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Abstract

Sharing information between organizations is important to defend the vital in-
frastructure against digital threats. However, concerns regarding privacy and
confidentiality of information makes organizations reluctant to share such infor-
mation. In practice the information is only shared with highly trusted partners.
Lowering the trust required to share information can encourage new collabora-
tions. In this research we consider methods for exchanging threat information
between organizations in a semi-honest adversary model, such that threats can
be detected without necessarely sharing details about all known threats. Threat
information exchange is characterized and a number of methods are proposed.
These methods aim to keep threat information confidential while still remaining
useful for detection purposes, anonymize context information of incidents, or
anonymously contribute to aggregated statistics related to threat information.
We conclude that these methods are promising and can indeed enable new col-
laborations. However none is without cost in terms of performance or ease of
use. Moreover, the methods can only be applied to specific problems within
threat information exchange.
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1. Introduction

Today’s society depends to a great extent on digital infrastructure. Critical
components such as the energy grid, telecommunications, but also governmental
agencies, hospitals and factories are often connected to the internet.

This connectedness brings many benefits to society and creates great potential
for innovation, but it also brings new risks. Among these risks are criminals
who spread malware and (corporate) espionage by so called Advanced Persistent
Threats, or APTs. In various ways and with different goals these actors aim to
compromise the systems our society relies on.

For individual organizations it is difficult to defend against these new threats
because they have only a limited view on the threat landscape and lack concrete
information about new threats. Exchanging information about new threats be-
tween multiple organizations helps to detect incidents. Such information is often
referred to as an Indicator of Compromise (IoC), and can be as simple as an IP
address, a URL, a hash of a file or something more sophisticated. Other help-
ful information that can be exchanged are statistics about IoCs or contextual
information of an IoC hit. Together this information is considered threat infor-
mation. It gives organizations a broader view on the threat landscape.

This exchange of information already happens in different forms. Examples
in the private sector are Microsoft Interflow1, McAfee Threat Intelligence Ex-
change2 and AlienVault OTX3.

In the public sector initiatives such as the Nationaal Detectie Netwerk4 are
being developed. Open Source software such as MISP5 and SoltraEdge6 is
being deployed as well to facilitate the exchange of threat information.

A number of open standards such as STIX7, TAXII8 and OpenIOC9 have been
introduced recently. These are gaining support from various vendors. This illus-
trates the trend of collaboration and automated exchange of threat information
in security. Note that automated exchange does not mean everything is done

1http://www.microsoft.com/interflow
2http://www.mcafee.com/us/products/threat-intelligence-exchange.aspx
3https://www.alienvault.com/open-threat-exchange
4http://www.rijksoverheid.nl/documenten-en-publicaties/publicaties/2014/03/17/nationaal-

detectie-netwerk.html
5http://www.misp-project.org/
6http://www.soltra.com
7https://stix.mitre.org/
8https://taxii.mitre.org/
9http://www.openioc.org/
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1. INTRODUCTION 5

automatically without human interference. With automated we mean the data
is exchanged regularly using protocols and formats that are machine readable,
and not ad hoc.

1.1 Privacy, Confidentiality and Trust

Threat information can be sensitive information. It may contain:

• personally identifiable information such as a name or telephone number,

• proprietary information such as trade secrets, or

• technical information such as network configuration data and passwords.

Concerns over disclosure of such information can make organizations reluctant
to share information with arbitrary parties. Another reason against openly
publishing threat information is that it might tip off the adversary, who can
then circumvent detection. This would make the information essentially useless.
The result is that threat information exchange is usually taking place between
parties that have a high level of trust in each other. Although this works in small
groups, establishing trust between a large number of parties is difficult.

This raises the question if exchanging threat information between parties with-
out such a firm trust relationship is possible. It would allow more organizations
to join a group, adding value for the whole group and creating an increased
incentive for others to join as well.

1.2 Privacy Enhancing Techniques

A number of academic research fields exist that explore the idea of collaborating
parties that have limited trust in each other.

By lowering the level of trust that is needed between two parties to achieve a mu-
tually beneficial goal, it becomes easier for them to start coöperating together.
In this thesis, we assume that parties are curious about each others secrets but
wil not deviate from the prescribed protocol to learn more about them. This is
known as the semi-honest adversary model. It is different from the malicious
adversary model, where the adversary is allowed to use any efficient means to
break the security.

We consider this a suitable adversary model for threat information exchange
because the parties need to have at least some trust relationship. In the current
model of threat information exchange both parties fully trust each other. With
the semi-honest adversary model we take a step down from the fully trusted
model towards a semi-trusted model.
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Note that if we consider the malicious adversary model, threat information
exchange would become impossible. If both parties completely distrust each
other, why would they want to exchange threat information?

In the research field of secure multiparty computation, two or more parties want
to jointly compute a function over their inputs without disclosing their input to
the other parties. A more concrete example is the sub field of private matching,
where set intersection is performed by two parties in such a way that both parties
only learn the intersection of the two sets. Another example is anonymous data
aggregation, where an aggregator aims to compute the sum of the input from a
number of clients, without getting to know the individual inputs. These fields
all work with some form of limited trust within the group of participants. The
methods and techniques presented in these fields will be referred to as Privacy
Enhancing Techniques (PETs).

In this research we will discuss the applicability and practicality of this existing
research to the problem of exchanging threat information between semi-honest
parties.

1.3 Research question

Traditionally, a lot of information exchange is done in a non-automated way, for
example by email or phone. Because of the diversity in format, ad-hoc nature
and inherently identifiable properties of the medium, like phone numbers and
email adresses, this is difficult to do in a confidential or privacy preserving way.
Because of this, we limit the scope of this research to automated information
exchange.

In a typical threat information exchange we can distinguish two kinds of par-
ticipants, a central hub and subscribers or spokes. The hub distributes threat
information, typicaly IoCs, to the spokes. The spokes in return contribute
statistics about occurrences of those IoCs in its network (hits) and hit context.
Useful statistics about the IoCs on an individual or aggregated level give the
hub a broader overview of the threat landscape. The hit context is data or
information that is found surrounding a hit. This information is then used by
the hub to refine the threat information. The hit context can be an integral
packet dump or only the IP addresses associated with a hit. In Figure 1.1 these
information flows are illustrated.

The main research question can be formulated as follows:

Can threat information exchange between semi-honest parties be realized using
Privacy Enhancing Techniques?
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Figure 1.1: A typical threat information exchange setting

We formulate three subquestions to make the research question more con-
crete.

• Which PETs are available for keeping IoCs confidential?

• Which PETs are available for anonymizing hit context?

• Which PETs are available for anonymous aggregation of statistics?

These three subquestions do not completely cover the main question, most no-
tably non-automated exchange. However, within the automated exchange, the
forms of information exchange we consider most important are covered.

1.4 About NCSC-NL

The mission of the National Cyber Security Centre (NCSC) is to help enhance
the resillience of the Dutch society in the digital domain. It is a information hub
and centre of expertise for cybersecurity. By sharing knowledge and providing
insight, it aims to realize a safe, open and stable information society. It is
also the Computer Emergency Response Team (CERT) of the Dutch central
government and plays a key role in the (international) coordination of major ICT
incidents. NCSC-NL falls under the responsibility of the Ministry of Security
and Justice of the Netherlands.
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Because of its position as an information hub, threat information exchange is
a relevant topic for NCSC-NL. Most information exchange currently happens
in a non-automated way, but automated methods are being investigated. Due
to the number and diversity of the organizations NCSC-NL exchanges infor-
mation with, confidentiality issues can arise. This thesis investigates technical
methods to solve such issues and encourage new collaborations in exchanging
information.

1.5 Outline

In this thesis we present a number of methods that aim to enable new collabo-
rations between organizations that currently are reluctant to share information
with others. This thesis is structered as follows. In Chapter 2 we elaborate on
threat information exchange and present a model of threat information exchange
inspired by a number of standards. We identify three major information flows
within threat information exchange: indicators, hit context and statistics. In
Chapter 3 we investigate these three flows to determine if we need methods to
keep (parts of) the information confidential. We also summerize which methods
are already used in practice to keep (parts of the) information confidential. In
Chapter 4, 5 and 6 we present methods for the three information flows. We
have adapted existing methods to fit the threat information exchange setting.
In Chapter 7 we draw a conclusion and discuss the constraints of the presented
methods.



2. Threat information
exchange

In this chapter we will look at the architecture of threat information exchange.
We first give an overview based on several standards. Then we give a more ab-
stract model that is more useful for this research. We identify three information
flows that are important for threat information exchange between organizations
and discuss the types of information that are found within these flows.

2.1 Threat information exchange

The parties in threat information exchange exchange, as the name suggests,
information about threats. A threat is usually a very broadly defined concept,
which would mean it could be any sort of information.

For example, the ENISA1 definition includes pretty much anything harmful:

Any circumstance or event with the potential to adversely impact an asset through
unauthorized access, destruction, disclosure, modification of data, and/or denial
of service.

This is a too broad definition for our research towards confidentiality mecha-
nisms in threat information exchange. In this research we are using a more
narrow definition of a threat. Only threats that involve computers and/or com-
puter networks and that can be detected and/or mitigated with network or host
based intrusion detection systems (NIDS / HIDS) are considered.

This means threat information must be concrete. Examples of such information
are:

• the MD5 hash of a malicious file,

• an IP address of a Command and Control server,

• a packet trace of communication from malware,

• the number of infections for some malware in a particular network.
1http://www.enisa.europa.eu/activities/risk-management/current-risk/risk-management-

inventory/glossary#G51
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2. THREAT INFORMATION EXCHANGE 10

Figure 2.1: Overview of STIXa

ahttps://stixproject.github.io/getting-started/whitepaper/

With this limited definition we can use a number of industry standards as ref-
erence points for automated threat information exchange. These standards are
introduced in more detail in the next section. With these standards we have a
more concrete model of threat information exchange. We can investigate and
propose technical means for this model to address privacy and confidentiality
issues. In this research we use the term privacy when we aim to protect personal
data. If we aim to protect other data we use the term confidentiality.

We use a model of threat information exchange inspired by a number of stan-
dards that have recently emerged: Structured Threat Information eXpression2,
Cyber Observable eXpression3 and Trusted Automated eXchange of Indicator
Information4, all developed by MITRE5.

2.1.1 Structured Threat Information eXpression (STIX)

Structured Threat Information eXpression (STIX) is an XML-based language
to describe a threat in a structured way. A number of classes are defined, such

2http://stix.mitre.org
3http://cybox.mitre.org
4http://taxii.mitre.org
5http://mitre.org
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as actors, incidents, indicators and observables. An overview of the achitecture
of STIX is shown in Figure 2.1.

Our research relates to the classes Incident and Observable. The observables
contain concrete information that satisfy our definition of a threat from the
previous section. These observables are expressed in the language CyBOX and
are also known as Indicators of Compromise (IoCs).

If observables are actually observed by an organization this is usually called
an event, hit or incident. Such an incident can be enriched with additional
information that is relevant. Examples are the involved host(s), packet trace
during the hit and software versions.

Below is an example of STIX describing a small portion of the Poison Ivy mal-
ware family6. It illustrates the use of indicators, Tactics Techniques & Proce-
dures (TTPs) and a course of action (COA).
<stix:Indicator id="fireeye:indicator−0036" xsi:type="indicator:IndicatorType">
<indicator:Type xsi:type="stixVocabs:IndicatorTypeVocab−1.1">Domain Watchlist</

indicator:Type>
<indicator:Observable idref="fireeye:observable−915b"/>
<indicator:Indicated_TTP>
<stixCommon:TTP idref="fireeye:ttp−e55c6"/>

</indicator:Indicated_TTP>
<indicator:Suggested_COAs>
<indicator:Suggested_COA>
<stixCommon:Course_Of_Action idref="fireeye:courseofaction−70b3d"/>

</indicator:Suggested_COA>
</indicator:Suggested_COAs>

</stix:Indicator>

<stix:TTP id="fireeye:ttp−e55c6" xsi:type="ttp:TTPType">
<ttp:Title>PIVY Variant (e74d62dfdc308df3038e61dfc4e4256)</ttp:Title>
<ttp:Behavior>
<ttp:Malware>
<ttp:Malware_Instance>
<ttp:Name>e74d62dfdc308df3038e61dfc4e4256</ttp:Name>

</ttp:Malware_Instance>
</ttp:Malware>

</ttp:Behavior>
</stix:TTP>

<stix:Courses_Of_Action>
<stix:Course_Of_Action id="fireeye:courseofaction−70b3d" xsi:type="coa:

CourseOfActionType">
<coa:Title>Analyze with FireEye Calamine Toolset</coa:Title>
<coa:Description>Calamine is a set of free tools to help organizations detect and

examine Poison Ivy infections on their systems.
</coa:Description>

</stix:Course_Of_Action>
</stix:Courses_Of_Action>

6https://stixproject.github.io/examples/
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2.1.2 Cyber Observable eXpression (CyBOX)

Cyber Observable eXpression (CyBOX) is an XML-based language to describe
measurable events and stateful properties that can be observed with host- and
network-based intrusion detection systems. It is a flexible language that can
describe a wide range of properties and events. In this research we call these
stateful properties and observable events information types. For this research
we are only interested in the information types that are useful for network- and
host-based intrusion detection.

Examples of information types useful for network-based intrusion detection
are:

• an IPv4 address,

• an IPv6 address,

• an IP address + port,

• a URL,

• a domain name,

• an e-mail address,

• raw packet data, or

• an HTTP header.

This list is not nearly exhaustive, but it gives an impression of the sort of
information that is useful for threat detection. The information types are not
very strictly defined, but rather serve to illustrate the kinds of information that
is used.

For host-based intrusion detection common information types are:

• the contents of a file,

• a filename,

• a Windows registery key/value, or

• a Windows service.

For a complete overview of the supported types we refer to the CyBOX docu-
mentation7.

7http://cybox.mitre.org/language/version2.1/xsddocs/cybox_default_vocabularies.html
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Below is a snippet of CyBOX describing two observables from the Poison Ivy
malware family:
<cybox:Observable id="fireeye:observable−915b">
<cybox:Object id="fireeye:object−e911c">
<cybox:Properties type="FQDN" xsi:type="DomainNameObj:

DomainNameObjectType">
<DomainNameObj:Value condition="Equals">microsoftupdate.ns01.biz</

DomainNameObj:Value>
</cybox:Properties>
<cybox:Related_Objects>
<cybox:Related_Object idref="fireeye:object−1a32">
<cybox:Relationship xsi:type="cyboxVocabs:ObjectRelationshipVocab−1.0">

Resolved_To</cybox:Relationship>
</cybox:Related_Object>

</cybox:Related_Objects>
</cybox:Object>

</cybox:Observable>

<cybox:Observable id="fireeye:observable−4354f">
<cybox:Object id="fireeye:object−1a32e">
<cybox:Properties category="ipv4−addr" xsi:type="AddressObj:AddressObjectType"

>
<AddressObj:Address_Value condition="Equals">180.210.206.240</AddressObj:

Address_Value>
</cybox:Properties>

</cybox:Object>
</cybox:Observable>

2.1.3 Trusted Automated eXchange of Indicator Informa-
tion (TAXII)

Trusted Automated eXchange of Indicator Information (TAXII) is an XML-
based standard to exchange threat information between organizations. The
standard defines a number of protocols and services that can be used to exchange
STIX-formatted information. As the name implies it assumes this information
is exchanged between trusted parties. In this research we are looking to lower
the required level of trust.

We can distinguish three different roles in a threat information exchange. New
threat information orginates from a source. A distributor collects and optionally
filters this information and makes it available to the consumers.

In practice, parties often have multiple roles. Common dual roles are source and
distributor, and source and consumer. TAXII accomodates the most common
sharing models for threat information. In this research we assume the Hub-and-
Spoke model, as this is the most common model used to exchange information
between larger organizations. The other models are discussed here because they
are also used in practice and technical methods proposed in this research mostly
fit those models als well.
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Source-subscriber In the source-subscriber model the information flows in
only one direction, from the distributor to the consumers. This is a common
model for commercial vendors, for example vendors of traditional Anti-Virus
products. Other examples are (semi-) open repositories.

Hub-and-spoke In the hub-and-spoke model, the hub collects and distributes
the threat information. The hub often analyses, processes and anonymizes the
information. This hub can be build around software like MISP or Soltra Edge
and is usually run by some authorative entity. Examples are CERTs, Informa-
tion Sharing and Analysis Centers (ISACs) or commercial companies.

In addition to receiving information, the spokes contribute information back
to the hub. Examples are statistics about threats they have seen, and new
threats they have detected. This can be ready-to-use IoCs, or “raw” data that
can be used to refine IoCs. Figure 1.1 of the previous chapter illustrates this
model.

Peer-to-peer In the peer-to-peer model the participants share the informa-
tion directly with each other as equal peers. There is no single data owner.

Below is an example of a TAXII service discovery request and response8. It
illustrates how TAXII defines a number of services to exchange STIX formatted
messages.
POST http://taxiitest.mitre.org/services/discovery/ HTTP/1.1
Host: taxiitest.mitre.org
Proxy−Connection: keep−alive
Content−Length: 97
X−TAXII−Content−Type: urn:taxii.mitre.org:message:xml:1.1
X−TAXII−Accept: urn:taxii.mitre.org:message:xml:1.1
User−Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like

Gecko) Chrome/39.0.2171.95 Safari/537.36
Content−Type: application/xml
Accept: application/xml
Cache−Control: no−cache
X−TAXII−Services: urn:taxii.mitre.org:services:1.1
X−TAXII−Protocol: urn:taxii.mitre.org:protocol:http:1.0
Accept−Encoding: gzip, deflate
Accept−Language: en−US,en;q=0.8

<Discovery_Request xmlns="http://taxii.mitre.org/messages/taxii_xml_binding−1.1"
message_id="1"/>

And the response:
HTTP/1.1 200 OK
Date: Fri, 19 Dec 2014 13:22:04 GMT
Server: Apache/2.2.15 (Red Hat)
X−TAXII−Protocol: urn:taxii.mitre.org:protocol:http:1.0

8https://taxiiproject.github.io/documentation/sample-use/
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X−TAXII−Content−Type: urn:taxii.mitre.org:message:xml:1.1
X−TAXII−Services: urn:taxii.mitre.org:services:1.1
Content−Type: application/xml
Transfer−Encoding: chunked
Connection: keep−alive
Proxy−Connection: keep−alive

<taxii_11:Discovery_Response xmlns:taxii_11="http://taxii.mitre.org/messages/
taxii_xml_binding−1.1"

message_id="1466" in_response_to="1">
<taxii_11:Service_Instance service_type="INBOX"
service_version="urn:taxii.mitre.org:services:1.1" available="true">
<taxii_11:Protocol_Binding>urn:taxii.mitre.org:protocol:http:1.0</taxii_11:

Protocol_Binding>
<taxii_11:Address>http://taxiitest.mitre.org/services/inbox/default</taxii_11:

Address>
<taxii_11:Message_Binding>urn:taxii.mitre.org:message:xml:1.1</taxii_11:

Message_Binding>
<taxii_11:Content_Binding binding_id="urn:stix.mitre.org:xml:1.0"/>

</taxii_11:Service_Instance>
<taxii_11:Service_Instance service_type="POLL"
service_version="urn:taxii.mitre.org:services:1.1" available="true">
<taxii_11:Protocol_Binding>urn:taxii.mitre.org:protocol:http:1.0</taxii_11:

Protocol_Binding>
<taxii_11:Address>http://taxiitest.mitre.org/services/poll</taxii_11:Address>
<taxii_11:Message_Binding>urn:taxii.mitre.org:message:xml:1.1</taxii_11:

Message_Binding>
</taxii_11:Service_Instance>
<taxii_11:Service_Instance service_type="DISCOVERY"
service_version="urn:taxii.mitre.org:services:1.1" available="true">
<taxii_11:Protocol_Binding>urn:taxii.mitre.org:protocol:http:1.0</taxii_11:

Protocol_Binding>
<taxii_11:Address>http://taxiitest.mitre.org/services/discovery</taxii_11:Address>
<taxii_11:Message_Binding>urn:taxii.mitre.org:message:xml:1.1</taxii_11:

Message_Binding>
</taxii_11:Service_Instance>

</taxii_11:Discovery_Response>

2.2 Information flows

In the previous section we have described a concrete model of threat infor-
mation exchange based on a number of standards. In this section we identify
the three main information flows in threat information exchange, Indicators of
Compromise, Hit Context and Statistics. We also describe some additional parts
present in a threat information exchange which we need later in this research
to investigate privacy and confidentiality issues.
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2.2.1 Indicators of Compromise

Indicators of Compromise are used as signatures in signature based intrusion
detection. In the model of the previous section these indicators are described in
the CyBOX language.

Detection is done by comparing (or matching) a signature to information ob-
served in a network or on a host. There are many types of information that are
useful for intrusion detection. We have decribed the common information types
for host and network based intrusion detection in Subsection 2.1.2. The IoCs
flow from distributors to consumers.

Matching methods

For our research it is important to understand how the IoCs are used in intrusion
detection systems. In this section we describe four methods of “detecting” or
“matching” that are commonly supported in intrusion detection systems. These
matching methods match the information from an IoC to information observed
in the network or on the host that is currently being inspected. In this context
the IoC is more commonly known as a signature. The matching happens at a
detector.

String-based The information types described in Subsection 2.1.2 can be
seen as simple strings or byte arrays. If the signature and the observed in-
formation are of the same information type, this allows for simple comparison
operations.

The most common operations are:

• Equals, a piece of observed information is equal to the signature,

• StartsWith, the observed information begins with the signature,

• Contains, the signature is somewhere in the piece of observed informa-
tion, and

• InclusiveBetween, the observed information falls within a range of pos-
sible values (e.g IP address falls in a range).

Regular Expression-based A regular expression is used to do pattern match-
ing on strings. The pattern can include, amongst other constructs, repetitions.
It can also match characters from a given subset. This makes it more power-
ful than the string operations mentioned previously. Regular expressions can
be applied to all the information types, as long as they can be represented as
strings. In this case the regular expression is the signature.
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Hash based A hash function is a function that maps inputs of arbitrary
length to outputs of a fixed length. Hash-based detection methods can be seen
as similiar to the Equals operation of the string-based detection method. The
difference is that the signature is not a string-like object, instead it is the hash
of the original string-like object. Commonly used hash functions are MD5 and
SHA-256.

For inputs longer than the length of the output of the hash function, e.g. files,
using this method results in shorter signatures. This is one of the main reasons
this detection method is used in practice. It can also be used as a confidentiality
mechanism. This aspect is discussed in Section 3.3.1.

Bloom filters A Bloom filter is a space- and time-efficient data structure to
test inclusion in a set of elements. Elements can be added to the set and tested
for membership, but not removed. Because of its probabilistic nature, false
positives are possible when testing for membership, but not false negatives. A
more in depth description can be found in Subsection 4.2.1.

A Bloom filter can be used as a detection method. To do this, create a Bloom
filter with some elements as a signature and check current information for mem-
bership in the signature. The main reason to use a Bloom filter is the generally
smaller memory size it needs to represent a set compared to other data struc-
tures. It can also be used as a confidentiality mechanism. This is discussed in
Subsection 3.3.2.

2.2.2 Hit context

If a matching engine finds a match between a signature and some current piece
of information this is called a hit. The context of this hit can be useful for
determining wheter the hit is a legitimate occurence of the threat it is trying
to detect or a false positive. In case of a false positive the context can contain
useful information for refining the signature such that it results in fewer false
positives in the future. In case of a true positive the context information can
be used to better understand the threat.

Possible relevant context information:

• the time of occurence,

• the hosts involved (IP address and/or MAC address), or

• a packet trace surrounding the hit.
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2.2.3 Statistics

In case of the Source-Subscriber or Hub-and-Spoke models of threat information
exchange, it can be useful for the source or hub (hereafter referred to as the
hub) to have statistics regarding to the threat information they share. These
statistics enable the hub to get a broader view of the threat landscape. A
concrete example of this is the Cybersecuritybeeld Nederland (Cyber Security
Assessment Netherlands)9, which explains and interprets trends in cybersecurity
on a national level.

Statistics that can be useful include:

• (unique) hits per IoC,

• hits per organization,

• hits per IoC in a group of organizations, or

• occurences per type of malware.

In the threat information exchange model we described in the previous section
this flow of information is not explicitly present. Instead, these statististics
can be computed from the hit context. By seperating these two flows here, we
create the possibility for a spoke to contribute to aggregated statistics without
revealing hit context. We consider it a realistic scenario that a spoke is willing
to contribute to statistics, but does not want to reveal hit context informa-
tion.

9https://www.ncsc.nl/english/current-topics/cyber-security-assessment-netherlands.html



3. Confidentiality in existing
platforms

In the previous chapter we have discussed the information flows within a threat
information exchange. We saw that Indicators of Compromise flow from the hub
to the detector, and that hit context information and statistics flow from the
detector to the hub. In this chapter we will examine which of those information
flows may need to be kept confidential by one of the parties. We also describe
for each information flow which confidentiality preserving methods and features
are already present in existing platforms. In the following three chapters we will
describe new ideas for protecting the information in each of those flows.

3.1 Criteria

To determine whether an information flow needs confidentialty we need criteria
to classify it as sensitive information. For this classification we take an organi-
zational point of view, as most threat information exchange takes place between
organizations. We note that there are three categories of reasons: legal reasons,
organizational reasons and technical reasons.

Legal reason Privacy and data protection laws usually put requirements on
handlers of certain data. For example, in the case of personal identifiable infor-
mation in the EU, a processor of that data has under the EU Data Protection
Directive (Directive 95/46/EC) an obligation to keep that information secure
from any potential abuse. For this thesis we consider IP and MAC addresses to
be personal identifiable information. Although that is not always the case, there
are enough situations where for example an IP address can linked to a individual
person that we consider it always personal identifiable information.

Organizational reason Organizations usually keep proprietary information
such as trade secrets and financial data. An organization typically requires that
this information is kept confidential.

Technical reason Information that should be kept confidential for technical
reasons is for example information about network configuration, software ver-

19
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sions and secret values such as passwords or access tokens. This information
gives away clues about the configuration of the network, and by extension, the
organization.

To summarize, we have three main categories of information that have confi-
dentiality requirements:

• personal identifiable information,

• proprietary information such as trade secrets, and

• technical information such as network configuration data and passwords.

3.2 Confidentiality levels

To assess how well protected a piece of information is we make a distinction
between three levels of confidentality. This distinction is useful when consider-
ing schemes with two parties in the semi-honest adversary environment. The
first party A is the distributor of the information and party B is the receiver.
We assume A wants to keep the information confidential from B, while still en-
abling him to do something useful with the information. For example network
detection.

Not Confidential In a non-confidential setting B can determine the infor-
mation without significant effort. Protection methods that can be broken by a
sufficiently knowledgable and powerful (but computationally bounded) adver-
sary are also considered to be in this category. For example, the hash of a poorly
chosen password.

Conditionally Confidential The information can not be determined by B
unless a certain (rare) condition is met.

For example, a conditionally confidential IoC is secure against bruteforce at-
tacks, but is still useful for intrusion detection. However, if a hit is detected the
confidentiality is broken, hence “conditional” confidentiality. Another example
is the hash of a well chosen password. It is not possible to recover the password,
unless (a substantial part of) the password becomes known.

Strongly Confidential The information can not be determined by B for
any possible execution of the protocol, assuming the hardness of the problem
underlying the protocol.

In the example of IoCs this requirement makes the signature useless for the
detector. However, if the hub can determine if a hit has occured this requirement



3. CONFIDENTIALITY IN EXISTING PLATFORMS 21

can be met in a useful scenario. In the next chapter we present the a scheme
that meets this requirement.

Let us now look at the confidentiality requirements of the flow of information
from the hub to the detector (IoCs, Section 3.3) and from the detector back to
the hub (statistics, Section 3.5 and hit context, Section 3.4).

3.3 Indicators

In the previous chapter we have given a overview of typical information types
found in IoCs for network based and host based intrusion detection systems.

The flow of IoCs is from the hub to the detector. This implies that we only
need to consider confidentiality requirements from the hub, and not the detec-
tor.

The hub can have confidentiality requirements for the information contained
in an IoC. For example, if a particular IoC detects a specific threat, and the
actor behind the threat can obtain the IoC, it can alter its threat so that it is
no longer detected, making the IoC essentially useless. If the IoC can be kept
confidential this problem is reduced or eliminated.

The hub can distribute IoCs based on information from third parties. If the
third party requires the information to be confidential (for any reason), this is
a motivation for the hub to keep it confidential as well.

As noted in Subsection 2.2.1 there are two confidentiality preserving methods
already in use for IoCs: hashes and Bloom filters. The confidentiality preserving
proprerties of these methods will be discussed in the next sections.

3.3.1 Hash based

As noted in Subsection 2.2.1 a primary reason to use a hash based detection
method is the convenience of shorter signatures. It can also be used as a confi-
dentiality mechanism. For example the network based intrusion detection sys-
tem Snort gained support for this with the keyword protected_content1 since
version 2.9.72, released in October 2014. For host based intrusion detection
systems this is a common functionality for detecting malicious files.

The security of this method depends on the strength of the particular hash
function used and the domain and probability distribution of the values of the
input. The most important property the hash function should satisfy is pre-
image resistance: given only the hash of a value it should be infeasible to recover
an input value with the same hash [18].

1http://manual.snort.org/node32.html#SECTION00452000000000000000
2http://blog.snort.org/2014/10/snort-297-has-been-released.html
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The domain is the set of all possible inputs. If the domain is sufficiently large,
it is computationaly too expensive to try all possible inputs. To be on the safe
side, we consider 2128 possibilities to be safe, also noted as 128 bit security
[7].

The effective size of the domain and distribution can not always be easily deter-
mined. If the attacker can make an assumption about the input it can reduce
the size of the domain, or search it more efficiently. For example, at first glance
IPv6 has 2128 possible addresses. However, most of the address space in not yet
allocated for use, reducing the effective size of domain. Another example is a
16 character password. At first glance it has 9416, or about 2104 possibilities.
However, if we can assume it is made up from English dictionary words, there
are far less posibilities.

Of some of the information types mentioned in Subsection 2.1.2 we can deter-
mine that the domain is (far) smaller than 2128. For IPv4 addresses the domain
is (at most) 232 and for a IPv4 + port number it is 248. Domain names are a bit
trickier. If an attacker has a list of domain names an exhaustive search is feasi-
ble. In januari 2015 Verisign reported there are 284 million registrered domain
names globally3. State actors can probably obtain such lists. Also a dictionary
attack may reveal partial information, as many domain names contain common
words.

Given the confidentiality levels of Section 3.2, we consider this method allows
for conditionally confidentiality because the confidentiality of the input of the
hash is broken when a hit occurs.

3.3.2 Bloom filters

The security properties of the Bloom filter based detection method are very
similar to those of the hash based method. From a attackers perspective, a
Bloom filter can be seen as a collection of hashes. To make it hard to determine
the elements of a Bloom filter the hash function used should satisfy the “pre-
image” resistance property. The considerations about domain size of the input
are equally applicable to the elements of the Bloom filter.

Similar to hash based methods, we consider this method to be conditionally
secure because the confidentiality of the information that a certain element is
in the set is broken when a hit is produced.

3https://www.verisigninc.com/assets/domain-name-report-january2015.pdf
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3.4 Hit context

The hit context can contain a lot of sensitive information. IP addresses for exam-
ple are considered personal identifiable information4. Packet traces can contain
proprietary information and both usually contain (technical) information about
the network configuration.

3.4.1 Hosts involved

If a hit occurs and this information is shared with the hub, sharing the internal
IP or MAC address of the host as well is useful. This allows the hub to correlate
hits on IoCs to hosts, leading to a better understanding of the situation. It also
allows the hub to distinguish between a single host being hit a hundred times,
indicating a single malware infection, and a hundred hosts being hit a single
time, indicating a hundred malware infections.

However, we consider IP or MAC address as personal identifiable information
that can also give away clues about the internal network. This makes it sensitive
information.

A common practice is to use pseudonyms for the hosts instead. This still permits
the correlation between hosts and IoCs, but prevents the sensitive information
from being leaked to the hub. To prevent correlation over larger periods of time,
the pseudonyms should be refreshed at a certain interval (e.g. a week). These
pseudonyms can be generated with a pseudorandom function.

Given the confidentiality levels of Section 3.2 we consider this method to yield
strong confidentiality because the real identity is never revealed to the hub, not
even in the case of a hit.

3.4.2 Packet traces

Packet traces from the hit and the surrounding packets are likely to contain
sensitive information. The packets contain IP addresses, which we consider
to be personal identifiable information. The application-specific payload data
can also contain virtually any kind of information. This makes a packet trace
certainly sensitive information.

Snort has a preprocessor that can filter known sensitive information5. This
method requires that all sensitive data is known in advance, which is likely not
the case.

4http://www.europarl.europa.eu/sides/getAllAnswers.do?reference=P-2013-
000873&language=EN

5http://manual.snort.org/node17.html#SECTION003217000000000000000
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Other tools exist that can filter packet traces to various degrees. Examples are
TraceWrangler6, tcprewrite7 and tcpmkpub8. The first is capable of filtering
both the header and the payload of a packet, while the others only consider the
header information.

We cannot determine which level of confidentiality these methods provide, given
the descriptions in Section 3.2. It is not clear under which circumstances which
information is disclosed. If sensitive information is removed from the traces
we can consider it strongly confidential. However, if the information is replaced
(e.g. pseudonymization of IP addresses) careful analysis can probably still reveal
information.

3.5 Statistics

The statistics that are mentioned in the previous chapter can certainly be con-
sidered sensitive information. Although they do not contain personal data, they
might give clues about network configuration. For example, if a organisation
has a hit on malware written specifically for certain software, this indicates they
use that specific software.

We are not aware of any standards or software products that facilitate auto-
mated statistics gathering and have any privacy/confidentialty preserving prop-
erties.

To be privacy preserving, it is necessary to define statistics that reveal none or
only little information about the underlying data. For example, percentages of
infected systems instead of the total number, which gives information about the
size of network, or generalizing metrics like the OS from “Microsoft Windows
XP build 2600” to “Microsoft Windows”.

6https://www.tracewrangler.com/
7http://tcpreplay.synfin.net/wiki/tcprewrite
8http://www.icir.org/enterprise-tracing/tcpmkpub.html



4. Confidentiality of
Indicators

In the previous chapter we have discussed two methods that are already used
in practice to keep IoCs confidential: hashes and Bloom filters. Both methods
satisfy the “Conditionally Confidential” property and can be used to replace
the “Equals” and “StartsWith” functions of the string based matching method.
However, both are inefficient for achieving the “Contains” functions because it
is not known in advance where the signature is in the string.

In this section we describe the Adapted Rabin-Karp method that can perform
the “Contains” function in an efficient way in the “Conditionally Confidential”
setting.

We also present the Public-key Encrypted Bloom Filter method that can per-
form the string based “Equals” method in a “Strongly Confidential” setting.

4.1 Adapted Rabin-Karp pattern matching

In this section we present an efficient method to perform pattern matching with
multiple patterns in a “Conditionally Confidential” setting. This method uses
Rabin fingerprints and has been proposed in slightly different forms in multiple
papers [20][2]. The main improvement of this scheme over a plain Bloom filter
or hash function as discussed in Section 3.3.2 is efficiency. With this scheme an
intrusion detection system can efficiently check for signatures in data where the
position of the hits is not known.

We first discuss the Rabin fingerprint method and Rabin-Karp pattern match-
ing. We then adapt the Rabin-Karp method to be able to match arbitrary
length patterns. The last step is to split the algorithm in two parts to make
it applicable to a threat information exchange environment and to gain “Con-
ditionally Confidential” security. The first part is executed by the hub and the
second by the detector.

25
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4.1.1 Rabin-fingerprint

A Rabin fingerprint [17] is a function that behaves similarly to a hash function.
It produces a fixed length fingerprint of a string of a (larger) fixed length. To
do this it uses polynomials over a finite field. The fingerprint F for string
s = s0, . . . sn−1, where si ∈ F28 , which can be interpreted as a single byte, is
defined as:

F (s) = s0 · xn−1 + s1 · xn−2 + · · ·+ sn−1 · x1 + sn mod p(x),

where x is a prime and p(x) is a irreducible polynomial of degree k. The degree k
determines the length of the fingerprint, and has influence on the overall security
of the method.

The property that makes the Rabin fingerprint interesting for pattern matching
is that we can efficiently compute f1 = F (s1, . . . , si+1) given the fingerprint
f0 = F (s0, . . . , si) and s0 and si+1:

fi+1 = fi · x+ si+1 − s0 · xn−1 mod p(x).

With this property we can efficiently compute the fingerprint of a sliding window
in a large string. Since there are only 256 possible values for s0, the value of
s0 · xn−1 can be precomputed and stored in a table.

4.1.2 Rabin-Karp pattern matching

To construct a useful matching method we need to be able to match multiple
pattern strings of arbitrary length. The Rabin-Karp[11] algorithm can match
multiple patterns of the same length. We use this algorithm as the basis for the
final matching method.

First the set H of all Rabin fingerprints of the patterns is computed. Then
the Rabin fingerprint f is computed over the input. The length of the sliding
window is set to the length of the patterns. At each step of the sliding window a
check is done whether the current fingerprint is in P . If this is the case a match
is found. In Algorithm 1 this method is presented in pseudocode. Note that the
pseudocode implementation stops after the first match. In practice the matching
engine should probably continue, in order to find all occurrences.

To be able to match patterns of different length we slightly modify the Rabin-
Karp algorithm. We do this by splitting up the patterns in smaller fragments.
We set the length of the sliding window m to the length of the smallest pattern.
All patterns larger than the sliding window are fragmented into patterns of
length m. If the pattern is not a muliple of m the last two fragments overlap, as
illustrated in Figure 4.1. The matching algorithm should look for fragments and
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Algorithm 1 Rabin Karp String Matching
1: procedure RabinKarp(S[1 . . . n], P,m) . Match patterns P of length m

with string S
2: H ← ∅ . Initialize H as empty set
3: for all x ∈ P do
4: H ← H ∪ {fp(x)} . Add fingerprint of x to H
5: end for
6: f ← fp(S[1 . . .m]) . f is the fingerprint of the sliding window
7: for i← 0 to n−m+ 1 do
8: if f ∈ H and S[i . . . i+m− 1] ∈ P then
9: return i

10: end if
11: f ← update_fp(f, S[i], S[i+m]) . Advance sliding window
12: end for
13: return notfound
14: end procedure

keep track of consecutive matches. To check if the consecutive matches indeed
form one of the original pattern, the algorithm should check each possible sub
pattern against the original set of patterns. Algorithm 2 details this.

Figure 4.1: Fragmentation of a 60 byte pattern into 4 fragments of 16 bytes

To satisfy the “Conditionally Confidential” property we split the function in two
parts. The first part, Setup, is executed by the hub and creates the patterns
for the detector. The Match function is executed by the detector and takes as
input the patterns generated by the hub and the string to be matched.

The Setup function computes the set H of fingerprints of the fragments, as
well as a set P ′ of hashes of the patterns to replace the H in the original
Rabin-Karp. We use fp to denote the Rabin fingerprint and hash to denote a
different cryptographically secure hash. In Algorithm 3 this is implemented in
pseudocode.
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Algorithm 2 Adapted Rabin Karp String Matching
1: procedure RabinKarp(S[1 . . . n], P,m). Match patterns P with string S

with fragment size m
2: H ← ∅ . Initialize H as empty set
3: for all x ∈ P do
4: for i← m to |x| increment i← i+m do
5: H ← H ∪ {fp(x[(i−m) + 1 . . . i])} . Add fragment to H
6: end for
7: H ← H ∪ {fp(x[(|x| −m) + 1 . . . |x|])} . Add last fragment to H
8: end for
9: F ← ∅ . Set of matching fragments

10: f ← fp(S[1 . . .m]) . f is the fingerprint of the sliding window
11: for i← 0 to n−m+ 1 do
12: if F 6= ∅ and F [|F |] + (m− 1) < i then . F [|F |] denotes the last

element of F
13: . Check if any substring of partial matches is a real match
14: for j ← 1 to |F | do
15: for k ← j to |F | do
16: if S[F [j] . . . F [k] + (m− 1)] ∈ P then
17: return F [j], F [k] + (m− 1)
18: end if
19: end for
20: end for
21: F ← ∅ . Clear matching fragments
22: end if
23: if f ∈ H then
24: F ← F ∪ {i} . Add matching fragment to F
25: end if
26: f ← update_fp(f, S[i], S[i+m]) . Advance sliding window
27: end for
28: return notfound
29: end procedure
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Algorithm 3 Split Matching
1: procedure Setup(P,m) . Setup fragments for patterns P with fragment

length m
2: P ′ ← ∅ . Initialize P ′ as empty set
3: H ← ∅ . Initialize H as empty set
4: for all x ∈ P do
5: for i← m to |x| increment i← i+m do
6: H ← H ∪ {fp(x[(i−m) + 1 . . . i])} . Add fragment to H
7: end for
8: H ← H ∪ {fp(x[(|x| −m) + 1 . . . |x|])} . Add last fragment to H
9: P ′ ← P ′ ∪ {hash(x)} . Add hash of complete pattern to P ′

10: end for
11: return P ′, H
12: end procedure
13:
14: procedure Match(S[1 . . . n], P ′, H,m). Match (hashed) patterns P ′ with

string S using fragments H of length m
15: F ← ∅ . List of matching fragments
16: f ← fp(S[1 . . .m]) . f is the fingerprint of the sliding window
17: for i← 0 to n−m+ 1 do
18: if F 6= ∅ and F [|F |] + (m− 1) < i then
19: . Check if any substring of partial matches is a real match
20: for j ← 1 to |F | do
21: for k ← j to |F | do
22: if hash(S[F [j] . . . F [k] + (m− 1)]) ∈ P ′ then
23: return F [j], F [k] + (m− 1)
24: end if
25: end for
26: end for
27: F ← ∅ . Clear matching fragments
28: end if
29: if f ∈ H then
30: F ← F ∪ {i} . Add matching fragment to F
31: end if
32: f ← update_fp(f, S[i], S[i+m]) . Advance sliding window
33: end for
34: return notfound
35: end procedure

4.1.3 Correctness

Compared to the original Rabin-Karp pattern matching algorithm we have
added two parts. First we added fragmentation of patterns to facilitate match-
ing patterns of different lengths. This adds the possibility of false positives. A
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string can contain fragments of a pattern without containing the whole pattern.
In case of a single matching fragment, false positives are discarded. A second
possibility is a false positive in series of consecutive matching fragments. To find
all true matches, and only those, all possible consecutive fragments are checked
to be an actual pattern (see Algorithm 3 line 20-27). Due to the nature of the
Rabin fingerprint it is also possible a fragment matches a string other than its
original pattern. These hash collisions are also discarded.

Secondly we added hashes instead of the original patterns. When a cryptograph-
ically secure hash function is used, such as SHA-256, this results in a negligibly
small chance of hash collisions, and thus of false positives.

Because we handle all deviations of the original algorithm, we assert the adapted
algorithm is correct.

4.1.4 Performance

We will now look at the runtime performance of both the Setup and Match
functions.

The Setup function is executed by the hub to generate the fragments. A single
run of the algorithm has a runtime ofO(n+m) where n is the number of patterns
and m the sum of the lengths of all patterns. How many times the function is
executed depends on how often the set of patterns changes. We estimate this
to be somewhere between every hour and every day. Given that hashes can be
computed very quickly we consider this practical.

The overall performance of the Match algorithm depends on the likelihood of
matching a fragment. In the worst case scenario the matching fragments cover
the full string, resulting in a runtime of O(l2) where l is the length of the string.
In the best case scenario there are no matching fragments, resulting in a runtime
of O(l).

We estimate that in a real world scenario the runtime will be close to O(l) be-
cause hits are rare, if the patterns and fragments are chosen properly. Fragments
that are abundant should be avoided (e.g, the fragment GET / HTTP/1.1\r\n
would match quite often when network traffic is considered).

To further improve the performance of the algorithm we propose to use a Bloom
filter for the set of fragments H. By using the fingerprint f as the hash for
determining the indices, half the work is already done for the member test of
a Bloom filter. To obtain k hashes for the index lookups, one could split f
if it is large enough or compute multiple fingerprints f0 . . . fk−1 with different
irreducible polynomials.

With a Bloom filter it is possible to have false positives for the membership
test f ∈ H. Fortunately, the algorithm deals with those because it checks all
possible substrings of fragments.
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4.1.5 Security

We now investigate if the plaintext patterns can be recovered given the set of
hashes of the patterns P ′ and the set of fragments H. We discuss both preimage
resistance and brute force attacks.

We assume the hash function used to obtain the hashes in P ′ is cryptograph-
ically secure, thus it is preimage resistant. The patterns should be at least
16 bytes long to provide 128 bit security, assuming the patterns are not pre-
dictable.

The preimage resistance of the fragments in H depends on the Bloom filter.
Given only the Bloom filter it is not possible to recover the elements.

To prevent brute force attacks on the fragments the length of the fragments
should be at least 16 bytes to provide 128 bit security, under the assumption
that the pattern is not predictable. This means we cannot match patterns
smaller than 16 bytes. If the pattern is somehow predictable, for example if
the attacker knows it only consists of printable ASCII characters, the window
should be larger. How much larger depends on the predictability of the pattern.
In case of printable ASCII characters, there are only 95 possible characters per
byte instead of 256, resulting in 6.6 bits entropy per byte. The fragment size
should then be at least 20 bytes to provide 128 bit security. Packets that contain
a lot of predictable content (e.g. XML documents) may well require a length of
hundreds of bytes.

Another consideration is the fragmentation of the pattern. If the whole pattern
contains enough entropy to be secure, but the entropy is not distributed evenly
in the pattern, some fragments of the pattern might be easily predictable. In a
worst case screnario this can lead to a recovery of the whole pattern. Because
it is possible for the fragments to overlap at arbitrary places, there is room for
mitigation strategies. In conclusion, the pattern and fragments should be care-
fully chosen to prevent bruteforce attacks on the individual fragments. Intimate
knowledge is necessary to make a correct estimate of the required pattern length
for a given signature.

4.2 Public-key Encrypted Bloom Filters

In this section we describe a scheme [13] by Kerschbaum which can be used to
satisfy the “Strongly Confidential” property described in the previous chapter.
The goal is to perform a set-intersection such that the hub only learns the
intersection, and the detector learns nothing about the intersection. Both should
learn nothing about each others set.

The scheme uses three building blocks to accomplish its goal: Bloom filters,
Goldwasser-Micali encryption and the method of Sander, Young and Yung for
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computing the AND function. This scheme assumes a semi-honest adversary.
We will first sketch a rough outline of the scheme, then discuss the individual
building blocks and finally discuss the scheme in more detail.

The hub has a set of indicators and the detector has a set of observed elements
of the same type. The hub then creates a Bloom filter of its set and uses
Goldwasser-Micali encryption to encrypt it. This encrypted Bloom filter is
transmitted to the detector together with the public key.

The detector also creates a Bloom filter of its observed elements and encrypts
it with the public key. It then computes the AND function of both encrypted
Bloom filters. This is then transmitted to the hub. The hub then decrypts the
intermediate result and obtains the set-intersection.

We will now describe the building blocks in more detail.

4.2.1 Bloom filter

A Bloom filter [1] is a probabilistic data structure that allows one to efficiently
test an element for membership of a set and add an element to a set. It is
space and time efficient and has a chance of false positives, but not false nega-
tives.

An empty Bloom filter b is a array of m bits set to 0 and k hash functions with
0 < k < m. The hash functions fi are independent and have a range of 0 to
m− 1:

fi : {0, 1}∗ → {0, . . . ,m− 1}

To add an element x to the Bloom filter the element is hashed with all hash
functions fi and the corresponding k bits at indices li = fi(x) are set to 1.

To check if an element is in the Bloom filter the element is hashed with all hash
functions fi and if all corresponding k bits at indices li are 1 then the element
is reported to be in the set.

This test can yield a false positive, but not a false negative. The chance of false
positives increases with the number of elements in the set, but decreases with
the size of the Bloom filter. To compute the required size of a Bloom filter to
achieve a given false positive rate we can use the formula:

m = −n log(p)
log(2)

,

where m is the size of the Bloom filter, p is the desired false positive rate and n
the number of elements.
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4.2.2 Goldwasser-Micali encryption

The encryption used is Goldwasser-Micali (GM) [10], which is a homomorphic
randomized public-key encryption scheme. In GM only one bit at a time can
be encrypted.

GM uses quadratic residuosity to encode a bit. A quadratic residue r ∈ Zn is a
number such that there exists a number s: r = s2 mod n. A number that isnt a
quadratic residue is called a quadratic non-residue. In GM a 0 is encoded as a
quadratic residue and a 1 is encoded as a quadratic non-residue. The public key
is n, v where n = pq where p and q are large primes. v is a quadratic non-residue
modulo p and a quadratic non-residue modulo q.

To encrypt a 0, one chooses a random r ∈ Zn and computes r2 mod n. To en-
crypt a 1, one chooses a random r ∈ Zn and computes vr2 mod n. To decrypt a
value one needs to check if the value is a quadratic residue. Differentiating be-
tween a quadratic residue (0) and a quadratic non-residue (1) implies knowledge
of the factorization of n [10] [13].

Because of the random r, two ciphertexts with the same plaintext are not distin-
guishable without knowing the private key, which makes the scheme semantically
secure in the IND-CPA setting.

GM is homomorphic because the multiplication of two ciphertexts is equivalent
to the encryption of the XOR of their plaintexts:

E(x) · E(y) = E(x⊕ y).

This follows from the definition of 1 and 0 as given earlier. We note three
different cases:

E(0) · E(0) = r21 · r22 mod n = (r1 · r2)2 mod n = E(0)

E(0) · E(1) = r21 · v · r22 mod n = v · (r1 · r2)2 mod n = E(1)

E(1) · E(1) = v · r21 · v · r22 mod n = (v · r1 · r2)2 mod n = E(0)

Encrypting a Bloom filter is done by encrypting each individual bit of the Bloom
filter using the public key. Note that the resulting ciphertext is substantially
larger than the plaintext Bloom filter. If we assume p and q to be 1024 bits
prime numbers, n is 2048 bits in size. Because each bit of the Bloom filter
is encrypted individually, the resulting ciphertext is 2048 times the size of the
plaintext Bloom filter.

4.2.3 Sander, Young and Yung method

Using the technique from Sander, Young and Young (SYY) [19] it is possible to
do a single AND operation on two (single bit) ciphertexts. First the ciphertext
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(a single bit) σ = E(x) is expanded to the expanded ciphertext σ, which is a
vector of length u. This is done by repeating the following operation u times
(0 ≤ i < u).

1. Flip a coin u times: ri ∈ {0, 1}u

2. Compute ciphertext σi according to the random coin and set

σi ← E(ei) =

{
E(x) · E(1) = E(x⊕ 1) if ri = 0

E(0) if ri = 1

If x = 1 then x⊕ 1 = 0 and ei = 0, so σi ∈ {E(0)}. If x = 0 then x⊕ 1 = 1 and
ei = 1, so the result is randomly distributed: σi ∈ {E(0), E(1)}.

To compute the logical AND of two GM encrypted bits we use the expanded
ciphertext σ for E(x) and the expanded ciphertext ρ for E(y). The encrypted
AND τ is computed by pairwise multiplication of the elements of σ and ρ,
thus:

τi = σi · ρi
= E(ei) · E(di)

= E(ei ⊕ di)

The encrypted elements of τ can be decrypted by the private key holder to de-
termine the result of the AND function. We note two possible outcomes:

D(τ)←

{
D(τi) ∈ {0, 1} if x ∧ y = 0

D(τi) ∈ {0} if x ∧ y = 1

If all decrypted bits are 0, the result of the AND function is 1, otherwise the
result is 0. There is a probability of 2−u that a false positive occurs, where
E(x⊕ y) = 0 is falsely decrypted as a 1.

4.2.4 Final scheme

We assume two parties, the hub and the detector, and assume the semi-honest
adversary.

The hub generates a public key n, v and private-key p, q and constructs a Bloom
filter bh containing elements that need to be detected by the detector. The size
of the Bloom filter should be chosen large enough to accomodate the (likely
larger) set of the detector.
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The Bloom filter is encrypted: EBh = E(bh) by encrypting each bit of the
Bloom filter with the public key. The public key n, v and EBh are then sent to
the detector.

The detector constructs a Bloom filter bd with all elements it has observed in
some period of time, and encrypts it with the public key to obtain EBd.

The detector then computes the AND of EBh and EBd by applying the SYY
method to each pair of bits of the encrypted Bloom filters. This yields the
combined Bloom filter EBc, which contains the encrypted set intersection of bh
and bd, this is then sent to the hub.

The hub decrypts all bits of EBc to obtain bc. If all bits of bc are 0, the
intersection of bh and bd is empty and no hit is registered. If bc is non-zero
all elements of bh should be tested against bc to check which element(s) both
Bloom filters have in common, and thus caused a hit.

4.2.5 Security

In this scheme the hub should only learn the intersection of bh and bd and nothing
else. The detector should learn nothing about bh. The scheme presented is only
secure in the semi-honest attacker model. In the malicious model the hub could
send a Bloom filter with all bits set to 1 to obtain bd from the detector. In the
semi-honest model the hub is not allowed to do this.

However, under certain circumstances the hub can deduce some more informa-
tion from bc than the intersection. If the domain of the elements is small (e.g.
IPv4 addresses) the server can deduce some elements that were definitly not ob-
served by the detector. For each element e in the domain compute the indices
li(0 ≤ i < k). If any of the indices li is 1 in bh, but 0 in bc the element was not
in bd. As as result the hub can determine of some elements the detector has not
seen them. Of how many elements the hub can determine this depends on the
size of the Bloom filter and the number of elements in bh.

4.2.6 Practicality

To investigate the practicality of this scheme we will estimate the amount of
data that needs to be transferred under some assumptions for the false positive
rate and the number of elements seen by the detector.

We start by estimating the number of expected false positives. The false positive
rate is influenced by two factors, the false positive rate p of the Bloom filter, and
the size of the vector σ, u, of the SYY method. As we are comparing two Bloom
filters, we use n for the number of elements in the Bloom filter of the detector,
and use m the number of elements in the Bloom filter of the hub.
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We estimate the p and u parameters for a range of desired false positives per run
and number of elements in the Bloom filter. The range we have chosen for the
desired false positive rate is 1

10 upto 1
10000 , meaning we expect one false positive

per 10 runs of the protocol upto one false positive per 10000 runs.

As we have seen in Section 4.2.1, the size of a Bloom filter can be determined
from the desired false positive rate and the number of elements inserted. The
complete scheme also incorporates the SYY method to accomplish the intersec-
tion of two Bloom filters. This method has the possibility that a 0 is wrongly
decrypted as a 1 with probability 2−u. If this happens for all k hash functions an
element is wrongly assumed to be in the Bloom filter. When both false positive
rates are combined we can estimate the expected number of false positives per
run f with

f = m · (k · 2−u + p),

wherem is the size of the smallest Bloom filter. k can be determined with

k =
s

n
log(2).

s can be determined with

s = −n log(p)
log(2)

.

We distribute the false positive rate equally between p and u. This distribution
might be tweaked to optimize the final size of the ciphertext, but we omit this
for simplicity. We determine p with

p =
1
2f

m
,

and we determine u with

u = −log
( 1

2f

k ·m

)
.

Substituting k gives us

u = −log
( 1

2f
s·m
n log(2)

)
.

Substituting s gives us
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u = −log
(
−

1
2f

m log(p)

)
.

Assuming m = 100 we get the table for p and u.

f n 102 103 104 105

10−1 5 ∗ 10−4, 10 5 ∗ 10−4, 12 5 ∗ 10−4, 14 5 ∗ 10−4, 17
10−2 5 ∗ 10−5, 12 5 ∗ 10−5, 15 5 ∗ 10−5, 17 5 ∗ 10−5, 19
10−3 5 ∗ 10−6, 15 5 ∗ 10−6, 17 5 ∗ 10−6, 19 5 ∗ 10−6, 22
10−4 5 ∗ 10−7, 17 5 ∗ 10−7, 19 5 ∗ 10−7, 22 5 ∗ 10−7, 24

The largest amount of data that needs to be transferred is the expanded cipher-
text that is the result of the AND operation of both Bloom filters. The size of
this ciphertext can be determined with

z = −n log(p)
log(2)

· x · u,

where x is the GM ciphertext size of one encrypted bit. We choose the size of
the GM modulus to be 2048 bits, providing 103 bit security [8]. We consider
this to be a good tradeoff between ciphertext size and security. As a result the
size of x is also 2048 bits. Given the previous table, this results in the following
table.

f n 102 103 104 105

10−1 2.8 MB 33.6 MB 393 MB 4.76 GB
10−2 4.4 MB 54.8 MB 621 MB 6.96 GB
10−3 6.6 MB 76.6 MB 856 MB 9.92 GB
10−4 9.0 MB 101 MB 1178 MB 12.86 GB

The computational overhead is linear with the data transferred. To obtain an
estimation of how fast this is we have done a benchmark using libgm1, which
is a thin wrapper around the GNU Multiple Precision Arithmetic Library2.
The code can be found online3. We found that a recent Intel Xeon E5-2430L
processor takes around 1.5 millisecond per decryption.

This results in the following table.

f n 102 103 104 105

10−1 16 seconds 3 min 17 sec 38 min 22 sec 7 hrs 46 min
10−2 26 seconds 5 min 21 sec 1 hrs 0 min 11 hrs 18 min
10−3 40 seconds 7 min 29 sec 1 hrs 23 min 16 hrs 8 min
10−4 53 seconds 9 min 57 sec 1 hrs 55 min 20 hrs 55 min

Note that this computation can be done in parallel with low overhead and
implementation effort.

1https://github.com/areteix/libgm
2https://gmplib.org/
3https://github.com/felrood/gmspeedtest
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To conclude, if this method is practical depends on the circumstances. To
illustrate, if we want to check 10k domain names per day with a false positive
roughly once every 2 months this amounts to at least 621 MB of traffic per day
and one hour of CPU time for decryption.

4.2.7 Other considerations

The scheme we have presented is patented in the US [12], Europe and China.
Although the original paper by Kerschbaum does not describe the use of two
Bloom filters, the patent does, as Figure 4.2 shows.
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Figure 4.2: Patent [12] showing the use of two encrypted Bloom filters



5. Confidentiality of Hit
context

In Section 3.4 we have briefly described some existing tools and methods used to
provide privacy and confidentiality in hit context. Here we focus on anonymiz-
ing packet traces because a packet trace is the most common form of hit con-
text.

A packet trace surrounding a hit is useful for further investigation into the
hit. However, as we have argued in the previous chapter, a packet trace is
considered privacy sensitive. In this chapter we present methods to remove
the privacy sensitive information from a packet trace in such a way that the
remaining content is still useful for investigation.

5.1 Anonymization API

Koukis et. al. describe an Anonymization Application Programming Interface
(AAPI) [14]. They describe three goals of network trace anonymization:

• protect the privacy of monitored users,

• hide information about the internal network, and

• be as realistic as possible.

What these goals precisely mean is different for each organization. The authors
propose a framework which provides a flexible way to express an anonymization
policy. The anonymization functions can be applied to any field in a packet up
to the application level.

The main concept of the AAPI is that a series of functions is applied to a traffic
stream. There are three categories of functions.

The first category are the filter functions. Currently the berkely packet filter
(BPF) and a string search function are supported. With a filter, a series of
functions (e.g. anonymization) is applied on only a part of the stream. The
second category are the anonymization functions that alter the content of a
packet. The last category are the application level functions COOK and UNCOOK
that perform TCP stream reassembly and splitting the stream back into the

40
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original form. This is needed to do anonymization on the application level of
TCP streams.

The anonymization functions that are currently supported are: hashing a field,
mapping to sequential values or some distribution, random value, replacing
with a constant, prefix-preserving for IP addresses, regular expression-based
substitution and removing fields. The protocols currently supported are: IP,
TCP, UDP, ICMP, HTTP and FTP. Due to the design of the AAPI it is easy
to extend the implementation to support new protocols, filters, anonymization
functions and input sources.

5.1.1 Usefulness

The authors of AAPI have attempted to measure the usefulness of anonymized
traffic for intrusion detection. The policy implemented with AAPI was: “prefix-
preserving anonymization of IP address, set the TTL and IP identification num-
ber to constants, removal of the HTTP payload - but not of HTTP headers”. The
anonymized traffic was then passed to Snort. When rules are used that only
need packet headers and no content, the anonymized traffic generates the same
number of hits as the original non-anonymized traffic. When using rules that
also need the packet contents, the anonymized traffic generates 572 hits, ver-
sus 1892 for the original traffic. This result illustrates that anonymization and
usefulness are often conflicting goals.

5.1.2 Practicality

The flexibility of the AAPI is both a strength and a weakness. Because each
organization has a different interpretation of privacy, confidentiality and usable
packet traces, a generic method allows individual organizations to apply their
own interpretations.

On the other hand, the method does not provide any guidelines or insight into
how different anonymization methods affect usability and privacy. This means
organizations need to have a good understanding of the anonymization methods.
Lack of understanding can lead to deanonymization or reduced usability for
particular purposes.



6. Confidentiality of
Statistics

As we argued in Subsection 2.2.3, we want to allow a spoke/detector to con-
tribute to aggregated statistics without revealing individual hits. This problem
is similar to a problem in the field of smart metering: collecting aggregated
power consumption without revealing individual power consumption.

Power consumption is considered privacy sensitive information. However, power
companies are interested in power consumption of customers because it allows
them to do, amongst other things, power leakage detection and fraud detection.
With the aggregated power consumption of a group of customers (typically a
street or neighbourhood) leakage and fraud detection is still possible. This gave
rise to a number of methods to allow a central entity to calculate the aggregated
power consumption of customers without knowing the power consumption of
individual customers. We describe three of these methods. We have changed
the parameters and names to reflect a threat information exchange environment
instead of smart metering.

The schemes need to achieve (at least) two properties we consider important:

• Authenticity: only authenticated clients can participate,

• Unlinkability: the aggregator cannot link a client to a individual value.

We require authenticity to make sure only clients that are within a certain group
can contribute to the aggregate value of that group. The unlinkability is needed
to provide anonymity to the clients.

6.1 Using simple additive secret sharing

This scheme is proposed by Kursawe et. al. [15]. The goal is to let the aggregator
learn the sum of the hit counts of the clients, without revealing individual hit
counts.

Let each client Ci have a hit count ci ∈ Z and a random mask xi ∈ Z. For now
we assume that the sum of all masks is 0:

n∑
i=1

xi = 0

42
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The client computes zi = ci+xi and sends it to the hub. The hub then computes
the sum:

n∑
i=1

zi =

n∑
i=1

ci + xi

=

n∑
i=1

ci.

To make sure the sum of all masks is zero, the authors propose to use leader
election between the clients. The leader collects the masks and calculates his
mask such that the sum is zero. Another possibility is to make the sum of
all random masks known to the aggregator. This also requires communication
between the clients to coordinate the calculation of the sum of the mask.

6.1.1 Practicality

This scheme is quite simple and almost trivially correct. However, it is not
a complete solution to the problem. The most important issue is the mask
calculation. Either the sum of the masks must be known to the aggregator, or
the clients must ensure it is 0. This requires communication between the clients,
either directly or via the aggregator. This preserves the privacy of the clients
because the aggregator never learns the individual hit counts and never learns
the individual masks.

This means the security of protocol completely depends on the security of the
leader-election protocol. In the semi-honest setting we could assume leader-
election is done honestly, as the clients are required to execute the protocol
faithfully. The leader can then calculate the sum of the masks and send it to
the aggregator.

6.2 Using homomorphic encryption

Garcia et. al. [9] propose a scheme which uses homomorphic encryption to
provide privacy friendly aggregation. The Paillier [16] homomorphic encryption
is used because it a good fit, but the scheme does not depend on it.

The protocol uses a homomorphic encryption scheme that satisfies the property
that the product of two encrypted values equals the encrypted sum of both
values. Let {a}pk denote the encryption of a against public key pk. Then

{a1}pk · {a2}pk = {a1 + a2}pk.
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The goal is to learn the aggregated value of all hit counts, without revealing
information about individual hit counts.

Assume an aggregator A is connected with m clients C1 . . . Cm. All the clients
have a certificate containing their (Paillier) public key pki and have knowledge
of the corresponding private key ski. In the original protocol this certificate
is signed by a third party. We omit this requirement for now for simplicity.
The aggregator initiates the protocol by sending the certificates of all clients
participating to every client, so every client has the certificates of all other
clients. If there are less than mmin participants, the client aborts the proto-
col. This is to prevent information leakage when there are few clients (e.g.
two).

The client has a hit count ai ∈ Zn where n is a large integer. The client divides
its hit count ai intom random shares, ai,1 . . . ai,m such that the sum of the shares
equals ai. He then encrypts m−1 shares with the corresponding public key of a
client. The client keeps one share for himself. This results in m− 1 ciphertexts
y1 . . . yi−1 . . . yi+1 . . . ym which are sent to the aggregator. The aggregator then
(for each client i) multiplies all m−1 ciphertexts intended for client Ci. Because
of the homomorphic property of the scheme, this equals the sum of all shares
for Ci. The aggregator then sends this value to the corresponding client, which
decrypts it and adds the last share, and sends the result back to the aggregator.
The aggregator can than sum the resulting values of all clients to obtain the
aggregated hit count b.

A more formal definition of the protocol:
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A → Ci : cert1, . . . , certm

Ci : If m < mmin then abort

Ci : pick random ai,1, . . . , ai,m such that ai =
m∑
j=1

ai,j mod n

calculate yi,j = {ai,j}pkj for j = 1, . . . , i− 1, i+ 1, . . . ,m

Ci → A : yi,1, . . . , yi,i−1, yi,i+1, . . . , yi,m

A : pi =

m∏
j=1,j 6=i

yj,i = {
m∑

j=1,j 6=i

aj,i}pki (due to homomorphic property)

A → Ci : pi

Ci : qi = {pi}ski
(decryption with ski )

ri = qi + ai,i =

m∑
j=1,j 6=i

aj,i + ai,i =

m∑
j=1

aj,i mod n

Ci → A : ri

A : Calculate b =
m∑
i=1

ri =

m∑
i=1

m∑
j=1

aj,i mod n

6.2.1 Security

The security of this scheme is based on a number of assumptions. The original
paper uses the malicious attacker model, with the aggregator as attacker. The
certificates from the clients are assumed to be signed by a certificate authority
independent from the aggregator. More precisely, the attacker is assumed to
be not capable of obtaining large numbers of valid certificates. If the attacker
can obtain valid certificates it can do a sybil attack, where it “simulates” a
number of clients in a pool with only one legitimate client. This is an unpractical
assumption in a threat information exchange environment, because (contrary to
the energy sector) such a trusted third party is not naturally available. We can
remove this assumption by using the semi-honest adversary model instead of the
malicious model. The aggregator is then obliged to distribute the certificates of
the clients honestly. Another possibility is that the clients exchange certificates
a priori via an out-of-band channel. The scheme is proven IND-CPA secure
because the aggregator cannot derive any information from the encrypted shares
to which it has access. We also assume the communication channel between the
clients and the aggregator to be secure, e.g. via TLS. This requirement is
not present in the original scheme, but is necessary because of the semi-honest
setting.
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6.2.2 Performance

We take a look at both the computational and communication requirements of
the scheme for both the client and aggregator.

The client needs to do m − 1 encryptions and one decryption, resulting in a
O(m) computational requirement. A single encryption or decryption in the
Paillier system is essentialy a modular exponentiation. The communication is
also O(m) because it receives m − 1 certificates and sends m − 1 encrypted
shares.

The aggregator needs to compute the {·} function O(m2) times, which is a
single modular multiplication in the Paillier system. The communication is also
O(m2) as it collects m− 1 shares of all m clients.

6.2.3 Practicality

The aggregator has a computational and communication load of O(m2), which
limits the size of the group. How much this limits the size depends on a number
of parameters. The most important parameters are how often the aggregation
is performed and how many metrics (hit counts) are aggregated.

To investigate if this is a problem we estimate the computational and commu-
nication load for the aggregator with multiple parameters. The two parameters
we consider are the number of participants and the number of metrics that are
aggregated.

To estimate the communication overhead we estimate the size of the ciphertexts
that need to be transferred by the aggregator. This can be estimated by

s = q ·m2 · 2 · n,

where q is the number of metrics and m the number of clients.

We choose the length of n to be 2048 bit, providing 103 bit security [7]. We
consider this to be a good tradeoff between ciphertext size and security. The
size of the ciphertext is 4096 bit, because as [16] notes, the ciphertext is two
times the size of the plaintext.

Note that using elliptic curve Paillier [8] can reduce this size substantially, how-
ever we have not investigated this any further.

With these assumptions we obtain the following table for the communication
overhead for the aggregator
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m q 10 102 103 104

10 512 KB 5.12 MB 51.2 MB 512 MB
102 51.2 MB 512 MB 5.12 GB 51.2 GB
103 5.12 GB 51.2 GB 512 GB 5.12 TB
104 512 GB 5.12 TB 51.2 TB 512 TB

On the x-axis we see the number of metrics q, the y-axis are the number of
participants m. As we expected this is linear in the number of metrics and
exponential in the number of participants, and therefor reaches large size quite
fast.

Fortunately, we can limit the exponential growth by forming subgroups. As
long as the subgroups are large enough to provide some anonymity (e.g. ten
companies of roughly the same size/industry) this does not affect the security
of the scheme.

To estimate the computational overhead of the aggregator we estimate the time
needed to compute all the homomorphic additions. For a single run this can be
estimated by

t = z ·m · (m− 1),

where z is the time needed for a single homomorphic addition, which is essen-
tially a modular multiplication. To obtain an estimation of how fast this is we
have done a benchmark using libpaillier1, which is a thin wrapper around the
GNU Multiple Precision Arithmetic Library2. The code can be found online3.
We found that a recent Intel Xeon E5-2430L processor can do around a 100
homomorphic additions per millisecond.

This results in the following table

m q 10 102 103 104

10 9 ms 90 ms 900 ms 9 s
102 99 ms 9.9 s 1 min 39 s 16 min 13 sec
103 1 min 39 s 16 min 39 s 2 h 46 min 27 h 47 min
104 2 h 46 min 27 h 46 min 11 d 115 d

Again, due to the exponential nature the computation time rapidly grows with
the number of clients. As with the communicational overhead, this can be
mitigated by creating subgroups. Also note that it possible to do the calculations
in parallel.

1http://acsc.cs.utexas.edu/libpaillier/
2https://gmplib.org/
3https://github.com/felrood/paillierspeedtest
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6.3 Anonymous Credentials

The scheme proposed by Cheung et. al. [5] take a different approach than the
previous two. Instead of focusing on hiding the hit count number itself, this
scheme targets the delivery of the number. This is done by providing an anony-
mous authenticated channel. The individual hit counts are then submitted to
the aggregator such that they are not attributable to a individual client.

The paper implicitly assumes the communication channel is anonymous. We will
assume the communication between clients an the aggregator is done via Tor4
or a similar anonymization network. Although this does not provide anonymity
against a global eavesdropper, we consider it sufficient in this setting because
the client only needs to be anonymous to the server.

The orginal scheme proposed by Cheung et. al. is not directly usable in a
threat information exchange setting. Instead we present a scheme with a similar
structure that is more suitable for this setting.

The goal of the scheme is for an authenticated client to deliver a (authenticated)
value to the aggregator in such a way that the aggregator cannot attribute the
value to that client. We assume there is a single aggregator A, which collects
multiple aggregates g in multiple timeframes t. We also assume the semi-honest
adversary model.

6.3.1 RSA public-key cryptography

The blind signature scheme is built on the RSA public-key encryption scheme,
which we will explain first.

We assume Bob wants to send a message to Alice. We assume Bob already has
the public key of Alice, denoted as (n, e). The modulus n is a product of two
large (e.g. 1024 bit) primes p and q. The private key d is derived from p and q
such that:

d ≡ d · e mod ϕ(n),

where ϕ(n) = (p − 1)(q − 1). This can be done with the extended Euclidian
algorithm. By choosing d, e, n this way the following congruence holds:

med mod n ≡ m mod n.

To send a message m, Bob encrypts it with the public key of Alice:

c = me mod n.
4https://www.torproject.org/
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Alice can recover the message by decrypting with her private-key:

m = cd mod n.

Alice can prove a message came from her by signing it with her private key:

s = md mod n.

Bob can verify the signature s by checking

m
?
= se mod n.

6.3.2 Blind signatures

The main building block of this scheme are blind signatures [3]. With a blind
signature the signer can create a valid signature for a message he has not
seen.

There are three parties involved in a blind signature scheme, the client C, the
signer S and the verifier V .

Client C has a messagem for which it wants a valid signature from signer S. The
signer has an RSA keypair (n, e, d) of which (n, e) is known to all parties.

To obtain a signature C first “blinds” the message m with a random value r
(where r is relatively prime to n) such that:

m′ = mremod n

and sends m′ to V . S creates a signature s′ for m′ by signing it with its private
key:

s′ = (m′)dmod n

and sends s′ back to C. To obtain the signature s, C “unblinds” s′ to ob-
tain:

s = s′ · r−1mod n.

This is equivalant to

s ≡ s′ · r−1 mod n

≡ (m′)d · r−1 mod n

≡ mdredr−1 mod n

≡ mdrr−1 mod n

≡ mdmod n.
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A validator V can then verify that s is a valid signature form by checking:

m
?
= semod n

In our scheme the signer and validator are actually the same party.

6.3.3 Simple scheme

The first scheme is simplified to illustrate the delivery method. This scheme does
not consider multiple aggregates, nor timeframes. We assume the aggregator A
has a single RSA keypair (n, e, d) of which client C knows n, e a priori.

Authentication phase In the authentication phase the client connects with
the aggregator in a non-anonymous way. It authenticates itself to the aggregator
and collects a blind signature for the value v the client wants to submit.

The authentication step can be achieved with any form of authentication, for
example with a shared secret or with certificates.

Anonymous phase In the second phase client C connects again with aggre-
gator A, but now using a anonymization service such as Tor. It sends v and its
unblinded signature s to the aggregator which accepts (and uses) the value if
the signature is valid.

6.3.4 Expanded scheme

We adapt the previous scheme to accommodate the aggregation of multiple
aggregate groups over many timeframes. For this we assume the aggregator A
has two categories of key pairs, one for each aggregate group and one for each
timeframe. As a result, each message is signed twice, once with the applicable
group key and once with a timeframe key. We use a hash function H to obtain
the value x = H(v, g, t) which is used instead of v. We use x′ to denote the
blinded version of x.

Authentication phase

C A

Auth(C, g, t) → Authenticate C to A
← OK Accept if C can authenticate

x′ → C sends blinded message x′

← s′g, s
′
t A sends signatures over x′
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Anonymous phase

C A

v, g, t, sg, st →
← OK Accept if sg and st are valid signatures for H(v, g, t)

To obtain the aggregate the aggregator sums values v for each group and time-
frame.

Note that this scheme does not guarantee that a client cannot submit its value
multiple times, as this is not required in the semi-honest adversary model. This
protection can be added by using x = H(r, v, g, t) where r is a nonce. The
aggregator can then check if a value is submitted multiple times by checking for
duplicate nonces. The nonce r should be sufficiently large and randomly chosen
by the clients. This makes the scheme robust against malicious clients, but not
against a malicious aggregator.

We can make this scheme more robust against a malicious aggregator by as-
suming the public keys used by the aggregator are indeed public, such that
the aggregator cannot distribute a different key to each client. This prevents
in essence a sybil attack, where the aggregator places each client in a unique
group. To strongly verify there are multiple client in a group this is not enough,
but it allows for detection of such an attack if clients corroberate.

6.3.5 Security

To guarantee the submitted value is not attributable to a specific client three
conditions need to be satisfied. Obvious but important, there need to be at least
two members in each aggregate group, preferably more. With more clients in a
group, it becomes more difficult for the aggregator to link a value to a particular
client.

Second, all clients need to finish the authentication phase before any client starts
the anonymous phase. If this condtion is not met, the aggregator can rule out
the clients that have not yet finished the authentication phase if a client performs
the anonymous phase. This can lead to deanonymization of clients.

The last condition is that any information about the value submitted by the
client is not known to the aggregator. If the data is cross-referenced with other
data (which is allowed in the semi-honest adversary environment) it is possible
to deanonymise individual clients under certain circumstances. For example, if
the aggregator knows only one client in a group has more than 10 computers,
and someone submits the value 12 for unique hits for a particular piece of
malware, the aggregator can deduce it was that client. As another example,
if a client in a group reports it has seen malware for a particular old type
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of mainframe, and there is one bank in the group and all other members are
relatively young companies, the aggregator can deduce it probably was the bank
who owns a mainframe. Even if one such example does not uniquely identify a
single member, combining multiple of such examples might.

To conclude, the groups should be chosen such that the organizations within one
group are as similar as possible with respect to the metrics that are aggregated
and as large as possible.

6.3.6 Practicality

The scheme we have described should be executed for each value that is to be
submitted. If this can be done in practice depends on a number of parameters.
The most influencial parameters are the number of clients c, the number of
aggregate groups g and interval t.

The number of RSA keypairs the aggregator needs to generate is equal to the
number of intervals. For each interval one new keypair is needed.

In each timeframe the aggregator needs to do one authentication and sign two
messages per client/group combination, thus the computational overhead is
O(cg).

A client needs to blind one message and unblind two signatures per group in a
single timeframe. This results in a O(g) computational overhead.

The communication overhead of the aggregator is O(cg) for each timeframe.
For the client the communication overhead is O(g) per timeframe.

6.3.7 Discussion

Both an advantage and disadvantage of this scheme is that the agregator learns
the individual values. This means it can perform more types of analysis on
the data than just the sum, for example compute the standard deviation or
build a histogram. This is also a disadvantage because the clients have no hard
guarantees what happens with the data they have submitted. It also gives the
aggregator more possibilties for deanonymizing the clients, as more information
is available for correlation.

6.3.8 Blind signatures versus group signatures

We have chosen blind signatures instead of group signatures [4] for this scheme
because they have better anonymity properties. Specifically, a group signature
scheme requires a group manager. Such a party is not naturally found in a threat
information exchange setting. Moreover, the group manager has the possibility
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to revoke the anonymity of a signature. We consider this a undesirable property
in our scheme.



7. Conclusion

In this research we have presented a number of methods that can be used to
provide confidentiality of data for certain problems in threat information ex-
change. All of these have methods have limitations and conditions that need to
be satisfied in order to function and be secure.

In the first chapter we have formulated three subquestions:

Which PETs are available for keeping IoC’s confidential?

We have described two methods, Adapted Rabin-Karp and Public-key En-
crypted Bloom Filters, that each achieve confidentiality in a different setting. In
case of Adapted Rabin-Karp it is possible to keep signatures confidential until
a hit occurs with little overhead. As a drawback, only string based matching
can be performed. With Public-key Encrypted Bloom Filters it is possible for
two parties to compare two sets of items such that only one party learns the
intersection of the set. However, the overhead of this method is substantial,
which limits the applicability.

Which PETs are available for anonymizing hit context?

We have considered anonymizing packet traces and presented the Anonymiza-
tion API. The flexibility of this method allows each organization to implement a
fine-grained policy for anonymization. However, due to this flexibilty it remains
unclear what impact different policies have on the anonymity and usefulness for
threat information exchange.

Which PETs are available for anonymous aggregation of statistics?

In the field of smart metering we have found a problem that looks very similiar
to this. We have presented two methods that each accomplish aggregation of
statistics in a different way. The Homomorphic encryption scheme produces only
the aggregated sum of all statistics, while the Anonymous Credentials scheme is
flexible enough to allow any kind of statistics on the data. The cost of the latter
scheme is reduced anonymity, the former has a substantial overhead.

Our main research question was:

Can threat information exchange between semi-honest parties be realized using
Privacy Enhancing Techniques?

We can conclude that Privacy Enhancing Techniques can indeed be used to
realize threat information exchange. However, there are few generic solutions
and there is always a cost in terms of performance or reduced functionality.

54
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Furthermore, the semi-honest adversary model has shown to be useful to model
threat information exchange, as it is more close to reality than the malicious
model or the trusted model. In conclusion we think the methods presented in
this research are valuable for new collaborations in threat information exchange
that otherwise would not have been possible.

7.1 Future work

In this research we have shown that Privacy Enhancing Technologies can be
applied to confidentiality problems found in threat information exchange. How-
ever, further research is needed to demonstrate the applicability in practice. To
investigate if the methods presented in this research are indeed viable in the real
world, they should be implemented and tested with real world data. In partic-
ular, it is not directly obvious how the methods presented fit into the STIX,
TAXII and CyBOX standards. These standards are all extendable, but we are
unsure if methods such as the Public-key Encrypted Bloom Filter can be fitted
into them. Due to the amount of work involved this goes beyond the scope of
this research.

Looking at the STIX model, we have only considered the Observables as indi-
cators of compromise. Further research can investigate if other classes of the
STIX model can be kept confidential, and if that is desirable.

In case of the hit context, further research is needed to reveal what parts of
packet traces are most valuable for analysis, and what the privacy impact is.
A novel approach would be to use secure multiparty computation schemes to
perform the analysis of a packet trace. This would mean the actual packet trace
is never in its entirety revealed to anyone outside the detector. In essence, it
applies the semi-honest attacker model and PETs to packet trace analysis. Due
to the lack of existing research in this area this is beyond the scope of this
thesis.

Defend et. al. have shown in [6] that protocols for privacy-preserving smart
metering are indeed viable in the real world. The researchers found that the
computational overhead of their aggregation scheme is to a problem on the
smart meters deployed in the field. The most difficult problem they encoun-
tered was not of a technical nature but organizational: how to explain their
method to management and convince them of its necessity. However, their re-
search is based on a different method than we have presented. Therefore further
research is needed to confirm our methods are also viable in the setting of threat
information exchange.

For the Adapted Rabin-Karp scheme we have asserted that it is not possible
to recover the elements given a Bloom filter. Although we have not found any
literature contradicting this assertion, a more in-depth study of using Bloom
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filters in combination with Rabin fingerprints is neccesary to confirm this is
indeed preimage resistant.

7.2 Discussion

We are confident the methods we have presented can be useful in practice.
However, we have only shown on paper they are feasible and not implemented
them. Real world experience is missing, making it hard to draw any hard
conclusions.

Another point of concern are the many assumptions and limitations of the meth-
ods we have presented. For example, the Adapted Rabin-Karp string matching
method is only capable of matching patterns in a string. IoCs are much more
flexible in the matching method they allow. The difficulty of recovering the pat-
terns depends in part on how the pattern is fragmented. Not all patterns can
be held confidential, and which can and cannot be held confidential is not easily
determined. Such considerations reduce the usability of the method.

We estimate the Public-Key Encrypted Bloom Filter and Adapted Rabin-Karp
method cover a significant part of the IoCs used in practice. However, we have
not presented any method for the other types of IoCs possible in CyBOX.

In this research we have assumed the hub-and-spoke model for threat informa-
tion exchange. The methods presented also apply to the source-subscriber and
peer-to-peer models, except for a few cases. Public-key encrypted Bloom filters
don’t make much sense in a peer-to-peer setting, as the result of the method
only becomes know to one party. However, technically it is possible to use the
method. The methods that provide confidentiality of statistics also don’t make
much sens in the peer-to-peer model. Statistics are aggregated by a central
party which is not naturally present in a peer-to-peer model.
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