
Energy Consumption Analysis of
Practical Programming

Languages

Radboud University Nijmegen

Master Thesis

Author:
Stein Keijzers

Supervisors:
Prof.dr. Marko C.J.D. van Eekelen

Drs. Bernard van Gastel

August 13, 2014

Abstract

Energy consumption of software has received significantly more at-
tention in the past decade due to the advent of increasingly small, mo-
bile technology; embedded systems or smart-phones are common enough
to make energy and battery consumption a real issue, even aside from
the general power consumption of server farms and other such large-scale
hardware. Care is being given to optimizing energy usage on the level
of the software running on the hardware, rather than just hardware opti-
mizations.

Two avenues for measuring and reasoning about software energy con-
sumption exist: static and dynamic analysis. Most work focuses on dy-
namic analysis by executing software on specific hardware and measuring
the resulting power draw, but the practice of static analysis draws atten-
tion by virtue of the lack of requirement for measuring equipment and its
relative ease. Based on a set of energy analysis rules[1], one tool perform-
ing such static analysis on a small, While-like[2] language is EcaLogic[3].
The analysis uses hardware models coupled with user-defined bounds to
analyse the energy consumption of a program.

A limited static energy analysis is also limited in its application. This
thesis focuses on extending the energy analysis and its implementation
in EcaLogic to include elements from real, practical programming lan-
guages: by adding additional data structures, support for recursion and
an overall extension of the grammar, usability of the analysis can be sig-
nificantly increased. The end result is an extension of the static energy
analysis method, culminating into an implementation applying it to the C
programming language, chosen due to its prevalence mainly in embedded
system applications; the extended tool is referred to as EcaLogic-C.

1

Contents

1 Energy Consumption Analysis 5
1.1 Dynamic Energy Analysis . 5
1.2 Static Energy Analysis . 6

1.2.1 Spec# . 7
1.2.2 Frama-C . 7
1.2.3 KITTeL . 7

2 A Hoare Logic For Energy Analysis & EcaLogic 9
2.1 Energy-Aware Hoare Logic . 9

2.1.1 Energy-Aware Rules . 9
2.1.2 Hardware Modelling . 11
2.1.3 Analysis Limitations . 12
2.1.4 Typing . 13
2.1.5 Rule Elements . 15
2.1.6 Analysis Operational Semantics 16
2.1.7 Analysis Energy-Aware Semantics 18
2.1.8 Analysis Hoare Logic Rules 19
2.1.9 Application Example . 21

2.2 EcaLogic . 22
2.2.1 Original Language . 23
2.2.2 EcaLogic Limitations . 24

3 Data Structures 26
3.1 Primitive Data Types . 26
3.2 Arrays, Structures, Unions & Enumerations 27
3.3 Objects . 28
3.4 Rule Additions . 29

3.4.1 Semantic Additions . 29
3.4.2 Energy Analysis Rule Modifications 31

4 Pointers 32
4.1 Safe Operations . 32
4.2 Unsafe & Undefined Behaviour 33
4.3 Rule Additions . 34

4.3.1 Semantic Additions . 34
4.3.2 Energy Analysis Rule Modifications 35

5 Recursion 36
5.1 Function Signatures . 37
5.2 Recursion in Signatures . 37
5.3 Recursion Fixpoints . 38

6 Analysing C 39
6.1 Parsing . 39

2

6.2 Annotations . 41
6.2.1 Variable Relations . 41
6.2.2 Loop Bounds . 42
6.2.3 Function Signatures . 44
6.2.4 Recursion . 44
6.2.5 Utility . 45

6.3 Hardware Component Models . 45
6.3.1 Concrete State . 46
6.3.2 Function Contracts . 47
6.3.3 Implementation Language 48

6.4 Control Flow . 50
6.4.1 For-loops . 50
6.4.2 Break & Continue . 51
6.4.3 Go-to Statements . 51

6.5 Adding Data Types . 52
6.5.1 Variable-Length Arrays 54
6.5.2 Additions to the AST . 55

6.6 Allowing Pointer Usage . 55
6.7 Function Signatures & Recursion 56

7 Energy Analysis Examples 57
7.1 Array Sorting . 57
7.2 Clock Synchronization . 58

8 Limitations & Opportunities 61
8.1 Unsupported Language Elements 61
8.2 Semantic Analysis . 62
8.3 Accuracy of the Analysis . 62
8.4 Soundness Proof of the Analysis 62
8.5 Usability Improvements . 63
8.6 Application of ACSL . 63
8.7 Web-Based Interface . 64
8.8 Other CIL-Based Languages . 65

9 Conclusion 66

Appendices 70

A Semantics Reference 70
A.1 Operational Semantics . 70
A.2 Energy-Aware Semantics . 73
A.3 Energy Analysis Rules . 74

B Array Sorting Code Listing 76
B.1 QuickSort . 76
B.2 MergeSort . 76

3

C Clock Synchronization Code Listing 78
C.1 Berkeley Algorithm . 78
C.2 Cristian’s Algorithm . 80
C.3 Network Model . 81

4

1 Energy Consumption Analysis

With the ever-increasing usage of embedded systems and hand-held electronic
devices, more consideration has been given to the energy efficiency of these
objects. Large-scale independent sensor networks are an example of embedded
systems where power is a major concern, both due to the difficulty of reaching
the devices and the need for them to operate for extended periods of time.
Research into improving the energy consumption of these devices often focuses
on the hardware, or programming techniques to improve energy efficiency. For
instance, Alippi et al. published research on more efficiently retaining energy in
large low-power sensor networks, particularly buoy networks. They found that,
by adding either a twin-battery or more advanced capacitors, they were able to
increase the uptime of individual sensors substantially[4]. They later combined
this research with an improved internal structure for the control units[5], stating
that more direct internal bus systems were more efficient for transmitting the
sensory information.

Tackling the energy efficiency of hardware, while important, only concerns one
side of the problem. Research into the energy efficiency of software has thereby
attained more attention: after all, efficient hardware operating under inefficient
software can decrease the potential efficiency of the hardware substantially, or
even negate it in extreme cases. Research into this area commonly features
practices and programming tactics to improve the energy efficiency of the final
system. Kothari et al. reason that, by moving from individual-level program-
ming to reasoning about an entire system, greater efficiency in the software
can be attained by grouping common operations into a more hardware-friendly
manner[6], effectively creating highly specialized low-level libraries. Poletti et al.
instead researched parallel-computing models, focussing on energy efficiency by
minimizing overhead and downtime, to better exploit newer embedded system
structures[7].

A different approach to analysing software for energy efficiency deals with exis-
ting systems by analysing and reasoning about the energy consumption as a
result of the code, or by careful measurement of the power draw while the sys-
tem is running. Real-time measurements are referred to as Dynamic Analysis,
whereas Static Analysis means analysing the code without necessarily having to
run it.

1.1 Dynamic Energy Analysis

Analysing a system dynamically refers to measuring the power draw of its hard-
ware during operation. This method poses several problems: the equipment
and time required to perform the measurement are expensive, it takes a signif-
icant amount of time to run a sufficient number of tests, and the tests them-
selves have to be accurate and cover at least regular usage, preferably more.

5

Commonly, this form of analysis considers ’average’ usage-cases: behaviour is
defined as normal or exceptional, and the normal cases receive the focus. This
does not always hold for safety-critical applications: for instance, in aviation
electronics and software, the worst-case scenario may pose too great a risk in
practice to skip for the analysis. Nevertheless, a proper analysis meeting these
requirements can be used to identify bottlenecks in both the code and actual
hardware, or satisfy specific energy or time constraints. This option is attractive
for businesses, those working with potentially dangerous equipment, and other
users in charge of maintaining hardware on a large scale; case studies have been
performed on varied hardware such as networking devices[8], mobile consumer
electronics[9] and CPU hardware[10]. The results that may be gathered by this
type of analysis are, in many cases, worth the required effort, though it may
not always classify as an exhaustive or proper analysis, so it can be prone to
missing uncovered or exceptional errors.

1.2 Static Energy Analysis

The investment required to perform a dynamic analysis, and its susceptibility for
errors, opens up demand for a faster analysis lacking many of the requirements
posed by actual power measurement. This form of analysis, which focuses on
analysing code or systems without running it or activating them, is referred to
as static analysis. While it does not share the disadvantages of a dynamic ana-
lysis, it also does not provide the same advantages: without real measurement,
the result of a static analysis will always be approximate. Accuracy instead
depends on how accurate the models and rules for reasoning about the energy
consumption are.

The main draw of this form of analysis is the ease of application. Rather than
having to acquire measuring equipment and perform all the required steps for a
dynamic analysis, it may be executed on any system, independent of the actual
hardware it is running on. However, one problem not present with dynamic
analysis is the fact that, in general, it is very difficult, if not impossible without
intervention[11], to completely predict a program’s behaviour. Concessions have
to be made to accuracy in order to be able to perform the analysis as best
as possible. As a result, research in this area focuses more on eliminating or
alleviating these restrictions, which can improve both the accuracy and usability
of the analysis.

Several projects exist that focus on static analysis of code, some of which are
described in greater detail below. In particular, this thesis focuses on extending
an existing analysis[1], and applying these extensions to the tool EcaLogic[3],
itself an implementation of the existing analysis. Both the analysis and tool are
described in greater detail in Section 2.2.

6

1.2.1 Spec#

Microsoft provides an analysis extension for their C# language systems ca-
pable of static analysis (as well as run-time analysis for some aspects of the
code, such as exceptions), based on ‘contracts’ for functions and objects, called
Spec#[12][13]1. Run-time checks and assumptions may also be specified, and
can be checked statically by a semi-automatic theorem prover. The contracts
for functions and objects specify what a function may or may not do, and
within which bounds this should fall. This option extends to loop invariants.
No specific analysis options exist for termination or bounding, although it is
possible to emulate them by adding always-decreasing and equivalent assertions
to contracts or invariants.

1.2.2 Frama-C

Similar to Spec# is Frama-C[14][15]2: a collection of tools providing static and
(minor) dynamic analysis of a language, in this case C. The focus of Frama-C
lies on conformance to a specification and the analysis or prevention of run-time
errors. However, some consideration is given for bounding and termination ana-
lysis: loop variants may be specified in an ever-decreasing shorthand notation to
denote a bound, and functions may be checked for termination. It also offers sig-
nificantly more custom assertions and elements through the ACSL language3,
which allows the user to define entire logical structures, new predicates, and
other elements that can extend the applicable area.

Furthermore, Frama-C offers two plug-ins by default for automatic verification
and proving assertions: WP and Jessie. These may be used in conjunction with
any other plug-in to add formal verification and (partial) correctness checks to a
program, which can improve the confidence in aspects of the code. An example is
a plug-in that performs an analysis on the variables, and can generate assertions
to prove that they are not modified outside of specific sections in the code.

1.2.3 KITTeL

An academic tool, KITTeL[16][17]4 aims to analyse the termination behaviour of
C programs out of the box: that is to say, it does not use any existing annotations
for its analysis, unlike both Spec# and Frama-C, and runs directly on unedited
C. It uses the LLVM compiler back-end5 to transform C programs into a more
basic form, then performs an analysis based on term-rewriting systems. The

1Spec#, at Microsoft: http://research.microsoft.com/en-us/projects/specsharp/
2FramaC may be found here: http://frama-c.com/
3ACSL Specification: http://frama-c.com/download/acsl-implementation-Fluorine-20130601.

pdf
4KITTeL may be found at: http://baldur.iti.kit.edu/~falke/kittel/
5LLVM is based here: http://llvm.org/

7

http://research.microsoft.com/en-us/projects/specsharp/
http://frama-c.com/
http://frama-c.com/download/acsl-implementation-Fluorine-20130601.pdf
http://frama-c.com/download/acsl-implementation-Fluorine-20130601.pdf
http://baldur.iti.kit.edu/~falke/kittel/
http://llvm.org/

result is a simple verdict on the termination behaviour, with a select few of
the reasoning steps given. While the tool is able to analyse programs fairly
accurately, it has severe limitations on the set of programs it’s able to analyse,
and uses a naive method to determine non-termination: if the analysis times
out, the verdict is that it does not terminate.

8

2 A Hoare Logic For Energy Analysis & Eca-
Logic

The focus of this thesis lies on building upon an existing method of static energy
analysis: the analysis rules detailed in A Hoare Logic For Energy Analysis[1],
which were proven to be correct[18], and implemented in EcaLogic[3]. The first
part of this chapter summarizes the original method of analysis, the second part
discusses the original implemented tool.

2.1 Energy-Aware Hoare Logic

The original energy analysis makes use of an energy-aware Hoare Logic describ-
ing the analysis steps for each expression or statement. This section describes
the basis of the analysis, and offers explanation for the elements used in both
the semantic and analysis rules. The rules given in this section have been mod-
ified from the original to a more common format by applying additional typing
restrictions, as well as a syntax more corresponding to Java or C. The com-
pletely unaltered rules may be found in the original paper[1]. Extensions to
these rulesets are described in their respective chapters where appropriate. A
full listing of the final rules, both for semantics and the analysis, can be found
in Appendix A.

2.1.1 Energy-Aware Rules

To reason about the energy consumption of a program, the analysis applies
energy-aware rules based on Hoare logic[1]. Semantics of the program are de-
scribed with separate rules. The energy analysis rules describe, for the set of
possible statements and expressions, what effect each operation or program step
has on the energy consumption of the (modelled) hardware running the program.
The original analysis is proven to give sound bounds on the energy consump-
tion of the analysed program[18]. The analysis results in a lower and upper
bound on energy consumption of the program, parametrized by both regular
function parameters and specific hardware models. The hardware components
are described in the next section.

A very simple program to switch a connected radio on performs actions concer-
ning the hardware, and as such must consume some amount of energy. Assuming
that switching the radio on consumes 50 J of energy would mean the following
program also consumes 50 J of energy:

void main () {
// Swi tch ing the radio on consumes 50 energy
rad io on () ;

}

9

Loops in a program are analysed by relying on user-specified lower and upper
bounds on the number of iterations. Loop iterations are evaluated on how they
affect the hardware, and the maximum and minimum values of the energy con-
sumption for each hardware model are taken as the upper and lower bound
respectively. Results of the analysis therefore strictly depend on both the hard-
ware components and the bounds defined by the user. The program is never
executed or evaluated, so the analysis is static.

Branching paths in the code are treated similar to loops: each path is analysed
separately, and the maximum and minimum values are taken as the upper and
lower bounds respectively. Lastly, arithmetic and other basic operations also
consume energy: a CPU hardware component may be defined to describe the
energy and time consumed by these basic operations.

Continuing the simple radio example, assuming that there is another function
to switch the radio off consuming 20 J of energy, a conditional branch that
switches the radio off or on would be evaluated entirely. Taking the minimum
for the lower bound, the branch that switches the radio off would be chosen,
whereas the opposite would be true of the on-switching branch.

void main () {
//Branch on some cond i t i on
i f (cond) {

rad io on () ;
} else {

r a d i o o f f () ;
}

}

Analysing this example would result in 20 J of energy as the lower bound, and
50 J of energy as the upper bound. The situation gets more complicated if a
loop is introduced: consider a loop that runs for 10 iterations. At the first and
sixth iterations the radio is switched off, but at the fifth and tenth iterations it
is switched back on.

void main () {
//Loop running 10 i t e r a t i o n s
int x = 0 ;
while (x < 10) {

//The radio i s swi tched on fo r only two i t e r a t i on s , spaced out
i f (x == 4 | | x == 10) {

rad io on () ;
} else {

r a d i o o f f () ;
}
x++;

}
}

The problem with analysing a loop is that each iteration may have a vastly
different energy consumption. In the example, the radio is on for two of the ten

10

iterations, which consequently consume more energy than the iterations where
it is switched off. To deal with this problem, and to guarantee the soundness
of the resulting bounds on energy usage, the energy analysis relies on fixpoints
of the energy consumption: at some iteration, the energy consumption of each
hardware component is at a minimum, and the same holds for a maximum.
By multiplying these values with the number of iterations, a sound lower and
upper bound is found, though these are not guaranteed to be very tight: if a
loop consumes a massive amount of energy in one iteration, but almost nothing
in the others, both the lower and upper bounds will be vastly under- and over-
estimated, respectively.

2.1.2 Hardware Modelling

The energy analysis depends on hardware component models (HCMs) for in-
formation about energy and time consumption of the hardware a program will
run on, which allows the user of the analysis to abstract the hardware to any
desired level, rather than it being fixed at either end of the technical-theoretical
spectrum. The more the models correspond to reality, the more accurate the
analysis will be, though also the more specialized. Each model describes one
component consisting of a state, functions which may alter this state, and a φ-
function. Functions consume a constant amount of energy and time when they
are called, whereas the φ-function describes the power draw of the component
per time unit, which can depend on the state.

The analysis aggregates the energy consumed by each individual hardware com-
ponent model, parametrized by variables used in loop bounds and hardware
states. Time consumption analysis is used to determine how long operations
take. When one hardware component is performing some action, the others are
still active in some state and passively consuming energy, which is referred to
as time-dependent energy consumption in the original analysis paper[1]. The
distinction is made explicit between active and passive energy usage: functions
called in the hardware actively consume energy, whereas the component itself
passively consumes energy (which may be based on its state). To determine
bounds on the energy consumption of the hardware models, minima and max-
ima are taken over branching states: an ordering must be present.

In the context of the radio example, instead of treating the radio as only con-
sisting of two functions, a φ-function and a state can be added. Taking the state
as a single boolean, on or off, it becomes possible to define φ as a function that
consumes 20 additional joules when the radio is on, and just 1 when it is off. An
example of how such a hardware component object might look in C++:

11

class rad io {
// Sta te
int on = 0 ;

//Modifying func t i ons
void on () { on = 1 ; }
void o f f () { on = 0 ; }

//Phi−f unc t i on
int phi () { return 1 + on ∗ 20 ; }

} ;

In this case, if the loop-based example were using this component instead of
just the functions radio on and radio off , the energy consumption for each
subsequent iteration would be slightly higher: assuming the functions take 1
millisecond unit each, every call would have resulted in the passive energy con-
sumption by the component to increase as well. Thanks to the overestimation,
however, this only matters in the fixpoint states.

2.1.3 Analysis Limitations

The energy analysis is restricted, which limits its direct applicability. Most
prominently, the analysis rules are limited to a set of default language operations
lacking several features common to programming languages. Missing features
are data values other than positive integers, extended or structured data of
any kind, recursion, manipulation of data beyond local variables and function
parameters, and a notion of scoping. This restriction is shared with EcaLogic
and its own language[3], which implement the energy analysis rules.

The analysis is strictly parametrized in the hardware component models and
function parameters, with no other variables directly allowed unless they have
a definite relation to function parameters. This limitation means the analysis
cannot depend on values read from a file, received from connections, or otherwise
unrelated to the direct usage of the program or a function call.

In the examples above, a variable x was used for the loop, but it was not
explicitly given as a parameter for the containing function. In the cases where x
is not outright known, some relation to parameters would have to be established:
for instance, x could be taken from the command-line arguments for the main
function, or regular parameters for any other.

The hardware component models used by the analysis also have several restric-
tions. In order for the analysis to be able to handle the bounds on a loop, it
is required that a ‘bigger’ state also corresponds to an increase in power draw:
this is because determining the maximum (and minimum) consumption rates
also depends on finding the maximum state of the component (referred to as the
fixpoint of the loop). Energy consumed by hardware component functions has
to be constant and may not depend upon function arguments, because parame-

12

ter dependency would make it significantly harder to determine maximum and
minimum values: it is infeasible to simulate every possible argument or evaluate
them in order to get a concrete value. Lastly, hardware states themselves may
not use data values beyond simple integers.

What these restrictions mean for the radio component from the example is that
each function may not consume energy based on any form of parameter: it may
not consume more or less energy if it is switched off while it was already off to
begin with. The φ-function would also not be allowed to return a lower value
when the radio is on compared to when it is off.

2.1.4 Typing

The original energy analysis has only one type: natural numbers. When ex-
tending the analysis to include the types used by other, practical languages, a
general type system has to be taken into consideration. Some languages are
not, as a whole, type-safe, but many individual operations are, or they may
demand other restrictions on the type itself. As a basic example: a function call
used as an expression in a conditional only makes sense if the return type of
this function can be evaluated as a boolean. Some operations can invalidate or
ignore the type entirely in languages such as C or Python, which feature direct
memory manipulation and dynamic typing respectively.

While the examples above only deal with integer values, this can hardly be
assumed for every program. Using a floating point value instead would make
the analysis impossible to run:

void main () {
//Loop running 10 i t e r a t i o n s
f loat x = 0 .0 f ;
while (x < 1 .0 f) {

x += 0.1 f ;
}

}

In the case of energy analysis, some leeway may be granted to the type system,
depending on the level of abstraction: when dealing with the more abstract
hardware components for their energy usage, intrinsic arithmetic conversions
or type casting would not need to be precisely modelled. Ergo, most of the
type verification needed concerns enforcing some constraints upon the usage
of different types to ensure the validity of the analysis itself, rather than dur-
ing runtime of the program. For example, when using C-like unions, only the
last-modified value is accurately depicted as such in memory: accessing other
values may therefore result in undefined behaviour, which in turn may foul the
analysis.

As an example, consider a union of an integer value x, and a floating-point value
y:

13

union u {
int x ;
f loat y ;

} ;

Floating point values are generally represented in a vastly different manner than
integer values. So, the operation in the following example would result in some
poorly defined value for x:

union u t e s t ;

//Test now conta ins 2.61 as a f l o a t i n g po in t va lue
t e s t . y = 2 .61 f ;

//This i n t e r p r e t s the data o f y as an in t e g e r va lue
pr in t (t e s t . x) ;

For the Operational Semantic rules in this section and other rules in their in-
dividual sections, some identifiers and functions are used to formalize the type
restrictions necessary for the energy analysis if more types were to be allowed.
These are:

• type represents a general type. This may be any type: primitive, struc-
tured, pointer-to, defined, .., with the exception of the void type.

• rtype refers to the return type of a function. This may be any type,
including the void type.

• typeof (e) is used to retrieve the type of the specified expression or value
e. This function is defined in greater detail below.

• subtype(a) retrieves the subtype of an array, as it was declared.

• conv(e, t) checks if expression/value e may be implicitly (without explicit
casts) converted to the type t. If typeof(e) equals t then this is true, oth-
erwise it depends on the implicit conversions available to the compiler: for
instance, converting an integer to a float is usually implicitly possible, but
the reverse may not be the case, depending on rounding and availability.

• last(u) denotes the last element modified of the union u. This is used
to ensure that accessing union elements is only verifiable if the element is
guaranteed to be of the proper format.

The typeof (e) function has several possible return values, depending on the
input:

• If e is an arithmetic operation or constant, the result is the type of the
result of the operation.

• If e is a variable, the result is the type of the variable as it was declared.

• If e is an element of a struct or union, the result is the type of the element
as it was declared.

14

• If e is a function call, the result is the return type of the function as it
was declared.

Boolean values, used for conditionals in loops and branching statements, may
not have a basic definition in some languages: the values can be interpreted
in a certain manner to define boolean behaviour. In particular, zero-values are
often false, while anything else counts as true; this holds for number-values and
pointers, though precise restrictions may depend on the specific language or
compiler. As such, in the rules, the identifier boolean is used to specify when a
boolean-interpretable value is needed.

2.1.5 Rule Elements

The operational and energy-aware semantics, as well as the actual analysis rules,
are described in proof-tree format, where each rule can be applied to specific
statements or expressions. The analysis rules include required elements for a
Hoare-based ruleset. Each set of rules is deterministic, but not collectively
exhaustive: at any statement or expression, there will always be exactly one
rule to apply if the analysis can proceed, or exactly zero if the operation is not
supported. The energy analysis is performed, in general, by finding the analysis
rule to apply, applying it, and repeating this operation until there is nothing left
to analyse. The semantic rules are used to validate the program itself, though
the energy-aware rulesets also describe their effects on energy consumption. It
should be noted that an implementation of the analysis would primarily be
based on the energy analysis rules, with the semantic rules used optionally for
verification.

The precise notation of the energy analysis rules is similar to that of the
operational semantics. Each rule has a set of pre-conditions and initialization,
which are updated after applying the rule in the post-conditions. The elements
in the upper part of each rule describe both restrictions that have to hold, and
assignments of values used within the rule. The values, variables and special
characters used are the following:

• ∆ refers to the environment, which includes function definitions, as well
as data-structure definitions such as structs or unions.

• σ is the variable state: variables and their values are stored here.

• Γ is the component state of the analysis. This contains instances of the
hardware component models, which are updated in certain rules to reflect
energy consumption.

• t is a timestamp. This is used to compute the continuous energy con-
sumption of the hardware components, and is updated for all components
whenever a time-consuming action is performed (which, in practice, should
be all actions: nothing is free).

15

• Cimp :: e refers to the e function of the CPU component Cimp. Other
components are referred to by C as well, though with the component
state as superscript and an index/identifier as subscript.

• Cimp ::Ee refers to the energy consumption of e, in this case for the CPU
component.

• Cimp :: Te refers to the time consumption of e, in this case for the CPU
component.

• e, e1 and e2 refer to expressions in the program.

• a, u, e, s and f refer to identifiers for arrays, unions, enumerations, structs
and functions respectively.

• S1 and S2 are statements in the program.

• n and m represent intermediate results of expressions, and therefore va-
lues.

For updates in the various states a specific notation is used. The variable
state, individual hardware component states, and the function environment are
updated like this:

σ[x← n]

Whereas the energy consumption of an individual hardware component is up-
dated as follows:

[Cimp ::e += Cimp ::Ee]

2.1.6 Analysis Operational Semantics

This section lists the operational semantic rules of the original EcaLogic: the
rules governing what effect each statement or expression has, without consider-
ing energy consumption. To avoid unnecessarily cluttering the energy analysis
rules, type-system restrictions are confined to this section. These rules have
been slightly modified from the original paper[1] to be less language-specific:
several minor typing checks have been added, and the syntax was made to look
more like Java or C.

The operation semantics for semantics are in Figure 1, whereas the expression
semantics are in Figure 2.

16

∆ ` 〈e1, σ,Γ〉⇓e〈n, σ′,Γ′〉
(sExprAsStmt)

∆ ` 〈e1, σ,Γ〉⇓s〈σ′,Γ′〉
(sSkip)

∆ ` 〈skip, σ,Γ〉⇓s〈σ,Γ〉

∆ ` 〈S1, σ,Γ〉⇓s〈σ′,Γ′〉 ∆ ` 〈S2, σ
′,Γ′〉⇓s〈σ′′,Γ′′〉

(sStmtConcat)
∆ ` 〈S1; S2, σ,Γ〉⇓s〈σ′′,Γ′′〉

n = 0 conv(n, boolean) ∆ ` 〈e, σ,Γ〉⇓e〈n, σ′,Γ′〉 ∆ ` 〈S2, σ
′,Γ′〉⇓s〈σ′′,Γ′′〉

(sIf-False)
∆ ` 〈if(e) S1 else S2, σ,Γ〉⇓s〈σ′′,Γ′′〉

n 6= 0 conv(n, boolean) ∆ ` 〈e, σ,Γ〉⇓e〈n, σ′,Γ′〉 ∆ ` 〈S1, σ
′,Γ′〉⇓s〈σ′′,Γ′′〉

(sIf-True)
∆ ` 〈if(e) S1 else S2, σ,Γ〉⇓s〈σ′′,Γ′′〉

n = 0 conv(n, boolean) ∆ ` 〈e, σ,Γ〉⇓e〈n, σ′,Γ′〉
(sWhile-False)

∆ ` 〈while(e) S1, σ,Γ〉⇓s〈σ′,Γ′〉

n 6= 0 conv(n, boolean) ∆ ` 〈e, σ,Γ〉⇓e〈n, σ′,Γ′〉 ∆ ` 〈S1; while(e) S1, σ
′,Γ′〉⇓s〈σ′′,Γ′′〉

(sWhile-True)
∆ ` 〈while(e) S1, σ,Γ〉⇓s〈σ′′,Γ′′〉

∆[f ← (e,∆, x)] ` 〈S, σ,Γ〉⇓s〈σ′,Γ′〉 conv(e, rtype)
(sFuncDef)

∆ ` 〈rtype f(x) { e } S, σ,Γ〉⇓s〈σ′,Γ′〉

Figure 1: Statement semantics.

(sConst)
∆ ` 〈c, σ,Γ〉⇓e〈c, σ,Γ〉

(sVar)
∆ ` 〈x, σ,Γ〉⇓e〈σ(x), σ,Γ〉

∆ ` 〈e1, σ,Γ〉⇓e〈n, σ′,Γ′〉 ∆ ` 〈e2, σ′,Γ′〉⇓e〈m,σ′′,Γ′′〉 Cimp ::�(n,m) = p
(sBinOp)

∆ ` 〈e1 � e2, σ,Γ〉⇓e〈p, σ′′,Γ′′〉

∆ ` 〈e1, σ,Γ〉⇓e〈n, σ′,Γ′〉 Cimp ::�(n) = m
(sUnOp)

∆ ` 〈�e1, σ,Γ〉⇓e〈m,σ′,Γ′〉

∆ ` 〈e, σ,Γ〉⇓e〈n, σ′,Γ′〉 conv(n, typeof(x)
(sAssign)

∆ ` 〈x = e, σ,Γ〉⇓e〈n, σ′[x← n],Γ′〉

∆ ` 〈e, σ,Γ〉⇓e〈a, σ′,Γ′〉 Ci ::rvf (CΓ
i ::s, a) = n Γ′ = Γ[Ci ::s← Ci ::δf (CΓ

i ::s, a)]
(sCallCmpF)

∆ ` 〈Ci ::f(e), σ,Γ〉⇓e〈n, σ,Γ′〉

∆ ` 〈e, σ,Γ〉⇓e〈a, σ′,Γ′〉 ∆(f) = (e1,∆
′, x) ∆′ ` 〈e1, [x← a],Γ′〉⇓e〈n, σ′′,Γ′′〉

(sCallF)
∆ ` 〈f(e), σ,Γ〉⇓e〈n, σ′,Γ′′〉

∆ ` 〈S, σ,Γ〉⇓s〈σ′,Γ′〉 ∆ ` 〈e, σ′,Γ′〉⇓e〈n, σ′′,Γ′′〉
(sExprConcat)

∆ ` 〈S, e, σ,Γ〉⇓e〈n, σ′′,Γ′′〉

Figure 2: Expression semantics

17

2.1.7 Analysis Energy-Aware Semantics

The original, slightly modified energy-aware semantics are as in Figure 3 for
statements and Figure 4 for expressions. In this case, only the syntax has been
modified to match that of the operational semantics. To avoid cluttering the
image further, elements from the rules for the regular semantics are omitted:
this includes the typing restrictions and union safety restriction. It may be
assumed that both these rules and the equivalent regular semantic rules need
to apply.

∆ ` 〈S, σ,Γ, t〉⇓s〈σ′,Γ′, t′〉 ∆ ` 〈e, σ′,Γ′, t′〉⇓e〈n, σ′′,Γ′′, t′′〉
(eExprConcat)

∆ ` 〈S, e, σ,Γ, t〉⇓e〈n, σ′′,Γ′′, t′′〉

∆ ` 〈e1, σ,Γ, t〉⇓e〈n, σ′,Γ′, t′〉
(eExprAsStmt)

∆ ` 〈e1, σ,Γ, t〉⇓s〈σ′,Γ′, t′〉
(eSkip)

∆ ` 〈skip, σ,Γ, t〉⇓s〈σ,Γ, t〉

∆ ` 〈S1, σ,Γ, t〉⇓s〈σ′,Γ′, t′〉 ∆ ` 〈S2, σ
′,Γ′, t′〉⇓s〈σ′′,Γ′′, t′′〉

(eStmtConcat)
∆ ` 〈S1; S2, σ,Γ, t〉⇓s〈σ′′,Γ′′, t′′〉

∆ ` 〈e, σ,Γ, t〉⇓e〈0, σ′,Γ′, t′〉

∆ ` 〈S2, σ
′,Γ′, t′〉⇓s〈σ′′,Γ′′, t′′〉

Γ′′′ = Γ′′[Cimp ::e += Cimp ::Eite]
(eIf-False)

∆ ` 〈if(e) S1 else S2, σ,Γ, t〉⇓s〈σ′′,Γ′′′, t′′ + Cimp ::Tite〉

n 6= 0

∆ ` 〈e, σ,Γ, t〉⇓e〈n, σ′,Γ′, t′〉

∆ ` 〈S1, σ
′,Γ′, t′〉⇓s〈σ′′,Γ′′, t′′〉

Γ′′′ = Γ′′[Cimp ::e += Cimp ::Eite]
(eIf-True)

∆ ` 〈if(e) S1 else S2, σ,Γ, t〉⇓s〈σ′′,Γ′′′, t′′ + Cimp ::Tite〉

∆ ` 〈e, σ,Γ, t〉⇓e〈0, σ′,Γ′, t′〉 Γ′′ = Γ′[Cimp ::e += Cimp ::Ew]
(eWhile-False)

∆ ` 〈while(e) S1, σ,Γ, t〉⇓s〈σ′,Γ′′, t′ + Cimp ::Tw〉

Γ′′ = Γ′[Cimp ::e += Cimp ::Ew] ∆ ` 〈e, σ,Γ, t〉⇓e〈n, σ′,Γ′, t′〉

∆ ` 〈S1; while(e) S1, σ
′,Γ′′, t′ + Cimp ::Tw〉⇓s〈σ′′,Γ′′′, t′′〉 n 6= 0

(eWhile-True)
∆ ` 〈while(e) S1, σ,Γ, t〉⇓s〈σ′′,Γ′′′, t′′〉

∆[f ← (e,∆, x)] ` 〈S, σ,Γ, t〉⇓s〈σ′,Γ′, t′〉
(eFuncDef)

∆ ` 〈rtype f(x) { e } S, σ,Γ, t〉⇓s〈σ′,Γ′, t′〉

Figure 3: Energy-aware semantics for statements, adapted from [1]

18

(eConst)
∆ ` 〈c, σ,Γ, t〉⇓e〈c, σ,Γ, t〉

(eVar)
∆ ` 〈x, σ,Γ, t〉⇓e〈σ(x), σ,Γ, t〉

∆ ` 〈e1, σ,Γ, t〉⇓e〈n, σ′,Γ′, t′〉

∆ ` 〈e2, σ′,Γ′, t′〉⇓e〈m,σ′′,Γ′′, t′′〉

Cimp ::�(n,m) = p

Γ′′′ = Γ′′[Cimp ::e += Cimp ::Ee]
(eBinOp)

∆ ` 〈e1 � e2, σ,Γ, t〉⇓e〈p, σ′′,Γ′′′, t′′ + Cimp ::Te〉

∆ ` 〈e1, σ,Γ, t〉⇓e〈n, σ′,Γ′, t′〉

Cimp ::�(n) = m

Γ′′ = Γ′[Cimp ::e += Cimp ::Ee]
(eUnOp)

∆ ` 〈�e1, σ,Γ, t〉⇓e〈m,σ′,Γ′′, t′ + Cimp ::Te〉

∆ ` 〈e, σ,Γ, t〉⇓e〈n, σ′,Γ′, t′〉 Γ′′ = Γ′[Cimp ::e += Cimp ::Ea]
(eAssign)

∆ ` 〈x = e, σ,Γ, t〉⇓e〈n, σ′[x← n],Γ′′, t′ + Cimp ::Ta〉

∆ ` 〈e, σ,Γ, t〉⇓e〈a, σ′,Γ′, t′〉 Ci ::rvf (CΓ′
i ::s, a) = n

Γ′′ = Γ[Ci ::e += Ci ::Ef + td(CΓ′
i , t), Ci ::s← Ci ::δf (CΓ′

i ::s, a), Ci ::τ ← t′]
(eCallCmpF)

∆ ` 〈Ci ::f(e), σ,Γ, t〉⇓e〈n, σ,Γ′′, t′ + Ci ::Tf 〉

∆ ` 〈e, σ,Γ, t〉⇓e〈a, σ′,Γ′, t′〉

∆(f) = (e1,∆
′, x)

∆′ ` 〈e1, [x← a],Γ′, t′〉⇓e〈n, σ′′,Γ′′, t′′〉
(eCallF)

∆ ` 〈f(e), σ,Γ, t〉⇓e〈n, σ′,Γ′′, t′′〉

Figure 4: Energy-aware semantics for expressions, adapted from [1]

2.1.8 Analysis Hoare Logic Rules

While the semantics describe what each statement can and must do, the actual
energy analysis is described as a Hoare logic with a set of rules. Energy con-
sumption information is aggregated in the Hardware Component Models, and
each rule describes how this information is updated for a specific statement or
expression. Because the analysis considers all possible paths of the control flow
of the program, there are no seperate rules for branching paths such as if/else
statements. Instead, each path is evaluated, and the appropiate minimum or
maximum is chosen for the lower or upper bounds respectively.

The set of analysis rules is written in a different notation from the semantic
rules, though several items from Section 2.1.5 are still used. The pre- and post-
conditions are given as Hoare-logic conditions instead of tuples, and reduction
is not explicitly indicated. While the pre- and post-conditions only list the
elements applicable to the analysis, other items corresponding to program cor-
rectness and semantics are implicitly considered also. That is to say, a program
has to fully fit the semantic rules in this chapter, before the analysis may be
applied.

Additional symbols and functions used in the analysis rules are formally defined
in the original paper[1], but superficially they are:

19

• ρ, ρ1 and ρ refer to the variable environment. This is used to store vari-
ables and their values, but also for substituting variables used in specified
bounds with their parameter-related values.

• lub(Γ1,Γ2) is a function used to calculate the least upper bound of two
sets of hardware component model states. A similar function is used to
calculate the highest lower bound.

• process-td(Γ, t) applies a difference in time to a set of hardware compo-
nent states. This effectively means calling the φ-function for each compo-
nent for each time unit in t.

• cii(S) denotes the component iteration function over component Ci: the
result is the new Ci after evaluating the statement S.

• fixi(S) refers to the fixpoint of component Ci in statement S. During
evaluation of the statement, the state of the component may change; if the
state reaches the same state as it was at an earlier point in the statement,
this state is the fixpoint of the component. Minimizing or maximizing
such a state is used to determine the energy consumption of an entire
loop.

• wcii(S) is the worst-case iteration function. This function applies both
the ci and fix functions to determine the worst possible iteration in the
loop: the iteration where either the minimum or maximum fixpoint occurs.

• oe(..) applies the wci function to the component states and number of
iterations as given in the lower and upper bounds, to determine the energy
consumption of a loop. The result is an over-estimation of the worst case:
specifically, the case where each loop iteration consumed the same amount
of energy as the minimum and maximum fixpoints in the loop.

The original ruleset can be found in Figure 5. Additions to these rules are
described in their own chapters where applicable. A full listing of the final set
of rules, after any additions and changes, can be found in Appendix A.

20

(aConst)
{Γ; t; ρ}n{Γ; t; ρ}

(aVar)
{Γ; t; ρ}x{Γ; t; ρ}

{Γ; t; ρ}e1{Γ1; t1; ρ1} {Γ1; t1; ρ1}e2{Γ2; t2; ρ2} Γ3 = Γ2[Cimp ::e += Cimp ::Ee]
(aBinOp)

{Γ; t; ρ}e1 � e2{Γ3; t2 + Cimp ::Te; ρ2}

{Γ; t; ρ}e{Γ1; t1; ρ1} Γ2 = Γ1[Cimp ::e += Cimp ::Ea]
(aAssign)

{Γ; t; ρ}x = e{Γ2; t1 + Cimp ::Ta; ρ2}

Γ1 = Γ[Ci ::s← Ci ::δf (Ci ::s), Ci ::τ ← t, Ci ::e += Ci ::Ef + td(Ci, t)]
(aCallCmpF)

{Γ; t; ρ}Ci ::f(args){Γ1; t + Ci ::Tf ; ρ}

∆(f) = (e1, x)

e = a ∈ ρ

{Γ; t; ρ}e{Γ1; t1; ρ1}

{Γ1; t1; ρ1[x′ ← a]}e1[x← x′]{Γ2; t2; ρ2} x′ fresh in e1
(aCallF)

{Γ; t; ρ}f(e){Γ2; t2; ρ2}

(aSkip)
{Γ; t; ρ}skip{Γ; t; ρ}

{Γ; t; ρ}S1{Γ1; t1; ρ1} {Γ1; t1; ρ1}S2{Γ2; t2; ρ2}
(aConcat)

{Γ; t; ρ}S1; S2{Γ2; t2; ρ2}

{Γ; t; ρ}e{Γ1; t1; ρ1}

Γ2 = Γ1[Cimp ::e += Cimp ::Eite]

{Γ2; t1 + Cimp ::Tite; ρ1}S1{Γ3; t2; ρ2}

{Γ2; t1 + Cimp ::Tite; ρ1}S2{Γ4; t3; ρ3}
(aIf)

{Γ; t; ρ}if(e) S1 else S2{lub(Γ3,Γ4); max{t2, t3}; ρ4}

Γ1 = process-td(Γ, t)

{wci(Γ1, e; S); t; ρ}e{Γ2; t1; ρ1}

Γ3 = Γ2[Cimp ::e += Cimp ::Ew]

{Γ3; t1 + Cimp ::Tw; ρ1}S{Γ4; t2; ρ2}
(aWhile)

{Γ; t; ρ}while(ib e) S{oe(Γ1, t,Γ4, t2, ib); ρ3}

Figure 5: Original energy analysis rules, adapted from [1]

2.1.9 Application Example

Application of the analysis rules is deterministic, so there will be one rule at
most to apply to a given statement. Consider the example from earlier in the
chapter, extended with a function parameter:

void main (int n) {
//Loop running n i t e r a t i o n s
int x = 0 ;
//Bound in (lower , upper) i s : (n , n)
while (x < n) {

//The radio i s swi tched on fo r only two i t e r a t i on s , spaced out
i f (x == n/2 | | x == n−1) {

rad io on () ;
} else {

r a d i o o f f () ;
}
x++;

}
}

The loop runs a guaranteed n iterations, defining the upper and lower bound as

21

this number; it may be assumed that this information is communicated to the
analysis in some way. If the analysis is performed on this function, it would go
through the statements sequentially.

The function has at its highest level only two statements: the assignment of x,
setting it to zero, and the while loop. The first statement is handled with the
application of just the assignment rule aAssign followed by aConst for the zero
value. The while-loop, on the other hand, applies the aWhile rule, which looks at
the body of the while-loop in full. In order to estimate the energy consumption
of the loop, the analysis determines the fix-point of the component states. The
highest state of the radio component is when it is turned on, so the iteration
where the x == n/2 and x == n − 1 branch is entered would naturally apply.
However, as a branch, the energy analysis has to look at both sides of the if-else
statement conform the aIf rule, which results in the higher-consuming branch
(where the radio is turned on) to be considered the result of the branch. This
means that each iteration where the radio would be turned off is over-estimated
into turning the radio on instead, which makes the fix-point easy to find, as
each iteration is considered pretty much equal.

The result of the analysis is, after applying the rules, the energy consumption
from the radio being turned on multiplied by the bound of the loop, added to
the consumption from the initial assignment to x. Assuming the radio being
turned on and this action consuming 20 joules, the passive power usage being
zero, and the assignment costing 10 joules, energy consumption of the main
function would then be 10 + 20nJ .

2.2 EcaLogic

EcaLogic[3] is a tool implementing the original energy analysis in Scala, and ex-
tending this tool to implement the extended analysis for the C language is the
second objective of the thesis. With the ‘energy analysis’ the theoretical aspect
of the analysis is meant, ‘EcaLogic’ refers to the original tool, and the extended
implementation will be referred to as ‘EcaLogic-C’. Both the energy analysis
and EcaLogic have two inputs: a program, and hardware models. The mod-
els are used to ascribe energy and time consumption information to hardware
components, which is in turn used to analyse the consumption of the program.
More details for the original analysis are in Section 2.1, as well as the original
paper[1].

The overall structure of the original EcaLogic tool looks as in Figure 6.

22

Figure 6: Structure of EcaLogic operation

2.2.1 Original Language

EcaLogic operates on a basic, While-like language with little more than the
standard functionality of programming languages: it lacks support for recur-
sion, global variables, scoping, data values beyond natural numbers, a notion of
pointers or arrays, or structured data of any kind. One unique feature of the
language is calling functions of the hardware components, which are generally
treated as simple objects on the surface. For reference, a partial grammar of
the language is shown in Figure 7.

EcaLogic applies the energy analysis rules to gain an upper bound on the energy
consumption of the program, parametrized in variables used and the hardware
components modelled. The tool was later extended to also provide a lower
bound. In order to handle loops in the code, it is required for the programmer to
define lower and upper bounds on the number of iterations for each loop.

23

<program> ::= {<comp-imp> <sep>} {<fun-def> <sep>}
<comp-imp> ::= ‘import’ ‘component’ id {‘.’ id} [‘as’ id]
<fun-def> ::= ‘function’ id [‘(’ [id {‘,’ id}]‘)’] <fun-body>
<fun-body> ::= ‘:=’ <expr>

| <stat-list> ‘end’ ‘function’
| <empty>

<stat-list> ::= {<statement> <sep>}
<statement> ::= ‘skip’

| id ‘:=’ <expr>
| <fun-call>
| ‘if’ <expr> ‘then’ <stat-list> ‘else’ <stat-list> ‘end’ ‘if’
| ‘while’ <expr> ‘bound’ ‘(’ <expr> ‘,’ <expr> ‘)’ ‘do’ <stat-list> ‘end’ ‘while’
| ‘{’ <annot-elem> {‘,’ <annot-elem>} ‘}’ [<statement>]

<fun-call> ::= [id ‘::’] id ‘(’ [<expr> {‘,’ <expr>}] ‘)’
<annot-elem> ::= id ‘<-’ <expr>
<expr> ::= <expr> <bin-op> <expr>

| <expr> ‘^’ numeral
| id
| <fun-call>
| ‘(’ <expr> ‘)’

<bin-op> ::= ‘or’ | ‘and’ | ‘=’ | ‘<>’ | ‘>’ | ‘<’ | ‘>=’ | ‘<=’ | ‘+’ | ‘-’ | ‘*’ | ‘/’
<sep> ::= ‘;’ | end-of-line

Figure 7: Original EcaLogic language grammar, taken from [3].

The hardware components can be written in a language based on the simple
grammar in Figure 7, the original partial grammar of which can be viewed in
Figure 8. Files for this language are referred to as ‘ECM’ files in Figure 6.

<component> ::= {<class-imp> <sep>} ‘component’ id [‘(’ [<var-def> {‘,’ <var-def>}] ‘)’]
{<member> <sep>} ‘end’ ‘component’
<class-imp> ::= ‘import’ ‘class’ id {‘.’ id} [‘as’ id]
<var-def> ::= id ‘:’ numeral ‘..’ numeral
<member> ::= ‘initial’ id ‘:=’ numeral
| <fun-def>
| <comp-fun-def>
<comp-fun-def> ::= ‘component’ ‘function’ id [‘(’ [id {‘,’ id}] ‘)’] [<uses-clause>] <fun-body>
<uses-clause> ::= ‘uses’ numeral ‘energy’ [numeral ‘time’]
| ‘uses’ numeral ‘time’ [numeral ‘energy’]

Figure 8: Original EcaLogic hardware component language grammar, taken
from [3].

In addition to ECM files, the models may also be written in Scala, though
this requires a direct implementation of the interface and recompilation of the
tool.

2.2.2 EcaLogic Limitations

Certain elements of EcaLogic limit its applicability to ‘real-world’ programs
and systems. Foremost among them is its restriction to the custom language.
This restriction also holds for the analysis, but it is more general and therefore
less pronounced in that case. The language only accepts natural numbers as
values and lacks any form of type system, which severely limits using it for any
complex system, or even a program relying on arrays. Also lacking are unary
operators, bit-wise binary operations, the ability to define groups of values (eg.

24

structs), control structures such as for-loops or case-switch statements, explicit
return values for functions, recursion, any form of memory management, global
variables, explicit or implicit jumps in the code, and scoping. The need to
rewrite a program to this language in order to be able to analyse it decreases
the usability of the tool substantially.

Other, lesser, restrictions are angled towards ease of implementation or time
constraints. Only one file may be analysed at a time, inclusion of files into
programs is unsupported, there exists no true compiler for the language so it
is only superficially checked and is computationally expensive to interpret, and
it is not possible to model existing functions or attach energy consumption
information to them. Lack of reuse of analysis results means that an entire
function definition is re-analysed on every call to this function, which greatly
increases the time required for the analysis when going beyond a small amount
of functions.

25

3 Data Structures

The original energy analysis[1] and its implementation[3] only support natural
numbers as data, without provisions for negative numbers, floating-point values,
or any other data structures. Limiting the tool to just natural numbers makes
analysing a practical program much harder, so this chapter discusses adding
additional data types and structures to the system: starting at extending the
primitive data types available, and going on towards structured data types such
as arrays.

3.1 Primitive Data Types

The original analysis used by EcaLogic is restricted to natural numbers for
all values. No analysis elements depend directly on the values of variables;
the restriction was imposed out of consideration for the implementation rather
than the analysis. Indeed, the ordering of the values matters much more for
the analysis than the type of the data. Extending computations from natural
numbers to integer numbers would not break any element of the analysis in and
of itself. However, removing the restriction introduces the issue of overflow: if
states or other values on which the analysis depends would encounter overflow,
it would violate the ordering restrictions put in place for them. In that regard,
then, leaving the responsibility of maintaining these restrictions into the hands
of the user simplifies matters. Hardware Component states are the only element
of the analysis strictly susceptible to overflow, and since their restriction of
ever-increasing energy usage with a larger states can be automatically checked,
problems arising from overflow are noticed in time and can be reported back to
the user.

The same reasoning applies to the addition of floating point values to the list of
usable data types. The ordering and other constraints are still preserved when
allowing non-integer values, as long as they are finitely representable: the main
issue in this case comes from the actual computation of the analysis, since non-
integer values are less convenient to work with. Disregarding this, another issue
are the inherit limitations of floating point values in their hardware representa-
tion: the number of bits is always limited, so not all values are representable.
Since the actual limitations are heavily dependent on factors like the specific sys-
tem or compiler, abstracting these values to the more accurate but less realistic
domain of large double-values would be preferable.

Character-string constants are a special case. While characters themselves are
usually treated as very limited integer values, a string constant is implicitly an
array of characters in languages such as C, and can be a full object in object-
oriented languages, such as Java. In the C case, treating them as a plain array
with its supported operations is feasible, and generalizes them more easily for
any of the elements of the analysis utilizing them.

26

3.2 Arrays, Structures, Unions & Enumerations

The most commonly used basic data storage type, arrays are strictly defined
regions in memory for storing a list of another data element. Since they have
to be explicitly sized before usage, their capacity is always known, even when
dynamically allocated, although the ability to use variables for sizing them in
this manner might complicate their size.

With the size known as a constant at the time of initialization, treating them as
a set of variables of the specific subtype greatly simplifies handling the individual
values. For example, having a variable consisting of an array with two elements,
a simple method of handling the data would be to consider each element as its
own variable. Treating them as a set keeps the methods used for the analysis
applicable, provided that they also hold for the data type contained in the
array.

Local stack-based arrays initialized with a length defined by variables are a
special case: since they are designated as optional in some languages (such
as C) and outright unsupported in others (like Pascal), precise semantics may
differ. As long as the final size is determinable at a specific point, however, their
values are still usable in steps of the analysis without risking access to undefined
sections of memory.

In the C programming language, array operations include the following:

//Dec lara t ions
int l i s t 1 [1 0] ;
int∗ l i s t 2 = a l l o c a (10 ∗ s izeof (int)) ;
int∗ l i s t 3 = mal loc (10 ∗ s izeof (int)) ;

//Assignments
l i s t 1 [1] = 5 ;
l i s t 2 [3] = 6 ;

The declaration methods have subtle differences, but can be seen as pretty
much equal for the purpose of the analysis. The first declaration type for list1
allocates an array on the stack (local scope), with size defined by a constant
value. The second declaration for list2 also creates an array on the stack,
but the allocation size may contain variable references, since it is a call to the
alloca function. The third and last allocation for list3 may also contain variable
references, but allocates the array on the heap instead of the stack, which means
it persists beyond the current scope. Access to elements of the array happens
the same in all these cases, and the syntax is used for the new rules defined in
this chapter.

Similar to arrays, in their basic form, structures and unions also represent a
solid set of variables. Precise semantics notwithstanding, they may therefore be
considered under the same clause as arrays in the basic case. For the non-basic
cases, such as recursive and pointer-based manipulation of arrays or structures,
separate changes may have to be made, which are described in more detail in

27

the next two chapters. One part of the semantics of unions is given special
consideration: since the fields occupy the same space in memory, changing one
value also changes the other values to however they would interpret the new
memory. Dealing with values that are ill-defined poses too many risks for the
analysis, so unsafe operations are treated as undefined behaviour.

Structures and unions are defined in almost the same way in the C programming
language:

struct s {
int x ;
int y ;

} ;

union u {
int x ;
int y ;

} ;

The only difference between definitions is the keyword. Access to structures
and unions is done via a plain dot operator: s.x would refer to the x element of
struct s. The syntax is also used for the rules introduced in this chapter.

Enumerations in most languages are, in essence, nothing more than a set of
predefined constant values. In object-oriented languages they may also repre-
sent distinct objects or namespaces. In all cases they come with the added
benefit of being able to define a type to the specific set of constants, which
helps in preventing errors or just for ease of use. Since these restrictions are
fully enforced during compilation, simply treating enumeration values as their
respective constants makes them usable for the energy analysis without addi-
tional provisions.

3.3 Objects

Object-oriented languages offer the possibility of defining structures with their
own variables, functions, sub-classes, etc referred to as objects. The main pro-
blem objects pose for the energy consumption analysis is also the feature they
have in advantage of basic structures, namely their functions. Unlike globally
defined functions, object-local functions have their own instance of the object
and its variables to work with. As a result, the restriction of the energy analy-
sis requiring parameter-variables as bounding values poses more problems here
than it did for global variables.

Usage of the variables of an object for parts of the analysis is easy in and of
itself: with their similar container-like status, treating them as structures with
respect to their variables offers plain usage of them. In some languages (for
example, C++), structures are treated as simple objects, so using objects and
structures for the analysis would have many similarities. The same considera-
tions regarding pointers and recursive objects then apply.

28

Solving the issue of using object-instantiated functions can be achieved by ex-
ploiting a common element in languages supporting them: object-based func-
tions are treated as having an additional invisible parameter pointing to the
instance of the object it is operating from, commonly referred to as the this-
value. Any references to variables instantiating in the object are then implicitly
translated to access statements to this pointer, which preserves the restriction
on defining bounds based on variables. Coupled with the treatment of objects
as elevated structures, they may then be used properly for analysis in all as-
pects.

3.4 Rule Additions

In order to be able to add extended data structures to the supported statements
and expressions for the energy analysis, additions to both the semantic and the
analysis rulesets have to be made. In particular, rules to define structures and
unions are added to the semantic operations, whereas access and assignment
rules are defined in all rulesets for arrays, structures and unions. Array decla-
rations, while technically also a definition, are assumed to also consume energy,
and as such they are also added to each set of rules.

The additions to the semantic rules describe what the operations imply and
require in terms of the program (as well as energy consumption for the energy-
aware semantics), whereas the added analysis rules exclusively concern their
energy usage. For an explanation on the functions and symbols used, see Section
2.1; in particular, see 2.1.4 for the typing elements, 2.1.5 for the symbols present
in all sets of rules, and 2.1.8 for functions and symbols unique to the energy
analysis rules.

3.4.1 Semantic Additions

Adding arrays, unions, structures and enumerations to the semantic rules is nec-
essary to allow analysis. The added rules, both for statements and expressions,
are given for operational semantics in Figure 9, and for energy-aware semantics
in Figure 10.

These rules are fairly straight-forward. With the exception of unions, each
data structure is treated as a plain collection of variables. This means that
assigning or accessing values takes the energy cost of plain assignment or access.
Additional energy cost associated with accessing memory is ascribed in Chapter
4 instead.

Structure and union definitions store their identifiers and accompanying types
in the program environment, whereas arrays store their length in the variable
state. Enumerations do not have specific rules, because they are treated as
collections of constants with some restraints, which are enforced not by the
analysis but by the program compiler.

29

∆ ` 〈e, σ,Γ〉⇓e〈n, σ′,Γ′〉
(sArrayDecl)

∆ ` 〈type a[e], σ,Γ〉⇓s〈σ′[a← type[n]],Γ′〉

∆[s← {x0..xl}] ` 〈σ,Γ〉⇓s〈σ,Γ〉
(sStructDef)

∆ ` 〈struct s{x0..xl}, σ,Γ〉⇓s〈σ,Γ〉

∆[u← {x0..xl}] ` 〈σ,Γ〉⇓s〈σ,Γ〉
(sUnionDef)

∆ ` 〈union u{x0..xl}, σ,Γ〉⇓s〈σ,Γ〉

∆ ` 〈i, σ,Γ〉⇓e〈j, σ′,Γ′〉 j ∈ [0..length(a)− 1]
(sArrayAccess)

∆ ` 〈a[i], σ,Γ〉⇓e〈σ′(a[j]), σ′,Γ′〉

x ∈ ∆(s)
(sStructAccess)

∆ ` 〈s.x, σ,Γ〉⇓e〈σ(s).x, σ,Γ〉

x ∈ ∆(u) conv(x, typeof(last(u)))
(sUnionAccess)

∆ ` 〈u.x, σ,Γ〉⇓e〈σ(u).x, σ,Γ〉

∆ ` 〈i, σ,Γ〉⇓e〈j, σ′,Γ′〉 j ∈ [0..length(a)− 1] ∆ ` 〈e, σ′,Γ′〉⇓e〈n, σ′′,Γ′′〉 conv(n, subtype(a))
(sArrayAssign)

∆ ` 〈a[i] = e, σ,Γ〉⇓e〈σ′′[a[j]← n],Γ′′〉

x ∈ ∆(s) ∆ ` 〈e, σ,Γ〉⇓e〈n, σ′,Γ′〉 conv(n, typeof(s.x))
(sStructAssign)

∆ ` 〈s.x = e, σ,Γ〉⇓e〈σ′[σ′(s).x← n],Γ′〉

x ∈ ∆(u) ∆ ` 〈e, σ,Γ〉⇓e〈n, σ′,Γ′〉 conv(n, typeof(u.x))
(sUnionAssign)

∆ ` 〈u.x = e, σ,Γ〉⇓e〈σ′[σ′(u).x← n][last(u)← x],Γ′〉

Figure 9: Operational data structure semantics

The union rules for accessing and assigning values are a special case because of
the nature of unions. On an assignment, the last-modified value of the union in
the analysis is set. Then, on access of any element, the type of the attempted
access operation is checked against the last-modified value of the union. This
is to ensure that the value will not be undefined, which would invalidate the
analysis.

30

∆ ` 〈e, σ,Γ, t〉⇓e〈n, σ′,Γ′, t′〉
(eArrayDecl)

∆ ` 〈type a[e], σ,Γ, t〉⇓s〈σ′[a← type[n]],Γ′, t′〉

∆[s← {x0..xl}] ` 〈σ,Γ, t〉⇓s〈σ,Γ, t〉
(eStructDef)

∆ ` 〈struct s{x0..xl}, σ,Γ, t〉⇓s〈σ,Γ, t〉

∆[u← {x0..xl}] ` 〈σ,Γ, t〉⇓s〈σ,Γ, t〉
(eUnionDef)

∆ ` 〈union u{x0..xl}, σ,Γ, t〉⇓s〈σ,Γ, t〉

∆ ` 〈i, σ,Γ, t〉⇓e〈j, σ′,Γ′, t′〉 j ∈ [0..length(a)− 1]
(eArrayAccess)

∆ ` 〈a[i], σ,Γ, t〉⇓e〈σ′(a[j]), σ′,Γ′, t′〉

x ∈ ∆(s)
(eStructAccess)

∆ ` 〈s.x, σ,Γ, t〉⇓e〈σ(s).x, σ,Γ, t〉

x ∈ ∆(u)
(eUnionAccess)

∆ ` 〈u.x, σ,Γ, t〉⇓e〈σ(u).x, σ,Γ, t〉

∆ ` 〈i, σ,Γ, t〉⇓e〈j, σ′,Γ′, t′〉 j ∈ [0..length(a)− 1]

Γ′′′ = Γ′′[Cimp ::e += +Cimp ::Ea]

∆ ` 〈e, σ′,Γ′, t′〉⇓e〈n, σ′′,Γ′′, t′′〉
(eArrayAssign)

∆ ` 〈a[i] = e, σ,Γ, t〉⇓e〈σ′′[a[j]← n],Γ′′′, t′′ + Cimp ::Ta〉

x ∈ ∆(s) ∆ ` 〈e, σ,Γ, t〉⇓e〈n, σ′,Γ′, t′〉 Γ′′ = Γ′[Cimp ::e += Cimp ::Ea]
(eStructAssign)

∆ ` 〈s.x = e, σ,Γ, t〉⇓e〈σ′[σ′(s).x← n],Γ′′, t′ + Cimp ::Ta〉

x ∈ ∆(u) ∆ ` 〈e, σ,Γ, t〉⇓e〈n, σ′,Γ′, t′〉 Γ′′ = Γ′[Cimp ::e += Cimp ::Ea]
(eUnionAssign)

∆(x ∈ u) ` 〈u.x = e, σ,Γ, t〉⇓e〈σ′[σ′(u).x← n],Γ′′, t′ + Cimp ::Ta〉

Figure 10: Energy-aware data structure semantics

3.4.2 Energy Analysis Rule Modifications

In this section the additional energy analysis rules needed for extended data
structures are described. This concerns only those energy-aware semantic rules
that consume energy, which are the three assignment rules. Chapter 4 details
the additional energy consumption caused by memory manipulation, and both
adds to and improves this set of additional rules given in Figure 11.

{Γ; t; ρ}i{Γ1; t1; ρ1} {Γ1; t1; ρ1}e{Γ2; t2; ρ2} Γ3 = Γ2[Cimp ::e += Cimp ::Ea]
(aArrayAssign)

{Γ; t; ρ}a[i] = e{Γ3; t2 + Cimp ::Ta; ρ2}

{Γ; t; ρ}e{Γ1; t1; ρ1} Γ2 = Γ1[Cimp ::e += Cimp ::Ea]
(aStructAssign)

{Γ; t; ρ}s.x = e{Γ2; t1 + Cimp ::Ta; ρ1}

{Γ; t; ρ}e{Γ1; t1; ρ1} Γ2 = Γ1[Cimp ::e += Cimp ::Ea]
(aUnionAssign)

{Γ; t; ρ}u.x = e{Γ2; t1 + Cimp ::Ta; ρ1}

Figure 11: Additional analysis rules for data structures

31

4 Pointers

Explicit memory manipulation through the use of pointers is possible in lan-
guages such as C, Pascal and Perl. In object-oriented languages, pointers can
often be used, albeit implicitly, so consideration can be given to modelling their
energy usage, even in languages where direct manipulation is not supported. In
general, pointers allow programmers to use memory locations as values in their
computations, with added language-dependent functionality, such as pointer
arithmetic in C. As an example, Java implicitly uses pointers for its objects
but does not offer direct manipulation, whereas C and derivatives allow for ex-
plicit and possibly unsafe direct manipulation of memory addresses, and Fortran
features type-safe pointer operations.

4.1 Safe Operations

Using and modifying pointers can be unsafe, but several operations may depend
on basic pointer arithmetic without inherit risk. Under regular, safe, usage, the
following operations are understood:

• Dereferencing a pointer to a variable and using this new variable instead
of the actual variable. For example, a pointer to an integer x can be
dereferenced and used safely, provided no modifications to the pointer
occur.

• Accessing structure or union elements can be accomplished by modifying
the pointer to the start of the structure in memory. For example, if a
structure contains three integer values, accessing the second one can be
achieved by incrementing the pointer to said structure by the size of one
integer value in memory. This usage is safe as long as the pointer does
not exceed the bounds set by the total size of the structure.

• Accessing a specific index in an array can, similar to structures, be done
by incrementing the pointer to the start of the array to the resolved index.
Precise semantics may depend on the compiler or target system: additional
dereference operations may be required to access dynamically allocated or
multi-dimensional arrays. As with structures, this usage is safe as long as
accessed indices remain within the scope of the memory allocated for the
array.

• Using a pointer to some value instead of the actual value is a common
method to improve efficiency: rather than storing or passing along the
entire batch of data, a pointer to the location of this data is used to ma-
nipulate or read it. Provided this data is initialized and access operations
are safe, usage of it does not differ much from simple variable manipula-
tion.

32

• Dereferencing a pointer to a variable with a different type is needed for
some applications: in particular, void-pointers are often used to transmit
information of any type as a function argument or otherwise. Provided
the dereference occurs to a variable with the same type as the original
data or a guaranteed castable type, this usage is safe.

For the safe operations, energy analysis can be applied in a similar manner to
their equivalent operations without pointers: assigning a value to a pointer-
location classifies as a variable assignment, and so on. Modelling specific mem-
ory operations to require some measure of energy is preferred, however, since
the explicit operations do differ on the hardware-level. As such, two operations
would be added to the CPU component:

• Cimp ::Emdec to denote the cost of allocating memory, and

• Cimp ::Emacc to denote the cost of accessing a location in memory, possibly
after pointer arithmetic operations.

As an example of allowed pointer usage, consider a case where a struct in C is
passed as a pointer to a function, and its second integer value is modified. Since
these pointers fall within strictly defined memory ranges, this behaviour would
be allowed.

struct s {
int x ;
int y ;

} ;

void f (struct s ∗ t) {
//This opera t ion would be a l lowed
int z = ∗(t+s izeof (int)) ;

}

4.2 Unsafe & Undefined Behaviour

Unsafe pointer operations are those that do not have the same guarantees that
the safe operations have, or those that may lead to unpredictable behaviour.
Such behaviour may fall under direct usage of pointers as values in operations,
but also the usage of functions that depend on some quality of the pointer,
which may not always hold. Unsafe operations are the following:

• Attempting to access memory outside of declared ranges. This includes
accessing an invalid array index and accessing pointers to structures out-
side of their size, but also accessing a simple incremented pointer that was
not declared as any sort of data structure. This operation can either result
in a runtime error or return whatever is in the specific memory location,
which is unpredictable.

• Dereferencing a pointer to use as a value with an incompatible type. For

33

example, attempting to dereference a pointer to a floating-point value into
an integer variable. The same holds for functions that implicitly demand a
specific pointer type, but also accept others, such as some generic functions
utilizing void-pointers. The end result of these operations is undefined.

• Using bounded values in an unbounded manner. This can occur when a
function takes a pointer argument to an array, but performs no checks
on the actual bounds of the array itself. If the bound of such a function
depends on the contents of array, which is the case in some string mani-
pulation functions, the assumption that this condition ever holds has to
be made explicit; otherwise it may cause an invalid memory access error
similar to the first point in this list. Some compilers (such as the Microsoft
.NET C compiler) can provide compilation warnings for this case.

These cases of unsafe pointer usage can easily invalidate the analysis, so they
are not supported.

4.3 Rule Additions

By treating simple pointer-based operations as no different from their regular
variations, no additional rules would need to be added to the semantic rules.
However, since it is desired to attach energy consumption to memory mani-
pulation operations via the CPU component, some rules will need to consume
an additional amount of energy. These rules are the ones dealing with arrays,
unions and structures; explicit pointer arithmetic is treated as a regular binary
operation where applicable.

Furthermore, the additional semantic rules for data structures in Section 3.4
that formerly consumed no energy now do. Extra energy analysis rules have to
be added for that reason, in particular for access to structured data types, and
declaration of an array.

Two new CPU operations are introduced for these additional rules: memory
declaration, and memory access. Memory declaration is denoted with Cimp ::
Emdec and Cimp ::Tmdec for energy and time consumption respectively, whereas
memory access uses Cimp ::Emacc and Cimp ::Tmacc.

4.3.1 Semantic Additions

Extending the semantic rules so that they consume the additional energy results
in the energy-aware semantic rules in Figure 12. The operational semantic rules
are unaffected by the extension, so they are not listed here: they may be assumed
to be the same as the ones given in Section 3.4.

34

∆ ` 〈e, σ,Γ, t〉⇓e〈n, σ′,Γ′, t′〉 Γ′′ = Γ′[Cimp ::e += Cimp ::Emdec]
(eArrayDecl)

∆ ` 〈type a[e], σ,Γ, t〉⇓s〈σ′[a← type[n]],Γ′′, t′ + Cimp ::Tmdec〉

∆ ` 〈i, σ,Γ, t〉⇓e〈j, σ′,Γ′, t′〉 j ∈ [0..length(a)− 1] Γ′′ = Γ′[Cimp ::e += Cimp ::Emacc]
(eArrayAccess)

∆ ` 〈a[i], σ,Γ, t〉⇓e〈σ′(a[j]), σ′,Γ′′, t′ + Cimp ::Tmacc〉

x ∈ ∆(s) Γ′ = Γ[Cimp ::e += Cimp ::Emacc]
(eStructAccess)

∆ ` 〈s.x, σ,Γ, t〉⇓e〈σ(s).x, σ,Γ′, t + Cimp ::Tmacc〉

x ∈ ∆(u) Γ′ = Γ[Cimp ::e += Cimp ::Emacc]
(eUnionAccess)

∆ ` 〈u.x, σ,Γ, t〉⇓e〈σ(u).x, σ,Γ′, t + Cimp ::Tmacc〉

∆ ` 〈i, σ,Γ, t〉⇓e〈j, σ′,Γ′, t′〉 j ∈ [0..length(a)− 1]

Γ′′′ = Γ′′[Cimp ::e += Cimp ::Emacc + Cimp ::Ea]

∆ ` 〈e, σ′,Γ′, t′〉⇓e〈n, σ′′,Γ′′, t′′〉
(eArrayAssign)

∆ ` 〈a[i] = e, σ,Γ, t〉⇓e〈σ′′[a[j]← n],Γ′′′, t′′ + Cimp ::Tmacc + Cimp ::Ta〉

x ∈ ∆(s) ∆ ` 〈e, σ,Γ, t〉⇓e〈n, σ′,Γ′, t′〉 Γ′′ = Γ′[Cimp ::e += Cimp ::Emacc + Cimp ::Ea]
(eStructAssign)

∆ ` 〈s.x = e, σ,Γ, t〉⇓e〈σ′[σ′(s).x← n],Γ′′, t′ + Cimp ::Tmacc + Cimp ::Ta〉

x ∈ ∆(u) ∆ ` 〈e, σ,Γ, t〉⇓e〈n, σ′,Γ′, t′〉 Γ′′ = Γ′[Cimp ::e += Cimp ::Emacc + Cimp ::Ea]
(eUnionAssign)

∆ ` 〈u.x = e, σ,Γ, t〉⇓e〈σ′[σ′(u).x← n],Γ′′, t′ + Cimp ::Tmacc + Cimp ::Ta〉

Figure 12: Energy-aware pointer-based operation semantics

4.3.2 Energy Analysis Rule Modifications

The energy analysis rules in Figure 12 are extended with the new CPU oper-
ations, and the semantic rules in that section not previously attached to an
energy analysis rule now receive one. These new and modified rules are given
in Figure 13.

35

{Γ; t; ρ}e1{Γ1; t1; ρ1} Γ2 = Γ1[Cimp ::e += Cimp ::Emdec]
(aArrayDecl)

{Γ; t; ρ}a[e1]{Γ2; t1 + Cimp ::Tmdec; ρ1}

{Γ; t; ρ}i{Γ1; t1; ρ1} Γ2 = Γ1[Cimp ::e += Cimp ::Emacc]
(aArrayAccess)

{Γ; t; ρ}a[i]{Γ2; t1 + Cimp ::Tmacc; ρ1}

Γ1 = Γ[Cimp ::e += Cimp ::Emacc]
(aStructAccess)

{Γ; t; ρ}s.x{Γ1; t + Cimp ::Tmacc; ρ}

Γ1 = Γ[Cimp ::e += Cimp ::Emacc]
(aUnionAccess)

{Γ; t; ρ}u.x{Γ1; t + Cimp ::Tmacc; ρ}

{Γ; t; ρ}i{Γ1; t1; ρ1} {Γ1; t1; ρ1}e{Γ2; t2; ρ2} Γ3 = Γ2[Cimp ::e += Cimp ::Ea + Cimp ::Emacc]
(aArrayAssign)

{Γ; t; ρ}a[i] = e{Γ3; t2 + Cimp ::Ta + Cimp ::Tmacc; ρ2}

{Γ; t; ρ}e{Γ1; t1; ρ1} Γ2 = Γ1[Cimp ::e += Cimp ::Ea + Cimp ::Emacc]
(aStructAssign)

{Γ; t; ρ}s.x = e{Γ2; t1 + Cimp ::Ta + Cimp ::Tmacc; ρ1}

{Γ; t; ρ}e{Γ1; t1; ρ1} Γ2 = Γ1[Cimp ::e += Cimp ::Ea + Cimp ::Emacc]
(aUnionAssign)

{Γ; t; ρ}u.x = e{Γ2; t1 + Cimp ::Ta + Cimp ::Tmacc; ρ1}

Figure 13: Additional analysis rules for data structures

5 Recursion

One of the common programming language elements not supported by the ori-
ginal energy analysis[1] and EcaLogic[3] is recursion: a function calling itself at
some point during its execution. This can be seen as a loop in that the function
executes for a certain amount of iterations, before some terminating condition
is reached and the original calling function (at the ’top’ of the execution tree)
terminates.

It is possible to discern two distinct forms of recursion: single and multiple.
Single recursion refers to a function that may call itself either zero or one time,
whereas multiple recursion means the function can call itself any number of
times, including zero. For the purpose of analysis, it can also be beneficial to
look at a recursive function without its recursive part; to consider its energy
consumption assuming that it never enters recursion.

A method of recursion that may apply to both forms is mutual exclusion (also
known as indirect recursion): two or more functions that apply each other.
Analysing either one of these functions requires the energy consumption of the
other to be known, which in turn requires the other, leading to a loop. Due to
the problems caused by this, it is assumed that mutual recursion is rewritten
to direct recursion instead. A basic method of accomplishing a rewrite is by
inlining the definition of one function into the other: this causes the function to
effectively disappear, though it may cause no small amount of code duplication.

36

Other possible methods are those discussed by Kaser et al., and may be applied
before the energy analysis takes place[19].

5.1 Function Signatures

While reasoning about the energy consumption of functions, the concept of func-
tion signatures can be brought to attention. The analysis, upon encountering
a call to a function, analyses the entire body of this function to determine the
energy consumption for the specific call. This leads to a significant amount of
redundant analysis: every statement in the function body that does not have an
impact on hardware component states would always result in the same active
energy consumption, so analysing it more than once would not be necessary.
Capturing, storing and applying the energy consumption of a function into a
function signature would therefore provide a marked increase in efficiency. In a
way, a full application of the analysis results in a signature for the entry-point
function that was analysed, but this cannot be applied directly to other func-
tions: for the entry-point function, the initial hardware states are always the
same, whereas in a function call they may vary wildly.

A method to capture the effect of a function on the set of hardware component
states is to collect operations on the component states, instead of their plain
values. By recording each operation on the variables of the component state
of each component, it becomes possible to ‘replay’ these operations whenever
the function is called. Operations include direct assignment, such as setting a
variable to zero, but also modifications like incrementation, division, etc. When
dealing with branching paths or other control flow structures in the function,
the lower or upper bound are computed in the same way, but the operations are
stored separately. Then, when the function is called, stored operations can be
applied on the current hardware states to arrive at a result, without redundantly
analysing any part of the body of the function.

5.2 Recursion in Signatures

In addition to efficiency concerns, function signatures may also be applied to
the problem of recursion for the energy analysis. A function signature for a non-
recursive function consists of a series of operations for each hardware component.
Recursive functions, on the other hand, call themselves a number of times, where
each call consumes energy as well. However, since the signature of the function
is not yet known, instead of a set of operations in the signature, a symbol can be
inserted to represent the recursive energy consumption. For instance, consider
the faculty function: fac(n) consumes some energy, then calls fac(n− 1), until
n equals zero. Assuming the energy consumption of a call to fac without the
recursive statement is a constant c, the consumption of fac(n) may be described
in the following way:

37

fac(n) = c+ fac(n− 1)
fac(0) = c

Such a set of cases with a recursive element is known as a recurrence rela-
tion. These relations are generally solvable to a non-recursive format, which
is a thoroughly explored topic in mathematics: methods range from basic[20]
to advanced[21], and several automated solvers have been implemented, for in-
stance, QEPCAD6 and PURRS7. The prevalence of solving methods makes it
feasible to reduce recurrence relations in function signatures to a non-recursive
version, which may in turn be applied as the function signature for the whole
recursive function.

5.3 Recursion Fixpoints

Function signatures offer possibilities to solve the energy analysis limitation
for recursive functions, but they are not the only possible solution. Another
possibility is to apply the same reasoning method used for analysing loops,
which searches for a fixpoint in the iterations of the loop, and uses this to
overestimate the energy consumption. Instead of searching for the fixpoint of
the loop iterations, in a recursive function the fixpoint would instead be one call
to the function, minus the recursive elements.

Consider, as an example, a simple faculty function:

int f a c (int n) {
i f (n <= 1) return 1 ;
else return n ∗ f a c (n−1) ;

}

Assuming that the true-branch of the if-statement consumes 20J of energy while
the false-branch consumes 50J, the total energy consumption of a call to fac
can be overestimated by multiplying this worst-case with the total number of
calls that would result from a single call to the recursive function. In the case of
the faculty function, recursion is entered at most n−1 times if n is greater than
one, and always exactly once otherwise. If hardware component state changes
occurred in the function, a fixpoint could be determined to ensure a suitable
upper bound on the energy consumption of individual calls would be determined.
The total energy consumption for fac, knowing the total number of recursive
calls and the worst-case consumption, may finally be set at 50(n− 1)J .

One problem with this fixpoint-based method of handling recursion is also
present with the loop-bound energy analysis: the worst case is always taken,
so the bounds may not be very tight, especially if there is a large discrepancy
between energy consumption of separate calls.

6QEPCAD is based here: http://www.usna.edu/CS/~qepcad/B/QEPCAD.html
7PURRS may be found here: http://www.cs.unipr.it/purrs/

38

http://www.usna.edu/CS/~qepcad/B/QEPCAD.html
http://www.cs.unipr.it/purrs/

6 Analysing C

The biggest impediment to practical usage of the original analysis[1] and the
EcaLogic tool[3] is their restriction to a custom language with severe limita-
tions. The elements discussed in the previous chapters focus on overcoming
some of these limitations in general; this chapter details applying them to C in
particular, by implementing the extensions applicable into the tool. The idea
is to modify the tool so that it can be used to perform a static energy analysis
of C-programs, ideally with as little modifications to the source code of said
programs as possible. The new version of the tool is referred to as EcaLogic-C,
and as an extension to EcaLogic, is written in Scala.

Broadly speaking, the following changes have been made to accomplish analysis
of (a subset of) C: altering the actual input language to match C, adding the
option to model hardware components in a real language or add energy and time
information to existing functions, and changing the annotations for bounding
and variable relations into a more easily verifiable format. This is on top of the
changes to the analysis required by the extension of the tool to deal with different
data types, recursion, and other elements described in previous chapters.

The sections in this chapter discuss how the required changes could be and were
accomplished. Ultimately, the overall structure of the extended tool looks as in
Figure 14.

In order to implement the additions to the energy analysis, changes to the
internal representation of a program in EcaLogic had to be made for EcaLogic-
C. The original abstract syntax tree was general enough to expand instead of
replace, so that analysing EcaLogic’s own language would still be possible in
the new version. This can be viewed as in Figure 15: the AST of EcaLogic is a
subset of the new AST (referred to as ‘AST+’) of EcaLogic-C, and the Frama-C
plugin was developed to transform C into AST+.

6.1 Parsing

In order to analyse C, it is at the very least required to update the language.
Rewriting the language parser of EcaLogic to instead parse C would be imprac-
tical, because the grammar for C is significantly larger than the grammar for
the old simple language. Instead, an existing parser is used to read all program
files, whereupon the Abstract Syntax Tree is converted into a format readable
by EcaLogic-C.

The ideal choice for the parser is the one used by Frama-C, since it also has
structures for dealing with any annotations present in ACSL, which in turn
aids formal verification of the analysis. Thanks to the plug-in based nature
of Frama-C, any plug-ins have easy access to the full C abstract syntax tree
in CIL format, with some additions for the ACSL structures. Unfortunately,

39

Figure 14: Structure of EcaLogic-C operation

due to the proprietary origins of the CIL format, it is mostly used for .NET
framework applications, and no libraries exist for manipulating it in the Scala
language.

To transfer the parsed C programs and annotations to EcaLogic-C, a plug-in
script for Frama-C was developed. The plug-in works by transforming the C
abstract syntax tree into Scala code that, when executed, constructs the tree
in its entirety. The plug-in is entirely based on the internal representation of
a program in EcaLogic-C, and as such, usage of it by other tools is not possi-
ble. In additional to conversion, the plug-in also looks for and handles custom
annotations specific to the energy analysis, which are described in the next sec-
tion. Annotations not using these custom predicates or logical functions are

40

Figure 15: AST extension usage

ignored by the plug-in, so any other ACSL specifications in the input programs
are untouched.

6.2 Annotations

Frama-C was selected as the annotation and verification tool to be used for
annotating the C programs intended for analysis. The two main annotations
used for the energy analysis are relations between non-parameter and parameter
variables, as well as upper- and lower bounds on the number of iterations for
all loops. Several custom predicates have also been added to help specify some
elements of C useful for the analysis that would be difficult to specify in plain
ACSL.

6.2.1 Variable Relations

Loop bounds specified for the energy analysis have to be based strictly on func-
tion parameter variables. However, usage of non-parameter variables is still
possible, provided they are directly related to parameter variables. In order to

41

use non-parameter variables when specifying loop bounds, a relation needs to
be established. In the original EcaLogic, this looked as follows:

{ X <- Y/2 }

This indicates that X is half of Y, as a relation. It is used as a direct substitution
when defined bounds are applied, which means that a bound of X is simply
substituted to a bound of Y/2. As such, this defined relation implies an equality
of both sides. In order to define this bound in Frama-C, then, it would be
sufficient to assert equality on both sides of the annotation. In ACSL, it can
therefore look as follows:

//@ as s e r t X == Y/2;

This assertion can then be verified using any of the Frama-C reasoning plug-
ins, such as Jessie or WP. Additional lemmas or annotations required to prove
it would then fall to the responsibility of the programmer: EcaLogic-C still
assumes they are correct, but they can be formally verified as-is, rather than
having to rewrite them to a more suitable format.

It is still needed for the analysis to differentiate between these custom assertions
and regular equality assertions, so a predicate is defined for easy recognition by
the tools. So, instead of the above, a relation is specified as follows:

//@ as s e r t e c a r e l a t i on (X, Y/2) ;

Worth noting is that the Frama-C plug-in for EcaLogic-C only looks at the
name and arguments of the predicate, not its application. As a result, the actual
definition of the predicate does not matter, allowing the user to provide their own
definition to the predicates, which may aid them in formal verification.

6.2.2 Loop Bounds

For the energy analysis, it is required to know the maximum and minimum
number of iterations for each while loop in the program. Previously, EcaLogic
required the bounds to be defined in the following manner:

while (expression) bound (upper, lower) ...

Which indicates that the number of iterations for the while loop is always lower
than or equal to upper, and always higher than or equal to lower. Unfortunately,
Frama-C or ACSL has no convenient shorthand to reason about the number of
iterations for a loop, but it is possible to define the notion of bounds by using
ghost-annotations and assertions. Ghost-annotations are code statements that
may not affect the actual program, but may be used for analysis elements; they
act as a form of read-only code for ACSL and the automated reasoning plug-
ins. A possible way of formalizing the upper and lower bounds on the number
of iterations would then look as follows:

42

int k = 10 ;
//@ ghos t i n t c = 0;
//@ ghos t i n t lower = k ;
//@ ghos t i n t upper = k ;
while (k > 0) {
−−k ;
//@ ghos t c += 1;

}
//@ as s e r t c <= upper ;
//@ as s e r t c >= lower ;

The actual code in this example performs a while-loop that runs for 10 iterations,
defined by the variable k. Using ghost annotations the values c, lower and upper
are defined, where c represents the iteration counter, and lower and upper are
defined as k, since k is both the lower and upper bound in this example. At
each iteration c is incremented, and at the end assertions are made to ensure c
lies within the defined lower and upper bounds.

With these assertions and statements in place, one can attempt to verify that
they always hold using one of the automated reasoning plug-ins for Frama-
C. Additional annotations may be required to prove this. In this particular
example, it is sufficient for the WP plug-in to prove that they always hold by
defining a loop invariant stating that the iteration counter inevitably stays below
the initial value of k. Proving the given bounds on iterations gives a greater
amount of confidence in the final verdict of the energy analysis.

Like with the variable relations, a custom predicate for easy differentiation is
defined. It is possible to note the presence of this predicate, and then insert the
appropriate assertions into the code for the loop, as an additional pre-processing
step to make validation easier. However, the important part is that the bounds
are read properly for use by the analysis. For example, defining the bounds for
the code above looks as follows:

int k = 10 ;
//@ loop invar i an t ecaloopbound (k , k) ;
while (k > 0) {
−−k ;

}

In this case, the predicate is located in the loop invariant, rather than an asser-
tion. The reason for this is that loop invariants are guaranteed to be tied to their
respective loop, whereas assertions are not attached to any particular statement
and instead viewed as being in a certain location in the code. The difference
means that the ecaloopbound predicate, whatever its definition, is checked for
every iteration of the loop, rather than just once. Just like the variable rela-
tion predicate, defining the loop bound predicate can be done by the user; the
Frama-C plug-in for EcaLogic-C only looks at the name and arguments.

43

6.2.3 Function Signatures

The function signatures described in Chapter 5 can also be considered for in-
clusion into annotation possibilities. Annotating a full energy consumption
signature to a function opens the possibility to reuse energy analysis results
in-between executions of the analysis. For instance, it becomes possible for a
library to be annotated entirely, so that any programs using this library do
not have to apply any specific measures to ensure it is analysed properly; the
analysis can simply use the already present signatures.

Adding the functionality to both read and write function signatures into anno-
tations would require, at the very least, a suitable and recognizable format in
ACSL. Furthermore, it will operate under the assumption that hardware com-
ponents referred to in already present function signatures are either exactly the
same as those used by the program, or delivered separately. After all, EcaLogic-
C can make no distinction between two components with the same name, so if
existing function signatures apply hardware component models unknown or dif-
ferent from those used by the current analysis, conflicts may arise.

In ACSL the concept of function contracts is thoroughly defined. The logical
location for energy consumption information on the function would then be
in the contract. Since it is possible in ACSL to define predicates and logical
functions that always apply to the implemented function, placing the energy
consumption information there would be the most straight-forward method.
Defining the format, then, becomes the main issue: a notation would need to be
defined to contain information on both the energy consumption of the function,
and any operations it performs on the states of hardware components. Once
these are defined, the plug-in developed for Frama-C can easily be extended to
search for and parse these custom predicates, and deliver the information to
EcaLogic-C.

6.2.4 Recursion

One of the options described in Chapter 5 on how to add the ability to analyse
recursion to the energy analysis deals with a fixpoint in a manner similar to
how loops are analysed; in particular, Section 5.3. However, since loops require
annotations giving a lower and upper bound on their number of iterations, a
similar annotation would be necessary to apply this method to recursion. For
recursion, it would need to provide a lower and upper bound to the number of
executions for the function that would occur if it is called once. This bound
would then only apply to the initial call, and not recursive calls.

The loop annotation is scanned for in the loop invariant as used by ACSL, but
for functions, it would need to be present in the function contract. Since a
contract in ACSL has a section that always applies to the function, an anno-
tation similar to ecaloopbound present in this part of the contract would be

44

the most convenient. The plug-in for Frama-C would then be able to recognize
the annotation and pass it along together with the information on the function
itself.

6.2.5 Utility

The annotations described in the above sections are all, in some way, essential
to the energy analysis. However, there are some elements of C that are difficult
to formalize in ACSL, yet may be useful for the analysis, especially for the
user. The following predicates and logical functions may, as usual, be more
elaborately defined by the user, but their basic usage and meaning as interpreted
by EcaLogic-C are as follows:

• ecalength(< array >) - This function may be used to refer to the length
of an array in an annotation. During the analysis, it is substituted with
the length of the array, as it was defined. If the array was defined with
a variable length, this will likely be a variable generated by the GCC
compiler. < array > may refer to any array, which includes sub-arrays of
multi-dimensional arrays.

• ecapow(< base >,< exponent >) - Exponentiation may be achieved by
applying this function. This is most useful when dealing with bounds
that are exponents, such as a bound x2, but may be used for any integer
exponent, including exponential ones like 2x. Unless x is constant in these
examples, the polynomial result of the energy analysis will likely be in the
order of the exponent.

• ecacston(< cstring >) - In many C programs, arguments to the executable
are used in some form or another. To facilitate using these arguments for
the energy analysis, this logical function represents a conversion from c-
string to an integer value, and is transformed into numeric(< cstring >)
in the analysis results. It is assumed < cstring > is a valid target for
conversion.

6.3 Hardware Component Models

In the energy analysis, Hardware Component Models (or HCMs for short) are
models describing the actual power-consuming hardware elements. They consist
of a state, a function phi, and a set of component functions. A state contains
zero or more variables, each with a defined range. The phi function describes
the constant power draw associated with a state, which has to always increase
along with the state: higher states have to correspond to a larger power draw
while in that state. This is needed for the analysis to determine proper upper
and lower bounds in a loop.

45

The component functions in a HCM represent actions that may be performed
with the associated hardware. Each has an associated power and time con-
sumption, which have to be constant values, because argument-dependent va-
lues might invalidate the restriction that a higher state also means more power
consumption. State changes may occur in the body of the function.

The HCMs in the original EcaLogic tool were defined in their own specific lan-
guage. In order to use them in C programs, and make future work easier, they
can be transformed into a more suitable format while retaining the proper-
ties needed for analysis. Three options to accomplish integration into the new
EcaLogic-C tool are considered in this section: translation to executable C-
code, using ACSL function contracts to describe effects, and using an interface
compatible with the implementation language directly.

Ultimately, the third option, modelling them in the implementation language,
was the most convenient. It offers usage of all elements of the existing language,
without having to parse and interpret a specific set of elements just for the
components. Furthermore, Scala and Java are object-oriented languages and
offer generalization functionality that can be used to create a suitable interface
for the components, which would make producing them at increasing complexity
substantially easier. Lastly, since they can be compiled beforehand, performance
would be increased at subsequent usages of the same components.

In addition to the new Java-based hardware component models, the original
options from EcaLogic remain: in EcaLogic-C, it is still possible to define models
in the custom language, as well as Scala itself. Java was introduced by virtue
of being more well-known, and easier to manipulate in executable form.

6.3.1 Concrete State

This option most closely resembles method used by the original EcaLogic tool.
The state consists of some actual variables in the code, which can be modified in
component functions. Since these functions have the same expressive power as
regular programs, conditional branches and other control structures are allowed.
Ergo, to determine the state after execution of a component function, EcaLogic
simply evaluates the body of the function.

A direct translation of this state modelling method to C would consist of a
number of global variables (possibly encapsulated in a struct), which could
then be modified by functions. However, there are several problems with this
approach:

• It requires significant additions to source code to deal with the new state,
especially when converting existing code to a hardware component model.

• Enforcing restrictions requires global data invariants, and is a lot harder
to verify.

46

• Functions would need to be evaluated to pinpoint any state changes. Eval-
uating C is significantly more complicated than with the basic, original
EcaLogic language, and invalidates the principle of static rather than dy-
namic analysis.

• Verification of state changes using annotations requires more elaborate
assertions throughout the function, if execution is not feasible.

Ideally, hardware component modelling should require as little change to exis-
ting code as possible, and should be able to be easily subjected to verification.
As such, this option is not preferred, though it is possible with significant ef-
fort.

6.3.2 Function Contracts

This method of transforming the Hardware Component Models to the C/Frama-
C structures focusses on function contracts as specified in ACSL, without adding
any actual C code. ACSL function contracts are series of annotations associated
with a function that specify how the function should act, what it modifies,
possible return values, termination constraints, etc.

The problems with the first option of modelling the hardware in C were mostly
related to having to deal with state changes in a function, and the subsequent
need for evaluation. The energy analysis needs to know the state of a hardware
component after evaluating a function, no matter the contents. In particular,
if the function contains a branching structure where each branch results in a
different state, the result still needs to be determined.

ACSL function contracts allow the user to specify behaviours of a function:
provided some assumptions hold, the function will act in a certain way. This
can be used to specify branching paths of state changes in hardware components
based solely on annotations, thus requiring no changes to the actual code, and
removing the need to execute the entire function. For example, take a function
toggle-power of some hardware component, which switches the active state on
or off depending on the current state. Specifying this behaviour in a contract
might look as follows:

/∗@ behav ior swi tch on :
@ assumes s t a t e == o f f ;
@ ensures s t a t e == on ;
@ behav ior sw i t c h o f f :
@ assumes s t a t e == on ;
@ ensures s t a t e == o f f ;
@ complete behav ior s ;
@ d i s j o i n t behav ior s ;
@∗/

void togg l e−power () {
// e t c

47

In this example, the resulting state is solely based on the current state, but this
need not be the case. It may depend on any other ACSL-supported features
available, such as parameters, global variables, etc, which are not entirely sup-
ported by the energy analysis itself. Furthermore, while the two behaviours are
mutually exclusive and complete in the above case, this is not mandatory, how-
ever desirable for state-change related cases it may be. If complete determinism
is required, it may be enforced in ACSL by specifying complete and disjoint
behaviours, mandating total coverage and mutual exclusion respectively.

Considering state changes of hardware components in this way does not fully
eliminate the need for evaluation: Frama-C can offer no guarantees as to the
function behaviour selected for a given function call, so it is not trivial to de-
termine what case applies. However, moving the conditions into the world of
annotations makes verification significantly easier, and removes the need for
entire-function evaluation to ascertain the next state, instead replacing it with
the need to evaluate the function arguments and reason about them.

The other elements of hardware component models, namely the phi function and
energy/time consumption by functions, pose less issues when modelling them
via annotations. The phi function can be modelled as an ACSL logic function,
and the constant energy/time consumption of a function may be specified in
a global ensures clause not associated with a behaviour. However, due to the
remaining need for potentially difficult, partial evaluation, this option is still
not preferred when compared to the next option.

6.3.3 Implementation Language

EcaLogic, and by extension EcaLogic-C, are implemented in Scala, a Java-based
language with functional as well as imperative elements. Scala is compiled
to Java-based bytecode, so that their executable forms may be interchanged.
The hardware component models have a structure similar to a class in many
object-oriented languages: an encapsulated set of local variables, functions and
inherited elements. As such, it would be possible to define a class interface or
similar in Java, to which all components naturally have to adhere, after which
the hardware can be modelled.

One main advantage of this method over the others is that, since the languages
match, parsing and evaluating each component separately is no longer neces-
sary. Originally, EcaLogic interpreted its input language to infer state changes
from component function calls. By compiling the components into the same lan-
guage as the analysis, they can instead be called through their interface instead,
which is faster than evaluation. Since compiling only has to occur once, and
executing byte-code through a virtual machine is generally faster than dynamic
interpretation, this would improve efficiency substantially. Furthermore, the
language shift would make further changes to the inner workings of hardware
components and the analysis thereof easier to implement, and offers users more

48

options: Java is generally more widely known than Scala, and especially more
widely known than EcaLogic’s own language.

A disadvantage of shifting the language is that the languages for the hardware
components and the actual program to be analysed no longer match. Java is
common enough that this may not be a problem for the end user, but since the C
programs that are analysed still have to call the component functions, a calling
convention needed to be established to accomplish Java-based components for
EcaLogic-C. While it would be possible to define an ACSL construct to handle
this in a non-interfering method, it would also be possible to associate actual C
functions with hardware component models. This way, energy consumption can
be added to existing functions as in the other two options, without having to
add to existing code. A mixture of these constructions would offer the greatest
flexibility to the end user.

Having the Hardware Components modelled as a Java class for EcaLogic-C can
make writing them easier, whilst retaining the above advantages. By using Java
Reflections, most elements required for the hardware model can be inferred
automatically, which makes the resulting code requirement not very different
from the old language used for hardware components. As an example, the
simple on-off radio can be defined in Java as follows:

public class JavaRadio {
public int a c t i v e ;

public JavaRadio () {
a c t i v e = 0 ;

}

@Consumes(energy = 200 , time = 20)
public void on () {

a c t i v e = 1 ;
}

@Consumes(energy = 10 , time = 10)
public void o f f () {

a c t i v e = 0 ;
}

public int phi () {
return 20 + a c t i v e ∗ 200 ;

}
}

Using Reflections, each required hardware component element can be inferred:
the state contains the declared fields, methods can be invoked during run-time
as compiled byte-code, and the phi function can be detected and executed easily
on a specific instance of the object, without having to separately maintain the
state. This leaves the implementation of a HCM as close to a regular program
as possible whilst also decreasing the execution time of EcaLogic-C. As such,
this option was the most preferred one, and is implemented exactly as described

49

in this section.

The possibility to attach a component function to a real C function was im-
plemented as a so-called alias: if the C function is called, it is substituted for
the hardware component functions that have it as their alias, and any actual
implementation of the C function is ignored. As a result, an existing C library
dealing with some aspect of the hardware can be modelled, making it act effec-
tively as a hardware component with whatever level of abstraction is desired by
the user. More than one component function can be aliased as one C-function;
the calls are simply appended.

Adding an alias to a hardware component function looks as follows:

@ConsumesAlias (energy = 200 , time = 20 , a l i a s = ” socket ”)
public void CreateSocket () {

s o cke t s += 1 ;
}

This example creates an alias for the function socket, which creates a new hard-
ware socket for listening to internet connections. It abstracts the call to consume
a certain amount of energy and time, and increases the sockets state-variable
by one, which in turn is an abstraction of the number of open connections. By
adding more aliased functions, it becomes possible to model network interaction
to whatever abstraction level is desired.

6.4 Control Flow

Some elements of C that are lacking direct translations in the original EcaLogic
involve the control flow of a program. This includes for-loops, break and con-
tinue statements, case-switch sections, and go-to instructions. Since these may
affect the flow of the analysis itself in a significant way, they have to be analysed
properly for EcaLogic-C and the energy analysis. This section lists the various
control structures and how they can be dealt with.

6.4.1 For-loops

A for-loop consists of three parts in the conditional: the initialisation, update
and check steps. Frama-C uses this information to transform for-loops into a
while loop by first executing the initialisation step. The check is executed at
each iteration, and the update occurs at the end of it. Since while loops are
supported by the energy analysis, this makes sure for-loops are treated properly
automatically, though loop bounds still have to be provided.

With for-loops, the possibility exists to infer some information about the bounds
of the loop automatically. If the conditional for the loop is of some specific,
easily recognized format with a solid loop bound, this may be used to simplify

50

the work required by the user of the tool somewhat. For instance, in a for-loop
with a simple counter from 0 to some value x, a higher bound for this loop
could be automatically inferred to be x, leaving only the lower bound to be
decided.

6.4.2 Break & Continue

Break and continue statements offer some control to the operation of a loop
beyond the given conditional. A break interrupts the loop, whereas a continue
causes it to immediately proceed to the next iteration. It may be safe to assume
that these are only used as conditional statements: if one is always executed,
any code after the statement in the loop will never be reached, also known as
‘dead code’.

For the upper-bound analysis, the assumption that they are always conditional
means the analysis should follow the control flow to the branch where the break
or continue was not executed, so that any energy-consuming elements beyond
the statement count towards the upper bound. In terms of the lower-bound
analysis, operating under the reverse modus means the break or continue will
always be executed: in this case, the specified lower bound for the loop may
be relied upon. Put differently: a while(true) loop will (usually) have some
internal break statements, and it is expected that the lower and upper bounds
specified for this loop account for this, rather than providing infinite bounds. As
such, break and continue statements are not treated in a special manner.

6.4.3 Go-to Statements

A go-to statement represents a direct jump to a different location in the code,
usually denoted with a label. Usage of go-to statements has been widely dis-
cussed, perhaps most famously by Dijkstra[22], where the conclusions are far
from universally agreed upon. Stigma notwithstanding, it is a form of control
flow in programming languages, including C, and as such must be either anal-
ysed or disallowed. One disadvantage of the go-to statement is that it has no
consideration of scope beyond the current function: it is possible to jump out-
side of a loop or other structure. Break- and continue-statements can be seen
as special use cases of a go-to statement, though they are more restricted, as
described in the previous section.

The problem go-to statements present to the energy analysis is that it can easily
create loops in a program, despite not explicitly being listed as such. Consider
the following example:

entry :
i f (x > 5) return ;
else goto entry ;

51

In this case, the program will loop until x becomes greater than five. As such,
it can be rewritten to:

while (x <= 5) {}
return ;

While rewriting a go-to statement was easy in this case, the same cannot be
assumed to hold for all others. Due to the lack of defined bounds or usage re-
strictions on go-to statements, they can make the energy analysis significantly
more difficult, both for the analysis itself and the user of the analysis tool.
In order to prevent these issues, then, it is assumed that go-to statements are
rewritten to eliminate them. Some methods have been researched to accom-
plish such a rewrite, for instance, by altering the control flow of the program
directly[23].

6.5 Adding Data Types

C includes various data elements of differing complexity. These specific elements
concern the C11 standard8, and consist of the following, overlapping with those
detailed in Chapter 3:

Element Details
(Un)signed inte-
ger types

Unlike the natural numbers, C has integer values of differing size,
ie. char, short, int, etc. Problems may be caused by overflow:
if the number progresses beyond its defined limits, it loops back
around to its minimal value, and vice versa. However, since the
automated reasoning tools of Frama-C offer the possibility to au-
tomatically check for overflow errors, leaving this as a choice for
the user is preferable; numbers are therefore abstracted to a larger
capacity.

Floating point
and double
values

These values deal with non-whole numbers, and are usually
heavily affected by specific hardware and library implementations.
Furthermore, since Frama-C already abstracts them to general
real numbers, EcaLogic-C can use them as such. Though, since
actual real numbers have infinite precision, some concession has
to be made: double values are used to store values in the actual
implementation.

Arrays Arrays in C are defined as areas in memory containing a set num-
ber of elements. In general, this region cannot be extended with-
out reallocation; so the length of the array is known when it is
declared, possibly parametrized. As such, they are treated as a
fixed-size collection of individual variables for the purpose of ana-
lysis.

8C11 is described as an ISO standard: http://www.iso.org/iso/iso_catalogue/

catalogue_tc/catalogue_detail.htm?csnumber=57853

52

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853

C-strings Character-strings in C refer implicitly to arrays of the basic
number-type of characters. Frama-C makes a special case of con-
stant string literals to store them as-is, with the possibility to
check their length at the time of analysis automatically. The stor-
age type is still treated as a pointer to an array of characters, so
any operations using this form are still applicable: the special stor-
age case can be translated back without issues. It should be said
that while Frama-C and ACSL do recognize character strings, the
automated reasoning plug-ins do not yet support reasoning about
them, which might make automatic verification more difficult if
they are not treated as a simple array.

Enumerations These consist of a set of numbered identifiers denoting constant
values. While these may be considered as an integer type, the
possibility to assign specific values to enumeration elements might
interfere with such an assumed order. As such, they are modelled
as a sequence of constants; their separation from general constants
is limited to plain assignment, so this does not affect the analysis.

Structures Defined as a set of identifiers of some type, these offer grouped
storage. In most cases these would not offer much more complex-
ity than ordinary values, but there is the possibility of recursion,
including pointer usage. Therefore, in the base case without al-
lowing recursion, they are treated as a fixed collection of variables.
The case where recursion is used is discussed in more detail in the
respective section of this chapter.

Unions Similar to structures, these elements contain various typed identi-
fiers. The unique part, however, is that each identifier modifies the
same location in memory. As such, data corruption of each iden-
tifier is possible. Ultimately, in order to prevent problems arising
from this element, attempting to access a union element not of
equal type to the last modified element is considered undefined.

Complex num-
bers, thread
locals, atomic
types

These types either concern concurrency in the case of thread locals
and atomic types, or may be (similar to floats) heavily dependent
on specific implementations. In the cases where they are imple-
mented as base operations they are treated and analysed as such;
in other cases they are not used for the analysis.

Type casts C has both explicit and implicit type casts. The implicit kind
is guaranteed to be reliable, so modelling this would not pose a
large problem. However, modelling explicit type casts may pose
a problem if these intersect with other necessary elements, such
as bounding annotations. For the tool, type casts are assumed to
be correct and the final value is considered as-is; any correctness
verification is left to either the compiler or the user.

53

With the exception of complex numbers, thread locals and atomic types, all of
the data types in the list have been implemented in EcaLogic-C by following the
new rules defined in Section 3.4. The extension for floating-point values does not
change the rules, but instead modifies their implicit basic values from positive
integers to double values. C-strings are treated as arrays where applicable, and
enumerations are processed by using them as a set of constants. Lastly, type-
casts are assumed to have taken place correctly, and thus are not treated in any
special fashion.

Frama-C offers some features in its specification language to aid in formally
verifying any of the above elements as they are used:

• For structs, it is possible to define inductive properties about termination
and length, which aids in providing a suitable (and, more importantly,
checkable) bound on their usage.

• The possibility exists to define ‘type invariants’ for structures and other
defined types, which have to hold at all points in the program. This may
be used to further verify specific usage cases.

• Using either of the previous options (or a combination) it is possible to de-
fine logical functions in ACSL for bounding a struct, which can be checked
in Frama-C and be used as an alternative by the analysis.

• Arrays are already implicitly considered with their size, so reasoning about
them does not require many additional elements.

• Floating point numbers and other non-whole numbers are generalized to
the Real domain automatically by Frama-C, so further abstraction would
not be required.

• When modelling unions, Frama-C takes into account the order in which
the specific elements are changed, treating different orders as distinct re-
sultant states. This provides some additional security, though it may also
complicate the verification.

6.5.1 Variable-Length Arrays

For the GCC compiler, used by Frama-C and by extension EcaLogic-C, variable-
sized arrays (referring to arrays initialized with variables, not arrays with vari-
able length) are handled via dynamic allocation: upon declaration of a variable-
length array, a new temporary local variable is created keeping track of the size
of the upcoming array declaration. At the statement containing the declara-
tion, a call to the built-in alloca function is placed, which allocates a section
of memory that is automatically freed at the end of the scope. The actual size
allocated is a multiplication of the size variable with a call to the sizeof of the
actual contents of the declaration. As an example:

54

int x = 24 ;
int l i s t [x] ;

Is transformed to the following:

int x = 24 ;
s i z e t l e n g t h o f l i s t ;
int∗ l i s t ;

l e n g t h o f l i s t = x ;
l i s t = b u i l t i n a l l o c a (l e n g t h o f l i s t ∗ s izeof (x)) ;

Treating this as a special case, the Frama-C plug-in for EcaLogic-C looks for
applications of the built-in alloca function, and uses its arguments to define
the size of the array at that point. This is mainly to allow these arrays to be
used for bounding operations as-is, without the user having to define anything
in addition; the effect of this special case on the actual energy analysis is non-
existent.

6.5.2 Additions to the AST

In order to implement the energy analysis for extended data structures, addi-
tions had to be made to the internal representation of the program abstract
syntax tree. Most importantly, this meant moving all values to the domain of
doubles instead of integers, with the added bonus of allowing for non-integer
values when determining the energy consumption and giving the result.

To facilitate some form of validation, as well as extend the available information,
basic type information was also added to the AST. This is used to store the types
used by arrays, structures and other datatypes, but also other variables to be
able to discern same-named elements. Types defined by the user are unrolled
when encountered.

Finally, to implement the new analysis rules, new supported operations directly
corresponding to the rules were added. This includes expressions for access to
arrays and other data types, but also declarations and modification statements.
While these statements are usually similar to their counterparts for other data
types, the distinction between them is kept explicit to avoid overly generalizing
the operations.

6.6 Allowing Pointer Usage

Direct pointer manipulation is a staple of C, so safe operations (as detailed in
Chapter 4) have been implemented into the supported operations of EcaLogic-
C. Treating safe pointer operations as not much different from their respective
operations in Section 6.5 means the extent of the additions to the implemen-
tation is rather small. Instead, most implicit memory operations are handled

55

by the Frama-C plugin: where possible, implicit (and a small amount of ex-
plicit) pointer operations are directly converted to their already-implemented
counterparts.

The remaining pointer operations that were not covered by the Frama-C plu-
gin are those that concern explicit pointer arithmetic, as well as explicit de-
referencing or referencing of pointers or variables. In order to reason about
these operations, they were added as binary or unary operators to the internal
AST of EcaLogic-C, but other than this case they are not treated as a special
operation: an assignment to a dereferenced pointer is treated the same as an
assignment to a regular variable, for instance. This allowed for pointer oper-
ations with only minor additions to the implementation of EcaLogic-C being
necessary.

6.7 Function Signatures & Recursion

Capturing the precise energy, time and component changes induced by a func-
tion can be used to determine that function’s signature. An extension of such a
signature to allow for recursive function calls and their analysis becomes possi-
ble as well, and both of these elements are discussed in Chapter 5. Adding these
elements to EcaLogic-C would both extend the possible language elements that
could be analysed, as well as increase the efficiency of the tool by making sure
that functions would only need to be analysed once.

Unfortunately, the inclusion of function signatures (and by extension, recursive
function calls) required significant changes to the inner structures and reason-
ing methods of the tool. Coupled with time constraints, implementation was
not feasible. This does not imply it is impossible; on the contrary, with the
required changes, implementing the function signatures would be very feasible,
though time-consuming. A basic implementation, which does not look at state
changes in hardware component models, was added to illustrate the purpose of
the signatures.

56

7 Energy Analysis Examples

To test the extended analysis and its implementation in the EcaLogic-C tool,
some examples have been worked out. For each of the following problems, two
algorithms are compared with each other: sorting an array of values, and clock
synchronization in a network. Array sorting is a common example for algo-
rithmic studies, with only the implicit CPU component consuming any energy,
whereas the network synchronization example deals with networking hardware,
so the focus thereof lies on the hardware utilization.

Specifically, the array-sorting example serves to demonstrate how the extended
analysis would operate on elements not supported by the original analysis,
whereas the focus of the clock synchronization lies on demonstrating the ap-
plicability of the energy analysis and EcaLogic-C to a practical program, and
modelling the hardware associated with its function.

Another verification option for the analysis is to compare the static energy ana-
lysis results with dynamic analysis case studies performed on real hardware.
For example, the case study performed by Chang et al. on the ARM7TDMI
processor[10] provides energy consumption information for individual instruc-
tions executed on the processor. A comparison to the static energy analysis can
be made by looking at the byte-code of the compiled program, aggregating the
energy consumption for each instruction based on the dynamic analysis results,
and comparing this to a concrete result.

For embedded systems, Šimunić et al. performed a hardware and software ana-
lysis on the SmartBadge, a small personal system[24]. They proposed an energy
consumption model that matched the actual hardware consumption, based on
individual instructions. Later, the research was expanded to include an imple-
mentation of an encoding algorithm running on the system[25]. A comparison
to the static analysis and EcaLogic-C could be made, and would consist of a
suitably elaborate hardware model of the SmartBadge. Having this, the imple-
mentations tested in the research could be analysed and compared.

Unfortunately, due to time constraints, comparison to a dynamic analysis case
study or a different static analysis could not be performed.

7.1 Array Sorting

Array sorting is a common target for algorithmic studies, both due to its prac-
tical usability and the many subtly different solutions that exist. Many of the
sorting algorithms incorporate recursion, which is the focus of this example.
Since recursion was ultimately not added to the EcaLogic-C implementation
due to time constraints, this example remains theoretical.

For this particular example, QuickSort and MergeSort are considered, both
recursive algorithms. QuickSort sorts a list by first selecting a pivot, then re-

57

arranging the list so that elements smaller than the pivot occur before it in
the list, and larger elements are moved to beyond the pivot. This step is then
recursively repeated for the smaller and larger lists. Runtime complexity of
QuickSort is, on average, O(n∗ log(n)), but the worst-case is O(n2)[26]. Merge-
Sort starts by considering each element as an ordered list of length 1, then
starts recursively merging adjacent lists. In contrast to QuickSort, MergeSort
has a runtime complexity of at worst O(n∗ log(n))[27], but has a larger constant
overhead.

Comparing QuickSort and MergeSort is interesting because of their theoretical
bounds. QuickSort performs worse in a worst-case scenario than MergeSort,
but QuickSort is considered more efficient in practice; it has been included in
the C standard library and used by Java for a number of years[28]. Example
implementations for both QuickSort and MergeSort in C are given in Appendix
B.

Due to the practical preference leaning towards QuickSort, it may be expected
that MergeSort has a larger energy consumption caused by basic operations,
unrelated to the loops. This is collaborated by the loops in the MergeSort
implementation only passing over most of the list once: elements are merged
once, then considered sorted for that iteration, though they can be compared
several times in one merge operation. QuickSort, on the other hand, can re-
arrange the same element more than once, but only performs a single comparison
each iteration.

Both functions enter recursion on a part of the original list twice to perform
the sorting. As a result, their recurrence relations featuring recursion would be
similar, if not equal, resulting in comparable results. The difference between
the algorithms would then lie strictly in the loops, the constant energy usage
from operations, or both. Since loops are over-estimated into their worst-case,
it is conceivable that the energy analysis and EcaLogic-C would consider Quick-
Sort more consuming as parametrized in the function arguments, though less
consuming in the constant part of the polynomial.

7.2 Clock Synchronization

The clock synchronization problem deals with individual system clocks in a net-
work drifting apart. Two existing algorithms have been tested: the Berkeley
algorithm[29] assigns one network machine to be the master, which takes times-
tamps from each other machine, averages them, and sends a correction back out.
The second algorithm is Cristian’s algorithm[30], which works via a central time
server that is assumed to have the correct time, and responds to each request
with the direct correction required for the client to match its own time.

For this example, only the master or server of each algorithm is considered. Cris-
tian’s algorithm is simpler than Berkeley’s, but it does require a central server
that has to be correct, and is less accurate when dealing with higher-latency

58

or more widely distributed systems. As such, it can be expected that Cris-
tian’s algorithm will consume less power, especially since Berkeley’s algorithm
has to keep multiple connections open. Both examples were written with the
same libraries, following the same conventions, and using the same hardware
components. Since both of them deal with network connections, a hardware
component concerning Sockets was created, and a more basic model to deal
with standard I/O and other calls was added to cover the functions not related
to networking. The Sockets hardware component has a single state variable, the
number of sockets open, to represent additional energy cost from keeping track
of more than one connection. In the end, the only code analysed is that of the
programs itself, and all the library functions used are covered by the hardware
models.

The code of each example, as well as the network hardware model, may be found
in Appendix C. It should be noted that the code is functional: that is to say,
it will compile properly, can be linked with the appropriate libraries, and can
then be executed on a computer to perform its function. This helps to illustrate
the applicability of the analysis to ‘real’, practical programs, instead of just a
While-like language.

Analysis Results Berkeley’s algorithm performs a total of three loops: ac-
cepting connections, computing the average timestamp, and transmitting the
results. The averaging-loop does not use any Sockets-based hardware functions,
so it will only affect energy consumption by the CPU component. The first
loop, accepting connections, opens N active sockets, where N is taken from the
command line. These sockets remain open until the last loop, where the result
of the timestamp computation is transmitted, before the socket is closed. Be-
cause the energy consumption of the Sockets hardware component depends on
the number of active sockets open (in this case, N at maximum), and this holds
through at least one iteration of the first and last loops, it will be over-estimated
into a large energy consumption for the Sockets component, as if all N sockets
were open during most of the program. The result given by EcaLogic-C on the
energy consumption of the Sockets component when used by Berkeley’s algo-
rithm is the following (numeric is used to denote char-string to integer value
conversion):

17805.0 + 4825.0 ∗ numeric(argv[1])

Cristian’s algorithm only performs one loop to receive, compute and send the
updated time, but performs most actions the same as Berkeley’s algorithm oth-
erwise. However, this does mean that each socket is considered to be open longer
for each iteration in the analysis, which is counted heavily towards the passive,
time-dependent energy usage by the Sockets component. As such, it may be ex-
pected that the analysis returns a larger consumption in the order of N , though
perhaps with lesser constant usage. The result given by EcaLogic-C for the
Sockets component when used by Cristian’s algorithm is the following:

59

15905.0 + 6725.0 ∗ numeric(argv[1])

In practice, the difference between both results would not be significant enough
to favour one algorithm over the other, so the analysis can aid in eliminat-
ing the concern regarding unequal energy consumption if a choice was consid-
ered.

60

8 Limitations & Opportunities

The extended energy consumption analysis and its implementation, EcaLogic-
C, alleviate several of the limitations present in the original work, but there are
still avenues of improvement feasible. This chapter discusses some limitations
that were not solved, or not solved entirely, in the extended versions, as well
as new problems. Furthermore, several suggestions for future work are pre-
sented, angled towards either improving the usability of the analysis and tool,
or extending their abilities to further improve their applicability to practical
programming languages.

8.1 Unsupported Language Elements

Certain elements of programming languages remain out of the scope of the
energy analysis, and by extension EcaLogic-C for C-specific structures. Explicit
code jumps are as of yet unsupported: analysing a go-to statement, especially if
it is conditional, can not be solved by simply continuing the analysis at the new
location, because the analysis explicitly considers all branching paths. Avoiding
an infinite loop in such a case would then require more annotations or special
rules to determine proper bounds, so it is preferable to disallow explicit code
jumps and instead rely on the user to partially rewrite the program. However,
since it does not technically invalidate the analysis itself, adding support is a
possibility for future work.

Another, increasingly common, element of programming languages that is wholly
unsupported is the notion of concurrency. While abstraction of this concept
might be a possibility, the analysis itself will still always consider only one
thread of execution. Concurrency is considered out of the scope of this thesis,
as it was in the original paper, and as such the possibility of inclusion cannot be
dismissed. A solution to analysing multiple threads of execution might be con-
ceived, with appropriate abstraction, though such an extension would feature
extensive alterations to the operation of the analysis as a whole.

Other unsupported elements are objects, higher-order functions, and language
features such as generics, reflection, direct file interaction, anonymous functions,
etc. Recursion, while discussed in Chapter 5, was not implemented due to time
constraints. As with the other unsupported elements, the listed ones are either
considered outside of the scope of the thesis, or require significant alterations to
the entire analysis. That is not to say these elements may never be introduced,
but only that it requires a non-trivial amount of additional research. Possibilities
exist afterwards, then, to extend the analysis to languages using any of the
previously unsupported elements.

61

8.2 Semantic Analysis

The original energy analysis implementation, EcaLogic, also performed a seman-
tic analysis on the program to be analysed first, in order to detect any errors or
unsupported operations. Due to the language shift towards C in EcaLogic-C,
this part of the original implementation became incompatible with the extended
internal data structures. Instead, Frama-C calls a C compiler before any trans-
formations, and this is taken as a basic check on the semantics: if the program
compiles, it is at least properly coded. However, this check does not extend to-
wards the unsupported operations, and does not verify that every requirement of
the analysis is met. As a result, errors in the program or analysis will be harder
to notice and solve, which decreases the usability of the tool somewhat.

Specifically, EcaLogic performed checks on the usage of variables and parameters
in loop bounds, recursive function calls, and function calling conventions. Of
those, only the function calls are checked by the compiler in EcaLogic-C, leaving
the other checks up to the user. Additional checks that can be performed are
the presence of mutual recursion, go-to statements, and unsafe pointer usage in
the case of manipulation of a pointer to a non-structured variable. The addition
of these checks would make it easier for the user to prevent implicit or explicit
errors during the analysis.

8.3 Accuracy of the Analysis

Due to the problem of programs being ultimately undecidable, the energy ana-
lysis always produces a lower and an upper bound on the energy consumption
of a program. Accuracy then depends on the tightness of these bounds: the
closer the bounds are to the real energy consumption, the better. Ideally, the
lower and upper bounds are exactly equal; though in the case of programs more
complex than a single control flow route, this may only be the case if every path
is exactly equal, and as such may not be relied on. The main cause of looser
bounds in the energy analysis implemented by EcaLogic-C is the overestimation
used in determining the energy consumption of loops.

The potential solution to solving analysis of recursive functions, by determining
the difference between component states after calls of the function, may be used
to improve the analysis of loops as well. By considering the difference between
each iteration in a loop, rather than a function call, an iteration signature might
be conceived. Maximizing such a signature, or even using it directly, might then
be used to tighten the bounds on a loop considerably.

8.4 Soundness Proof of the Analysis

The original energy analysis[1] was proven to be sound with respect to the se-
mantics of the simple While-like language[18], showing that the resulting bounds

62

are guaranteed to be overestimations of the real power usage. The proof is based
on the individual rules and how they would affect the energy bounds, as well as
the restrictions on the energy consumption and state ordering of the hardware
component models.

To offer a greater measure of certainty in the accuracy of the extended analysis
(and its implementation in EcaLogic-C), the soundness proof can be continued
to cover the added features. The restrictions on the hardware component models
are still present in the extended analysis, so this section of the proof could remain
largely the same. The changed rules for function signatures and added rules for
the various data structures and pointers, however, would need to be newly
considered for every step in the proof that depends on the application of rules,
which is a large amount. In the case of the data-structure and recursion rules,
they are similar enough to assignment- and expression-based rules that this
should not pose a significant chance in the proof tactic. The function signatures
add more operations to reason about relations between hardware component
states, and thus would require more significant additions to the proof.

8.5 Usability Improvements

Usability was one of the main concerns of the original EcaLogic implementation;
in particular, there was a significant amount of semantic analysis and suitable
error messages for the user to identify problems with. Due to the extensions of
EcaLogic-C, not every usability feature survived: in addition to the lack of se-
mantic checking as mentioned earlier in this chapter, by moving the parsing and
compilation step to Frama-C, any errors in this step are heavily generalized, and
specific compiler error messages are no longer automatically provided.

Due to the strict separation of compilation and analysis, a user would have to
compile the program to be analysed separately, before handing it off to the ana-
lysis. In these cases, it helps that the annotations required for the analysis are
in a non-disruptive format, so that compilation should be able to be performed
without additional requirements. However, in cases where the program has to
be structurally modified before analysis becomes possible, separate compilation
for error detection might become harder to perform. A deeper integration of
the language compiler into the analysis tool would then help users in producing
correct results.

8.6 Application of ACSL

ACSL, or ‘ANSI/ISO C Specification Language’, is the specification language
used by Frama-C to reason about and prove elements of C programs. EcaLogic-
C already uses this language to parse information on bounds and relations in
programs meant for energy analysis. It may be convenient to specify some of
the requirements and checks for the limitations of the energy analysis in ACSL,

63

so that the end user of the analysis can apply these to prove that their program
satisfies all the requirements.

As an example, the array-based operations in the energy analysis have to be
within the bounds of the allocated array, because otherwise the program’s be-
haviour becomes unpredictable. An assertion to prove that array access to a
variable-size declared array (variable only on the point of declaration) is always
within bounds can be defined as follows:

//Dec larat ion o f the array to some va r i a b l e n
int array [n] ;
//@ ghos t i n t a r ray l eng t h = n ;

//App l i ca t ion
//@ as s e r t x >= 0 && x < a r ray l eng t h ;
int y = array [x] ;

This example stores the length of array in a ghost variable array length, which
can later be used in other annotations only. On access of the array, x can
be checked against the bounds of the array: indices may vary between 0 and
array length− 1.

Using a similar method, the access restrictions on unions and pointer-based
structure manipulation can also be verified. Furthermore, Frama-C offers a
command-line option to generate assertions regarding overflow and some floating-
point operations automatically, though these may be less vital to the energy
analysis.

8.7 Web-Based Interface

The original implementation of the energy analysis, EcaLogic, can be run on a
webserver to allow visitors to use the tool without having it or any of the prere-
quisites. While the same might be true for the Scala-based part of EcaLogic-C,
it does not necessarily hold for Frama-C or the Scala and Java compilers. Due
to the number of tools involved and their significantly higher overhead, run-
ning a webserver that offers the new analysis would be more costly, though still
possible. Allowing executable Java or ACSL would, however, pose a security
risk, so that plainly running the tools on the server might not be preferable. It
would then only be feasible with sufficient precautions taken, for instance, with
a virtual sandbox without internet access.

64

8.8 Other CIL-Based Languages

Frama-C uses the Common Intermediate Language originally developed by Mi-
crosoft9 internally to store processed C files. Since EcaLogic-C operates on
this internal representation, it can be possible to use the existing infrastruc-
ture to analyse other languages that translate to CIL. Notably, this includes
other .NET framework languages such as C++ and C#, but other translations
exist: LLVM’s VMKit project focuses on transforming LLVM into CIL. Such
translations can significantly expand the applicability of the tool.

It needs to be mentioned, however, that Frama-C uses its own library for mani-
pulation of the CIL abstract syntax tree. As such, it may not be fully compatible
with CIL files generated from, for example, C# compilation. For one, the CIL
Frama-C dialect has no direct capacity for objects, though they are officially
supported by CIL in the specification. Furthermore, the ACSL extension in use
by Frama-C is not officially supported, and as such might need to be altered
before application to other languages becomes possible.

9CIL is part of the Common Language Infrastructure, defined here: http://www.

ecma-international.org/publications/standards/Ecma-335.htm

65

http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm

9 Conclusion

The goal of this thesis was to extend a static energy analysis method[1], im-
plemented in EcaLogic[3], so that it could analyse more practical programming
languages. Extended data structures, memory manipulation, and recursion were
the language elements considered. These extensions, with the exception of recur-
sion, were implemented in EcaLogic-C: an extended version of the tool, allowing
it to analyse a subset of the programming language C by using the suggested
analysis additions.

The practical applicability of the energy analysis and EcaLogic-C has increased
compared to the original EcaLogic, though a C program may still not be anal-
ysed unaltered: loop bounds and variable relations still have to be specified,
though this can now be done in an non-obstructive fashion. Furthermore,
straight jumps in the code or any form of concurrency remains unsupported
for the analysis, and were considered out of the scope of this thesis.

While applicable practically, the energy analysis and EcaLogic-C are open to
expansion: in particular, adding support for concurrent program elements would
further increase its analysis capabilities. Usability may also be a concern for
future work; since some user-interaction elements of the original EcaLogic had
to be disabled, the extended version is more opaque.

66

References

[1] R. Kersten, P. P. Toldin, B. van Gastel, and M. van Eekelen, “A hoare
logic for energy consumption analysis,” 2014.

[2] N. D. Jones, Computability and complexity: from a programming perspec-
tive, vol. 21. MIT press, 1997.

[3] M. Schoolderman, J. Neutelings, R. Kersten, and M. van Eekelen, “Eca-
logic: hardware-parametric energy-consumption analysis of algorithms,” in
Proceedings of the 13th workshop on Foundations of aspect-oriented lan-
guages, pp. 19–22, ACM, 2014.

[4] C. Alippi and C. Galperti, “Energy storage mechanisms in low power em-
bedded systems: Twin batteries and supercapacitors,” in Wireless Com-
munication, Vehicular Technology, Information Theory and Aerospace &
Electronic Systems Technology, 2009. Wireless VITAE 2009. 1st Interna-
tional Conference on, pp. 31–35, IEEE, 2009.

[5] C. Alippi, R. Camplani, C. Galperti, and M. Roveri, “A robust, adap-
tive, solar-powered wsn framework for aquatic environmental monitoring,”
Sensors Journal, IEEE, vol. 11, no. 1, pp. 45–55, 2011.

[6] N. Kothari, R. Gummadi, T. Millstein, and R. Govindan, “Reliable and
efficient programming abstractions for wireless sensor networks,” in ACM
SIGPLAN Notices, vol. 42, pp. 200–210, ACM, 2007.

[7] F. Poletti, A. Poggiali, D. Bertozzi, L. Benini, P. Marchal, M. Loghi, and
M. Poncino, “Energy-efficient multiprocessor systems-on-chip for embed-
ded computing: Exploring programming models and their architectural
support,” Computers, IEEE Transactions on, vol. 56, no. 5, pp. 606–621,
2007.

[8] L. M. Feeney and M. Nilsson, “Investigating the energy consumption of a
wireless network interface in an ad hoc networking environment,” in IN-
FOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings. IEEE, vol. 3, pp. 1548–1557,
IEEE, 2001.

[9] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “En-
ergy consumption in mobile phones: a measurement study and implica-
tions for network applications,” in Proceedings of the 9th ACM SIGCOMM
conference on Internet measurement conference, pp. 280–293, ACM, 2009.

[10] N. Chang, K. Kim, and H. G. Lee, “Cycle-accurate energy consumption
measurement and analysis: Case study of arm7tdmi,” in Low Power Elec-
tronics and Design, 2000. ISLPED’00. Proceedings of the 2000 Interna-
tional Symposium on, pp. 185–190, IEEE, 2000.

67

[11] A. M. Turing, “On computable numbers, with an application to the
entscheidungsproblem,” J. of Math, vol. 58, pp. 345–363, 1936.

[12] M. Barnett, K. R. M. Leino, and W. Schulte, “The spec# programming
system: An overview,” in Construction and analysis of safe, secure, and
interoperable smart devices, pp. 49–69, Springer, 2005.

[13] M. Barnett, R. DeLine, M. Fähndrich, B. Jacobs, K. R. M. Leino,
W. Schulte, and H. Venter, “The spec# programming system: Chal-
lenges and directions,” in Verified Software: Theories, Tools, Experiments,
pp. 144–152, Springer, 2008.

[14] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and
B. Yakobowski, “Frama-c,” in Software Engineering and Formal Methods,
pp. 233–247, Springer, 2012.

[15] L. Correnson and J. Signoles, “Combining analyses for c program verifi-
cation,” in Formal Methods for Industrial Critical Systems, pp. 108–130,
Springer, 2012.

[16] S. Falke, D. Kapur, and C. Sinz, “Termination analysis of imperative pro-
grams using bitvector arithmetic,” in Verified Software: Theories, Tools,
Experiments, pp. 261–277, Springer, 2012.

[17] S. Falke, D. Kapur, and C. Sinz, “Termination analysis of c programs using
compiler intermediate languages,” in RTA, vol. 11, pp. 41–50, 2011.

[18] P. Parisen Toldin, R. Kersten, B. v. Gastel, and M. v. Eekelen, “Soundness
Proof for a Hoare Logic for Energy Consumption Analysis,” October 2013.

[19] O. Kaser, C. Ramakrishnan, and S. Pawagi, “On the conversion of indirect
to direct recursion,” ACM Letters on Programming Languages and Systems
(LOPLAS), vol. 2, no. 1-4, pp. 151–164, 1993.

[20] D. H. Greene and D. E. Knuth, Mathematics for the Analysis of Algorithms.
Springer, 2007.

[21] V. G. Papanicolaou, “On the asymptotic stability of a class of linear dif-
ference equations,” Mathematics Magazine, pp. 34–43, 1996.

[22] E. W. Dijkstra, “Letters to the editor: go to statement considered harmful,”
Communications of the ACM, vol. 11, no. 3, pp. 147–148, 1968.

[23] A. M. Erosa and L. J. Hendren, “Taming control flow: A structured ap-
proach to eliminating goto statements,” in Computer Languages, 1994.,
Proceedings of the 1994 International Conference on, pp. 229–240, IEEE,
1994.

[24] T. Šimunić, L. Benini, and G. De Micheli, “Cycle-accurate simulation of en-
ergy consumption in embedded systems,” in Proceedings of the 36th annual
ACM/IEEE Design Automation Conference, pp. 867–872, ACM, 1999.

68

[25] T. Simunic, L. Benini, and G. De Micheli, “Energy-efficient design of
battery-powered embedded systems,” Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, vol. 9, no. 1, pp. 15–28, 2001.

[26] C. A. Hoare, “Quicksort,” The Computer Journal, vol. 5, no. 1, pp. 10–16,
1962.

[27] J. Katajainen, T. Pasanen, and J. Teuhola, “Practical in-place mergesort,”
Nord. J. Comput., vol. 3, no. 1, pp. 27–40, 1996.

[28] J. L. Bentley and M. D. McIlroy, “Engineering a sort function,” Software:
Practice and Experience, vol. 23, no. 11, pp. 1249–1265, 1993.

[29] R. Gusella and S. Zatti, “The accuracy of the clock synchronization
achieved by tempo in berkeley unix 4.3 bsd,” Software Engineering, IEEE
Transactions on, vol. 15, no. 7, pp. 847–853, 1989.

[30] F. Cristian, “Probabilistic clock synchronization,” Distributed computing,
vol. 3, no. 3, pp. 146–158, 1989.

[31] B. W. Kernighan, D. M. Ritchie, and P. Ejeklint, The C programming
language, vol. 2. prentice-Hall Englewood Cliffs, 1988.

69

Appendices

A Semantics Reference

This appendix gives the full set of semantic rules for the energy consumption
analysis, both for the operational and energy-aware semantics, as well as the
energy analysis rules. The general structure, special characters, and other ele-
ments are explained in greater detail in Section 2.1.

A.1 Operational Semantics

These are the operational semantic rules: the rules governing what effect each
statement has, without considering energy consumption. To avoid unnecessarily
cluttering the energy analysis rules, type-system restrictions are confined to this
part of the semantics.

The semantics for statements are in Figure 16, whereas the semantics for ex-
pressions can be found in Figure 17.

70

∆ ` 〈e1, σ,Γ〉⇓e〈n, σ′,Γ′〉
(sExprAsStmt)

∆ ` 〈e1, σ,Γ〉⇓s〈σ′,Γ′〉
(sSkip)

∆ ` 〈skip, σ,Γ〉⇓s〈σ,Γ〉

∆ ` 〈S1, σ,Γ〉⇓s〈σ′,Γ′〉 ∆ ` 〈S2, σ
′,Γ′〉⇓s〈σ′′,Γ′′〉

(sStmtConcat)
∆ ` 〈S1; S2, σ,Γ〉⇓s〈σ′′,Γ′′〉

n = 0 conv(n, boolean) ∆ ` 〈e, σ,Γ〉⇓e〈n, σ′,Γ′〉 ∆ ` 〈S2, σ
′,Γ′〉⇓s〈σ′′,Γ′′〉

(sIf-False)
∆ ` 〈if(e) S1 else S2, σ,Γ〉⇓s〈σ′′,Γ′′〉

n 6= 0 conv(n, boolean) ∆ ` 〈e, σ,Γ〉⇓e〈n, σ′,Γ′〉 ∆ ` 〈S1, σ
′,Γ′〉⇓s〈σ′′,Γ′′〉

(sIf-True)
∆ ` 〈if(e) S1 else S2, σ,Γ〉⇓s〈σ′′,Γ′′〉

n = 0 conv(n, boolean) ∆ ` 〈e, σ,Γ〉⇓e〈n, σ′,Γ′〉
(sWhile-False)

∆ ` 〈while(e) S1, σ,Γ〉⇓s〈σ′,Γ′〉

n 6= 0 conv(n, boolean) ∆ ` 〈e, σ,Γ〉⇓e〈n, σ′,Γ′〉 ∆ ` 〈S1; while(e) S1, σ
′,Γ′〉⇓s〈σ′′,Γ′′〉

(sWhile-True)
∆ ` 〈while(e) S1, σ,Γ〉⇓s〈σ′′,Γ′′〉

∆[f ← (e,∆, x)] ` 〈S, σ,Γ〉⇓s〈σ′,Γ′〉 conv(e, rtype)
(sFuncDef)

∆ ` 〈rtype f(x) { e } S, σ,Γ〉⇓s〈σ′,Γ′〉

∆ ` 〈e, σ,Γ〉⇓e〈n, σ′,Γ′〉
(sArrayDecl)

∆ ` 〈type a[e], σ,Γ〉⇓s〈σ′[a← type[n]],Γ′〉

∆[s← {x0..xl}] ` 〈σ,Γ〉⇓s〈σ,Γ〉
(sStructDef)

∆ ` 〈struct s{x0..xl}, σ,Γ〉⇓s〈σ,Γ〉

∆[u← {x0..xl}] ` 〈σ,Γ〉⇓s〈σ,Γ〉
(sUnionDef)

∆ ` 〈union u{x0..xl}, σ,Γ〉⇓s〈σ,Γ〉

Figure 16: Statement semantics.

71

(sConst)
∆ ` 〈c, σ,Γ〉⇓e〈c, σ,Γ〉

(sVar)
∆ ` 〈x, σ,Γ〉⇓e〈σ(x), σ,Γ〉

∆ ` 〈e1, σ,Γ〉⇓e〈n, σ′,Γ′〉 ∆ ` 〈e2, σ′,Γ′〉⇓e〈m,σ′′,Γ′′〉 Cimp ::�(n,m) = p
(sBinOp)

∆ ` 〈e1 � e2, σ,Γ〉⇓e〈p, σ′′,Γ′′〉

∆ ` 〈e1, σ,Γ〉⇓e〈n, σ′,Γ′〉 Cimp ::�(n) = m
(sUnOp)

∆ ` 〈�e1, σ,Γ〉⇓e〈m,σ′,Γ′〉

∆ ` 〈e, σ,Γ〉⇓e〈n, σ′,Γ′〉 conv(n, typeof(x)
(sAssign)

∆ ` 〈x = e, σ,Γ〉⇓e〈n, σ′[x← n],Γ′〉

∆ ` 〈e, σ,Γ〉⇓e〈a, σ′,Γ′〉 Ci ::rvf (CΓ
i ::s, a) = n Γ′ = Γ[Ci ::s← Ci ::δf (CΓ

i ::s, a)]
(sCallCmpF)

∆ ` 〈Ci ::f(e), σ,Γ〉⇓e〈n, σ,Γ′〉

∆ ` 〈e, σ,Γ〉⇓e〈a, σ′,Γ′〉 ∆(f) = (e1,∆
′, x) ∆′ ` 〈e1, [x← a],Γ′〉⇓e〈n, σ′′,Γ′′〉

(sCallF)
∆ ` 〈f(e), σ,Γ〉⇓e〈n, σ′,Γ′′〉

∆ ` 〈S, σ,Γ〉⇓s〈σ′,Γ′〉 ∆ ` 〈e, σ′,Γ′〉⇓e〈n, σ′′,Γ′′〉
(sExprConcat)

∆ ` 〈S, e, σ,Γ〉⇓e〈n, σ′′,Γ′′〉

∆ ` 〈i, σ,Γ〉⇓e〈j, σ′,Γ′〉 j ∈ [0..length(a)− 1]
(sArrayAccess)

∆ ` 〈a[i], σ,Γ〉⇓e〈σ′(a[j]), σ′,Γ′〉

x ∈ ∆(s)
(sStructAccess)

∆ ` 〈s.x, σ,Γ〉⇓e〈σ(s).x, σ,Γ〉

x ∈ ∆(u) conv(x, typeof(last(u)))
(sUnionAccess)

∆ ` 〈u.x, σ,Γ〉⇓e〈σ(u).x, σ,Γ〉

∆ ` 〈i, σ,Γ〉⇓e〈j, σ′,Γ′〉 j ∈ [0..length(a)− 1] ∆ ` 〈e, σ′,Γ′〉⇓e〈n, σ′′,Γ′′〉 conv(n, subtype(a))
(sArrayAssign)

∆ ` 〈a[i] = e, σ,Γ〉⇓e〈σ′′[a[j]← n],Γ′′〉

x ∈ ∆(s) ∆ ` 〈e, σ,Γ〉⇓e〈n, σ′,Γ′〉 conv(n, typeof(s.x))
(sStructAssign)

∆ ` 〈s.x = e, σ,Γ〉⇓e〈σ′[σ′(s).x← n],Γ′〉

x ∈ ∆(u) ∆ ` 〈e, σ,Γ〉⇓e〈n, σ′,Γ′〉 conv(n, typeof(u.x))
(sUnionAssign)

∆ ` 〈u.x = e, σ,Γ〉⇓e〈σ′[σ′(u).x← n][last(u)← x],Γ′〉

Figure 17: Expression semantics

72

A.2 Energy-Aware Semantics

The full energy-aware semantics are as in Figure 18 for statements, and Figure
19 for expressions. To avoid cluttering the image further, elements from the
rules for the regular semantics are omitted: this includes the typing restrictions
and union safety restriction. It may be assumed that both these rules and the
equivalent regular semantic rules need apply.

∆ ` 〈S, σ,Γ, t〉⇓s〈σ′,Γ′, t′〉 ∆ ` 〈e, σ′,Γ′, t′〉⇓e〈n, σ′′,Γ′′, t′′〉
(eExprConcat)

∆ ` 〈S, e, σ,Γ, t〉⇓e〈n, σ′′,Γ′′, t′′〉

∆ ` 〈e1, σ,Γ, t〉⇓e〈n, σ′,Γ′, t′〉
(eExprAsStmt)

∆ ` 〈e1, σ,Γ, t〉⇓s〈σ′,Γ′, t′〉
(eSkip)

∆ ` 〈skip, σ,Γ, t〉⇓s〈σ,Γ, t〉

∆ ` 〈S1, σ,Γ, t〉⇓s〈σ′,Γ′, t′〉 ∆ ` 〈S2, σ
′,Γ′, t′〉⇓s〈σ′′,Γ′′, t′′〉

(eStmtConcat)
∆ ` 〈S1; S2, σ,Γ, t〉⇓s〈σ′′,Γ′′, t′′〉

∆ ` 〈e, σ,Γ, t〉⇓e〈0, σ′,Γ′, t′〉

∆ ` 〈S2, σ
′,Γ′, t′〉⇓s〈σ′′,Γ′′, t′′〉

Γ′′′ = Γ′′[Cimp ::e += Cimp ::Eite]
(eIf-False)

∆ ` 〈if(e) S1 else S2, σ,Γ, t〉⇓s〈σ′′,Γ′′′, t′′ + Cimp ::Tite〉

n 6= 0

∆ ` 〈e, σ,Γ, t〉⇓e〈n, σ′,Γ′, t′〉

∆ ` 〈S1, σ
′,Γ′, t′〉⇓s〈σ′′,Γ′′, t′′〉

Γ′′′ = Γ′′[Cimp ::e += Cimp ::Eite]
(eIf-True)

∆ ` 〈if(e) S1 else S2, σ,Γ, t〉⇓s〈σ′′,Γ′′′, t′′ + Cimp ::Tite〉

∆ ` 〈e, σ,Γ, t〉⇓e〈0, σ′,Γ′, t′〉 Γ′′ = Γ′[Cimp ::e += Cimp ::Ew]
(eWhile-False)

∆ ` 〈while(e) S1, σ,Γ, t〉⇓s〈σ′,Γ′′, t′ + Cimp ::Tw〉

Γ′′ = Γ′[Cimp ::e += Cimp ::Ew] ∆ ` 〈e, σ,Γ, t〉⇓e〈n, σ′,Γ′, t′〉

∆ ` 〈S1; while(e) S1, σ
′,Γ′′, t′ + Cimp ::Tw〉⇓s〈σ′′,Γ′′′, t′′〉 n 6= 0

(eWhile-True)
∆ ` 〈while(e) S1, σ,Γ, t〉⇓s〈σ′′,Γ′′′, t′′〉

∆[f ← (e,∆, x)] ` 〈S, σ,Γ, t〉⇓s〈σ′,Γ′, t′〉
(eFuncDef)

∆ ` 〈rtype f(x) { e } S, σ,Γ, t〉⇓s〈σ′,Γ′, t′〉

∆ ` 〈e, σ,Γ, t〉⇓e〈n, σ′,Γ′, t′〉 Γ′′ = Γ′[Cimp ::e += Cimp ::Emdec]
(eArrayDecl)

∆ ` 〈type a[e], σ,Γ, t〉⇓s〈σ′[a← type[n]],Γ′′, t′ + Cimp ::Tmdec〉

∆[s← {x0..xl}] ` 〈σ,Γ, t〉⇓s〈σ,Γ, t〉
(eStructDef)

∆ ` 〈struct s{x0..xl}, σ,Γ, t〉⇓s〈σ,Γ, t〉

∆[u← {x0..xl}] ` 〈σ,Γ, t〉⇓s〈σ,Γ, t〉
(eUnionDef)

∆ ` 〈union u{x0..xl}, σ,Γ, t〉⇓s〈σ,Γ, t〉

Figure 18: Energy-aware semantics for statements.

73

(eConst)
∆ ` 〈c, σ,Γ, t〉⇓e〈c, σ,Γ, t〉

(eVar)
∆ ` 〈x, σ,Γ, t〉⇓e〈σ(x), σ,Γ, t〉

∆ ` 〈e1, σ,Γ, t〉⇓e〈n, σ′,Γ′, t′〉

∆ ` 〈e2, σ′,Γ′, t′〉⇓e〈m,σ′′,Γ′′, t′′〉

Cimp ::�(n,m) = p

Γ′′′ = Γ′′[Cimp ::e += Cimp ::Ee]
(eBinOp)

∆ ` 〈e1 � e2, σ,Γ, t〉⇓e〈p, σ′′,Γ′′′, t′′ + Cimp ::Te〉

∆ ` 〈e1, σ,Γ, t〉⇓e〈n, σ′,Γ′, t′〉

Cimp ::�(n) = m

Γ′′ = Γ′[Cimp ::e += Cimp ::Ee]
(eUnOp)

∆ ` 〈�e1, σ,Γ, t〉⇓e〈m,σ′,Γ′′, t′ + Cimp ::Te〉

∆ ` 〈e, σ,Γ, t〉⇓e〈n, σ′,Γ′, t′〉 Γ′′ = Γ′[Cimp ::e += Cimp ::Ea]
(eAssign)

∆ ` 〈x = e, σ,Γ, t〉⇓e〈n, σ′[x← n],Γ′′, t′ + Cimp ::Ta〉

∆ ` 〈e, σ,Γ, t〉⇓e〈a, σ′,Γ′, t′〉 Ci ::rvf (CΓ′
i ::s, a) = n

Γ′′ = Γ[Ci ::e += Ci ::Ef + td(CΓ′
i , t), Ci ::s← Ci ::δf (CΓ′

i ::s, a), Ci ::τ ← t′]
(eCallCmpF)

∆ ` 〈Ci ::f(e), σ,Γ, t〉⇓e〈n, σ,Γ′′, t′ + Ci ::Tf 〉

∆ ` 〈e, σ,Γ, t〉⇓e〈a, σ′,Γ′, t′〉

∆(f) = (e1,∆
′, x)

∆′ ` 〈e1, [x← a],Γ′, t′〉⇓e〈n, σ′′,Γ′′, t′′〉
(eCallF)

∆ ` 〈f(e), σ,Γ, t〉⇓e〈n, σ′,Γ′′, t′′〉

∆ ` 〈i, σ,Γ, t〉⇓e〈j, σ′,Γ′, t′〉 j ∈ [0..length(a)− 1] Γ′′ = Γ′[Cimp ::e += Cimp ::Emacc]
(eArrayAccess)

∆ ` 〈a[i], σ,Γ, t〉⇓e〈σ′(a[j]), σ′,Γ′′, t′ + Cimp ::Tmacc〉

x ∈ ∆(s) Γ′ = Γ[Cimp ::e += Cimp ::Emacc]
(eStructAccess)

∆ ` 〈s.x, σ,Γ, t〉⇓e〈σ(s).x, σ,Γ′, t + Cimp ::Tmacc〉

x ∈ ∆(u) Γ′ = Γ[Cimp ::e += Cimp ::Emacc]
(eUnionAccess)

∆ ` 〈u.x, σ,Γ, t〉⇓e〈σ(u).x, σ,Γ′, t + Cimp ::Tmacc〉

∆ ` 〈i, σ,Γ, t〉⇓e〈j, σ′,Γ′, t′〉 j ∈ [0..length(a)− 1]

Γ′′′ = Γ′′[Cimp ::e += Cimp ::Emacc + Cimp ::Ea]

∆ ` 〈e, σ′,Γ′, t′〉⇓e〈n, σ′′,Γ′′, t′′〉
(eArrayAssign)

∆ ` 〈a[i] = e, σ,Γ, t〉⇓e〈σ′′[a[j]← n],Γ′′′, t′′ + Cimp ::Tmacc + Cimp ::Ta〉

x ∈ ∆(s) ∆ ` 〈e, σ,Γ, t〉⇓e〈n, σ′,Γ′, t′〉 Γ′′ = Γ′[Cimp ::e += Cimp ::Emacc + Cimp ::Ea]
(eStructAssign)

∆ ` 〈s.x = e, σ,Γ, t〉⇓e〈σ′[σ′(s).x← n],Γ′′, t′ + Cimp ::Tmacc + Cimp ::Ta〉

x ∈ ∆(u) ∆ ` 〈e, σ,Γ, t〉⇓e〈n, σ′,Γ′, t′〉 Γ′′ = Γ′[Cimp ::e += Cimp ::Emacc + Cimp ::Ea]
(eUnionAssign)

∆ ` 〈u.x = e, σ,Γ, t〉⇓e〈σ′[σ′(u).x← n],Γ′′, t′ + Cimp ::Tmacc + Cimp ::Ta〉

Figure 19: Energy-aware semantics for expressions.

A.3 Energy Analysis Rules

The full energy analysis rules as implemented by EcaLogic-C are those in Figure
20.

74

(aConst)
{Γ; t; ρ}n{Γ; t; ρ}

(aVar)
{Γ; t; ρ}x{Γ; t; ρ}

{Γ; t; ρ}e1{Γ1; t1; ρ1} {Γ1; t1; ρ1}e2{Γ2; t2; ρ2} Γ3 = Γ2[Cimp ::e += Cimp ::Ee]
(aBinOp)

{Γ; t; ρ}e1 � e2{Γ3; t2 + Cimp ::Te; ρ2}

{Γ; t; ρ}e{Γ1; t1; ρ1} Γ2 = Γ1[Cimp ::e += Cimp ::Ea]
(aAssign)

{Γ; t; ρ}x = e{Γ2; t1 + Cimp ::Ta; ρ2}

Γ1 = Γ[Ci ::s← Ci ::δf (Ci ::s), Ci ::τ ← t, Ci ::e += Ci ::Ef + td(Ci, t)]
(aCallCmpF)

{Γ; t; ρ}Ci ::f(args){Γ1; t + Ci ::Tf ; ρ}

∆(f) = (e1, x)

e = a ∈ ρ

{Γ; t; ρ}e{Γ1; t1; ρ1}

{Γ1; t1; ρ1[x′ ← a]}e1[x← x′]{Γ2; t2; ρ2} x′ fresh in e1
(aCallF)

{Γ; t; ρ}f(e){Γ2; t2; ρ2}

(aSkip)
{Γ; t; ρ}skip{Γ; t; ρ}

{Γ; t; ρ}S1{Γ1; t1; ρ1} {Γ1; t1; ρ1}S2{Γ2; t2; ρ2}
(aConcat)

{Γ; t; ρ}S1; S2{Γ2; t2; ρ2}

{Γ; t; ρ}e{Γ1; t1; ρ1}

Γ2 = Γ1[Cimp ::e += Cimp ::Eite]

{Γ2; t1 + Cimp ::Tite; ρ1}S1{Γ3; t2; ρ2}

{Γ2; t1 + Cimp ::Tite; ρ1}S2{Γ4; t3; ρ3}
(aIf)

{Γ; t; ρ}if(e) S1 else S2{lub(Γ3,Γ4); max{t2, t3}; ρ4}

Γ1 = process-td(Γ, t)

{wci(Γ1, e; S); t; ρ}e{Γ2; t1; ρ1}

Γ3 = Γ2[Cimp ::e += Cimp ::Ew]

{Γ3; t1 + Cimp ::Tw; ρ1}S{Γ4; t2; ρ2}
(aWhile)

{Γ; t; ρ}while(ib e) S{oe(Γ1, t,Γ4, t2, ib); ρ3}

{Γ; t; ρ}e1{Γ1; t1; ρ1} Γ2 = Γ1[Cimp ::e += Cimp ::Emdec]
(aArrayDecl)

{Γ; t; ρ}a[e1]{Γ2; t1 + Cimp ::Tmdec; ρ1}

{Γ; t; ρ}i{Γ1; t1; ρ1} Γ2 = Γ1[Cimp ::e += Cimp ::Emacc]
(aArrayAccess)

{Γ; t; ρ}a[i]{Γ2; t1 + Cimp ::Tmacc; ρ1}

Γ1 = Γ[Cimp ::e += Cimp ::Emacc]
(aStructAccess)

{Γ; t; ρ}s.x{Γ1; t + Cimp ::Tmacc; ρ}

Γ1 = Γ[Cimp ::e += Cimp ::Emacc]
(aUnionAccess)

{Γ; t; ρ}u.x{Γ1; t + Cimp ::Tmacc; ρ}

{Γ; t; ρ}i{Γ1; t1; ρ1} {Γ1; t1; ρ1}e{Γ2; t2; ρ2} Γ3 = Γ2[Cimp ::e += Cimp ::Ea + Cimp ::Emacc]
(aArrayAssign)

{Γ; t; ρ}a[i] = e{Γ3; t2 + Cimp ::Ta + Cimp ::Tmacc; ρ2}

{Γ; t; ρ}e{Γ1; t1; ρ1} Γ2 = Γ1[Cimp ::e += Cimp ::Ea + Cimp ::Emacc]
(aStructAssign)

{Γ; t; ρ}s.x = e{Γ2; t1 + Cimp ::Ta + Cimp ::Tmacc; ρ1}

{Γ; t; ρ}e{Γ1; t1; ρ1} Γ2 = Γ1[Cimp ::e += Cimp ::Ea + Cimp ::Emacc]
(aUnionAssign)

{Γ; t; ρ}u.x = e{Γ2; t1 + Cimp ::Ta + Cimp ::Tmacc; ρ1}

Figure 20: Full energy analysis rules

75

B Array Sorting Code Listing

This appendix contains the code for the Array Sorting example in Section 7.1.
It consists of the two algorithms.

B.1 QuickSort

This implementation is loosely adapted from the implementation given by Kernighan
& Ritchie[31] in 1988, for the C language. The function pointer argument is
omitted, since function calls are expensive and it might dominate an analy-
sis.

/∗
Basic QuickSort implementation
Uses l e f tmo s t element as the p i v o t
Only opera tes on l i s t s o f i n t e g e r s
∗/

#include ” eca . a c s l ”

void swap (int∗ v , int a , int b) {
int c = v [a] ;
v [a] = v [b] ;
v [b] = c ;

}

void q s o r t r (int∗ v , int l e f t , int r i g h t) {
int i , l a s t ;

i f (l e f t >= r i g h t)
return ;

swap (v , l e f t , (l e f t + r i g h t) /2) ;
l a s t = l e f t ;
for (i = l e f t +1; i <= r i g h t ; i++)

i f (v [i] < v [l e f t])
swap (v , ++l a s t , i) ;

swap (v , l e f t , l a s t) ;
q s o r t r (v , l e f t , l a s t −1) ;
q s o r t r (v , l a s t +1, r i g h t) ;

}

void qso r t (int∗ v , int l ength) {
q s o r t r (v , 0 , length −1) ;

}

B.2 MergeSort

This code is a slightly modified version from a public implementation10.

10MergeSort C implementation located here: http://rosettacode.org/wiki/Sorting_

algorithms/Merge_sort#C

76

http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort#C
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort#C

/∗
Basic MergeSort implementation
Only opera tes on l i s t s o f i n t e g e r s
∗/

#include ” eca . a c s l ”

void merge (int∗ v , int l e f t s t a r t , int l e f t e n d , int r i g h t s t a r t ,
int r i gh t end)
{

int l e f t l e n g t h = l e f t e n d − l e f t s t a r t ;
int r i g h t l e n g t h = r i gh t end − r i g h t s t a r t ;

int l e f t h a l f [l e f t l e n g t h] ;
int r i g h t h a l f [r i g h t l e n g t h] ;

int r = 0 ;
int l = 0 ;
int i = 0 ;

for (i = l e f t s t a r t ; i < l e f t e n d ; i ++, l++)
l e f t h a l f [l] = v [i] ;

for (i = r i g h t s t a r t ; i < r i gh t end ; i ++, r++)
r i g h t h a l f [r] = v [i] ;

for (i = l e f t s t a r t , r = 0 , l = 0 ; l < l e f t l e n g t h && r <
r i g h t l e n g t h ; i++)
{

i f (l e f t h a l f [l] < r i g h t h a l f [r]) v [i] = l e f t h a l f [l ++];
else v [i] = r i g h t h a l f [r ++];

}

for (; l < l e f t l e n g t h ; i ++, l++) v [i] = l e f t h a l f [l] ;
for (; r < r i g h t l e n g t h ; i ++, r++) v [i] = r i g h t h a l f [r] ;

}

void merge so r t r (int∗ v , int l e f t , int r i g h t)
{

i f (r i g h t − l e f t <= 1)
return ;

int l e f t s t a r t = l e f t ;
int l e f t e n d = (l e f t+r i g h t) /2 ;
int r i g h t s t a r t = l e f t e n d ;
int r i gh t end = r i g h t ;

merge so r t r (v , l e f t s t a r t , l e f t e n d) ;
merge so r t r (v , r i g h t s t a r t , r i gh t end) ;

merge (v , l e f t s t a r t , l e f t e n d , r i g h t s t a r t , r i gh t end) ;
}

void mergesort (int∗ v , int l ength)
{

merge so r t r (v , 0 , l ength) ;
}

77

C Clock Synchronization Code Listing

This appendix contains the code for the Clock Synchronization example in Sec-
tion 7.2. It consists of the two algorithms and the hardware component mod-
elling sockets.

C.1 Berkeley Algorithm

/∗
Basic Berke ley implementation fo r a master−s e rve r
Usage : <execu tab l e> N
Lis t ens f o r N timestamps sent by c l i e n t s to i t s socket , then
c u l l s and averages the r e su l t , and sends the mod i f i ca t i on back
Sk ips the RTT adjustment and any r ea l o u t l i e r d e t e c t i on to keep i t
s imple
∗/

#include <s t d i o . h>
#include <s t d l i b . h>
#include <time . h>
#include <s t r i n g s . h>
#include <arpa / i n e t . h>

#define SERV UDP PORT 6543
#define SERV TCP PORT 6543
#define SERV HOST ADDR ” 1 9 2 . 1 6 8 . 2 . 2 0 0 ”

#define TIMESTAMP TOLERANCE 2000

#include ” eca . a c s l ”

//Computes the average o f a s e t o f timestamps , i gnores those
beyond a ce r t a in t h r e s ho l d o f the master ’ s current time
//Also adds the current s e rve r time , j u s t in case eve ry th ing i s an
o u t l i e r
t ime t avg (t ime t ∗ timestamps , int n) {

t ime t now = time (NULL) ;
i f (now < 0) err dump (” Fa i l ed to get cur rent time ! ”) ;

int r e a l n = n ;

t ime t r e s = now ;
//@ loop invar i an t ecaloopbound (n , n) ;
for (int i =0; i<n ; ++i) {

i f (timestamps [i] − now < TIMESTAMP TOLERANCE && now −
timestamps [i] < TIMESTAMP TOLERANCE) r e s += timestamps [i] ;
else −−r e a l n ;

}

return r e s / r e a l n ;
}

int main (int argc , char ∗∗ argv , char ∗∗ env) {
int s o c k e t s e r v e r ;

78

struct sockaddr in a d d r e s s s e r v e r ;
long int t e s tn ;

//Determine the amount o f c l i e n t s
i f (argc < 2)

f p r i n t f (s tde r r , ” F i r s t argument should be the t e s t count ! ”) ;

t e s tn = s t r t o l (argv [1] , NULL, 10) ;

int c l i e n t s o c k e t s [t e s tn] ;
t ime t c l i en t t imes tamps [t e s tn] ;

//Open the se rve r socke t to l i s t e n on
i f ((s o c k e t s e r v e r = socket (AF INET , SOCK STREAM, 0)) < 0)

err dump (” Server : Can ’ t open stream socket ! ”) ;

//Bind to the l o c a l adress and s t a r t l i s t e n i n g
bzero ((void ∗) &addr e s s s e rv e r , (s i z e t) s izeof (a d d r e s s s e r v e r)) ;

a d d r e s s s e r v e r . s i n f a m i l y = AF INET ;
a d d r e s s s e r v e r . s i n addr . s addr = hton l (INADDR ANY) ;
a d d r e s s s e r v e r . s i n p o r t = htons (SERV TCP PORT) ;

i f (bind (
s o c k e t s e r v e r ,
(struct sockaddr ∗) &addr e s s s e rv e r ,
s izeof (a d d r e s s s e r v e r))

< 0)
err dump (” Server : Can ’ t bind l o c a l address ! ”) ;

l i s t e n (s o c k e t s e r v e r , 5) ;

//Receive N timestamps and remember the soc k e t s
//@ as s e r t e c a r e l a t i on (tes tn , ecacs ton (argv [1])) ;
//@ loop invar i an t ecaloopbound (0 , t e s t n) ;
for (int i =0; i<t e s tn ; ++i) {

//Accept a connect ion
struct sockaddr in a d d r e s s c l i e n t ;
s o c k l e n t c l i e n t a d d r e s s s i z e = s izeof (a d d r e s s c l i e n t) ;
c l i e n t s o c k e t s [i] = accept (

s o c k e t s e r v e r ,
(struct sockaddr ∗) &a d d r e s s c l i e n t ,
&c l i e n t a d d r e s s s i z e) ;

i f (c l i e n t s o c k e t s [i] < 0)
err dump (” Server : Accept e r r o r ! ”) ;

//Read a timestamp
read (c l i e n t s o c k e t s [i] , &(c l i en t t imes tamps [i]) ,
s izeof (t ime t)) ;

}

//Compute the average timestamp
//@ as s e r t e c a r e l a t i on (tes tn , ecacs ton (argv [1])) ;
t ime t avg timestamp = avg (c l i ent t imes tamps , t e s tn) ;

//Send the d i f f e r e n c e to each c l i e n t

79

//@ as s e r t e c a r e l a t i on (tes tn , ecacs ton (argv [1])) ;
//@ loop invar i an t ecaloopbound (0 , t e s t n) ;
for (int i =0; i<t e s tn ; ++i) {

//Compute t h i s d i f f e r e n c e
t ime t d i f f = avg timestamp − c l i en t t imes tamps [i] ;

//Write the timestamp
wr i t e (c l i e n t s o c k e t s [i] , &d i f f , s izeof (t ime t)) ;

//Close the socket , s ince we don ’ t need i t anymore
c l o s e (c l i e n t s o c k e t s [i]) ;

}

c l o s e (s o c k e t s e r v e r) ;
}

C.2 Cristian’s Algorithm

/∗
Basic Cr i s t i an ’ s a lgor i thm implementation fo r a master−s e rve r
Usage : <execu tab l e> N
Lis t ens f o r N timestamps sent by c l i e n t s to i t s socket , and
immediate ly sends the co r r ec t i on requ i red back
RTT adjustment i s l e f t to the c l i e n t
∗/

#include <s t d i o . h>
#include <s t d l i b . h>
#include <time . h>
#include <s t r i n g s . h>
#include <arpa / i n e t . h>

#define SERV UDP PORT 6543
#define SERV TCP PORT 6543
#define SERV HOST ADDR ” 1 9 2 . 1 6 8 . 2 . 2 0 0 ”

#include ” eca . a c s l ”

int main (int argc , char ∗∗ argv , char ∗∗ env) {
int s o c k e t s e r v e r ;
struct sockaddr in a d d r e s s s e r v e r ;
long int t e s tn ;

//Determine the amount o f c l i e n t s
i f (argc < 2)

f p r i n t f (s tde r r , ” F i r s t argument should be the t e s t count ! ”) ;

t e s tn = s t r t o l (argv [1] , NULL, 10) ;

int c l i e n t s o c k e t ;
t ime t c l i en t t imes tamp ;

//Open the se rve r socke t to l i s t e n on
i f ((s o c k e t s e r v e r = socket (AF INET , SOCK STREAM, 0)) < 0)

err dump (” Server : Can ’ t open stream socket ! ”) ;

//Bind to the l o c a l adress and s t a r t l i s t e n i n g

80

bzero ((void ∗) &addr e s s s e rv e r , (s i z e t) s izeof (a d d r e s s s e r v e r)) ;

a d d r e s s s e r v e r . s i n f a m i l y = AF INET ;
a d d r e s s s e r v e r . s i n addr . s addr = hton l (INADDR ANY) ;
a d d r e s s s e r v e r . s i n p o r t = htons (SERV TCP PORT) ;

i f (bind (
s o c k e t s e r v e r ,
(struct sockaddr ∗) &addr e s s s e rv e r ,
s izeof (a d d r e s s s e r v e r))

< 0)
err dump (” Server : Can ’ t bind l o c a l address ! ”) ;

l i s t e n (s o c k e t s e r v e r , 5) ;

//Receive N timestamps and send back the cor r ec t i on
//@ as s e r t e c a r e l a t i on (tes tn , ecacs ton (argv [1])) ;
//@ loop invar i an t ecaloopbound (0 , t e s t n) ;
for (int i =0; i<t e s tn ; ++i) {

//Accept a connect ion
struct sockaddr in a d d r e s s c l i e n t ;
s o c k l e n t c l i e n t a d d r e s s s i z e = s izeof (a d d r e s s c l i e n t) ;
c l i e n t s o c k e t = accept (

s o c k e t s e r v e r ,
(struct sockaddr ∗) &a d d r e s s c l i e n t ,
&c l i e n t a d d r e s s s i z e) ;

i f (c l i e n t s o c k e t < 0)
err dump (” Server : Accept e r r o r ! ”) ;

//Read a timestamp
read (c l i e n t s o c k e t , &c l i ent t imestamp , s izeof (t ime t)) ;

//Get the current system time
t ime t now = time (NULL) ;
i f (now < 0) err dump (” Fa i l ed to get cur rent time ! ”) ;

//Compute the d i f f e r e n c e
t ime t d i f f = now − c l i en t t imes tamp ;

//Send back the d i f f e r e n c e
wr i t e (c l i e n t s o c k e t , &d i f f , s izeof (t ime t)) ;

//Close the socke t
c l o s e (c l i e n t s o c k e t) ;

}

c l o s e (s o c k e t s e r v e r) ;
}

C.3 Network Model

/∗∗
∗ Example Hardware Component d e s c r i b i n g energy consumption fo r
some C−Socket f unc t i ons in Java
∗/

public class Sockets {

81

//Energy consumption i s dependent on the number o f a c t i v e so c k e t s
public int a c t i v e s o c k e t s ;

public Sockets () {
a c t i v e s o c k e t s = 0 ;

}

@ConsumesAlias (energy = 40 , time = 10 , a l i a s = ” socket ”)
public void CreateSocket () {

++a c t i v e s o c k e t s ;
i f (a c t i v e s o c k e t s < 0) a c t i v e s o c k e t s = I n t e g e r .MAX VALUE;

}

@ConsumesAlias (energy = 20 , time = 5 , a l i a s = ” c l o s e ”)
public void CloseSocket () {
−−a c t i v e s o c k e t s ;
i f (a c t i v e s o c k e t s < 0) a c t i v e s o c k e t s = 0 ;

}

@ConsumesAlias (energy = 200 , time = 30 , a l i a s = ” bind ”)
public void BindSocket () {

//Does not change the s t a t e
}

@ConsumesAlias (energy = 100 , time = 100 , a l i a s = ” l i s t e n ”)
public void Li s t enSocket () {

//Does not change the s t a t e
}

@ConsumesAlias (energy = 30 , time = 20 , a l i a s = ” accept ”)
public void AcceptSocket () {

//Does not change the s t a t e
}

public double phi () {
return 5 + a c t i v e s o c k e t s ∗ 90 ;

}
}

82

	Energy Consumption Analysis
	Dynamic Energy Analysis
	Static Energy Analysis
	Spec#
	Frama-C
	KITTeL

	A Hoare Logic For Energy Analysis & EcaLogic
	Energy-Aware Hoare Logic
	Energy-Aware Rules
	Hardware Modelling
	Analysis Limitations
	Typing
	Rule Elements
	Analysis Operational Semantics
	Analysis Energy-Aware Semantics
	Analysis Hoare Logic Rules
	Application Example

	EcaLogic
	Original Language
	EcaLogic Limitations

	Data Structures
	Primitive Data Types
	Arrays, Structures, Unions & Enumerations
	Objects
	Rule Additions
	Semantic Additions
	Energy Analysis Rule Modifications

	Pointers
	Safe Operations
	Unsafe & Undefined Behaviour
	Rule Additions
	Semantic Additions
	Energy Analysis Rule Modifications

	Recursion
	Function Signatures
	Recursion in Signatures
	Recursion Fixpoints

	Analysing C
	Parsing
	Annotations
	Variable Relations
	Loop Bounds
	Function Signatures
	Recursion
	Utility

	Hardware Component Models
	Concrete State
	Function Contracts
	Implementation Language

	Control Flow
	For-loops
	Break & Continue
	Go-to Statements

	Adding Data Types
	Variable-Length Arrays
	Additions to the AST

	Allowing Pointer Usage
	Function Signatures & Recursion

	Energy Analysis Examples
	Array Sorting
	Clock Synchronization

	Limitations & Opportunities
	Unsupported Language Elements
	Semantic Analysis
	Accuracy of the Analysis
	Soundness Proof of the Analysis
	Usability Improvements
	Application of ACSL
	Web-Based Interface
	Other CIL-Based Languages

	Conclusion
	Appendices
	Semantics Reference
	Operational Semantics
	Energy-Aware Semantics
	Energy Analysis Rules

	Array Sorting Code Listing
	QuickSort
	MergeSort

	Clock Synchronization Code Listing
	Berkeley Algorithm
	Cristian's Algorithm
	Network Model

