010 00 92 le b8 40 00 40 06 1d ac 7f 00 00 01 7T 00 BB e
0020 00 01 ab bc 00 50 f1 ef 8c d8 f2 4c 9a 15 80 18 ..... L roe | SRR
0030 04 50 fe 86 00 00 01 01 08 0a 00 &f 92 61 00 &f cIBEi it ...0.3.0

0040 92 61 20 2F 73 63 72 69 70 74 73 2f 2e  .aEd] /s cripts/.
0050 2e 25 25 33 35 25 36 33 2e 2e 2f 77 69 Ge Ge 74 L %%35%63 .. /winnt
0060 2f 73 79 73 74 65 6d 33 32 2f 63 6d 64 2e 65 7 /system3 2/cmd. ex
0070 65 3f 2f 63 2b 64 69 72 20 48 54 54 50 2f 31 2e e?/c+dir HTTP/1.
0080 30 0a 48 6f 73 74 3a 20 77 77 77 0a 43 6f 6e 6e 0.Host: www.Conn
0090 6e 65 63 74 69 6f 6e 3a 20 63 6¢c 6f 73 65 0a 0a nection: close..

Figure 4: Sample of a single Packet
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Dec HxQct Char Dec Hx Oct Himl Chr  |Dec Hx Oct Himl Chr| Dec Hx Oct Himl Chr
0 0 000 NUL {null) 32 20 040 %#32; Space| 64 40 100 &#64: B | 96 60 140 &#96;
1 1 00l S0H {(start of heading) 33 21 041 &#33; ! 65 41 101 &#65: & | 97 61 141 &#97: =2
2 2 002 5T (=ztart of text) 34 2z 042 &#34: 66 42 102 &«#66; B | 95 62 142 «#98: b
3 3 003 ETX (end of text) 35 23 043 &#35; # 67 43 103 &#67; C | 99 63 143 &#99;
4 4 004 EOT (end of transmission) 36 24 044 &#36; § 68 44 104 &#68: D (100 64 144 &#100; d
5 5 005 ENQ {enquiry) 37 25 045 =#37; % 69 45 105 &#69; E |l0l 65 145 &#101; &
& & 006 ACKE (acknowledge) 38 26 046 s#38; & 70 46 106 &«#70: F |102 66 146 &#10Z; £
7 7 007 BEL (hell) 39 27 047 s#39; 71 47 107 &#71: G (103 &7 147 &#103; O
& @ 010 BS (hackspace) 40 28 050 &#40; | 72 48 110 &#72: H (104 68 150 &#104; h
9 9 0ll TAE (horizental tah) 41 29 051 =#41; | 73 49 111 &#73; I |l0S 69 151 &#105; 1
10 & 012 LF (NL line feed, new line)| 42 24 052 &#42; % 74 44 112 &#74: T |106 64 152 &#106; 1
11 B 013 VT (wertical tah) 43 2B 053 &#43: + 75 4B 113 &#75; K |107 6B 153 &#107: k
12 C 014 FF (NP form feed, new page)| 44 2C 054 &#44; 76 4C 114 &#76; L |l08 6C 154 &#103; 1
13 D 0L5 CR (carriage return) 45 2D 055 &#45; - 77 40 115 &#77; M |l09 6D 155 &#109; o
14 E 016 30 (shift out) 46 2E 056 s#46; . 73 4E 116 &#78: I (110 6E 156 &#110; n
15 F 017 81 (shift in) 47 2F 057 «#47: / 79 4F 117 &#79: 0 |111 6F 157 &#lll: o
16 10 020 DLE (data link escape) 43 30 060 &#43: 0 80 50 120 &#80; P |11z 70 160 &#112: p
17 11 021 DCL (device control 1) 49 31 061 &#49; 1 gl 51 121 &#81; 0 (113 71 161 &#113;
18 12 022 DC2 (device control 2) 50 32 062 &#50; 2 82 52 122 &#82; R |114 72 182 &#1l4: E
19 13 023 DC3 (device control 3) 51 33 063 &#51; 3 83 53 123 &#83; 3 |115 73 163 &#ll5: s
20 14 024 DC4 (device control 4) 52 34 064 &#52; 4 g4 54 124 &#84; T (116 74 164 &#ll6; €
21 15 025 NAE (negative acknowledge) 53 35 065 &#53; 5 55 55 125 &#85; U (117 75 165 &#117; u
22 16 026 SYN (synchronous idle) 54 36 066 &#54: 6 86 56 126 &#86: V (118 76 le6 &#118: v
23 17 027 ETE (end of trans. block) 55 37 067 &#55: 7 87 57 127 &#87: W (119 77 167 &#l19; w
24 18 030 CAN (cancel) 56 35 070 &#56; 8 53 55 130 &#88; ¥ |l20 78 170 &#120; x
25 19 031 EM  (end of medium) 57 39 071 &#57; 9 59 50 131 &#89; ¥ (121 79 171 &#121; ¥
26 1l 032 SUB (substitute) 58 34 072 s#58; @ o0 S5& 132 &#90; I |122 7h 172 &#12Z: =
27 1B 033 E3C (escape) 59 3B 073 &#59; 91 5B 133 &#91: [ |123 7B 173 &#123: |
28 L1C 034 F5 (file separator) 60 3C 074 &#60; < 92 5C 134 &#92: % [l24 7C 174 &#l24;
29 1D 035 G3 (group separator) g1 30 075 &#f6l; = 93 5D 135 &#93; ] |l25 7D 175 &#125; }
30 1E 036 B3 (record separator) 62 3E 076 &#62; > 04 5E 136 &#94; * |126 7E 176 &#126; ~
31 1F 037 US (unit separator) 63 3F 077 &#63; ¢ 95 S5F 137 &#95: _ [127 7F 177 &«#127; DEL

Figure 5: ASCII table (Not all 256 bytes but only until 127), Source:

[LookupTables

One way features are extracted from the payload of the packet is by counting
the frequency of each possible byte. This is also called a bag of bytes. More
advanced methods for the feature extraction are possible and will be explained
below. There are 256 possible bytes so that gives 256 numerical features. Next to
the features a label is added to specify to which class a packet belongs (malicious
or normal). The actual extracting of the payload of the packets and the counting
of the bytes is done in a JAVA program. This Java program uses the winpcap
library to be able to read in pcap files [Winpcap].

Next to these 256 features other features are extracted from the packet:

Len: total length of packet

Length: length of header

Ident: identifier

Flag: flagged true or false

14

Caplen: amount of actual data which was stored



e StdevTime: The standard deviation of the time the packet itself was re-
ceived and the last 7 packets send before it. It is a measure of the amount
of variation or dispersion there is between the times of the last 8 received
packets.

3.2.1 N-grams

A more advanced method to extract features from packets is to use n — grams.
In this case a Packet has many features; one for each possible n — gram. An
n — gram is a contiguous sequence of n bytes. The value of the feature is the
frequency of occurrence of that n — gram. For example, of the 6 consecutive
bytes (hexadecimal coding) 00, 01, 02, 03, 04, 05 the 2-gram is 00 01, 02 03, 04
05 and the 3-gram is 00 01 02, 03 04 05. Not only n — grams are used but also
skip grams or n—v— grams. The difference here is that a space v is left between
each pair of bytes. One can imagine this as if a v42 long sliding window with
a gap of length v between the first and last byte that goes over the bytes of the
payload. This is illustrated in figure [6] and [7} the pictures are a representation
of the payload of a packet.

00 60 97 de 54 36 00 10 7b 38 46 32 08 00 45 00
01 48 59 c1 40 00 3f 06 59 Of ac 10 72 94 di b9
97 81 7a 81 00 50 8c d5 88 d5 dc 1f a8 50 18
7d 78 d2 37 00 00 %45 54 2f 69 6d 61 67 65
73 2f 63 68 5f 6d 6e 65 2e 67 69 66 20 48
54 54 50 2f 31 2e 30 Od 0Oa 52 65 66 65 72 65 72
3a 20 6B 74 74 70 3a 2f 2f 77 77 77 2e 6B 6f 74
62 6f 74 2e 63 6F 6d 2f 0d Oa 55 73 65 72 2d 41
67 63 be 74 3a 20 4d 6f 7a 69 6c 6c 61 2f 34 2e
30 34 20 5b 65 6 5d 20 2B 5B 31 31 3b 20 49 3b
20 4c 69 6e 753 78 20 32 2e 30 2e 33 32 20 69 30
38 36 29 Od Oa 48 6f 73 74 3a 20 73 74 61 74 69
63 2e 68 6f 74 62 6f 74 2e 63 6f bd 0d Oa 41 &3
63 65 70 74 3a 20 69 6d 61 67 65 2f 67 69 66 2c
20 69 6d 61 67 65 2f 78 2d 78 62 €9 74 6d 61 70
2c 20 69 6d 61 67 65 2f 6a 70 65 67 2c 20 69 &d
61 67 65 2f 70 6a 70 65 67 2c 20 69 6d 61 &7 &5
2f 70 6e 67 2c 20 2a 2f 2a 0d 0a 41 63 63 65 70
74 2d 4c 61 6e 67 75 61 &7 65 3a 20 65 6e 0d Oa
41 63 63 65 70 74 2d 43 68 61 72 73 65 74 3a 20
69 73 6f 2d 38 38 35 39 2d 31 2c 2a 2c 75 74 66
2d 38 0d 0Oa 0d Oa

Figure 6: The sliding window moves on one step and sees 747, 20”. So the
frequency of that skip gram is increased with one.
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00 60 97 de 54 36 00 10 7b 38 46 32 08 00 45 00
01 48 59 cl1 40 00 3f 06 59 Of ac 10 72 94 dl1 b9
97 81 7a 81 00 50 9c Bc_ d5 88_dS dc 1f aB 50 18
7d 78 d2 37 00 00 47 54 20{2f |69 6d 61 67 65
73 2f 63 68 5f 6d 6f 6e 65 79 Zé 67 69 66 20 48
54 54 50 2f 31 2e 30 0d 0a 52 65 66 65 72 65 7
3a 20 6B 74 74 70 3a 2f 2f 77 77 77 2e 68 6Ff 74
62 6F 74 2e 63 6 6d 2f 0d 0a 55 73 65 72 2d 41
67 65 6e 74 3a 20 4d 6f 7a 69 6c 6c 61 2f 34 2e
30 34 20 S5b 65 6e 5d 20 28 58 31 31 3b 20 49 3b
20 4c 69 Be 75 78 20 32 2e 30 2e 33 32 20 69 36
38 36 29 Od Oa 48 6f 73 74 3a 20 73 74 61 74 69
63 2e 68 6T 74 62 6f 74 2e 63 6f 6d 0d Oa 41 63
63 65 70 74 3a 20 69 6d 61 67 65 2f 67 69 66 2cC
20 69 6d 61 67 65 2Ff 78 2d 78 62 69 74 6d 61 70O
2c 20 69 6d 61 67 65 2f 6a 70 65 67 2c 20 69 6d
61 67 65 2f 70 6a 70 65 67 2¢ 20 69 6d 61 67 65
2f 70 6e 67 2c 20 2a 2f 2a 0d Oa 41 63 63 65 70
74 2d 4c 61 6e 67 75 61 67 65 3a 20 65 6e 0d Oa
41 63 63 65 70 74 2d 43 68 61 72 73 65 74 3a 20
69 73 6f 2d 38 38 35 39 2d 31 2c 2a 2c 75 74 66
2d 38 0d Da 0d Oa

Figure 7: The sliding window sees the 2-2-gram ”45,2f". So the frequency of
that skip gram is increased with one.

3.2.2 Dimensionality

The reason that gaps were used between the bytes is because the amount of
features and thus dimensionality greatly increases with n and it is wanted to
extract structural information. The amount of possible features grows exponen-
tially with n. By using a gap v it is still possible to extract some information
related to the n — grams, with n >2. With n = 2 the amount of dimensions is
still large (65536). This means that the frequency matrix will also be that large.
The frequency matrix will have a lot of zero values because a lot of skip grams
will not occur in the payload. Another common use of n — grams and frequency
matrix is in document classification, were documents are classified into cate-
gories based on n — grams (word pieces in the document). It has been shown
that even if they have to deal with very large amounts of features (more than
10000) and thus more than 10000 dimensions; SVM classifiers still work for text
categorization [T. Jaochims|. In this thesis SVMs are used to categorize packets
as malicious or normal. SVM classifiers still work in case of high dimensional
problems because the documents are very sparse and only the n — grams that
occur in the document are considered. You could effectively process feature vec-
tors of 10 000 dimensions, given that these are sparse. Even though skip grams
are used, our feature space is big. The dimensionality of the feature space can
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be reduced by applying a clustering algorithm. The cluster algorithm used is a
clustering algorithm proposed by Dhillon et al in [I._S. Dhillon]. This clustering
algorithm is somewhat similar to well-known k-means algorithm [C. Mihaescu].

3.2.3 Clustering

Clustering
The clustering algorithm uses the following as input:

e The occurrence frequency matrix of skip grams.

e The desired number of clusters k. (This is also the number of features
that each item will have after clustering. So this is also the number of
dimensions you will have).

e The tolerable information loss t.

It then initializes random clusters. This just means that each feature is
randomly assigned to one of the k clusters. Each feature is then moved from
cluster to cluster until the information loss is less than ¢. The information loss is
calculated with Kullback-Leibler divergence. The Kullback-Leibler divergence
of () from P is a measure of the information lost when @ is used to approximate
P. KullbackLeibler divergence measures the expected number of extra bits
required to code (code to binary) samples from P when using a code based on
@, rather than using a code based on P. The output of the clustering algorithm
are the k clusters, where each cluster is the sum of a set of features (adding
up the probabilities). The features themselves are cells from the conditional
probability matrix. Each cell in this matrix is still the conditional probability
matrix holds the probability that a skip gram occurs with relation to the target
class P(X | T). So each new feature in the new k-dimensional feature space can
be computed in the following way:

P(Sulfs) = Y P(X|f)

XjESh

Where h = 1,....k and P(Sy|F}) is the conditional probability that the set of
skip grams S occurs in file 7. If there are ten features, which all have a chance
of 0.1 of occurring in the payload of a packet, and one wants to decrease this to
9 features, 2 features have to be put together in a cluster where the chance of
either of the features occurring is the sum of the 2 features.

3.2.4 Combined packets

Because computer intrusions or attacks over a computer network usually consist
of more than one packet it is preferred to use groups of packets. This means
multiple packets are put into a group and the group of packets is classified
as malicious or normal. In our case the group consists of only malicious or
only normal packets. Our case is not to be confused with an other method of
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grouping packets together called Multiple Instance learning [O. Maron| where
groups can consist of malicious and normal packets and a group is malicious
if one packet of the group is malicious and normal otherwise. How to create
the groups is based on other papers. In [I. Weon| it is suggested to use time
related and risk related parameters. It is decided to use a simple time related
parameter: timestamps. A packet is stamped with the time at which it arrives
at the destination machine. This is done by making bags of all packets that
arrived in the first 0.001 seconds, then another bag of all packets in the 0.001
seconds after that etc. A disadvantage of this method is that sometimes the bags
only contain 1 instance because there is only one packet in those 5 seconds. But
normally the bags are of size of about 8. This was tuned to 8 because in most
data sets the attacks were also consisting of about 8 packets. As explained
in [I._Weon|, many other bag sizes can be used, ranging from 20 to even 50
packets. This might be different for each data set but is interesting for further
investigation.

3.3 Train model

The model is trained on the resulting data set. This is a two-class classification
problem (malicious and normal data). A simple and easy to understand and
visualize way of classifying is to use decision trees. The disadvantage of decision
trees is that they are not good at obtaining good classification rates and low
false positives. In a first attempt the following decision tree was created as a
sample that can be seen in figure

<0.5 >=0.5

\

H unit separator

<1.5 5 <1.5 >=1.5
/ P I
Space Start of heading NULL
\ AN 7N
<26.5 >=26.5 <05 >=0.5 <1285 >=1285 <95
/ AN / N /
{ 4 o : File seperator ‘destPort DLE
/\ /\ /N\ /\ /N\ /\ /\
<05 >=0.5 <45 >=45 <05 >=0.5 <45 >=45 <0.5 >=0.5 <53448 >=53448 <3,5 »=35
NN N /N N N
Norm Norm Norm Norm Mal Norm  Norm  Norm Norm Norm Mal Norm Norm Norm

Figure 8: Sample tree

In the tree every node and leaf is numbered, and behind the number of
the node and the ”:” is a number indicating which byte is used by that node.
The frequency of that byte determines what path through the tree should be
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followed. This is a simple tree and gives an idea of the technique. However this
decision tree did give a recognition rate of 91.5%.

Next to decision trees there are many more machine learning techniques to
create a model. Some examples are a neural network, random trees, random
forest, and many more.

3.4 Test model

In this chapter some validation methods that are used in this research are ex-
plained. In order to test the performance of the model, benchmarking methods
are used. In this process, a model is trained and tested using different partitions
of the benchmark data. For each sample of the data, the output hypothesis of
the model is compared to the corresponding (known) category. It is desired to
train our model on a data set with targets and outliers. The resulting model
should give as many true positives and true negatives as possible, and as few
false negatives and false positives as possible. A false negative occurs if the
hypothesis says it should be negative but in fact it is positive (the data sample
is normal data but is wrongly classified as an attack). A false positive occurs if
the hypothesis says that the data sample is an outlier (attack), whereas in fact
it is a target (normal). A true positive is when the hypothesis says it should be
a positive and it is in fact a positive. A true negative is when the hypothesis
says it should be a negative and it is in fact a negative. A model is tested by
counting how many false positives and false negatives there are. As few as pos-
sible false positives and false negatives are desired. In the case the model is used
directly in practice it is very important to have a very low false positive rate of
the data set because in the kind of data sets that is used there are hundreds or
thousands of normal data packets. Even if there is a false positive rate of 0.01%
there will still be a lot of false alarms going on.

3.4.1 Percentage split

A model such as a decision tree or MLP is a classifier. It is a function that maps
an unlabelled instance to a label. The validation is often done on a separate part
of the (labeled) data set. The easiest validation method is to use a percentage
split. The original data set is split into a training set and a test set. The model is
trained on the train set then the test sets without the labels are inputted into the
model. After the model is trained the output of the model is compared with the
label and the amount of errors are calculated. The percentage of instances that
are correctly classified is called the recognition rate. The validation methods
need to measure the accuracy of the model (classifier) so that we can compare
them. Another validation method is the cross validation method.

3.4.2 Cross validation

Cross validation is done in a number of rounds. At each round the data set
is split up in a train set and a test set. The model is trained on the train set
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and then tested on the test set, at each round a different part of the data set
is the test set. The rounds are often called folds. For example a 10 fold cross
validation means splitting the data up in 10 parts and doing 10 rounds. Cross
validation is also called the ”leave one out method” because at each round you
leave one part of the data set out to test on. At the end the average of the
performance of all the rounds is calculated.

run 1

run 3

run 4

[ B [ | w2

Figure 9: Illustration of 4 fold cross validation, also called leave one out.

An advantage of cross validation is that one can test and train the model on a
limited amount of data. Another advantage is that your test and training is more
precise since it was tested and trained on the whole data set. A disadvantage
is that at each round a model is trained and tested. The training of the model
takes time and at the end all but one of these models are discarded.

3.4.3 Confusion matrix

In this thesis the Confusion matrix is also used as a validation method. A
Confusion matrix is a matrix where the each row represents the target class to
which a value belongs and each column represent the target class to which it
was classified. In this matrix one can easily see if the model is confusing classes.
Figure [10] is an illustration of a small example of a confusion matrix.

Prediction
Cat | Dog
g Cat | 15 35
<| Dog | 40 | 10

Figure 10: Example of small confusion matrix.

If the values on the diagonal are high it means the results are good, if the
values on the diagonal are low and the other values high it is an indication that
the classifier did not work well.

3.5 Visualize model

The resulting model can be visualized in the form of a decision tree. A hu-
man can interpret the results and decide what rules should be extracted and
implemented into the firewall. The visualised models are given in Appendix D.
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4 Data sets

All data sets were created with the methodology described in the methodology
chapter. In this chapter first the motivation for creating the data set with this
methodology is described. After the motivation for the data set the descriptions
of specific data sets are given.

4.1 The motivation for creating the data set

Before one can create an intrusion detection model data is needed. Data is
often hard to obtain because of privacy issues. Not many corporations want to
share network traffic data. Network packets often contain private information.
Especially labeled data is hard to obtain because labeling the data is labor
intensive. Half of the work of this thesis is creating the labeled data set. A
quote:

It is very difficult and expensive to obtain a labeled data set that
is representative of real network activates and contains both normal
and attack traffic

[J. McHugh].

Obtaining network traffic from a network is hard because not many corporations
will want to give data. Other researchers also have trouble with obtaining these
data sets. Papers nowadays still discuss data sets that are from the year 1999
and older. The most used data set is the DARPA data set [DARPA]. This data
set is from 1999. Of course this 15 year old data set is outdated. The normal
traffic is not representative for traffic of these days, also the data of attacks is
outdated because different attacks are used these days. Many papers still use
this data set. An example of a paper of 2014 that still uses this data set is
[K. Rajitha]. Next to the DARPA data set there is also the KDD Cup data set
[KDDcup|. The KDD Cup data set is a subset of the DARPA data set. A paper
from 2011 that still used this data set is [J._Jonathan|, there are even papers
published in 2013 and 2014 that use the 1999 KKD cup data set to test models
on. Fore example [P._Ahmed], [S. Kumar], and [U. Subramanian]. Many more
of these papers can be found, this shows the need of a new data set and how
difficult it is for researchers to obtain these data sets.

4.2 Data sets

All data sets consist of 1876 maliciouse packets and 11444 normal packets. In
data sets 1,2,3 and 4 the feature extraction of the packets were done with uni-
gram. The unigrams give 256 features. In data set 1 the amount of milliseconds
the packets needs to travel, the source port and the destination port were added
as a feature. Data set 2 was the same as data set 1 but the following features
were added:

e len: total length of packet
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length: length of header
e caplen: amount of actual data which was stored
e ident: identifier

e flag: flagged true or false

Data set 3 is the same as data set 2 but the source port and destination
port features were removed. Also a new feature was introduced: the standard
deviation of the time between the last 8 packets that were received. This gives
information of how fast packets were send after each other. Data set 4 uses
combined packets. Each row consists of the last eight packets send. In order
to reduce dimensionality not all 256 bytes of each of the eight packets are used.
The following features where used for each packet and combined together:

e Bytes 1 and 2

e Bytes 30 trough 63

e Bytes 120 trough 142

e srcPort: source port

e destPort: port destination

e len: length of header

e length: length of packet

e stdevTime: standard deviation between the time of last eight packets
e ident: identifier

e caplen: amount of actual data which was stored

o flag: flagged true or false

Data set 5 is special because it uses the skip grams or n grams discussed
in chapter 3.2.2. In this data set a gap size of 1 between each combination of
2 bytes is used. This results in 256 * 256 = 65536 features, this is too much.
Therefore dimensionality reduction is used as described in section 3.2.3. In this
data set the dimensionality is reduced from 65536 to 260. This is still a high
dimensionality for this data set because there are only about 14000 instances.
Therefore datas set 6 is created where the dimensionality is reduced from 65536
to 45.

Next to the 260 clusters of skip bytes the following features were added:

e srcPort source port

e destPort port destination
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e len: length of header
e length: length of packet
e stdev: standard deviation of time last 8 packets received

e caplen: amount of actual data which was stored

Data set 6 is similar to data set 5 with the only difference that the amount
of skip bytes are clustered together to 45 clusters instead of to 260.

Data set 7 is a data set where packets are grouped together. The packets
in a group are either all malicious or all normal. Packets are grouped together
based on time. The time between the first and the last packet in a group is no
more than 10000 ms. Also groups are never bigger than 8 packets.

This is not typical multiple instance learning. In the case of multiple instance
learning bags are mixed positive and negative packets and a bag is considered
negative if one packet in the bag is negative.

Just like data set 6 this data set also contains 45 features containing infor-
mation of byte frequency’s and the same extra features as in data set 5 and 6
such as source port and length.
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5 Performance evaluation

This chapter describes the performance of various machine learning methods
with different parameters applied to a number of data sets. In each section a
number of experiments, their differences and the performances are discussed.
All data sets were created with the methodology described in the methodology
chapter. In chapter the data sets where also numbered, in this chapter 3
is a reference to these data sets with these same numbers. In column three of
each table the number of the data set used is given.

5.1 Depth of random tree

In the first five experiments random trees were used. The depth parameter D
indicates how many nodes one needs to follow to get from the first node to
the leaf of the tree. In every experiment a different depth was used in order
to investigate the effect of the depth on the recognition rate (rr). A small
depth generates a smaller tree that is more simple to interpret. A higher depth
generates a more complex tree with better recognition rates. For example, with
a depth of 9 the recognition rate is 99.744%.

nr | Method Data set | parameter’s | rr TP FP

0 Random Tree 1 D=4 94.099% | 0.785% | 0.035%
1 | Random Tree 2 D=9 99.744% | 0.997% | 0.007%
2 Random Tree 3 D=3 93.210% | 0.932% | 0.223%
3 | Random Tree 3 D=4 94.400% | 0.944% | 0.157%
4 Random Tree 3 D=5 95.910% | 0.959% | 0.156%
16 | Random Forest | 6 D =22 99.825% | 0.995% | 0.009

Table 1: Performance results of Random Trees. D is the depth of the tree, rr
stands for recognition rate.

5.2 Neural networks

In this section neural networks with various parameters and data sets are com-
pared. The recognition rate of experiment five is very low. In the confusion
matrix in Appendix one can see the problem: the model just classified ev-
erything as normal data. This is because there is only one hidden layer making
it impossible for the neural network to learn the complex patterns. The recogni-
tion rate is still 85.6% and not 50% because there are more normal packets than
malicious packets in the original data set. In experiment 6 this experiment is
repeated without the indent feature and with 2 extra hidden layers. The higher
amount of hidden layers results in a better recognition rate of 98.65%.

From experiment 5 it was learned that the ident attribute weighs very heavy.
One can see this as a fault in the data set or as ”cheating”. Ident is probably
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unique to many instances, this is not what one wants the model to learn, there-
fore the ident variable is left out in experiment 6.

In the third column of experiment 5 and 6 it is noted that ”66% of data set
3 is used. This just means that 66% of the packets of data set 3 are used. This
is because neural networks take a long time to train and test and using the full
data set would take even longer.

In experiment 14,15 and 16 the only difference is the amount of hidden layers.
If the number of hidden layers is increased the recognition rate also increases.
Experiment 20 was run with 7 hidden layers. 7 was chosen because this is a
good trade off between the amount of time needed to train and test the model
and the recognition rate. The difference between experiment 20 and 15 is the
data set. The difference between data set 6 and 7 is that in data set 7 packets
are grouped together. The results of these experiments show that grouping the
packets together this way increases the recognition rate with 0.32%.

nr | Method Data set | Vars excluded | parameter’s rr TP FP

5 Neural network | 66% of 3 | - N =133, L =1 | 85.600% | 0.000% | 0.055%
6 | Neural network | 66% of 3 | ident N =133,L =3 | 98.650% | 0.987% | 0.077%
14 | Neural network | 6 - N=27,L=4 99.051% | 0.95% 0.003%
15 | Neural network | 6 - N=27,L=7 |99.119% | 0.957% | 0.003%
17 | Neural network | 6 - N =27, L =10 | 99.149% | 0.954% | 0.003%
20 | Neural network | 7 - N=27L=7 99.151% | 0.992% | 0.036%

Table 2: Performance results. N is the number of nodes per hidden layer, L
is the number of hidden layers and D is the depth of the tree, rr stands for
recognition rate.

5.3 Grouped packets

Experiment 19, 20 and 21 were all run on data set 7. In data set 7 packets
are grouped together. In the table the results of the learning algorithms
applied on data set 7 are shown (experiment 13, 15 and 22). Next to the results
of algorithms applied to data set 7 the results of machine learning algorithms
applied to data set 6 are also shown. Data set 6 is the same as data set 7 with the
only difference that the packets are not grouped. It can be seen that our way of
grouping packets together does not increase performance in the case of random
trees. The performance of the Neural Network is increased in performance with
0.32% when packets are grouped together. In the case of the random forest
there is a small increase of 0.001% when packets are grouped together.
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nr | Method Data set | Vars excluded | parameter’s rr TP FP
13 | Random tree 6 - D=9 99.006% | 0.956% | 0.005%
20 | Random tree 7 - D=9 98.970% | 0.954% | 0.004%
15 | Neural network | 6 - N=27,L=71|99.119% | 0.957% | 0.003%
20 | Neural network | 7 - N=27L=7 |99.151% | 0.992% | 0.036%
22 | Random forest | 6 : D=9 99.741% | 0.997% | 0.01%
21 | Random forest | 7 - D= 99.742% | 0.997% | 0.01%

Table 3: Performance results. N is the number of nodes per hidden layer, L

is the number of hidden layers and D is the depth of the tree, rr stands for

recognition rate.

5.4 Jripper

Experiments 8, 9, 12 and 18 are performed with Jripper. All results are very

good, it appears that Jripper is the best overall performer of all methods tested.

The best performance by Jripper is when it is applied to data set 5, here the

skip gram is used. The second best is experiment 6, here also skip grams are

used, but there are only 45 clusters used instead of 260. It is logically expected

that when the amount of clusters is reduced the performance is lower because

one throws information away.
nr | Method | Data set | Vars excluded | parameter’s | rr TP FP
8 Jripper 1 - - 99.804% | 0.998% | 0.006%
9 | Jripper 1 src and dest port | - 98.678% | 0.987% | 0.038%
12 | Jripper 5 - - 99.835% | 0.994% | 0.001%
18 | Jripper 6 - - 99.704% | 0.985% | 0.001%

Table 4: Performance results of Jripper. rr stands for recognition rate.
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Table 5 shows all the results together.

nr | Method data set | Vars excluded | parameter’s rr TP FP

0 | Random tree 1 - D=4 94.099% | 0.785% | 0.035%
1 | Random tree 2 - D=9 99.744% | 0.997% | 0.007%
2 | Random tree 3 - D=3 93.210% | 0.932% | 0.223%
3 | Random tree 3 - D=4 94.400% | 0.944% | 0.157%
4 | Random tree 3 - D=5 95.910% | 0.959% | 0.156%
5 Neural network | 66% of 3 | - N =133, L =1 | 85.600% | 0.000% | 0.055%
6 | Neural Network | 66% of 3 | ident N =133,L =3 | 98.650% | 0.987% | 0.077%
7 Random tree 4 - D=3 95.872% | 0.987% | 0.077%
8 Jripper 1 - - 99.804% | 0.998% | 0.006%
9 | Jripper 1 src and dest port | - 98.678% | 0.987% | 0.038%
10 | Neural network | 5 - N =133, L=3 | 98.717% | 0.947% | 0.006%
11 | Random tree 5 - D=9 98.975% | 0.939% | 0.002%
12 | Jripper 5 - - 99.835% | 0.994% | 0.001%
13 | Random tree 6 - D=9 99.006% | 0.956% | 0.005%
14 | Neural network | 6 - N=27,L=4 99.051% | 0.95% 0.003%
15 | Neural network | 6 - N=27,L=7 |99.119% | 0.957% | 0.003%
16 | Random forest 6 - D =22 99.825% | 0.995% | 0.001%
17 | Neural network | 6 - N =27, L =10 | 99.149% | 0.954% | 0.003%
18 | Jripper 6 - - 99.704% | 0.985% | 0.001%
19 | Random tree 7 - D=9 98.970% | 0.954% | 0.004%
20 | Neural network | 7 - N=27L=T7 99.151% | 0.992% | 0.036%
21 | Random forest | 7 - D=9 99.742% | 0.997% | 0.01%

Table 5: Performance results. N is the number of nodes per hidden layer, L
is the number of hidden layers and D is the depth of the tree, rr stands for

recognition rate.
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6 Resulting rules

In this chapter methods are compared and resulting rules that can be drawn
from the experiments are discussed.

It is clear that more complex models have better recognition rates. Neural
networks also work well (the recognition rates are over 98.6%).

After looking at the the images in the Apendix [E]it appears that the impor-
tant ASCII characters are 0, 8, 12, 32, 39, 43, 50, 58, 67, 73, 98, 110, 115, 142,
237, 250. With important it is meant that
Some resulting Jripper rules from experiment 8:

(destPort < 56118)and(srcPort < 55177)and(3 < 1) = category = mal(1513.0/0.0)
(0 < 0)and(53 < 3)and(50 > 10)and(47 > 7) = category = mal(101.0/0.0)
(destPort < 55757)and(srcPort > 57277) = category = mal(78.0/0.0)

(destPort < 55757 )and(srcPort < 56118)and(0 > 12) = category = mal(87.0/2.0)
(destPort > 57314) = category = mal(36.0/0.0)

(0 < 0)and(58 < 4)and(srcPort > 6667)and(77 > 1) = category = mal(22.0/1.0)
(0 < 0)and(55 < 1)and(87 > 4)and(1 < 0) = category = mal(9.0/0.0)

(srcPort > 8080)and(srcPort < 55757)and(99 > 5)and(132 < 3) = category =
mal(13.0/1.0)

Some Resulting Jripper rules from experiment 9:

(0 < 0)and(42 < 0)and(85 > 1)and(46 > T)and(40 > 1) = category =

mal(1171.0/1.0)

(44 < 0)and(3 < 1)and(10 < 0)and(32 > 1)and(34 < 0) = category =
mal(291.0/5.0)

(123 < 0)and(58 < 5)and(3 < 1)and(115 > 4) = category = mal(111.0/15.0)

(44 < 0)and(3 < 1)and(60 < 0)and(68 < 0)and(0 > 3) = category =
mal(107.0/10.0)

(58 < 1)and(3 < 0)and(255 < 0)and(0 < 18)and(10 < 0) = category =
mal(71.0/10.0)
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Some resulting Jripper rules from experiment 19:
(23 < 21)and(23 < 5)and(dest Port < 56553) = category = mal(1257.0/0.0)
(23 < 23)and(lenght > 315)and(dest Port < 56915) = category = mal(147.0/1.0)

(stdevTime > 14813)and(23 < 17)and(srcPort < 55609)and(0 < 0)and(srcPort <
6667) = category = mal(106.0/1.0)

Rules can also be created from the models that resulted from the experi-
ments. One must first interpet the visualised model, For example, in the result-
ing model of Figure [§| one can derive the following rule: If ascii character ”7*”
occurs less than 0.5 times and character "H” occurs more than 5 times and the
"start of heading” occurs more than 0,5 times the packet is normal.
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7 Conclusion

The research question was :

Can one use machine learning techniques to build a model that differentiates
between malicious and normal traffic, extract a set of rules from these models
and then create useful firewall rules from this set that can be used in a real
environment?

The answer to the research question is yes. In this thesis a data set with
malicious and normal traffic was created as described in chapter 3.1. Chapter 3
also describes and defines the difference between malicious and normal traffic for
this thesis. After these feature extraction steps where done and machine learning
techniques were applied to this pre-processed data. The resulting models lead
to rules as described in chapter 6.

In this conclusion it is assumed that the data set is realistic and corresponds
to a real environment. Compared to the KDD [KDDcup| data set this data set
is very realistic, the data set used in the KDD cup is a simulated network and
is from the year 1999. For future work I suggest to repeat the technique and
experiments on other bigger labeled data sets from various environments. When
this is done resulting models, rules and recognition rates can be compared.

Another conclusion that can be drawn from the research done in this thesis
that the high amount of false positives is a problem. Using the models described
in this thesis on normal personal computers or in the office environment is not
realistic at this time. If a program with such a classificaton model would be
installed on a personal computer of a normal person that uses it in everyday
life it would not work. The false positives and false negatives are still too high.
What false positive rate is desired is different for different applications. If for
example 1000 packets travel over a small network every day a false positive rate
of 0.0001 is manageable. You would have one false alarm every day on average.
It might be worth it to develop a machine learning algorithm for very specific
goals. For example, in SCADA networks it could work because the network
traffic is more constant (see Appendix E[)
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Appendices

A Creating firewall rules for SCADA networks

A more specialised area of applying machine learning techniques to create fire-
wall rules is the area of SCADA networks. However, because SCADA network
traffic is more similar and constant machine learning methods will work better
here. This is one reason a special SCADA chapter is included in this thesis
but there are more reasons why developing IDS in SCADA networks should be
investigated.

In our commercial world Supervisory Control and Data Acquisition (SCADA)
systems are often modernized and connected to the Internet to reduce costs and
increase efficiency [R._ Williams]. This introduces the risk of being targeted by
cyber criminals and even governments[C. Saeed]. Cyber criminals keep trying
to compromise the integrity, confidentiality or availability of SCADA Systems.
Cyber criminals keep using the same basic attack techniques [M.v.j.] but the
amount and diversity of malware grows |[M. Fossi]. This renders security de-
fenses ineffective such that millions of computer networks and also SCADA
networks connected to the Internet are infected with malicious software. Gov-
ernments attack SCADA systems as part of their cyber warfare. One way gov-
ernments do this is by hiring hackers [Infosecurity], another way is by putting
together teams of cyberwarriors [Army magazine]. The hackers spy, or sabotage
SCADA systems. A well known example of this is the U.S. and possibly Israel
attacking the centrifuges in a Iranian uranium enrichment facility[C. Saeed].
This chapter explains how and why machine learning methods are useful in IDS
on SCADA networks and presents an idea how to create a labeled data set with
malicious SCADA network traffic and normal SCADA network traffic.

A.1 Introduction
A.1.1 SCADA

SCADA systems collect, transmit, process and visualize measurement and con-
trol signals of remote equipment. SCADA sytems are deployed in many critical
infrastructures such as power generation, public transport and industrial man-
ufacturing [A. Nicholson].

A.1.2 Number of SCADA systems connected to the Internet

The precise number of SCADA systems that are connected to the Internet is
unknown. Researchers from Free university used Shodan find SCADA systems
connected to the internet worldwide[Cyber arms]. On Shodan one can search
for computers connected to the Internet based on software, geography, operating
system, IP address, manufacturer and other properties. Shodan is also called the
Google for hackers because one can use it to find specific vulnerable computers
connected to the Internet. The researchers from Free university published the
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figure [11] showing the SCADA systems created by German manufacturers that
are connected to the Internet.

Figure 11: Amount of SCADA systems of German manufacturer connected to
the Internet in Europe. Source: |Cyber armsg|

If one is a clever searcher and uses for example manufacturers names and
specifies a country or region parameter one can find vulnerable SCADA systems
nearby. Table [A1.2]is created to give an idea what SCADA systems and how
many one can be find on the internet. The table tells how many SCADA systems
of a manufacture can be found on one day (16th of April 2014) in the Netherlands
alone:
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Search query Info n-results
PLC country:NL programmable logic controller (PLC) 40
Allen Bradley country:NL Allen Bradley manufacturers PLC 2
Rockwel country:NL automation company 2
Citect country:NL company creates SCADA systems 2
RTU country:NL interfaces real objects with SCADA systems 30
Modbus Bridge country:NL device that connects Modbus serial products 1
telemetry gateway country:NL | Building Automation and Control Network (BACNET) | 1
Simatec country:NL a PLC manufractured by Siemens 30
Siemens -...er -Subscriber part of ISP infrastructure (Siemens) 301
Schneider country:NL Energy infrastructure management systems 6

Table 6: Table showing how many SCADA devices where found (n-result) for
each search query in the first column

90.145.24.173

Unet BV, HTTB/1.0 302 Redirect
— Location: http://50.145.24.173/ple/webvisu.htm

Details

90-145-24-173 bbserv.nl

Connection: close

Figure 12: Example of vulnerable PLC
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= 2 @ nttp://90-145-24-173.bbserv.nl/plc/webvisu.htm P~ CoDeSys WebVisualiza... %

Xytek Data Concentrator

Figure 13: PLC that is vulnerable and accessible

A.2 Obtaining the data set

Before one can create a intrusion detection model data is needed. Data is often
hard to obtain because of privacy issues. Network packets often contain private
information. Especially labeled data is hard to obtain because labeling the data
is labor intensive. Half of the work of this thesis is creating the labeled data
set. A quote:

It is very difficult and expensive to obtain a labeled data set that
is representative of real network activates and contains both normal
and attack traffic

VIcHugh].

The work of creating the data set can be split up in 2 parts:

1. The actual obtaining of network traffic on a SCADA network and captur-
ing raw packets.

2. Processing the data set: removing mistakes, labeling and doing feature
extraction.
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Part one: obtaining network traffic from a SCADA system is hard because
not many corporations will want to give data. Also other researches have trouble
with obtaining these data sets. Papers of this time still discuss data sets that
are from the year 1999 and older. The most used data set is the DARPA data
set [DARPA]. This data set is from 1999. Of course this 15 year old data set is
outdated. The normal traffic is not representative for traffic of these days, also
the data of attacks is outdated because different attacks are used these days.
Many papers still use this data set. An example of a paper of 2014 that still uses
this data set is [K. Rajitha]. Next to the DARPA data set there is also the KDD
Cup data set [KDDcup]. The KDD Cup data set is a subset of the DARPA data
set. A paper from 2011 that still used this data set is [J._Jonathan|, there are
even papers published in 2013 and 2014 that use the 1999 KKD cup data set to
test models on. Fore example |[P. Ahmed]|, [S. Kumar], and [U. Subramanian|.
Many more of these papers can be found, this shows the need of a new data set
and how difficult it is for researchers to obtain these data sets.

A.3 Sample attack (Kingview)

This chapter gives an idea of how the data set with malicious instances can
be generated. It will be explain by giving a example of how malicious network
traffic can be created by interacting with the Kingview software.

Kingview is a program that that can be installed on MAC OSX or windows.
In our example we will install Kingview on windows XP. Kingview is software
that is used worldwide for SCADA applications. A description of Kingview from
the developers website:

KingView software is a high-performance production which can be
used to building a data information service platform in automatic
field. KingView software can provide graphic visualization which
takes your operations management, control and optimization. KingView
is widely used in power, water conservancy, buildings, coalmine, en-
vironmental protection, metallurgy and so on.

The machine to be exploited should be installed first. This is a small network
with a computer with Kingview installed on it. This is a small network with its
own Internet connection. The machine on which Kingview is installed runs on
windows xp sp3 and has some other software installed.

On a other machine Kali [Kali] will have to be installed which includes
Metasploit [Metasploit]. The ruby and python exploit modules will be down-
loaded from [Symantec]. These modules will be placed in the applicable module
directory of Metasploit and then used. The module exploits a buffer overflow in
Kingview 6.53. By sending a specially crafted request to port 777. The payload
of the specially crafted request is depicted in figure

It must be noted here that the exploit has to run about 10 times before it
succeeds. After having success one has the meterpreter shell and control of the
KingView Server.
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import os
import socket
import sys3

host = sya.argv[l]
port = int(sys.argv[2])

print " KingView 6.53 SCADA HMI Heap Smashing Expleit "™

print " Credits: D1H twitter.com/D1N "

shellcode = ("\x33\xCOWX50\XE8\XE3\x61\xEC\ k683154 x5B Vx50 \x53\xB3"
"NHAANEED\RCI\XTTT
"A\XFFZWEDINESO0\XSD™)

exploit = ("\x90" * 1024 + "\x44"™ * 317538)

expleoit += ("\xeb\x14") # our JMP (over the junk and into nops)

exploit += ("\x44™ * &)

exploit += ("\xad\xbb\xc3\x77") # ECX 0x77C3BBAD --> call dword ptr ds: [EDI+74]
expleoit += ("\xbd\x73\xed\x77") # EAX 0x77ED73B4 ——» UnhandledExcepticnFilter()
exploit += ("\x00"™ * 21)

exploit += shellcaode

print " [+] Herrow Sweeping Dragon...”

print " [+] Sending paylead...”

8 = gocket.socket (3ocket.AF INET, socket.SOCE STEELM)
g.connect { (host, port))
g.3end (exploit)

data = s.recv(1024)

print " [+] Closing connection..™
3.close ()
print " [+] Done!"

Figure 14: Kingview Heap Overflow [Symantec]

The network traffic will be captured with Wireshark [Wireshark|. Wireshark
will be installed on the target machine or on a computer attached to the network.
This is a network monitoring tool. We will be able to capture all network packets
that are part of the attack (malicious) by looking at the time the packets were
send (we know the exact time since I execute the attack).

In figure [14] one can see the payload of the packet that Wireshark captures.
In this message one can see shellcode. This is typical for an attack and is an
example of a pattern that could be learned by a machine learning algorithm.
(this will be further explained later on)

A.4 Project determination and specification

It is important to determine and specify the project. This chapter describes the
project and explains how the project’s boundary’s are determined.

A important reason for determining the project and its boundary’s is the
Data that is needed for the project. Raw network data is hard to obtain. If raw
data cannot be obtained one alternative solution is to not use all the network
data but only look at data flows. In the data flow approach the flow of data
through the network is analyzed, instead of the contents of each individual
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packet. This way privacy is preserved. Another advantage of using data flows
is that it can be performed at high-speeds. A disadvantage is that this throws
away allot of information.

There are various possibilities to create intrusion detection systems. Below
is a summation of some options. For each option the data that is required is
described and some possible ways of how to obtain it. The advantages and
disadvantages are also discussed.

1.

SCADA system with labeled data SCADA systems have more regular

data. When the data is more regular it is easier to distinguish between
normal traffic and intrusions. Having labeled data also makes it easier to
train on the malicious traffic. Labeled data is probably hard to come by
because labeling the data is labor intensive. Another problem is that data
also varies for each SCADA network.

Anomaly detection on SCADA system Anomaly detection is less dif-
ficult than intrusion detection. Intrusion detection is a one class machine
learning problem. This means that one learns only on normal data. When
new network traffic is inputted into the model the similarity of that traffic
with the normal traffic is measured. If the dissimilarity is above some
configured threshold an alarm goes off. No labeled data is needed. One
only needs normal traffic from a SCADA network. Obtaining normal data
might still be a challenge because of privacy issues.

Create own labeled data on SCADA system Creating a labeled
data set is also challenging because one would have to attack or infect an
existing SCADA system. The attacks could be performed with existing
tools such as Kali [Kali]. Kali contains a lot of programs and scripts These
programs and are also altered and then used to perform attacks.

Labeled data from some network When using just any network it
is hard to have a high recognition rate. On normal big networks there
is a high degree of traffic going over the lines with much variation. One
problem is that this causes high false positive rates. If one can create some
model that has a false positive rate of 0.001% this still means that alarms
are going off all day because so many network traffic is generated.

Create own labeled data on some network One could easily setup
some network of some computers with different operating systems, install
programs and generate network traffic. This network could then also be
attacked by the scrips that are in Kali. One could track the packets
caused by the attackers from Kali and this way create a labeled data set.
The disadvantage of this approach is that the real data is not that real
(its "simulated”) and you will only detect attacks that are similar to the
attacks performed by scripts in Kali.
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B List of abbreviations

NN

ML

IDS
SCADA
MLP
PA
LAN
PCAP
ASCII

IT

Neural network

Machine learning

Intrusion detection systems

Supervisory control and data cquisition

Multiplayer perceptron

Pattern associator

Local area network

Packet capture

American Standard Code for Information Interchange
Recognition rate
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C Summary of send documents (21 july)

The document ”Application of machine learning technique for Arcsight” con-
tains a short description of how machine learning techniques can be used to
create new firewall rules for Arcsight. Machine learning is a technique that can
learn from data. In this case the machine learning technique learns a model that
can distinguish between malicious and normal network traffic. This is done by
looking at a data set of normal traffic and malicious traffic where you know what
data is malicious and what data is normal (reinforced learning). The model that
is generated by the machine learning algorithm can be visualised and interpreted
by humans to be used to create more complex and better firewall rules. This
results in lower false positive rates,lower false negative rates, higher true posi-
tive rates and higher true negative rates. It also gives the ability to measure,
and show, how well the rules that you have generated or currently have work
(by for example, creating ROC curves or calculating the false positive rates).

The document ”Master Final Thesis draft” is my master thesis project so
far, it is not expected to be read entirely but parts can be read of something
is unclear or are found interesting by the reader. This document also contains
chapters on SCADA systems because the initial plan was to use it in the SCADA
system environment.

39



D Application of machine learning technique for
ArcSight

D.1 Introduction

This is a separate document from the actual thesis. In the actual thesis a
machine learning method is described that creates a model that can discriminate
between malicious and normal traffic. This machine learning method is trained
on a specific data set that contains normal traffic and malicouse traffic. In
this document it is explained how the resulting model of the machine learning
method can be visualised and used to create firewall rules that can be used in
ArcSight. This document is more practical and contains less technical details.
After the introduction the relevant parts of the machine learning method and
visualisation technique will be described in Appendix A.2. In Appendix A.3 it
is explained where the firewall rules can be inserted into ArcSight. Finally some
remarks are given in Appendix A.4

D.2 The machine learning and visualisation method

Machine learning concerns the construction and study of systems that can learn
from a data set. In this case the data set consists of 2 types of network traffic:
malicious network traffic and normal network traffic. Network traffic is not a
continuous flow of data but consists of packets being send one after another.
These packets can be visualised with Wireshark, see figure

The data set is labeled, so it is known for all the network traffic in the data
set whether it is either malicious network traffic or normal network traffic. The
malicious traffic is generated by performing attacks with Metasploit on a ma-
chine with Metasploitable installed. We want the machine learning algorithm
to learn a model that distinguishes between malicious or normal traffic when
unlabeled network traffic (network traffic of which it is not known whether it
is malicious or normal) is handed to the model. The machine learning algo-
rithm learning a model is called the training phase, and is phase 1 in figure
Some examples of machine learning algorithms that can create such model
are "random forests” " neural networks”, ”multiple instance diverse density”, or
decision trees”. In phase 2 called ”the test phase” the models performance can
be tested. There are many techniques for testing the performance, some exam-
ple of measurements of the model performance are the false positive rate, true
positive rate and ROC curves. If the performance is not as desired the model
created in the training phase should be further optimized. In phase 3 the model
is visualised and interpreted by a human that can create advanced firewall rules
for ArcSight.
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1. Training Phase

Malicious labeled network traffic

Machine Learning algorithm
(nolearned modelyet)
Normallabeled network traffic

Correctlabels of network data

2. Test Phase

Machine Learning Network data labeled by Performance
algorithm machine learning mode| | Caleulate performance indicators

#| (compare labelsthat the (False positive
modelassigned toit with

the correctlabels)

Unlabeled malicous and normalnetwork traffic

rate etc)

3. Visualization Phase

Machine Learning
algorithm Visualise model

Create Firewall rules
for ArcSight
(with human insight)

Figure 15: 3 Phases to create new firewall rules

Traditionally network security analysts looked at patterns in connections
from certain IP addresses with histories of intrusive behavior. However, intru-
sions have become more complex. For example, intrusions can be low and slow
which means that an attack consists of intrusive behavior over hours, days or
weeks and they can have more than one network source. Machine learning can
be used to help the data analyst by doing not only simple but also complex
pattern recognition. An example of simple pattern recognition is looking at the
IP source address or the number of connections on a certain port. A complex
pattern can be derived from a visualised model constructed with the method
explained above.

The tree is created with WEKA which can be downloaded here: www.cs.waikato.ac.nz/ml/weka
. In the attachment is a file called datasetl.arff, this is a sample data set that
can be loaded into weka. After one finished downloading weka one can re-create
the tree above in the following steps:

1. open Weka, click explorer

2. Click "open file” and select datasetl.arff ( in attachment)
3. Click the Classify tab

4. Click choose, and under trees select RandomTree

5

. Click on the bold letters ”Random Tree” that just appeared next to
”choose”

6. Set MaxDepth to 3
7. Click Start
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8. In the white area below where you just click start some text saying some-
thing like ” trees.RandomTree” appeared, right click it and click visualise
tree.

Network data is not a constant flow of data but consists of network packets.
For each packet or for a group of packets one could determine whether the
packet or the group of packets is malicious or not. For simplicity in the example
we determine per packet whether it is maliciouse or not. In the tree every node
and leaf is numbered, and behind the number of the node and the ”:” is a
number indicating which byte is used by that node. The frequency of that byte
determines what path through the tree should be followed. This is a very simple
tree and this tree is not usable yet but gives an idea of the technique. However
this decision tree did gave a recognition rate of 91.5% on the test set. If one has
a packet where the ”*” character occurs more than 0.5 times, the unit separator
occurs less than 1.5 times, the NULL character occurs more than 128,5 times
and the destination port is smaller than the packet is classified as malicious.
This can be seen by starting at the top of the tree, and following the decisions
downward to the right leaf.

Using machine learning algorithms to detect intrusions has several advan-
tages; it can detect zero-day malware because it can determine the statistical
likelihood that a program is malware based on previous examples.

D.3 The resulting firewall rules in ArcSight

From the model shown in [§] firewall rules can be created. In order to explain
how to create these rules, first examples of currently existing firewall rules in
ArcSight are shown below.

1. Rule Name: High Number of Connections Rule Desc: This rule detects
firewall accept events for MSSQL, Terminal Services, and TFTP connec-
tions (default destination ports: MSSQL=1433, Terminal Services=2289,
TFTP=69). The rule triggers when ten events from the same device occur
within 2 minutes. Rule Conditions:

eventl : ( Type = Base AND Category Behavior = /Access AND Category

Device Group = /Firewall AND Category Object = /Host/Application/Service

AND Category Outcome = /Success AND ( Target Port = 1433 OR Target
Port = 3389 OR Target Port = 69 ) AND NotInActiveList(”Event-based
Rule Exclusions”) )

2. Rule name: Possible Internal Network Sweep Rule Description: This rule
detects a single host trying to communicate with at least ten other hosts
on the same target port within the network, within a minute. This rule,
combined with a spike in target port activity by the same host, results
in the worm outbreak detected rule being triggered. Rule Conditions: 10
matches in 1 minute of events. The 10 events that have different target
address but same target port and source address.
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3. Data Monitor Name: Covert Channel DM Desc: This data monitor dis-
plays event information indicating that there is a covert channel. Port 53
is a well-known port for DNS, but DNS activity is generally UDP. Such
activity can be correlated with covert channels. DM uses a filter that looks
for Destination Port = 53 and Transport Protocol = TCP.

If one looks at the visualised model one could use common sense and create
more of these rules. These rules can be much more advanced and complex.
These complexer rules will lead to less false positives and less false negatives.
This makes a better firewall. How good these rules are can be shown and proven
with statistics (phase 2 in . Without the machine learning certain complex
rules will never be thought off because creating these rules is a very complex
and difficult task.

D.4 Remarks

There are some remarks that need to be kept in mind when using this technique
in practice:

1. The data set containing normal and malicious packets on which machine
learning methods are applied and on which the model is trained is very
important. The machine learning method will learn to differentiate be-
tween these malicious and normal packets. In this project malicious pack-
ets are generated by performing attacks with Metasploit on a machine
with Metasploitable installed. Normal data is just dumps of capture of
normal network traffic generated by browsing the Internet, downloading
some files, reading mail and playing a video game online. So the model
will learn to differentiate between these 2 different data sets.

2. The rules have to be derived from the visualised model. Human interpre-
tation is needed in this process.

3. The model that is created should be tested, this is done by calculating false
positive and false negative rates on a test set. This gives an indication
how good the model is.
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E Visualised experiments

E.0.1 Experiment 0

mal | norm
classified as mal 1497 | 379
classified as norm | 407 11037

=648 =B85 =35

Figure 16: Resulting tree of Experiment 0

E.0.2 Experiment 1

mal | norm
classified as mal 1835 | 15
classified as norm | 19 11395

The tree of experiment 1 is omitted because it is too large.

E.0.3 Experiment 2

mal | norm
classified as mal 1396 | 472
classified as norm | 431 11012
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Figure 17: Resulting tree of experiment 2

E.0.4 experiment 3

mal | norm
classified as mal 1537 | 4331
classified as norm | 415 11028

The tree of experiment 3 is omitted because it is too large.

E.1 Experiment 4

mal | norm
classified as mal 1535 | 333
classified as norm | 212 11231

p

Figure 18: Part 0 of the resulting tree of experiment 4
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Figure 19: Part 1 of the resulting tree of experiment 4
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Figure 20: Part 2 of the resulting tree of experiment 4

Confusion matrix:
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mal | norm
classified as mal 0 648
classified as norm | 3878 | 11231

E.1.1 experiment 6

Neural network:

Hidden Layer 1

Hidden layers

Figure 21: Neural network of experiment 6

The confusion matrix:

Hidden Layer 133

mal | norm
classified as mal 590 | 58
classified as norm | 3 3875

E.2 Experiment 7

Confusion matrix:

47

Output layer



mal | norm
classified as mal 1554 | 340
classified as norm | 211 11253

Resulting Tree:

=04 == 0.5
=10427.5 ==104275 = 14496 == 1486
=1510 ==1510 =144 =154 =04 =04

\

e e e m e

Figure 22: The resulting tree of experiment 7. The number after the P indicates
which of the 8 packets, then comes the attribute

E.3 Experiment 8

Confusion matrix:

mal | norm
classified as mal 1864 | 12
classified as norm | 14 11430
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