Radboud University Nijmegen
Master thesis, 2015.

PaN,
[
Yerren

N

MiNe ¥

— PHILIPS
Embedded Systems PHILIPS
Innovation BY TNO _ Lighting

Model-based robustness analysis of
indoor lighting systems

August 2015

Author: Radboud University:

Danny Hendrix Supervisor:
Dr. ir. G.J. Tretmans

Assessor:
Prof. dr. J.J.M. Hooman

TNO-ESI:
Dr. J.H. Verriet
Dr. ir. R.M.P. Doornbos

Abstract

In this thesis, the robustness of indoor lighting systems has been analysed. To define
robustness in terms of testing, a categorization in robustness of system engineering is
proposed. The categorization divides robustness by means of characteristics in input
and consequences of a changing environment or internal structure.

Testing robustness of software is difficult and requires a different approach than testing
normal behaviour. Preferably, testing is fully automated including the generation of test
cases. One automated approach is model-based testing. In model-based testing, a formal
model describes the behaviour of the system. The model is used to mathematically derive
tests to validate whether an implementation is a valid implementation of the model. In
addition the formal model can be used to reason about the behaviour of the system. A
particular technique is model checking. In model checking, properties define the allowed
behaviour of the system. With model checking, proof can be given whether a property
holds in the model or not. The combination of model checking and model-based testing
allows a model driven approach to system development where faults in the design are
detected in an early stage. For each of the proposed categories in robustness, a method
is provided to test robustness with a model-based approach; that is, model checking
combined with model-based testing. Experiments have been performed where model-
based testing is applied to test indoor lighting systems. Both the normal behaviour as
well as behaviour after message loss is considered. The results show that model checking
is best to find inconsistent behaviour, whereas model-based testing provides confidence
in the conformance relation between the model and the implementation. Due to the limit
in state coverage, model-based testing did not provide new insight considering message
loss. It did provide insight in the correctness of the model.

Table of contents

Introduction

1.1 Prisma project
1.2 Research alm
1.3 Related research
1.4 Structure of the Thesis

System robustness

2.1 What is robustness?
2.2 System, environment and inputo
2.3 Characteristics in system robustness
2.4 System robustness categorization for testing

A Model-based approach to robustness

3.1 Labelled Transition Systems
3.2 Model checking e
3.3 Model-based testing
3.4 Model checking combined with model-based testing
3.5 Model-based robustness analysis

Case study: Smart indoor lighting systems

4.1 Smart indoor lighting system oL
4.2 Technical implementation
4.3 Robustness of lighting systems
4.4 Testsetup e

Model-based testing experiments

5.1 Model-based testing tools oo
5.2 Model construction
5.3 Testing of normal behaviour 0.
5.4 Robustness testing Lo
5.5 Validation of Prisma models oo

Discussion

6.1 Model-based testing of indoor lighting systems
6.2 Results of the experiments,
6.3 Tools. e e e
6.4 Model checking and Model-based testing

11
11
13
18
25

27
27
28
30
33
34

43
43
44
49
50

55
55
55
58
61
65

6.5 Model learning

7 Conclusion and Future Work
7.1 Research question
7.2 Future work

8 References

1 Introduction

Testing is an important part of system development. Testing in general is a difficult,
expensive, time-consuming and labour-intensive process [31]. Preferably, testing is done
automatically, allowing to repeat the tests each time the system is modified. One of
the automated testing techniques is model-based testing. In model-based testing, a
formal model of the system is constructed from the specification. This allows to perform
reasoning, such as model checking, to validate the correctness of the model.

With the use of model-based testing, the model can be used to test whether an implemen-
tation under test (IUT) is conform to the model, and thus conform to the specification
if the model is a valid representation of the specification. The model specifies when and
what inputs and outputs the IUT should accept and produce. Model-based testing has
shown to be an effective method for testing embedded systems [34].

One of the more difficult aspects of systems to test is robustness. In robustness testing,
the system is tested against an unreliable environment or unexpected inputs. Robustness
testing is difficult because it is hard to specify robustness properties. Many different
definitions of robustness have been given in the literature, ranging from recovery after
unexpected inputs to resilience of the system in an unreliable environment.

In this thesis, a categorization of system robustness is proposed. In addition, a model-
based approach, that is, model checking and model-based testing, is proposed for each
of these different categories. The theory is then applied to model-based test robustness
of indoor lighting systems.

1.1 Prisma project

Modern indoor lighting systems consist of much more than just a set of lamps. Motion
and daylight sensors support the luminaire in deciding where and when to produce the
right amount of light. Currently TNO-ESI is collaborating in the Prisma project with
Philips Lighting. The aim of this project is to analyse and improve the robustness of
indoor lighting systems. In this thesis I will contribute by applying model-based testing
techniques to further analyse the robustness of such smart lighting systems.

One of the interesting aspects in the analysed lighting systems is message loss. Lumi-
naires communicate with each other when, for instance, one luminaire detects motion
and all the luminaires should go to the corresponding light level. The luminaires should
be robust against possible loss of messages. Message loss can result in the system being
in an inconsistent state. An inconsistent state can for instance be a situation where all
luminaires in a room are on except for one, because this luminaire has missed a message.
Some of the inconsistent situations are not much of a problem. For instance, it is not

a problem if one luminaire is more dimmed than the other luminaires for a couple of
minutes. A more critical problem is, for instance when a luminaire never switches off!
Philips Lighting would like to have an indication of these inconsistent situations and
whether the system recovers within a specified time span.

1.1.1 Prisma models

TNO-ESI has created models of the behaviour of the system. In the remainder of this
thesis, these models are referred to as Prisma models. With the use of model checking
a number of possible inconsistencies, caused by message loss, have been detected. The
failure scenarios that were found with model checking have been reproduced on the
actual system by filtering out the appropriate messages [12]. The correctness of the
model that has been used in model checking, is formed from the specification and has
been validated by means of observing the behaviour on the actual system. It is possible
that automated model-based testing techniques can find differences between the Prisma
model and the actual system. Part of this thesis is the online verification of the models
with a small test environment. Applying model-based testing with the Prisma models,
that are used for model checking, will give insight in the added value and practical
limitations of model-based testing combined with model checking.

1.2 Research aim

The aim of this research is to define the different types of robustness in system engineer-
ing and explore how model-based testing can be used to test robustness in an automated
way. Some of the proposed methods will then be applied to test robustness of indoor
lighting systems.

The research question that will be studied in the master Thesis is stated as followed:

What are the different types of robustness in system engineering and can
they be tested using a model-based approach, furthermore, is model-based
testing a useful method to test robustness of indoor lighting systems?

Questions that derive from the main research question are:
1. What is considered robustness in system engineering?
2. How can robustness be categorized in terms of testing?
3. How can model checking be used to analyse robustness?
4. How can model-based testing be used to test robustness?

5. What are the strengths and weaknesses of model-based testing compared to model
checking for validating robustness of a system?

6. Is the Prisma model a good representation of the real implementation?
7. Which model-based testing tools can be used to test indoor lighting systems?

8. To what extend has the Prisma model, used with model checking, be changed to
make it usable for model-based testing?

9. How can robustness against message loss be tested with model-based testing?

10. How can robustness against power loss be tested with model-based testing?

1.3 Related research

In [6] a framework is proposed for assessing robustness. The authors propose a method
to calculate the total risk probability in system engineering. Their method addresses
robustness by means of probability of exposures, that lead to damage which in turn
lead to consequences in the behaviour of the system. The research considers direct risk,
which is associated with risk that leads to potential damages in the system, and indirect
risk which corresponds to increased risk of a damaged system [6]. Test cases are often
selected on risk analysis. When creating categories in robustness with respect to testing,
risk of damaged systems should preferably be included.

There has been research in the field of model-based testing [11]. Model-based testing
has been applied frequently to engineering systems to test the normal behaviour of the
system. Larsen et al. have applied model-based testing with the tool Uppaal Tron in an
industrial environment [19]. The used model is a timed automata network in Uppaal.
The model acts as a specification of the system that is tested against the real system
with Tron. Their research did not find systems errors. The authors argue that the
system that is being analysed is stable and has been used in the field for many years.
The authors believe that their approach will find system errors in newer, less-tested
software. One of their conclusions is that most of the inconsistencies between the model
and the implementation under test (IUT) were caused by incorrect models, caused by
incomplete specification documents.

Methods of automated checking, using a formal specification, include model checking.
Research has shown that model checking is a successful method for finding software
bugs in embedded systems. Within the Prisma project, model checking proved to be a
successful method for detecting inconsistent states in lighting systems [12].

In model checking, the model represents the IUT. To validate the correctness of the
model, a set of properties are derived from the specification. A model checking tool can
then verify whether the properties hold in the model [10]. In model-based testing, the
model is the specification and is tested against the real TUT.

In many research, automated testing and model checking is combined by using the
failure scenarios found with model checking and execute them on the IUT [3, 4, 12].
This makes the assumption that the model used in the model checking phase is a correct
representation of the real system.

In [13] a framework for model-based testing of robustness is introduced. The proposed
framework is very theoretical and has only been applied to small toy systems. In this
thesis, the system that is being analysed is much larger. Furthermore, lighting systems
are highly depending on time as light should automatically go off after a period of not
detecting motion. The proposed framework in [13] does not consider timed specification
of the IUT. Another limitation of the proposed framework is that it mainly focusses on
fault-injection; robustness can be seen much broader than just fault injection. What is
currently missing in the literature is a good and broad categorization of robustness in
engineering systems.

1.4 Structure of the Thesis

Chapter 2 describes different definitions of robustness and proposes a categorization of
robustness to answer question 1 and 2. Chapter 3 describes how model-based testing
can be used to test the different types of robustness and answers question 3, 4 and
5. Chapter 4 describes the lighting system that has been used to apply model-based
robustness testing. Chapter 5 describes the model-based testing experiments that were
performed and answers question 6, 7, 8, 9, and 10. Chapter 6 evaluates the experiments
and discusses advantages of model-based testing against model checking and discusses
whether model learning can be of use within the Prisma project. Finally Chapter 7
concludes the thesis and provides suggestions for future work.

10

2 System robustness

This chapter describes the different types of system robustness and proposes a catego-
rization. First a number of different definitions of robustness are given that are used as a
basis for the, to be formed, categories. Categories are explained in terms of examples. In
the next chapter, where a model based approach is proposed, categories are formalized.
To illustrate robustness problems, vending machines rather than lighting systems are
used as examples. Vending machines are more diverse and the behaviour is assumed to
be more familiar to a larger audience.

2.1 What is robustness?

The term robustness is not limited to system engineering but definitions in other disci-
plines are applicable to system engineering. Many definitions overlap in their meaning.
The Santa Fe Institute has formed a list of different definitions of Robustness, formed
from different disciplines [15, 24]. The following list gives a set of definitions for robust-
ness, that are relevant for system engineering. Some of these definitions are not targeted
at system engineering but they do contain aspects that are relevant. The list is con-
structed from the list of definitions of the Santa Fe Institute, extended with definitions
found in the literature.

R1 Robustness is the degree to which a system or component can function correctly in
the presence of invalid inputs or stressful environmental conditions [1].

R2 Robustness is the persistence of specified system features in the face of a specified
assembly of insults [2].

R3 Robustness is the ability of a system to maintain function even with changes in
internal structure or external environment [9].

R4 Robustness is the ability of a system with a fixed structure to perform multiple
functional tasks as needed in a changing environment.[17].

R5 Robustness is the degree to which a system is insensitive to effects that are not
considered in the design [29].

R6 Robustness is the ability of software to react appropriately to abnormal circum-
stances (i.e., circumstances “outside of specifications” including new platforms,
network overloads, memory bank failures, etc.). Software may be correct without
being robust [21].

11

R7 Robustness is a design principle of natural, engineering, or social systems that have
been designed or selected for stability [15].

R8 Robustness is a characteristic of systems with the ability to heal, self-repair, self-
regulate, self-assemble, and/or self-replicate [15].

R9 Robustness can be defined as the capability of a control system to remain working
correctly and relatively stable, even in presence of disturbances. Additionally, an
important issue is the system fault tolerance, i.e. the capability to detect and
tolerate internal failures, in order to continue performing their operations without
the need for an immediate intervention [20].

R10 Robustness is a measure of feature persistence for systems, or for features of sys-
tems, that are difficult to quantify, or to parametrize [17].

R11 Robustness is a measure of feature persistence in systems where the perturbations
to be considered are not fluctuations in external inputs or internal system param-
eters, but instead represent changes in system composition, system topology, or
in the fundamental assumptions regarding the environment in which the system
operates [17].

R12 Robustness can be defined as the ability of software to keep an “acceptable” be-
haviour, expressed in terms of robustness requirements, in spite of exceptional or
unforeseen execution conditions (such as the unavailability of system resources,
communication failures, invalid or stressful inputs, etc.) [13, 30].

R13 Systems that are robust often are required to maintain function while exploring
new functionality [17].

What all definitions agree upon is that robustness of a system refers to the functionality of
a system and is related to invalid input (R1, R2 and R9) and changes in the environment
(R1, R3, R4 and R11) by which the system is surrounded. The terms input and
environment can be interpreted differently. I will define what is considered to be a
system, environment, and input in this thesis in Section 2.2.

One of the aspects that not all the definition agree upon is whether robustness is part
of the design or not. Definition R2, R7 and R12 consider some sort of specification
or requirements, related to robustness, in the design. In definition R5, R6 and R11,
robustness is the behaviour outside the design. If we consider Definition R1, the sys-
tem should function correctly when operating under stressful environmental conditions.
Correct behaviour is not necessarily normal behaviour. For example if in a vending ma-
chine the output arm (the mechanical part that picks the correct product) breaks, the
machine might display an error instead of allowing customers to purchase products. In
this case correct behaviour in unexpected conditions, should be specified in the design.
Nevertheless, robustness is not a yes or no question. A system can only be robust to
a certain level. The size of all the available inputs and the size of the environment of
a system is very large, and often even infinite. We cannot make a system robust to

12

everything but we can say that it is robust against certain circumstances. If robustness
is considered in the design, we can give a verdict whether the system is robust according
to the specification. This does not mean that the system is robust in general, for that
we also have to consider behaviour outside the design.

An interesting aspect of robustness is extensions to the system, as mentioned in Defi-
nition R13. The system should maintain functionally when new features are added to
the system. This is a property of robustness that is not considered in most of the other
definitions. For instance, the definition given by the IEEE (Definition R1) considers the
system to be stable and not change functionality. With larger systems, elements of the
system may be replaced with newer versions or extended with new functionality. The
remaining elements should still maintain there own functionality. This is especially the
case with self-learning systems where functionality continuously changes. Newly learned
behaviour should not interfere with existing behaviour.

2.2 System, environment and input

The previous section provided general, not particularly related to system engineering,
definitions of robustness. This section defines what is considered a system, the environ-
ment of the system, and what is considered an input of a system in this thesis.

The meaning of a system can be very different in different disciplines. The focus in this
thesis is towards systems that contain software. I use the definition of a system given in
NASA Systems Engineering handbook [18]:

Definition 1. A system is a construct or collection of different elements that together
produce results not obtainable by the elements alone. The elements, or parts, can include
people, hardware, software, facilities, policies, and documents; that is, all things required
to produce system-level results. The results include system-level qualities, properties,
characteristics, functions, behaviour, and performance.

In addition I consider only systems that contain some form of software. This can range
from firmware to higher level software, such as Java applications.

In the remainder of this chapter, the word element is used and refers to an element as
given in Definition 1.

Simple said, the environment of the system is everything that is not part of the system.
In order to define what is considered to be the environment, the system has to be
precisely defined.

I define the environment of the system as followed, where elements refer to the elements
defined in Definition 1:

Definition 2. The environment of a system is the circumstances, conditions, or ele-
ments by which the system is surrounded.

13

Input of a system is everything that can be provided to the system. This means that
input include, valid input that the system expects but also invalid input that the system
does not expect. In the case of a vending machine, input consists, among others, of
coins, button presses and power. More precise, coins can be of any currency, including
currencies that the vending machine does not accept. Furthermore, input can also be
observed by the system. An example is a heat sensor that measures the current temper-
ature.

I define input of a system as followed:
Definition 3. Input of a system is everything that is fed to, or observed by, the system.

It is difficult to separate between what is part of the system and what is part of the
environment. In the given definitions, it is not clear where the system ends and the
environment begins. For example, in the case of a vending machine, the buttons can
be seen as part of the system because the buttons are required to produce result and,
according to Definition 1, the system consists of all elements that together produce a
result that is not obtainable by the elements alone, and thus the panel is part of the
system. On the other hand, if we consider the software of the vending machine, the
buttons can also be seen as part of the environment. The software observers the press
of a button by means of an event being triggered. The buttons are in that case not
involved in the process to obtain the result and therefore part of the environment.

To define what is the environment and what is part of the system, I propose to look at
the result that the system should achieve. Consider a vending machine with one button
that, when pressed, outputs chocolate. If we are interested in the physical output of
chocolate, the system consist of the button and all the internal elements in the machine,
such as the mechanical arm that outputs the chocolate, that contribute to the process.
All other elements in the machine, that do not take part in the process of producing
chocolate, are not part of the system. This means that an additional button on the candy
machine that outputs gum, is not considered part of the system, when only considering
chocolate to be the result of the system. This additional button however is part of the
system when we consider the output of all candy to be the result of the system.
Considering just the result however is not enough. According to that statement, the
power source, like a power plant, also becomes part of the system because the hardware
parts in the vending machine require power.

This can be avoided by only consider an element to be part of the system when the
design of the behaviour of the element is in control. In the case of the vending machine,
where the design of elements of the physical machine are in control, the power plant is
not part of the system because the design of the power plant is not in control by the
supplier of the vending machine. In addition I consider entry points of the system. To
define an entry point, I consider all the input that is required to produce the result. An
entry point is the latest point that receives an input before it is processed. Entry points
allow to close the system when the system is part of a larger system. An example is a
vending machine where both the hardware and software are from the same supplier. A

14

system can be defined in terms of both hardware and software but also as just software.
The entry points make it possible to define both these systems. A practical approach to
define the system is shown, by means of a flow diagram, in Figure 2.1.

The starting point considers no elements in system S and no elements as entry points
in SE. For each output u in Lu, where Lu is the set of outputs that is considered in
the system, provide(u) is the set of elements that provide output u. Each of these
elements are part of the system, with the condition that the design of the element is in
control designInControl(s), and therefore added to S. Each of these elements requires
zero or more inputs in order to produce the output. These inputs, of an element s,
are the set required(s). An element s is an entry point when one of the inputs is in
the set of required inputs LRI of system S. If the input is not a required input, than
all the elements that provide this input to s are part of the system (unless the design
of the element is not in control) and should be analysed to further extend the system.
provide(k,a) is the set of elements that provide input k to element a.

To illustrate, recall the vending machine with one button that outputs chocolate. Power
can be defined as one of the required inputs to produce the result of the output of choco-
late. This means that LRI ={Power,Button press} and Lu={chocolate}. The elements
that are required to output chocolate is the mechanical part, to simplify, let us consider
this to be a motor, that outputs products. provide(u) = {motor}. The motor is now
part of the system. The input that the motor requires is power and a signal to output
chocolate. Thus required(motor) = {power,signal}. Power is in LRI and therefore
the motor is an entry point of the system. The second input that the motor needs is
a signal. This signal is given by the hardware/computer of the vending machine. This
computer in turn, requires the software and signals from the button. This makes the
button and the software part of the system. When all elements are reached, the defini-
tion of the system is complete and closed.

To show that this method is also applicable to software systems, consider a Java pro-
gram that consists of a user-interface with one button and one text field that displays a
numeric value. Pressing the button increases the value by one. Let us consider the result
of the system to be the change of numeric value and the required input to be the button
being triggered. When the user activates the button, the first element that is involved
is the Java application. The Java application in turn makes use of functionality in the
Java Virtual Machine (JVM). The design of the JVM is not in control and therefore
the JVM is not part of the system. Any element after the JVM, such as the operating
system is not part of the system. The system only consists of the Java application.

There is no guarantee or proof that the described method is applicable to all systems.
More research is needed to explicitly define a system and its environment.

15

Start

L

S={
Se={

null

EP = EP + provide(u)

End

S=S+s}

null

for k in required(s)

SE = SE+{s}

Lyes kin LRI

no

v

EP = EP + provide(k,a)

.)

Figure 2.1: Flow diagram to define a system

2.2.1 Quality of systems

The goal of software testing is to ensure quality of software. Testing robustness can
therefore be seen as validating the quality of the system in terms quality characteristics,
related to robustness. The ISO 25010 standard describes a model which categorizes
the product quality into characteristics and sub-characteristics [16]. Robustness is not
explicitly mentioned, robustness can be seen as a second degree or underlying quality
attribute [27]. The model consists of two main categories, software product quality, and
software quality in use. The latter describes how usable the system is, which includes
topics like, usefulness, flexibility, and pleasure.

Robustness is only considered in the first category, product quality. This category
consists of eight characteristics, namely, Functional Suitability, Performance Efficiency,
Compatibility, Usability, Reliability, Security, Maintainability, and Portability. These
categories are in turn divided in sub-characteristics. When considering the definitions
of robustness, I list the following quality characteristics and sub-characteristics that
describe quality of a system in terms of robustness:

Compatibility

Co-existence Degree to which a product can perform its required functions effi-
ciently while sharing a common environment and resources with other prod-
ucts, without detrimental impact on any other product.

Reliability

Availability Degree to which a system, product or component is operational and
accessible when required for use.

Fault tolerance Degree to which a system, product or component operates as
intended despite the presence of hardware or software faults.

Recoverability Degree to which, in the event of an interruption or a failure, a
product or system can recover the data directly affected and re-establish the
desired state of the system.

Maintainability

Modularity Degree to which a system or computer program is composed of discrete
components such that a change to one component has minimal impact on
other components.

Madifiability Degree to which a product or system can be effectively and efficiently
modified without introducing defects or degrading existing product quality.
Portability

Adaptability Degree to which a product or system can effectively and efficiently
be adapted for different or evolving hardware, software or other operational
or usage environments.

17

What is interesting to see is that robustness is part of four out of eight main characteris-
tics of software quality. This indicates that robustness is an important part of the quality
of systems which indicates that, to test robustness, different approaches are needed. For
instance testing co-existence requires testing the system when operating alongside other
systems whereas recoverability requires testing behaviour after unexpected input or en-
vironmental conditions. It is very unlikely that these quality aspects can be tested with
one general approach. Nevertheless, some characteritics, such as co-existence and adapt-
ability, might be testable with the same approach. Take for instance calculation time.
In co-existence, hardware has to be shared with other systems which can result in slower
calculation. In adaptability, hardware is improved and calculations can be executed
faster. Both affect the calculation timing in the system and thus a general approach
might be applicable.

To categorize robustness, we should not use quality characteristics as basis but rather
use them to validate whether the categorization covers all quality characteristics, related
to robustness.

2.3 Characteristics in system robustness

This section explores how different aspects in system robustness are characterized. These
characteristics are used to categorize robustness in the next section.

From the different definitions of robustness, we can consider three main aspects, namely,
invalid input, unreliable environment, and changes in the internal structure. In short,
invalid input of a system is all unexpected input that is provided to the system, the
unreliable environment is everything outside the system that affects its behaviour, and
the changes in the internal structure consist of changes and extensions in the internal
structure of the system. In the remainder of this section, different characteristics are
identified within these three aspects.

2.3.1 Invalid input

Input of a system can have many forms. Input can range from an event, such as a button
press, to continuous input, such as power. Furthermore input can be a physical object,
like coins in a vending machine, or data such as the temperature of a heat sensor.

In this section I list characteristics of input. In robustness, only invalid input is of
interests. Nevertheless, most of the given characteristics apply to both valid and invalid
input. The distinction between valid and invalid input is considered in the content of
the data, which is one of the listed characteristics.

When considering testing, not all characteristics need a different approach. For each
characteristic arguments are provided why it does or does not need to be considered as
a different category in robustness testing.

18

Data and non-data input

Input can be distinguished between data and non-data. Data input can for instance
be a string, entered in a form, but can also be something like the temperature, in the
form of an integer, that a heat-sensor measures. Non-data input can for instance be
power or physical materials, like coins in the case of vending machines. Characteristics
of non-data input is that quality and quantity become a factor. In the case of power,
the system often requires a specific voltage to operate under. If the power supply cannot
produce a constant power supply, the system may stop functioning. In non-data, quality
of input is also an important factor. A damaged coin is different from a non-damaged
coin. The vending machine should remain functional when a damaged coin is inserted.
In data, a damaged coin is no different from a non-damaged coin, the value of a coin of
1 Euro, is 1 Euro, no matter if the physical coin is damaged or not.

The proposed categorization focusses on robustness of system software. Non-data input
is something that the system can receive but is not directly fed to the software. To
illustrate, consider inserting a coin in a vending machine. A mechanical sensor detects
what the value (1 Euro, 50 cents etc.) of the coin is. The software of the vending machine
receives the value that the sensor reads, which is data. Nevertheless, invalid non-data
input can have effects on the software of the system. For instance, consider we insert a
fake coin that is accepted by the vending machine as 1 Euro. This means that the coin
is now inside the machine. When the machine has to give change, it is possible that
the machine has to output a coin of 1 Euro. Let us assume that the machine performs
a second check to validate the coins when they are given as output. If the fake coin
does not pass the second check, the software has to respond properly to the unexpected
behaviour in the mechanical part of the machine. Indirectly, this is a result of invalid
non-data input of the system. Because we consider robustness with respect to software,
the given example can also be considered to be caused by an unreliable environment of
the system. In one of upcoming sections we explain robustness in terms of environment.
We will see that these kind of failures are covered by environment characteristics. For
other non-data input, like the temperature of a heat-sensor, non-data is converted to
data before it reaches the software. We can therefore conclude that this characteristic
does not need to be considered explicitly in the categorization for testing.

Observed and direct input

A distinction can be made between input that is fed to the system and input that is
observed by the system. To avoid confusion I shall call these direct and observed input
respectively.

With direct input, all input is considered that would not have been observed if an other
element would not explicitly inform the system. An example is a vending machine with
one button that gives chocolate. The system responses to input caused by an external
element, the user, to produce output after the user has pressed the button. The user
has to inform the system.

Observed input, is considered to be all the input that the system can observe without

19

the need of external elements informing the system. An example is a heat-sensor that
measures the temperature, by means of polling, in a vending machine to avoid melting
of chocolate. In this case, the system can detect the temperature periodically and does
not need an external element to start interaction and produce an input.

A boundary case is input that is produced by observing an element outside the system.
For example, a motion sensor will detect motion when a person moves in front of the
sensor. In this case the element (user) takes action and the system observes the action.
We consider this to be an observed input because the sensor is observing motion peri-
odically and does not get activated when the person is in front of the sensor.

In testing, direct input is much easier to test because the tester can simply produce
input and feed it to the system under test. In the case of observable input, the tester
has to change the environmental conditions in which the (test-) system operates. For
example, when testing a system that relies on a heat sensor, the tester should change the
temperature in the area in which the sensor is located. Observable input can be converted
to direct input. To test a system with a heat sensor, a simulated heat sensor, that is
controlled by the tester, can be used to simulate different temperature measurements.
However, the cost of this is that the system that is being tested is not operating under
the same conditions as to when it is deployed, because the deployed system makes use
of a real heat sensor. To keep the categorization practically usable, and the fact that
observable input can be converted to direct input, we do not need to consider observable
input explicitly in the categorization. We should focus on direct input.

Continuous input and event-based input

There are typically two forms in which input arrives at the system. There is continuous
input, like power, and event-based input like a press on a button.

In testing, inputs and outputs are usually considered events. Continuous input can be
converted to event-based input by means of triggering the input when the value changes.
In the example of power, input events can be switching power on or off.

When considering direct and observed input, observed input is considered to be contin-
uous input where the system should be able to observe input at all times.

Because we can convert continuous input to event-based input, any testing approach
with event-based input can also be used with continuous input.

Content of input

In the content of the input we can distinguish between valid input and invalid input.
In robustness testing, only invalid input is of interest. Invalid input is typically input
that is not within the domain of the input of the system. However invalid input can
also be input that is within the domain but the time or order of the input is not what
the system expects. In network protocols, the latter is often referred to as inopportune,
which shall be used in the remainder of the Thesis.

We define three categories in the content of the input:

20

System input

Inside domain Outside domain

Order /
timing

Figure 2.2: Contextual types of system input

e Inopportune or lack of input
e Input outside the domain of the system input

e Malicious input
Figure 2.2 shows how these different categories relate to one another.

The first category consists of testing of input within the domain but not at the expected
time or order. The system is considered to be robust if it remains functional in un-
expected circumstances which includes inopportune input. Furthermore, it is possible
that the system expects input but does not receive it. This is in particular the case
with continuous input, like power. The system expects to receive power at all times, but
sometimes power can not be provided due to, for instance, environmental circumstances
like a failure in the power network.

Testing inopportune input is a different type of testing than testing input outside the do-
main. Testing input outside the domain requires some form of data generation whereas
testing order and timing is a matter of introducing delays or feeding valid input to the
system when the system does not expect it.

Within the input outside the domain, malicious input is a category of its own. The
goals of malicious input is to: disrupt or halt service, causing denials of service, access
confidential information, or improperly modify the system [5].

The reason for making a distinction is that, input outside the domain is usually infinite
and can thus be tested only to a limited amount which is often chosen at random.
Malicious input is not random input but often contains some information from the
domain and can therefore be tested is a more structured way. A good example is testing
web-forms where malicious input is a string containing a SQL command, to test against
SQL-injection, and input outside the domain is a very long random string, to test whether

21

the system rejects the long string. Both test the robustness of the web-form but different
aspects are tested.

A special kind of input is corrupt input. Corrupt input is typically the result of unex-
pected events or failures in the environment. Corrupt input is essentially input outside
the domain. We therefore do not give corrupt input a different label.

In testing we do need different categories to test different content of input. As mentioned
before, testing input outside the domain as well as malicious input, require different
approaches than testing inopportune input.

2.3.2 Unreliable environment

If we recall the definitions of robustness, the system should remain operational when
operating under stressful, unreliable or changing environmental conditions. For clarity
we use the term unreliable.

The size of the environment is very large. Due to all kinds of dependencies, a small change
in the environment may have an effect on the behaviour of the system. In addition,
changes in the environment may have an unexpected effect on the system’s behaviour.
For example, in the case of software, the software might be affected, indirectly, by the
temperature of the room, in which the computer which runs the software, is located. A
possible effect is slower calculations due to overheating of the computer chip.

This thesis is in the field of computer science and therefore we are only interested in the
robustness of the software of the system. Nevertheless, the software should be robust
against failures in other elements, such as hardware. In the environment, as well as
internal structure, we could make a distinction between software and non-software. If
we consider testing, unreliable software is often easier to simulate than other elements.
For example, simulation of power failures, requires physical hardware to interrupt the
power supply to the system. In software often a stub can be used to produce unexpected
behaviour. Nevertheless, the effects of failing software or hardware can be the same.
Consider a vending machine with a mechanical arm to output products and a piece of
software that decides when this arm receives power. It does not matter whether the
software or the power cable fails to deliver power, the effect is the same. Furthermore
different failures in the environment lead to the same failures in the system. For example,
power from a power plant, goes through a whole infrastructure before it reaches the
system. An interruption can take place at any point in this infrastructure. In robustness
testing, the cause of the power failure is not relevant and we can simulate power loss at
an entry point of the power to the system.

We should not look at the cause of the unreliable environment but rather at the effects.
This allows a more general approach and allows abstractions in the test setup.

I consider the following effects of an unreliable environment that lead to unexpected
output or behaviour of the system.

22

Loss of elements

Loss of elements occurs for example if an element of the system breaks down. There
are many reasons for an element breaking down due to unexpected changes in the envi-
ronment. For example, a computer chip can overheat when exposed to extremely high
temperatures. The makes the assumption that the computer chip is part of the system
and the temperature is part of the environment.

Corrupt, lost, or unexpected input

Corrupt or loss of input takes place when the environment interferes with the system’s
input. In the case of a vending machine, this can be for instance when someone unplugs
the power cable. The machine will no longer receive a required input (power).

Corrupt and unexpected input is essentially the same as input outside the domain which
is covered in the input category in Section 2.3.1. Loss of input is also handled in the
input category.

Interference in behaviour

It is possible that an element in the system gets interfered with. This can be the case
when, for instance, a fault is inserted in the software or hardware to prevent the element
from normal operation. An example is replace the subtract in a = a — 1 by addition
a = a + 1. Interference is not necessarily caused by an attacker. Interference might as
well be caused by hardware or software failures. Software might for instance, overwrite
the source code.

Corrupt, lost, or unexpected (internal) data

Systems often contain data. It is possible that data is lost or altered due to events in
the environment. A good example is a database that a system A shares with another
system B, which is therefore part of the environment of A. If system B makes a change
in the database, system A might be affected by it. Data loss may also occur with data
that is only used by the system itself. Consider a database that is hosted on a hard
drive. Placing a magnet against the hard drive can result in unreadable or corrupt data.
In both examples the data is corrupt but the effect on the system is the same. As
mentioned before, in robustness testing the cause of the failure is not important but the
response of the system is.

Corrupt, lost, or delayed communication

A system can consist of more than one element. Different elements communicate with one
another by some sort of medium. In addition, this medium might be shared with elements
outside the system. It is possible that this medium cannot deliver all communication at
all times. This can for instance be the case when the load is too high or a loose contact

23

in one of the cables. Possible results are that the communication is delayed, corrupt or
does not reach its destination at all.

Loss or gain of time

Computer systems require hardware to compute calculations. It is possible that the
hardware cannot execute all calculates when the system needs it. In the case of computer
software, other software might use the same computer hardware at the same time, which
means that that calculations have to be scheduled, and thus resulting in delays. It is also
possible that the hardware is improved and thus executing calculations faster. This is
often the case in software that runs on personal computers. Over time, new technology
results in improved hardware, such as computer chips, which can execute the software
faster than it was originally designed and tested for. Faster execution is not always an
advantage as some systems require precise timing and faster execution has a big impact.

2.3.3 Changes in internal structure

A different type of robustness compared to the input and environment is robustness of
systems when they are extended with new functionality, as given in Definition R13.
An example is upgrading of internet protocols. New features must be implemented
without interrupting functionality. Software engineers refer to this principle as ‘online
management’ [17].

New functionality can be part of the internal structure but it may also lead to new input
or output. In the example of vending machines, additional input, such as a new type
of coins, should not effect the behaviour of the system when a customer inserts the old
type of coins. A more drastic change in vending machines is, for example, new type
of payments, like bank cards. A new hardware element may have to be build into the
machine to accept new types of payment. Again this new type of payment should not
affect the old, coined, payments. Changes in the internal structure are by Definition 2
not considered in the environment. Nevertheless, the effects of changes in the internal
structure lead to the same effects as with an unreliable environment. Furthermore,
extensions to the system may include new input. New input that is added in the future,
is input outside the domain in the present. This new input however, may go deeper into
the internal structure of the system, whereas input outside the domain is refused by the
system in an early phase. In the case of a vending machine, assume that a new button
D is added that doubles the output of the machine. If the customer buys a chocolate,
and presses D, he receives 2 chocolates. If we test the original machine, without D,
on input outside the domain, the input is refused in the panel component. In the new
system, the action of the new button passes the panel component and is passed around
inside the system. The component that handles the communication between the panel
and the output component (the mechanical component that picks the correct product),
now is involved whereas in the case of testing outside the domain, it was not. In short,
testing against new functionality includes testing internal components on invalid input.
If we recall the effects of an unreliable environment, we also listed invalid internal data.

24

If we consider testing, we do not need an additional category for new functionality. For
unreliable environments, we have given a set of effects that are the result of an unreliable
environment. These effects are also applicable to new functionality.

2.4 System robustness categorization for testing

This section defines a set of categories that can be used to categorize testing of robustness
in system engineering. To validate the completeness of the categorization the quality
characteristics, given in Section 2.2.1 are used.

To make the categories practically usable, we want to generalize as much as we can. If
we consider the characteristics in invalid input, we have already explained that some
characteristics do not require a different approach in testing. Testing observable or di-
rect input can be generalized by making observable inputs direct. The same holds for
continuous and event-based input. Continuous input can be converted to event-based
input. In the case of data and non-data, we have explained that invalid non-data input
has no effect on the software, but only on the mechanical parts. Failures or changes in
mechanical parts are considered in the environment and internal structure. For testing
we therefore do not need to distinguish input in data and non-data. What remains is the
content of the input. As explained, valid content of input, but invalid timing, requires
a different approach in testing than testing inputs outside the domain. In addition ma-
licious input requires a different approach than input out of domain in general. This
means that within the input category, we have three separate categories, invalid timing,
out of domain, and malicious input. Within these categories input is considered to be
data, direct, and event-based.

For the environment, we have given a number of effects of an unreliable environment.
One of the effects considers altering of input of the system. As explained, the effects on
input, caused by the environment, are covered in the input categories. The remaining
effects are considered to be different categories.

Effects of changes in the internal structure are essentially the same as the effects of an
unreliable environment. We do not need additional categories in testing the robustness
of the internal structure.

We end up with eight categories, which are listed in Table 2.1. To validate the com-
pleteness of the categories, we use the characteristics that are given in Section 2.2.1.
Table 2.1 shows how the different characteristics are considered in the categories. All
the characteristics are covered by at least one category. This does not mean that all
robustness is covered, but it does provide some idea of the completeness of the cate-
gorization. What is notable is that recoverability is considered in all the categories.
Recoverability is defined as the degree to which a system can recover in the event of an
interruption or failure. These effects can be explained as, changes in the environment

25

Categor uality characteristics
gory y

Inopportune or lack of input Availability, Recoverability

Input out of domain of the system input Recoverability

Malicious input Recoverability

Loss of elements Availability, Recoverability, Modifia-
bility

Interference in behaviour Fault tolerance, Recoverability

Corrupt, lost, or unexpected (internal) data | Co-existence, Recoverability

Corrupt, lost, or delayed communication Co-existence, Recoverability, Adapt-
ability
Loss or gain of time Co-existence, Recoverability, Modular-

ity, Modifiability, Adaptability

Table 2.1: Categorization in robustness testing and corresponding quality characteristics

or input, in terms of robustness. In order to be robust, the system should recover to
acceptable behaviour.

An important part of deciding the importance of tests, is risk analysis. Test cases are
often decided on risk analysis. Less frequent failures with higher risk might be more
important to test than frequent failures with low risk. In [6] a framework is provided
for assessing the risk of a damaged system. This method uses different probabilities of
exposures that lead to, or contribute to, potential damages in the system. Risks are
calculated, using the probability of exposures, the probability of the exposure leading to
damage, and the probability of damage leading to a failure in the system. This leads to
a risk analysis based on different failures of the system. In the proposed categorization
in this thesis, categories are formed by means of consequences to the system behaviour.
These consequences can be seen as failures in the system and therefore the method of
risk analysis proposed in [6], can be used with the proposed categorization to asses risk.

26

3 A Model-based approach to robustness

In this chapter, a model-based approach is proposed to test the robustness categories
that are proposed in Section 2.4. This thesis considers two model-based techniques,
model checking and model-based testing. With the current tools available, these ap-
proaches can, separately or in combination, be applied in practice. Model checking
provides mathematical proof that specific behaviour is not possible in the model. On
the other hand, model-based testing provides a verdict whether the system stays within
the behaviour that is specified in the model.

This chapter provides background information of the fundamental concepts of model-
based testing and model checking. Furthermore methods are provided to test the dif-
ferent categories in robustness. The described methods in this chapter will be used to
analyse the robustness of lighting systems in Chapter 5.

3.1 Labelled Transition Systems

In this thesis we consider models to be (timed) Labelled Transition System (LTS) and
Input Output Transition Systems (I0TS).

A LTS S is formally defined as a quadruple (@, qo, L, Ts) where @ is a finite set of
states, qp € @ is the initial state, L is the set of actions, and Ts C @ X L, X), where
L; = (LU{7}) where 7 represent internal (unobservable) transitions, is the transition
relation [31].

A sequence o € Lx is called a trace of S from state ¢ € @ if there exists a path
(q1,0a1,92)(q2,a2,G3)...(Gn, @n, @n+1), such that o = aj...a,.

An TIOTS is a LTS where input and output are labelled actions and input is never
refused. An IOTS is formally defined as a quintuple (Q, qo, L1, Lo, Ts) where L; and
Lo are disjoint sets of input and output actions, respectively [28, 31]. In addition to
a LTS, an IOTS is input enabled and therefore weaker than an LTS because an IOTS
never refuses an input whereas a LTS does, IOT'S(L;,Lo) € LTS(L;J Lo).

An example of a graphical representation of a IOTS is shown in Figure 3.1. Input and
output are distinguished by question marks and exclamation marks, respectively. In the
example, L; = {event?} and Lo = {action!}. In addition, IOTS may include internal
transitions 7.

3.1.1 Time

In the case study that has been analysed, time plays a critical role. When time is added
to the specification, input and output are restricted to time. Timed Input Output

27

event?

action!
Figure 3.1: Example of a simple input/output transition system in Uppaal

Transition Systems (TIOTS) are labelled transition systems extended with time. Labels
are either an observable action (input or output), a time passage action, or the internal
action 7 [31]. A TIOTS is formally defined as a sextuple (@, qo, L1, Lo, D,T4) where D
is the set of time passage actions and T4 C @ x (L;|JD) x Q. In addition to IOTS,
letting time pass moves a TIOTS to a new state.

3.2 Model checking

Model checking is a reasoning technique to validate whether mathematical properties
hold. In model checking, a model describes the behaviour of the system. Properties
define the allowed behaviour of the system. Typically, properties indicate whether par-
ticular states are reachable. A property can for instance be ‘The system should never
reach location B’ or ‘The variable t should never be larger than 500’ in the case states
contain discrete variables. The proces of model checking is shown in Figure 3.2. A
model checking tool has input in the form of a model A that describes the behaviour
of the system and a set of properties F that defines the allowed behaviour. A model
checking tool, algorithmically checks whether a property holds in the model and outputs
the verdict.

Model checking tool

A satisfies F?

System description Yes
Formal Model A _1_’ _j—’
System specification _I_’ _L>

Property F No

Counter example C

Figure 3.2: Model checking

In model checking, properties are defined in a temporal logic language [10]. This the-
sis considers the model checking tool Uppaal. The language that defines properties is
explained in Section 3.2.1.

In model checking, it is possible to mathematically prove that a system does not reach a
state that is not acceptable. For example, in the case of a vending machine, mathematical
proof can be given that the machine does not output a product without first receiving
the necessary amount of coins. This does however require that the vending machine is

28

t>=50

channel!
channel?

: t=0 : @ O

A B C D
t<=50 (b)
(a)

Figure 3.3: Example of Uppaal model

a correct implementation of the model that is used in model checking.

3.2.1 Uppaal

The model checking tool that is used in this thesis is Uppaal. This section gives a
brief description of how models are structured in Uppaal. It does not cover the whole
modelling language but only the parts that are required to understand the models in the
remainder of this thesis. A full detailed description of the Uppaal modelling language
can be found in the Uppaal tutorial [7]. Furthermore this section explains how properties
are defined in Uppaal. A number of examples is provided to show how Uppaal can be
used for model checking.

Timed automata

A model in Uppaal is a network of timed automata. Automata in Uppaal are finite state
machines extended with clock variables. A state in Uppaal consists of a location, values
of clocks, and discrete variables. As an example consider the model in Figure 3.3. The
model consists of two automata. The automaton in Figure 3.3a has two locations, A
and B. The initial location A is highlighted with a double circle.

Locations are connected by means of edges which are displayed as arrows. An edge can
be triggered and will lead to a new state. Edges can be labelled by guards. In the
automaton in Figure 3.3a the guard t>=>50 indicates that the transition can not occur
when the value of clock t is smaller than 50 time units. Furthermore, edges may include
update statements. In the example, t=0 resets clock t. Locations in Uppaal can include
invariants. The system can only be in a location if the invariant holds. In the example,
location A has an invariant t<=>50. The system is only allowed to stay in location A
when clock t is smaller or equal to 50 time units. Guards, updates, and invariants can
include operations on clocks or operations on discrete variables.

To connect different automata in the network of automata, Uppaal makes use of, so called
channels. A channel consists of an action, noted with an exclamation mark (channel!
in Figure 3.3a), and, so called, co-actions, noted with a question mark (channel? in
Figure 3.3b). Whenever an action occurs, a co-action must follow. In the example this
means that when the edge between A and B is triggered, the edge between C and D
is also triggered at the same time. An action can take place only when a co-action can
take place. If there are more than one co-action that can take place, the behaviour

29

is non-deterministic and only one co-action will follow. A special kind of channels are
broadcast channels. Actions in broadcast channels can always take place. When a
broadcast channel is triggered, all co-actions that can follow, will follow.

Model checking with Uppaal

In Uppaal, properties are defined with the properties, listed in Table 3.1, where p and
q define what expression should hold [7]. Expressions apply to automaton locations,
discrete variables, clocks or constant values, and can be expressed with binary operators
such as and, or, and >=.

Name Property
Possibly E<>p
Invariantly Al]p
Potentially always | E[| p
Eventually A<>p
Leads to p——>q

Table 3.1: Property expressions in Uppaal

Not all expressions are explained, instead some examples are provided to illustrate how
properties in Uppaal can be defined. A full description of the Uppaal property language
can be found in the Uppaal tutorial [7]. Examples of Uppaal properties:

A[] t>5 and t2 <=3
True when in all states, t is greater than 5 and t2 is smaller or equal to 3.

E<>sample.A
True when location A in automaton sample can be reached. sample in this case,
is a automaton in the network of automata.

A[] not deadlock

True when all states are not dead-locked.

3.3 Model-based testing

Testing is an important technique to increase confidence in the quality of a (computer)
system [31]. The goal of software testing is to apply test suites for a software product
under test to validate the quality of the software. Test suites consist of a number of test
case specifications. Test cases are generated from the specification of the system. Based
on the executions of the test, a verdict of the correctness of the IUT (implementation
under test) is given [31].

In model-based testing, a formal model represents the behaviour of the IUT in the
same way as with model checking. With the use of appropriate tools, model-based
testing is performed fully automated, once a test model is available. This means that, in

30

comparison to manual test generation, tests are not human-biased. Instead an algorithm
decides what behaviour is tested. This means that behaviour which is not considered
to be ‘problematic’ in the eyes of the implementer, is also tested. Another advantage
of automated test generation is that, when the specification changes, the model can be
altered and the process of test generation can be repeated without the need of manually
altering the test suite. Furthermore, the model in model-based testing is unambiguous
and therefore there is no room for misinterpretation between the person who implements
the system and the person who tests the system.

Model-based testing is considered black-box testing as the IUT provides a predefined
set of inputs and outputs for the tester to interact with the system. Nothing is known
about the internal implementation details during the test execution [33].

The process of model-based testing is shown in Figure 3.4. A model-based testing tool
receives input in the form of a formal model that describes the behaviour of the system.
By means of providing input to the IUT and observing its outputs, the tool provides a
verdict whether the IUT is a valid implementation of the model. Details considering the
verdict of the model-based testing tool are provided in the remainder of this section.

o Model-based testing
System description tool
Formal Model A

I conforms to A? No
Trace C
"Expected X,
observed y"
Input Output

Implementation
under test |

Figure 3.4: Model-based testing

3.3.1 Input Output Conformance

In order to make the verdict whether an implementation conforms to its specification,
a notion of conformance is needed. Ideally we would like to have a test suite that is
complete and therefore can distinguish between conforming and non-conforming imple-
mentations [31]. In practice this is difficult because complete test suites are usually
infinite. This gives the need for a weaker conformance relation. The conformance rela-
tion should be sound; all correct implementations must pass the test. However, possibly
some incorrect implementations will pass the test as well.

The notion of input output conformance (ioco) is a widely accepted conformance relation
in model-based testing. Informally, an implementation ¢ is ioco to a specification s if

31

the output of each trace of s, performed in i, results in a subset of outputs of the same
trace, executed in s. The formal definition is as followed [31]:

i i0co0 5 Sqep VYo € Straces(s): out (i after o) C out (s after o)
where

e Straces(s) are the suspension traces of specification s. Suspension traces consist of
input and output, as well as, quiescence §. Quiescence transitions are transitions
between states where no output is observed.

e s after o is the set of states in which s can be after having executed trace o.

e out (i after o) is the set of output which may occur in some state of i after o.
Possible output includes no output, quiescence ¢.

3.3.2 Relativized Timed Conformance

Different extensions of ioco are defined for time [26]. In this thesis we consider rtioco,
as defined by [19]. Rtioco is the conformance relation used by Uppaal Tron, which is
used in the experiments performed for the lighting system. The main feature of rtioco
is that the environment of the IUT is considered explicitly. The conformance relation is
shown under such an environment. An implementation ¢ is rtioco. with specification s,
in environment e, when executing any timed input/output trace o, that is possible in
the composition of e and s, the implementation ¢ in environment e must only produce
outputs and timed delays which are included in the specification s under environment e
[19]. The formal definition of rtioco, we take from [26]:

i Tti0C0e 5 > qef V0 € nttraces(e) : outeq ((i,e) afteryo) C outs ((s,e) afteryo)
where

e out; extends out in ioco with permissible delays that the system can produce.

e nttraces(e), normalized timed traces of e, are Straces that include time delays.
Time delays are normalized in the sense that a trace does not contain consecutive
delays but just one, longer, delay instead.

3.3.3 Uppaal tron

In the experiments in this thesis, we make use of the tool Uppaal Tron. Tron is a timed
model-based testing tool that makes use of Uppaal models and provides a verdict whether
the IUT is rtioco to the model. In comparison to model checking, the models in Tron
consist of two parts. In addition to the description of the system, the model contains
a test environment. The test environment defines what input and output the system
expects. We consider the example in Figure 3.5. In this example we have an IUT that
produces the output response after receiving an input event. To make it interesting,
the first time it receives event, response is produced after delayl time units. The

32

action?

=0 t<=delay1

IN_ACTION!

response!
t>=delay1

OUT_RESPONSE?

response!
t>=delay2

t<=delay2 =0 (b) Test environment

) IUT Specification

? ?
action! @ ACTION? OUT RESPONSE! oponser

t<=latency t<=latency

(c) Adapter (d) Adapter

Figure 3.5: Example of Uppaal Tron model

second time it receives event, response is produced after delay2 time units. The test
environment in Figure 3.5b describes the allowed input and output behaviour of the
system. In this example, the system can receive the input IN_ACTION and observe
the output OUT_RESPONSE afterwards. Tron uses environment models to decide
which inputs can be produced and which outputs can be observed when the system is
in a particular state. Tron randomly chooses between producing an input or letting
time pass and observe the IUT [19]. To connect the test environment with the IUT,
adapter automata, shown in Figure 3.5¢ and 3.5d, are used. Adapter automata may
include delays between the tester and the IUT. This ensures that the test does not fail
due to delays in the communication between the test tool and the IUT that results in
observing the output too late. In our experiments, Tron is connected to the IUT by
means of TCP. The latency in the example could, for instance, represent the delay in
TCP communication.

3.4 Model checking combined with model-based testing

The preferred approach in model driven system development is to construct and validate
a model in the design phase of the V-model, before starting the implementation phase.
After an implementation is finished, model-based testing should be used to validate
whether the implementation is a valid implementation of the model. Figure 3.6 displays
the process. With a model checking tool, the model of the system should be checked with
properties that define the allowed behaviour. If the model passes the model checking
phase, the implementation is build. If the model does not pass, the model should be
repaired. After building the implementation, the model and the implementation are
tested on conformance with model-based testing. If the implementation passes the test,
we have an implementation that is a valid implementation of the model and therefore a

33

System description

Formal Model A \

Yes

) — |
Build Model-based testing |————» Pass!

Model checking tool implementation | tool
. ” No
A satisfies F? 1 conform to A?
System specification J_’
Property F
Stop | T Stop
Input Output
_ Repair model

Implementation
under test |

Qmpeny F

Repair
implementation |

Figure 3.6: Model-based system development

valid implementation of the specification. If the implementation does not pass the test,
then either the implementation or the model has te be repaired and the process should
be repeated. The use of model checking will detect failures in the design and thus in an
early phase of the development before the implementation is build.

3.5 Model-based robustness analysis

In the previous chapter, a categorization of robustness in system engineering was pro-
posed. In this section, these different categories are used to explore how a model-based
approach can be used to analyse and test robustness of systems. We describe each
proposed category individually.

3.5.1 Inopportune or lack of input

Inopportune input, is input within the domain of the system input, provided to the
system at unexpected timing or order.

To formally define inopportune input in terms of an IOTS, I first define input inside
the domain. Input inside the domain of the system can only be defined with respect
to a specification. The specification defines what is acceptable input. I consider the
specification to be an LTS as defined in Section 3.1 with input and output actions Ly
and Lo respectively. The specification is not input enabled. The input of a system,
according to Definition 3, is considered to be all possible input of the system. When
considering robustness, input can be anything, including input that the system was not

34

designed for. The size of all possible inputs is therefore enormous. Input inside the
domain, however, is a subset of all the input and can be very small, for example, a
software system that only accepts a boolean as input has only 2 possible inputs.

I define input within the domain of the system, to be all the input in specification S and
thus Ly of S. In addition Ly is the set of all input in all states, such that

L= U L,

qeQ
where
e Lig={acLi|3¢ €Q:q 25 ¢'} is the accepted input in state g.

e ¢ - ¢ defines that there exists a transition with action a from state ¢ to state
/

q.
e () is the set of states of S.

If a system I is considered an IOTS, then Ly, (I) = L;(S) is the input within the
domain, where S is the specification of I. Furthermore Ljijomq(I) = Ljqg(S) is the
input within the domain in state ¢ where ¢’ is the corresponding state in S.
Inopportune input L;y,, can only be defined with respect to a state in the IOTS. Inop-
portune input in one state, is valid input in at least one of the other states.

Linop = {(Linop,qa Q)|q € Q}

where
Linop,q = leom\leom,q

The ioco relation in model-based testing, where i ioco s, considers all Straces in s. If s is
input enabled, the Straces of s include all possible order of inputs because s accepts all
input in all states. This means that there is no such thing as inopportune input because
s accepts all input at all times. However, a specification is not always input enabled.
Consider ¢’ to be a trace with inopportune input ag,..,a,, such that 3z € [0,n]|a, €
Linop,q where q € s after (ag,..,az—1). This trace is not necessarily a trace of s and
therefore s after o’ is not always defined. This means that, when considering the ioco
relation, we cannot simply alter the Straces, to include inopportune input or remove
inputs, and compare the result when performed in s and . What can be done, is include
the inopportune input in s to make it either partly or completely input enabled. The
result is that now the inopportune input is part of the Straces of s and thus considered
in ioco. The same holds for removing inputs, removing an input transition results in the
input being absent in the Straces.

In model checking, the model is also not input enabled and thus, executing a trace with
inopportune input, is not possible. In model checking the model also has to be altered
to enable inopportune, or disable allowed input. Typically a model explicitly defines
the input of the system. For example, in the case of a vending machine, the model in

35

button?

chocolate?

coin! button!
0—©0—0
A C

chocolate!

@)

B
(a) User automaton

coin?

(b) System automaton

button! chocolate?
© O O
A2 B2 C2

(c) Alternative user automaton

Figure 3.7: Example of vending machine

model checking typically includes the interaction of the user. An example in Uppaal is
given in Figure 3.7a. Here the user inserts a coin, then, immediately presses the button
and then receives chocolate. This behaviour is considered to be the normal behaviour.
The system, in Figure 3.7b describes the behaviour of the system when it receives coins
and button presses. To analyse the behaviour of unexpected timing of input, we can
create a different model of the user to test the response of the system. Figure 3.7c
provides an alternative user model. Here the user only presses the button and expects
to receive chocolate. If we specify that the machine should not output chocolate without
observing a coin, C2 should not be reachable. We can create a property in Uppaal with
the expression "A[] not C2’. This will check that it is never possible to be in location C2.
The same approach can be used to test unexpected timing of input. We could create
a user model where the button is pressed, for example, 30 time units after the coin is
inserted, by inserting a guard in the transition between B and C.

In model-based testing, the model also defines the input of the system in a similar way,
and thus the same approach from model checking can be used. In the case of Uppaal
Tron, where a test environment model is used, we can use different test environment
models which can include delayed inputs.

3.5.2 Input out of domain of the system input

Input out of domain is all the input of a system that was not considered in the design
of the system. Formally, input out of domain can be defined as L;yoqg = L1\ Ljdom Where
Lidom is input within the domain of the input of the specification of the system, defined
in the previous section.

To test the behaviour of a system after it received input outside the domain, a method is
needed to generate input. Model checking cannot be used to check against unexpected
input. Model checking considers a closed model where inputs and outputs are considered
explicitly in the model. Creating new inputs will not affect the model behaviour. In the
real system however, unexpected inputs can effect the behaviour of the system. This
means that model-based testing is of interest.

36

What can be done is use a form of randomization to produce (pseudo-)random inputs.
This can work for all data input. Creating this random input is something where model-
based testing cannot be used. However testing whether the system remains functional
when such a random input occurs is something where model-based testing is useful.
The added value of using model-based testing, is that invalid inputs can be inserted
during the operation under normal behaviour. If we take the example of the vending
machine in Figure 3.8a, we can first insert Euro_5, as expected, and then insert Dollar_5
to test invalid input. The model should define what happens after unexpected input.
This will test whether the system remains functional if something goes wrong half-
way through the process. In a small case like the vending machine this can also be
tested manually. However if the system becomes more complex and contains more non-
determinism, constructing tests automatically is preferred. If the tester follows a model
of the system, it can easily construct traces that contain invalid input at any point.
Formally, a trace ¢’ contains invalid input when Ja € ¢’ | a € Lipoq-

RandomOODInput()?

INEURO 5? IN_BUTTON? OUT_CHOCOLATE!
M
© O O

(a) Normal behaviour

IN_EURO_5? NBUTTON?lOUTCHOCOLATE!

O O @)

O

Randominput()?

(b) Inserting random inputs

Figure 3.8: Sample of vending machine

There are two approaches that come to mind to insert invalid input in model-based
testing. One possible method is to let the test tool randomly insert invalid input during
the tests. The IUT should then remain functional and continue the test. This gives the
same problem as with inopportune input, the model does not include a transition of the
random input because it is not input enabled. In some systems the system must return
to the initial state while in other systems the invalid input should just be ignored or an
error message should be shown.

A second method, that does allow this, is to have input in the form of a computational
function. An example is given in Figure 3.8b. The function RandomOODInput will
produce a random input a’ for the IUT such that a’ € Liood. The model specifies how
the TUT should response to the invalid input by means of going back to the initial state.
In the tools that are currently available, this is not supported. In most test setups,
however, an adapter is used to connect the test tool with the IUT. This test adapter
can be used to convert input from the tester to random input. For example, the tester
produces the input IN_.RANDOM and the adapter changes it to a random input.

3.5.3 Malicious input

Malicious input is a more special type of input outside the domain. Malicious input is
difficult to formalize. As mentioned, malicious input is not part of the domain of the

37

input of the system. Malicious input differs in the sense that, even though all input
outside the domain should be rejected by the system, the probability of a failure after
malicious input is greater than after non-malicious input.

As with input outside the domain, model checking cannot be used to test behaviour after
malicious input. For model-based testing, the same advantage holds as with input out of
domain. We can insert malicious input much easier halfway through the process because
we have a model that specifies when input and output is expected from the system. For
malicious input, we can extend the method with inserting random input. Instead of
inserting random input, we now insert malicious input. Because malicious input can be
different in different states of the system, the model becomes more complex and requires
that for each state malicious input is defined.

If we recall the example of the vending machine in Figure 3.8a, we can first insert
Coin_5, as expected, and then insert Coin_400 to test malicious input. After we have
received the chocolate, we can try different buttons to try to get the money back. To
model automated insertion of malicious input, we can use transition with executable
functions to create malicious input, as shown in Figure 3.9. To specify what malicious
input should be constructed, different functions can be used. In the example in Figure
3.9, we first have malicious input in the form of coins, but after the chocolate is received
we have malicious input in the form of button presses.

IN_EURO_57? IN_BUTTON? OUT_CHOCOLATE!

e

insertMaliciousCoin()? insertMaliciousButtonPress()?

Figure 3.9: Inserting malicious inputs

3.5.4 Loss of elements

To model check robustness against loss of elements, we have to model the system in such
a way that each element is modelled separately. This would allow removal of elements to
test the behaviour when one of the elements is no longer available in the system. Because
we can simulate the behaviour of the system when an element is no longer available, we
do not have to physically alter the system under test. In model-based testing we would
require to remove or deactivate elements in the real system. In practice this can be
difficult. Consider an example of a vending machine with a heat sensor. If we want
to validate the behaviour when the heat-sensor is temporary unavailable, we have to
manually disconnect and reconnect the sensor from the machine. However an advantage
of model-based testing is that we do not have to model elements explicitly. The model
defines the allowed behaviour, if we alter the system and disable an element, the model
still contains the allowed behaviour of the system. We could simple test whether the
system remains conform to the model. In the ioco relation, i ioco s should hold where
7/ is an altered implementation where elements have been disabled.

38

3.5.5 Interference in behaviour

Testing robustness against interference in behaviour in general is difficult to test. There
are many different outcomes when, for example, the source code of software is altered
by environmental circumstances. What can be tested is the behaviour of components in
the system when they receive unexpected input from other components. If we consider
a model-based approach, model checking cannot be used but model-based testing can be
used. In model checking, there is no implementation of the system but only an abstrac-
tion in the form of a model. Because we have an abstraction of the implementation, we
cannot know what possible behaviour occurs when the behaviour of the system has been
interfered with. Model checking is therefore not a good technique for testing robustness
against interference in behaviour. In model-based testing, there is an implementation.
The model in model-based testing, contains all valid behaviour of the system. We can
test whether the implementation remains in valid behaviour in the model when faults
are inserted in the implementation. This does however require some manual input for
generating test. It has to be decided what kind of faults should be inserted in the
implementation. This means that test generation is no longer completely automated.

To illustrate, we consider the example software and corresponding model in Figure 3.10.

a=1+1
if a = 1:

Ouput TRUE : OUT_FALSE! :

output FALSE

else:

Figure 3.10: Sample software (left) and corresponding model (right)

The model defines that the system should always output FALSE. This means that if,
for instance 4+ in a=141 is replaced with -, the system behaviour will still be valid
according to the model. Because we have to decide what faults are inserted, we can say
to what degree the system is robust because we know which faults will make the test
fail.

There are two approaches possible. Either we let the tester decide when faults are
inserted, as with inserting random input, or we let the environment insert faults. The
advantage of letting the tester decide on fault insertion is that tests are much easier to
re-execute as there is one point-of-decision in the test.

3.5.6 Corrupt, lost, or unexpected (internal) data

Loss of data requires a similar approach as with interference in behaviour. Instead of
inserting faults in the implementation, we insert faults in the data, by either deleting or
altering data. Altering of data in general is easier to achieve than altering the behaviour
as it does not require to harm the implementation, whereas, for example, altering the

39

source does. Again this method is only applicable to model-based testing and not in
model checking.

3.5.7 Corrupt, lost, or delayed communication

Loss of communication is one of the things that can easily be included in the model
of the system. To model internal communication, messages can be considered input
and output of the system. This means that when testing internal communication, some
structure is considered of the system and thus testing is less black box but more towards
grey box.

messageFromA?

messageToB!

Figure 3.11: Communication automaton

In model checking, communication can be modelled as shown in Figure 3.11. The au-
tomaton observes a message, by means of a co-action messageFromA , and either for-
wards it, by means of an action messageToB, or drops it, by means of an empty
transition back to the initial state. Model checking can then be performed to validate
whether the model still holds the properties that are defined in the specification.

In model-based testing, there are two possible methods to test against message loss.

1. The tester decides on message loss: All messages go through the tester and the
model. The model contains an environment that decides when messages are
dropped or not.

2. The environment decides when a message is lost: The environment randomly drops
messages. The tester has no knowledge whether a message is lost or not. The model
should be non-deterministic to allow message loss.

Both methods have advantages and disadvantages.

messageFromA?

Figure 3.12: Communication environment automaton

40

Method 1

The first method lets the tester control the environment and makes the decision whether
a message is dropped or not. The decision of a message drop can be sent to the IUT by
means of input. The model contains an environment automaton which, upon receiving a
message, decides whether the message is forwarded or not. Figure 3.12 shows an example
of such an environment automaton. The capital channel, IN.MESSAGE is input for
the IUT to send a message to the other element.

An advantage of letting the tester decide when messages are lost, is that there is only
one point of decision making. This has the advantage that when a test fails, the test
case, or trace of inputs, can be repeated when the IUT is modified. A disadvantage of
this method is that, in order to let the tester control the environment, additional delays
are introduced in the process. The tester should decide on message loss, as soon as, a
message arrives at the tester.

Method 2

In the second approach, the environment is controlled by the adapter between the IUT
and the MBT tool. The adapter decides when messages are dropped or not. The tester
now only has control of the IUT, and thus the model should consider message loss
whenever a message is sent internally in the model. This requires communication to be
modelled that same way as with model checking, as shown in Figure 3.11.

An advantage of this method is that the model only contains the behaviour of the real
IUT and does not control the environment in which it operates. A disadvantage is that
the complexity of the model increases, as more non-determinism of the IUT is introduced.
In addition, replicating the test becomes more difficult because the test trace does not
include information when a message was lost. In the ioco relation, i’ 7oco s should hold
where ¢ is an altered implementation where communication is disrupted.

3.5.8 Loss or gain of time

Testing the system with faster calculation is not always possible in the real system due
to limitations in hardware. In general slower calculations are easier to test because it
does not require faster (and often more expensive) hardware. With model checking, time
is simulated. What can be done is insert time delays in the model to simulate longer
or faster calculation time. The model should then still hold the properties from the
specification.

In model-based testing, hardware can be physically changed or affected, for example, by
executing heavy calculation simultaneously with the test execution. The implementation
should remain within the behaviour that is specified in the model. In the ioco relation,
7" ioco s should hold where ¢’ is an altered implementation where calculation speed is
affected.

41

4 Case study: Smart indoor lighting
systems

This chapter describes the lighting system that has been studied to test robustness
against message loss. An introduction to the system is provided alongside a basic de-
scription of how it is technically implemented. This chapter also explains which part and
configuration of the system is considered in the experiments in Chapter 5. Furthermore
the implementation of an automated test setup for the lighting system is explained in
this chapter.

4.1 Smart indoor lighting system

The lighting system that is being studied is a smart lighting system that requires almost
no direct interaction from the user. The system detects whether people are in the room
and can adjust the brightness according to external light supply, such as daylight. There
are no physical buttons connected to the system to switch the light on or off; the system
decides when the lights are switched on or off.

Rooms are configured with different predefined light settings. Different settings are
referred to as presets where, for instance, preset 1 is configured to provide the maximum
amount of light and preset 2 is configured to produce no light. The system can then
be configured such that the luminaires are by default in preset 2 and switch to preset 1
when occupancy is detected. Other predefined presets can for instance, be optimized for
presentations, relaxing, or concentrating. Different settings can be applied via a remote
control device or personal smart phone.

An additional feature of the lighting system is support for areas to be connected to a
parent area. The lights in the parent area should be on when either one of the children
or the parent itself detects occupancy. An example is the hallway in an office building
that connects offices. The hallway should produce light for as long as at least one office
is occupied.

In this thesis, the focus will be on lighting systems that are installed in large office
buildings. The system provides a full lighting solution that ranges from office spaces,
restrooms, corridors, but also larger areas, such as lounges, and entrance areas. The
number of luminaires in such a building is in the order of thousands.

43

4.2 Technical implementation

The luminaires communicate with one another by means of IP (Internet Protocol). Phys-
ically the luminaires are connected via Ethernet cables that provide both communication
and power (Power over Ethernet (PoE)). This allows luminaires to be connected to the
network and the power supply by just one cable.

Apart from providing light the luminaires may contain sensors. The sensors that are
present in this system are motion sensors, to detect movement, and light sensors, to
measure total light intensity from both luminaires and natural light in the field of view
of the sensor.

The luminaires in the system contain a controller unit that can receive and send messages
to other luminaires. These controller units contain a timer that is used to decide when
luminaires should no longer produce light. To avoid inconsistencies, timers are kept
synchronized.

Luminaires are grouped by means of control groups, called areas. Luminaires within an
area should be identical in behaviour. An area is typically a room or a corridor, but it
can also be part of a room. Luminaires are physically connected to a PoE switch, which
is in turn connected to a parent switch to form a hierarchical structure.

The system is highly configurable. There are many system configurations possible, not
only in the number of luminaires and sensors, but also in the configuration of the presets,
building topology, deployment, and network topology.

4.2.1 System and environment

To define what is considered to be the system and what is considered to be the envi-
ronment, recall the definitions given in Chapter 2. A system consists of a number of
elements that together produce a result that cannot be obtained by the elements alone.
In the case of the lighting system, we have a set of luminaires that communicate with
one another by means of Ethernet communication. Physically the communication goes
via off-the-shelf PoE switches. In addition we have panels and software running on smart
phones, that can change the preset of the luminaires. The latter two however, are not
within the scope of this thesis and are not considered in the experiments.

We can apply the method described in Section 2.2 to define a system. In the lighting
system, the result that is being studied is the preset state, or light density, of the
luminaires. The inputs that are required to achieve this result are motion detection,
light density (existing light density in the room), and power.

The elements that provide the light density result are the physical luminaires. These
luminaires require communication with other luminaires, input in the form of motion
detection and existing light density, software to control the behaviour after receiving
messages, and power. The element that provides the communication between the lu-
minaires, as well as power, is the PoE switch. The design of the PoE switch however
is not in control and therefore the PoE switch is not part of the system. The design f
the software of the luminaires is in control and therefore the software of the luminaire is
part of the system. What remains is the motion and light input for the luminaire. The

44

Router

Power Switch
PoE PoE
switch switch

1
1
E Luminaire Luminaire
Motion |
. System

Environment

Figure 4.1: System and its environment

elements that provides these are the sensors or other luminaires. The sensor requires
power, motion, and light. Power is obtained from the luminaire, motion and light are
observed by the sensor. Motion, and light are required inputs to achieve the result and
thus, the sensor is an entry point and the system is not further extended. All elements
are now reached and the system is closed. The system consists of the luminaires, the
software of the luminaires and the sensors.

The definition of environment states that every circumstance, condition, or element
that surrounds the system, is part of the environment of the system. The size of the
environment is very large, in the lighting system the environment includes users and
external light but also room temperature and even the geographical location of the
system. Not all elements in the environment are of interest. The room temperature
for instance is not particularly interesting for the lighting system. External light is.
Some luminaires contain sensors that measure the current light intensity in a room.
The luminaires adjust the light output to provide the correct light density in the room.
External light is not part of the system but part of the environment. The environment
that is of interest in the lighting system that is analysed in this research consists of
external light, the PoE switches, the network in which the PoE switches are connected,
the users of the system that provide motion, and the power supply.

An overview of the system and its environment is given in Figure 4.1. This figure only
contains the elements that are within the scope of this thesis.

45

46

Actor

Luminaire1 I

|Netw0rk I |Luminaire2 I

MotionStart

MotionEnd

PresetOn

>

gn"

>

Status PresetOn

Hold time

PresetOff

Status PresetOff

| I’resetOn

>

’J}’resetOff o ‘

Status PresetOn

Status PresetOff

Figure 4.2: Specified behaviour after detecting motion

4.2.2 Motion sequence

The research in this thesis is limited to a basic configuration with one room and two
luminaires, that both contain a motion sensor.

We consider two presets where one provides light and the other does not provide light.
For convenience we call them PresetOn and PresetOff respectively. Figure 4.2 shows
the specified behaviour of the luminaires under normal circumstances when occupancy
is detected. When a person enters the room, a MotionStart event occurs and the room is
occupied. Luminairel detects motion and sends a PresetOn message over the network
to other luminaires in the network, which in this case is only Luminaire2. Luminaire2
receives the preset message and changes to the corresponding preset. When the person
leaves the room, motion is no longer detected and a MotionEnd event occurs. Luminaires
are configured with a certain hold time in which the system does not detect motion but is
still in the PresetOn state. The hold time ensures that lights do not switch immediately
off when no motion is detected for a short time. This avoids, for example, that the lights
switch off immediately when the person in the room is not moving for one second, and
then switch back on one second later, when the person moves again. When Luminairel
no longer detects motion, it waits until the hold time has expired and then sends a
PresetOff message via the network to Luminaire2. Luminaire2 receives the PresetOff
and changes to the corresponding preset configuration.

All luminaires with a sensor have an internal clock and can send PresetOff messages. If
a luminaire with a sensor receives a PresetOff from the network before the hold time
expires, the luminaire will process the PresetOff, by going to the appropriate light level,
and not send the PresetOff itself. Let us assume that only Luminairel detects motion.
It is possible that the behaviour is the same as in Figure 4.2, that is, Luminairel
sends PresetOn and later sends PresetOff. It is also possible that when Luminairel
detects motion, Luminaire2 sends the PresetOff. However, it is also possible that
both luminaires sent the PresetOff message. This will happen when the clocks of both
luminaires are precisely synchronized.

4.2.3 Hold time synchronization

Let us now assume that both sensors detect motion. To simplify the situation, let us say
that Luminairel detects motion and Luminaire2 detects motion one minute later,
and both sensors stop detecting motion after two minutes. This situation is shown in
Figure 4.3. When Luminairel detects motion it will send a PresetOn to the other
luminaires via the network. When Luminaire2 detects motion, it does not send a
PresetOn because it is already in the PresetOn state. After two minutes, Luminairel
does not detect motion and starts waiting until the hold time expires. One minute
later, Luminaire2 stops detecting motion. What is expected now is that Luminairel
sends a PresetOff, 1 minute before the hold time in Luminaire2 expires, and thus
switching the luminaires off 1 minute too soon. This results in an inconsistency between
the lights which is not the preferred behaviour. To address this problem, luminaires
with a sensor send synchronization messages during the time that the luminaire is in

47

48

Luminaire1 I
Actor

|Network I |Luminaire2 I

MotionStart

PresetOn

>

r|

l’resetOn

Status PresetOn

>

1 minute
MotionStart | ‘L
: 2 minutes
MotionEnd ’
: " :
: : 1 minute :
| MotionEnd | Il ‘l
[I-ll ’I_l'
v Hold time :
v PresetOff

Figure 4.3: Specified behaviour when both luminaires detect motion

’J}'resetOff ‘\T“

Status PresetOff

>

Status PresetOn

Status PresetOff

the PresetOn state. This synchronisation message ensures that the hold time in all
luminaires is synchronized. As with PresetOff messages, it is theoretically possible that
both luminaires produce the synchronization message precisely at the same time.

4.3 Robustness of lighting systems

The communication network used to connect the luminaires does not guarantee that
messages are always delivered. This can be a problem when, for instance, a luminaire
does not receive the message to switch to the PresetOn state, resulting in a situation
where all luminaires in a room produce light, except for one.

Obviously when all communication is lost, the system will no longer be able to stay in
a consistent state. Message loss of all messages is not a realistic situation. In practice
even the probability of a single message loss is very low and depends on the amount of
network traffic.

When we consider the robustness categorization in Section 2.4, we can place message
loss in the category Corrupt, lost, or delayed communication. Because we only
consider effects of communication loss, we do not have to distinguish between causes of
message loss. As explained in Section 3.5, in a model-based approach to testing, the
communication can be considered as inputs and outputs of the system, to control which
messages are delivered normally and which messages are dropped or delayed. Details
about the execution of the experiments and how robustness is modelled in the model,
are given in Chapter 5.

Another factor of robustness in the lighting system, is power loss. The Dutch power
network is rather stable. Outside the Netherlands, it is not always the case that the
system runs on a stable power supply. The system should react in a proper way to a
(short) power cut. This means that the start-up procedure is very important. When
power loss happens, the system should restart and all the luminaires should produce the
correct light level. Luminaires store the current preset periodically. This means that a
luminaire might not have saved the latest preset when a power loss occurs, resulting in
a different preset and light level of the luminaire when power returns. The question is
not so much how often this appears, but rather whether the system recovers and if so,
how long the system is in an inconsistent state.

Within the categorization proposed in Section 2.4, power failures are placed under the
category Invalid timing or lack of input. The system expects to receive power
continuously, however due to failures in the environment, power is interrupted. In testing,
continuous input can be converted to event-based input, as shown in Section 2.3. In the
case of power, one event can be triggered when the system starts receiving power and
one event can be triggered when power is no longer provided to the system.

49

Figure 4.4: Test setup hardware

4.4 Test setup

The test setup that has been used to execute the tests contains a small number of
luminaires. The physical hardware that is used in the tests, is shown in Figure 4.4. The
hardware consists of six luminaires, two USB-controlled sensor simulators, and two PoE
switches. In most of the experiments we have only used 2 luminaires. The reason for this
limitation is that, when considering messages loss, luminaires have to be in a separate
network. More luminaires would require more different networks. This is practically
difficult because the PC that runs the test software, needs a network adapter for each
network.

To test robustness against message loss, a second switch is used to create two separate
networks that allow interception of network traffic.

Figure 4.5a gives a brief overview of the test environment architecture for testing normal
behaviour, which means that both luminaires are connected to the same PoE switch. In
addition, the data flow of input and output within the test setup is shown.

The luminaires communicate with each other via the PoE switch. The control of the
input and output of the system is done via an adapter, so called PrismaUl. This adapter
is connected to a sensor controller application that sends motion inputs to the luminaire
via a USB-controller unit. The status of the luminaire is read via status-request mes-
sages over the PoE network (a laptop running the test software is connected to the PoE
switch). The returned status contains information about the dim level of the luminaire
and whether the luminaire’s sensor is detecting motion.

50

Standard PC

Windows OS Inputs:
11 - MotionStart
MBT tool 12 - MotionEnd
Outputs:
| O1 - LuminaireStatus
11,12 01-5 02 - SensorOn
O3 - SensorOff
04 - Preset
- h i
PrismaUl 05 - Synchronize
(Java)
7V Y <— TCP
| o1 0:2 (:)3 use
112 e 112 44— Etheret
i 04,05 i < Ethernet - polling
Sensor Sensor
Controller Controller
(C#) (C#)
| |
| |
I |
[11,12
PoE swjtch
y a— 1

(a) Testing in normal environment

Standard PC

Windows OS

MBT tool

PrismaUl
(Java)

AL
01,02,03

11,12 1,12
04, 05 v

Sensor Sensor
Controller Controller

(C#) (C#)
|

E RoE
switch switch

' 4 T

(b) Testing in controlled environment

Figure 4.5: Test architecture

o1

In terms of test software, we have three components, the model-based testing tool,
PrismaUl, and sensor controller software. A short description of each component is
given below.

Model-based testing tool

A model-based testing tool algorithmically produces tests and provides input for the
IUT (Implementation Under Test) and observes all output of the IUT. The MBT-tool
communicates with PrismaUI to forward input to the real system. The construction of
the software allows different tools to be connected. In the experiments only jTorX and
Uppaal Tron were used. Results and details of the experiments are provided in Chapter
5. In both cases, TCP is used for communication between the tool and PrismaUI.

PrismaUl

The PrismaUI software provides a bridge between the MBT-tool and the IUT. Pris-
maUI observes the status of the IUT, that is, the light density of the luminaires and
network communication between luminaires. In addition PrismaUI provides a graphical
representation of the current status of the luminaires and the network traffic. Another
important feature in PrismaUI is the manual insertion of inputs. We can for example,
insert a MotionStart event during the testing. Doing so should make the test fail. This

means that we can verify whether the test does fail with unexpected behaviour of the
IUT.

Sensor controller

The sensor controller software does nothing more than receive MotionStart and Mo-
tionEnd events and forwards them to the physical hardware. Communication to the
hardware goes via USB cables. Communication with PrismaUI goes via TCP.

4.4.1 Test environment with robustness

For testing robustness, we simulate message loss. This is done by using a second PoE
switch and creating 2 separate networks. Each luminaire is connected to a different PoE
switch. A laptop, running the test software, is connected to both the PoE switches and
acts as a gateway for communication between the two luminaires. Figure 4.5b shows
how the second PoE switch is integrated in the test architecture.

4.4.2 Motion sequence in test environment

In Section 4.2.2 the motion sequence has been explained when the luminaires operate
in its normal conditions. In the test setup, the behaviour is the same but the sensor
is now controlled by a piece of software. In addition the status of the luminaire is also

52

observed. The status of the luminaire in this case consists of the current level of light
output and whether the sensor is detecting occupancy or not.

Figure 4.6 shows the (slightly simplified) sequence diagram in the test setup, synchro-
nization messages are, for clarity reasons not shown. The Tester communicates with
PrismaUI which acts as an adapter between the tester and the IUT. To control the
sensor, PrismaUI communicates with software that controls the hardware that simu-
lates the sensor. The IUT (luminaire) then receives the motion signal and sends out the
PresetOn message. In addition the status change is sent to PrismaUI, which in turn
forwards it to the tester. The PresetOn message that is sent to the luminaire is also
received by PrismaUI, as it observes the network communication. PrismaUTI notifies
the tester that PresetOn was sent from Luminairel.

The process for MotionEnd is similar except that the IUT waits until the hold time has
expired before PresetOff is sent.

4.4.3 Order of outputs

The sequence in Figure 4.6 shows the specified order of outputs that the tester observes.
In theory the first observation after a MotionStart is that the Occupancy sensor is
detecting occupancy. The next output is a PresetOn message on the network. The
final output after a MotionStart is a status change of the luminaire. In practice this
is not always the case. The reason for this is that the messages that are observed from
the network are real-time and the status change messages are not. Instead the IUT
responds to status request messages. In the case of light intensity, the luminaire returns
the light intensity of the luminaire upon request. However the status that is returned
from the IUT is updated every 400 milliseconds. This means that we cannot observe
the state of the luminaire in real-time which in turn, results in non-deterministic order
of outputs. We expect to first receive the status change of the sensor but in reality it is
often the case that the PresetOn message is observed before that. In the worst case,
the occupancy sensor status change is received by the tester, 400 milliseconds after the
PresetOn message was observed. The order of outputs adds non-determinism which
makes it more difficult to model the behaviour. Furthermore, the behaviour in the test
environment becomes different from the real behaviour because in the real behaviour the
order of outputs is deterministic.

4.4.4 Latency

In an ideal world, the tester communicates with the IUT in real-time. Unfortunately
additional software, including an operating system, is needed to execute the test software
and adapter to the IUT. In the test architecture we can see that the test software
depends on much additional software. Furthermore the communication between different
components of the testing architecture, adds additional latency. The latency caused in
the test setup has to be compensated in the timed specification in the model that will be
used for model-based testing. Without compensating latency, the IUT will, according
to the tester, never produce the output in time.

53

|PrismaUI I |Sensorcontroller1 I |Luminaire1 I |Network I |Luminaire2 I
Tester

MotionStart(1)
otionStart
otionStart
_ Occupancy sensor On
< Occupancy sensor On(1)
PresetOn o
>
| _ PresetOn
< PresetOn(1)
PresetOn >
Status PresetOn
™
Status PresetOn
_ Status PresetOn
Status PresetOn(1)
Status PresetOn
Status PresetOn(2)
MotionEnd(1)
[otionEnd
_ Occupancy sensor Off
Occupancy sensor Off(1) i
: : : -
Hold time :
PresetOff >
PresetOff
< PresetOff(1)
PresetOff >

Status PresetOff

_ Status PresetOff

_ Status PresetOff(1)

Status PresetOff

Status PresetOff

Status PresetOff(2) i

Figure 4.6: Behaviour in test environment

5 Model-based testing experiments

In order to test the robustness of lighting systems, the method described in Chapter 3 has
been applied in a number of experiments. This section describes the experiments that
have been performed, it includes how the model is constructed as well as the decision of
MBT-tool that is used. To get going, the first experiments that have been performed,
are limited to the normal behaviour under a trusted stable environment. From there the
model, as well as the test setup, have been extended to test robustness against message
loss.

5.1 Model-based testing tools

To decide what model-based testing tool to use, experiments have been performed with
both timed and non-timed model-based testing tools; respectively, the tools Uppaal Tron
[14] and jTorX [8] are used. Time is a critical element in the lighting system. In the
tool comparison we found that it was difficult to abstract from time in the lighting
system that is analysed. In the lighting system, outputs from the IUT are specified to
be produced within a certain timespan. An example is sending the preset message that
switches the lights off. This message should be sent after no motion is detected within
the hold time. Abstracting from time means that this property cannot be tested because
the allowed time span cannot be defined in the model. In addition we are interested in
the period of time that the system is in an inconsistent state (e.g. one luminaire is off
while the other luminaires in the same room are on). For these reasons a tool with time
support is required.

A particular advantage of Uppaal Tron is that the existing Prisma models that have been
created with Uppaal, can, in theory, be used with Tron. This is not only convenient but
it also makes it easier to understand the models that are used for model-based testing,
for the people involved in the Prisma project. For these reasons the tool Tron has been
used for the remaining experiments. The tool Tron is explained in Section 3.3.3.

5.2 Model construction

Initially we intended to use the Prisma models for the model-based testing experiments.
During the experiments we found that, in order to use the Prisma models, many changes
had to be made to the model. Not only in the connection with Uppaal Tron, but also
due to compatibility problems of the latest Uppaal version and the Uppaal version used
by Tron. For these reasons, it has been decided to create a specialized model, based on
the Prisma model, for model-based testing.

55

To make the Prisma model compatible for Tron, additional transformations have to be
taken depending on features that are being used in the original model. The development
of Tron is not up-to-date with the development of Uppaal, some of the new features
in Uppaal that are useful for model checking, cannot be used with Tron. The Prisma
model contains some of these new features and therefore cannot be used directly with
Tron. One of the most important ones is the lack of copying clock values. Tron does
not support to copy the value of one clock to another clock. This is a problem for the
Prisma project as the luminaires do copy the value of the timers of other luminaires in
order to synchronize the hold time timer. It is possible that this is resolved in a new
version of Tron [22].

Another feature that is missing, is guards on receiving channels. This means that changes
have to be made in the model to remove guards on receiving channels. This can be
resolved by adding an additional committed state as shown in Figure 5.1. Note that this
only works for broadcast channels. In normal channels, this would allow the transition
with the action (channel! in the case of Figure 5.1) to take place. In other words, guards
on receiving channels are also guards on sending channels. However in our models, it is
applied to broadcast channels. In broadcast channels, the receiving channels will only
follow when a transition with a channel is performed. In broadcast channels, guards in
transitions with channels are only guards to the transition with a receiving channel.

not guard
A guard B A

channel? guard B
: : O channel? \(-:/ O

(a) Original construction

(b) Repaired construction

Figure 5.1: Receiving broadcast channels with guards

The input and output of the IUT are listed in Figure 5.2. The input is limited to motion,
where motion is a period of time, which is represented as two events, MotionStart and
MotionEnd to start and end motion respectively. The output consists of the state of the
sensor (detecting motion or not), the (preset) state of the luminaire, and network traffic
of preset and synchronization messages. All input and output is linked to a particular
luminaire. The total amount of input for the IUT therefore depends on the number of
luminaires in the test setup. In addition, some output is linked to presets. In the test
we consider only PresetOn and PresetOff (recall Section 4.2.2).

5.2.1 Configurability of the system

The system that is being analysed is highly configurable. In an ideal world, all the
different configurations should be tested. In reality this is infeasible and only a limited
number of configurations can be tested. The system configuration can be divided in
two main categories, the physical configuration and the parameterized configuration.
The physical configuration consists, among other things, of the number of luminaires,

56

) Status(lumid, preset)

'Y
L4

Preset(lumid, preset)

MotionStart(lumid) '
»
L4 .
Lighting SensorOn(lumid)
MotionEnd(lumid) system)
»
L4

SensorOff(lumid)

»
L4

Synchronize(lumid)
'Y

—___ v

Figure 5.2: Input and output of the IUT

whether a luminaire contains a sensor, and in which area the luminaire is placed. Apart
from the physical configuration, the system is configured with parameters such as the
hold time and presets. The new model that has been created in this research allows
different configurations of the system. Each luminaire consists of a couple of automata.
The model can be generated depending on the number of luminaires and the presence
of sensors. Different parameters, such as the hold time, are part of the model, by means
of static variables.

The model is constructed in such a way that extensions in the system, such as corridor
linking, can be added, by means of adding automaton. Messages between luminaires, for
instance, are modelled with internal broadcast channels. Models that specify behaviour
for corridor linking can observe these broadcast channels.

5.2.2 Copying clock values

The latest version of Tron does not support settings clocks to particular values. Only
resetting the clock is supported. In the lighting system, copying clocks is a critical part
of the behaviour of the system. Luminaires use synchronization messages to synchronize
their hold time timer. This makes sure that luminaires stay in PresetOn for at least the
hold time, after the last luminaire has detected motion. To model the synchronization
messages, the clock value of the luminaire that sends the synchronization message, has
to be copied to the clocks of the other luminaires. As Tron does not support copying of
clocks, we have to work around it. To support clock copying, discrete clocks are used in
the model. Discrete clocks are modelled by means of integer values that are increased
periodically. This allows the copying of one clock value to another clock value. This
does mean that the state set becomes much larger because every clock tick results in a
new state.

The clock automaton in Uppaal is shown in Figure 5.3a. The clock automaton is a

57

t>=tickvalue Initial

tick! O
currentMotion[lumid] not currentMotion[lumid]
@ tNM[lumid]+=tickvalue
Initial e
t<=tickvalue Process
(a) Clock automaton (b) Clock listener

Figure 5.3: Concrete clock in Uppaal

simple automaton that produces a tick, every tickvalue time units. A broadcast channel
tick is used, to allow observation of the clock ticking. The clocks of each luminaire are
modelled as integers, as shown in Figure 5.3b, that are increased when the tick channel
is observed. In Figure 5.3b, tNM is an integer clock that holds the time ticks since the
last motion was detected. In addition, tNM is not increased when the luminaire’s sensor
is still detecting motion.

5.3 Testing of normal behaviour

The first tests that have been performed, do not include message loss. What is tested
in the normal behaviour is whether the luminaires produce preset messages at the right
time and whether the state of the luminaires changes to the appropriate preset state
whenever a preset message is received from one of the other luminaires. This section
will describe the model that has been used in the test experiments. Not all the automata
are discussed but only the most interesting ones.

5.3.1 Tester environment

Uppaal Tron uses environment models to define when the tester can produce input for
the IUT, as explained in Section 3.3.3. The test environment of the lighting systems
consists of a simple automaton for each luminaire as shown in Figure 5.4. The tester
must observe that the IUT’s sensor is detecting motion before ending the motion. The
reason for this is that, as explained in Section 4.4, there tends to be a (random) delay
between the tester producing the Motion and the simulated sensor actual seeing motion.
The reason for observing the motion sensor status is, to make sure that the model can
measure the time between the luminaire detecting motion and producing the PresetOff
message, rather than measure the time between the tester starting motion and the
luminaire producing the PresetOff message, which would include the random delay.

5.3.2 Test sensor

The model of the sensor is shown in Figure 5.5a. The model states that the IUT should
produce the outputs indicating that the sensor is detecting motion and stopped detecting

58

NoMotion PendingMotion

IN_MOTIONSTART[lumid]!

sensorNoMlotion[lumid]? sensorMotion[lumid]?

IN_MOTIONEND[lumid]!

PendingNoMotion Motion

Figure 5.4: Environment automaton

Initial
O motionStart[lumid]?
currentMotion[lumid] = true

PendingMotion

sensorNoMotion[lumid]! ensorMotion[lumid]!
currentMotion[lumid] = false

O motionEnd[lumid]? O

PendingNoMotion Motion

(a) Real sensor

motionStart[lumid]?

Initial
(@) _motionStart[lumid]? % PendingMotion
currentMotion[lumid] = false 7 currentMotion[lumid] = true

tLastMotion>=sensorTime

sensorMotion[lumid]!

sensorNoMotion[lumid]! motionEnd[lumid]?
tLastMotion=0 (M

N
SensorHold PendingNoMotion Motion
tLastMotion<=sensorTime

(b) Simulated sensor

Figure 5.5: Sensor automaton

motion when the tester produced the inputs MotionStart and MotionkEnd.

To test the IUT, a sensor simulator, which is controlled by software rather than real
motion, is used. The simulated sensor, stays in a motion detecting state for some time
after the motion ends. However PrismaUI observes when the sensor stops detecting
motion and this does not include the extra time.

To simulate the behaviour of the simulated sensor, the model in Figure 5.5b is used.
This model has an additional state where the sensor keeps detecting motion and waits
for SensorTime, which is a constant value set to the delay time, before going back to
the initial state (unless new motion is detected).

5.3.3 Luminaire status

Upon receiving preset messages, the luminaires must go to the corresponding preset.
Changes in preset are considered an output of the IUT. In the case of the PresetOn
message, the IUT must produce the output that the luminaire status has changed to
PresetOn unless, as shown in Figure 5.6a, the luminaire is already in the correct pre-

59

set. When the luminaire receives a presetOff message while the luminaire’s sensor is
still detecting motion, than the luminaire should reproduce the PresetOn message to
restore the other luminaires to the PresetOn state. Figure 5.6b shows the automaton
for receiving PresetOff messages.

p_out[lumid][preset[lumid]]!
currentMotion[lumid]

preset[lumid] == presetOn

not currentMotion[lumid] and preset[lumid] == presetOff
cMotion

status[lumi{presetOn]! es€t[lumid] != presetOn

(a) Receive PresetOn
(b) Receive PresetOff

Figure 5.6: Luminaire status automata

5.3.4 Preset messages

Preset messages should be sent when motion starts and when no motion is detected
during the hold time. A point of interest is the automaton for sending the PresetOff
message. Figure 5.7 shows the model in Uppaal. The luminaire can be in the NoMotion
state for as long as the tNM (discrete) clock is lower than the hold time. Due to
unpredictable latency in the test setup, the hold time in the model is extended with
additional noMotionSpanMax. The value of this parameter is set to a small value such
as 1 or 2 seconds, depending on the hold time. The minimal hold time is 30 seconds,
adding a few additional seconds is acceptable behaviour for the IUT and it avoids failing
the test due to small unexpected delays in the test setup.

Other notable behaviour is that when the luminaire changes to the PresetOff state,
because it has received a PresetOff message from an other luminaire, the luminaire
should no longer sent the PresetOff message.

status[lumid][p]?

Initial NoMotion

Status[lumid][pOnidiQ

tNM[lumid] <5 noMotionDelay[p]+noMotionSpanMax

out[lumidi[p]!
not currentMotion[lumid] and
tNM[lumid] >= noMotionDelay[p]-noMotionSpanMin

Figure 5.7: PresetOff automaton

60

5.3.5 Execution of experiments

One of the frustrations experienced during testing appeared with observing network
traffic. For unknown reasons the test-adapter (PrismaUI) sometimes stopped observing
broadcast messages from the luminaires. This was resolved by sending a broadcast
message from the PrismaUI itself. This does require that a broadcast message is sent
whenever the observing has stopped. To address this problem, we sent a KeepAlive
message from the PrismaUI periodically during the testing. However the problem does
not occur at specific times but rather random, which means that the test execution has
to be observed manually, to make sure that PrismaUI remains observing communication
between the luminaires. Note that if the PrismaUI does not observe the preset messages,
the test will fail because, according to the tester, the luminaire changes to a different
preset status without observing a preset message or occupancy. It is recommended to
automate sending keepAlive messages periodically when continuing with model-based
testing in the Prisma project.

5.3.6 Test results

In total, over 30 hours of testing has been performed on the normal behaviour of the
system. During these tests, no unexpected differences between the model and the IUT
have been detected at the end. Most of the test failures were caused by time delays
caused in the test setup. To give an idea of the test cases, in 1 hour each luminaire
produced about 30 motion events and the luminaires went to the PresetOff state around
10 times. It is worth mentioning that during the tests, the models have been adapted
depending on test results and observations during the testing. The result of this, is a
model that appeared to be corresponding with the IUT. We cannot guarantee that the
model is correct due to the infinite test cases, but we assume that the time of testing is
long enough to cover most cases. When confident enough about the model, we continued
with robustness testing.

5.4 Robustness testing

After testing the normal behaviour of the system, the models and test setup have been
extended to test the robustness of the system. The robustness aspect that is being
tested is message loss. As we have seen in Section 4, robustness against message loss is
considered in the category Corrupt, lost, or delayed communication.

In terms of changing the test setup, an additional network switch is included in the
physical setup. This makes it possible to have a separate network for each of the two
luminaires, to allow ’filtering’ of communication between the luminaires. The software
is extended to randomly forward and drop messages between the two networks.

61

IN_P_DROP[I_out][l_in][p]!

p_out[l_out][p]?

Initial rocess_IUT
p_in[l_in][p]} IN_P_FORWARDII_out][l_in][p]!

Process

Figure 5.8: Network automaton, tester in control of environment

5.4.1 Modelling message loss

Section 3.5.7 provides two methods for using model-based testing to test against com-
munication failures. In the experiments we have tried both approaches.

In the first approach, the tester decides which messages are lost. The tester observes
messages from one luminaire and provides them as input for the other luminaire. Due
to hidden information, we cannot reproduce a message in the test adapter. If we were
to let the tester decide if a message is lost or not, we have to (temporarily) store them
in the adapter. This can be done by means of a message queue. To keep the message
queue synchronized with the tester, the tester should also inform the test adapter when
a message is dropped.

Figure 5.8 shows an example of an environment automaton for the network of preset
messages. The capital channels, IN_.P_FORWARD and IN_P_DROP are inputs for
the adapter to either forward or drop preset messages. The non-capital channels are
internal channels in the automata network. The proposed approach requires that the
tester can, without any delay, provide input to the IUT after receiving output.

In order to let the tester control message loss, additional delays are introduced in the
process because, for each message, communication with the tester is required. In the
case of Tron this communication goes via TCP. The tester should decide on message loss,
as soon as, a message arrives at the tester. In practice this turned out to be difficult.
To let the tester, in our case Tron, produce input with precise timing, the test tool must
not be delayed by external dependencies, such as the OS scheduler. In our case, we
ran into this scheduling issue which made it difficult to continue with this approach.
For this reason, the second method was used. In the second method, the model and
tester have no knowledge whether a message is lost or not. Instead the environment is
controlled and communication is either randomly or in a controlled manner altered. For
the model this means that the network automaton has to be non-deterministic to either
allow observing message, or not observing messages.

The network automaton of preset messages is given in Figure 5.9. In this automaton,
whenever a preset is produced by luminaire 1_in, Process becomes the active state. In
the Process state, the model can go back to the initial state, by either forwarding the
message to luminaire 1_out, or not forwarding the message. A problem found with this

62

p_out[l_in][p

Initial . Process

p_in[l_out][p]!

Figure 5.9: Network automaton, real environment in control

approach is that the state set of Tron grows heavily due to the combination of discrete
clocks and non-determinism. For every message, there are two possible resulting states.
Either the message was observed by the luminaire or it was not observed. In the case of
synchronization messages, the clock value of one luminaire is copied to the clock of the
other luminaire. This means that for every message, there is a new possible value of the
clock. Either the clock stays as it is, or it receives a new value from another clock. The
large state set resulted in heavy calculations and eventually Tron was unable to continue
testing.

In a long period where luminaires do not return to the PresetOff state, Tron cannot rule
out states with different clock values. Tron can only rule out states when a presetOff
message is observed, only then the clock has reached the hold time which means that
only states with a clock value equal to the hold time are possible states. All other states
with different clock values can then be dropped.

To avoid this, we have used a workaround where the tester is not informed when the
luminaire produces a synchronization message which was dropped in the network. This
means the tester only observes synchronization messages that are not lost. The re-
sult is that there is only one possible new state after a synchronization message. This
workaround made it possible to test behaviour after messages loss.

5.4.2 Inconsistent states

A point of interest in the analysed lighting system, is the time span in which the system
is in an inconsistent state, as well as whether the system eventually recovers. To validate
that the system does not stay in an inconsistent state, longer than allowed, an observer
automaton, shown in Figure 5.10, is used. The observer automaton works similar to the
observer automata in [13] except that the automaton also includes time invariants. The
automaton goes to the inconsistent state, as soon as, the preset status of the luminaires
is not consistent (all luminaires are in the same preset state). When the system changes
to a consistent state, the automaton leaves the Inconsistent state. If during the test, the
system is longer in the Inconsistent state than the allowed time invariant, the test will
fail.

5.4.3 Execution of experiments

In the execution of the tests, the second method for message loss is used, where the
tester has no knowledge whether the message was dropped or not. In this approach the

63

IpresetConsistent()
hurry!
=0

Consistent tj Inconsistent

t<2000
presetConsistent()
hurry!

Figure 5.10: Inconsistent state automaton

model is highly non-deterministic. When executing the tests, we found that the state
set of Tron was becoming too large to continue testing. The reason for this, is that due
to the non-determinism in the model, combined with the discrete clock, the number of
possible states was increasing heavily when time passes. This is not much of a problem
in the case of preset messages, because they are sent only a few times. More problematic
are the synchronization messages, as they are sent periodically. A workaround is to
not allow synchronization message loss in the model and thus removing some of the
non-determinism. Instead, whenever the IUT produces a synchronization message and
the PrismaUI decides to drop it, the message is not considered output of the system
and therefore not send to Tron. This means that, in the model, all the synchronization
messages that arrive as output from one luminaire, are received as input for the other
luminaires.

In total, over 20 hours of testing has been performed to test the behaviour after message
loss. In these test, messages are dropped randomly, with a probability of message loss
ranging from 1.0, where all messages are dropped, to 0.01, where only a few messages are
dropped. In addition, tests are performed where only particular messages are lost. For
example, in one test, only synchronization messages were dropped. In terms of motion
start and end events, this was similar to the testing of normal behaviour. In one hour
each sensor detected around 30 motions. Depending on the test, around 10 times the
luminaires were both in the PresetOff state. In some tests however, only one luminaire
was in the PresetOff state due to loss of messages, which is discussed in the next section.

5.4.4 Results

During the tests, no new, unknown problems in the system caused by message loss were
found. In the tests, known cases where the system did not recover within the allowed
time span were found. The most basic case is where the PresetOn message is dropped.
In that case the luminaire, that did not receive the PresetOn message, is in a different
preset state and does not go to the correct state because it only receives synchronization
messages; synchronization messages do not include the preset state but only the clock
value.

Another scenario that was found is that, when all the synchronization messages are
dropped, the luminaire, that did not see motion, switches off while the other luminaire
is still detecting motion. However, the probability of all the synchronization messages

64

being lost is close to zero.

It is not surprising that no new inconsistencies were detected with model-based testing.
The model used in MBT is constructed from a model that is previously has been analysed
with model checking in the Prisma project. The inconsistencies that were found were
validated by replicating them on the real implementation. The advantage of model
checking is that all possible states in the model are evaluated whereas in MBT only part
of the total state set is reached.

5.5 Validation of Prisma models

To make the Prisma model usable for model-based testing with Tron, some additions to
the model had to be made. First of, the model had to be adapted to make it usable for
model-based testing. This means that the model has to be extended with an environ-
ment. The environment determines when input and output is possible from the IUT.
Apart from the environment, the models have to be extended with the test setup. The
Prisma models are models from the IUT and do not contain additional timing caused
by the test setup. The test setup should at least contain adapter models that translate
internal channels to external input/output channels. Furthermore the models have to
be adapted in order to be supported by the older Uppaal version in Tron, as explained
in Section 5.2.

A problem found during the experiments is that the control of the sensor does not occur
real-time. There tends to be a small delay between sending the MotionStart event and
observing that the sensor actually sees motion. This is a problem for deciding when the
system is allowed to produce the PresetOff message. The PresetOff message should be
sent after the hold time has passed since the last motion has been detected. If there
is a delay between the tester generating motion and the IUT processing this motion,
then the model will also expect the PresetOff message sooner. One way to solve this is
to allow more time in the model to receive the PresetOff message. A different solution
is to observe in the model when the occupancy sensor actually detects motion. Both
methods are not optimal. The problem with extending the allowed time is that we cannot
observe when the ITUT has produced the PresetOff message too late. The problem with
observing the occupancy sensor is that observing of the status change, as explained in
Section 4.4.3, can be delayed by 400 milliseconds and therefore be observed after the
PresetOn message was observed.

As mentioned before, the model used for model-based testing is straightforwardly derived
from the Prisma model. No differences in the behaviour specified in the new model and
the behaviour of the IUT were found. For this reason we conclude that the Prisma model
is a valid representation of the lighting implementation. Therefore, it was assumed that
the scenarios that lead to an inconsistent state, found with model checking, are present in
the real implementation. The scenarios found with model checking have been confirmed
by reproducing them in the implementation.

65

6 Discussion

This section discusses additional findings of the research. This includes an evaluation of
the performed experiments and how well model-based testing can, with the current tools,
be used in the industry. In addition the techniques of model checking and model-based
testing are compared, when used to analyse lighting systems. Finally, the use of model
learning is discussed for learning a model of the lighting system.

6.1 Model-based testing of indoor lighting systems

In the experiments, the lighting system was tested with model-based testing. There were
no particular problems in connecting the MBT-tool to the existing test setup. Off course
the software of the luminaires has to support the extra functionality, such as observing
the light output level, that is required to observe the output of the system. This added
functionality however, is something that is also needed with other test techniques.

As mentioned, the light level output and motion sensor status are not observed real-
time. This is something that would be preferred for model-based testing. The software
for testing however, is in full control and can be designed with keeping model-based
testing in mind.

In general the reactions, of the people involved in the development of the lighting system,
to a model-based testing approach were positive. The idea of automated test generation,
combined with validation of the behaviour with model checking in an early phase, is
something that will contribute to the development process as well as to the quality of
the product. With model-checking more faults in the specification are found because
all possible behaviour can be checked. This improves the quality of the product. One
important remark however, is the lack of coverage statistics. Coverage is an important
measurement to decide what part of the system is not tested and requires additional
tests. In the current tools, particularly Tron, this is something that needs more attention.
Coverage in tools is further discussed in Section 6.3.

6.2 Results of the experiments

The experiments that were performed did not result in the findings of new unknown in-
consistent states. This is not surprising because the model that was used was constructed
from a model that was used in model checking, where the behaviour was analysed when
a message is dropped or delayed. Due to the real time in the system, particularly the
hold time, the number of states of the model that are visited with model-based testing is
much smaller than the number of states that are visited in model checking. This means

67

that new, unknown inconsistencies would only be found if the Prisma model is different
from the behaviour in the implementation.

Not all the scenarios that were found with model checking appeared in the tests in model-
based testing. The reason for this is that the MBT-tool, Tron, randomly decides when
to generate input. This means that if the environment model, which defines when and
what input and output is accepted, is non-deterministic, then it is possible that parts
of the model are not visited during the test. To increase the model coverage, the test
time can be increased. This should increase the probability of each transition because
the states are visited more often.

Because most of the scenarios (found with model checking) that lead to inconsistencies
require very specific behaviour, the probability of it occurring during the test, is rather
low. To test scenarios, found with model checking, the environment model can be made
explicitly to only allow the behaviour of the scenario. Because the found scenarios were
validated manually, the validation was not repeated with model-based testing.

A more important result, rather than the finding of no inconsistencies, is that no differ-
ences between the model and the behaviour of the implementation were found. The used
model is constructed from the Prisma model where the general behaviour is modelled
in the same way. We therefore conclude that the Prisma model is a valid representation
of the implementation and thus the model can be used to further analyse the lighting
system.

6.3 Tools

In this research the tool Uppaal Tron has been used. One of the things that is missing
in Tron is a graphical representation during the execution of the test. In our research,
the model was constructed from the implementation, which meant that experiments had
to be done to ensure the correctness of the model. It would have been nice to have
a graphical representation of the current state set of Tron. This is in particular an
advantage when a test fails. In the current version of Tron, the final state is given as
output in the form of text. This means that in order to understand the reason why the
test failed, the text has to be converted, manually, to a state in Uppaal. An argument
to why there is no graphical interface, given by the creators of Tron, is that a graphical
interface results in unnecessary delays on the test machine. I agree that this is a valid
argument but during experiments, a graphical interface will highly improve productivity
as the test output does not have to be converted manually when a test fails. To address
this problem, I have created a small simple graphical interface in Python that converts
text output from Tron and displays the current state in the Uppaal model. This gave
us an approximation of the current state in the model and made it faster to understand
why a test failed. Figure 6.1 shows the graphical interface with the model of the lighting
system loaded. The current state is highlighted in red and the values of the local variables
are listed in the right top corner of each automata.

Furthermore, as mentioned before, the development of Tron is not in line with the
development of Uppaal. This requires that the model has to altered in order to be

68

cMoation -

cMotion (

Motion Motion

sut_nomotion_P_1

carrect=0
tooLate=0 toolate++ LateStatus

tooSoon=0 /D

not currentMotion[1] and tNM[1] >= noMotionDelay[4]+ noMotionSpaniax

ol /\N.Nmtloﬂ
]

tNM[1]<noMetionDelay[4]-fioM v ENM[T] <= neMetienDelay]4]+ noMotionSpaniax
tooSoon++ HlIM[1]> = noMotionDelay[4)-noMotionSpanhn

forrect++

not currentMotion[1]
cSoonStatus.

sut_nomotion_receiveP_1 sut_sensor_1

currentMotion[1] t=0

Init

Py
UrrentMotion[1] = false & currenthotion[1]
>2000 =0
not currentMotion[1] and preset[{] == 4

PendingNoMation
Injt clffotion

<2100 <200

Figure 6.1: Graphical interface for Tron in Python

used with Tron. In particular, copying clock values is something that is critical for
the Prisma project. With an altered, second model, it is possible that the two models
are not precisely the same. For example, adding an edge to remove guards on receiving
channels, as shown in Figure 5.1, means that there is an extra transition needed to achieve
the same result. The extra transition introduces new states that are not considered
with model checking. This particular example can be avoided by not using guards on
receiving channels in the model, used for model checking. Nevertheless, these kind of
incompatibilities lead to unnecessary frustrations. When combining model checking with
model-based testing, the models of the system should not require addition changes. Off
course this does not include additional models, such as environment models in Tron, that
are required for model-based testing. These added automata do not affect the model of
the system.

One of the things that is currently missing in Tron, but more general in model-based
testing, is test coverage. In non-timed tools, such as jTorX, coverage is provided by
means of transition or state coverage. When considering time, revisiting states can
result in different behaviour of the system because the timing is different. This makes
it difficult to say something about coverage. In Tron, coverage is given by means of

69

time, coverage increases by extending the time of testing. Tron should provide some
form of coverage in the model. This could for example be statistics, how often a state
is visited and how often a particular transition was taken. Coverage of the system is
an important measurement for the industry to verify the correctness of the system after
the execution of the test. It also provides information about which part of the system
requires additional testing.

6.3.1 Yggdrasil

During the experiments I have explored a new feature in Uppaal (4.1.19), Yggdrasil.
Yggdrasil is an offline test generation tool that generates test cases from test code, en-
tered in the model [32]. Within the Prisma project, Yggdrasil can be an interesting tool,
as it can generate test code from traces that are found with model checking, however,
time is not considered in the test generation. Yggdrasil is still in an early stage of de-
velopment, one of the issues is that automata cannot use local variables in the test code
generation. This is a critical feature when the model contains multiple instances of the
same automaton, which is the case in the Prisma model. This feature might be added
in a future version of Yggdrasil [23].

6.4 Model checking and Model-based testing

Model checking and model-based testing are two techniques with different goals. The
goal of model checking is to validate whether particular behaviour always holds, whereas
the goal of model-based testing compares the model with the real implementation.
Preferably these techniques are used in combination. However, the techniques are also
applicable separately. This section describes advantage and disadvantages of both tech-
niques when applied in the Prisma project.

One of the notable differences in the execution of model checking compared to model-
based testing, within the Prisma project, is the shorter time of execution. Online model-
based testing requires the system to function in its normal behaviour. The lighting
system that has been analysed, typically has a hold time of 10 minutes or more. This
means that testing takes a large amount of time. With model checking, time is simulated
and thus, trying different paths in the model is much faster.

In model-based testing the model is checked against the real system. If the system
produces different output than the model, then either the model is wrong or the system
is wrong.

With model checking the model is not compared to the actual system. This means that
replicating a trace of inputs on the real system may result in different behaviour. This
also means that model checking may not find faults in the implementation because the
model does not contain these faults.

One of the difficulties that was found with testing the lighting system is that the real
system, within the test setup, may contain delays that are not considered in the de-

70

sign. In the lighting systems these delays occurred in the communication between the
luminaires, as well as between the test adapter and the physical sensor simulator. This
makes it difficult to take the models that were used in model checking, and use them for
model-based testing.

It is important that the system is designed in such a way that a tester adapter can be
connected to the real IUT without causing too many delays, or at least the delays should
be possible to model.

6.5 Model learning

Within the Prisma project, models were created manually from an informal specification.
A different technique to do so is model learning. With model learning, a model is
constructed from a number of tests. The advantage of model learning is that the model
is always conform the actual system. To learn a model from the system, a sequence of
inputs is executed on the system and the output after each input is observed. The learned
model can then be used to apply model checking to identify inconsistencies between the
model and the specification. In comparison to the approach of model checking combined
with model-based testing, described in Section 3.4, model learning replaces model-based
testing. Instead of validating the correctness of the implementation, the model is learned
from the implementation.

The tool Learnlib has been used to experiment with learning the lighting system [25].
A critical aspect of this particular system is the real-time behaviour. Timing in model
learning introduces a large non-determinism in the behaviour of the system. It also in-
troduces outputs that occur in the future instead of right after an input is supplied. For
instance, in the lighting system, the lights go off after a certain hold time. For model
learning this is a problem because the learner has to relate the current output to one of
the inputs that was produced somewhere in the past. This is particularly a problem if
the system has noise in the real-time behaviour.

In the lighting system, we also have the problem that the order of outputs can be

different, as explained in Section 4.4.3. This non-determinism makes it impossible to
apply learning with the currently available algorithms.

71

7 Conclusion and Future Work

This Section concludes the research. In Section 7.1 the research question is reviewed.
Section 7.2 provides suggestions for future work.

7.1 Research question

To answer the main research question, I first answer the sub questions.

What is considered robustness in system engineering?

A number of different definitions from the literature that define robustness are discussed
in Section 2.1. There is no precise definition that all literature agrees upon. A summary
of the definition of robustness of systems can be defined as:

A robust system should remain operating correctly after unexpected input or after changes
in the environment or internal structure.

What is considered correct behaviour, has to be defined in the design. A system can
only be robust to a certain degree. In order to define to what extend a system is robust,
robustness has to be considered in the design.

How can robustness be categorized in terms of testing?

In Section 2.4 a number of categories and characteristics are given that characterize
robustness of software systems. Robustness is divided in two main categories, namely,
input, and environment and internal structure. Within the input category there are
three types of content that can be distinguished and require a different approach in
testing. The first one is valid input that the system accepts but is provided when the
system does not except it. The second one is input that is not within the domain of
the input of the system. To define what is input of a system, a specification is required.
The specification defines what is input that is accepted by the system. Finally there
is malicious input. Malicious input is input outside the domain of input of the system
but requires a different approach in testing. Malicious input often contains input that is
very close to the accepted input whereas other, out of domain, input can be constructed
randomly.

Changes in the environment and internal structure are considered to result in the same
effects on the behaviour of the system. Robustness is categorized by the consequences
rather than the cause of failures or changes. Consequences that are distinguished are
effects on, system elements, behaviour, data, communication and time.

73

How can model checking be used to analyse robustness?

Robustness covers a large part of system behaviour. It is not possible to propose one
general method for all robustness problems. In order to analyse robustness, it has to
be decided what aspect of robustness is analysed. For this, the proposed categorization
can be used. For each of these different categories, methods are proposed in Section 3.5
whether model checking and model-based testing can be used. Not all categories can
be analysed with model checking. This is particularly the case in categories that are
related to invalid input that is not within the domain of the input of the system. In
model checking the model is closed in terms of input and output. The model does simply
not include invalid input. In the category where input outside the domain is considered,
input has to generated in order to analyse the system with invalid input. The generation
of the input has no effect in model checking because the remainder of the model does
simply not include the generated input.

A real system however is input enabled and in theory, anything can be given as input.
In model-based testing the model does not have to be closed in terms of input.

In the case of robustness against environmental and internal changes, the model used in
model checking can be altered or extended to analyse the behaviour when an element of
the system or environment does not operate as expected. By means of properties, the
behaviour in the model is analysed.

How can model-based testing be used to test robustness?

As with the previous question, Section 3.5 provides a method to use a model-based
approach for testing robustness. In contrast with model checking, model-based testing
is applicable in all categories. A general advantage of model-based testing over normal
testing is that, in model-based testing, it is much easier to introduce faults or invalid
input during normal execution. In model-based testing, the model defines how test
cases are constructed. Invalid input can be inserted half-way through the trace of valid
input. The MBT-tool can observe the system to validate that the system stays within
the allowed behaviour, specified in the model.

To test changes in environment or internal structure, there is one general approach. The
environment in wich the system is tested can be altered to randomly or in a controlled
way, insert failures or changes in the environment. The IUT should remain conform
to the model even though the environment does not cooperate. Some of the proposed
categories have additional methods that can be used. These are explained in Section
3.5.

What are the strengths and weaknesses of model-based testing compared to model
checking for validating robustness of a system?

In Section 3.5 advantages of model-based testing and model checking are given for each
category in robustness. In some categories, model checking is the preferred approach.
In model checking a larger part of the behaviour of the system is checked whereas in

74

model-based testing, only a subset of all possible states are checked. The advantage
of model-based testing is that the changing environment is not simulated but the real
environment is considered. Testing robustness in model checking requires that failures in
the environment are modelled. The pitfall of this is that failures are formed from human
intuition. In model-based testing, the real environment is tested and thus includes all
failures that can occur in the system. Nevertheless it is possible that these changes in
the environment do not occur in the test execution. Furthermore another advantage of
model-based testing compared to model checking is that model-based testing performs
better in terms of scalability. In case of lighting system, adding more luminaires to the
system massively increases the number of possible states. In model checking this will
lead to a state-explosion. In our experiments, model-based testing also resulted in a
state explosion. However the reason for this was the construction of the model, namely
the discrete clocks. Without the discrete clock, the state explosion would not occur.

Is the Prisma model a good representation of the real implementation?

I have performed a number of tests to validate the model under normal behaviour of the
system. Due to limitations and difficulties in applying model-based testing with Tron, a
new model is used that is formed from the Prisma model. In this model no differences in
behaviour compared to the real system were found. We therefore assume that the basic
behaviour in the Prisma model is correct with respect to the implementation.

Which model-based testing tools can be used to test indoor lighting systems?

An important part that is analysed in the lighting system is the hold time. Luminaires
should switch off after no motion has been detected for at least the hold time. This
means that the model includes time. The MBT-tool should ideally include time. One of
the MBT-tools that supports time is Uppaal Tron. In Tron, Uppaal models are used to
describe the behaviour of the TUT. A particular advantage of Tron is that the existing
Prisma models, that were used in model checking with Uppaal, require no additional
steps to convert between two modelling languages. During the experiments, we found
that the Prisma models were too precise in timing and it would be easier to construct
a new model. Another problem found during the testing is that, in order to model
the system, clocks in the model have to be copied, which is not supported in Tron. A
workaround that was used, is to include a discrete clock in the model. This discrete clock
could have also been modelled in another non-timed tool, such as jTorX, by letting an
adapter periodically produce a tick output as part of the output of the IUT. An advantage
of jTorX is that the verdict of the test includes transition coverage. Additional research
can be done to explore whether abstracting from time and use a discrete clock is possible
for the lighting system.

75

To what extend has the Prisma model, used with model checking, be changed to
make it usable for model-based testing?

To make the Prisma model usable for model-based testing, the model has to be extended
to include the input and output of the system in an environment model. The environment
model defines when the tester (Tron) is allowed to provide input to the IUT and output
from the IUT is observed. One of the issues found in the experiments is that the Prisma
model is very precise in timing. For instance if the hold time is set to 20 seconds, the
model considers the luminaires to go off precisely after 20 seconds. In the real system
there are often some small delays. The end of the hold time should not be a precise
timing but rather an allowed time span.

Apart from functional changes, the model also has to be converted to make it usable
with the MBT-tool. In the case of Tron, this is limited to the removal of new features in
Uppaal that are not supported in Tron. For other tools, the Uppaal models might have
to be converted to a different modelling language.

How can robustness against message loss be tested with model-based testing?

Message loss is a robustness aspect that is the result of an unreliable environment. More
precisely, message loss is considered in the robustness category, loss of communication.
In Section 3.5 two methods are proposed to test against loss or corrupt communication.
One method considers messages as input of the system. Because the tester is in control of
the input that is provided to the IUT, the Tester can decide when messages are dropped
or delayed. The other method considers the environment to be controlled, in the form of
randomly dropping or delaying messages. The model contains only the allowed behaviour
of the system. With model-based testing, the IUT is validated on conformance to the
model when not all messages are received. The model is non-deterministic in the sense
that it either considers messages to be send normally or messages being dropped. This
latter approach is used in the experiments to test the robustness against message loss
of indoor lighting systems. The results show that model-based testing can be used but
has the limitation that only a limited number of situations are tested, whereas in model
checking, a complete set of possible states are checked.

How can robustness against power loss be tested with model-based testing?

Power loss is considered to be a failure in the environment that leads to loss of input.
Power is an input of the system. In Section 3.5, a method is proposed to test against
missing input. To test loss of power, first input of power has to be converted to events.
This can be done by considering an event when the system starts receiving power and
an event when the system stops receiving power. Power loss can than be analysed by
modelling an environment that simulates the power supply in an unreliable environ-
ment. In the experiments, power loss has not been analysed. Simulating loss of power,
to perform model-based testing, requires additional hardware to intercept power to the
lighting system. Model-based testing of power loss is considered future work.

76

After answering the sub questions, the main research question can be answered.

What are the different types of robustness in system engineering and can they be
tested using a model-based approach, furthermore, is model-based testing a useful
method to test robustness of indoor lighting systems?

In the thesis, a number of robustness categories are proposed for system engineering.
The categories range from invalid input to changes in environment or internal struc-
ture. In comparison to manual testing, proof can be provided, with the use of model
checking, that the system stays within the correct behaviour. With model-based testing
the implementation can be validated with the model. For each category a method for a
model-based approach, where model checking and model-based testing are considered,
is proposed. The experiments that are performed, show that model-based testing itself
does not add much extra value in the finding of inconsistent states in the lighting sys-
tem. The reason is that, with model-based testing, only a limited number of states in
the state set are reached, whereas in model checking, all possible states are reached. The
added value of applying model-based testing, is to gain confidence in the correctness of
the implementation with respect to the model.

7.2 Future work

This section provides suggestions for future work. Research is needed to further extend
and evaluate the proposed methods for model-based robustness analyses. Within the
Prisma project, additional work can be performed to further analyse the system.

In robustness analysis, more experiments with the different proposed methods should be
performed in the industry to validate the usefulness. The experiments in this research
were limited to model-based testing of loss of communication. Other proposed methods
are very different from the used method in the experiments. For instance, testing invalid
input introduces transitions where input is generated randomly. Experiments should
show whether this method can be applied and how useful it is in practice.

In the proposed methods of testing malicious input and input outside the domain, the
generation of input is not considered. The proposed methods can be extended to include
automated generation of invalid input. It is possible that existing techniques, proposed
in the literature, can be used. The generation of invalid input was not in the scope of
this thesis. The same holds for methods in the categories where faults are inserted in
the system. Additional work is needed to extend the proposed method to automate the
process of inserting faults in the system.

More attention should be given to separate the system and the environment. I have
provided one approach that is based on my own experience and intuition. It is possible
that my approach is not applicable for all systems and still leaves room for misinterpre-
tation. A full in-depth study should be performed to, ideally, define a formal definition
of a system and its environment.

7

7.2.1 Prisma project

The work in this thesis is limited to testing basic behaviour of the lighting system. The
Prisma model contains more functionality. Extending the model used for model-based
testing, is something that can be done to further analyse the correctness of the Prisma
model. In addition, power failures can be included in the analysis. For model-based
testing, this does however require physical hardware to control the power supply via the
test software.

The lighting system considered in the Prisma project is a highly configurable system.
There are many system configurations possible, not only in the number of luminaires and
sensors, but also in the configuration of the presets, building topology, deployment, and
network topology. An automated process is preferred to create models of different con-
figurations. This can, for instance, be achieved with a Domain Specific Language (DSL).
The models can than, preferably in an automated way, be used for model checking and
model-based testing. This makes it possible to easily analyse different configurations of
the system.

In this thesis, the tool Tron has been used. The reasons are that time is a critical aspects
of the Lighting system and the existing Prisma model is an Uppaal model. During the
experiments we found that clocks had to be made discrete, in order to copy hold time
timers from one luminaire to another luminaire. A discrete clock can, in theory, also
be constructed in a non-timed MBT-tool by letting the adapter (PrismaUI) increase
the clock periodically. The experiments could then be repeated with a different MBT-
tool. Although I do not expect other tools to find inconsistencies, other tools provide
‘better’ results. The tool jTorx for instance, provides transition coverage, which gives
some information of the size of the total functionality of the system that has been tested.
Furthermore, jTorX does contain a graphical representation during the execution of the
tests. The lack of a graphical representation is something that felt missing in Tron, as
explained in section 6.3.

One of the topics that can be of interest in the Prisma project is using Tron to observe
behaviour of the real system. It would be interesting to see whether the system stays in
the allowed behaviour in the model, when the system is observed during real use. Tron
could be used to monitor input and outputs and validate them in the model. This would
allow to test real scenarios instead of scenarios that are defined in a test. This however
requires a version of Tron where the test time is infinite.

78

8

1]

[10]

[11]

References

IEEE standard glossary of software engineering terminology. IFEE Std 610.12-1990,
pages 1-84, Dec 1990.

Craig R Allen. Ecosystems and immune systems: hierarchical response provides
resilience against invasions. USGS Staff-Published Research, page 7, 2001.

Paul E Ammann, Paul E Black, and William Majurski. Using model checking to
generate tests from specifications. In Formal Engineering Methods, 1998. Proceed-
ings. Second International Conference on, pages 46-54. IEEE, 1998.

Alessandro Armando, Giancarlo Pellegrino, Roberto Carbone, Alessio Merlo, and
Davide Balzarotti. From model-checking to automated testing of security protocols:
Bridging the gap. In Tests and Proofs, pages 3—18. Springer, 2012.

Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Ba-
sic concepts and taxonomy of dependable and secure computing. Dependable and
Secure Computing, IEEE Transactions on, 1(1):11-33, 2004.

Jack W Baker, Matthias Schubert, and Michael H Faber. On the assessment of
robustness. Structural Safety, 30(3):253-267, 2008.

Gerd Behrmann, Alexandre David, and Kim G Larsen. A tutorial on UPPAAL. In
Marco Bernardo and Flavio Corradini, editors, Formal Methods for the Design of
Real-Time Systems: 4th International School on Formal Methods for the Design of
Computer, Communication, and Software Systems, SFM-RT 2004, number 3185 in
LNCS, pages 200-236. Springer—Verlag, September 2004.

Axel Belinfante. Jtorx: A tool for on-line model-driven test derivation and execu-
tion. In Tools and Algorithms for the Construction and Analysis of Systems, pages
266-270. Springer, 2010.

Jean M Carlson and John Doyle. Complexity and robustness. Proceedings of the
National Academy of Sciences, 99(suppl 1):2538-2545, 2002.

Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT press,
1999.

Arilo C Dias Neto, Rajesh Subramanyan, Marlon Vieira, and Guilherme H Travas-
sos. A survey on model-based testing approaches: a systematic review. In Pro-
ceedings of the 1st ACM international workshop on Empirical assessment of soft-
ware engineering languages and technologies: held in conjunction with the 22nd

79

80

IEEE/ACM International Conference on Automated Software Engineering (ASE)
2007, pages 31-36. ACM, 2007.

Richard Doornbos, Jacques Verriet, and Mark Verberkt. Robustness analysis for
indoor lighting systems. In 10th International Conference on Systems, Barcelona,
Spain, April 2015.

Jean-Claude Fernandez, Laurent Mounier, and Cyril Pachon. A model-based ap-
proach for robustness testing. In Testing of Communicating Systems, pages 333—348.
Springer, 2005.

Anders Hessel, Kim G Larsen, Marius Mikucionis, Brian Nielsen, Paul Pettersson,
and Arne Skou. Testing real-time systems using uppaal. In Formal methods and
testing, pages 77-117. Springer, 2008.

Santa Fe Institute. Robustness in natural, engineering, and social systems,
http://discuss.santafe.edu/robustness, 2000-2003.

ISO/IEC. ISO/IEC 25010 system and software quality models. Technical report,
2011.

Erica Jen. Stable or robust? what’s the difference? Complezity, 8(3):12-18, 2003.

S.J. Kapurch. NASA Systems Engineering Handbook. DIANE Publishing Company,
2010.

Kim G Larsen, Marius Mikucionis, Brian Nielsen, and Arne Skou. Testing real-time
embedded software using UPPAAL-TRON: an industrial case study. In Proceedings
of the 5th ACM international conference on Embedded software, pages 299-306.
ACM, 2005.

Paulo Leitdo. A holonic disturbance management architecture for flexible manu-
facturing systems. International Journal of Production Research, 49(5):1269-1284,
2011.

B. Meyer. Object-oriented Software Construction. Object-oriented programming.
Prentice Hall PTR, 1997.

Marius Mikucionis. Personal communication, March 2015.
Petur Olsen. Personal communication, May 2015.

I. Parmee. Adaptive Computing in Design and Manufacture VI. Springer London,
2011.

Harald Raffelt, Bernhard Steffen, Therese Berg, and Tiziana Margaria. Learnlib: a
framework for extrapolating behavioral models. International journal on software
tools for technology transfer, 11(5):393-407, 20009.

[31]

32]
[33]

[34]

Julien Schmaltz and Jan Tretmans. On conformance testing for timed systems. In
Formal Modeling and Analysis of Timed Systems, pages 250-264. Springer, 2008.

Ali Shahrokni. Software Robustness: From Requirements to Verification. Chalmers
University of Technology, 2013.

Adenilso Simao and Alexandre Petrenko. Generating complete and finite test suite
for ioco: Is it possible? arXiv preprint arXiv:1403.7261, 2014.

Jean-Jacques E Slotine, Weiping Li, et al. Applied nonlinear control, volume 199.
Prentice-hall Englewood Cliffs, NJ, 1991.

Sunita Tiwari and Arpan Gupta. An approach to generate safety validation test
cases from uml activity diagram. In Software Engineering Conference (APSEC,
2013 20th Asia-Pacific, volume 1, pages 189-198. IEEE, 2013.

Jan Tretmans. Model based testing with labelled transition systems. In Formal
methods and testing, pages 1-38. Springer, 2008.

Uppaal. Uppaal 4.1.19 manual - yggdrasil. Accessed: March 2015.

Mark Utting and Bruno Legeard. Practical model-based testing: a tools approach.
Morgan Kaufmann, 2010.

Justyna Zander, Ina Schieferdecker, and Pieter J Mosterman. Model-based testing
for embedded systems. CRC press, 2011.

81

	Introduction
	Prisma project
	Research aim
	Related research
	Structure of the Thesis

	System robustness
	What is robustness?
	System, environment and input
	Characteristics in system robustness
	System robustness categorization for testing

	A Model-based approach to robustness
	Labelled Transition Systems
	Model checking
	Model-based testing
	Model checking combined with model-based testing
	Model-based robustness analysis

	Case study: Smart indoor lighting systems
	Smart indoor lighting system
	Technical implementation
	Robustness of lighting systems
	Test setup

	Model-based testing experiments
	Model-based testing tools
	Model construction
	Testing of normal behaviour
	Robustness testing
	Validation of Prisma models

	Discussion
	Model-based testing of indoor lighting systems
	Results of the experiments
	Tools
	Model checking and Model-based testing
	Model learning

	Conclusion and Future Work
	Research question
	Future work

	References

