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Abstract

The intractability of the ECDLP is part of what makes many cryptographic application
work. As such, viewing this problem from as many angles as possible is worthwhile. In
this thesis, we explore the angle of creating a GPU ECDLP solver using OpenCL. In
the process, we discuss the many issues, limitations and solutions we encounter. The
main result is that, on our testing setup, we can construct a solver that computes a
112-bit ECDLP in 18.5 years but which can also scale up to 114-bit ECDLPs without
a relative loss of performance, i.e., we solve a 114-bit ECDLP in approximately 37
years. This nature of the problem is such that, when we scale over many GPUs, we
can decrease this number linearly by number of GPUs available.
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1 Introduction

The intractability of solving discrete logarithms in general, and on elliptic curves specif-
ically, is one of the most important assumptions for practical cryptographic applica-
tions today. It keeps us safe. Therefore, we must continuously try to find the limits of
what we can actually break. This informs our decisions, e. g., as to practical key sizes.
Also, this problem needs to be studied from many angles in terms of architecture,
tools used, etc. Issues, ideas and solutions that apply to one platform do not neces-
sarily apply to others. Even if they do, they may not apply in the same way. Thus,
differentiating the platform allows for more views on the same problem.

The goal of this thesis is simple. Create a solver for ECDLPs (elliptic curve discrete
logarithms) for curves over a 116-bit prime 2116 − 3. This allows for some leeway in
terms of problem size. Specifically, we are concerned with 112-bit till 114-bit ECDLPs.
This solver is intended to run on many GPUs at once. For the purposes of this work,
we do not want to bound by any given GPU vendor and thus we use OpenCL [14]
to implement this. In the process of doing so, we will learn about the advantages,
problems and solutions related to creating such a ECDLP solver in this particular
context.

There is a significant amount of related work on other platforms. For example, it
is well known how to create such a solver for the Cell processor [4, 5]. Also, recent
work, but applied on binary curves, showed good results using FPGAs for 113-bit
problems [27]. However, the particular combination of prime-field ECDLPs, GPUs
and OpenCL is not something that has been done to the best of our knowledge.

1.1 Structure

This thesis is structured as follows. In chapter 2 we give an overview of all the back-
ground necessary for understanding this thesis. Besides some elementary mathematical
notation we try not to assume too much in the way of prior knowledge. We do skip
over many details hen they are not important to the rest of the thesis. If the reader
is well-versed in the domain of elliptic curve cryptography, we advise to skip most of
this. It may be beneficial to skim section 2.5, even if only because of the terminology
that comes with OpenCL.

In chapter 3 we discuss the results we obtained. Specifically, section 3.2 and sec-
tion 3.3 detail the results of the implementation phase: what choices and trade-offs
occur when implementing an ECDLP solver in a OpenCL context. In section 3.4 we
show the performance obtained by our software in both a statistical sense and in
absolute performance benchmarks. It contains the primary result, namely that our
software should solve 112-bit ECDLPs in approximately 18.5 years but at the same
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time can linearly scale up to 114-bit ECDLPs. In terms of iterations, this equates to
approximately 109.12 · 106 iterations per second.

Finally, in chapter 4 we make some final remarks as to how the results compare to
previous work in this area as well as conclude with a view on how to progress from
this point.
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2 Background

This chapter will provide the background necessary for an understanding of the results
and discussions presented in chapter 3. We do not mean for this chapter to be com-
prehensive, but to be sufficient. It serves to provide intuition and terminology more
than anything else.

2.1 Finite Fields

This section is mostly adapted from [19, Ch 3], and as per its definitions, a finite field
is considered to be a field with containing a finite number of elements. The number of
elements is called the order of the field. For this thesis we are only interested in fields
of prime order p 1. We will denote a field of order p as Fp. For these particular prime
fields it holds that Fp = Zp = {0, 1, . . . , p − 1}. We often consider the multiplicative
group of Fp, denoted as F∗p, which contains all the non-zero elements of Fp. As such,
the order of F∗p is p− 1.

Considering the fact that Fp = Zp, for primes p, we know how to do basic arithmetic
operations.

Definition 2.1. Basic operations: given a, b ∈ Fp and for all ⊕ ∈ {+,×,−}, it holds
that a⊕ b ≡ c (mod p).

Exponentiation easily follows from multiplication. Usually, this is performed by ex-
ponentiation by squaring, which entails repeatedly squaring and multiplying on the
basis of the binary representation of the exponent. A more detailed explanation of
how to do exponentiation is provided in section 2.4 and subsection 3.2.4, especially as
it pertains to exponentiation with a fixed exponent.

Furthermore, we need to define the inverse in Fp.

Definition 2.2. The multiplicative inverse: b ∈ Fp is the multiplicative inverse of
a ∈ Fp iff ab ≡ 1 (mod p).

Finding the inverse can be done in several ways, e.g., extended Euclidean, but a
straightforward way in terms of computation is to compute the p − 2-th power of a.
This finding can be easily derived from the fact that ap ≡ p (mod p) (Fermat’s little
theorem).

To explain discrete logarithms, we only need the following additional definition of a
generator of F∗p:
1For cryptographic purposes binary fields F2n are also used, but we will not consider them in this

thesis.
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Definition 2.3. The generator : let g ∈ F∗p, g is a generator of F∗p if {gi | 0 ≤ i ≤
p− 1} = F∗p.

In other words, repeated multiplication of g yields the entire group F∗p. The group
generated by g is often denoted as 〈g〉.

2.1.1 Discrete Logarithm Problem

The discrete logarithm problem (DLP) is the basis of some of the most common
cryptographic techniques used in practice, the most well-known of which is probably
Diffie-Hellman [9].

Definition 2.4. The discrete logarithm problem: given F∗p, a generator g of F∗p, and
h ∈ F∗p, find the x, 0 ≤ x ≤ p− 2, such that gx ≡ h (mod p).

The assumption that this problem is intractable is the reason why it can be used in
cryptography.

While this a DLP defined over Fp, in a more general sense, the DLP is defined over
finite cyclic groups:

Definition 2.5. The generalized discrete logarithm problem: given a finite cyclic group
G of order n, a generator g and an element h ∈ 〈g〉, find the x, 0 ≤ x ≤ n − 1, such
that gx = h.

We mention this for its similarity to the definition for elliptic curves in section 2.3.
As a final note, we will sometimes say that, for these definitions, x is the discrete
logarithm of h to the base g.

2.2 Elliptic Curves

The idea of using elliptic curves for cryptographic purposes has been around since
the late 1980’s [16, 20]. In general, points (x, y) on an elliptic curve can be defined as
solutions of the long Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Additionally, there is a point at infinity O which acts like the identity element.
Mostly we do not concern ourselves with the full equation but we consider solutions
to the short form of this equation

y2 = x3 + a4x+ a6.

For this thesis we are concerned with cases where all ai, x, y are elements of Fp. In
this case, we say that a curve E is defined over Fp.

Given a point P = (x, y), the points generated by repeated point addition of P act
like a finite cyclic group. P is called the base point of such a group G = 〈P 〉. The
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concept of a base point is analogous to the concept of a generator. Similarly, the order
of a point P is the number of elements in 〈P 〉.

Point negation in Weierstrass curves is simply −P = (x,−y), making it a very fast
operation. Addition in (short) Weierstrass curves of two points P,Q is somewhat more
involved and is done as follows:

• If Q = O, then P +Q = P ;

• If P = −Q, then P +Q = O;

• If P 6= Q, then (x3, y3) = P +Q for P = (x1, y1), Q = (x2, y2) is computed by:

x3 =
(y2 − y2)2

(x2 − x1)2
− x1 − x2,

y3 =
((2x1 + x2)(y2 − y2)

x2 − x1
− (y2 − y1)3

x2 − x1)3
− y1.

• If P = Q, then we get a slightly different formula:

x3 =
(3x21 + a4)

2

(2y1)2
− x1 − x1,

y3 =
((2x1 + x1)(3x

2
1 + a4)

2y1
− (3x21 + a4)

3

(2y1)3
− y1.

More simply, the addition and doubling formulates can be computed as follows [4].
For the addition, compute λ = (y1 − y2)/(x1 − x2), then simply compute (x3, y3) as

x3 = λ2 − x1 − x2,
y3 = λ(x1 − x3)− y1.

For doubling simply compute λ = 3(x21 + a4)/(2y1) and use the same formulas for
x3, y3. Note that the a6 curve parameter does not occur in any of the addition formulas.
Therefore, if we write a program implementing point addition for a given curve with
a certain a6, it will also be correct for a different curve with another a6 (but with the
same a4). In particular, for a different a6 we may very well get lower-order points,
decreasing the security. Normally, this is a problem. For us, however, we can (ab)use
it to test our software on lower-order ECDLPs without changing the implementation.

2.2.1 CFRG Curves

The CFRG IETF draft is standard describing an algorithm for deterministically gen-
erating high-security curves [17]. It is the standard we use to generate the curve(s) on
which we perform all our experiments.
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Note that the standard prescribes an algorithm that generates a Montgomery curve
of the form

y2 = x3 + a2x
2 + x.

Whenever we use the algorithm described in this draft, we simply map this curve to
a short Weierstrass form, something which is always possible [24]. We do this primarily
because it allows us to very easily change the a6 parameter to get lower-order points,
which aids in testing and development.

2.3 ECDLP

The elliptic curve discrete logarithm problem is, of course, very similar to the normal
DLP on finite fields.

Definition 2.6. The elliptic curve discrete logarithm problem: given a base point P of
order l on curve E and a point Q ∈ 〈P 〉, find the n, 0 ≤ x ≤ l− 1, such that nP = Q.

Note that this definition is essentially identical to the previously mentioned DLPs,
except that we write the problem additively instead of multiplicatively.

If the point P is of sufficiently large prime order l and E has no special properties,
this problem is believed to be hard [5]. This is a somewhat generalized statement, as
there are many ways in which a curve can be insecure, but we need not go into that. Due
the intractability of ECDLP, several algorithms that previously relied on the normal
DLP have been adapted to use elliptic curves and thus rely on ECDLP. Examples of
such are ECDH [18] and ECDSA [13], for elliptic curve versions of Diffie-Hellman and
DSA respectively.

2.3.1 Pollard’s rho Algorithm

There exist several different ways to compute discrete logarithms but for the purposes
of this thesis we will consider Pollard’s rho method [25]. This method, or variants
thereof, still appear to be the best solution for solving DLPs in generic groups [5].

Generally, Pollard rho is defined as follows [4]: consider a generator P of a finite
cyclic group G of order l, Q ∈ 〈P 〉 and a scalar n such that nP = Q. Pollard rho finds
n given P,Q by finding a collision in the map

(a, b) 7→ aP + bQ for a, b ∈ Z.

Finding such a collision (a, a′, b, b′) where aP + bQ = a′P + b′Q has a high probability
of revealing n by computing

n ≡ (a− a′)/(b′ − b) (mod l) if gcd(b− b′, l) = 1.

To find the aforementioned collision, we define an iteration function f that walks over
the points in 〈P 〉 such that Wi+1 = f(Wi) = a(Wi)P + b(Wi)Q where a, b : 〈P 〉 7→ Z,
starting from an initial combination W0 = a0P + b0Q. Now we iterate f until we find
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f f

f
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Figure 2.1: Graphical representation of Pollard’s rho algorithm. A collision is found if
there is a cycle Wj = Wk+1 for some j, k such that j 6= k + 1.

a collision between two distinct points of the walk Wi and Wj , i.e., Wi = Wj and
i 6= j. Note that if Wi = Wj , then also Wi+1 = Wj+1,Wi+2 = Wi+2, . . . , etc. In other
words, we enter a cycle. See Figure 2.1 for a graphical representation. This cycle can be
detected efficiently, and without extraneous memory consumption, by cycle detection
methods, the simplest of which is probably Floyd’s cycle-finding method [15].

If the aforementioned maps a(R), b(R) are random, the iteration performs a random
walk. For such a random walk, we know that the average number of iterations required
until a collision occurs is approximately

√
πl/2, as per the birthday paradox.

Several variations of f are, of course, possible. Note that the iteration function
as it is mentioned in the above paragraph requires two scalar multiplications for each
iteration. In fact, it is much more convenient to perform an additive walk. Let W0 = bQ
be the starting point, Ri = ciP + diQ for 0 ≤ i ≤ r − 1 a precomputed table of P,Q-
combinations and have h : 〈P 〉 7→ Z. The iteration function is now defined as

Wi+1 = Wi +Rh(Wi).

To further simplify this, we can set dj to 0, and just have R be a table of P -multiples.
In fact, this is (almost) precisely the type of walk we will use for the iteration function
in this thesis.

For small values of r, this type of walk is noticeably non-random [4], which in turn
increases the expected number of iterations. If r is large enough, however, the walk
approaches a random walk and a similar number of expected iterations as for the
random walk applies.

2.3.2 Parallel Pollard rho

Intuitively, the Pollard rho method is trivial to parallelize. In theory, one can just have
m different machines start with a different multiple of Q and have each perform the
normal Pollard rho algorithm and then we just wait for one to finish, giving us the
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Figure 2.2: Graphical representation of parallel Pollard rho. A collision occurs when
two walks converge.

answer we need. However, the expected speedup of such a solution is only
√
m [5]. As

such, this is not how parallel Pollard rho is done.
Instead, as proposed in [26] and implemented in most practical ECDLP solvers (like

[5, 4]), we build a parallel Pollard rho that achieves a linear speedup, i. e., for m
processors we get an m-times speedup.

First, consider the fact that our goal is not to find a cycle per se, but to find a
collision. Given this fact, the idea is simply to start m separate walks in parallel, each
with their own starting point biQ for 0 ≤ i ≤ m−1 but with identical precomputation
tables R and identical indexing functions h. Instead of doing cycle-detection, we simply
send the Wi’s of all m walks to a central server. This server then checks all the incoming
points for a collision. See Figure 2.2 for a graphical explanation of this method.

Obviously, it would be highly unfeasible to send and store all points of every given
walk, especially in light of the large number of iterations required for even a relatively
small problem (and thus the large number of points generated). Instead, as per [26],
we selectively send points to the server. The selector should be a simple-to-compute
function over the point, e.g., call a point distinguished if the amount of trailing zeroes
in the binary representation of the point is more than some bound. These points are
called distinguished points. Other examples of such functions include computing leading
zeros, hamming weights, and so on. It is helpful if the function can be parameterized
in such a way that we can tweak the probability of finding a distinguished point, as is
obviously the case for the examples we have given.

Note that once two walks converge, every subsequent point on that walk is also a
collision. If we assume that a distinguished point exists in the subsequent points of
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that walk before it enters a cycle, we will find a collision on said distinguished point.
The odds of a walk entering a cycle before we find a distinguished point are slim
if we choose the distinguished-point property correctly. Thus, while we introduce a
slight delay in collision detection, we reduce the storage and communication overhead
significantly, while not missing any collisions.

This way of parallelizing Pollard rho lends itself very well to very distributed setups.
A given machine may have a number of walks in parallel, but the setup parallelizes
just as well over several machines. The only requirement is that they communicate to
the same server.

2.3.3 Negation Map

Consider the case where, in the normal Pollard rho setting, where we choose the maps
a(R) and b(R) in f such that f(Wi) = f(−Wi). For such an iteration function f , we
essentially halve the number of points to consider. As per our normal birthday-paradox
calculation, this leads to an average number of iterations

√
π ∗ l/4, a speedup factor

of
√

2 [4].
However, as per [4], this type of negating generic walk is still not as fast as a normal

additive walk. Instead, we would like to use a negating additive walk. This combines
the low number of expected iterations from the negating walk and the performance of
the iteration function of the additive walk.

In fact, it is rather easy to construct a function f such that f(Wi) = f(−Wi) in
the form of an additive walk. Specifically, we just need a way make a consistent choice
|Wi| between Wi and −Wi given just Wi. For instance, we can compute both Wi

and −Wi, the latter is fast since negation is fast. Subsequently, we simply choose the
lexicographic minimum |Wi| = min(Wi,−Wi). Given such an efficient way to choose
|Wi|, we simply define the iteration function as

Wi+1 = |Wi +Rh(Wi)|.

2.3.4 Fruitless Cycles

The negating additive walk mentioned above is nice, but has a certain disadvantage:
fruitless cycles [11]. Consider the situation where |Wi+1| = −Wi+ 1 and h(Wi+1) =
h(wi), then

Wi+2 = −Wi+1 +Rh(Wi) = −(|Wi|+Rh(Wi)) +Rh(Wi) = −|Wi|.

If Wi+2 = −|Wi|, then |Wi+2| = | − |Wi|| = |Wi|. In other words, we enter a cycle of
length 2. Similar arguments can be made for the existence of, increasingly rare, cycles
of length 4, 6, 8, etc. See [10] for a more thorough discussion.

A fruitless cycle of length 2c appear with an approximate probability of 1/rc, where
r is the size of R [4]. As such, increasing the size of R decreases the probability of
such a cycle appearing. However, it turns out that for practical values of r, cycles do
appear and do need be considered in any implementation of the negation map.
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The literature contains many examples of how to deal with such cycles, some more
effective then others. One example, as applied successfully for solving ECC2K-95 [12],
is to use a multiplicative (negating) walk. Here, we map Wi to a small set of scalars
S, e.g., 2, 3, 5, 7, 11, 13, 17, 19 and define the iteration function as

Wi+1 = h(Wi)Wi,

where h maps Wi to an element in S.
This has a negligible chance of entering a cycle and is compatible with the negation

map [4]. However, for general curves this is still slower than normal additive walks,
because a multiplication of a point with a given scalar needs several point additions,
whereas an additive walk only needs one. As such, this solution slows the computation
down for general curves. Still, the solution in [12] used a Koblitz curve, for which
multiplications by certain scalars are as efficient as point addition.

While the above solution avoids cycles, most techniques revolve around detecting
and subsequently escaping from cycles. Another, fairly simple, solution has to do with
incrementing the index gotten from h(Wi) if h(Wi) = h(Wi+1) until this condition no
longer holds [30]. This prevents 2-cycles, but does nothing for larger cycles. As noted
in [4], cycles of lengths greater than 2 are rather rare and thus aborting walks after
a number of iterations has been reached will clean up all the cycling walks. However,
this technique requires a fairly high distinguished-point probability, which increases
the communication and storage overhead.

Another simple idea, due to [11], is to find a cycle of a length c by saving a point
Wi every c iterations and comparing Wi with Wi+j , where j ∈ {0, 2, . . . , c}. To escape
a cycle is then done by applying a “modified iteration” to the lexicographic minimum
of all points in a cycle.

The method used in [4] is very much a combination of the ideas in [11] and the idea
that doubling is useful to escape cycles. This method entails occasionally modifying
the walk to check of cycles of length c in a similar way as [11], while maintaining a
record of the minimum Wmin of all Wi+j in the possible cycle. If we encounter a cycle,
i.e., Wi = Wi+c, we modify the iteration to

Wi+1 = |2Wmin|.

2.4 Arithmetic in Representations of Fp
The numbers we use in practical cryptographic computations often exceed the limits
of standard datatypes and word sizes. In particular, the 116-bit prime over which we
define our curves is much larger than the 64 bits of a long type. Therefore, it is useful
to consider, in the general sense, how to represent these larger integers and then to
define the ways in which we can perform arithmetic operations on such integers. For
this section, we consider such operations on big integers.

15



2.4.1 Representation

Representing an integer x ∈ Fp, in general terms, is done by splitting x into n limbs of
radices bri , for 0 ≤ i ≤ n − 1. A given x is then represented in polynomial form with
coefficients xi as

x =
∑

0≤i≤n−1
xib

ri .

For example, a 128-bit integer can be represented as 2 limbs of 64-bits, i.e., n =
2, b = 2, r0 = 0, r1 = 64. So for a given 128-bit integer this gives us x = x02

0 + x12
64.

For the purposes of this thesis, we only consider cases where b = 2 and where
ri = iw, for some width w. In other words, a w-bit representation with evenly-spaced
limbs. Strictly speaking, it is sometimes useful to not evenly space the limbs, as is
done [4], where the width is 12.8 and ri = di ·12.8e. For simplicity, we will not consider
such cases here. Also, we assume that, unless otherwise specified, we are dealing with
signed representations for the limbs.

Often, since the values for n and ri are fixed, we will often write an integer in this
polynomial representation as merely the sequence of the coefficients (x0, . . . , xn−1).

2.4.2 Addition & Subtraction

Adding or subtracting two integers x, y ∈ Fp is rather trivial, as we discussed in sec-
tion 2.1. It is really no different in their respective polynomial representations. The
most simple way of doing addition and subtraction is denoted in algorithms 2.1 and 2.2,
as per [19, Ch. 14]. Note that we explicitly apply a simply carry algorithm.

However, consider the circumstance where we have enough space in our datatype
to represent both the result and the carry. In that case we can delay computing the
carries until we are done with the addition. In that case we can simply do

x⊕ y = (x0 ⊕ y0, . . . , xn−1 ⊕ yn−1) for ⊕ ∈ {+,−}.

And then perform a carry algorithm. In fact, in the case of addition we also want
to reduce the n+ 1 limbs back to n limbs. An example of this can be found in subsec-
tion 3.2.3.

2.4.3 Multiple-precision Multiplication

Note that multiplication of x, y in their polynomial representations yields twice as
many possible exponents and thus limbs, just like in normal schoolbook polynomial
multiplication. Specifically, a multiplication between two n-limbed integers yields 2n
limbs. If we include carries we can compute such a multiplication like in 2.3, as adapted
from [19, Ch. 14]. Note that if we exclude carries, we get 2n− 1 limbs.

However, if we can avoid carrying until we are doing multiplying, we like to think of it
as this: given x = (x0, . . . , xn−1), y = (y0, . . . , yn−1), we first compute the intermediate
coefficients c = (c0, . . . , c2n−2) as
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Algorithm 2.1 Base-b addition. Note that we end up with n+ 1 limbs.

Input: x = (x0, . . . , xn−1)b , y = (y0, . . . , yn−1)b, for base b = 2r

Output: z = x+ y = (w0, . . . , wn)b
1: c← 0
2: for i← 0, n− 1 do
3: zi ← (xi + yi + c) mod b
4: if (xi + yi + c) < b then
5: c← 0
6: else
7: c← 1
8: end if
9: end for

10: wn ← c
11: return (w0, . . . , wn)b

Algorithm 2.2 Base-b subtraction.

Input: x = (x0, . . . , xn−1)b , y = (y0, . . . , yn−1)b, for base b = 2r

Output: z = x− y = (z0, . . . , zn−1)b
1: c← 0
2: for i← 0, n− 1 do
3: zi ← (xi − yi + c) mod b
4: if (xi − yi + c) ≥ 0 then
5: c← 0
6: else
7: c← −1
8: end if
9: end for

10: return (z0, . . . , zn−1)b

ck =

k∑
i=0

0∑
j=k

xiyj for 0 ≤ k ≤ n− 1,

ck =
n−1∑

i=k−(n−1)

k−(n−1)∑
j=n−1

xiyj for n ≤ k ≤ 2n− 2.

The above holds for general multiple-precision multiplication. However, for the pur-
poses of this thesis we are interested in modular multiplication. Note that c has a
different polynomial representation from x and y, c has a larger degree. As such, we
want to reduce c back to a n-limbed representation. Because we are working in Fp we
have a relatively easy way to do just that.

For this, consider the fact that 2nw > p. As such, we can “split” 2nw into r = 2nw
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Algorithm 2.3 Base-b multiple-precision multiplication.

Input: x = (x0, . . . , xn−1)b , y = (y0, . . . , yn−1)b, for base b = 2r

Output: z = xy = (z0, . . . , z2n−1)b
1: for i← 0, 2n− 2 do
2: zi ← 0
3: end for
4: for i← 0, n− 1 do
5: c← 0
6: for j ← 0, n− 1 do
7: (u, v)b ← zi+j + xjyi + c
8: zi+j ← v
9: c← u

10: end for
11: zi+n ← u
12: end for
13: return (z0, . . . , z2n−1)b

(mod p) and 20. Multiplying cn by r, both of which belong to the 0-th limb, essentially
merges c0 and cn. The same can be done for cn+i for 1 ≤ i ≤ n− 2. So the final result
z = (z0, . . . , zn−1) is

z = xy = (c0 + rcn, c1 + rcn+1, . . . , cn−2 + rc2n−2, cn−1) .

Note that the last limb cn−1 is unchanged because there is no other limb to match
it with.

2.4.4 Exponentiation

There are a number of ways to perform exponentiation. They generally entail repeated
squaring and multiplication, the most common of which is probably binary exponentia-
tion, i.e., perform multiplications and/or squarings based on the binary representation
of the exponent. The simplest way to do this is by doing either right-to-left (Algorithm
2.4) or left-to-right binary exponentiation (Algorithm 2.5).

Note, however, that we can also process more than one bit at a time. This is basic
idea behind the windowing methods of exponentiation. Consider the fixed window, or
k − ary, exponentiation algorithm (Algorithm 2.6). Notice that we essentially replace
some of the multiplications in the inner loop of Algorithm 2.5 with precomputed
multiples of g. This technique is particularly useful when we have an exponent that
has a nice binary representation such that we do not need as many precomputations.

For cryptography it is not uncommon to have an exponentiation with a fixed expo-
nent. For those, we can often create faster specific exponentiation algorithms. Specifi-
cally, we will discuss the concept of an addition chain.

An addition chain S of length s for a positive exponent e is a sequence u0, u1, . . . , us
and an associated sequence w1, . . . , ws of pairs wi = (i1, i2), 0 ≤ i1, i2 < i for which
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Algorithm 2.4 Right-to-left binary exponentiation [19].

Input: e > 1, g ∈ Fp

Output: h = ge

1: h← 1, s← g
2: while e 6= 0 do
3: if e ≡ 1 (mod 2) then
4: h← h · s
5: end if
6: e← be/2c
7: if e 6= 0 then
8: s← s · s
9: end if

10: end while
11: return h

Algorithm 2.5 Left-to-right binary exponentiation [19].

Input: e = (el, el−1, e0)2, g ∈ Fp

Output: h = ge

1: h← 1
2: for i← t, 0 do
3: h← h · h
4: if ei = 1 then
5: h← h · g
6: end if
7: end for
8: return h

Algorithm 2.6 Left-to-right k-ary binary exponentiation [19].

Input: g ∈ Fp, e = (el, el−1, e0)b, b = 2k for k ≥ 1
Output: h = ge

1: g0 ← 1
2: for i← 1, 2k − 1 do
3: gi ← gi−1 · g
4: end for
5: h← 1
6: for i← t, 0 do
7: h← h2

k · h
8: if ei = 1 then
9: h← h · gei

10: end if
11: end for
12: return h
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the following holds [19]:

• u0 = 1, us = e

• ui = ui1 + ui2 for each ui, 1 ≤ i ≤ s.

In other words, each term in S is the sum of two previous terms. For example,
S = {1, 2, 3, 6, 12, 24, 30, 31} is an addition chain for e = 31, where the indices wi

are {(0, 0), (0, 1), (2, 2), (3, 3), (4, 4), (3, 5), (6, 0)}. Given such a chain, exponentiation
is very simple, as can be seen from algorithm 2.7. Finding the smallest of such chains,
however, is NP-hard.

Algorithm 2.7 Addition chain exponentiation [19].

Input: g ∈ Fp, S = (u0, u1, . . . , us), w1, . . . , ws, where wi = (i1, i2)
Output: ge

1: g0 ← g
2: for i← 1, s do
3: gi ← gi1 · gi2
4: end for
5: return gs

2.4.5 Inversion

In section 2.1 we mentioned that computing the inverse of x in Fp is easily achieved
by computing x−1 = xp−2. This is a case of exponentiation with a fixed exponent and
is thus very efficiently computed by the method detailed in subsection 2.4.4.

Inversion of some x in Fp is relatively slow, even if we use the most efficient methods
for computing it. However, if we need to compute many different x−1i , there are some
tricks we can apply to make things faster. Specifically, the technique for simultaneous
inversion colloquially know as Montgomery’s trick [22];

Consider the simply fact that for x, y ∈ Fp, x
−1y−1 = (xy)−1. Therefore, given

(xy)−1, we can compute x−1 and y−1 by computing x−1 = (xy)−1y, y−1 = (xy)−1x.
For the computation of these two inverses, we replace two inversions with one inversion
and three multiplications. Similar arguments hold for any batch of n inversions we
may want to do [5]. For batches of 3, for instance, we get (xyz)−1 and we first get
z−1 = (xyz)−1xy, y−1 = (xyz)−1xz and z−1 = (xyz)−1yz. See algorithm 2.8 for the
general algorithm for batches of n ≥ 2. In effect, this trick transforms n inversions into
3(n− 1) multiplications and 1 inversion.

2.5 GPGPU & OpenCL

GPGPU programming, or general purpose GPU programming, relates to the times
where we leverage the parallel processing power of the GPU for speeding up algorithms.
If a problem can be parallelized in a SIMD-fashion, solving it on a GPU may be
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Algorithm 2.8 Montgomery’s simultaneous inversion trick.

Input: zi ∈ Fp, for 0 ≤ i ≤ n− 1
Output: ri = z−1i , for 0 ≤ i ≤ n− 1

1: w0 ← 1
2: for i← 1, n− 1 do
3: wi ← ziwi−1
4: end for
5: winv ← w−1n−1
6: for i← n− 1, 1 do
7: ri ← wi−1winv

8: winv ← ziwinv

9: end for
10: return (r0, r1, . . . , rn−1)

beneficial. Intuitively, SIMD (Single Instruction, Multiple Data) simply means that
we execute the same instruction of many different inputs at once. This is what a GPU
excels at.

OpenCL is the first open standard for doing such parallel programming on a wide
variety of devices, including GPUs [14]. Its primary competitor is NVIDIA’s CUDA [23]
platform. As we mention in the introduction, however, we are looking for a solution
that is independent of the GPU vendor and as such OpenCL is a natural choice.

Let us introduce the relevant terminology. In OpenCL we have the notion of a
compute kernel, which is a small unit of execution that can be executed in parallel on
a multiple independent input streams [8]. These kernels are written in a C-derivative2

and are compiled separately from the rest of the program. To execute a kernel, we
enqueue it to the device. The device has several compute units, each with their own
memory and processing capabilities.

A given instance of a kernel executing on a compute unit is called a work item and
multiple work items are bundled in work groups. All work items in the same group
execute on the same compute unit. In OpenCL, we configure the total number of
work items as well as the size of an individual work group. In effect, every work item
has its own input stream. Furthermore, we have the notion of a wavefront, which the
smallest scheduling unit. It consists of of a number of work items which execute their
instructions in lockstep. Specifically, we have 32 work items per wavefront for NVIDIA
GPUs and 64 work items is typical for recent AMD GPUs. For each work group, the
GPU spawns the required number of wavefronts for each compute unit, which are then
scheduled.

If two work items within a wavefront execute separate branches within the code, we
get diverging instructions that need to be executed. In practice, this will likely mean
we execute both branches on every work item all the time and thus is a massive drag on
performance. There are always ways to work around branches, however. Best practices

2OpenCL 2.0+ is more like C++, but our GPUs support only up to 1.1/1.2.
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in most of the vendor guides [7] indicate that branching, if possible, should be avoided.
Note that if a given wavefront always executes the same branch, this problem should
not appear.

OpenCL’s memory layout entails three (or four, depending on your definition) types
of memory.

• Private memory is the fastest memory. It is local to each work-item and consists
of the scalar and vector registers. This fast memory is rather scarce and often
limits the amount of work items which can run on a given compute unit at the
same time.

• Local memory is memory shared within a work group. As such, it is commonly
used for values that we need to share between work items of a given group. Also,
the contents are cached.

• Global memory is memory accessible to every work item. It is located the furthest
from the actual computation units and is the slowest. There is, however, a lot
of space for global memory on your typical GPU. Also, it is the only way to get
data to-and-from the host program. As such, they often act as input and output
buffers. Due to its performance characteristics, it often best to avoid making
more use of global memory than strictly necessary.

22



3 Results

This chapter serves as a collection of all results, conclusions and theories that this thesis
has spawned. In particular, we first discuss the general architecture of the ECDLP
solver that we created. Subsequently, we follow with a discussion on the inner workings
of, in succession, the arithmetic operations and the iteration kernel in general.

During this chapter we will sometimes refer to our testing setup, especially in cases
where the is some uncertainty as to the cause of certain findings. Unless otherwise
specified we are speaking of running our software, often on a smaller problem and on
maybe a limited number of iterations, on the following machine:

Operating System Arch Linux (up-to-date as of 2015-08-04)

GPU AMD Radeon HD7850

CPU Intel Core i5 4670K @ 3.4Ghz

RAM 8GB

Compiler clang 3.6.1

In particular, this means that most of the results related to OpenCL are obtained
when using the AMD OpenCL compiler. However, at a relatively late stage of the
research we also got access to a machine with an NVIDIA GPU.

Operating System Ubuntu 14.04 (LTS)

GPU NVIDIA GeForce GTX 780 (2x, but we only use one)

CPU AMD FX 8350 @ 4.0 GHz

RAM 32GB

Compiler clang 3.4.2

For generating the ECDLPs, we use the CFRG method described in subsection 2.2.1.
We used the prime p = 2116 − 3 to generate a nice Montgomery curve. For cofactor 8
we got the following curve

y2 = x3 + 89546x2 + x.

Which gives us base points of 113-bit order.
Mapping this to (short) Weierstrass form gives us
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y2 = x3 + 83076749736557242056484477281520717x+ 2481488722968349824.

Which is a fairly unwieldy value for a4. However, this form does allow us to change
the a6 to generate base points of lower order, as we will see in subsection 3.4.1. Also,
not unimportant, we know how to do efficient arithmetic using such short Weierstrass
forms.

3.1 General Architecture

In this section, we will put together the overall picture of how we built our ECDLP
solver. More detailed descriptions follow later.

Our software essentially consists of the following components:

• A program that builds a size-r table R of random P -multiples such that Ri = aiP
for 0 ≤ i ≤ r − 1 and a random 2 ≤ ail − 1 where l is the order of P ;

• A program that continuously outputs random starting points W0 = bQ;

• A program that takes starting points and outputs distinguished points by com-
puting succesive iterations of said starting points;

• A program that stores dinstinguished points and outputs a collision whenever
such is found;

• A program that, given such a collision, computes the answer to the ECDLP.

As to how they fit together, see Figure 3.1. Note that the architecture works for
however many clients are needed, distributed over however many different machines
on various different networks. The use of OpenCL makes sure that clients can have
different hardware and everything will still work.

As an aside, we say that we output random points for table and point genera-
tion. However, in practice it is useful to have predictable points that are randomly
distributed, especially for purposes of testing and development.

As such, here is how we generate multiples of P and Q, for table and point generation
respectively: to generate the i-th point that is a multiple of P , take the first 128 bits
of sha1(i) as a seed. Create a scalar n where we compute n′ = AESseed(ptext), i.e.,
encrypt under the seed a given 128-bit plaintext. Compute n from n′ by taking the
first l bits from n′ where l is the bit-order of P . This has the additional advantage
of being able to just change the plaintext for each different machine in order to get
different points for each machine. Note that there will be identical seeds over the course
of a long ECDLP computation, but the collision detection software should not consider
two identical seeds as a valid collision. In fact, it should only store one of them.

To reduce storage overhead, the actual output of the iteration program does not
include the scalars a, b that make up any given Wi = aP + bQ. Instead, as per [1], we
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Point Generation

Iteration
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Client 2

Client n

Table Generation Collision Decection

Solution Computation

Figure 3.1: General architecture. Every client receives the same table but generates
different points. There can be as many different clients as needed.

simply store the seed for a given index i and output this alongside any distinguished
point we find at i. Using the aforementioned procedure, we can simply use the seed to
recompute the initial scalars used for the starting point of this particular walk.

To recompute the solution from a collision then requires us to redo these two walks
from their starting points while we do, in fact, keep track of the scalars. In fact, for
this we implemented a separate program that implements the same iteration semantics
but on a CPU. This program is especially fast at executing a single walk until we find
the collision point. This program does keep track of the scalars and it is the scalars
this program outputs for both of the collision points that we use for computing our
final solution.

3.1.1 Iteration Design Considerations

In terms of performance, only the iteration program is really important. This is where
you can optimize and really impact the running time. As such, we will discuss the
design of this component in more detail. While we will discuss the specifics of imple-
menting the actual iteration function in an OpenCL kernel in section 3.3, we still need
to consider the overall design of the host program.

This particular component receives a sufficiently large list of starting points W0

and a precomputed table of P -multiples R. The size of the list of starting points be
large enough that we fully utilize the GPU. Given these inputs, the device executes
the OpenCL kernel implementing the iteration function and outputs the found distin-
guished points to some other component for collision detection. Most of the boilerplate
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for setting up the inputs and the kernel execution is fairly straightforward. However,
the way we actually enqueue these iteration kernels is important for performance con-
siderations. In particular, we are concerned with the amount of successive iterations
per kernel, the amount of successive kernels and the amount of kernels needed for a
single iteration. In more detail:

• Having multiple kernels per iteration entails splitting computation in separate
computation units. This has a particular advantage in the sense that every one of
these kernels get relatively more resources, especially in terms of vector registers
(VGPRs). Also, it allows for different work dimensions per kernel. Concluding,
splitting a kernel can have a positive effect on VGPR usage and register spilling.
However, it precludes the ability to have a single kernel execution compute suc-
cessive iterations.

• On the other hand, having successive iterations in a single kernel decreases over-
head significantly at the cost of significantly less resources per work item/work
group. Furthermore, performing successive iterations within a kernel allows for
less global memory writes since we can delay writing results to global memory
until all iterations are done. In theory, the disadvantage of having less resources
should not even exist because we do not, in theory, need significantly more reg-
isters to perform more than one iteration in sequence. In practice, the relevant
compilers do allocate more resources in these situations and as such, do have
this disadvantage. As mentioned, this precludes having multiple kernels per ex-
ecution.

• Enqueueing multiple kernels in succession can be combined with either of the
other two options. It reduces processing overhead due to the fact that we only
process the results on the host-side until all kernels are finished executing. How-
ever, it does not reduce the amount of global memory operations because for a
second kernel to use the first kernel’s results, these results need to be written to
global memory.

For us, it turned out that for the standard iteration kernel, the second option is
fastest if we combine it with methods for reducing VGPR usage. As we will see later,
we do get some minor register issues when we choose this option and without these
VGPR reductions it would not have been feasible to do so.

3.2 Implementing Arithmetic in Fp
In this section we discuss the way we have implemented the relevant arithmetic oper-
ations in the ECDLP software. In order to have efficient point addition, we first need
efficient arithmetic in general.

26



3.2.1 Representation

For arithmetic in Fp where p = 2116 − 3, we must decide on a representation to use.
Representing an element x in Fp needs 116 bits. We choose to represent x using the
following polynomial 4-limbed, base 229 representation:∑

0≤i≤3
xi · 229i

Every limb xi is stored in a signed 32-bit integer, yielding 128 bits per element. We
could also have chosen a different representation. For instance, the unevenly spaced 10-
limbed base 2d11.6ie representation will also work. This has an advantage in the sense
that additions and multiplications are done on 16-bit and 32-bit integers respectively,
which is faster than the 32-bit and 64-bit operations of the base 229 representation.
However, note that a 10-limbed representation needs more operations. Initial experi-
ments showed that the 4-limbed base 229 representation is faster, at least on the AMD
setup. We theorize that this may be, at least in part, due to the fact that our GPU na-
tively has 256 32-bit registers [7], and thus the 128-bits of the 4-limbed representation
fits more neatly than the 160-bits of the 10-limbed representation.

Note that this representation has a number of redundant bits. Only 29 of the 32 bits
are strictly speaking necessary for representing such points. This extra space allows us
to delay the carrying operations, which simplifies the computations tremendously. Ad-
dition and subtraction then become simple component-wise addition (or subtraction)
of two vectors.

In OpenCL-specific terms, this means we can store each 116-bit integer in a int4

datatype. Addition (without carrying) can then be denoted simply as:

int4 x = ...;

int4 y = ...;

int4 z = x + y;

Subtraction is similar. We discuss the carry operations in subsection 3.2.3.

3.2.2 Multiplication

Multiplication is just a simple application of the technique mentioned in subsec-
tion 2.4.3. To make it less abstract, though, we can write out all the computations
we need to do. Note that, once again, we delay the carry step until it is needed. Note
that every limb is 32-bit and as such the result of a multiplication needs to be stored
in a 64-bit integer. Specifically, and this is expanded upon in subsection 3.2.3, a 64-
bit signed integer allows for the storage of any given limb calculation if every limb
xi < 229. In OpenCL, this means we need a long4 datatype for all the intermediate
results during multiplication.

We described in subsection 2.4.3 how to compute multiplications generally. Following
that, let us first compute the (2n− 1)-limbed intermediate representation c as
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c0 = x0y0,

c1 = x0y1 + x1y0,

c2 = x0y2 + x1y1 + x2y0,

c3 = x0y3 + x1y2 + x2y1 + x3y0,

c4 = x1y3 + x2y2 + x3y1,

c5 = x2y3 + x3y2,

c6 = x3y3.

Subsequently, we reduce to the n-limbed representation. To reiterate subsection 2.4.3,
we use the fact that 2116 ≡ 3 (mod p) to merge the i-th and the n+i-th limb, resulting
in

r0 = c0 + 3c4 = x0y0 + 3(x1y3 + x2y2 + x3y1),

r1 = c1 + 3c5 = x0y1 + x1y0 + 3(x2y3 + x3y2),

r2 = c2 + 3c6 = x0y2 + x1y1 + x2y0 + 3(x3y3),

r3 = c3 = x0y3 + x1y2 + x2y1 + x3y0.

Note that the resulting integer r consists of 4 64-bit limbs, unlike the normal 4-
limbed 32-bit representation. So, for actual storage, we need to apply an algorithm to
get back to a 4-limbed base 229 representation. This is where the carry step comes in.

Squaring

Squaring in Fp is slightly easier than a normal multiplication. For optimization, we
can use the above r = (r0, . . . , r3) calculation and subsequently reuse some of the
intermediate results. For example, note that in the calculation of r0 there exists a
computation x1y3 + x3y1, which, if x1 = y1, x3 = y3, simply equates to 2x1x3. Similar
considerations apply to the other limbs as well.

3.2.3 Carrying

Consider the fact that the resulting limbs after multiplication should fit in a 64-bit
(signed) integer. We can find a reasonable upper bound xmax

i on the limb’s values after
multiplication by filling in the maximum value for a given limb, i.e. 229−1, which gives
us

xmax
i = 4 · 3 · (229 − 1)2 = 3458764513820540928 = 0.75 · 262.

In this formula, the 4 arises from the 4 multiplications per limb computation and
the 3 from the (possible) multiplication with 3 of some of the results. We could specify
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a more strict bound, but this is sufficient. Note that the result easily fits into a 64-bit
(signed) integer. Similarly, we can also define a lower bound, but we omit this for now.

In a similar fashion, we can compute a maximum reasonable factor s for which
xmax
i ≤ 263 − 1 as

s =
√

(263 − 1)/4/3/(229 − 1) ≈ 1.63.

So, if we can reduce and carry properly, we can use a given x = (x0, x1, x2, x3) in
a multiplication if every xi < 1.63 · (229 − 1). Note that due to this fact, we cannot
actually simply use the addition of arbitrary z = x + y in a multiplication in this
particular 4-limbed representation. This is due to the fact that this addition can be
worst-case represented by the case s = 2. Therefore, we get

zmax
i = 4 · 3 · ((229 − 1) · 2)2 ≈ 1.5 · 263.

Which will, in fact, fit into an unsigned 64-bit integer; but not into a signed 64-bit
integer (which is what we actually use). However, this has very little impact on the
actual computation, since this only occurs when computing a point doubling, which
is something we do relatively rarely. In this rare case, we simply perform the carry
algorithm after an addition to fix the problem.

In order for the result of any multiplication to be used in another multiplication we
need to reduce the 64-bit limbs back to 32-bit limbs, where every limb is sufficiently
small, i.e., every limb xi < 1.63 · 229.

Consider xmax = (xmax
0 , . . . , xmax

3 ). To reduce this back to a nice representation, as
per [4], we perform a sequence of carry operations. To carry from xi to xj we compute
the following step

c = xi � 29;xi = xi − (c� 29);xj = xj + c.

Except for the carry step from x3 to x0, which is

c = x3 � 29;x3 = x3 − (c� 29);x0 = x0 + 3c.

The 3 in 3c is due to the fact that 2116 ≡ 3 (mod 2116− 3), similar to the reduction
from 2n−1 limbs to n limbs in subsection 2.4.3. Note that the carry value c for a x3 is,
in theory, the value to be added to a virtual extra limb x4. However, we only have four
limbs and thus we apply the same technique to merge x4 and x0, i.e., multiplication
by 3.

In order to find out how long this sequence of carry operations needs to be, we trace
the bounds of every limb after every operation. When the bounds on every limb are
such that we can use the result in another multiplication, we stop.

For simplicity, consider the initial state x after multiplication where each limb xi ∈[
−262, 262

]
. We can do this because xmax

i < 262 and as such, the length of the carry
chain should be at least as long as the case where xi = xmax

i . For similar reasons, we
simply write 229 instead of the more precise 229 − 1. Now we trace the bounds after
successive carry operations:

29



x0 → x1 : x0 ←
[
−229, 229

]
, x1 ←

[
−262 − 233, 262 + 233

]
,

x1 → x2 : x1 ←
[
−229, 229

]
, x2 ←

[
−262 − 234, 262 + 234

]
,

x2 → x3 : x2 ←
[
−229, 229

]
, x3 ←

[
−262 − 234, 262 + 234

]
,

x3 → x0 : x3 ←
[
−229, 229

]
, x0 ←

[
−229 − 236, 229 + 236

]
,

x0 → x1 : x0 ←
[
−229, 229

]
, x1 ←

[
−229 − 28, 229 + 28

]
.

Note that, if we apply apply the carry operation to a 62-bit integer, we essentially
split the integer into 29-bit and 33-bit parts. The latter 33-bit integer is added to the
next limb in the carry chain. This causes the 233 in the first part of the trace. Note
that, for the second and third parts of the chain, we split into a 29-bit and a 34-bit
integer. For the fourth carry operation, we have a multiplication by 3 of the 34-bit
integer, which gives us a 36-bit integer. Hence the 236.

After the last step, x0, x2 and x3 are all 229, whereas x1 is slightly larger, i.e., 229+28.
Even so, this is good enough for our purposes since

4 · 3 · (229 + 28)2 ≈ 0.75 · 262

is smaller than 262, which is the starting point of the above carry chain. Therefore,
this carry chain is long enough to successfully reduce the result of a multiplication in
such a way that we can use the result in yet another multiplication.

3.2.4 Inversion

A point addition (or doubling) entails, as part of the computation, one inversion in
Fp. As we mentioned in subsection 2.4.5, we can simply compute x−1 ≡ xp−2 (mod p)
to find an inverse.

Consider the binary expansion of p−2 = 2116−5, it consists of a sequence of 1113011.
That is, 113 1’s follows by a 0 followed by two 1’s. A slightly naive implementation using
simple exponentiation-by-squaring (2.5) will solve this easily by doing the following:
given x ∈ Fp and h = 1,

1. Compute 113 times h = h2 · x (113 squarings, 113 multiplications);

2. Compute one simple squaring h = h2 (1 squaring);

3. Compute h = h2 · x twice more (2 squarings, 2 multiplications).

This has a total cost of 116 squarings and 115 multiplications. We can do much
better. In particular, as per [19, Ch. 14], the minimum length s addition chain for
p− 2 is bounded by s ≥ log(p)− log(HW (p)− 2.13) ≈ 120. We know from 2.4.4 that
exponentiation for an addition chain of length s costs s multiplications.
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Finding the shortest such chain is hard, but we can rather easily do better than the
above 116 + 115 ≈ 231 multiplications. Consider a k-ary exponentiation for k = 5.
This represents p−2 as (1)(31)22(27). In other words, we can compute h = xp−2 given
x ∈ Fp by:

1. Set h = x, this handles the first (1);

2. Compute h = h2
5 · x31 22 times, for handling the (31)22;

3. Compute h = h2
5 · x27 once, for the last (27).

Note that this algorithm, as written here, takes 23 · 5 = 115 squarings and 23
multiplications. That said, it does require the precomputation of two values: x31 and
x27. Naive k-ary exponentiation just precomputes all xi for 0 ≤ i ≤ 2k − 1, but we
know which exponents we need and thus we can be a bit faster. We essentially build
an addition chain up to x31 that includes computing the value for x27. Consider the
following sequence of operations:

v2 = x2,

v3 = v2x,

v4 = (v2)
2,

v9 = (v4)
2 · x,

v18 = (v9)
2,

v27 = v18v9,

v31 = v27v4.

Of all precomputed values vi, we only need v27, v31. Too limit the precomputed
values stored, we only need to store three values which at the end contain v27, v31
and some other temporary value v9 that we do not care about once v27 and v31 are
computed.

v9 = x,

v31 = (v9)
2,

v31 = (v31)
2,

v27 = (v27)
2 · x,

v9 = (v27)
2,

v27 = v27v9,

v31 = v31v27.

This adds another 4 squarings and 3 multiplications giving us a total of 119 squarings
and 26 multiplications.
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3.2.5 Simultaneous Inversion

Inversions, as we know from subsection 2.4.5, can be batched efficiently. In our OpenCL
GPGPU setting there are essentially two ways of batching inversions whilst in the
process of doing a point addition or doubling. For the moment, it is enough to consider
that we usually need to do some work before we invert and some work after we invert.

Consider two work items (or threads) processing n points that at some point need to
compute an inverse. The two primary ways of utilizing the threads for this computation
are:

• Perform some preliminary work. Store the to-be-inverted n values in shared local
memory; have one of the work items perform the inversion and write the results
back to local memory. See Figure 3.3.

• Perform the preliminary work. Each work item simply computes the inversion
over its n values. See Figure 3.2.

Theoretically, the first option is able to compute an inversion over many more points
than the option, i.e., for a work group with w work item, the first option will compute
nw points simultaneously whereas the second only computes n points. However, note
that the inter-work-item option requires synchronization of threads before and after
the inversion. Also, there is a relatively high amount of reading/writing to/from local
memory whereas the intra-work-item option can utilize fast private memory much bet-
ter. Moreover, because only one work item is computing the inversion, the other work
items with a group are pretty much idle. This can be remedied somewhat by applying
a technique such as proposed in [21], but this requires even more synchronization.

As to which is the superior option, for our platform and our setting, the intra-work-
item solution is much better. Experimental results during development showed that
the inter-work-item option is even slower than the naive solution of having one input
per work item and simply computing the inversion for that one element. We theorize
that this is due to the synchronization overhead, which does not seem to be enough
to offset the performance gained by batching more inversions.

The intra-work-item solution has one more issue in the sense that it tends towards
utilizing a very high amount of private memory if implemented in the fastest way
possible. That is, during inversion we need to store at least the n input elements and
another n temporary elements. While this is fast, increasing n means we quickly run
out of registers and get register spilling, meaning that we allocate those registers on
slow global memory. This is a large performance issue. To alleviate the issue, we ended
up storing the n inputs in local memory. This puts a rather significant limit on how
large n can grow, depending on work-group size. However, it is still better than the
alternative.
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for i← 0, n− 1: work on xi endfor

inversion:
(
x−10 , . . . , x−1n−1

)

for i← 0, n− 1: work on x−1i endfor

for i← 0, n− 1: work on yi endfor

inversion:
(
y−10 , . . . , y−1n−1

)

for i← 0, n− 1: work on y−1i endfor

work item u, having inputs xi work item v, having inputs yi

Figure 3.2: Batching inversions within a work item showing one iteration within kernel.
Within a work item, every bit of work is done sequentially. Note that the
two work items do not interact.

for i← 0, n− 1: work on xi endfor

synchronization barrier 1

inversion: (x−10 , . . . , x−1n−1, y
−1
0 , . . . , y−1n−1)

synchronization barrier 2

for i← 0, n− 1: work on x−1i endfor

for i← 0, n− 1: work on yi endfor

store (y0, . . . , yn−1) in shared memory

synchronization barrier 1

synchronization barrier 2

for i← 0, n− 1: work on y−1i endfor

work item u, having inputs xi work item v, having inputs yi

Figure 3.3: Batching inversions between work items for one iteration within kernel.
Note how the two work items interact. This can be generalized to an arbi-
trary number of work items where one is designated to perform the inver-
sion. The rest simply store their to-be-inverted inputs into shared memory.
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3.3 Implementing the Iteration Function

Recall from subsection 2.3.1 that we have the following iteration function: given the
ECDLP nP = Q, let W0 = bQ be the starting point of a walk, Ri = aiP for 0 ≤ i ≤
r− 1 the precomputation table of P -multiples and have h : 〈P 〉 7→ {0, 1, . . . , r− 1} be
an indexing function mapping a point to a table index. Given all this, the iteration
function is simply computed as

Wi+1 = Wi +Rh(Wi).

Applying the negation map from subsection 2.3.3 gives us

Wi+1 = |Wi +Rh(Wi)|,

where |Wi| is defined as the lexicographic minimum of Wi and −Wi. In other words,
this means that we replace Wi = (x, y) with −Wi iff y is odd. Because branching on a
GPU platform is something we want to avoid, we can write this without branching as

|Wi| = |(x, y)| = (x, y + (y mod 2)(p− 2y)).

Note that we perform the reduction modulo p as well here.
In general, the complete iteration function can be thought of as consisting of a

number of steps. Consider also that, for the simultaneous inversion to work, we want
to compute a number of walks per work item at once. So, for the s walks in a given
work item, where 0 ≤ j ≤ s− 1:

1. Find the point Sj = R
h(W j

i )
;

2. Compute the point addition W j
i+1 = |W j

i + Sj |;

3. If W j
i+1 is a distinguished point, output W j

i+1;

4. Repeat.

Computing h(Wi) is simple. If we take r = 2d as some power of 2, computing h can
be done by simply taking d bits from the x (or y) coordinate and treating it as an
integer. Since the x coordinate is affected by the negation map, this may be a better
choice. In particular, for some choices of h the negation map can exclude certain indices
in R. For example, if we decide to compute h as taking the d leading bits as an index,
and our y-coordinates are always even, we exclude half the points in R.

The point addition itself is pretty straightforward itself, except for the inversion.
Mostly, it is just a matter of applying the formulas from section 2.2. As for the in-
version, we have described how to do this in subsection 3.2.5. As mentioned there, we
simply split the addition computation into the work prior to the inversion (this is one
subtraction), the inversion and the computations after the inversion.
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3.3.1 Point Representation

We have already mentioned how we represent elements in Fp, i.e., we can store them as
an int4 vector. However, to store a point P = (x, y) there are essentially two ways. We
store the limbs of x and y separately or successively. Given P = (x1, y1), Q = (x1, y1)
that means:

Separate: Store as x1, x2, y1, y2, preferably as two separate buffers for the xi and the
yi.

Successive: Store as x1, y1, x2, y2.

The first option has the notable advantage of coalescing memory access within work
groups. That is, if work item i accesses the memory at xi and work item i+ 1 accesses
the memory right next to it, this makes such memory access faster [7].

Therefore, for all the points that we need to store, we allocate two buffers for the x
and the y coordinates.

3.3.2 Distinguished Points

As described in subsection 2.3.2, we terminate a given walk after we reach a dis-
tinguished point. The distinguished-point property we will use is simple: a point
Wi = (x, y) is distinguished if the leading d bits of the first limb y0 of y are all 0.
Many variations on this same theme are possible, such as computing hamming weights,
number of trailing zeros, and so on. However, OpenCL C has an inbuilt instruction of
computing leading zeros clz and as such it is an easy decision to use this property.

The probability of finding a point is almost exactly 2−d and as such, the parameter d
can be easily fitted to the needs of the computation. That is, for such a distinguished-
point property d, the expected number of points for solving a ECDLP is simply√
πl/4/2d, where l is size of the ECDLP. Therefore, if we have a sufficiently large

l; increasing the parameter d gives us less points, resulting in less communication
overhead and less storage required for finding a collision. One disadvantage is that
once we find a collision, computing the answer from said collision takes longer. This
is hardly a problem in practice. A more practical disadvantage is that when we need
to restart the computation, for instance due to server reboots, we can only reasonably
do so from the start of a given walk. If we have more common distinguished points we
reduce the impact of having to recompute a walk.

In terms of computational cost, detecting a distinguished point for this is simply
the cost of a comparison with d plus the cost of computing the inbuilt clz function,
which for a 32-bit int input should be on the order of 10 shifts, 5 additions and 1 sub-
traction. Depending on the particular optimizations applied, this can be reduced even
more. Even so, this indicates that this distinguished-point property can be efficiently
computed.

Detection is relatively simple, but due to the nature of GPU programming, actually
communicating distinguished points to the host is actually rather tricky and requires
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some consideration. First of all, we can only communicate via (slow) global memory
buffers and thus we need, on the host’s side, some processing to retrieve the distin-
guished points from said buffers. There is a distinct trade-off between the performance
of the kernel, i.e., the performance of actually moving the relevant points to the result
buffer, and the host-side processing overhead.

An easy way to perform this communication is by allocating a result buffer of the
same size as the input buffer (the Wi’s). When a distinguished point is found, simply
write the point to the result buffer at the same index i as the walk. Once the iteration
kernel is finished executing, simply go through the result buffer and output every point
that this kernel execution found. Afterwards, reset the buffer. This works very well
when we are running a relatively small amount of walks in parallel. However, as we
will see later, the software can handle a very large amount of walks (in the order of
221) and in this case the host-side overhead is noticeable.

A possible solution for this is keep a global atomic counter i in memory. In OpenCL,
the increment operation of such a counter actually returns the old value. Whenever
we find a point in a particular work item, we do an atomic increment of i′ = i+ 1 and
store the distinguished point at the i-th index in the result buffer. The host now only
needs to go through the first few items of the result buffer to find all distinguished
points. An issue with this is that a given point takes 256 bytes to store and thus we
store a relatively large amount of data to global memory at an unpredictable index.
This decreases performance of the actual write operation.

A third solution is more of a hybrid. Take two result buffers, one point result buffer
resp and one index result buffer resi. As per the first solution, store a distinguished
point p for walk i at the i-th index of resp. Also, use the aforementioned counter j to,
once again, count the distinguished points found and apply the same trick as above
to store only the indices i into a separate buffer resi. Now, on the host we still only
need to go through all the indices in resi, but we locate the points in resp. This has
the same host-side overhead as the second solution, but is more performant in terms
of global-memory operations (at least, on our system). As such, this is what is used
in our software.

As an aside, consider the fact that within one kernel execution, we do not only
want to compute s different walks sequentially, but we only want to compute as many
iterations sequentially as well. This reduces overhead as well, since we do not need
as many global-memory operations, we limit the memory mapping between host and
GPU and we reduce the costs of enqueueing new kernels. However, this means that we
do not terminate a walk on a distinguished point immediately, only after all iterations
are done. The first and third solutions mentioned above both have a problem in this
context. If within t iterations (say, t = 64) we find, on the same walk, two or more
distinguished points, we only store the last point due to the fact that we overwrite
the result buffer at that index. We argue that this is not a big problem. In fact, given
a distinguished-point property of d = 20, the chance of finding 2 points within 64
iterations is only 2−20 · 64 · 2−20 = 2−34. For an ECDLP of our size, this should only
occur a few times over the course of the entire computation and thus is not much of a
problem. Even so, we could always increase d to reduce the chance of this happening
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proportionally.
By its very nature, the act of having to communicate a point only if it is distinguished

implies that we have a branching computation. That is, write to memory if we do, do
not write to memory if we do not. Common wisdom for GPU programming indicates
that we should avoid branches where possible as it leads to instruction divergence.
Therefore, it follows that we should implement the storing of a distinguished point in
global memory in the following way (adapted from the actual software):

__global int4 *result_x = ...; // result buffer for x coordinates

__global int4 *result_y = ...; // result buffer for y coordinates

size_t offset = ...; // global offset

int4 x = ...; // x coordinate

int4 y = ...; // y coordinate

// assume is_distinguished_point returns an int

int4 is_distinguished = is_distinguished_point(x, y);

result_x[offset] = select(result_x[offset], x, is_distinguished);

result_y[offset] = select(result_y[offset], x, is_distinguished);

However, the following code, which explicitly includes a branch, actually is more
performant:

__global int4 *result_x = ..., *result_y = ...;

size_t offset = ...;

int4 x = .., y = ...;

bool is_distinguished = (bool)is_distinguished_point(x, y);

if (is_distinguished) {

result_x[offset] = x;

result_y[offset] = y;

}

We theorize this is due to the fact that in any given wavefront, it is actually unlikely
for a work item to find a distinguished point at any point in time. Therefore, most
wavefront will always take the exact same branch, leading to, apparently, no divergence
of instructions and as such, no global memory operations taking place at all. It is hard
to say which of these is more important and how much of this is due to specific device
behaviour. All we can say is that branching in this setup under these circumstances is
not always a bad thing.

3.3.3 Handling Fruitless Cycles

For dealing with fruitless cycles, we simply apply the technique mentioned in subsec-
tion 2.3.4. Every so often, we modify the iteration function; in other words, we execute
a different OpenCL kernel. The modified kernel for checking cycles of length 2c works
by keeping of running minimum Wmin of the Wi during 2c iterations. If W0 = W2c−1
we enter a cycle of length 2c. To escape, compute a new W2c = 2|Wmin|, i.e., double
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the minimum. To eliminate this branch, always compute the doubling and only copy
the result to W2c if a cycle is found using a select call such as in the previous section.

We know from [4] that fruitless cycles occur up to a length of log l/ log r. For rea-
sonable values for r, i.e., 210, 211, 212 and so on, that means we need to check up to
12-cycles.

Also, we know that for a 2c cycle we need to check with a frequency proportional
to 1/rc/2. This means that it is optimal for r = 2048 to check every 48 iterations for
2-cycles, every 2048 iterations for 4-cycles, and so on.

While it is straightforward to implement such a check every few iterations, we have to
consider the effect on the other kernels. Because checking is a separate kernel iteration,
we are bounded on the number of sequential iterations we can execute of the standard
iteration function in the standard kernel. If we want optimal checking frequency, we
cannot do more than the aforementioned 48 cycles for r = 2048. Luckily, we store R in
constant (cached) global memory and as such we can get r rather high. We are limited
in the sense that is useful if h only needs to work on one limb, but we can still get
r to reasonably high values. In fact, most tests were performed at r = 4096 and 64
successive iterations per kernel. If kernels run too long, and have too many succesive
iterations, it becomes increasingly unstable for purposes of development and testing.

Note that during this modified iteration function, we still do distinguished-point
checking in the same way as normal. Also, the performance loss of the checking for
cycles is very minor. As r increases, fruitless cycles become less frequent and checking
becomes less expensive. Even at r = 4096, a modified checking kernel is only a little
slower than a normal iteration function would be and this loss is only incurred every
64 iterations. The comparative loss of checking for, say, 10-cycles, a check which occurs
very rarely, is even more negligible.

3.4 Experiments

This section details the experiments that we performed over the course of this work.
Unless otherwise specified, we use a version of the software that is configured to use
a distinguished-point property of d = 20, a work group size of 128 work items, 64
successive iterations per kernel and 16 simultaneous inversions per work item. Al

3.4.1 Distinguished Point Metrics

To give as an argument as to the validity of the software, we can verify whether it
matches with established heuristics. Therefore, we ran a number of different experi-
ments to check whether collisions occur at the expected rate of once every

√
πl/4/2d

points, where d is the distinguished-point parameter. For these experiments, d is fixed
to d = 20 and we use a table of size r = 4096.

Each experiment is performed as follows:

1. Generate a ECDLP of approximately the size wanted (45-bit, 50-bit, etc.). Note
that, as per the explanation in section 2.2, this is rather easily done by varying
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Experiment a6 l Mean Median Standard Deviation

45-bit 14 1.67 · 244 5.66 ≈ 1.48
√
πl/4/220 5 2.54

50-bit 7 1.41 · 249 27.90 ≈ 1.16
√
πl/4/220 26 14.33

56-bit 21 1.61 · 255 212.41 ≈ 1.04
√
πl/4/220 200 110.49

60-bit 32 1.05 · 259 668.63 ≈ 1.02
√
πl/4/220 627 346.53

Table 3.1: Summary of the results obtained in the experiments. l is the size of the prob-
lem, a6 is the curve parameter we change to get differently sized problems.

the a6 parameter of the curve and then trying a few points.

2. Generate the relevant table and a sufficiently high number of input points.

3. Iterate over the input points as normal and output the distinguished points, but
only output the first distinguished point at that index, not any of the later ones.

4. Keep iterating until we have a distinguished point for every index, barring a
few walks that are aborted due to an overly long running time. We found that
aborting after 20 · 220 iterations still completes well over 99% of all walks.

5. Sort the points into their original order, i.e, sort them on the index. This removes
the relation between the order the points were found in and the iteration time
of a given point.

6. Go through the sorted list until we find a collision; this is the first result. Discard
all processed points from the list and find another collision. Repeat until the list
is empty.

7. Optionally, compute and verify the solution to the ECDLP for the given colli-
sions.

We ran the above experiment for 45, 50, 56 and 60-bit problems. The results are
summarized in Table 3.1. You can find the distributions respectively in Figure 3.4,
Figure 3.5, Figure 3.6 and Figure 3.7. In our analysis, these values are within expec-
tations.
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Figure 3.4: 45-bit experiment where l ≈ 1.67 · 244.
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Figure 3.5: 50-bit experiment where l ≈ 1.41 · 249.
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Figure 3.6: 56-bit experiment where l ≈ 1.61 · 255.
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Figure 3.7: 60-bit experiment where l ≈ 1.05 · 259.
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3.4.2 Performance

Inputs Time (ns)

21 296636.2
22 344908.5
23 423303.8
24 549546.8
25 553007.0
26 552566.5
27 552469.3
28 551614.9
29 553335.8
210 562527.9
211 566682.8

Inputs Time (ns)

212 576477.5
213 564878.1
214 594971.2
215 593754.1
216 641515.3
217 1.295711 · 106

218 2.527704 · 106

219 4.901548 · 106

220 9.793965 · 106

221 1.943748 · 107

222 3.843671 · 107

20 22 24 26 28 210 212 214 216 218 220 222
Inputs

106

107

Time (ns)

Table 3.2: Timing results of increasing input sizes on the AMD testing setup. Results
are averaged over an average measured over 1000 iterations, ensuring a
representative mix of both normal and cycle checking iterations. Time values
indicate all iteration and processing time, not precomputation or setup.

The results from Table 3.2 indicate an important property of our software and
architecture. After around 216 inputs, we have essentially saturated our resources. In
theory, this is where we can stop. However, careful examination of the numbers actually
shows performance increases beyond this boundary. Note that doubling the number of
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inputs results in (on average) almost doubling the time required. “Almost” being the
operative word. This makes a kind of sense if you consider that this likely just means
the GPU has many work groups compute sequentially as well as in parallel. However,
there is likely some overlap between a given batch of work groups and the next batch.
Also, increasing the inputs does not significantly increase processing overhead. The
slowest part of processing is actually reading and outputting the distinguished points
and subsequently writing a new input to the input buffer. The performance of this
step depends on the number of distinguished points we find after a kernel execution
is finished. On average, this number is very low; we usually find only one or two
distinguished points each time. Increasing the inputs does increase the number of
points we find. However, at these numbers, the absolute processing time is still very
short and it would take a massive increase in inputs to make this noticeable.

It should be noted that precomputation time increases linearly with the number
of inputs. In fact, it takes hours for our, pretty naive, point generation program to
generate 222 inputs. This input file is 1.5 GiB, which is not nothing. This is not a
problem per se for large ECDLPs, where the few hours it takes for this to complete is
worth it, but it is worth mentioning.

If we take these results and compute an expected 112-bit ECDLP time for them, we
get

641515.3 ·
√
π · 2112/4

109 · 216 · 3600 · 24 · 365.25
≈ 19.81 years,

if we consider 216 inputs. If we want, we can take more inputs (and thus, more pre-
computation time) and get down to approximately 18.54 years at 222 inputs. More
inputs can conceivably decrease this number even further by a small margin. However,
we were not willing to increase our precomputation costs yet again.

Obviously, when we increase l from 2112 to a higher value, say 2114, we get
√

22 = 2
times the expected time. So 37.08 years for l = 2114.

We reiterate that these results are obtained from the AMD GPU, which is the one
we optimized the most heavily for.

3.4.3 NVIDIA versus AMD

The above results are, as we mentioned in the beginning of the chapter, from our
AMD test and development platform. However, we also managed to run some of our
experiments on the NVIDIA platform. Due to different natures of the devices different
parameters have to be chosen to get the best performance out of the NVIDIA plat-
form. Theoretically, the NVIDIA GPU is slightly more powerful than our AMD GPU.
However, since development took place on the AMD setup it is no surprise that the
software is more performant on the AMD device.

Specifically, the NVIDIA software could increase the number of work items per
work group from 128 to 512; this however does lead to a reduction in the amount of
simultaneous inversions from 16 to 4. Note that 4 simultaneous inversions are, for us,
still faster than 2 or 1, but higher values decreased performance, partially due to the
fact that we had to decrease the work-group size back to the original amounts.
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Inputs Time (ns)

21 29556.8
22 32312.5
23 45169.2
24 26538.6
25 33717.0
26 40879.5
27 18511.5
28 27215.4
29 37686.9
210 32476.0
211 408048.0

Inputs Time (ns)

212 413245.2
213 426019.8
214 490683.0
215 827074.1
216 1.297594 · 106

217 2.405491 · 106

218 4.513904 · 106

219 8.585982 · 106

220 1.683747 · 107

221 3.336085 · 107

222 6.584475 · 107

Table 3.3: NVIDIA timing results. The same procedure applies as in Table 3.2.

We repeated the experiment from subsection 3.4.2 on the (slightly) optimized NVIDIA
setup. The results of which can be found in Table 3.3. The most interesting result is
probably that for low input values, the pure performance of the NVIDIA GPU shines
through. This trend continues up to around 215 inputs. Afterwards, however, it tends
to be approximately twice as slow. Because the feasibility of computing ECDLPs using
our software relies so heavily on large numbers of inputs, the AMD platform has a
far lower minimum time spent, the aforementioned 18.54 years, whereas the NVIDIA
version has 31.77 years. Which, for a 112-bit problem is sufficient, but starts to get on
the high side for larger problems.
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4 Conclusions

We hope to have provided a sufficiently detailed report on this thesis’ work. The overall
goal was to get insight into a generalized GPU-based solution for ECDLP-solving
which can run on whatever GPU supporting OpenCL. In particular, as it relates to
the inherent limitations of such a platform. This setting has its own obstacles and we
think that, within the scope of this research, we done an adequate job of addressing
those.

We would have liked to have spent more time on a wider variety of systems, i.e.,
more than two (and one of those two in a limited capacity). In particular, the imple-
mentation does not perform as well as hoped on the NVIDIA platform. Also, someone
with more experience in the respective fields of GPU programming and cryptographic
implementation can likely find ways to make things even faster.

To summarize the results. We have created software that solves a 112-bit problem
in approximately 18.5 years and thus an, also extrapolated, result of 26.2 years for a
113-bit problem. We compute 109.12 million iterations per second, if assuming a batch
size of 222 inputs. Furthermore, we have mentioned the insights and theories obtained
from implementing such a generalized OpenCL-based ECDLP solver. In particular,
note that in this setting, optimization is mostly limited to how one handles the memory
allocation.

4.1 Comparison to Related Work

There have been, throughout the last two decades, a decent amount of projects with
the specific aim of breaking ECDLPs. Most prevalent in these are the attempts at
solving the ECC2K challenges by Certicom [6].

Notable for us, however, are the more recent results. To the best of our knowledge,
the state-of-the-art in ECDLPs on prime fields, such as in this thesis, is still the
extrapolated result in [4], where they solve a 112-bit ECDLP in 35.6 years on a Cell
processor (PS3). This is especially notable in comparison to the 65.16 years for that
same ECDLP from [5].

Our software, using our AMD HD7850, solves a ECDLP of similar (112-bit) size in
18.54 years, which is about two times faster. The GPU platform is theoretically much
faster in the sense that it can run a great many more inputs in parallel. However,
this is less opportunity for optimization if we are stuck in an OpenCL setting. In [1]
there is very little difference between the Cell and GPU results, but this may very well
be due to the constraints of the particular toolchain as well as the unwieldy bitsliced
representation. Also, this work is done on ECC2K-130 and specifically targeted binary
curves. That makes a comparison fairly hard.
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There is some recent work done by Wenger and Wolfger [27, 28], which targets 113-
bit binary curves, on FPGAs. This work manages 900 million iterations per second,
which is about 8 times as much as our software. Note that the setting, i.e., binary
curves, is different and this is on a vastly different platform.

4.2 Future Work, Hopes & Dreams

We feel that some of the limitations of the setting we were working with, i.e., OpenCL
and GPUs in general, could be alleviated. For instance, we would love to see OpenCL
and the respective GPU vendors adopt and support more low-level optimized oper-
ations on scalar types. In lieu of that, the existence of vendor-supported assemblers
could fill much the same role. Moreover, the ability to have more fine-grained control
over private memory allocation would be fantastic. Right now, the ability to constrain
the compiler in assigning registers for critical functionality within kernels is severely
limited. At this moment, you are more likely to make a random change and see if you
“help” the register allocator.

Furthermore, we would like to see more work in the area of vendor-specific GPU
ECDLP solving. This could be similar to work done in [3], especially considering the
speed-ups found when using something like a qhasm. For AMD, there are some projects
that use GCN ASM code [2, 29]. This would be an interesting direction, since this does
give you the room for instruction-level optimization that OpenCL simply does not.

To a certain extent, previous work, such as the NVIDIA CUDA results in [1] could
be improved by simply increasing batch sizes. In some cases, quite significantly larger
batches. Especially on GPUs it often the case that the amount of global memory is
not the problem. Note that we kept on seeing performances increases well after batch
sizes of 220 large.

As a last point, we are still planning on running the software to solve a 113-bit
ECDLP. As such, we would really like to do this in the near future, if only to add some
credence to the results in this thesis. Also, we would like to fully optimize the software
in such a way that the NVIDIA performance is at least similar to the performance we
managed on the AMD setup.
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