
Secure Key Storage and Secure
Computation in Android

Master Thesis

Author:
T.J.P.M. (Tim) Cooijmans

June 30, 2014

Supervisors:
dr. ir. E. (Erik) Poll

prof. dr. E.R. (Eric) Verheul
drs. T. (Ties) Pull ter Gunne (SNS Bank)

Executive Summary

The increasing usage of smartphones also gains the interest of criminals who shift their
focus from attacking, for example, internet banking in a browser to attacking mobile
banking using an application on a smartphone or a tablet. Of course this is not limited to
banking applications, also other mobile services are expected to see increased fraudulent
activities in the coming years. Two important solutions to protect against attacks
on mobile devices are secure key storage and secure computation. Secure key storage
provides an environment where secret values needed for securing communication between
parties are stored. Secure computation offers a secure environment within a device
where trusted applications can run and handle sensitive operations such as asking for a
PIN-code.

Recent Android phones have hardware support, called ARM TrustZone® technology,
to create a secure environment, isolated from the Android OS, that attackers can not
access. The secure environment is called the Trusted Execution Environment or TEE.
This technology is used on recent Android devices to provide secure key storage and
secure computation. The Android documentation claims that this ensures that the secret
data can not leave the phone. However, in this thesis we describe an issue that allows
an attacker to, under certain conditions, assign the secret data to another application.
The effectiveness of this solution is almost nullified by this issue. In this thesis we
provide recommendations to the developers, who use or intent to use secure key storage
in their application, how to mitigate the risks of this issue and how to use the key storage
features.

Next we analyze both currently used and possible future use cases of the secure compu-
tation. Secure computation is currently used to secure digital media delivery (movies,
music) to devices such that the media can not be played on different devices. The secure
computation possibilities currently available on Android OS can be used to improve the
security of use case, such as mobile banking, mobile payments and secure communication.
The TEE can, for example, be used to securely ask the user to confirm a mobile banking
transaction in such way that it is guaranteed that the confirmation originated from a
specific device.

The conclusion is that while there are some problems, either security or cost related, with
both secure key storage and secure computation on Android, both solutions can provide
additional security properties that may be very welcome to secure mobile applications.
Secure computation can be used in more complex use cases that can not be solved by
only secure key storage.

ii

Contents

Executive Summary ii

1 Introduction 1
1.1 Problem statement 1
1.2 Research questions 2

2 Background 4
2.1 Cryptography 4

2.1.1 Asymmetric cryptography 4
2.1.2 Symmetric cryptography 7

2.2 Trusted Execution Environment 8
2.2.1 ARM TrustZone 9
2.2.2 Secure world operating systems and the TEE 13
2.2.3 Alternatives providing secure computation 14

2.3 The Android operating system 15

3 Secure key storage 18
3.1 APIs providing key storage 18
3.2 Method 20

3.2.1 Introduction 20
3.2.2 Criteria 22
3.2.3 Evaluation 24

3.3 Key storage using Bouncy Castle 26
3.3.1 Evaluation 26
3.3.2 Background 27

3.4 Key storage using AndroidKeyStore using the TEE on Qualcomm devices 30
3.4.1 Evaluation 30
3.4.2 Background 31

3.5 Key storage using AndroidKeyStore using the TEE on TI devices 35
3.5.1 Evaluation 35
3.5.2 Background 36

3.6 Key storage using AndroidKeystore using a software-based keymaster 38
3.6.1 Evaluation 38
3.6.2 Background 40

3.7 Key storage on the secure element 43
3.7.1 Evaluation 43
3.7.2 Background 43

3.8 Conclusion 45

iii

Contents

3.9 Recommendations 48
3.9.1 For developers intending to use key storage 48
3.9.2 For developers of the key stores 49

4 Secure computation 51
4.1 Secure world operating systems 51

4.1.1 SierraTEE 52
4.1.2 Genode 53
4.1.3 TLR 54
4.1.4 Other platforms 55

4.2 Use cases 55
4.2.1 Mobile banking 56
4.2.2 Mobile payments and ticketing 57
4.2.3 Secure communication 58
4.2.4 DRM 59
4.2.5 Samsung Knox 59

4.3 Conclusion 60

5 Conclusion 61
5.1 Future work 63

Bibliography 64

Appendices 69
Appendix 1 KeyStorageTest MainActivity 69

iv

List of Figures

2.1 The ARM architecture and its AXI bus 11
2.2 Typical TrustZone boot process 12
2.3 The separation of the hardware by TrustZone in two worlds. 13

3.1 Schematic overview of the attacker models 23
3.2 Architecture of the AndroidKeyStore on Qualcomm devices 32
3.3 Architecture of AndroidKeyStore on TI devices 37
3.4 Architecture of the software based AndroidKeyStore 41
3.5 Possible architecture of AndroidKeyStore using a Secure Element 44

4.1 The separation of the hardware by TrustZone in two worlds. 52
4.2 Architecture of the TrustZone implementation of Genode 54
4.3 Architecture of TLR 55

List of Tables

3.1 Phones used in the evaluation 21
3.2 Overview of the evaluation results for requirement Rdevice−bound 45
3.3 Overview of the evaluation results for requirement Rapp−bound 46
3.4 Overview of the evaluation results for requirement Ruser−consent 47

List of Listings

3.1 Generating a KeyPair 25
3.2 Reading a certificate from the Bouncy Castle keystore-file 28
3.3 Loading the keymaster binary 32
3.4 Reading the ELF header 33
3.5 Code used for naming key entry files 34
3.6 Storage format used for data from the Qualcomm trustlet 34
3.7 Parsing private data from the key entry file 38
3.8 The blob struct used by the AndroidKeyStore 42
3.9 Proposal to improve the storage format for the AndroidKeyStore 42
3.10 Communicating with the Secure Element 45

v

1 Introduction

1.1 Problem statement

The use of mobile platforms such as smartphones has grown enormously in the last five
years and with it also the number of mobile applications (also called apps) on these
platforms. Nowadays most corporations have created or use mobile applications to either
support their personnel or their customers.

A result of this is that sensitive data is processed by or stored on mobile platforms, not
only on phones issued by companies to employees that the companies can control but also
on their customers phones over which they have virtually no control.

Banks are example of this. Already in 1986 the Dutch bank Postbank introduced a
banking application that could be installed on a computer [27]. Almost 30 years later
nearly every bank has a number of applications on all commonly used mobile platforms
for customers to manage their funds. According to recent1 figures by ING 51% of their
customers uses a mobile banking application on their smartphone. More interestingly 29%
of ING’s customers exclusively uses the mobile banking application.

Naturally this also gained the awareness of criminals who started creating malware for
the mobile platforms [24]. In December 2012 the Eurograbber SMS trojan intercepted
SMS messages on Android phones containing Transaction Authentication Numbers (TAN)
to confirm banking transactions. The attack was employed on both the computer
and the Android phone of a banking customer [17]. According to the Cisco 2014
Annual Security Report 70% of all Android users are affected by malware [10]. Cisco
TRAC/SIO researchers observed that 99 percent of all mobile malware target Android
devices [10].

This in turn forced the manufacturers of the mobile platforms and the application
developers to invest in securing their mobile platform and the apps on it. Already
around 2008 both Android [22] and Apple iOS [39] incorporated additional security
measures.

Two security concepts that we will research in this thesis are secure computation and
secure key storage. Secure key storage provides an environment where secret data needed
for securing communication between parties is stored and that can be used for standard
cryptographic operations. Secure computation offers a secure environment within a device

1http://www.adformatie.nl/blog/mm/2013/11/mobiele-app-verandert-bankiergedrag.html

1

http://www.adformatie.nl/blog/mm/2013/11/mobiele-app-verandert-bankiergedrag.html

1 Introduction

where trusted applications can run and handle sensitive operations such as asking for a
PIN-code or running a specific cryptographic algorithm. Note that secure key storage is
a specific, commonly used, case of secure computation.

To implement secure computation and secure key storage on mobile platforms hardware
solutions were invented. One commonly used solution for secure computation and secure
key storage is the Secure Element [28]. This is a smart card like tamper resistant
platform that can be embedded in systems as a chip or integrated in UICC cards (SIM
cards).

Another solution is ARM TrustZone Technology in ARM processors. ARM processors
are used in almost every smartphone regardless of the operating system. In 2012 ARM
announced that they would include ARM TrustZone Technology in every processor design
that they license to manufacturers [38]. As a result many smartphones today are equipped
with a TrustZone compatible processor. ARM TrustZone Technology is a hardware-based
solution embedded in the ARM cores that allows the processor cores to run two execution
environments, also called worlds: The normal world where for example Android OS or
any other operating system runs and a special secure world where sensitive processes can
be run. Both worlds can run interleaved.

ARM TrustZone Technology provides the basis for a Trusted Execution Environment
(TEE). The TrustZone hardware features, together with some software, ensure that
resources from the secure world and some specific devices can not be accessed from the
normal world. The TEE offers secure computation (and as a consequence also secure key
storage). However, a TEE also provides a way to securely communicate with a user as
we will see in chapter 2. This is not possible for a secure element.

This thesis focuses on the security features provided by the Android mobile operating
system and the security features in the hardware that is commonly used in Android
smartphones. We will focus on one very specific use case, cryptographic key storage (and
operations using these keys), that is very applicable today and one more elaborate use
case, secure computation.

1.2 Research questions

The first question is: What methods do Android and the underling hardware use
to provide secure key storage and what security properties does it provide and how
should it be used? This question will be answered in chapter 3 by the following
questions:

1. What methods does Android use to provide secure key storage?

2. What security properties does the secure key storage provide?

3. What best practices should be applied when applying secure key storage in an
application?

2

1 Introduction

The second question is; What methods are available to implement secure computa-
tion on Android? This question will be answered in chapter 4 by the following ques-
tions:

1. How does the TEE work and how can it be used?

2. What security properties does the TEE provide?

3. How does it compare to other technologies?

By answering these two main questions we provide an overview of the current possibilities
and vulnerabilities of secure key storage and secure computation on Android and mobile
platforms in general. we also provide some practical best practices to aid developers
with securing their applications based on the possibilities and vulnerabilities. The use
cases in chapter 4 provide a look into the future by providing a number of use cases
on how secure computation can be used using currently available technologies and
software.

3

2 Background

This chapter is composed of several sections. Section 2.1 describes shortly what crypto-
graphic keys are and what they do. This is needed to understand the concepts discussed
in the next sections and chapters. In section 2.2 a description of a Trusted Execution
Environment and the requirements associated with it are given. To provide an insight
on how a TEE is composed, the ARM TrustZone technology (in section 2.2.1) and
the role of the operating system (in section 2.2.2) are discussed. TrustZone technology
is not the only method to provide a TEE on a mobile platform, in section 2.2.3 the
alternatives are discussed. Because the research will focus on mobile devices running
Android OS a technical description of Android OS and its security features is given in
section 2.3.

2.1 Cryptography

This section gives a short introduction into cryptography. Since I do not intent to make
this an introduction into cryptography course, We will only focus on whát cryptography
does and what is needed to accomplish it, not on hów it works. Would you like to
know more on how the cryptographic algorithms work, I can recommend the book
Fundamentals of Cryptology by Henk C.A. van Tilborg [56]. In this section we will
describe two different kinds of algorithms: asymmetric and symmetric cryptographic
algorithms. Furthermore we will describe two use-cases of cryptographic keys: encryption
and signature generation.

2.1.1 Asymmetric cryptography

Asymmetric cryptography builds on the notion of a key pair. This key pair consists of a
private key and a public key. It is created by generating it. The private key of the key
pair should, as you would expect by looking at the name, be kept private. It should be
impossible to derive the private key from the public key, however this depends on the
size of the key pair. We call the person who has control over the private-key the “owner”
of the private key. The key pair can be used for encryption and signature generation.
For this porpuse the public key, binded together with the identity of the key owner, is
distributed publicly to everybody. A common way to do is, is by using trusted third party,
a Certificate Authority (CA). This CA checks the identity of the owner of a key pair, by
for example meeting face-to-face. The CA then signs (how we will see later) a certificate

4

2 Background

that confirms that a certain person or other entity has a certain private key. An example
of a structure that uses a CA is the SSL connections and certificates we use for securing
internet communication. The use of SSL to secure HTTP traffic is well known as HTTPS
and is commonly used for internet banking. Whether the identity of the public key
is checked and validated can be seen by the green padlock in the browser for HTTPS
connections. However, there are more uses of SSL connections, such as for sending and
receiving e-mail and for more application specific connections.

When a third party (Bob) needs to send an encrypted message to the key owner (Alice)
he encrypts the message by using the public key as input to the encryption operation of
the asymmetric cryptographic algorithm. The only way to decrypt this message is by
using the private key in the cryptographic algorithm, that was generated together with
the public key as a key pair. As a result the sender, Bob, is sure that only the owner of
the private key, Alice, can decrypt the message. This provides secrecy of the message.
Here we can already see the importance of the CA. Assume that Bob did not meet with
the key owner Alice before but he wants to send her a message. To do this he needs to
have the public key of the person he wants to send a message to. However, if he has
to rely on a third party, Eve, to provide him this public key, he needs to be sure that
the public key that is provided is actually the public key of Alice and not from Eve or
another malicious user who has interest in reading the message. Also note that if the
private key is not kept private, everybody can read messages that are sent or have been
sent.

As analogy assume that a person has a unlimited supply of padlocks with his name on it
to which only he has the key. He distributes the padlocks unlocked to everybody who
wants to communicate securely with him. When a third party wants to send the owner
of the key a message, he first takes a box and puts the message in. Then he takes an
unlocked padlock that has the name of the addressee on it. He locks the box by closing
the padlock. Note that since he does not have to key he can only close others padlocks not
open them. He then sends the box with the locked padlock to the owner. He opens the
padlock and the box using his private key and reads the message.

Signature generation works to other way around. Here the key owner wants to prove that
a certain message (with a certain content) was written by him. To do this he first creates
a cryptographic “summary” of the contents of the message. This is called a cryptographic
hash and is created by a hash function. This hash function is publicly known and can
be executed by anybody. If even the smallest bit of the content changes the output of
the hash function changes completely. The size of the output of the hash function (the
hash) is fixed. As a result there a multiple messages that have the same hash. Still there
are countless possible outputs (hashes) for the hash function (regularly 2128-2512). It is
easy to compute the hash of a certain message using the hash function. However, it is
infeasible to find a message that has a certain hash or find two messages that have the
same hash.

The hash of the message is signed by the key owner, for example Alice, using her private-
key, this creates the signature by using the cryptographic algorithm. She then sends

5

2 Background

the message together with the signature to a certain party. Assume that this party,
Bob, has the public key of Alice and knowns that it is Alice’s public key. Bob then first
computes the hash of the message himself. He then applies the asymmetric cryptographic
algorithm on the signature from Alice to verify the signature. If the signature is valid he
knows that the message is not changed and that it was signed by Alice. This provides
integrity and authenticity of the message. If we make sure that Alice is the only one
who has the private key, she cannot deny that she has signed the message. This is called
non-repudiation.

Note that normally it is best practice to use three key pairs, one for encryption, one
for authentication and one for signature generation. As we’ve seen, the encryption and
decryption operations are used for both encryption and signature generation. In the case
of encryption, the public key is used to encrypt. When decrypting the private key is
used. In the case of signature generation the message is signed using the private key. For
verification the public key is used. If you can convince the key owner to provide you
with the decryption of a certain crafted message (the hash of a certain message) you can
use this as a signature for the message. Now the key owner has unintentionally signed a
message of which he does not know the contents. If a separate encryption and signature
generation key pairs are used you know as a verifying party that something is wrong when
you received a message that is signed using an encryption key.

There are multiple cryptographic primitives that are used to create asymmetric crypto-
graphic algorithms for signature generation and encryption. The first well known example
is RSA [46] which was patented in 1977 [2]. At the moment, however, it freely available
in for example the OpenSSL library1 that is commonly used for cryptography. It is secure
under the assumption that factoring a multiplication of large two prime numbers is hard.
To be secure RSA key pairs with a length of 2048-bits are recommended for signature
generation by the BSI (Bundesamt für Sicherheit in der Informationstechnik, the German
Federal Office for Information Security) [41].

Another, newer, technology is Elliptic Curve Cryptography (ECC). The signature algo-
rithm based on ECC, called Elliptic Curve Digital Signature Algorithm (ECDSA), was
first published in 1987 [34]. It is gaining attention because the algorithm is more efficient,
both in key-size as in required computational effort, than RSA. For example the recom-
mended ECDSA key-size by BSI is 224-bits or 250-bits depending on some cryptographic
details we will not explain here [41]. This is a factor 8 smaller then the recommended
RSA key-size which is 2048-bits [41]. However, this is only an estimation, others provide
other estimations (see the keylength.org website2 for an overview of estimations). The
OpenSSL library also has support for ECDSA. There are also algorithms to do encryption
using ECC, such as the Elliptic Curve Integrated Encryption Scheme proposed in [52].
However, it does not appear on the OpenSSL cipher list3.

1https://www.openssl.org/
2http://www.keylength.com/
3https://www.openssl.org/docs/apps/ciphers.html

6

https://www.openssl.org/
http://www.keylength.com/
https://www.openssl.org/docs/apps/ciphers.html

2 Background

2.1.2 Symmetric cryptography

Symmetric encryption uses the same key for encryption and decryption. To enable two
parties to send symmetrically encrypted messages they have to establish a key that they
both use. When Alice wants to send a message to Bob she encrypts the message using
the established key. Bob then uses the same key to decrypt the message. Since Alice
and Bob both have the same key there are two parties that can leak the key, and it is
hard to establish who did it. On the other hand, if Alice and Bob do not leak the key,
there is nobody else who can send encrypted messages using the key. This is in contrast
with asymmetric cryptography where anybody who knows the public key of a user can
send an encrypted message. This is can be an advantage since you establish a connection
between two parties. On the other hand it means that in world where many people
communicate with each other you have to establish a key for every pair of users that
want to communicate. Symmetric encryption is also magnitudes faster then asymmetric
encryption. This is one reason why protocols are developed that establish a symmetric
key for exchange of data using asymmetric cryptography. These protocols have the
advantages of both asymmetric and symmetric cryptography.

It is also possible to do (a kind of) signature generation using symmetric cryptography.
Since two parties have the same key material it does not have the same properties as a
asymmetric signature generation. It is therefore called an Message Authentication Code
(MAC). It also works by creating a cryptographic hash of the contents of the message.
However, the key is also included in the contents that are hashed. This means that
only the party who has the key can create or verify the hash. To verify the MAC, the
other party also computes the hash using the contents of the message and the key. This
algorithm provides integrity and authenticity of the message. Note that here authenticity
is only provided between the two parties who posses the key. So non-repudiation can
not be provided in both users have full control over the key. By using some kind of
hardware that makes the key non-exportable and only available for certain specific
tasks, however, non-repudiation can be provided. A regularly used MAC function is
HMAC [7].

Two regularly used symmetric encryption algorithms are the Data Encryption Standard
(DES) and the Advanced Encryption Standard (AES). DES was published as a standard
in 1977 [54]. It originally used a 56-bit key. In 2006 a DES key could be broken in 9
days for under 9000 euro [35]. A variant that uses a chained encryption, decryption,
encryption sequence was created, called 3DES [26] to increase the security while using
the same hardware. The Rijndael [13] cipher was chosen as AES in 2001 [44]. It uses
128, 192 or 256-bit key-sizes.

7

2 Background

2.2 Trusted Execution Environment

An Trusted Execution Environment (TEE) is an environment that allows for secure
execution of applications. According to ARM documentation applications running in the
TEE are called trustlets. Vasudevan et al. provide a number of requirements that are
needed to ensure a Trusted Execution Environment [57]:

• Isolated execution TEE should allow applications to be run in isolation from
other applications. This ensures that malicious applications can not access or
modify the code or data of an application while it is running.

• Secure storage The secure storage of data should be provided to protect the
secrecy and integrity of the binaries that represent the applications while they
are not running. The same security properties should also be guaranteed for the
application data. Note that application data can be even more sensitive than the
binaries as passwords and secret keys may be stored in the application data.

• Remote attestation For a service to verify that it is actually talking to the
software on the device it intends to talk to the principle of remote attestation is
invented. It allows parties communicating with the secure execution environment
to check the authenticity of the software and/or hardware that implements the
TEE.

• Secure provisioning It should be possible to send data to a specific software mod-
ule operating in the execution environment of a specific device while guaranteeing
the integrity and secrecy of the data being communicated.

• Trusted path It should be possible for the execution environment to communicate
with the outside world and to receive communication from the outside world while
guaranteeing the authenticity of the communicated data and optionally also the
secrecy and availability. This should allow on one hand a party, either human or
non-human, to verify that the communicated data originates from the execution
environment. On the other hand the technology should ensure that data from
peripherals received by the environment is authentic.

Another requirement that is not discussed by [57] is local attestation. This is discussed
by [45]: Some of the interfaces to communicate to the user can be used by both the
secure and non-secure world. For example the secure world and the non-secure world
can both control the display in TrustZone-enabled processors. This makes it hard for
the user to verify that he is interacting with an application in the TEE. To solve this
the TEE has to provide local attestation. Local attestation should enable an user to
check that they are in fact interacting with the TEE. An example solution is the Secure
Mode Indicator [14] patented by Texas Instruments. This solution provides the user
a LED that is hardware controlled and that is only lighted when the secure world is
running.

8

2 Background

To illustrate the requirements we look at a (fictional) mobile banking application. This
application communicates with a back end of a (fictional) bank. Such application may
have the following security requirements:

• Nobody should be able to inspect or interfere with the execution of the banking
application (or the sensitive parts of the execution) and the data stored by it. To
accomplish this isolated execution and secure storage are needed.

• The backend should be able to securely communicate with an instance of the
application. Remote attestation provides the ability to check the authenticity of the
application. Secure provisioning provides the possibility to securely send data to a
specific instance of the application. Secure storage can be used to store credentials
needed to setup a secure and authenticated channel with the backend.

• The user of the application should be able to confirm transaction details securely
without interference. Local attestation allows the user to verify that he is actually
talking to a genuine banking application. It prevents phishing attacks. The trusted
path allows the application to securely show the transaction details to the user and
it allows the user to securely confirm a transaction (for example by entering a PIN).

2.2.1 ARM TrustZone

Providing a Trusted Execution Environment

There are several methods to implement a TEE as described in section 2.2 on page 8.
Recent ARM processors have a feature called ARM TrustZone® Technology that adds
security features to the ARM cores. An overview of ARM TrustZone is given in a white
paper [9] by ARM. In this section an overview of ARM TrustZone based on this white
paper will be given.

The basis concept of TrustZone is based on two environments within one system called
worlds. The first world is the normal world this is the normal environment in which the
operating system and all applications running on it operate. The second world is new and
is called the secure world. In this world applications are using the requirements discussed
in Section 2.2 to provide specific security services such as secure key storage. These worlds
are achieved by separating both software and hardware resources [9]:

• All memory in the system is separated. This includes the system’s RAM but also
the registers of the CPUs. The RAM is split into two separate virtual memory
spaces. One for the secure world and one for the normal world. This means that the
normal world cannot access the memory used by the secure world. The persistent
memory (such as flash memory) can be separated by using encryption.

• A dedicated cryptoprocessor and memory for storing keys can only be made
accessible by the secure world. This prevents the normal world from accessing
sensitive key material.

9

2 Background

• The display controller can use both a section of the memory of the normal world
and a section of the secure world as display buffer. This dual buffer setup allows
the secure world to communicate information to the user without interference from
the normal world. As the display buffer for the secure world is located in the secure
world memory, the normal world applications cannot access it.

To ensure the requirements discussed to build a Trusted Execution Environment a concept
called secure boot is normally used. This process verifies the integrity of the contents
of the storage that contains the operating system and checks that the operating system
is issued by the device manufacturer by checking its signature. This prevents attackers
from modifying or changing the operating system.

How TrustZone works

One of the main hardware features of TrustZone technology is the Security bit on the
communication bus. The ARM processor has a communication bus called the AXI-bus
that is used by the main processor to communicate with peripherals (see figure 2.1 on
page 11). These peripherals can be located in the same package or chip or outside the
package. When multiple systems are located on one chip or in one package this is called
a System on Chip (SoC). The security bit is added to this bus to communicate to the
peripherals whether the transaction they are receiving is either from the secure world or
the normal world. All peripherals should check the security status of the transaction and
ensure that they do not leak any sensitive information.

Another aspect of the TrustZone hardware is the separation of the two worlds in the
processor itself. This is indicated by the NS -bit (Non-Secure-bit) in the Secure Config-
uration Register (SCR) of the processor. This bit can only be set in the Secure mode.
When the NS-bit is 0 the processor is operating in secure world and when it is 1 the
processor is operating in normal world. Two operating systems can run alongside each
other using this architecture: One in the secure world and one in the normal world. As a
result a special form of virtualization is created: There are two virtual environments that
include virtual processors and virtual resources. Access to those virtual resources can be
limited depending on the security status of the processor. The value of the NS-bit is used
to signal the security status of communications on the AXI bus. This is in turn used by
the peripheral to decide if it should act on a certain transaction.

A special state is created in the secure world to facilitate switching between the worlds.
This state is called the monitor mode. The normal world can start this monitor mode
by calling the Secure Monitor Call (SMC) instruction. Hardware exceptions such as
interrupts can also cause a switch to the secure world. When such switch due to the
SMC instruction or exceptions happens the monitor mode of the secure world is enabled.
The monitor mode ensures that the state of the world it is leaving is saved and the state
of the world it is entering is restored [9]. State data includes all processor registers and
optionally additional information depending on the peripherals in the SoC [9]. ARM

10

2 Background

System Security

2-2 Copyright © 2005-2009 ARM Limited. All rights reserved. PRD29-GENC-009492C
Non-Confidential Unrestricted Access

2.1 System security
System designs for embedded devices are complicated, including multiple independent
processor cores, secondary bus masters such as DMA engines, and large numbers of
memory and peripheral bus slaves. In addition to these functional components there is
typically a parallel system infrastructure that provides invasive and non-invasive debug
capabilities, as well as component boundary scan and Built-In-Self-Test (BIST)
facilities.

Each of these subsystems in the platform has to be designed and integrated in such a
way that it works with the security solution, rather than developing each sub-system
independently of the security requirements. If the threat model for a device indicates
that it needs to protect against shack attacks, there is no point securing only the
functional part of the system. An attacker with unrestricted access to a debug port can
bypass many of the functional protections that may exist.

This section aims to look at some of the security architectures that have historically been
available on the market, and where they have strengths and weaknesses.

Figure 2-1 : A simplified schematic of a typical cellular handset SoC design

Media System Main Processor3G Modem

FlashDRAM
JTAG +

Boundary
Scan

Trace Display KeypadAerial

Memory
Controller

Memory
Controller

Debug
Access Port

Trace
Port

Display
Controller KMIADC / DAC

ARM1156

DSP

Cortex-R4

DSP

GSM Modem

DMA DMA

AudioDE

Mali200

Level 3 Cache

Cortex-A8

L2 Cache

Interrupt
Controller

Debug Bus

AXI to APB
Bridge

AXI Bus

Timers

RTC

Watchdog

Clock Ctrl.

Boot
ROM SRAM

AXI Bus

Figure 2.1: The ARM architecture and its AXI bus. Source: Building a Secure System
using TrustZone Technology. ARM Limited, 2009. url: http://infocenter.
arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-

009492C_trustzone_security_whitepaper.pdf

recommends to enable the monitor mode to also handle the switch from the secure world
to the normal world [9].

Processors can have multiple processor cores to allow multiprocessing. This may present
additional difficulties to ensure that all data is kept safe between context switches. To
simplify the switching, the secure world can be fixed to a single core or a certain number
of cores. Note that, in contrast to dedicated security processors, the TrustZone hardware
does not by default include tamper protection [9]. Since ARM only sells the designs
to create the processors and does not make the chip itself manufacturers may include
additional hardware features to offer better tamper resistance. Also note that while
TrustZone provides hardware-based security features, the security of the whole system is
also depending on some software features such as the sanity of the switching between the
secure and normal world implemented in the monitor mode. A bad implementation could
leak the register values that may contain sensitive information.

When an ARM processor with TrustZone support boots it starts by executing an
application that is programmed in the on-chip-ROM in the secure world. This application
is called the bootrom. The bootrom can be fixed by the processor manufacturer at design-
time using a Masked ROM or by the customer of the manufacturer (the manufacturer

11

http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf

2 Background

of the system that incorporates the processor) by using write-locked flash. A public
key is programmed in to the SoC using One-Time-Programmable (OTP) memory. This
memory can only be written once. This is often achieved by burning fuses on the chip.
The processes of burning the fuses is very hard to reverse but not impossible [60]. If the
size of the OTP memory is limited one can resort to writing a hash of the public key in
the OTP memory.

The public key or the hash of the public key is used for verifying the integrity and
authenticity of the next step in the boot-process which is the bootloader. A bootloader
is an application that loads the operating system during boot. It is normally stored in
flash on mobile platforms and can be updated. If a hash is programmed in the OTP
memory the public key itself is provided alongside the bootloader. The bootrom then
verifies the public key first by comparing the hash of the public key to the hash stored in
OTP [9].

A TrustZone compatible bootloader first starts the operating system that is running in
the secure world. When the secure operating system has booted it starts the normal
world operating system. Another commonly used setup is to have the secure world
operating system to start a normal bootloader in the normal world that is not secured
and can be changed by the user (see figure 2.2). This normal bootloader can then start a
operating system in the normal world.

TrustZone Software Architecture

PRD29-GENC-009492C Copyright © 2005-2009 ARM Limited. All rights reserved. 5-5
Unrestricted Access Non-Confidential

5.2 Booting a secure system
One of the critical points during the lifetime of a secure system is at boot time. Many
attackers attempt to break the software while the device is powered down, performing
an attack that, for example, replaces the Secure world software image in flash with one
that has been tampered with. If a system boots an image from flash, without first
checking that is it authentic, the system is vulnerable.

One of the principles applied here is the generation of a chain of trust for all Secure
world software, and potentially Normal world software, established from a root of trust
that cannot easily be tampered with. This is known as a secure boot sequence. See
Secure boot on page 5-6.

5.2.1 Boot sequence

A TrustZone-enabled processor starts in the Secure world when it is powered on. This
enables any sensitive security checks to run before the Normal world software has an
opportunity to modify any aspect of the system.

Figure 5-2 : A typical boot sequence of a TrustZone-enabled processor

After power-on most SoC designs will start executing a ROM-based bootloader which
is responsible for initializing critical peripherals such as memory controllers, before
switching to a device bootloader located in external non-volatile storage such as flash
memory. The boot sequence will then progress through the Secure world operating

ROM SoC Bootloader
(First Level Boot)

Secure World OS Boot

Device Power On

Flash Device Bootloader
(Second Level Boot)

Normal World OS Boot

Normal World Bootloader

System Running

Any Secure world
bootloaders may need
to implement secure
boot protocols to defend
against some attacks.

Figure 2.2: Typical TrustZone boot process. Source: Building a Secure System using
TrustZone Technology. ARM Limited, 2009. url: http://infocenter.

arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-

009492C_trustzone_security_whitepaper.pdf

12

http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf

2 Background

2.2.2 Secure world operating systems and the TEE

As discussed in section 2.2.1 on page 9 TrustZone provides hardware-features to create
a secure environment separate from the normal execution environment. However, the
hardware-features that are provided do not implement or ensure all the requirements
discussed in section 2.2 on page 8 that are needed for a TEE. As previously noted some
functionalities (such as context switching between the two worlds) are left to the software
running in the secure world to implement. The communication of data between the two
worlds is left to the software running in both worlds to implement. However, hardware
features such as the impossibility of the normal world to access the memory of the secure
world allow this functionality to be implemented.

To allow multiple applications to be run in the secure world a secure world operating
system (secure world OS) has to be implemented. We consider the secure world OS as the
software that provides the TEE: It provides an execution environment for applications to
run in. As discussed previously, applications running in the TEE are called trustlets. The
secure world OS schedules resources between both the trustlets running in the secure
world and the operating system running in the normal world. The secure world OS should
handle both context switches (between trustlets in the secure world and between the
secure and normal world). It should also ensure that no data is leaked during the context
switches. Note that if an untrusted user is allowed to run trustlets in the TEE, also the
security of context switches between trustlets in the TEE should not leak any information.
Even if all trustlets are created by the same issuer this is still a good property to ensure.
The separation between the two worlds each with its operating system is pictured in
figure 2.3 on page 13.

Normal OSSecure world OS

App App

Hardware

ServiceTrustlet

Secure world Normal world

Trustlet

Figure 2.3: The separation of the hardware by TrustZone in two worlds.

13

2 Background

A secure world OS is sometimes seen as an hypervisor. A term that is generally associ-
ated with running virtual machines; running multiple operating systems in their own
environment on the same hardware. While the separation by TrustZone also provides two
operating systems running in their own environment on the same hardware, the actual
architecture is different. In the case of virtualization the hypervisor provides virtual
hardware on which the (unlimited number of) operating systems run. The hypervisor
sits in between the virtual hardware and the real hardware. In the case of TrustZone
technology both the secure world OS and the OS running in the normal world can directly
communicate with the hardware. However, some parts of the hardware are only accessible
by the secure world.

In principle there is no limit to the complexity and functionality of the secure world OS
running in the secure world. However, to reduce the attack-surface, the functionality
is usually limited. There is only a small number of open source implementations of
TrustZone compatible secure world OSes available [59]. In section 4.1 on page 51 a
number of secure world OSes are discussed.

2.2.3 Alternatives providing secure computation

The ARM TrustZone is not the only solution to provide a secure execution environment.
There are other solutions that have been used in mobile platforms before the adaption
of the TEE. One notable solution is the UUIC (SIM-card) as Secure Element (SE).
This is allows applications to execute in the secure environment of the UUIC.A nother
frequently used solution is the Secure Element that is embedded (together with a NFC
controller) in a large number of phones [40]. The Secure Element can be accessed by the
operating system but also by an external NFC reader. This is a feature of some Secure
Elements. The SE can provide an interface to allow an external NFC reader to directly
communicate with the Secure Element [29]. The Google Wallet payment solution used
the SE to store its sensitive information until recently [5]. The latest version of Google
Wallet based on Android 4.4 uses the Host Card Emulation (HCE) API [29] that allow
developers to emulate RFID/NFC cards in normal Android applications without using a
Secure Element. A recent trial by a number of Dutch banks used the UUIC as Secure
Element [18]. GlobalPlatform also defined a standard for communication with the Secure
Element that can be found on GlobalPlatforms web-page4

The Near Field Communication research institution partly funded by NXP says that
the Secure Element in the NFC controller uses a Java Card operating system [40]. As
expected, this means that it is also possible to load applications on the Secure Element
either embedded in the mobile platform or embedded in the UUIC. There are however
a number of differences between the Secure Element solutions and a TrustZone-based
solution:

4http://www.globalplatform.org/specificationscard.asp

14

http://www.globalplatform.org/specificationscard.asp

2 Background

• The Secure Element does not provide a trusted path. The secure world using
the TrustZone technology has access to the display controller and peripherals as
discussed earlier. This allows for local attestation and provides a trusted path with
the user as discussed earlier. A Secure Element can only communicate with the
main processor over a serial bus and cannot control the display controller.

• The Secure Element is based on a chip design that was designed for use in smart
cards. As a result the Secure Element is physically tamper resistant [42]. In
contrast, a TrustZone-enabled processor does not necessarily have any physical
tamper protection [9].

• Smart cards are usually platforms with power constraints. As a result the computing
power of a Secure Element is limited compared to the full computing power of all
cores on a ARM chip available to the TrustZone-based TEE.

• Getting a certain application in Secure Element that is embedded in a UUIC is a
challenging task. The developing party has to negotiate with every telecom provider
their users use as each provider controls their own UUICs. Note that this is not
an easy task. For example a small part of the user base can be using a foreign
provider. A Secure Element that is embedded in the mobile platform itself or a
TrustZone-based solution on the other hand is expected to be controlled by the
hardware manufacturer that created the mobile platform. So the developing party
has to talk to a party anyway, regardless of choosing a UUIC-based, embedded
SE or TrustZone-based solution. However, for the embedded SE or a TrustZone
solution the developing party only has to talk to the device manufacturer. On the
other hand it may be harder for developing party to contact a global hardware
manufacturer than some local telecom providers.

So while both the Secure Element and a TEE based on TrustZone Technology provide
secure computation there are some major differences. The Secure Element has more
physical security features that prevent attacks where the physical circuit of the chip is
attacked. TrustZone Technology on the other hand provides a solution that is more
powerful both in computing power and interaction with the user. Companies that used
smart cards in the past may be more inclined to use the Secure Element because it is the
same chip in another package. It provides them with a well-known secure environment
that they are experienced with. Also since the ARM TrustZone technology is significantly
more complex then a Secure Element it may be harder to verify the security of such a
secure computation environment.

2.3 The Android operating system

Android is a operating system developed by the Open Handset Alliance led by Google.
It was first released in 2007 [3]. The operating system is based on a Linux kernel that is
modified to better fit a mobile operating system. While the Android operating system

15

2 Background

and its packages are open source, only at the release of a new final version the source code
is released. Ongoing development is not opensourced. Most applications are written in
Java but C++ is also supported. Most OS services (as opposed to apps) on Android are
written in C++. Everybody can use the Android operating system as operating system
on their devices. This means that Android phones can be bought from a large number of
manufacturers. Some manufacturers supply a Android experience that looks and feels
like the versions released by the Open Handset Alliance, for example the Nexus phones
that are released by LG and Samsung in collaboration with Google. Others only use the
Android OS as basis and modify the experience and features.

The directory layout of the file system for Android is somewhat different from a usual
Linux operating system:

• /data is used to store the data of all applications and services running on the
operating system in.

• /data/data is the location for applications to store their data. Each appli-
cation gets its own directory that is named using the application identifier
(com.company.example).

• /sdcard is the location where the SD-card (if present in the system) is mounted.
The internal storage is limited but faster on older Android devices so developers
had to chose whether the stored the data internally or on the SD-card. Most recent
Android devices have larger internal flash storage so they do not need a SD-card
anymore. On systems that have internal flash storage and no SD-card slot the
/sdcard path is symlinked to /storage/emulated/legacy.

The (emulated) SD-card directory can be accessed over USB to write and read all files
from it. A number of directories in /sdcard are accessible by all applications such as
/sdcard/DCIM where pictures are stored and /sdcard/Music for storing Music. The
/sdcard/Android/data directory is where applications can store application specific data
(like the /data/data directory). As with the internal application-data directory each
application gets its own directory that only can be read by that application. However,
all contents of the (emulated) SD-card can be read and modified over USB. This also
includes the application data that is stored in /sdcard/Android/data, so caution should
be used when storing data on /sdcard.

Applications have a AndroidManifest.xml file that describes the contents of the appli-
cation and the permissions that the applications requests [55]. A user can not (at the
moment) deny a single permission in the set of permissions requested by the application.
The requested permissions are showed before the application is installed by the user
or when a updated version of an application requests additional permissions. After
installation there is no way for a user the deny a certain app certain permissions other
than un-installing the application. A list of all permissions available can be found in the
Android API documentation5.

5http://developer.android.com/reference/android/Manifest.permission.html

16

http://developer.android.com/reference/android/Manifest.permission.html

2 Background

To control file-access and to separate applications the Android operating system assigns
each application its own user-id. Internal services also run under separate user-ids.
This is different from a normal Linux system where each user is allocated a user-id and
all applications that the user runs run under that user-id. The allocation of user-ids
to applications can be found in /data/system/packages.list and could for example
include an entry:

com.simplendi.KeyStorageTest 10102

Here we can see that the application with package name com.simplendi.KeyStorageTest
(which is the test application we will use in the next chapter) has user ID 10102.

The Android operating system uses a specially developed virtual machine called Dalvik6

as basis for the applications and services on their platform. This virtual machine is
based on the Java language. As a result a number of Java API’s are ported to Android
and a number of new APIs are added. The ported APIs can be found under the
java.* packages. The Java APIs provide support for cryptographic operations in the
java.security package. Additional functionality, that is not available in the default
Java APIs, is implemented in the android.security package. The Android API is not
fixed and is evolving over time. The API version is indicated by the API Level. The first
Android release has API Level 1 and the latest Android release (Android 4.4.3) has API
level 19. An overview of the API levels and the associated Android versions can be found
on the Android Developer web-page7.

6https://source.android.com/devices/tech/dalvik/index.html
7http://developer.android.com/guide/topics/manifest/uses-sdk-element.html#ApiLevels

17

https://source.android.com/devices/tech/dalvik/index.html
http://developer.android.com/guide/topics/manifest/uses-sdk-element.html#ApiLevels

3 Secure key storage

In this chapter the secure key storage solutions for Android are analyzed. The chapter is
divided into a number of sections. Section 3.1 describes the APIs that are available on
Android OS to provide cryptographic operations and key storage. Section 3.2 describes
how and using what criteria the key storage solutions are evaluated. In the next sections
we will evaluate each solution described in 3.1 using the criteria discussed in section 3.2.
Each section is divided in two parts: first the evaluation results and how they are achieved
are discussed, then in the background section a more elaborate explanation is provided
with more details on how the evaluated solution works.

3.1 APIs providing key storage

The first version of Android, API level 1, already provided cryptographic operations
and key storage. It has the java.security.KeyStore class that provides a standardized
interface to store key material. The KeyStore class only provides an interface to store
keys and facilitates getting an instance of a KeyStore. The actual storage of keys is
provided by different key store types. To accomplish this each key store type is defined
in a class that provides an java.security.KeystoreSpi interface. This interface is
defined as an abstract class. The KeyStore class uses the methods provided by the
KeyStoreSpi interface and using that methods provides a uniform method to store keys
to the programmer.

A key store of a certain type can be initialized by using the getInstance(String type)

method of the KeyStore class. There are multiple key store types provided by the
Android API:

• BKS: This stands for Bouncy Castle key store. Bouncy Castle is a cryptographic
library for Java1. This key store type is provided on all Android versions encountered.
However, the Android API provides a limited version of this library [21]. Many
functions and classes are removed as the Android developers considered them
unnecessary for early versions of Android. For example the APIs needed to create
certificates are removed. The full version of the Bouncy Castle library, however,
is also available for Android. To avoid naming conflicts this library for Android
is called Spongy Castle2 and can be included in any application. The KeyStore

1https://www.bouncycastle.org/
2http://rtyley.github.io/spongycastle/

18

https://www.bouncycastle.org/
http://rtyley.github.io/spongycastle/

3 Secure key storage

class has a static getDefaultType() method to return the default key store type
on the machine. The default key store type on all the machines analyzed is BKS.
Keys can be stored using file-based key stores. The interface for doing this is as
discussed in section 3.2.3 and section 3.1 almost the same as the newer hardware
based interface. The difference lies in the implementation. The Bouncy Castle
library uses a single file for storing the keys.

• AndroidKeyStore: This type is added in API Level 18. It communicates with a
service called KeyStore3 service using Inter Process Communication (IPC). The
KeyStore service is started when the device boots. Manufacturers can develop
drivers for their hardware that communicate with this service to provide hardware-
based secure storage. If no drivers are available Android defaults to a software
implementation. The following variants of AndroidKeyStore will be evaluated:

– Software-based: Not all hardware that run Android 4.3 or higher support
hardware-based key storage. Some ARM chips simply do not have TrustZone
support and some device manufacturers do not have the ability to create
applications for the TEE. To be able to offer the same AndroidKeyStore

with the same interface on all platforms the developers created a software-
based equivalent of the KeyMaster trustlet that runs in the TEE. Note that
this software-based AndroidKeyStore is not available on devices that have a
hardware-based AndroidKeyStore.

– Hardware-based on Qualcomm hardware: Qualcomm created a closed source
keymanager trustlet in the TEE and driver for Android.

– Hardware-based on Texas Instruments (TI) hardware: Just like Qualcomm
also Texas Instruments also provides a closed source keymanager trustlet and
driver for Android.

Note that while the AndroidKeyStore variants are called software-based and hardware-
based all solutions are of course based on both software and hardware. With software-based
and hardware-based we mean that hardware-based or only software-based security features
are used to protect the key store. Next to the KeyStore types, key storage on the Secure
Element will also be discussed. While there is no key store interface to use the standard
APIs to store keys on the Secure Element, it is possible to use the Secure Element to
store keys. We will see more about this in section 3.7.

Besides the key store type a provider can be optionally defined for some classes. This
defines what library is used for cryptographic operations. The Spongy Castle library uses
this to interact with the Bouncy Castle key store type. When creating an instance of
the Bouncy Castle key store type Spongy Castle is defined as provider. Subsequently
keys compatible with the Spongy Castle library are provided. Note that not all com-
binations of providers and key store types are supported, some key store types do not

3https://android.googlesource.com/platform/system/security/+/master/keystore/keystore.

cpp

19

https://android.googlesource.com/platform/system/security/+/master/keystore/keystore.cpp
https://android.googlesource.com/platform/system/security/+/master/keystore/keystore.cpp

3 Secure key storage

support providers at all. This can be the case for key store types that only provide a
interface to manage the keys but do not provide the actual key material. An example
of this is the AndroidKeyStore key store type that can run its cryptographic opera-
tions outside of application process on other hardware as we will see in section 3.4 on
page 30.

API level 14 added a new KeyChain class. This is an high-level API to provide asym-
metric key storage. In contrast to the KeyStore class the KeyChain class interacts
with the user using an graphical interface. For example the user can be asked confirm
key generation. When a private key is required for operation the user is also asked
to confirm. This class, however, also provides two interesting static methods. The
isKeyAlgorithmSupported(String algorithm) can be used to test if the device sup-
ports a certain algorithm. In the latest API level 19 release a new static method was
added to the class, isBoundKeyAlgorithm(String algorithm). This method “Returns
true if the current device’s KeyChain binds any PrivateKey of the given algorithm to the
device once imported or generated.” according to documentation4.

In addition to private keys it is also possible to store symmetric keys in the KeyStore.
To support this the key store has a SecretKeyEntry. Secret keys can be created using
the javax.crypto.spec.SecretKeySpec class. Instances of this class are initialized by
a byte-array for the secret key and a string indicating the algorithm that is associated
with the secret key.

3.2 Method

3.2.1 Introduction

To evaluate how the different key storage types work and what security properties they
provide a number of sources are used: The datasheets of the ARM processors and
the secure elements are used to evaluate hardware features. Another good source of
information is the open source code that is provided by the Android Open Source Project
(AOSP). The git repositories5 of AOSP provide a large part of the source code that is used
by phones running Android OS. All resources that are used to build the binary images
that run on the Google Nexus phones are also available in the AOSP repositories. This,
however, not only includes source code but also binaries for some manufacturer specific
code that is not open source. Since the licensing of the AOSP code requires that changes
to the code are also made public, the source code for phones that are not developed
under the supervision of Google is also available. For example Samsung provides their
open source code at Samsungs Open Source Release Center6.

4http://developer.android.com/reference/android/security/KeyChain.html
5https://android.googlesource.com/
6http://opensource.samsung.com/

20

http://developer.android.com/reference/android/security/KeyChain.html
https://android.googlesource.com/
http://opensource.samsung.com/

3 Secure key storage

By using root privileges on the platforms that will be used for the evaluation, the inner
workings of the storage methods can be analyzed. However, root access is by default
disabled on Android phones. To gain root privileges first the bootloaders of the phones are
unlocked. This allows the user to flash images that are not signed by the manufacturer.
Next a special partition, the recovery partition that stores a recovery application is
flashed with ClockWorkMod recovery application that can be downloaded from the
ClockWorkMod website7. The phone is then booted into the recovery application to
install SuperSU8. This installs the su executable on the phone that runs applications
under root privileges.

The smartphones that will be used for the evaluation are listed in table 3.1 on page 21.
Motorola Mobility was bought by Google in August 2011 and subsequently sold to Lenovo
in January 2014. The MSM8226 SoC in the Moto G actually has TrustZone support.
Drivers are even provided by the AOSP git repositories9 that is used to create Android
images. This is not enabled in the Android 4.3 image supplied on the phone. The
update to Android 4.4.2 enabled hardware backed key storage using TrustZone on the
Moto G. The Galaxy Nexus hardware also has TrustZone support but it is not enabled
in the images supplied by Google. According to a commit message10 the TrustZone
key storage was disabled due to a power-usage bug. It can be enabled as shown in
section 3.5.2.

Nickname Manufacturer Model name SoC Android
version

TrustZone
support

Nexus 5 LG Electronics LG-D821 16GB Qualcomm Snap-
dragon 800 MSM8974

4.4.2 Yes

Nexus 4 LG Electronics LG-E960 16GB Qualcomm Snap-
dragon 600 APQ8064

4.4.2 Yes

Galaxy
Nexus

Samsung Electronics GT-I9250 Texas Instruments
OMAP 4460

4.3 Yes∗

Nexus S Samsung Electronics GT-I9020T Samsung Exynos 3 Sin-
gle S5PC110

2.3.6 No

Nexus S Samsung Electronics GT-I9020T Samsung Exynos 3 Sin-
gle S5PC110

4.1.2 No

Moto G Motorola Mobility SM3719AE7F1 Qualcomm Snap-
dragon 400 MSM8226

4.3 No

Moto G Motorola Mobility SM3719AE7F1 Qualcomm Snap-
dragon 400 MSM8226

4.4.2 Yes

Table 3.1: Phones used in the evaluation

These phones are chosen because they provide an overview of both high-level and low-level
phones running recent versions of Android and to evaluate the older 2.3 Android version
that is still commonly used today.

7https://www.clockworkmod.com/
8http://download.chainfire.eu/396/SuperSU/UPDATE-SuperSU-v1.94.zip
9https://android.googlesource.com/platform/hardware/qcom/keymaster/+/

27e66b721ed6472fb319b0421ca460713a1b2df5
10https://android.googlesource.com/device/samsung/tuna/+/b74801dc22bb4945ddf79b2e12e6328a862d68c3

21

https://www.clockworkmod.com/
http://download.chainfire.eu/396/SuperSU/UPDATE-SuperSU-v1.94.zip
https://android.googlesource.com/platform/hardware/qcom/keymaster/+/27e66b721ed6472fb319b0421ca460713a1b2df5
https://android.googlesource.com/platform/hardware/qcom/keymaster/+/27e66b721ed6472fb319b0421ca460713a1b2df5
https://android.googlesource.com/device/samsung/tuna/+/b74801dc22bb4945ddf79b2e12e6328a862d68c3

3 Secure key storage

3.2.2 Criteria

For the evaluation and comparison of the different cryptographic key storage implemen-
tations I defined three requirements for evaluation:

Rdevice−bound The private key material stored in the key store can not be extracted by
an attacker to be used outside of the device that generated it. This defines that
keys are bound to the device.

Rapp−bound The private key material stored in the key store can only be used by the
application and on the device that generated it. This defines that keys are bound
to the device and the application.

Ruser−consent Using the private key material requires explicit permission from the user
and can not be used without explicit consent. This defines user consent.

The requirements Rdevice−bound and Rapp−bound are evaluated using three assumed attacker
models:

Aoutside−no−root The first attacker model is an attacker that is able to run and install his
own application on the phone with any of the permissions that an application can
request. This models a rogue application (or update of an application) that a user
can install from an app store such as the Google Play Store. See section 2.3 on
page 15 for more information about permissions in Android.

Aoutside−root−no−memory The second is an attacker that has root permissions and can
use all data stored on the phone. We assume that these permissions are gained by
either an exploit or are given to the attacker by using an application that asks for
root permissions on a rooted phone. This models that either the attacker uses an
exploit to gain root permissions on the device or that the attacker has the ability to
run an application with root permissions. Note that this may seem as a situation
that does not happen a lot, however, many users today enable the root permissions
on their phone to work around the permission model. There are even applications
in the Google Play Store that require root permissions. For example the Titanium
Backup in the Play Store11 application that is used to backup a phone requires
root permissions.

Aoutside−root−memory The third attacker model assumes that an attacker has root permis-
sions and can use all data stored on the phone but also has access to data that is
only temporarily stored on the phone such as data stored in memory. For example
a PIN that is used to unlock the phone but that is not stored phone.

For the requirement Ruser−consent there is only one attacker model:

11https://play.google.com/store/apps/details?id=com.keramidas.TitaniumBackup

22

https://play.google.com/store/apps/details?id=com.keramidas.TitaniumBackup

3 Secure key storage

Ainside−no−root This attacker model assumes that the actual developer of an app is or has
become malicious. This is particularly interesting in the case where the developer
of an application has interest in using the key pair that is stored for the app. An
example of this can be an e-mail application that has a key pair to sign messages.
The signature may have legal-effect that may be abused.s

For all criteria the described attacker models are evaluated. For each combination of a
criteria and an attacker model the result is either:

X An attacker using the attacker model can not violate the requirement.

× An attacker using the attacker model can violate the requirement.

Android OSb b

bb

Aoutside−no−root Ainside−no−root

Aoutside−root−no−memory Aoutside−root−memory

Mal. App App

Figure 3.1: Schematic overview of the attacker models

All attacker models are shown in a schematic overview in figure 3.1. In this figure we see
two applications, App is the genuine owner of the keys that need to be protected, Mal.
App is an malicious application controlled by an attacker. The attackers that have root
permissions can access the operating system controls and are therefore pictures to be
inside the operating system. Although in fact attackers could also gain root credentials
by using an application.

The solution that scores X on all requirements for all attacker models is clearly the best
solution. Note that requirement Rapp−bound is a more specific variant of requirement
Rdevice−bound. So if Rapp−bound is satisfied then Rdevice−bound is also satisfied. Also
note that the attacker models for Rapp−bound and Rdevice−bound are increasing in the
privileges the attacker has, Aoutside−no−root has the smallest number of permissions and
Aoutside−root−memory the most. If an requirement can be violated by an attacker having
attacker model Aoutside−no−root than it can also be violated by an attacker having attacker
model Aoutside−root−no−memory or Aoutside−root−memory. The case where a user is tricked
to give for example his password is not considered an attack in this use case. However,
this may be a realistic threat.

23

3 Secure key storage

3.2.3 Evaluation

To test the key stores on Android I created the KeyStorageTest application. The code
used for the MainActivity of this application can be found in Appendix 1 on page 70.
On startup the KeyStorageTest application first checks if the cryptographic algorithms
RSA, ECDSA and DSA are bound to the device (if the function is available). This check
is done using the isBoundKeyAlgorithm(String algorithm) function of the KeyChain

class. This function returns true for all algorithms that are bound to the device. This
function is implemented by the device manufacturer who should guarantee that the keys
are bound to the device if the function returns true. Next the application gets all keys
stored in the key store by alias. This alias is a string defined by the programmer that
is used to identify a key (pair). By using the buttons at the bottom of the application
window a new key pair can be generated and deleted. The key pair can also be used for
signing.

The KeyStorageTest application is used to generate a RSA key pair using the code
in listing 3.1 on page 25. This code generates a keypair using the RSA algorithm
with a key-size of 2048-bits. The KeyPairGenerator, by default, also generates a (self-
signed) certificate. To allow this the subject, the serial number and the start and end
of the validity period have to be declared. Note that the setKeySize-function is only
supported from API level 19, API level 18 only supports RSA keys of 2048-bits in
size.

The cryptographic functionalities on older Android versions are implemented by the
Bouncy Castle library12 as noted in section 3.1. This Bouncy Castle library can not be
used with the same interface as the AndroidKeyStore. A version of the KeyStorageTest

application for Android versions that do not support AndroidKeyStore is therefore
created with the following modifications:

• The AndroidKeyStore key store type is not available so the Bouncy Castle type has
to be used. A key store of this type can be initialized using the initialize-method
by specifying the BKS (Bouncy castle Key Store) type instead of AndroidKeyStore.
To indicate that we want to use the Spongy Castle library for the cryptographic
operations we have to add SC as second parameter to the initialization function to
indicate the cryptographic provider.

• The key store data is stored on a per-application basis and the application is
responsible for loading and storing the data. The application should load the
KeyStore by calling the load function of the key store with an InputStream as
argument. This InputStream can for example be a FileInputStream that reads
the contents of a file. As a second argument a byte array can be provided as
password. A random password stored in a file is used here. Note that since
loading and storing of the key store is left to the programmer to implement he
can modify some parts of the behavior. For example the key store data could be

12https://www.bouncycastle.org/

24

https://www.bouncycastle.org/

3 Secure key storage

KeyPairGenerator rsaKeyGen;

try {

rsaKeyGen = KeyPairGenerator.getInstance ("RSA", "AndroidKeyStore ");

} catch (Exception exception) {

writeToLog(exception.toString ());

return;

}

KeyPairGeneratorSpec rsaKeyGenSpec = new KeyPairGeneratorSpec.Builder(

this)

.setAlias (" TestKeyPair ")

.setSubject(new X500Principal ("CN=test"))

.setSerialNumber(new BigInteger ("1"))

.setStartDate(new Date())

.setEndDate(new GregorianCalendar (2015 , 0, 0).getTime ())

.setKeySize (2048)

.build();

try {

rsaKeyGen.initialize(rsaKeyGenSpec);

} catch (InvalidAlgorithmParameterException exception) {

writeToLog(exception.toString ());

return;

}

rsaKeyGen.generateKeyPair ();

Listing 3.1: Generating a KeyPair

25

3 Secure key storage

encrypted additionally and multiple key stores can be created for multiple users of
an application.

Two instances of the KeyStorageTest application are installed on devices. One instance
is used to generate a key pair. The goal then is to give the second instance control over
the key pair that is generated by the first instance. This instance should then generate a
valid signature over predefined data. If this is possible it violates requirement Rapp−bound.
To test if requirement Rdevice−bound is violated we copy the data (if available) from the
phone and try to generate a valid signature on another phone. This is repeated for each of
the three attacker models with increasing privileges. To verify requirement Ruser−consent

we look at the APIs to see if they have the possibility to require user input or user consent
to use a key (pair). If the APIs offer a way to require user consent I try to use the key
without user consent. If this is possible or if the APIs do not offer any way to require
user consent Ruser−consent is violated.

3.3 Key storage using Bouncy Castle

3.3.1 Evaluation

Because the test application uses best practices that include storing the keystore-
file in the application specific data directory (see section 3.3.2 for more details) the
keystore-file can not be accessed without root permissions. Since an attacker without
root permissions can not access the keystore-file, the attacker can not read the pri-
vate keys. So requirement Rdevice−bound and Rapp−bound are satisfied for attacker-model
Aoutside−no−root.

With root-permissions the application-specific data directory where the keystore-file is
stored by the test application can be accessed. This application directory also contains the
file that stores the password that is provided while storing the keystore-file. By copying
both files to another device running the same application I could successfully create a
valid signature using the private key stored in the key-store. I did not have to inspect the
memory of the device because all data needed was stored in files. So an attacker using
attacker model Aoutside−root−no−memory can successfully violate requirement Rdevice−bound

and Rapp−bound if a stored password is used.

If an user-provided password is used it is still possible to copy the keystore-file to another
device for an attacker that gained root permissions. However, the private key entries in
it can not be used without the user-provided password. This password is not stored in
plain text on the device. A way to learn this password is to intercept it in memory when
the user enters it. Only an attacker using attacker model Aoutside−root−memory is able to
do this. So only attacker model Aoutside−root−memory can violate criteria Rdevice−bound

and Rapp−bound if a user-provided password is used. However, another possibility is to
brute-force the password. The entropy of the password used to encrypt the key store may
be limited. Even a password that only consists of 4 or 5 digits is regularly used on phones

26

3 Secure key storage

since entering a password that is complex and long on a mobile device is cumbersome. Low
entropy passwords are easily brute-force-able. When such password is used an attacker
that has access to the keystore-file can brute-force the password. As a result, when a low
entropy password is used, an attacker using attacker model Aoutside−root−no−memory may
be able to gain access to the data stored in the key store.

When no user-provided password is used an attacker using attacker model Ainside−no−root

can use the stored password to do cryptographic operations. So requirement Ruser−consent

is not satisfied for this attacker model. There is no possibility to use the private keys
stored in the key store without learning the password. So when a user-provided password
is used an attacker using attacker model Ainside−no−root can not access the keys without
the password. However, if the password has a low entropy an attacker using attacker
model Ainside−no−root may be able to brute-force the password.

Assuming that best practices are used to store the keystore-file and passwords this brings
us to the following conclusion:

• An attacker that learns the password used to encrypt the keystore-file and has access
to the keystore-file can use it on another device. If the password is user-provided
and has sufficient entropy an attacker using attacker model Aoutside−root−memory

can violate requirement Rdevice−bound and Rapp−bound. If the password is stored
in the application data directory or a low entropy password is used attacker
model Aoutside−root−no−memory is needed to violate requirements Rdevice−bound and
Rapp−bound.

• If the password is user-provided and has sufficient entropy to prevent brute-forcing
an attacker using attacker model Ainside−no−root can not violate Ruser−consent. If the
password, however, has low entropy an attacker using attacker model Ainside−no−root

may be able to brute-force the password. If no user-provided password is used the
attacker can run cryptographic operations using the stored password. So criteria
Ruser−consent is not satisfied in the case of a stored password for attacker model
Ainside−no−root.

3.3.2 Background

According to the Bouncy Castle documentation the default format only protects against
tampering but not against inspection13. This is clearly the case for the certificates stored
in the key store. We can simply read the certificates using openssl’s asn1parse tool as
shown in listing 3.2 on page 28. The self-signed certificate of the first key is stored at
an offset of 70 bytes. Note that if you add the -dump parameter you can see the actual
signature and public key bytes.

To ensure the integrity of the key store a password needs to be provided while storing
the key store and when the integrity needs to be verified. Without this password the

13http://www.bouncycastle.org/specifications.html

27

http://www.bouncycastle.org/specifications.html

3 Secure key storage

$openssl asn1parse -inform der -in keystore -offset 70

0:d=0 hl=4 l= 658 cons: SEQUENCE

4:d=1 hl=4 l= 378 cons: SEQUENCE

8:d=2 hl=2 l= 1 prim: INTEGER :01

11:d=2 hl=2 l= 13 cons: SEQUENCE

13:d=3 hl=2 l= 9 prim: OBJECT :sha1WithRSAEncryption

24:d=3 hl=2 l= 0 prim: NULL

26:d=2 hl=2 l= 15 cons: SEQUENCE

28:d=3 hl=2 l= 13 cons: SET

30:d=4 hl=2 l= 11 cons: SEQUENCE

32:d=5 hl=2 l= 3 prim: OBJECT :commonName

37:d=5 hl=2 l= 4 prim: PRINTABLESTRING :Test

43:d=2 hl=2 l= 30 cons: SEQUENCE

45:d=3 hl=2 l= 13 prim: UTCTIME :140407130050Z

60:d=3 hl=2 l= 13 prim: UTCTIME :141231000000Z

75:d=2 hl=2 l= 15 cons: SEQUENCE

77:d=3 hl=2 l= 13 cons: SET

79:d=4 hl=2 l= 11 cons: SEQUENCE

81:d=5 hl=2 l= 3 prim: OBJECT :commonName

86:d=5 hl=2 l= 4 prim: PRINTABLESTRING :Test

92:d=2 hl=4 l= 290 cons: SEQUENCE

96:d=3 hl=2 l= 13 cons: SEQUENCE

98:d=4 hl=2 l= 9 prim: OBJECT :rsaEncryption

109:d=4 hl=2 l= 0 prim: NULL

111:d=3 hl=4 l= 271 prim: BIT STRING

386:d=1 hl=2 l= 13 cons: SEQUENCE

388:d=2 hl=2 l= 9 prim: OBJECT :sha1WithRSAEncryption

399:d=2 hl=2 l= 0 prim: NULL

401:d=1 hl=4 l= 257 prim: BIT STRING

662:d=0 hl=2 l= 0 prim: EOC

Listing 3.2: Reading a certificate from the Bouncy Castle keystore-file

28

3 Secure key storage

integrity of the whole key store can not be verified. The private and secret keys stored
in the key store are, however, protected against inspection. So while the key store
is not protected against inspection the private key material is. They are encrypted
using the pbeWithSHAAnd3-KeyTripleDES-CBC encryption scheme, as defined in PKCS5
standard [31], using either the password that was also provided to verify the integrity of
the key store or using another password. This password does not have to be stored on the
device. For example the user can be asked for the password when running cryptographic
operations using the private key.

There is no vulnerability known for the encryption algorithm used to encrypt the private
keys. So when the password is not stored on the device the user has to provide his
password in order to run cryptographic operations. This offers some protection against
attackers that have root credentials if a password of sufficient entropy is used: The only
way to learn the password is by inspecting the memory while the user enters his password.
This may be hard. If the entropy of the password is not sufficient an attacker that has
root credentials can brute-force the password.

As discussed before the key store has to be stored by the programmer. Care should be
taken where and how to store the keystore. If the keystore-file is stored on the publicly
accessible /sdcard storage (which is either a real SD-card or a part of the embedded
flash) any application can read the encrypted keystore-file. This is an issue if the entropy
of the password used to encrypted the keystore-file is low, causing it to be brute-forceable.
Additionally if the password is hardcoded in the application source or also stored on the
public storage, an attacker can either decompile the application or read the key from
public storage and using this password decrypt the private key. So when the password
and key store are stored in the wrong location no protection is provided and even an
attacker that did not gain root permissions can read the private key and use the private
key, even on a other device.

However, when the keystore-file is handled with care the private key can not be used
by an attacker that did not gain root permissions. The recommended approach is to
store the keystore-file in the private data directory of the application (located under
/data/data/APP ID/files/) and to only allow the user-id of the application to access
the key store file. Note that both storing the keystore-file in the right location and using
a user-provided or securely stored password with sufficient entropy is also recommended.
Only storing a password with sufficient entropy that encrypted the keystore-file in the
private data directory of the application has almost the same security properties. The
only difference is that an attacker that does not have root permissions can read the
certificates stored on the key store. These certificates are normally not private data. In
both cases an attacker that does not have root permissions can not read the private keys
stored in the keystore-file. Yet another possibility is to ask the user for the password
that encrypts the private keys in the keystore. This password should then not be stored
on the device. An attacker that gained root permissions can still copy the keystore-file
to another device. He does, however, need the password used to encrypt the private key
to actually use it.

29

3 Secure key storage

If an attacker learns the password he can decrypt the key store and use it outside of
the device. This can be done either by gaining root permissions reading the password
from a file stored at a recommended location (attacker model Aoutside−root−no−memory)
or by intercepting the password entered by the user from memory (attacker model
Aoutside−root−memory) or from a fake application. By default there is nothing that binds
the key store to the device or to the application other than the permissions of the keystore-
file. It is possible to include a device-specific identifier in the password used to encrypt the
keystore-file. This prevents against attacks where the attacker uses the same application
on both devices and does not decompile the application. However, applications can be
decompiled very easy. Decompiling the application allows an attacker to learn about the
device-specific identifier used and to reproduce it.

3.4 Key storage using AndroidKeyStore using the TEE on
Qualcomm devices

3.4.1 Evaluation

The AndroidKeyStore on Qualcomm devices adds two files in the /data/misc/keystore/user 0

directory for each key pair when a new key pair is generated using the APIs used by the
KeyStorageTest application:

• A USRPKEY file that stores the key pair parameters including the private key.

• A USRCERT file that stores the certificate.

Both files have the following naming format: (user-id of the app) USRPKEY (key en-
try alias) and (user-id of the application) USRCERT (key entry alias). For example
10102 USRPKEY TestKeyPair. The user id of the application is the logical user-id of
the Android operating system under which the application is running. As discussed in
section 2.3 on page 15 each Android application is allocated its own user id. The key
entry alias can be chosen by the programmer using the setAlias(key alias) method of
the KeyPairGeneratorSpec.Builder as shown in 3.1 on page 25.

The /data/misc/keystore/user 0 directory is not accessible by a non-root user and
other apps can not access the private key material of an application. So requirement
Rdevice−bound and Rapp−bound are guaranteed for attacker model Aoutside−no−root. It is
interesting to see that the application user-id is used in the filename of the entry-files.
Using root permissions an attacker can rename or copy the files to new files in the
same directory on the same device with the user-id of a second malicious application.
For example here we copy the entry files from the first to the second KeyStorageTest

application:

cp 10102_USRCERT_TestKeyPair 10101_USRCERT_TestKeyPair

cp 10102_USRPKEY_TestKeyPair 10101_USRPKEY_TestKeyPair

30

3 Secure key storage

The private keys will then directly be accessible to the other application. This was
verified by renaming the files from the user-id of the first KeyStorageTest application
to the user-id of the second KeyStorageTest application as shown above. Afterwards a
valid signature could be generated by the second KeyStorageTest application using the
key pair that was generated by the first application. So clearly Rapp−bound is not satisfied
for attacker-model Aoutside−root−no−memory. Copying the files to another device does not
work, as discussed in section 3.4.2 the private key is probably encrypted using a device
specific key that is stored in the TEE. So criteria Rdevice−bound is satisfied for all attacker
models.

The AndroidKeyStore does not support the encryption of the key store or entries using
a password. As a result no user-consent can be required to use a private key. An
attacker can access the private key material at any time. So criteria Ruser−consent is not
satisfied.

This brings us to the following conclusion:

• An attacker that has root credentials can easily use the keys of other applications
on the same device by renaming the keystore-files. So Rapp−bound is not satisfied
for attacker model Aoutside−root−no−memory and Aoutside−root−memory.

• Key pairs can not be used outside of the device because, as we will see later in
section 3.4.2, the private data is encrypted with a device-specific key stored in the
TEE that can not be retrieved. So requirement Rdevice−bound is met for all attacker
models.

• There is no way to require any input from the user for operations that use the
private keys stored in the key store. So criteria Ruser−consent is not satisfied.

3.4.2 Background

The interface for the KeyStore service is defined in IKeystoreService14. To commu-
nicate with the actual trustlet, that is running in the TEE created by the TrustZone
technology, Qualcomm created a driver that is called from the KeyStore service. This
driver is open source and can be found in the AOSP repositories as keymaster qcom15.
The architecture of this setup is illustrated in figure 3.2 on page 32. In this figure two
applications App 1 and App 2 are shown. They communicate with the AndroidKeyStore
(KS in the figure) which in turn communicates via shared memory with the keymaster

(KM in the figure) trustlet running in the TEE. This trustlet runs the actual crypto-
graphic operations such as generating private keys and signatures using the generated
private keys.

14https://android.googlesource.com/platform/system/security/+/master/keystore/

IKeystoreService.cpp
15https://android.googlesource.com/platform/hardware/qcom/keymaster/+/master/keymaster_

qcom.cpp

31

https://android.googlesource.com/platform/system/security/+/master/keystore/IKeystoreService.cpp
https://android.googlesource.com/platform/system/security/+/master/keystore/IKeystoreService.cpp
https://android.googlesource.com/platform/hardware/qcom/keymaster/+/master/keymaster_qcom.cpp
https://android.googlesource.com/platform/hardware/qcom/keymaster/+/master/keymaster_qcom.cpp

3 Secure key storage

Android OSTEE

App 1

App 2

Hardware

KMKM App

Figure 3.2: Architecture of the AndroidKeyStore on Qualcomm devices

dev ->context = (void *) km_handle;

ret = (*km_handle ->QSEECom_start_app)((struct QSEECom_handle **)&

km_handle ->qseecom ,

"/vendor/firmware/keymaster", "keymaster", 4096*2);

if (ret) {

ALOGE("Loading keymaster app failed");

free(km_handle);

return -1;

}

Listing 3.3: Loading the keymaster binary

During the boot the keymaster trustlet is loaded into the TEE. To allow this, the
actual keymaster binary (the compiled trustlet) is stored in the /firmware/image/

or /system/vendor/firmware/keymaster/ directory separated in a number of files:
keymaster.mdt and keymaster.b00-keymaster.b03. Google also provides the binaries
for the Nexus devices on their website16. Loading the binaries of the trustlet is imple-
mented in keymaster qcom.cpp17 as shown in Listing 3.3. This function is called when
the Keystore service starts.

To gain more information about the keymaster trustlet that is running in the TEE
I analyzed the keymaster binaries of the Moto G running Android 4.4.2. The first
observation was that the .mdt files is exactly the same as the concatenation of .b00 and
.b01 files. The .b00 file start with the binary value 7F 45 4C 46 which is the magic

16https://developers.google.com/android/nexus/drivers#hammerhead
17https://android.googlesource.com/platform/hardware/qcom/keymaster/+/master/keymaster_

qcom.cpp

32

https://developers.google.com/android/nexus/drivers#hammerhead
https://android.googlesource.com/platform/hardware/qcom/keymaster/+/master/keymaster_qcom.cpp
https://android.googlesource.com/platform/hardware/qcom/keymaster/+/master/keymaster_qcom.cpp

3 Secure key storage

$ objdump -p keymaster.b00

keymaster.b00: file format elf32 -littlearm

Program Header:

NULL off 0x00000000 vaddr 0x00000000 paddr 0x00000000 align 2**0

filesz 0x000000b4 memsz 0x00000000 flags --- 7000000

NULL off 0x00001000 vaddr 0x0000a000 paddr 0x0000a000 align 2**12

filesz 0x000019a8 memsz 0x00002000 flags --- 2200000

LOAD off 0x00003000 vaddr 0x00000000 paddr 0x00000000 align 2**8

filesz 0x00003f98 memsz 0x00003f98 flags r-x a0000000

LOAD off 0x00007fcc vaddr 0x00004000 paddr 0x00004000 align 2**12

filesz 0x000000b0 memsz 0x00005950 flags rw- 30000000

private flags = 5000002: [Version5 EABI] [has entry point]

Listing 3.4: Reading the ELF header

number for the Executable and Linking Format (ELF) [11]. This is a format for binary
files and libraries. The header can be decoded with the objdump tool from the binutils

package18.

As we can see in in Listing 3.4, the objdump tool recognizes the ELF header and identifies
four sections that are defined in the header. One section can be read and written to and
one section is executable.

At an offset of 424 bytes I identified another interesting section. Byte 424 starts with
0x30, This could indicate an ASN.1 encoded section. This is also suggested by strings
further on in the section: For example the byte string 0C 4D 6F 74 6F 72 6F 6C 61 20

50 4B 49 that can be found in the section is exactly a string of 12 bytes (Motorola PKI)
with the length before it (0x0C=12). Using an ASN.1 decoder I analyzed the sequence
and found a certificate chain:

1. The first certificate is for Motorola Attestation 280-1-110 and is signed by
Motorola Attestation CA 280-1.

2. The second certificate is for Motorola Attestation 280-1 and is signed by Root

CA 280.

3. The third certificate is a Root CA certificate for Root CA 280. It is self-signed by
Root CA 280.

On Android 4.4 in the directory /data/misc/keystore/ a directory is created for each
user (if not present). Android 4.4 has multi-user support on tablets to allow multiple
users to share the same tablet. Phones do not have this functionality so only a directory
called user 0 is created. In this directory two files are created for each generated key
pair by the KeyMaster running in Android OS that communicates with the trustlet in
the TEE. To prevent directory traversal attacks special characters in the the key entry

18http://www.gnu.org/software/binutils/

33

http://www.gnu.org/software/binutils/

3 Secure key storage

android :: String8 getKeyNameForUid(const android :: String8& keyName , uid_t

uid) {

char encoded[encode_key_length(keyName) + 1]; // add 1 for null

encode_key(encoded , keyName);

return android :: String8 :: format ("%u_%s", uid , encoded);

}

Listing 3.5: Code used for naming key entry files

struct qcom_km_key_blob {

uint32_t magic_num;

uint32_t version_num;

uint8_t modulus[KM_KEY_SIZE_MAX];

uint32_t modulus_size;

uint8_t public_exponent[KM_KEY_SIZE_MAX];

uint32_t public_exponent_size;

uint8_t iv[KM_IV_LENGTH];

uint8_t encrypted_private_exponent[KM_KEY_SIZE_MAX];

uint32_t encrypted_private_exponent_size;

uint8_t hmac[KM_HMAC_LENGTH];

};

typedef struct qcom_km_key_blob qcom_km_key_blob_t;

Listing 3.6: Storage format used for data from the Qualcomm trustlet

aliases are encoded. The naming of the files can be found in the Android source code in
the AndroidKeyStore implementation 19 as shown in Listing 3.5.

The actual storage format of the PKEY is defined by the Qualcomm API 20 as shown in
Listing 3.6.

As we can see the file contains a number of fields according to the struct:

• magic num: A fixed magic number is used to identify the files as key storage. The
magic number is 0x4B4D4B42 or "KMKB" (KeyMaster Key Blob).

• version num: The version number indicates the version of key. Currently the
version is 2 in Android 4.4.3. In Android 4.2.2 the version was 1.

• modulus: Stores the modulus of the RSA key pair. The size of this field is fixed to
KM KEY SIZE MAX which is 512 bytes (= 4096 bits) for Android 4.4 and 256 bytes
for Android 4.2.2.

• modulus size: The actual size of the modulus. Since the modulus can be smaller
than 4096 bits this field indicates the number of bytes that is actual used.

19https://android.googlesource.com/platform/system/security/+/master/keystore/keystore.cpp
20https://android.googlesource.com/platform/hardware/qcom/keymaster/+/master/keymaster qcom.h

34

3 Secure key storage

• public exponent: Stores the public exponent of the RSA key pair. The size of
this field is also fixed to KM KEY SIZE MAX.

• public exponent size: The actual size of the public exponent.

• iv: The IV (initialization vector) that is used for the encryption of the
encrypted private exponent using AES-CBC-128.

• encrypted private exponent: Stores the private exponent of the RSA key pair
in a encrypted form using AES-CBC-128 encryption. For the encryption the iv

and an unknown key is used. This key is probably fixed in hardware to bind the
private key to the device.

• encrypted private exponent size: Stores the actual size of the private exponent
in unencrypted form.

• hmac: A HMAC is computed over the whole file using a SHA-2 and a key which is
probably also fixed in hardware. This should ensure the integrity of the file.

The KeyStore service adds some data around the struct to identify the contents. The
key used for encryption of the private exponent and for computing the HMAC can
not be found on the device. Also of the trustlet is not open source. According to
the source code that is available the encryption is done in the TEE by the keymaster

trustlet. We suspect that the keys are also stored in the TEE and are device specific.
No method to access these keys from outside the TEE is documented, nor could we find
one.

3.5 Key storage using AndroidKeyStore using the TEE on TI
devices

3.5.1 Evaluation

The naming of the key entry files stored on devices that have a TI (Texas Instruments)
processor and a AndroidKeyStore is exactly the same as the Qualcomm-based version
discussed in section 3.4. The AndroidKeyStore on TI devices also adds two files in the
/data/misc/keystore/user 0 directory for each key pair:

• A USRPKEY file that stores the key pair parameters including the private key.

• A USRCERT file that stores the certificate.

However, the actual content of the private key file is different. The private key can not
be stored in the private key file since the file size is smaller than the actual private key
size used.

The /data/misc/keystore/user 0 directory is not accessible by non-root user and other
apps can not access the private key material of an application. So requirements Rapp−bound

35

3 Secure key storage

and Rdevice−bound are guaranteed for attacker model Aoutside−no−root. In section 3.4 an
attacker having root permissions could rename or copy the files to new files in the same
directory on the same device with the user-id of a second malicious application. The
private keys would then directly be accessible by the other application. This attack also
works on devices using a chip by Texas Instruments. The application that was assigned
the key-files of another application could successfully generate a valid signature using the
private key that was generated by the other application. Again this was exploited by
renaming the files from user id of the first KeyStorageTest application to the user id of
the second KeyStorageTest application.

So, like in section 3.4, requirement Rapp−bound is not guaranteed for attacker model
Aoutside−root−no−memory. Copying the files to another device does not work, as discussed
in section 3.5.2. Like the Qualcomm solution the private key material is probably
encrypted using a device specific key that is stored in the TEE. So requirement Rapp−bound

is guaranteed for all attacker-models.

The AndroidKeyStore does not support the encryption of the key store (or entries within
it) using a provided password. Nor can the user be asked to confirm that a certain private
key can be used. As a result no user-consent can be required to use a private key. An
attacker can access the private key material at any time. So requirement is not met for
attacker-model Aoutside−no−root.

This brings us to the conclusion that while the actual location for key pair parameters is
different in Texas Instruments devices compared to Qualcomm devices (more about this
in section 3.5.2) the results are the same:

• An attacker that has root credentials can use the keys in other applications on
the same device by renaming the key-entry files. So requirement Rapp−bound is not
satisfied for attacker models Aoutside−root−no−memory and Aoutside−root−memory.

• Key pairs can not be used outside of the device because the private data is
encrypted with a device-specific key stored in the TEE that can not be retrieved.
So requirement Rdevice−bound is satisfied for all attacker models.

• There is no way to require any input from the user for operations using the private
keys. So requirement Ruser−consent is not satisfied.

3.5.2 Background

The Texas Instruments implementation of the AndroidKeyStore uses the same interfaces
as the Qualcomm implementation that is described in section 3.4.2 on page 31. For
completeness the complete implementation is also described here. To communicate with
the actual trustlet that is running in TEE a driver is created that is called from the
KeyStore service, this is defined in keymaster tuna.cpp21. The low-level driver that is

21https://android.googlesource.com/device/samsung/tuna/+/master/keymaster/keymaster_tuna.

cpp

36

https://android.googlesource.com/device/samsung/tuna/+/master/keymaster/keymaster_tuna.cpp
https://android.googlesource.com/device/samsung/tuna/+/master/keymaster/keymaster_tuna.cpp

3 Secure key storage

used to actually communicate messages with the TEE on TI chips is also open-source
and available on the AOSP git repositories 22. The whole architecture is illustrated in
figure 3.3 on page 37. In this figure two applications App 1 and App 2 are shown. They
communicate with the AndroidKeyStore (KS in the figure) which in turn communicates
via the shared memory with the keymaster (KM in the figure) application running
in the secure world. This is exactly the same as the implementation on Qualcomm-
devices.

Android OSTEE

App 1

App 2

Hardware

KMKM App

Figure 3.3: Architecture of AndroidKeyStore on TI devices

An analysis of the key store by Nikolay Elenkov shows that the actual private key
data is stored encrypted in /data/smc/user.bin [20]. However, the actual format is
unknown [20]. When I generated a new key pair using the KeyStorageTest application in-
deed the data stored in the /data/smc/user.bin file changed. The /data/smc/user.bin
file appears to have the following format:

• 2048 bytes that contain 0x00 except for two 4 byte words that change after key
generation. For the first word at offset 0 only values 0xEF00 and 0x0EF03 are
observed. For the second word at offset 1024 only values 0x3F00 and 0xBF01 are
observed. These words may indicate some (persistent) state.

• 2048 bytes of (presumably) encrypted data related to the AndroidKeyStore: These
bytes change completely after every key pair generation and appear to have no
structure. This indicates that some form of encryption is probably used.

• n×2048 bytes. Where n is the number of key pairs that are stored in the
AndroidKeyStore. These bytes appear to store the key-entry data in a inde-

22https://android.googlesource.com/platform/hardware/ti/omap4xxx/+/master/security/

37

https://android.googlesource.com/platform/hardware/ti/omap4xxx/+/master/security/

3 Secure key storage

$ openssl asn1parse -inform der -in 10093 _USRPKEY_TestKeyPair2 -offset

326

0:d=0 hl=4 l=1189 cons: SEQUENCE

4:d=1 hl=2 l= 1 prim: INTEGER :00

7:d=1 hl=4 l= 257 prim: INTEGER :E408 ...5 ED7

268:d=1 hl=2 l= 3 prim: INTEGER :010001

273:d=1 hl=4 l= 257 prim: INTEGER :BA4B ...27 F1

534:d=1 hl=3 l= 129 prim: INTEGER :FD3E ... F73F

666:d=1 hl=3 l= 129 prim: INTEGER :E683 ...8 A69

798:d=1 hl=3 l= 128 prim: INTEGER :078C...273D

929:d=1 hl=3 l= 129 prim: INTEGER :C891 ... FE01

1061:d=1 hl=3 l= 129 prim: INTEGER :CA12 ... C6FA

1193:d=0 hl=2 l= 0 prim: EOC

Listing 3.7: Parsing private data from the key entry file

pendently encrypted form: If a new key pair is generated in the AndroidKeyStore

the 2048 bytes for key entries already present stay the same.

• 17 kilobytes (17408 bytes) that are always 0xA5. The purpose of these bytes is
unknown. They may be some kind of padding. However, the total file-size of
/data/smc/user.bin increases with 2048 bytes for every key pair.

3.6 Key storage using AndroidKeystore using a software-based
keymaster

3.6.1 Evaluation

The naming of the key entry files when a software-based keymaster is used is the same as
we have seen in the Qualcomm-based key storage in section 3.4: The key entry files include
the user id of the application. Again, if an attacker gains root permissions he can rename
or copy the key entry files to include the user id of another application and use the keys
in that application. This issue appears to be specific to the AndroidKeyStore and not
to the actual implementation of key storage that the AndroidKeyStore uses. So criteria
Rapp−bound is not met for attacker model Aoutside−root−no−memory.

When a device does not require a PIN to unlock the device no encryption of the private
key file is used: By parsing the USRPKEY-file an attacker can learn all information that
should be kept secret such as the private exponent and the two primes of the RSA key
pair as shown in Listing 3.7. Here we show how an attacker can learn the private exponent
from a file. The fourth integer at offset 273 is the private exponent of the RSA key pair
that was generated.

In this overview we see the following data (encoded as hexadecimal arrays):

38

3 Secure key storage

1. The version number (=0)

2. The (public) modulus n (starts with E408)

3. The public exponent e (=010001)

4. The private exponent d (starts with BA4B)

5. The first prime p (starts with FD3E). This is one of the prime factors of the modulus.

6. The second prime q (starts with E683). This is the other prime factor of the
modulus.

7. d mod p− 1 (starts with 078C)

8. d mod q − 1 (starts with C891)

9. q−1 mod p (starts with CA12)

Items 2-4 are represent all the data that is stored for an RSA key pair (including the
private key). The additional data stored in parameters 5-9 are used for the Chinese
Remainder Theorem [16]. This allows for faster RSA operations compared to a native
implementation. Even when this data to use the Chinese Remainder Theorem is not
present the private key can be used as described in the OpenSSL documentation for the
RSA algorithm23.

An attacker that does not have root permissions (attacker model Aoutside−no−root) can
not access the key store directory and therefore can not rename or copy key en-
try files. So therefore requirements Rdevice−bound and Rapp−bound are satisfied for at-
tacker model Aoutside−no−root. An attacker that has root permission (attacker models
Aoutside−root−no−memory and Aoutside−root−memory) can simply read the PKEY file to learn
all private key information as shown above. Subsequently there is nothing limiting the
attacker in copying this data of the device. Therefore requirement Rdevice−bound and
Rapp−bound are not met for attacker-model Aoutside−no−root if no PIN is used to lock the
device.

However, when a PIN is required to unlock the device a random 128-bit AES master
key is used for encryption. This master key is randomly generated and stored in the
.masterkey file in the /data/misc/keystore/user 0 directory. This file is encrypted
using a key that is derived from the PIN using 8192 rounds of PKCS5 PBKDF2 HMAC SHA1.
The master key is used to encrypt all key entries without any form of per-entry key-
derivation.

Even when requiring a PIN to unlock the device, an attacker that has root permissions
(attacker model Aoutside−root−no−memory) can assign private keys to other applications on
the same device by renaming the (possibly encrypted) files as shown in section 3.4 and
discussed above. However, an attacker using attacker-model Aoutside−root−no−memory has
to decrypt the private key entries to be able to use them outside of the device. To do

23http://www.openssl.org/docs/crypto/rsa.html

39

http://www.openssl.org/docs/crypto/rsa.html

3 Secure key storage

this he has to learn the PIN (or password) used to unlock the device. While research
shows that this may not be impossible it does require brute-forcing [6]. Therefore we
conclude that this is only possible by learning the password from memory which only an
attacker according to attacker-model Aoutside−root−memory can do.

Again like we saw for the Qualcomm and TI based solutions in section 3.4 and section 3.5,
the AndroidKeyStore itself, regardless of the underlying storage solution, offers no way
to require user consent. So even an attacker without root permissions can use the private
key to do cryptographic operations without user permission.

This brings us to the following conclusion that if no password is used:

• An attacker that has root permissions (attacker-model Aoutside−root−no−memory) can
learn the private key data and use it on another device. Without root an attacker
can not access the entry files. So requirement Rapp−bound and Rdevice−bound are only
satisfied for attacker model Aoutside−no−root.

• The AndroidKeyStore offers no method to require user-consent so requirement
Ruser−consent is not satisfied.

However, if a password or PIN is required to unlock the device:

• An attacker that has root permissions but can not inspect the memory of the device
(attacker-model Aoutside−root−no−memory) can rename or copy the key entry files
such that another application on the same device can use them. So the requirement
Rapp−bound is not satisfied for attacker model Aoutside−root−no−memory and up. To
use the keys outside of the device the attacker has to decrypt the files for which the
password or PIN is required. Research shows that this may be possible by brute-
forcing based on some stored files which attacker model Aoutside−root−no−memory

could do. This may be hard for good passwords with sufficient entropy. However,
the password can only be learned from memory by an attacker using attacker
model Aoutside−root−memory. Therefore we consider the requirement Rdevice−bound

as violated by attacker using attacker model Aoutside−root−memory.

• There is no difference for requirement Ruser−consent between requiring and not
requiring a password to unlock the device. The requirement Ruser−consent is violated.

3.6.2 Background

The software-based key store is called SoftKeyMaster or OpenSSLKeyMaster and can be
found in the Android repositories24. The communication between the application and the
software-based is exactly the same as for the TEE-based implementation, on for example
Qualcomm hardware, as described in section 3.4 on page 30. The SoftKeyMaster acts
as a kind of driver between the KeyMaster daemon and the filesystem. This is shown

24https://android.googlesource.com/platform/system/security/+/master/softkeymaster/

keymaster_openssl.cpp

40

https://android.googlesource.com/platform/system/security/+/master/softkeymaster/keymaster_openssl.cpp
https://android.googlesource.com/platform/system/security/+/master/softkeymaster/keymaster_openssl.cpp

3 Secure key storage

in figure 3.4 on page 41. In this figure we see two applications (App 1 and App 2) that
communicate with the KeyMaster (KM) that in turns communicates with the Android
OS to store the key entries. There is no involvement from the TEE. A TEE may and the
TrustZone technology needed to create a TEE may very likely not even be available on
the device.

Android OSTEE

App 1

App 2

Hardware

KM

Figure 3.4: Architecture of the software based AndroidKeyStore

As discussed in the previous section, the master-key that is stored in the .masterkey file
is used to decrypt files that store key-data. These files are defined by the blob struct
that can be found in the key store code25 as show in Listing 3.8 on page 42. The last
field of the struct, the value field is not stored in the file and only used in memory to
store unencrypted values.

The blobs are encrypted using AES-128-CTR and MD5 in the cipher-text is used to
check the integrity. As shown in the KeyStore.cpp26 file the developers themselves note
that this should be replaced with a better format as shown in Listing 3.9 on page 42.
Even in the newer format the developers make no note of including the application that
is associated with the key in the stored file. It appears that it is still only present in the
filename.

25https://android.googlesource.com/platform/system/security/+/master/keystore/keystore.

cpp
26https://android.googlesource.com/platform/system/security/+/master/keystore/keystore.

cpp

41

https://android.googlesource.com/platform/system/security/+/master/keystore/keystore.cpp
https://android.googlesource.com/platform/system/security/+/master/keystore/keystore.cpp
https://android.googlesource.com/platform/system/security/+/master/keystore/keystore.cpp
https://android.googlesource.com/platform/system/security/+/master/keystore/keystore.cpp

3 Secure key storage

struct __attribute__ ((packed)) blob {

uint8_t version;

uint8_t type;

uint8_t flags;

uint8_t info;

uint8_t vector[AES_BLOCK_SIZE];

uint8_t encrypted [0]; // Marks offset to encrypted data.

uint8_t digest[MD5_DIGEST_LENGTH];

uint8_t digested [0]; // Marks offset to digested data.

int32_t length; // in network byte order when encrypted

uint8_t value[VALUE_SIZE + AES_BLOCK_SIZE];

};

Listing 3.8: The blob struct used by the AndroidKeyStore

* Currently this is the construction:

* metadata || Enc(MD5(data) || data)

*

* This should be the construction used for encrypting if re -implementing

:

*

* Derive independent keys for encryption and MAC:

* Kenc = AES_encrypt(masterKey , "Encrypt ")

* Kmac = AES_encrypt(masterKey , "MAC")

*

* Store this:

* metadata || AES_CTR_encrypt(Kenc , rand_IV , data) ||

* HMAC(Kmac , metadata || Enc(data))

Listing 3.9: Proposal to improve the storage format for the AndroidKeyStore

42

3 Secure key storage

3.7 Key storage on the secure element

3.7.1 Evaluation

Android 4.1 and up also supports communicating with a Secure Element. However, the
APIs allowing this are not available for normal applications. The Secure Element can be
either a UUIC (SIM-card) or be embedded into the NFC controller as discussed in 2.2.3
on page 14. No open-source application for the Secure Element is available to provide
a KeyMaster-like interface. An application that works like the KeyMaster trustlet in
a TEE has exactly the same properties as a Secure Element-based variant: The only
notable difference at the moment is the communication channel: The TEE-based trustlet
communicates with Android OS over shared memory. A Secure Element-based solution
uses a serial interface to communicate. Of course the hardware supporting the solution is
different but this is transparent to the system. It should even be possible to develop a
driver that implements the IKeystoreService interface and uses the a Secure Element
for the actual cryptographic operations. This is depicted in figure 3.5 on page 44. In this
picture SE represents the Secure Element where an application SE App is running. The
AndroidKeyStore communicates with this application.

One thing to note is that it may be actually hard to implement an application that binds
the Secure Element to the actual device if the Secure Element is not embedded in the
phone. For example a SIM can be removed and installed in another phone, so the keys
are bound to the SIM instead of the device. This may not be a problem for most use
cases but it should be considered when evaluating risks.

To make the comparison fair we evaluate a Secure Element solution the same as the TEE-
based solution. For both platforms better solutions could be developed that guarantee
additional requirements such as, for example, user consent. The differences between
the two solutions are discussed in section 2.2.3 on page 14. However, these differences
do not reflect in any differences in the security criteria as described in section 3.2.2 in
comparison to the TEE-based solution. Since no implementation is available to evaluate,
no concrete evaluation is provided.

3.7.2 Background

For an application to communicate with a Secure Element the application has to have a
special permission that is controlled by the /etc/nfcee access.xml file in Android OS.
By default only the Google Wallet is allowed:

<?xml version="1.0" encoding="utf-8"?>

<resources xmlns:xliff="urn:oasis:names:tc:xliff:document:1.2">

<!-- Applications granted NFCEE access on user builds

See packages/apps/Nfc/etc/sample_nfcee_access.xml for full documentation.

43

3 Secure key storage

KM

SE

SE App

Android OSTEE

App 1

App 2

Hardware

KM

Figure 3.5: Possible architecture of AndroidKeyStore using a Secure Element

-->

<!-- Google wallet release signature -->

<signer android:signature="3082...852e" />

</resources>

Only a user having root permissions can write to this file. The permissions to access the
Secure Element can not be requested by an application like normal permissions. They
have to be added by the device-manufacturer in the device image.

An application that does have the right permissions can communicate with the Secure
Element using a interface that resembles smart-card communication as shown in List-
ing 3.10. The transcieve parameter should be a byte-array resembling a command APDU
according to ISO/IEC 7816-4 and the response is a response APDU. These APDU’s
are also used for normal smart-cards. The actual content of the commands is defined
by actual software running on the smart-card. The SEEK (Secure Element Evalua-
tion Kit) project27 provides a more programmer friendly API for the Secure Element.

27https://code.google.com/p/seek-for-android/

44

https://code.google.com/p/seek-for-android/

3 Secure key storage

NfcAdapterExtras adapterExtras = NfcAdapterExtras.get(NfcAdapter.

getDefaultAdapter(context));

NfcExecutionEnvironment nfceEe = adapterExtras.

getEmbeddedExecutionEnvironment ();

nfcEe.open();

byte[] response = nfcEe.transceive(command);

nfcEe.close();

Listing 3.10: Communicating with the Secure Element

An application for the Secure Element can be developed that is similar to the KeyMaster

application. The chips that house such Secure Elements are generally more tamper-
resistant then ARM chips that house TrustZone technology. They are based on smart-
cards that are used for years in payment-systems.

3.8 Conclusion

Solution Aoutside−no−root Aoutside−root−no−memory Aoutside−root−memory

Bouncy Castle with
stored password (sec-
tion 3.3)

X × ×

Bouncy Castle with
user-provided pass-
word (section 3.3)

X X (if password has suffi-
cient entropy)

×

AndroidKeyStore
using the TEE on
Qualcomm devices
(section 3.4)

X X X

AndroidKeyStore
using the TEE on TI
devices (section 3.5)

X X X

AndroidKeyStore us-
ing a software-based
keymaster without a
PIN to unlock the
device (section 3.6)

X × ×

AndroidKeyStore us-
ing a software-based
keymaster with a PIN
to unlock the device
(section 3.6)

X X ×

Table 3.2: Overview of the evaluation results for requirement Rdevice−bound

An overview of the results is provided in table 3.2, table 3.3 and table 3.4. Note that the
Secure Element (as discussed in Section 3.7) is not included in these tables as no key
store implementation is available. However, we can imagine an implementation that has
the same security properties as the AndroidKeyStore on devices with TrustZone-support.
As shown the AndroidKeyStore using the TEE is the only solution that provides a
key store where keys can not extracted from the device (Rdevice−bound). However, as

45

3 Secure key storage

Solution Aoutside−no−root Aoutside−root−no−memory Aoutside−root−memory

Bouncy Castle with
stored password (sec-
tion 3.3)

X × ×

Bouncy Castle with
user-provided pass-
word (section 3.3)

X X (if password has suffi-
cient entropy)

×

AndroidKeyStore
using the TEE on
Qualcomm devices
(section 3.4)

X × ×

AndroidKeyStore
using the TEE on TI
devices (section 3.5)

X × ×

AndroidKeyStore us-
ing a software-based
keymaster without a
PIN to unlock the
device (section 3.6)

X × ×

AndroidKeyStore us-
ing a software-based
keymaster with a PIN
to unlock the device
(section 3.6)

X × ×

Table 3.3: Overview of the evaluation results for requirement Rapp−bound

table 3.3 shows, the integrity of the allocation of keys to a certain application within
the device is not guaranteed. The result is that any implementation that uses the
AndroidKeyStore is vulnerable to attacks where an attacker that gains root permissions
(attacker-model Aoutside−root−no−memory) can assign any key stored in the key store to
his app by simply making copies of the entry files that include another user id in the
filename. So while attackers that gain root credentials can not copy the key pair of
the device to use it elsewhere they can make an application that provides an oracle: A
service that the attacker can query for the encrypted/signed data of attacker-defined
plain text.

The software-based AndroidKeyStore on devices that do not require a PIN to unlock
the device does not apply any form of encryption. The key store entries are protected by
the fact that a normal application can not read the key store due to the file permissions.
This of course is a very weak solution that requires minimal effort by an attacker to learn
the key pair data. Any exploit that allows an attacker to gain root permissions directly
exposes the private keys. While encrypting the data using a password that is also stored
on the device provides no increase in security guarantees it does require more effort from
the attacker to learn the private data.

The Bouncy Castle key store that uses a user provided password provides a better solution
security-wise for all requirements except Rdevice−bound. This is the result of requiring
something to use the key store that is not stored on the device (the user provided
password). Most banking application already require a PIN to use the application that
could serve as the user-provided password. So this may not be a problem for those

46

3 Secure key storage

Solution Ainside−no−root

Bouncy Castle with stored password
(section 3.3)

×

Bouncy Castle with user-provided
password (section 3.3)

X (if password has
sufficient entropy)

AndroidKeyStore using the TEE on
Qualcomm devices (section 3.4)

×

AndroidKeyStore using the TEE on TI
devices (section 3.5)

×

AndroidKeyStore using a software-
based keymaster without a PIN to un-
lock the device (section 3.6)

×

AndroidKeyStore using a software-
based keymaster with a PIN to unlock
the device (section 3.6)

×

Table 3.4: Overview of the evaluation results for requirement Ruser−consent

applications. However, not all applications may be able to require a (application specific)
password due to usability constraints. Also, remembering a password for each application
on the device may be hard for the common user. Furthermore a user-provided password
may have a low entropy which allows it to brute-forced, effectively making the user-
provided password solutions worse. Another problem with user-provided passwords is
that they can be observed when the user is entering them (shoulder-surfing). While a user-
provided password in theory provides a more secure solutions on almost all requirements
the security in practice may be less.

There is no effective difference between the TEE-based AndroidKeyStore on Qualcomm
devices and the TEE-based AndroidKeyStore on TI devices. Both have a difference in
inner-workings (especially where the private key data is stored). However, both solutions
still allow allocating a key pair to another application by renaming the files in the
keymaster directory. For the Qualcomm solution you actually copy the (encrypted)
private key data for TI you copy a reference to the private key data.

Maybe for a more fair comparison the key stores should be divided in two classes: those
that require a user provided password and those that don not. If we consider a use case
where user-consent is not a problem because we assume that the application is always
honest (criteria Ruser−consent does not matter) and we do not want to require a user-
provided password the TEE-based AndroidKeyStore is clearly the best solution. The
best solution for the user provided password class is Bouncy Castle.

There may be little to none difference between the solution that the AndroidKeyStore

provides where the keys can not be extracted from the device but can be used by any
application on the device and the solution that Bouncy Castle provides where keys can be
extracted. Most devices have a nearly constant connection to the internet so extracting
a key from a device to be used elsewhere or querying the device to do the operations
using the key is almost the same.

47

3 Secure key storage

3.9 Recommendations

3.9.1 For developers intending to use key storage

Developers of applications that require secure key storage should, to make the right
decision about what key store to use, first decide whether they can (and want)
to:

A Ask the user for a password (that has sufficient entropy).

B Use the hardware-backed key storage.

Note that not all devices support a hardware-backed key store. Android versions
before 4.3 do not have the AndroidKeyStore. On later Android versions the avail-
ability of a hardware-backed AndroidKeystore can be checked by using the static
isBoundKeyAlgorithm(String algorithm) function of the KeyChain class. If this func-
tion returns true the AndroidKeyStore is hardware-backed.

If the user can not be asked for a password and hardware-backed key storage can be
used the AndroidKeyStore provides the most secure solution. It seems impossible for an
attacker to extract the keys stored in the key store on these devices. However, developers
should be aware that the keys can be used by other application on the device if an
application is able to run under root permissions. There are generally two methods for
applications to run under root permissions:

1. As described in section 3.2.2 on page 22, many users root their phone to allow
applications to work around the permissions they can get or to modify behavior
of the Android OS that is not possible using the normal APIs. An attacker can
create a malicious application that asks for root permissions for some valid reason
but then also use the permissions to attack the key store.

2. Attackers may be able to gain root permissions by exploits in applications or
libraries that run under root permissions in Android. A recent example of this
is the futex privilege escalation [12] that is used by Geohot in the towelroot28

proof-of-concept on Android.

To minimize the risk, users should be educated about the risks that occur when users
root their phone (allow applications to run under root permissions). In extreme cases
where a vulnerability is used on a large scale by attackers to gain root credentials
developers should have methods to revoke the keys stored in the devices that are
vulnerable.

If the user can not be asked for a password and no hardware-backed key storage can be
used the AndroidKeyStore provides the most secure solution on devices that need to be
unlocked using a PIN or password. On devices that use no PIN both the AndroidKeyStore
does not encrypt the sensitive data at all. The file permissions prevent users that do

28http://towelroot.com/

48

http://towelroot.com/

3 Secure key storage

not have root permissions from accessing these files. While the Bouncy Castle key store
can use encryption the key still needs to be stored on the device. So a user having root
permissions can also retrieve that.

If the user can be asked for a password an no hardware-backed key storage can be used
the Bouncy Castle key store provides the most secure solution. However, the password
should be of sufficient entropy to be able to withstand brute-force attacks from attackers.
Also care should be taken to store the keystore-file in the application specific data
directory. If the key stored in the device is only intended for secure communication, a
password-authenticated key agreement scheme such as PACE [33] may provide a more
secure solution as it is resistant to brute-force attacks.

If the user can be asked for a password, hardware-backed key storage is available and
the protocol allows it, the best solution can be created by using a key pair that is
stored in the AndroidKeyStore that authenticates the device and a key pair that is
stored in a Bouncy Castle key store using a user provided password that authenticates
the user. Again, a password-authenticated key agreement may provide a more secure
solution.

3.9.2 For developers of the key stores

The security of the AndroidKeyStore can be improved by using a number of measures
while retaining the same architecture:

• Encrypt the key store files for the software-based AndroidKeyStore when the device
requires no PIN to unlock. A key could for example be derived from the device-id.
While this provides no additional security properties it makes it harder for attackers
to read a key: The attacker first has to derive the encryption key.

• Include the user-id of the application that generated the key pair actually in the
integrity checked section of the keyblob. This again does not solve the whole
problem: A attacker can change the user-id of the application that used the files.
However, this is again harder than just renaming the files.

• Optionally allow encryption of the key entry file using a user-provided password.
This provides the possibility to require user-consent to use a key pair.

Solving the problem that multiple applications on the same device can access the key pair
is not trivial: As discussed, integrity-checking the user-id of the application in the key
entry file does not solve the problem, the user-id of an application can be changed. Like
we’ve seen in Section 2.2.1 on page 9, the TEE can read the memory of the Android OS.
So a possible solution could be to check the signature or application-id of the application
requesting key operations from the TEE. This may be very hard for an attacker to work
around. However, no research has been done in this area, so research should be done to
validate whether this is actually a viable and secure solution.

49

3 Secure key storage

Another solution could be to ask the user to confirm the usage of a key pair by showing
a dialog from the TEE on the screen of the device. This dialog should show which
application requests which key and optionally what data it wants to sign (to provide
a what you see is what you sign solution). If the touch input from the touchscreen
can not be faked by an attacker, this solution is not susceptible to a remote attack
over the internet or by an application running on Android OS. The usability, however,
may be low if a large number of key operations is requested and each one has to be
confirmed by the user. A security trade-off can be made to improve the usability by
allowing an application to use a certain key pair for a predefined period (for example 10
minutes).

50

4 Secure computation

As discussed in section 2.2.1 on page 9 and as observed in section 3.4.2 on page 31 the
ARM TrustZone environment uses signatures to check whether certain code is allowed to
run in the secure world. This also means that, in order to run certain code on a device
for testing, the code has to be signed by the hardware manufacturer. I contacted one of
those parties (Motorola) to see if there were any possibilities to get an application signed
for scientific purposes. Motorola did not respond to this request. The only other solution
is to use a development platform that does not have its certificate fixed yet. However,
these platforms are expensive. As a result only an analysis of the documentation and
information available about secure computation will be discussed in this chapter. First
a number of secure world OSes that provide a Trusted Execution Environment (TEE)
to run in the secure world provided by ARM TrustZone technology are discussed in
section 4.1. Next in section 4.2 we will discuss a number of use cases where secure
computation is useful and how it, in these use cases, can be used.

4.1 Secure world operating systems

At the moment there are a number of solutions that provide a TEE for trustlets to run
in. Most solutions provide both an operating system for the secure world and an API
that applications running in the TEE should use. Note that applications running in the
TEE are called trustlets. We call the software that runs in the secure world and provides
a TEE secure world OSes. As we will see, some solutions are developed with a specific
operating system running in the normal world in mind others support all operating
systems. In this section we discuss a number of secure world OSes that are described
either in literature or are open source:

• SierraTEE1 A open source solution provided by SierraWare.

• Genode2 A new open source operating system that is not purposely developed
for the TrustZone. However, its aim for a small TCB (Trusted Computing Base)
makes it suitable for use in the secure world of the TrustZone.

• TLR [50] A scientific solution based on .NET by Microsoft Research and the
University of Lisbon.

1http://www.sierraware.com/open source-ARM-TrustZone.html
2http://genode.org/documentation/articles/trustzone

51

4 Secure computation

All three solutions use the same architecture that is pictured in figure 4.1 on page 52.
The secure world operating system is running in the secure world and a normal operating
system such as Android OS is running in the normal world. On both operating systems ap-
plications are running. The applications running on the secure world OS are called trustlets
and the applications running on the normal OS are called apps.

Normal OSSecure world OS

App App

Hardware

ServiceTrustlet

Secure world Normal world

Trustlet

Figure 4.1: The separation of the hardware by TrustZone in two worlds.

4.1.1 SierraTEE

SierraTEE is a open source secure world operating system specifically designed by
Sierraware to run in the secure world of a TrustZone enabled processor. It has support for
different operating systems such as Linux, Android and BSD [53]. Recently, Sierraware
announced a version for 64-bit ARM processors3. Particularly interesting in this paper is
the Android integration that Sierraware shows. One of the example applications that
is provided, is a banking application that communicates with a trustlet running in the
TEE that shows a PIN dialog to confirm transactions.

According to two presentations4 from Sieraware the SieraaTEE provides:

• Integrity management, a scanner that checks the integrity of:

– The file-system of Android OS.

– The processes running under Android OS.

3http://www.embedded.com/electronics-products/electronic-product-reviews/

operating-systems/4428035/Sierraware-hypervisor-targets-64-bit-ARM-Architectures-
4http://www.slideshare.net/sgopu/se-android-securityintegritymanagement and http://www.

sierraware.com/sierraware_tee_hypervisor_overview.pdf

52

http://www.embedded.com/electronics-products/electronic-product-reviews/operating-systems/4428035/Sierraware-hypervisor-targets-64-bit-ARM-Architectures-
http://www.embedded.com/electronics-products/electronic-product-reviews/operating-systems/4428035/Sierraware-hypervisor-targets-64-bit-ARM-Architectures-
http://www.slideshare.net/sgopu/se-android-securityintegritymanagement
http://www.sierraware.com/sierraware_tee_hypervisor_overview.pdf
http://www.sierraware.com/sierraware_tee_hypervisor_overview.pdf

4 Secure computation

– The interrupt-table.

– The Android OS kernel.

• Key management, secure storage of keys.

• MDM (Mobile Device Management) and MAM (Mobile Application Management),
controls the settings of the device and what applications can run on the device.

• DRM (Digital Rights Management), allows for copyright protection of multimedia.

• Secure display and input, allows developers to display content, ask for user-input,
and do cryptographic operations based on that input in the TEE. The result of
such operation can then be transferred to Android OS. The user communicates
directly with the TEE without any interference from Android OS.

4.1.2 Genode

The TU Dresden OS group introduced Genode in 2012 [25]. It is an operating system
created with a low complexity of only 10.000 lines of code [1]. This low complexity makes
it easier to verify the security of the operating system. This in turn makes it a good
basis for a secure world OS because of its small TCB (Trusted Computing Base). In
2014 an implementation of Genode running in the secure world of a TrustZone-enabled
ARM processor was presented [32]. The whole TCB was only 20.000 lines of code. The
implementation supports running along side Android. In a video5 the author of the
Genode implementation on TrustZone shows both Android and Genode running on a
Freescale development platform. Both operating systems are able to show content on the
display.

In an article6 on the Genode website more details are given about the implementation.
The architecture of the implementation is shown in figure 4.2 on page 54. Genode is
running in the secure world, the box in the upper-right corner of the figure. What is
particularly interesting to see is that both the touchscreen driver interfacing with the
touchscreen hardware and the framebuffer driver interfacing with the display are run in
the secure world. This provides a trusted path which prevents attackers that exploited
the normal world operating system to learn what a trustlet running in the secure world
displays on the screen and what the user enters.

As shown in figure 4.2 the Android operating system running in the normal world provides
the secure world with (a pointer to) a display-buffer. This display-buffer is then provided
to the display by Genode running in the secure world. An application running in the
secure world can also display content on the screen. However, a small part of the display
is always controlled by Genode. In this small part the source of the content shown on the
rest of the display is presented to the user. This part of the screen can not be controlled

5https://www.youtube.com/watch?v=voFV1W4yyY8
6http://genode.org/documentation/articles/trustzone

53

https://www.youtube.com/watch?v=voFV1W4yyY8
http://genode.org/documentation/articles/trustzone

4 Secure computation

Figure 4.2: Architecture of the TrustZone implementation of Genode. Source: http:

//genode.org/documentation/articles/trustzone
.

from the normal world. This prevents applications running in Android OS from tricking
the user into believing that they are in fact looking at a secure world application (and
possibly entering sensitive information such as a PIN). So this feature provides local
attestation as discussed in section 2.2 on page 8.

4.1.3 TLR

Microsoft also created an architecture for running applications in a secure environment
using TrustZone. To do this they created the Trusted Language Runtime (TLR) which
is based on the .NET MicroFramework runtime [50]. The Trusted Language Runtime
supports multiple trustboxes in the secure world OS. This are isolated containers that
house a trustlet as shown in figure 4.3 on page 55.

TLR does not provide remote attestation itself. The authors note that this could
be achieved, however, it is omitted because the authors note that devices are usually
initialized by the device manufacturer in an environment that could be secured. The
device manufacturer can generate a (non-exportable) key pair in a trustlet in the TEE
during initialization in the factory and sign the public key of this key pair to certify its
authenticity. The devices are then shipped from the factory with a trustlet that contains
a key pair and a certificate. This trustlet can be used to provide remote attestation.
The result is that TLR does not have to provide remote attestation, it is provided by a
trustlet which is initialized by the device manufacturer in the secure environment of the
factory [49].

54

http://genode.org/documentation/articles/trustzone
http://genode.org/documentation/articles/trustzone

4 Secure computation

to run them in a trustbox. By splitting an application into a
small trusted component (a trustlet) and a large untrusted
one, the application’s attack surface is reduced. Any ex-
ploitable bug in the untrusted component does not a↵ect
the trusted component’s integrity and confidentiality.

To o↵er its guarantees, the TLR leverages the ARM
TrustZone memory protection and interrupt delivery control
mechanisms, thus reducing the size of its TCB. In addition
to presenting the TLR design, we present an implementation
based on the ARM emulator [5]. While TrustZone technol-
ogy is available for many ARM chips, it is often left disabled
by the firmware. Finally, our paper discusses some of the
open issues with building trusted computing runtimes on a
smartphone that our experience with TLR has unraveled.

2. THE TLR ARCHITECTURE
TLR is motivated by three high-level design goals:

1. Security. The trusted computing base (TCB) of the
TLR should not include the operating system and most ap-
plication code running on the smartphone. None of this un-
trusted code should be able to interfere with or even inspect
trusted code running inside the TLR.
2. Ease of programmability. The e↵ort to build trusted
applications with the TLR should be low. Programming in
TLR should be as simple as programming any of today’s
managed code environments such as Java or .NET.
3. Compatible with legacy software environments.
Running the TLR should not require a redesign of today’s
legacy operating systems or other legacy software running
on the smartphone.

2.1 High-Level Design
TLR provides two execution environments: an untrusted

one where the smartphone’s OS and most application soft-
ware runs, and a trusted one. The code running in the
trusted environment is isolated from any code running in
the untrusted “world”. Untrusted code cannot inspect or
modify the trusted code. To enable interaction, the TLR
provides a secure communication channel between the two
environments. The TLR ensures both integrity and confi-
dentiality for code and data inside the trusted environment.

The trusted world o↵ers a language runtime with minimal
library support: in our implementation we o↵er the .NET
Micro Framework [1]. We find that a resource-constrained
runtime environment o↵ers enough flexibility to accommo-
date the trusted computing needs of mobile applications
while keeping the TCB of the TLR small. With the TLR,
a developer needs to partition a mobile application in two
components: a small-sized trusted component that can run
on the resource-constrained runtime of the trusted world,
and a large-sized untrusted component that implements
most of the application’s functionality. This partitioning
process is similar in spirit to previous work on privilege sep-
aration [7] and partitioning of applications for improved se-
curity in distributed systems [8].

Figure 1 illustrates the TLR’s high-level design. To meet
our goals, we provide four primitives in designing the TLR:

1. Trustbox. A trustbox is an isolation environment that
protects the integrity and confidentiality of any code running
inside, as well as its state. The smartphone’s OS (or any
untrusted application code) cannot tamper with the code
running in a trustbox nor inspect its state.

!""#$%#

&'()&*+,#
$%#

-!'./!'0#

(12345267#/8397# &345267#/8397#

+"0'!&:;<#
)=)&0>#

&'()&?0&#

!"#$!%&'()*+#)+%'"#*!,-%'

&'()&*+,#
$@#

&'()&?0&#
.'

!""#$@# A#

Figure 1: High-level architecture of TLR.

2. Trustlet. A trustlet is a class within an application that
runs inside a trustbox. The trustlet specifies an interface
that defines what data can cross the boundary between the
trustbox and the untrusted world. The .NET runtime’s use
of strong types ensures that the data crossing this boundary
is clearly defined.
3. Platform identity. Each device that supports the
TLR must provide a unique cryptographic platform iden-
tity. This identity is used to authenticate the platform and
to protect (using encryption) any trusted application and
data deployed to the platform. Our implementation uses a
public/private key pair. Access to the private key is pro-
vided solely to the TLR which never reveals it to anyone.
4. Seal/Unseal data. These abstractions serve two roles:
(1) a trustlet can persist state across reboots, and (2) a re-
mote trusted party (i.e., a trusted server) can communicate
with a trustlet securely. Sealing data means that data is
encrypted and bound to a particular trustlet and platform
before it is released to the untrusted world. The TLR un-
seals data only to the same trustlet on the same platform
that originally sealed it. The trustlet’s identity is based on
a secure hash of its code.

2.2 Typical Development Scenario
To build a trusted mobile application with the TLR, a

developer typically performs the following three steps:

1. Determine which part of an application handles
sensitive data. To define a trustlet, the developer identifies
the application’s sensitive data, and separates the program
logic that needs to operate on this data into the trustlet. The
developer carefully defines the public interface to the trust-
let’s main class, as this interface controls what data crosses
the boundary between the trusted and untrusted worlds. A
trustlet may use many helper classes, and in fact may even
consist of multiple assemblies, yet there is only one class that
defines the trustlet’s boundary. Once all necessary classes
are compiled into assemblies, the developer runs a TLR post-
compilation tool for creating a package that contains the
closure of the assemblies, and a manifest.
2. Seal the sensitive data by binding it to the trust-
let. Although any application developer can encrypt data
without the help of the TLR, the TLR provides special en-
cryption primitives called seal and unseal [15]. These op-
erations allow a developer to encrypt (seal) an object such
that it can only be decrypted (unsealed) on a specific smart-
phone platform, by a specific trustlet. Both the platform and
trustlet identities are specified at seal time: a unique pub-
lic/private keypair for the platform, and a secure hash (e.g.,
SHA-1) of the trustlet assemblies. To recover sealed data,
the TLR decrypts the sealed data using the platform key,

Figure 4.3: Architecture of TLR. Source: [49]

In contrast to SieraTEE and Genode, TLR provides no possibilities to communicate
directly with the the local user via local devices such as the display and the touchscreen.
Communication with local devices is handled by the OS running in the normal world.
This OS can be exploited and communication from TLR via the normal world to the
devices can be intercepted and modified. This means that local attestation is not possible
and getting user-input in a secure way is impossible. Both showing output to the user
and receiving input from the user are handled by the operating system running in the
normal world which could be compromised.

4.1.4 Other platforms

Another alternative solution to provide secure computation is use of the Secure Element
(SE). A comparison between the Secure Element (SE) and a TrustZone-based TEE is
already made in chapter 3 in section 14 on page 14.

4.2 Use cases

This section provides a number examples how the security of certain use cases can be
enhanced by using secure computation on mobile devices. While we focus here on Android
devices, the underlying hardware on other mobile platforms is very comparable: Both
Apple iPhones (and iPads), Windows Phone devices and Android devices use ARM
processors. So the examples can possibly very easily be ported to other mobile operating
systems. We assume that a secure world OS provides a TEE which is comparable to
Genode in section 4.1.2 and that this secure world OS is running in the secure world
to provide secure computation. What is particularly interesting about this solution,
as discussed earlier, is that it provides local attestation and that can communicate
directly with the user by interfacing with touchscreen driver from the secure world.
We also assume that trustlets can be installed in the TEE by uploading a file to the
environment that is signed by a entity of which the public key is stored securely in the
environment. A key pair is stored in the TEE to allow authentication of the device. We
call this key pair the device key pair. This key pair can not be extracted. A certificate

55

4 Secure computation

confirming the authenticity of the public key is signed by the hardware manufacturer
during initialization. In this section we call the application running in the normal world
under Android OS the app or mobile application and the application running in the
TEE in a container that protects the confidentiality and integrity of the data within the
trustlet.

Additionally we discuss two existing uses of secure computation on mobile platforms using
TrustZone technology. The first is the Samsung Knox 2 system designed by Samsung. This
system adds security features for corporate use to Android OS. The second is DRM (Digital
Rights Management) which is available on most Android platforms.

4.2.1 Mobile banking

The TEE can be used to secure mobile banking on mobile devices. In a mobile banking
app the users of a bank can view their transaction history and submit new transactions.
After installation the user has to register his device at the bank. This is usually
done on the banks website or from the application using some form of an one-time-
password or signature that is generated on a secure device. After registration the banking
application is protected by a PIN of 4 to 6 digits that the user has to enter to unlock
the application and to confirm transactions. Some banks require additional confirmation
for transactions depending on the risk profile of the transaction. A mobile banking
application generally has a number of requirements that need to be achieved in order to
secure the app:

• Only the device that was registered and only the user of the device should be able
to submit valid transactions.

• The application should provide local attestation such that the user knows he is
entering his PIN in a authentic application.

These requirements can be achieved in a secure way by using the TEE. Beside the mobile
banking app in Android OS a trustlet is installed in the TEE that handles sensitive tasks.
The user, as usual, registers the application after installation with the bank. During
registration a key pair is generated by the trustlet. The public key of this key pair should
be associated with the user or the back account of the user by the bank in a secure way.
The actual implementation of this may differ depending on the token that is used by the
bank.

Communication with the bank is handled by the banking application running under
Android OS. When the user wants to transfer money he enters the transaction details
in a dialog in the application. This transaction details are then send to the trustlet to
be confirmed by the user. The trustlet shows the transaction details and asks the user
to confirm. The most simple way to confirm is by simply showing a confirm and cancel
button. However, this setup may be prone to attacks where an attacker gains physical
control over the phone and can create transactions. To make this physical attack harder

56

4 Secure computation

the user could be asked for a PIN that he could choose himself during device registration.
Of course an attacker may still be able to change, for example, the amount of the
transaction in the data that is send to the trustlet from the application. A wrong amount
or destination, however, will then be displayed by the trustlet. The user may not notice
this and confirm the transaction anyway. To reduce this risk the user can be asked to
enter for example the amount of the transaction for confirmation.

After confirmation the trustlet signs the transaction using the private key and provides
it to the application to be send to the bank. The signed transaction is checked by the
bank by using the registered public key and, if valid, executed. An attacker can change
the signed transaction data. However, this will render the signature invalid. Note that
care should be taken to prevent replay attacks. A possible approach can be to add a
timestamp or a counter in the transaction data.

To provide local attestation the user should be able to check whether the transaction
confirmation dialog is actually from the trustlet in the TEE or whether it is from
some phishing app. This can be achieved by using a TEE that can indicate when
the display is controlled by a certain trustlet and when the Android is controlling the
display.

4.2.2 Mobile payments and ticketing

In the use case of mobile banking the genuine user is generally not considered as an
attacker, he has generally no incentive to attack the application (although this may not
be completely true if the bank has to refun the damages due to fraud). However, in
mobile payment and ticketing use cases the user himself may profit from attacks on
his mobile device. For example he could try to attack the system to get free access to
transportation or to pay at a point-of-sale (PoS) without actually paying. Also in these
use cases where the user of the phone itself is the attacker the TEE can provide a secure
solution.

Using the device key pair stored in the TEE a mobile payment provider or ticketing
provider can set up a secure channel with the TEE to send data and code to the TEE.
This data can only be decrypted in the TEE using the device key pair that can not be
extracted. For example a mobile payment provider could have an application that first
asks the TEE for its certificate for the device key pair. The payment provider verifies
that this is a valid signature signed by the device manufacturer. It then encrypts and
sends the trustlet code and data needed to perform a payment using the public key of
the TEE. Because only the TEE has the private key, only the TEE can decrypt this.
The trustlet can now for example communicate over NFC with a payment terminal. This
can be done either directly from the TEE if there is support for this or by using a secure
tunnel that runs through Android OS.

The architecture between such solution is very comparable to a setup where the UUIC
(SIM) is used as Secure Element. However, in contrast to a Secure Element-based solution

57

4 Secure computation

the trustlet can securely ask for user-input such as a confirmation that a transaction
should be executed or a PIN to ensure that the owner is present.

Note that, to ensure confidentiality, the integrity of the TEE should be ensured. Fur-
thermore to provide a secure platform the confidentiality and integrity of all data and
code stored within the TEE should be ensured, even between trustlets within the TEE.
The payment provider has to put his trust in the TEE as he stores information such as
keys in the TEE that should be kept secret. However, using secure boot as discussed
in section 2.2.1 on page 10 the integrity of the TEE can be ensured. In such a secure
setup the integrity and authenticity of the TEE code is protected by signatures that
are checked upon booting. By validating the code of the secure world OS the payment
provider can be ensured that the TEE has no security issues. This can be simplified by
using a small TCB, so that less code has to be checked.

To simplify the adaption of the TEE for payment and ticketing providers a JavaCard-
compatible runtime could be designed for the TEE. This allows the providers to push
the code they already have for JavaCard based smart cards into the TEE without any
modifications. By defining some additional interfaces for the runtime they can slowly
adapt to an interactive solution by asking the user for input on the device. This user
input can increase the security of such solution, for example entering a PIN on a mobile
device running a TEE may be more secure than entering a PIN on the point-of-sale
terminal.

4.2.3 Secure communication

A third use case is secure communication between users. For example a setup can be
created where PGP [62] is used to secure communications between users. A trustlet is used
to generate two key pairs for signing messages and receiving encrypted messages. Both
key pairs are stored in a trustlet in the TEE. The most secure solution is a setup where,
when the users receives a message, the trustlet decrypts the message using the private
key stored in the TEE and shows the contents of the messages directly from the trustlet.
When the user wants to send a message he enters it in the trustlet and the trustlet
signs the message and encrypts it using the addressees public key. A PKI (Public Key
Infrastructure) can be used to bind the public keys of parties to their identity. Another
solution is to use a web-of-trust as used in PGP. In this web-of-trust parties meet (often
face-to-face) to confirm their public keys. After confirming they sign a kind of certificate
that confirms that they confirmed the public key of a party.

A comparable setup can also be used for voice and/or video communication. When
calling a certain party, both parties provide a certificate that binds their public key
to their identity. Using these certificates a secure connection is setup between the two
parties that prevents eavesdropping. The certificates also ensure that the authenticity of
each party is ensured. Next the trustlet directly accesses the speaker and microphone

58

4 Secure computation

(and display and camera for video communication) of the device. This also prevents the
Android OS from accessing these devices while the call is active.

4.2.4 DRM

As discussed in the introduction, recent Android versions have a trustlet to allows Android
devices to play DRM-protected media. The trustlet runs on a proprietary secure world
operating system created by Trustonic. According to a presentation from Trustonic [36]
Android devices provide a complete solution which allows the whole video-path to be
handled by a TrustZone application. This means that the encoded video packets are
received by the Android OS and directly provided to the trustlet. Keys for decryption
are either hard-coded using white-box cryptography or established. The trustlet then
sequentially decrypts, decodes and renders the video in the secure world. Using this
architecture the decrypted video can not be intercepted to be stored, it never leaves the
secure world.

4.2.5 Samsung Knox

Samsung Knox is a set of features developed by Samsung to improve the security of
mobile devices for corporate use. It allows users of corporate phones to use the phone
both for personal and corporate use without endangering the security of data stored
in the corporate applications. Knox does this by offering multiple environments to the
user, which look like separate Android systems. Typically an environment is provided for
personal use and an environment is provided for business use. Knox is available on the
latest (non-budget) phones produced by Samsung, such as the Samsung Galaxy S4 and
Samsung Galaxy S5. It can not be installed on other Android phones. There are two
versions of Knox: Knox 1.0 and Knox 2.0. In this section we will focus on Samsung Knox
2.0. Samsung does not give much details about how it implemented its features. However,
it provides one page7 on their website with some technical details. We will analyze these
here and relate them with secure computation on the TEE.

The first feature of Samsung Knox is trusted and secure boot. This is actually largely
based on secure boot as discussed in section 2.2.1. All firmware on the device is signed and
these signatures are verified during boot to ensure that the device is booting from a valid,
genuine image. Trusted boot ensures that data stored in the TEE can not be extracted
when the validity of the firmware is not verified or not valid.

SELinux is used in all Android versions since 4.3 to limit the damage that a malicious
application running in Android can do [51]. However, according to the Samsung webpage,
SELinux assumes that the integrity of the kernel is not compromised. To ensure this
Samsung added TIMA (TrustZone-based Integrity Measurement Architecture). TIMA
regularly checks the integrity of the Android kernel by inspecting the memory from the

7https://www.samsungknox.com/en/solutions/knox/technical

59

https://www.samsungknox.com/en/solutions/knox/technical

4 Secure computation

TEE and it verifies the integrity of kernel modules when they are loaded. According
to Samsungs documentation TIMA also provides a key store protected by hardware-
based security comparable to the AndroidKeyStore discussed in chapter 3 to store key
pairs and certificates. Which secure world operating system is used by Samsung is
unclear.

According to Samsung’s documentation the data stored in the different Android environ-
ments offered by Knox (called containers) are individually encrypted using an AES-256 key.
The encryption key is derived from a user-provided password using PBKDF2 [31]. Sam-
sung does not provide any information that could indicate that the TrustZone-technology
such as their TIMA is used for this purpose.

There is not much (public) research available about the security of Samsung Knox.
Researchers from Ben-Gurion University Cyber Security Labs reported on their website
that they found an vulnerability in Knox that allowed for a man-in-the-middle attack [8].
However, they provide no exact details and the Samsung denied the vulnerability in a
official response [48].

4.3 Conclusion

Using currently available open source software such as SierraTEE in section 4.1.1 or
Genode in section 4.1.2 and the TrustZone features available on many mobile platforms
a TEE can be build to provide secure computation. Microsoft Research describes a
framework and architecture for secure computation using TLR as discussed in section 4.1.3.
An (open source) implementation of this framework is not provided.

Mobile payments and ticketing, mobile banking and secure communication can all benefit
security-wise from secure computation as shown in the use cases. The possibilities of the
TEE provide developers with better ways to secure applications. For mobile payments
and ticketing the TEE can replace the smart cards that are currently used. This process
can be simplified by providing a JavaCard implementation for the TEE. This would allow
providers to run their implementations they designed for JavaCard smart cards in the
TEE without any modifications. By adding the possibilities of the TEE to communicate
with the user via secure input and output the security of existing solutions can be
improved.

The current features implemented by Samsung as part of their Knox solution are also
interesting. Especially the TIMA application running in the TEE that verifies the integrity
of the Android OS kernel and kernel modules could provide some additionally security to
Android systems to prevent exploits from causing any damage. This is also provided by
Sierraware in their SierraTEE as discussed in section 4.1.1.

60

5 Conclusion

In Chapter 3 different key store solutions available on different versions of Android OS
and different hardware are analyzed. The Bouncy Castle is key store is protected by
software-based security. It is available on all Android devices and all versions of Android
OS. The key store does not depend on any hardware features. The AndroidKeyStore

is only available on devices running Android 4.3 or later. There are two versions of the
AndroidKeyStore, a version that is secured by hardware-based security features by using
a trustlet in the TEE, and a version that is only protected by using software-backed
security. The software-backed version is only available as fallback if no hardware to
support a hardware-backed version is available. While there is no actual implementation
of a Secure Element as key storage platform this is also analyzed as it could be used as
key store platform. The following results are found:

• For the Bouncy Castle key store the security guarantees are as expected from a key
store that is only protected by software. No vulnerabilities are found. However,
care should be taken by the programmer how and where to store the actual key
store. This is left to the programmer to decide, and mis-usage could case security
issues. The Bouncy Castle library allows the key store to be encrypted using
an user-provided password. This may, however, not always be possible do to for
example usability constrains. Therefore two use cases are analyzed, with and
without an user-provided password. When used as recommended (see Section 3.9.1
for the recommendations) the Bouncy Castle key store ensures the confidentiality
and integrity of keys stored within the store in both cases for attackers that do not
have root credentials.

For the user-provided password use case the attacker has to learn the password
to violate the integrity and confidentiality of the key store. This password is not
stored in plain text on the device. So it can only be learned by inspecting either the
memory of the device when the user enters his password or by learning the password
in another way (such as shoulder surfing). Therefore the conclusion is that if an
user-provided password is used for the Bouncy Castle key store an attacker needs
root credentials and the ability to learn the password by inspecting for example
memory to violate the integrity and confidentiality of the key store.

If no user-provided password is used the password is assumed to be stored somewhere
on the system. Since an attacker with root credentials can inspect the whole
filesystem he can learn this password and use it. Therefore if no user-provided
password is used, an attacker with root credentials can violate the integrity and

61

5 Conclusion

confidentiality of the the key store. The use case with an user-provided password
also provides the possibility the require user-consent for using a key from the key
store. Without an user-provided password this is not possible.

• The results for the AndroidKeyStore, however, are more surprising. This key
store offers an interface to communicate with a trustlet in the TEE on the mobile
device. This allows for key storage that is protected by hardware-based security
features. The AndroidKeyStore uses a separate service in Android OS for handling
key storage operations. Applications communicate with this service using inter-
process communication. The AndroidKeyStore stores all (possibly encrypted) key
data in a single directory. The allocation of keys to application is controlled by
embedding the user-id of the application in the filename of the key-file. However,
the analysis showed that regardless of the fact that the keys are hardware-backed,
keys can be assigned to other applications within the same phone by an attacker
that has root privileges. This is simply a matter of renaming the files stored in the
AndroidKeyStore directory.

Both the hardware-backed solution on Qualcomm devices and on Texas Instruments
devices use an application in the TEE created using TrustZone technology to run
cryptographic operations using the keys. The key data is encrypted using a device-
specific symmetric key that can only be accessed from TEE in the secure world.
The result is that the keys can not be extracted from the device to be used on
another device. Since an attacker can use the key on the device by allocating it
to an application controlled by the attacker the effect of the hardware-backed key
storage is effectively nullified. An attacker can make an oracle that he can query to
do cryptographic operations using the keys stored on the device. The conclusion is
that the hardware-backed AndroidKeyStore solutions do bind keys to the device.
However, keys are not bond to an application on the device.

The software-backed AndroidKeyStore provides no binding to the device nor to
the application. What is even more surprising is that, if no PIN is used to
unlock the device, the private key data is not encrypted by the software-backed
AndroidKeyStore. This means that an attacker that gains root credentials can
read the private keys stored in the AndroidKeyStore without any effort. When a
PIN is required to unlock the device, it is used to encrypt the keys stored in the
AndroidKeyStore. To decrypt the keys an attacker has to learn the PIN. Since PINs
may be of low entropy they may be brute-forced by the attacker. Another option
is to learn the PIN from memory while it is entered or learn it by shoulder-surfing.

The conclusion is that secure key storage on Android is protected against attackers that do
not have root credentials. When a attacker gains root credentials the AndroidKeyStore

solutions are not app-bound, since keys can then be assigned to other applications by
the attacker. While the TEE-based solution on Qualcomm and TI devices ensure that
keys are device-bound, a oracle can be created by an attacker to run key-operations
with the private keys stored on the device at will. So the effective protection of key

62

5 Conclusion

data is limited. A more detailled overview of the results can be found in Section 3.8 on
page 45.

To see what is possible in the future and how the TrustZone technology can be used
(apart from key storage) we looked at a number of operating systems that could run
in the secure world in chapter 4. In this chapter we also discuss a number of use cases
for the TEE, both existing solutions and new implementations. We see that there are a
number of operating systems either specially build to be run in the secure world (such as
SierraTEE and TLR). Others (such as Genode) are suited to be run in the secure world.
Genode is particularly interesting because it offers a working solution with Android and
it solves the problem of local attestation by disallowing Android to directly write to the
display controller.

By using the features and security properties of the TEE provided by the Genode secure
world operating system anumber of use cases can be secured. In section 4.2 we discuss
how mobile banking, mobile payments and secure communication can be secured by
using the TEE. On recent Android versions the TEE is used to securely decrypt and play
DRM protected media. Samsung Knox platform also makes use of the TEE. While the
implementation of Samsung Knox is closed source, Samsung does provide some details in
their documentation. According to this documentation Samsung uses the TEE for key
storage and for checking the integrity of the kernel.

The conclusion is that a TEE can be build by using open source secure world operating
systems and that there are a number of use cases that can be secured by using the TEE. So
secure computation on Android is possible and it offers possibilities to increase the security
of mobile banking, mobile payments and secure communication. However, the problem
is that device manufacturers control the code that runs in the TEE and decide which
trustlets to run in the TEE. So to run your own trustlets in the TEE you should talk to
every hardware manufacturer of every device you want to support.

5.1 Future work

TrustZone technology allows a trustlet to inspect the memory of the operating system
running in the normal world (in this case Android OS). As discussed in section 3.9.2 on
page 49 an interesting solution could be to control and audit cryptographic operations
using private keys stored in the TEE by a trustlet. This means that the trustlet checks
if an application is allowed to use a certain private key and if the application is not
compromised. A number of questions need to be answered:

• How can a trustlet reliably identify the requesting application in Android OS?

• Can an application running in the TEE reliably audit and control cryptographic
operations in Android OS?

• Is this a secure solution? Can the protection be circumvented by an attacker?

63

5 Conclusion

Another area that could be interesting is the use of the trusted path of the TEE to
interact with the user by means of the display and the touchscreen. As discussed in
section 3.9.2 on page 49 a trustlet can be created that asks the user to confirm requests
of applications to use a private key. A PIN can also be required to confirm a request.
Possible questions to answer in future work are:

• How to prevent applications running in Android OS from mimicking a trustlet?
Or in other words, how to provide local attestation as discussed in Section 2.2 on
page 8? A possible solution could be the solution that the Genode secure world
operating system provides. In the case of Genode, Genode controls the display and
Android OS can only request the TEE to draw certain content on the display. The
question then is whether this is a safe solution? Are there other solutions?

• The TLR paper [50] claims that remote attestation does not have to be provided
by the secure world operating system. The authors describe a situation where a
trustlet for remote attestation is initialized during manufacturing of the device. Is
this a good solution? Can remote attestation indeed be created by using the other
properties of a TEE?

• The security of all solutions that are described in this thesis is depending on the
security of the TEE. How secure is the TrustZone technology and the secure world
operating systems using which a TEE is build? Are the chips resistant to attacks
on the hardware? Can the TEE be attacked from software?

• The analysis of Samsung Knox in this thesis is only based on documentation from
Samsung and one claim that is dismissed by Samsung. It should be possible to
reverse engineer Samsung Knox to learn more about it’s inner workings. This could
give an insigned in how Samsung Knox is implemented and whether it is it secure.

64

Bibliography

[1] About Genode. url: http://genode.org/about/index.

[2] L.M. Adleman, R.L. Rivest, and A. Shamir. Cryptographic communications system
and method. US Patent 4,405,829. Sept. 1983. url: http://www.google.com/
patents/US4405829.

[3] Open Handset Alliance. “Industry leaders announce open platform for mobile
devices”. Press release (2007).

[4] Tiago Alves and Don Felton. “TrustZone: Integrated hardware and software secu-
rity”. ARM white paper 3.4 (2004).

[5] Android 4.4 Feature: NFC Payments No Longer Require Secure Element. url:
http : / / www . androidpolice . com / 2013 / 10 / 31 / tap - that - android - 4 -

4 - feature - nfc - payments - no - longer - require - secure - element - use -

emulation-workaround/.

[6] Android Pin/Password Cracking: Halloween isn’t the Only Scary Thing in October.
url: http://linuxsleuthing.blogspot.nl/2012/10/android-pinpassword-
cracking-halloween.html.

[7] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. “Keying hash functions for
message authentication”. Advances in Cryptology-CRYPTO96. Springer. 1996,
pp. 1–15.

[8] BGU Security Researchers discover Vulnerability in Samsung’s Secure Software on
the Company’s Flagship Device Galaxy S4. Dec. 24, 2013. url: http://in.bgu.
ac.il/en/Pages/news/samsung_breach.aspx.

[9] Building a Secure System using TrustZone Technology. ARM Limited, 2009. url:
http : / / infocenter . arm . com / help / topic / com . arm . doc . prd29 - genc -

009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf.

[10] Cisco 2014 Annual Security Report. url: https://www.cisco.com/web/offer/
gist_ty2_asset/Cisco_2014_ASR.pdf.

[11] TIS Committee et al. “Tool Interface Standard (TIS) Executable and Linking
Format (ELF) Specification Version 1.2”. TIS Committee (1995).

[12] Linux kernel futex local privilege escalation. National Vulnerability Database. June 7,
2014. url: http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-
3153.

[13] Joan Daemen and Vincent Rijmen. “AES proposal: Rijndael” (1998).

65

http://genode.org/about/index
http://www.google.com/patents/US4405829
http://www.google.com/patents/US4405829
http://www.androidpolice.com/2013/10/31/tap-that-android-4-4-feature-nfc-payments-no-longer-require-secure-element-use-emulation-workaround/
http://www.androidpolice.com/2013/10/31/tap-that-android-4-4-feature-nfc-payments-no-longer-require-secure-element-use-emulation-workaround/
http://www.androidpolice.com/2013/10/31/tap-that-android-4-4-feature-nfc-payments-no-longer-require-secure-element-use-emulation-workaround/
http://linuxsleuthing.blogspot.nl/2012/10/android-pinpassword-cracking-halloween.html
http://linuxsleuthing.blogspot.nl/2012/10/android-pinpassword-cracking-halloween.html
http://in.bgu.ac.il/en/Pages/news/samsung_breach.aspx
http://in.bgu.ac.il/en/Pages/news/samsung_breach.aspx
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://www.cisco.com/web/offer/gist_ty2_asset/Cisco_2014_ASR.pdf
https://www.cisco.com/web/offer/gist_ty2_asset/Cisco_2014_ASR.pdf
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-3153
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-3153

Bibliography

[14] Franck B Dahan and Bertrand Cornillault. Secure mode indicator for smart phone
or PDA. US Patent 20,040,123,118. June 2004.

[15] Lucas Davi et al. “Privilege escalation attacks on android”. Information Security.
Springer, 2011, pp. 346–360.

[16] C Ding, D Pei, and A Salomaa. “Chinese remainder theorem: applications in
computing, coding, cryptography” (1996).

[17] John E Dunn. Eurograbber SMS Trojan steals 36 million euro from online banks.
Dec. 2012. url: http://news.techworld.com/security/3415014/eurograbber-
sms-trojan-steals-36-million-from-online-banks/.

[18] Dutch NFC payments trial starts in Leiden. url: http://www.telecompaper.com/
news/dutch-nfc-payments-trial-starts-in-leiden--963975.

[19] Nikolay Elenkov. Accessing the embedded secure element in Android 4.x. Aug. 2012.
url: http://nelenkov.blogspot.nl/2012/08/accessing-embedded-secure-
element-in.html.

[20] Nikolay Elenkov. Jelly Bean hardware-backed credential storage. url: http://
nelenkov.blogspot.nl/2012/07/jelly-bean-hardware-backed-credential.

html.

[21] Nikolay Elenkov. Using ECDH on Android. Dec. 2011. url: http://nelenkov.
blogspot.nl/2011/12/using-ecdh-on-android.html.

[22] William Enck, Machigar Ongtang, and Patrick McDaniel. “Understanding Android
security”. Security & Privacy, IEEE 7.1 (2009), pp. 50–57.

[23] William Enck et al. “A Study of Android Application Security.” USENIX security
symposium. 2011.

[24] Adrienne Porter Felt et al. “A survey of mobile malware in the wild”. Proceedings of
the 1st ACM workshop on Security and privacy in smartphones and mobile devices.
ACM. 2011, pp. 3–14.

[25] Norman Feske. “Introducing Genode”. FOSDEM 2012. 2012.

[26] “FIPS46-3: Data Encryption Standard (DES)”. National Institute of Standards
and Technology 25.10 (1999).

[27] Bert Flier et al. “The changing landscape of the European financial services sector”.
Long Range Planning 34.2 (2001), pp. 179–207.

[28] GlobalPlatform made simple guide: Secure Element. GlobalPlatform. url: http:
//www.globalplatform.org/mediaguideSE.asp.

[29] Host-based Card Emulation. url: http://developer.android.com/guide/

topics/connectivity/nfc/hce.html.

[30] Don Johnson, Alfred Menezes, and Scott Vanstone. “The elliptic curve digital
signature algorithm (ECDSA)”. International Journal of Information Security 1.1
(2001), pp. 36–63.

66

http://news.techworld.com/security/3415014/eurograbber-sms-trojan-steals-36-million-from-online-banks/
http://news.techworld.com/security/3415014/eurograbber-sms-trojan-steals-36-million-from-online-banks/
http://www.telecompaper.com/news/dutch-nfc-payments-trial-starts-in-leiden--963975
http://www.telecompaper.com/news/dutch-nfc-payments-trial-starts-in-leiden--963975
http://nelenkov.blogspot.nl/2012/08/accessing-embedded-secure-element-in.html
http://nelenkov.blogspot.nl/2012/08/accessing-embedded-secure-element-in.html
http://nelenkov.blogspot.nl/2012/07/jelly-bean-hardware-backed-credential.html
http://nelenkov.blogspot.nl/2012/07/jelly-bean-hardware-backed-credential.html
http://nelenkov.blogspot.nl/2012/07/jelly-bean-hardware-backed-credential.html
http://nelenkov.blogspot.nl/2011/12/using-ecdh-on-android.html
http://nelenkov.blogspot.nl/2011/12/using-ecdh-on-android.html
http://www.globalplatform.org/mediaguideSE.asp
http://www.globalplatform.org/mediaguideSE.asp
http://developer.android.com/guide/topics/connectivity/nfc/hce.html
http://developer.android.com/guide/topics/connectivity/nfc/hce.html

Bibliography

[31] Burt Kaliski. RFC 2898; PKCS# 5: Password-Based Cryptography Specification
Version 2.0. 2000.

[32] Stefan Kalkowski. “Virtualization Dungeon on ARM - Hands on experience talk
about virtualization experiments”. FOSDEM 2014. 2014.

[33] D Klugler. “Advance security mechanisms for machine readable travel documents,
Technical report”. Federal Office for Information Security (BSI), Germany (2005).

[34] Neal Koblitz. “Elliptic curve cryptosystems”. Mathematics of computation 48.177
(1987), pp. 203–209.

[35] Sandeep Kumar et al. “How to Break DES for 8,980”. SHARCS06-Special-purpose
Hardware for Attacking Cryptographic Systems (2006), pp. 17–35.

[36] Michael Lu. “TrustZone, TEE and Trusted Video Path Implementation Consid-
erations” (). url: http://www.arm.com/files/event/Developer_Track_6_
TrustZone_TEEs_and_Trusted_Video_Path_implementation_considerations.

pdf.

[37] Mitsuru Matsui. “Linear cryptanalysis method for DES cipher”. Advances in
Cryptology-EUROCRYPT93. Springer. 1994, pp. 386–397.

[38] Jason Mick. ARM to Bake On-Die Security Into Next Gen Smartphone, Tablet,
PC Cores. DailyTech. url: http://www.dailytech.com/ARM+to+Bake+OnDie+
Security+Into+Next+Gen+Smartphone+Tablet+PC+Cores/article24372.htm.

[39] Charlie Miller, Jake Honoroff, and Joshua Mason. “Security evaluation of Apple’s
iPhone”. Independent Security Evaluators 19 (2007).

[40] NFC Research Lab: Devices. url: http://www.nfc-research.at/?id=45.

[41] Notification with regard to electronic signatures in accordance with the Elec-
tronic Signatures Act and the Electronic Signatures Ordinance. url: http :

//www.bundesnetzagentur.de/SharedDocs/Downloads/EN/BNetzA/Areas/

ElectronicSignature / PublicationsNotifications / SuitableAlgorithms /

2013algokatpdf.pdf?__blob=publicationFile&v=4.

[42] NXP’s New Generation SWP-SIM Secure Elements Bests Conventional SIMs with
Increased Security and Performance. url: http://www.nxp.com/news/press-
releases/2012/02/nxp- s- next- generation- swp- sim- secure- element-

bests- conventional- sims- with- increased- security- and- performance-

.html.

[43] Global Platform. “The Trusted Execution Environment: Delivering Enhanced
Security at a Lower Cost to the Mobile Market”. Whitepaper, February (2011).

[44] NIST FIPS Pub. “197”. Announcing the Advanced Encryption Standard (AES)
(2001).

[45] Roland van Rijswijk-Deij and Erik Poll. “Using Trusted Execution Environments
in Two-factor Authentication: comparing approaches”. Open Identity Summit 223
(2013), pp. 20–31.

67

http://www.arm.com/files/event/Developer_Track_6_TrustZone_TEEs_and_Trusted_Video_Path_implementation_considerations.pdf
http://www.arm.com/files/event/Developer_Track_6_TrustZone_TEEs_and_Trusted_Video_Path_implementation_considerations.pdf
http://www.arm.com/files/event/Developer_Track_6_TrustZone_TEEs_and_Trusted_Video_Path_implementation_considerations.pdf
http://www.dailytech.com/ARM+to+Bake+OnDie+Security+Into+Next+Gen+Smartphone+Tablet+PC+Cores/article24372.htm
http://www.dailytech.com/ARM+to+Bake+OnDie+Security+Into+Next+Gen+Smartphone+Tablet+PC+Cores/article24372.htm
http://www.nfc-research.at/?id=45
http://www.bundesnetzagentur.de/SharedDocs/Downloads/EN/BNetzA/Areas/ElectronicSignature/PublicationsNotifications/SuitableAlgorithms/2013algokatpdf.pdf?__blob=publicationFile&v=4
http://www.bundesnetzagentur.de/SharedDocs/Downloads/EN/BNetzA/Areas/ElectronicSignature/PublicationsNotifications/SuitableAlgorithms/2013algokatpdf.pdf?__blob=publicationFile&v=4
http://www.bundesnetzagentur.de/SharedDocs/Downloads/EN/BNetzA/Areas/ElectronicSignature/PublicationsNotifications/SuitableAlgorithms/2013algokatpdf.pdf?__blob=publicationFile&v=4
http://www.bundesnetzagentur.de/SharedDocs/Downloads/EN/BNetzA/Areas/ElectronicSignature/PublicationsNotifications/SuitableAlgorithms/2013algokatpdf.pdf?__blob=publicationFile&v=4
http://www.nxp.com/news/press-releases/2012/02/nxp-s-next-generation-swp-sim-secure-element-bests-conventional-sims-with-increased-security-and-performance-.html
http://www.nxp.com/news/press-releases/2012/02/nxp-s-next-generation-swp-sim-secure-element-bests-conventional-sims-with-increased-security-and-performance-.html
http://www.nxp.com/news/press-releases/2012/02/nxp-s-next-generation-swp-sim-secure-element-bests-conventional-sims-with-increased-security-and-performance-.html
http://www.nxp.com/news/press-releases/2012/02/nxp-s-next-generation-swp-sim-secure-element-bests-conventional-sims-with-increased-security-and-performance-.html

Bibliography

[46] Ronald L Rivest, Adi Shamir, and Len Adleman. “A method for obtaining digital
signatures and public-key cryptosystems”. Communications of the ACM 21.2 (1978),
pp. 120–126.

[47] Michael Roland. “Software card emulation in NFC-enabled mobile phones: Great
advantage or security nightmare”. Fourth International Workshop on Security and
Privacy in Spontaneous Interaction and Mobile Phone Use (IWSSI/SPMU 2012).
2012, p. 6.

[48] Samsung’s official response to the recent article on KNOX vulnerability. Jan. 9, 2014.
url: https://www.samsungknox.com/en/blog/samsungs-official-response-
recent-article-knox-vulnerability.

[49] Nuno Santos et al. “Trusted language runtime (TLR): enabling trusted applications
on smartphones”. Proceedings of the 12th Workshop on Mobile Computing Systems
and Applications. ACM. 2011, pp. 21–26.

[50] Nuno Santos et al. “Using ARM Trustzone to Build a Trusted Language Runtime
for Mobile Applications”. Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and Operating Systems. ASPLOS
’14. Salt Lake City, Utah, USA: ACM, 2014, pp. 67–80. isbn: 978-1-4503-2305-5.
doi: 10.1145/2541940.2541949. url: http://doi.acm.org/10.1145/2541940.
2541949.

[51] SE for Android. url: http://selinuxproject.org/page/SEAndroid.

[52] Victor Shoup. “A proposal for an ISO standard for public key encryption (version
2.1)”. IACR E-Print Archive 112 (2001).

[53] SierraTEE for ARM TrustZone. url: http://www.sierraware.com/open-

source-ARM-TrustZone.html.

[54] Data Encryption Standard. “Federal Information Processing Standards Publication
46”. National Bureau of Standards, US Department of Commerce (1977).

[55] System Permissions. url: http://developer.android.com/guide/topics/

security/permissions.html.

[56] Henk CA Van Tilborg. Fundamentals of cryptology. Kluwer Academic Publishers,
2000.

[57] Amit Vasudevan et al. “Trustworthy Execution on Mobile Devices: What security
properties can my mobile platform give me?” Trust and Trustworthy Computing.
Springer, 2012, pp. 159–178.

[58] White Paper: An Overview of Samsung KNOX. url: http://www.samsung.com/
se/business-images/resource/2013/samsung-knox-an-overview/%7B3%7D/

Samsung_KNOX_whitepaper-0-0-0.pdf.

[59] Johannes Winter. “Trusted computing building blocks for embedded linux-based
ARM trustzone platforms”. Proceedings of the 3rd ACM workshop on Scalable
trusted computing. ACM. 2008, pp. 21–30.

68

https://www.samsungknox.com/en/blog/samsungs-official-response-recent-article-knox-vulnerability
https://www.samsungknox.com/en/blog/samsungs-official-response-recent-article-knox-vulnerability
http://dx.doi.org/10.1145/2541940.2541949
http://doi.acm.org/10.1145/2541940.2541949
http://doi.acm.org/10.1145/2541940.2541949
http://selinuxproject.org/page/SEAndroid
http://www.sierraware.com/open-source-ARM-TrustZone.html
http://www.sierraware.com/open-source-ARM-TrustZone.html
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/topics/security/permissions.html
http://www.samsung.com/se/business-images/resource/2013/samsung-knox-an-overview/%7B3%7D/Samsung_KNOX_whitepaper-0-0-0.pdf
http://www.samsung.com/se/business-images/resource/2013/samsung-knox-an-overview/%7B3%7D/Samsung_KNOX_whitepaper-0-0-0.pdf
http://www.samsung.com/se/business-images/resource/2013/samsung-knox-an-overview/%7B3%7D/Samsung_KNOX_whitepaper-0-0-0.pdf

Bibliography

[60] Marc Witteman. “Advances in smartcard security”. Information Security Bulletin
7.2002 (2002), pp. 11–22.

[61] Yajin Zhou and Xuxian Jiang. “Dissecting android malware: Characterization and
evolution”. Security and Privacy (SP), 2012 IEEE Symposium on. IEEE. 2012,
pp. 95–109.

[62] Philip R Zimmermann. The official PGP user’s guide. MIT press, 1995.

69

Appendix 1: KeyStorageTest MainActivity

Listing 1: MainActivity.java
1 package com.simplendi.KeyStorageTest;
2

3 import android.app.Activity;
4 import android.os.Build;
5 import android.os.Bundle;
6 import android.security.KeyChain;
7 import android.security.KeyPairGeneratorSpec;
8 import android.util.Log;
9 import android.view.View;

10 import android.widget.TextView;
11

12 import javax.security.auth.x500.X500Principal;
13 import java.math.BigInteger;
14 import java.security .*;
15 import java.security.cert .*;
16 import java.util .*;
17

18 public class MainActivity extends Activity {
19 // Tag used for identifying this Activity in the logs
20 private final static String TAG = "KeyStorageTest";
21 // Asymmetric algorithm to use for testing
22 private final static String KEY_ALGORITHM = "RSA";
23 // Signature algorithm to use
24 private final static String SIGNATURE_ALGORITHM = "SHA512WithRSA";
25 // Alias of the key to be used
26 private final static String KEY_ALIAS = "TestKeyPair";
27 // Define the algorithms to check if they are supported by the app
28 private final static ArrayList <String > algorithmsToCheck = \
29 new ArrayList <String >() {{
30 add("RSA");
31 add("EC");
32 add("DSA");
33 }};
34 // The reference to the view in the activity that shows the log
35 private TextView logView;
36 // Reference to the AndroidKeyStore
37 private KeyStore androidKeyStore;
38

39 /**
40 * Called when the activity class is constructed.
41 */
42 @Override
43 public void onCreate(Bundle savedInstanceState) {
44 super.onCreate(savedInstanceState);
45 setContentView(R.layout.main);
46 logView = (TextView) findViewById(R.id.consoleTextVIew);
47

48 try {
49 androidKeyStore = KeyStore.getInstance("AndroidKeyStore");
50 androidKeyStore.load(null);
51 } catch (Exception exception) {
52 writeToLog(exception.toString ());
53 }
54

55 doStartUpChecks ();
56 }
57

58 /**
59 * Do a number of checks when the Activity is launched.

70

Bibliography

60 */
61 private void doStartUpChecks () {
62 writeToLog("*** Checking supported algorithms ***");
63 for(String algorithm : algorithmsToCheck) {
64 if (KeyChain.isKeyAlgorithmSupported(algorithm)) {
65 if (KeyChain.isBoundKeyAlgorithm(algorithm)) {
66 writeToLog("Algorithm " +algorithm+ " is bound to device");
67 } else {
68 writeToLog("Algorithm " +algorithm+ " is not bound to device");
69 }
70 } else {
71 writeToLog("Algorithm " +algorithm+ " is not supported");
72 }
73 }
74

75 writeToLog("*** Checking stored keys ***");
76

77 try {
78 Enumeration <String > keyStoreAliases = androidKeyStore.aliases ();
79 while(keyStoreAliases.hasMoreElements ()) {
80 String keyStoreAlias = keyStoreAliases.nextElement ();
81 writeToLog("Found alias: " + keyStoreAlias);
82 try {
83 X509Certificate certificate = (X509Certificate) \
84 androidKeyStore.getCertificate(keyStoreAlias);
85 PrivateKey privateKey = (PrivateKey) \
86 androidKeyStore.getKey(keyStoreAlias , null);
87 writeToLog("\tAlgorithm: " \
88 +privateKey.getAlgorithm ());
89 writeToLog("\tSubject: " \
90 +certificate.getSubjectDN ().toString ());
91 writeToLog("\tNot Before: " \
92 +certificate.getNotBefore ().toString ());
93 writeToLog("\tNot After: " \
94 +certificate.getNotAfter ().toString ());
95

96 } catch (Exception exception) {
97 writeToLog(exception.toString ());
98 }
99 }

100 } catch (Exception exception) {
101 writeToLog(exception.toString ());
102 }
103 }
104

105 /**
106 * Write a message to the log. Writes to both the the view and
107 * the logcat log
108 * @param message
109 */
110 private void writeToLog(String message) {
111 logView.append(message + "\n");
112 Log.d(TAG , message);
113 }
114

115 /**
116 * Called when the "Generate Key" button is clicked.
117 * @param view
118 */
119 public void onGenerateKeyButtonClick(View view) {
120 KeyPairGenerator rsaKeyGen;
121 writeToLog("*** Generating key ***");
122

123 try {
124 rsaKeyGen = \
125 KeyPairGenerator.getInstance(KEY_ALGORITHM , "AndroidKeyStore");
126 } catch (Exception exception) {
127 writeToLog(exception.toString ());
128 return;
129 }
130

131 KeyPairGeneratorSpec rsaKeyGenSpec;
132 if(Build.VERSION.RELEASE.startsWith("4.4")) {
133 rsaKeyGenSpec = new KeyPairGeneratorSpec.Builder(this)

71

Bibliography

134 .setAlias(KEY_ALIAS)
135 .setSubject(new X500Principal("CN=test"))
136 .setSerialNumber(new BigInteger("1"))
137 .setStartDate(new Date())
138 .setEndDate(new GregorianCalendar (2015, 0, 0).getTime ())
139 .setKeySize (2048)
140 .build();
141 } else {
142 rsaKeyGenSpec = new KeyPairGeneratorSpec.Builder(this)
143 .setAlias(KEY_ALIAS)
144 .setSubject(new X500Principal("CN=test"))
145 .setSerialNumber(new BigInteger("1"))
146 .setStartDate(new Date())
147 .setEndDate(new GregorianCalendar (2015, 0, 0).getTime ())
148 .build();
149 }
150

151 try {
152 rsaKeyGen.initialize(rsaKeyGenSpec);
153 } catch (InvalidAlgorithmParameterException exception) {
154 writeToLog(exception.toString ());
155 return;
156 }
157

158 rsaKeyGen.generateKeyPair ();
159 writeToLog("Done");
160

161 }
162

163 /**
164 * Called when the "Delete" button is clicked.
165 */
166 public void onDeleteKeyButtonClick(View view) {
167 try {
168 androidKeyStore.deleteEntry(KEY_ALIAS);
169 } catch (KeyStoreException exception) {
170 writeToLog(exception.toString ());
171 }
172 }
173

174 /**
175 * Called when the "Sign Data" button is clicked.
176 * @param view
177 */
178 public void onSignDataButtonClick(View view) {
179 writeToLog("*** Signing data ***");
180 try {
181 Signature testKeySignature = \
182 Signature.getInstance(SIGNATURE_ALGORITHM);
183 PrivateKey testPrivateKey = (PrivateKey) \
184 androidKeyStore.getKey(KEY_ALIAS , null);
185 testKeySignature.initSign(testPrivateKey);
186 testKeySignature.update("TestTestTest".getBytes ());
187 byte[] signature = testKeySignature.sign();
188

189 Signature testKeySignatureVerf = \
190 Signature.getInstance(SIGNATURE_ALGORITHM);
191 testKeySignatureVerf.initVerify(\
192 androidKeyStore.getCertificate(KEY_ALIAS));
193 testKeySignatureVerf.update("TestTestTest".getBytes ());
194 if (testKeySignatureVerf.verify(signature)) {
195 writeToLog("Signature is valid");
196 } else {
197 writeToLog("Invalid signature");
198 }
199

200 } catch (Exception exception) {
201 writeToLog(exception.toString ());
202 }
203 }}

72

	Executive Summary
	Introduction
	Problem statement
	Research questions

	Background
	Cryptography
	Asymmetric cryptography
	Symmetric cryptography

	Trusted Execution Environment
	ARM TrustZone
	Secure world operating systems and the TEE
	Alternatives providing secure computation

	The Android operating system

	Secure key storage
	APIs providing key storage
	Method
	Introduction
	Criteria
	Evaluation

	Key storage using Bouncy Castle
	Evaluation
	Background

	Key storage using AndroidKeyStore using the TEE on Qualcomm devices
	Evaluation
	Background

	Key storage using AndroidKeyStore using the TEE on TI devices
	Evaluation
	Background

	Key storage using AndroidKeystore using a software-based keymaster
	Evaluation
	Background

	Key storage on the secure element
	Evaluation
	Background

	Conclusion
	Recommendations
	For developers intending to use key storage
	For developers of the key stores

	Secure computation
	Secure world operating systems
	SierraTEE
	Genode
	TLR
	Other platforms

	Use cases
	Mobile banking
	Mobile payments and ticketing
	Secure communication
	DRM
	Samsung Knox

	Conclusion

	Conclusion
	Future work

	Bibliography
	Appendices
	Appendix 1 KeyStorageTest MainActivity

