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by Evertson Croes

The Internet of Things (IoT) is an ambiguous term. There are different definitions

for the concept, ranging from any system that has sensors and actuators to a single

interconnected network of physical objects. Despite this ambiguity, there are reference

architectures proposed for the “Internet of Things” as a single type of system. This

thesis shows that this term does not provide enough information to base a software

architecture on. This is accomplished by taking an in-depth look at the IoT described in

literature as well as the types of applications that exist on the market today and using

the concept of software architectural styles to show how different areas in the IoT will

need varying styles.

Software architectural styles are a labeled set of design decisions that have proven to

elicit quality attribute benefits given the right context and are considered to be the first

step in designing an architecture for a software system. However, during the course

of this research it has become clear that the term Internet of Things is not enough to

provide a verdict for the effects of software architectural styles. For this reason, this

thesis proceeded to classify solutions in the Internet of Things into multiple classes.

The results are that for a subset of the classes there is a clear “best” style, however

for remaining classes there are still different choices where more context information is

needed.

The analysis itself provides a list of important IoT related factors when choosing a

software architectural style, which can be used as a basis for future IoT projects and

reference architectures. However the conclusion of this thesis is that the term “Internet

of Things” should not be used as a basis for software architecture. This was proven by

showing that even for the different classes, which are subsets of the IoT, there are needs

for different styles.

Keywords: The Internet of Things, software architectural styles, quality attributes,

software architecture evaluation
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Chapter 1

Introduction

The Internet of Things (IoT) is an ambiguous concept. The term is considered a buz-

zword1 and is generally used to describe systems that connect the physical world to

the digital world. This is achieved by giving real-world physical objects, which were

previously disconnected from any type of network, connectivity to the digital world in

various ways. Advancements in the fields of small processing units leading to sensors

that can measure attributes of real world objects, actuators that can change the state

of the real world, RFID for identifying and locating objects and Cloud technology for

computation and data storage all contributed to the current state of the Internet of

Things. Applications in the IoT can range from connecting the human body by use of

a wearable sensor to a smart city solution with multiple sensors distributed throughout

the city.

The advent of the Internet of Things brings with it many possibilities and challenges.

One of the areas of research in the Internet of Things is software architecture. There have

been several proposals of reference architectures2 for the Internet of Things as a single

type of system. However, given the ambiguity of the term and the diverse applications

regarded as being part of the Internet of Things, it seems unlikely that a “one size fits

all” reference architecture can exist.

It is the first goal of this thesis to explore the Internet of Things and infer a definition in

order to bring some clarity to the term. This research will take into account the IoT de-

scribed in literature as well as the current state of the IoT by looking at various solutions

that exist today. The differences and similarities between the vision for and the reality

of the Internet of Things will be highlighted. By finding the common denominators

between the various literature and IoT solutions, it becomes possible to derive a single

definition for the term Internet of Things in order to reduce the ambiguity. This makes

1A word or phrase, often an item of jargon, that is fashionable at a particular time or in a particular
context

2Reference Architecture: A template solution for an architecture for a particular domain

1



Chapter 1. Introduction 2

it possible to reason about the architecture design choices in the Internet of Things to

be made regarding software architecture moving forward.

This thesis will argue that there can be no single reference architecture for the Internet

of Things, because the term does not provide the context information that is needed to

make many design decisions. This is an important statement to make as it shows the

incompatibility of the term Internet of Things and software architecture, i.e. the term

should not be used to describe a type of system when talking about software architecture.

Future papers will need to be more specific about which type of solutions their reference

architectures are proposed for in order for them to be useful.

In order to show this, a set of IoT solutions(applications) will be grouped into classes in

order to illustrate how diverse the IoT solution space can be. This is done by analyzing

several IoT solutions in detail and illustrating the differences and similarities between

them. This thesis will not provide a complete set of classes as this is out of scope and

cannot be proven to be complete.

While the partial set of classes provides more information on the type of applications

considered as being part of the Internet of Things, it is not enough to prove that a

single reference architecture cannot exist. It must be shown that these classes require

different types of architectures. This will be done by using the concept of software

architectural styles. A software architectural style is a labeled set of components3 and

connectors4, and a set of constraints on how they can interact [GS94]. These constraints

can be topological, for example not allowing cycles, or it can regard execution semantics.

The latter refers to the meaning of such an interaction between two components, which

could be a procedure call or a notification for example. All styles come with trade-offs,

explicitly mentioning which quality attributes5 are gained and which are given away,

however this also depends on the context of the system to be built.

The choice of which architectural style to use, based on a given set of quality require-

ments, should be the first step in software design[PH]. If it can be shown that for at least

two different IoT solution classes there is a need for different styles at the same level,

then the statement that a single reference architecture for the Internet of Things cannot

exist is supported. This is because the choice of style is considered to be at a higher

level (first step) than a reference architecture(collection of steps), which can be seen as

an instantiation of one or multiple styles. This thesis also contributes to the architecture

in the Internet of Things research area by illustrating the (in)compatibility of certain

software architectural styles in the IoT and what the factors are for this verdict.

3Component: A constituent part; element. http://dictionary.reference.com/browse/component
4Connectors: Description of the interactions between components. [GS94]
5Quality attribute: Non-Functional Requirement

http://dictionary.reference.com/browse/component
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1.1 Related Work

There were no papers found that look at software architectural styles in the Internet of

Things. However, as mentioned, there are reference architectures provided for the IoT

as a single type of system. The IoT-A is a group consisting of researchers from large

companies and institutions with the goal to find provide such a reference architecture.

The book “Enabling things to talk”, written by members of this institution, describes

the reference architecture as well as the research leading up to it [BM]. The problem

with this approach is that they provide a single reference architecture for the entire IoT

as a single domain.

The same approach is taken in an article describing the “Distributed Internet-like Ar-

chitecture for Things” or DIAT for short, which presents a layered architecture where

all components in the Internet of Things must implement the architecture in order for it

to work[SR14]. This paper, written recently in 2014, also reviews other reference archi-

tectures proposed for the IoT in the past, all of which try to achieve a single reference

architecture for the entire Internet of Things.

This thesis will provide evidence that this goal of achieving such a “one size fits all”

architecture is not possible for the Internet of Things, thanks to the ambiguity of the

term, diversity in applications and continuous evolution of the concept. This will be done

by using software architectural styles and evaluating the quality effects on a system using

them.

1.2 Research Questions

The main research question that will be answered in this thesis is the following:

Which software architectural styles are suitable to apply when designing Internet of

Things applications, and can they be used as a basis for a single reference architecture?

To answer this question, this thesis will also address the following sub-questions:

• What is the Internet of Things?

• What classes of Internet of Things applications can be discerned?

• Which software architectural styles best fit each of these classes and why?

• Can the set of best styles be merged into a single reference architecture?

The hypothesis in this case is that there are different scenarios in the Internet of Things

that require various types of architectures (and thus styles), which will show that a

single reference architecture for the entire domain cannot exist.
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The contributions of this thesis will include an analysis on the IoT, a list of classes for

IoT solutions and a mapping of software architectural styles to this list of classes. The

goal is to reduce the ambiguity of the term “Internet of Things”, provide an analysis on

the usage of software architectural styles in the IoT and show that the term does not

give enough information to make design choices.

The remainder of this document contains the analysis and results of this thesis. Chap-

ter 2 provides a description of the Internet of Things based on literature and examples

of applications. Chapter 3 discusses the concepts of quality attributes and why there

are important in the IoT and for this thesis. The classification of the IoT is presented in

chapter 4. Chapter 5 contains the mapping and analysis of software architectural styles

to the Internet of Things classes. Finally, chapter 6 presents the conclusion of this thesis

and suggestions for future research.



Chapter 2

The Internet of Things

2.1 Introduction

In order to reason about the software architecture of the Internet of Things, it is nec-

essary to understand what the term means. This chapter describes the IoT defined in

literature as well as the reality that exists today. The goal of this chapter is to derive a

definition for the IoT based on this information.

2.2 The IoT Vision

The Internet of Things (IoT) is a term that was first mentioned in 1999 by Kevin Ashton,

a founder of the original MIT Auto-ID center[SW10]. Since then, the IoT has become a

buzzword much like “Big Data” in the sense that it is used frequently but seems to be

ambiguous to the users of the term. This section provides a brief view on the vision for

the Internet of Things as described in literature and other web sources. The definitions

for the IoT provided by these sources are listed in appendix A.

For many of the papers written about the Internet of Things, two characteristics have

been mentioned the most. The first is that the IoT is a network. It is always referred

to in the singular form, which may suggest that there is only one IoT. The second most

mentioned characteristic in the definitions refer to the “things” in the IoT. These are

(everyday) physical objects.

These physical objects are to be embedded with technology so that they can be connected

to the IoT, have their state measured and changed, are uniquely identifiable and can

communicate with each other to achieve greater value and service.

The goal of achieving greater value and service is extremely broad. This is due to the

fact that the variety in applications for the IoT is big. This greater value and service

5



Chapter 2. The Internet of Things 6

provided by the IoT is either the creation of new functionality previously not possible

without the network of physical objects or the increase of the quality of existing processes

with the help of the IoT.

The novelty of the IoT is present in the name. The term “Things” refers to the everyday

physical objects that will now become connected. This will make new type of data

available that was previously not possible. The term Internet is used to illustrate the

interconnection between these networks of heterogeneous objects.

The IoT also has to be dynamic, since nodes will be added and removed constantly from

this network. New types of devices will emerge and the IoT has to be able to handle

this change. The IoT should be self-configuring, always adapting to this change.

The terms global, world-wide, ubiquitous are mentioned for the IoT. The IoT has to

be available everywhere. With the Internet being as pervasive and ubiquitous as it is

today, this is not an unreasonable requirement.

A pervasive system has the following characteristics [Hoe12]:

• Invisible by design: Pervasive systems are not explicitly there. They are often

integrated common objects

• Networked : Devices are interconnected by a seamless communication infrastruc-

ture

• Many-to-many: As opposed to one-to-one or one-to-many relationships. The

devices are not restricted to one user and a user is not restricted to one device.

• Always on: Devices do not need to be actively switched before interaction can

be had.

• Distributed: The computing intelligence is a combined computing effort of mul-

tiple devices

• Context-aware: Can measure their environment and is aware of other pervasive

devices in their vicinity.

• Adaptive: The actions of the system are triggered by implicit actions rather than

explicit user interaction.

• Natural human interface: People should not need to think about how to inter-

act with the system, this should be natural through speech, touch or movement.

One source goes as far as to say that the IoT should be able to react to any and every

event in the real-world and the devices should be able to communicate with each other.

Finally, some sources mention which technologies and protocols can be used for the IoT,

such as the Internet, Cloud computing, RFID, IPv6 and much more, but these will be

omitted since it is out of the scope for this thesis.
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From my analysis of the sources I conclude that the Internet of Things is a singular,

dynamic, global and pervasive network which contains physical objects embedded with

technology that are uniquely identifiable. These objects work together, are autonomous

and can react to and change the real world in order to provide some value to its users.

However, this is considered a vision as the IoT is currently not at this state. It can be

argued whether or not the Internet of Things can ever be a “singular” network. At a

technical level, anything connected to the Internet is part of a single network, however

what the literature suggests is that the physical objects can also all exchange information

with each other. As we will see in the analysis of the reality of the IoT, this will not be

possible for several reasons.

There is much more written about the Internet of Things, however this thesis will focus

on the software architecture aspect. For this reason, it is enough to know what is

generally meant by the Internet of Things in literature. However, we will also need

information on what the quality/non-functional requirements can be for the IoT. This

will be covered in chapter 3.

2.3 The IoT Reality

This section describes the current state of the IoT by looking at the solutions that are

available at the moment of writing this thesis. Because there is a big variety in IoT

solutions, the data set has to be representative of all “types” of solutions.

Postscapes1 categorizes the IoT into six domains. These categories are the connected

home, connected body, connected retail, connected transportation, smart city and in-

dustrial application.

These categories almost correspond completely with the domains mentioned in the IoT-A

research, except the IoT-A also includes E-Health and Smart Energy as an IoT domain.

The Smart grid which is the only proposed application for smart energy, will be referred

to later in the thesis. The E-Health domain overlaps with some of the other domains, so

this will also be omitted. From each domain, three solutions will be taken and analyzed

in depth. The detail in which the analysis is done can differ between solutions, as

some are less likely to share information than others. This analysis can be found in

appendix B. An overview of the solutions analyzed can be seen in table 2.1.

1http://postscapes.com/internet-of-things-award/2014/

http://postscapes.com/internet-of-things-award/2014/
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Domain Solutions

Connected home Nest Thermostat, Homeseer, SmartThings

Connected body Angel Wristband, Nymi Wristband, Zebra Mo-

tionworks

Connected retail Scanalytics floor sensors, S5 Electronic Shelf la-

bels, Nomi Brickstream live

Connected transportation Weather Cloud, Truvolo Car Solution, Veniam

Vehicular Networking

Smart city Bitlock bycicle lock, Array of Things, Enevo

waste collection

Industrial application Farmobile Fleet Management, Condeco

Workspace Occupancy Sensor, DAQRI Smart

Helmet

Table 2.1: Overview of domains and IoT solutions

The methodology for analyzing the solutions was done systematically by looking at the

following variables:

• Identify the Physical Entity2 being measured. This is done to verify that the

system can be classified as an IoT solution.

• Identify the attribute(s) of the physical entity that is being measured. This is also

done to verify that the system can be classified as an IoT solution.

• Identify if the type of IoT Connector(s) present in the solution 3

• Identify the components and the topology of the network.

• Illustrate the topology in a diagram showing the relationship between components

(one-to-one, one-to-many, many-to-many)

• Illustrate the direction of messages passed between the components in a diagram

• Identify the location of application logic and data storage for the solution. The

application logic and data storage locations do not refer to logic and data needed

to network between nodes, rather it refers to the logic and data that are specific

to the solution. This helps to illustrate how centralized the solution is.

• Identify the user interaction possibilities of the solution.

• Make an estimation of the scalability requirement of each component. The scale

can be fixed or potentially increasing.

• Identify the Internet-Dependency of the solution.

2A real world physical object or environment
3IoT Connector: sensor or actuator
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• Identify the type of invocation. (Explicit vs. Implicit)

• Identify whether the system anticipates interoperability with other systems and

how this is done.

• Identify the battery life of the devices in the solution.

• Identify if there is any autonomous behavior that the solution exhibits.

• List any other interesting characteristics specific to the solution if any are found.

The goal of this analysis is to a) show that for all IoT solutions the physical entity and

measured and changed attributes can be identified b) gather important characteristics

of IoT solutions to be used for recommending software architectural styles later in the

thesis. Software architectural styles are explained in detail in appendix C.

For all IoT Solutions, at least one physical entity could be identified which was being

given a digital presence. For all IoT Solutions, at least one attribute measured or changed

in the physical entity being given a digital presence could be identified. These are all

listed in appendix B.

In order to talk about Internet of Things Solutions, we must be able to identify if an

application is an IoT or non-IoT solution. To do this, a common denominator must be

found for IoT solutions. What has been noticed by looking at the 18 solutions that are

deemed IoT-related by Postscapes, is that they all measure an attribute of an entity in

the real world, change the state of an entity in the real world or replace an entity in the

real world by adding a digital and connected version of the entity.

The variety of types of IoT Solutions is so big that no other commonalities could be

identified. From this we can infer that the trait that discriminates IoT solutions from

non-IoT application is the connecting of a physical entity to the digital world via a

network. Note that by definition a network must only contain a minimum of two nodes,

so a solution containing a wristband sensor that communicates to a smartphone via

Bluetooth is also considered an IoT solution for example.

2.4 Conclusion

The IoT described in literature has a set of interconnected objects on one network that

can communicate to each other. However, in reality it is the case that each type of object

is manufactured by a certain company that provide their own environment (UI appli-

cations, servers, protocols, architecture choices) for communicating with the objects.

There is not enough incentive for the solutions to expose their physical objects/devices

to an open network. Instead, what we will see moving forward is multiple networks of

interconnected solutions where each solution decides which group of other solutions they

want/need to communicate with.
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The first sub-question of this thesis is “what is the Internet of things?”. Based on all

of the information collected and analyzed, I propose to look at the IoT as an event in

motion instead of as a singular network as it is described in literature so far.

Because of the variety in IoT solutions and the divide between literature and reality,

it is hard to find a common denominator. However I have found that the defining

characteristic of the IoT is the binding of the physical world to the digital world through

sensors and actuators. While interoperability between solutions will play a big part, it

will not be necessary for all scenarios where we are connecting the physical world to the

digital world.

I propose the following definition for the Internet of Things:

“The Internet of Things is the continuous increase of connectivity between the physical

world and the digital world by connecting physical entities to a network”.

This definition describes the IoT as a trend instead of a network. However, we can

still speak of an Internet of Things as being an interconnected network of physical

entities/objects/things, all belonging to the same or different vendors.

The point is that using the Internet of Things in the singular form to describe one

network provides confusion as it is not likely to exist in the way that it is described in

literature. By using it in the singular form in this way, it gives the illusion that a single

reference architecture might be possible.

This chapter has shown that the common denominator in all the literature and the solu-

tions examined is that the IoT connects the physical world to the digital world. Besides

this fact, every other attribute of application in the IoT is variable. The next chapter

will show how diverse IoT solutions can be in regards to their quality attribute require-

ments, which are important for software architecture evaluation as will be explained in

chapter 5.



Chapter 3

Quality Attributes

3.1 Introduction

The goal of software architecture is to design a system that meets the requirements set

for certain quality attributes. Choosing one software architectural style over another will

exhibit different levels of quality attributes for the same system. This chapter provides

a brief description of the quality attributes that will be used as indicators for style

choices in the remainder of the thesis. How important these quality attributes can be

in the context of the Internet of Things will also be described, as well as how different

applications have varying quality attribute requirements.

3.2 Quality attributes

When designing a system, there are a number of functional and non-functional require-

ments present that need to be fulfilled. The functional requirements relate to the actual

functionality that the system to be developed needs to have while the non-functional

relate to the quality of the system. The trend has been to use other terms such as “extra-

functional”, “quality attributes” or even “illities”, because most of them end with the

suffix “ility” [PW01]. For this thesis they are referred to as quality attributes. While

functionality is provided by the implementation of the system, the quality attributes are

introduced in large part by the software architecture.

The standard reference for software quality characteristics is the ISO 25010 standard1.

This lists Functional Suitability, Performance Efficiency, Compatibility, Usability, Reli-

ability, Security, Maintanability, Portability as main quality characteristics of software

systems. Each of these have a set of sub-characteristics that are described in one sen-

tence.

1http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

11
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A research done to illustrate the important requirements for the IoT based on the opin-

ions of stakeholders for the IoT was conducted by the Internet of Things Architecture

(IoT-A) institute [BM]. The most important requirements found were Interoperabil-

ity, Evolvability, Performance, Scalability, Availability, Resiliency, Security and Privacy.

Various other studies support the notion that these are important requirements for the

IoT, however they will be mentioned in the next section.

For the remainder of this thesis, scalability will be considered as part of performance

while resiliency will be seen as part of availability. The reason for this choice is because in

software evaluation methods, which will be explained later in the thesis, these attributes

are also merged in this way.

Interoperability is mentioned as a sub-characteristic of compatibility in the ISO standard.

Compatibility is the ability of a system to exchange information with other systems while

sharing the same hardware or software environment. Interoperability is defined as the

ability of two or more systems to exchange information and also use the information

that has been changed.

Evolvability is not mentioned in the ISO-standard, but can be described as a combination

of modularity2 and modifiability3.

Performance is defined by three sub-characteristics. These are time-behaviour, resource

utilization and capacity. The architecture of a system can be have an effect on all three

of these sub categories.

Scalability can be mapped to capacity, which is described as the degree to which the

maximum limits of a system meet requirements. For a system to meet the required work

load, it might have to be scalable depending on the context.

Availability is mentioned in the ISO standard as a sub characteristic of Reliability.

Resiliency can be seen as a combination of fault tolerance4 and recoverability5.

Security and all of its sub-characteristics ar mentioned in the ISO standard. These are

confidentiality, integrity, non-repudiation, authenticity and accountability. Privacy is

not a part of the standard. While confidentiality covers a part of privacy, there are also

other aspects of privacy that need attention in the IoT.

2The degree to which a system is composed of discrete components such that a change to one com-
ponent has a minimal impact on other components

3The degree to which a product or system can be effectively and efficiently modified without intro-
ducing defects or degrading existing product quality

4Degree to which a system, product or component operates as intended despite the presence of
hardware or software faults

5Degree to which, in the event of an interruption or a failure, a product or a system can recover the
data directly affected and re-establish the desired state of the system
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3.3 Relevance of Quality Attributes to the Internet of Things

This section will show why the aforementioned quality attributes can be important in

the Internet of Things.

Interoperability is important in the IoT as it will contain different heterogeneous

objects, networks and thus systems that will need to work together to create an Internet

of Things.

Interoperability can be reached by integrating one IoT solution as a subsystem in another

solution (by communicating in the same format), or by building a bridge (mediator)

through which the key functionalities of each solution can be used [BM] [BS11]. The

type of architecture cannot guarantee interoperability, however it is an important tool

in helping to achieve it. Design choices can have an impact on how easily a solution can

interoperate with another solution.

One of the key problems in the IoT is that data exchange will happen among large-scale

heterogeneous network elements [Ma11]. The more interoperable these elements are, the

more efficient the data exchange can be. An example of such an optimization can be that

if devices that are close to each other can communicate directly to each other without

having to go through a network and still get the data that is needed (device-to-device

interoperability).

Interoperability ties in directly with Security and Privacy in the IoT [BS11]. The easier

the devices at the edge of the network can communicate with each other, the more data

they will exchange. This will make it harder to have an overview of the where the user’s

data is going. It also makes it easier for an attacker to pretend to be a trusted device.

Interoperability can be defined as having four levels. These are the technical, syntactic,

semantic and organizational level [KS]. Technical interoperability is associated with

hardware software component. The discussion here is usually centered on communication

protocols, but ever since TCP/IP became available, this layer of interoperability has not

been an issue.

Syntactic interoperability is associated with data formats. The data being transferred

must have some well-defined syntax and encoding. Examples of high-level transfer syn-

taxes include HTML, XML or ASN.

Semantic interoperability concerns the understanding of meaning of the exchanged in-

formation. “Semantic interoperability enables systems to combine received information

with other information resources and to process it in a meaningful manner” [KS]. This is

the level of interoperability that is needed for the IoT, where the providers and requesters

of information can communicate meaningfully despite the heterogeneity [BS11].
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The final layer is the organizational interoperability layer. This layer concerns automatic

linkage of processes among different systems. The state of knowledge on this layer is

still lacking and is omitted for this reason.

Evolvability. The paper “Evolvability as a Quality Attribute of Software Architec-

tures” explains what the term evolvability means for software, why it should be con-

sidered a quality attribute and how it relates to other quality attributes that refer to

change in a system [CB06].

There is a need for designs that can withstand and adapt to new requirements and

changes, which is inherent in a system that has high evolvability. Systems can become

evolvable by having component-exchangeability and increased component distance.

Architectures that are evolvable should be designed in a way that allow changes without

damaging the integrity of systems and which can evolve in a controllable way. The level

in which a system architecture allows this can be seen as the evolvability of the initial

system.

The reason Evolvability is important in the IoT is directly tied to Interoperability. Once

a system is deployed, it is important that it can easily be adapted to communicate with

emerging technologies and new IoT applications in its domain. If a system is easily

changed and extended, than it can easier be adapted to communicate with these new

applications.

Requirements for systems are constantly changing and this is the same for IoT Solutions.

As technology that supports IoT progresses, the solutions developed for the IoT must

be able to evolve with it.

Performance measures the responsiveness and stability of a system. Performance is

measured in response time, throughput (number of transactions per time unit), resource

efficiency and scalability.

The reason why this is important for the IoT is because the edge of the network is

extended with devices with varying levels of processing power and storage. Despite

this variety of devices, the IoT should perform at an acceptable level. Designer of the

systems will have to decide how much of the application logic and data storage is pushed

to the edge and how much is done on centralized servers in order to achieve acceptable

performance.

One way to improve performance with respect to response time is to through the Fog

computing platform. While Cloud computing frees the end user and enterprise from

many details, it becomes a problem for latency-sensitive applications.

“Fog computing is a highly virtualized platform that provides compute, storage, and net-

working services between end devices and traditional Cloud Computing Data Centers”

[BA12].
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It can be seen as a Cloud platform closer to the edge of the network, hence the term

Fog. The idea is that the devices at the very edge of the network that need external

computing power or storage can access these on Fog nodes instead of the Cloud. This

leads to increased performance with regards to response time. From this we can infer

that moving application logic and data storage to the edge, decentralizing the system,

increases performance in the IoT. For this performance gain you have to pay the cost of

having smarter nodes near the edge of the network and the security risks of attackers

being able to connect easier to the nodes on the ground.

Software architecture can only play a part in the performance of a system. Something

that also plays a part in performance is systems it the way software is written, which is

out of scope for this thesis.

Scalability is the ability of a system to handle increased workload by applying cost-

effective strategies for extending the system’s capacity [Wei06]. Gartner6 estimates that

around 4.9 billion “things” are connected at the moment. The IoT has to be able to

perform at an acceptable level with this scale of devices.

When talking about scalability of a system, some of the terms that show up are scaling

up, scaling out, caching and load balancers. Scaling up means increasing the resources

of a particular node. Scaling out means getting more nodes to share the workload. A

load balancer has the task of balancing the workload between these nodes. Caching can

help with scalability by reducing the number of actual requests to the system.

It is often hard to make a statement about the scalability of an entire system. It is

usually the case that some parts of the system has to be more scalable than others.

In a centralized system for example, the central component would need to be more

scalable than the other non-central components. The centralized component needs to

have a scaling strategy, which usually comes down to adding more resources while also

designing how the system handles these new resources.

Cloud computing has made is possible to pay for scalability on demand, meaning that

extra resources can be added at any time when there is more work to be done by the

system running in the Cloud. The Cloud is considered an important part in the IoT,

since the IoT will be driven by a lot of data. The Cloud provides the resources needed

to analyze and handle this amount of data.

For this thesis, scalability is considered to be a part of performance.

Availability is the ability of a system to be fully or partly operational as and when

required [BM]. In the IoT, the user can be human but also another device or system.

A system has high availability if it can be maintained or updated while the core is still

running. The aim for systems is to have as less downtime as possible. In safety critical

IoT solutions such as E-Health, availability could be very important.

6http://www.gartner.com/newsroom/id/2905717

http://www.gartner.com/newsroom/id/2905717
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Systems that will depend on data gathered from many different solutions may become

unable to provide their services if some these solutions are not available. In the IoT, this

is a scenario that needs to be anticipated, as the strength of the connectivity of devices

at the edge of the network may be unstable at times.

Redundancy in sensors can help with availability. If a solution measures a certain at-

tribute of a city by placing approximately 50 sensors and then 3 of them lose connection

or stop working, the overall solution can still be deemed operational as 47 sensors are

enough to make an estimation of the current levels of the attribute being measured for

the city.

Due to the power constraints on some sensors (battery life), some devices may not always

be on. They might push their state once every time interval in order to save battery life

as opposed to continuously streaming.

Resiliency. A system that is resilient is one that can effectively handle failures that

could affect system availability [BM]. The system should avoid single points of failure

and adapt (keep running) to individual component failures.

If the system is resilient than it has high availability. In the same way, redundancy of

nodes at the edge can help increase resiliency, since it removes the single point of failure

in the system. If a device in the IoT fails, a replacement should be found that offers a

similar services. In this way the IoT recovers from failure in a graceful manner. This

is especially important in the IoT, since it may contain sensors that are vulnerable and

out in the open and can be physically damaged, which can cause a denial of service.

Complexity of systems can lead to less resiliency, since there are more ways in which

the system can fail. Combining two or more systems, which is the case in the IoT, lead

to greater level of complexity [Axe09]. Resiliency is also the ability to recover quickly

from an attack. If security measures fail, the system should still be able to recover to

an acceptable state.

Backup systems play a role in resiliency. If a node should fail, a backup node can take

over its transactions and make it unapparent to the user that anything has gone wrong.

For this thesis moving forward, resiliency will be considered as a part of availability.

Security. The Internet of Things will introduce many small connected devices at the

edge of the network. Therefore, new security concerns arise that are specific to the

IoT. The main goals of security are confidentiality, integrity, authenticity, availability,

non-repudiation and accountability.

These devices might store sensitive information which would make it sometimes easier

for the attacker to access said information. Since the devices in some cases might be

physically reachable by attackers (or even stolen), sensitive information might be easier

to extract and thus compromising confidentiality of the data.
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Because of the scale of the IoT, there are more communication channels than ever

between the devices, middleware and servers. This means that there are more entry

points for attackers to be able to “flip some bits” and compromise the integrity of

certain messages.

The fact that these devices might have limited computation power means that they

sometimes cannot run complicated cryptography. One of the challenges for the IoT is

to make encryption algorithms faster and less energy-consuming [SW10]. The lack of

computation power could make it easier for an attacker to authenticate himself to a

device. This causes problems for confidentiality, authenticity, but also availability. By

gaining control of the device, the attacker can cause a denial-of-service by either making

the device itself unavailable or by sending constant requests to a service or device to

which it is connected. Note that there is a difference between availability as a security

goal and availability as a quality factor for a system. The former refers to the system

being secure in such a way that a denial of service cannot be initiated by an attacker.

The latter refers to availability of the system in the absence of an attacker.

In the case of non-repudiation, an unattended device could be used without leaving

a trace [BM]. Though if devices first identify who is using their service, this problem

might be avoided. However, for some services users might want to operate anonymously.

The right balance should be found between non-repudiation (security) and anonymity

(privacy).

Privacy. The Internet of Things will bring technology closer to users. New type of data

will become available in the IoT, some of which contain personal information. Since the

IoT runs on data gathered by sensors, privacy has become a big concern in this field.

First of all, in the IoT a person might not always be aware what personal data is being

captured. A person has some control over their own home, they can even choose to make

their household completely disconnected from the IoT. However, eventually people have

to leave their homes, maybe in a car or public transportation that is now connected to

the IoT to reach their work, where the workspace is now also entirely connected to the

IoT and monitor their arrival for example. Eventually people will be forced to take part

of the IoT in some way or another.

In a non-IoT application, the user is usually granted the control over their data or is

at least informed how their data will be used if they choose to use the application.

However, in the IoT the data could be gathered without consent, and even if consent is

given to use certain data by an application it becomes hard to track the flow of the data

since devices might communicate with other systems. What is the rule of user consent

if objects may be able to talk to each other spontaneously[BM]?

The reason privacy is diminished in the IoT is because of the pervasiveness and the scale.

People will not realize that systems are acquiring information about them and because
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of the huge scale in some scenarios, it becomes hard to keep up the data flow even if the

user is interested in their own privacy.

In the future it might become a standard to use IoT solutions to accomplish everyday

objectives, meaning there is no privacy-friendly non-IoT alternative. It could very well

be possible that all cars of the future will be connected to the IoT. In this case the user

has no choice but to take part in the IoT ecosystem unless they can live without the

functionality that the car provides.

Another reason why the scale of the IoT is a threat to privacy, is because data that

might seem harmless on its own could be combined with other data to infer personal

information. The IoT should be developed in a way that such personal information

cannot be easily extracted from data from several points.

Many approaches to provide privacy in IoT have focused on data minimization, however

this is not applicable as the IoT runs data [Hoe12]. One approach to provide privacy is

to keep user profiles and preferences on a personal device instead of in the IoT infras-

tructure. The personal device acts as a firewall between the user and the IoT. The IoT

has to first query the user profile before anything can happen.

The IoT-A suggest that psuedonymisation7, avoid transmitting identifiers in the clear,

minimizing unauthorized access to implicit information, enabling the user to control

privacy settings and provide privacy-aware identification8 are some design choices that

can be made in favor of privacy in the IoT[BM].

In “Internet of things - New security and privacy challenges” [Web10], they argue that

the scale and heterogeneity make privacy enhancing technologies such as Virtual Pri-

vate Networks, Transport Layer Security, DNS Security Extensions, Onion Routing and

Private Information Retrieval unfitting for the IoT.

In “Reference Architectures for Privacy Preservation in Cloud-Based IoT Applications”

[Add14], they propose a Secure, Private and Trustworthy protocol (SPTP) which allows

end-users to tag private data with a access control list (ACL). The protocol makes

sure that any web page or system that wants to access that data is validated with

the ACL. This protocol should be administered by a third party, to provide an unbiased

regulation of privacy. However this means that this would be centralized and would have

to be a very scalable component in the IoT. They also propose a reference architecture,

which will be discussed later in this thesis. However, the problem with these reference

architectures is that they only achieve their goals, which in this case is privacy, if all

systems incorporate this architecture and protocol.

The discussion about privacy in the IoT is very broad. On the legal front, the question

of whether existing/traditional legislation is sufficient or if there is a need for new laws.

7Creation of a fictional identity
8Only the responding host needs to be authenticated
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However this discussion is out of scope for this thesis, for now it is enough to note that

privacy is an important concern in the IoT.

3.4 Quality Attributes in the Internet of Things Reality

The previous section stated why the quality attributes can be important in the Internet

of Things. However, analyzing the set of IoT solutions reveal scenarios with varying

requirements of these attributes. These are covered in detail in appendix B.

For solutions such as a wristband that measures a users heart rate and sends it to a

mobile phone via Bluetooth, scalability is not as important as security and privacy for

example. However, for another solution where many users access an open database that

contains data collected from many sensors distributed throughout a city, scalability plays

a bigger role than privacy. Some scenarios have to connect a great deal of heterogeneous

devices from many vendors, such as the smart home domain, making interoperability an

important requirement.

The result is that there is a great variety of solutions that have different quality attribute

requirements. This has to be taken into consideration when reasoning about software

architecture in the Internet of Things, instead of just saying that all attributes are

important.

3.5 Conclusion

This section has introduced the quality attributes that will be used in the analysis in

this thesis moving forward. The reasons why these quality attributes could be important

in the IoT have been described, however it has also been shown that not all of these

attributes are important to all IoT solutions.

Even if a single IoT network could exist, it would not be possible to provide an archi-

tecture that exhibits all of the quality attributes mentioned. As we will see later in the

thesis, software architecture is all about making trade-offs between these attributes.

The analysis of IoT solutions have shown that there are scenarios where certain quality

attributes are not important, for example scalability in a body sensor network or privacy

in a system that provides open data. The varying levels of quality attribute priorities

in the IoT supports the claim that a single reference architecture cannot exist. The

next chapter will divide the IoT solution space into different classes in order to be more

specific about the types of systems that are considered to be IoT solutions and also to

provide more context information in order to perform an analysis of the compatibility

of styles.



Chapter 4

Internet of Things Solution

Classes

4.1 Introduction

The Internet of Things contains many types of solutions. This chapter will aim to group

the solutions analyzed in appendix B into classes. These classes of IoT solution will give

more context information in order to reason about software architectural styles, which

is not possible by only using the term “Internet of Things”.

The IoT-A and Postscapes group IoT solutions into domains, as shown in chapter 2.

However, the solutions and their requirements within these domains can still vary greatly.

There are also many solutions from different domains that are very similar to each other.

For this reason, this grouping of solutions into domains provided by these sources is

not desirable for this thesis. Instead we look at the differences between solutions and

use these to create classes. These classes will be used to illustrate the variety of IoT

solutions. They will also be used to illustrate the effects of software architectural styles

on the quality attributes.

4.2 Classification

The first step into showing the effect of software architectural styles in the IoT while

simultaneously illustrating that the IoT should not be seen as one system is to divide it

into classes. In order to do this, a number of classifying attributes must be identified.

The classification was made with the following constraints in mind:

• The classification is made primarily using the dataset of 18 solutions analyzed.

20
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• The architecture of these solutions shall not be used as classifying attributes. This

includes published architectures as well as the component topology that can be

derived from the description of the solutions. If this were to be included, then the

choices for possible styles would be restricted.

• No quality attribute requirements will explicitly be used as classifying attributes.

Within these constraints I began the classification by comparing the solutions to each

other. There are of course many ways in which each solution differs from the next,

however I will refer to this subset:

• Heterogeneous devices1 from multiple vendors. The solution can either be

a closed environment provided by only one vendor or it can be a solution that

aims to provide interoperability between multiple vendors in one application for

the user.

• User interface on devices. The devices at the edge of the network can have

a user interface or be controlled by an application on another device. This is

important as it shows the way data flows in the system.

• Sensors and Actuators. The solutions can either have only sensors or also have

actuators. This is also important to show the data flow in the solutions as well as

the importance of data aggregation.

• Devices connected directly to a network. The devices can be directly con-

nected to a network or might make use of other ways to interact with the system.

• Device is stationary or mobile. This can have an effect on availability. If a

device is stationary, it is more likely to have a stable connection if this is required.

This might not be relevant if the device is not directly connected to a network.

• User interface application. Some solutions do not come with a user interface

application. This is important as it can classify solutions as being a IoT product

or a complete solution.

• Data per user or collective. Some solutions provide data gathered for a specific

user while other systems provide data collected by all sensors for all users.

• Number of devices per user. The values can be one, one to few (constrained),

many. This attribute is important for scalability. This might not be relevant if

the data that the user is interested in is collective of all sensors in the system.

• Devices battery or plugged into power outlet. If the devices use batteries

it might be in the best interest to limit computation and communication to the

devices as much as possible. However if they are connected to a power outlet then

this becomes less important.

1Devices at the edge of the node; sensors, actuators or hubs
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• Devices constrained to a location: If all of the devices are constrained to a

location such as a home or a workspace, then certain design choices can be made

in order to improve scalability.

• Autonomous behavior: Solutions can exhibit autonomous behavior, by this we

are especially interested in actuators being controlled without the use of human

interaction.

Not all of these attributes are used in the classification. It is also the case that some of

these attributes are dependent on each other. For example, the constrained to a location

attribute is false if the devices are not stationary. This will be taken into account in the

classification. Figure 4.1 shows the resulting decision tree after several revisions.

Figure 4.1: IoT Classification Decision Tree

Note that a decision tree might not be considered an optimal classification technique

for this purpose, as several of classifying attributes can be placed at other areas of the

tree since they are not dependent on each other. The stationary attribute could also be

placed to split class G or H for example. Furthermore, it is not possible to calculate the

accuracy of this classifier for the entire solution space as this would require a dataset

containing all, or at least a significant amount, of solutions. However, this decision tree

should be enough to provide a set of classes that can be used to show the variety of

solutions and the need for different styles. The goal is not to provide a complete set of

classes for the IoT.

This particular structure gives us a view into two dimensions and four major categories

of IoT solutions.
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The dimensions correspond to the two nouns present in the term IoT, namely Internet

and Things. As illustrated in figure 4.2, solutions located on the left side of the tree

are responsible for creating the interconnected network of things by providing interop-

erability between multiple solutions when this is necessary. The right side of the tree

contains the independent solutions that have sensors and/or actuators that connect the

physical world to the digital world. The solutions on the right side of the tree can be

seen as the building blocks of the IoT, while the solutions at the left side can be seen as

the glue that will paste them together.

Figure 4.2: IoT solution Dimensions

The identified classes can be put into four major categories based on their goal. The

first category is integration, which contains solutions aimed at providing interoperability

between various solutions. The second is observation, where the goal is to monitor and

observe one person using a type of sensor. In this case we are not interested in large-

scale data from multiple sensors. This is however the case for the third category, namely

aggregation. This category contains solutions that provide value by collecting data from

multiple sensors and visualize the data in interesting ways for the user. The final category

represents solutions that have actuators in their network. The goal of this category is

to provide automation of some kind and does not have to be driven by large-scale data.

Figure 4.3 illustrates the four major categories.

4.3 Classes

Up to now we have referred to the classes by an alphabetical ordering, however it is

helpful to give them a name. The following is a labeled set of IoT classes that will be

used for the remainder of this thesis.
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Figure 4.3: IoT solution categories

A. Location Constrained Heterogeneous Devices. This class is categorized by

solutions that provide interoperability between many solutions that contain device in

the same location, such as a smart home or work office. This class must take into

account that performance is not entirely in their control because it is dependent on the

architecture and implementation of other solutions. The fact that all devices are in the

same area can mean that we can create a more decentralized environment and group

connections to a central point on the ground (Hub) instead of the Cloud. Solutions that

fall into this class are the Homeseer and SmartThings solutions.

B. Location Free Heterogeneous Devices. This class also provides interoperability

between solutions, except the devices can be located anywhere. This means that a

central point must be located on a server possibly in the Cloud to provide a single point

of interaction. Scalability plays a bigger role in this class. Also, it becomes possible to

integrate solutions from the previous class into this class. An example is the SensorFlare2

which lists SmartThings as one of the solutions it provides interoperability for.

C. Body Sensors. Characterized by the one-to-one relationship between users and

devices, this class contains solutions that monitor and observes measurements of the

user. This can be for personal uses but also in particular for E-Health. In the latter

scenario availability can become important. Scalability is relatively less important for

this class. Solutions in this class include the Nymi and the Angel wristband.

D. Active User Collective Data Solutions. This solution aims to collect data from

multiple sensors and provide an analysis on the entire set of data as a whole. Users are

considered active as they contribute to the data set actively through sensors that they

own. An example is the WeatherCloud system where each user equips their car with

2https://www.sensorflare.com/

https://www.sensorflare.com/
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multiple sensors. The aggregation of the data is done by sensors owned by multiple users

and is collectively visualized.

E. Passive User Collective Data Solutions. The difference between this class and

the previous is that the users of the data are not owners of the sensors. This means that

the number of sensors is entirely in control of the party that owns the solution, meaning

scalability only has to be handled based on the number of users. Solutions in this class

include the Array of Things and the Zebra Motionworks solutions.

F. Stationary Homogeneous Sensors. This class contains solutions that have sensors

that are stationary and are of the same type. The difference between the previous two

classes and this one is that the data should not be seen as one whole but belongs to a

user group. The data belonging to a certain user group should only be visible to them

and no one else. In this scenario privacy becomes a more important requirement.

G. Mobile Homogeneous Sensors. These solutions have the same goal as the previ-

ous class except that the sensors can be in motion, meaning that providing availability

becomes a more important requirement. Solutions that fall into this class are the Far-

mobile, DAQRI smart helmet, Truvolo and Veniam solutions.

H. Smart Systems. The term smart is used a lot these days to describe any alternative

version of a device or system that provides some automation. In this classification we

use it to describe autonomous solutions that are able to use data and logic and convert

it into decisions that can lead to actuator commands without human intervention. This

brings many concerns of security and safety to the table. A big difference between these

types of systems and the last four classes is that they do not necessarily need to be

driven by large amounts of data, meaning that a more decentralized architecture might

be possible for some solutions in this class.

I. User-controlled Actuators. The final group contains solutions that also contain

actuators, except that these are explicitly human controlled. An example of this are the

S5 electronic shelf labels and the Bitlock Bycicle lock solutions.

4.4 Conclusion

This chapter has provided a classification of the Internet of Things based on an initial

set of IoT solutions. The differences and similarities between solutions were used as a

foundation for this analysis. The resulting classification tree provides an illustration of

four categories of solutions, each with a specific way to provide value to the users of

the solutions. The classes provided in this chapter will be used in the next chapter to

analyze the effect of software architectural styles on quality attributes in the context of

the IoT.



Chapter 5

Software Architectural Styles in

the Internet of Things

5.1 Introduction

This chapter contains the mapping of software architectural styles to the IoT classes pre-

sented in the previous chapter and analyses the effects on the quality attributes described

in chapter 3. The chapter will start off by mentioning which software architectural styles

will be considered and how they will be evaluated. Using this information, a mapping

and analysis is presented which describes the best software architectural styles to use as

starting points for architecture in the different IoT classes.

5.2 Software Architectural Styles and Evaluation

A software architectural style is a labeled set of components1 and connectors2, and a set

of constraints on how they can interact [GS94]. These constraints can be topological, for

example not allowing cycles, or it can regard execution semantics. The latter refers to

the meaning of such an interaction between two components, which could be a procedure

call or a notification for example. All styles come with trade-offs, explicitly mentioning

which quality attributes3 are gained and which are given away, however this also depends

on the context of the system to be built.

The software architectural styles that will be considered in this thesis are Client-Server,

Peer-to-Peer, Pipes-and-Filters, Event-Based, Publish-Subscribe, Service-Oriented, REST,

Layered and Microkernel. There are other styles that exist, however these are some of

1Component: A constituent part; element. http://dictionary.reference.com/browse/component
2Connectors: Description of the interactions between components. [GS94]
3Quality attribute: Non-Functional Requirement
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the most common and well documented ones. In case the reader is not familiar with

these styles, a description is given in appendix C.

There are a number of Software Architecture Evaluation Methods that can be used to

evaluate software architectures for their fulfillment of quality attribute requirements.

Appendix D describes some of these methods and why they cannot be applied directly

in this analysis. In short, these evaluation methods are meant to be used at a later stage

in the design process where more information is needed about the system to be built.

However, in this thesis we analyze the very first step, namely which style to choose, in

the design phase. For this analysis it is only necessary to know how quality attributes

will be evaluated in this analysis.

For the mapping we will identify what the quality attribute requirements are for each

class. The architectural styles provide variations in how these requirements are fulfilled

by the architecture, which will allow us to compare them with each other.

Interoperability. For interoperability the requirements could either be primary or

secondary. We have seen enough examples of solutions where interoperability is not

mentioned at all, however for this analysis we will categorize these solutions as having

interoperability as a secondary requirements. Interoperability fulfillment by styles will

be measured by the presence or absence of the tactics for this attribute, which are

mentioned in the previous section.

Evolvability. Evolvability is about reducing the cost of change to the system. For

each class of solution we will indicate some of the likely changes to occur. The choice

in style will dictate how and where these changes will occur and thus how evolvable the

architecture is. Evolvability can also be evaluated by the presence of an intermediary,

which decouples components from each other and centralization which brings logic to

one central component where change only needs to occur in one location.

Performance. We will consider latency, throughput, power consumption/energy effi-

ciency, bandwidth efficiency and scalability as characteristics that define performance in

the IoT. These will all be affected by the choice of architectural style. Latency can be

measured by the number of hops needed to reach the destination. Intermediary compo-

nents increase latency. Energy efficiency can be measured by looking at how much logic

is present in the edge devices and how many messages they have to send. Scalability can

be evaluated by estimating the number of devices and users that have to communicate

with a central component. Removing unneeded interactions to the central component

or decentralization can decrease the need for scalability.

Availability. We can make an estimation of how much impact a single device being

unavailable could be. We can also identify single-points of failure inherent in the classes

and their goals. Request-Response interaction is considered good for availability because

the response can be a confirmation message.
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Security. Security is always a priority. For this reason we will not make an estimate

on the requirement for this attribute, however we will refer to it later to see if the choice

of architectural style has an impact.

Privacy. Some solutions, like the ones that contain collective open data, have less of

a privacy requirements than other systems. This will be mentioned per class. Data

can be personal or open. There is no known way of measuring privacy in software

architecture, however an attempt will be made anyway to show that this is indeed

difficult/not possible.

The remainder of this chapter contains the actual analysis of software architectural styles

in the Internet of Things solution classes.

5.3 Mapping

This section presents a format with which the mapping will be performed and the actual

mapping itself. This will ensure that the analysis can be done in a systematic way, as

well as making sure that all possibilities have been considered. The following is the

format that was used:

For each category:

• Description

• For each class:

– Description

– Functional Requirement(s)

– Quality Attribute Specifications

– For each style:

∗ Description

∗ Quality Attribute Effects

– Verdict

This means that for each of the four categories we will look at the classes and what the

effects of software architectural styles are on them. While this thesis focuses on quality

attributes, we will also list a few functional requirements as this will help get a better

view of what functionality the system should provide which can help to eliminate styles

that are not suitable because their constraints are not compatible. The quality attribute

specification indicates what the specific quality attributes mean in the context of that

class and how much of a priority they are.
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It should be noted that all styles can be used to create any type of system, however this

has an effect on the quality attributes that the system will exhibit. An example is using

a Peer-to-Peer style for data aggregation. This is possible, however it will not perform

as well as using a more centralized style where the data comes together at one point. At

the end of each class description there will be a verdict indicating which classes are the

best fit.

While this format has been used for the analysis, the description found in this thesis

will deviate from this format in order to illustrate important discoveries or to leave out

redundant information.

The reasoning used in this document is based on information found in several references

regarding software architecture, styles, quality attributes and software architecture eval-

uation methods. The goal is to illustrate a) which styles should be used in which type

of scenarios in the IoT and b) that there is indeed a need for different styles and thus

architectures in the IoT, since it contains such a wide variety of applications. The second

goal supports the claim that there cannot be a single generic reference architecture for

the entire IoT.

The remainder of the document contains the mapping presented in this format.

5.3.1 Integration

The integration category of IoT solution contains systems with the primary goal of

providing interconnection between multiple IoT solutions from a variety of vendors.

The traditional definition for interoperability is the ability of a component to interact

with other components or systems. However, what is unique in the IoT is that there

should also be interoperability between solutions from multiple vendors. The reason

is that not all companies have the knowledge of all the different types of sensors and

actuators. It becomes inevitable to work together with these companies instead of trying

to provide a one-company solution. A report on the IoT done by the McKinsey Global

Institute states that 40 percent of potential value of the IoT is enabled when integrating

multiple IoT solutions [Man]. The potential value in this case is described in economic

impact.

There is a big difference between planning for interoperability between different tech-

nologies and platforms from the start of a system design and trying to provide inter-

operability between systems that are already built. The second scenario is what this

category deals with. In this case these solutions already have their own architecture

that caters to their specific requirements, which can be based on many different styles

depending on the application. In the worst case scenario, there is such an architecture

where no attention has been paid at all to interoperability.
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Figure 5.1: Integration Category

Figure 5.1 gives an illustration of this category. The different solutions that will be

interconnected using this system are depicted as black boxes, since the details might not

always be known and should also not be important. The direction in which communica-

tion and data flow have been left out on purpose, as this will be decided by the choice of

style. The Integration solution component in the diagram represents all of the software

to be built for this category, which will be decomposed based on the style chosen. This

category of solutions provide a single point in which the user can communicate with and

control all of these systems, instead of having to do this separately in different applica-

tions. In addition to this, there should be the possibility to add autonomous behavior,

which in this case means adding scenarios where certain actuators will respond to mea-

sured data by sensors. This removes the human effort while still providing benefits for

the user.

We divide this category into two classes, where the classifying attribute is whether or

not the devices are constrained to a certain location, meaning they are physically close

to each other. A concrete example of such a location is a smart home. This difference

can lead to certain architecture choices and even different business models.

In the first case where the devices are close to each other, for example in a smart home,

the vendor can choose to sell a hub which will act as a central point for all of the

communication within a certain proximity. This cannot be done for the second class,

which will probably have to make money with a subscription based business model by

providing a service instead of hardware. A big difference is in the need for scalability,

as in the first case we can choose a decentralized approach by letting all computation

occur in these hubs instead of in some Cloud component for example.
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All of the architectures that can be used for Class B can also be applied for Class A,

however the inverse is not true. This is because the hub can simply be used as a gateway

that relays communication to the Cloud. The hub can in this case be omitted from the

architecture, resulting in design that can be used for both Class A and Class B. However,

Class B can never take advantage of such a hub because no assumption can be made

about the location of the devices. For this reason while analyzing Class A we will only

look at the situation where there is a Hub, which acts as a gateway for all of the devices

in their location. This means that the hub will be interacting directly with devices

instead of their Cloud services. At the end of this category description it should be clear

how this affects the system.

5.3.1.1 Class A. Location Constrained Heterogeneous Devices

This class contains solutions that provides interoperability between multiple heteroge-

neous devices located in close proximity to each other. We make the first design decision

by introducing a hub which acts as a central point of communication between these de-

vices. This is to help illustrate the differences between class A and class B. In this way

we take advantage of the fact that these devices are contained within a location in order

to create an environment of interconnected devices. Figure 5.2 illustrates this class by

showing the hardware that will be used. In this case we have replaced the black boxes

from the previous figure with devices, which are sensors and actuators. This requires

interoperability at device level.

Figure 5.2: Location Constrained Heterogeneous Devices

The devices and the hub are all located in close proximity to each other, which means

that they can communicate directly to each other or are at least on the same local net-

work. The user will be able to use the system via a mobile device, which should be able
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to communicate with the system from within or anywhere outside the location, meaning

that the hub should be connected to the Internet.

Functional Requirements:

• The user can view measured data from sensors and control actuators inside the

location from one application.

• The user can choose from a set of smart scenarios in order to create an autonomous

smart environment.

• The user can add and remove devices from the system.

Quality Attribute Requirements:

• Interoperability: This is a primary requirement for this class, meaning that we

should consider styles that provide interactivity and possibly inherent interoper-

ability between components.

• Evolvability:

– S1: Change to UI application

– S2: Change/Addition autonomous behavior logic

– S3: New device

– S4: Change in data format of a device

• Performance: Latency depends on the combination of devices and the hub, how-

ever the performance of devices are the responsibility of their vendor. The Hub

should be able to handle multiple interactions in a second, so throughput should

be measured. The Hub will most likely be connected to a power outlet, how-

ever the devices may vary. It is important to choose an architecture that will not

strain devices unless it is needed. Finally, different types of architectures can make

scalability a primary issue or a secondary one as we will see later on.

• Availability: The hub is a single point of error, however in the worst case scenario

the users should be able to communicate with their devices using their respective

applications. The choice of architecture can also have a big impact on availability

in this case, specifically when choosing a centralized or decentralized approach.

• Security: If the attacker can gain access to the Hub, it can interact with all

devices in the location. If the attacker can gain access to a device, they may cause

a denial-of-service by sending multiple requests to the Hub.
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• Privacy: The privacy level of the data depends on the data being measured by

the third party devices. However, since all devices are in one location, it is possible

to provide privacy by choosing an architecture where the data does not need to be

stored on a shared resource such as a Cloud server.

Client-Server

In a Client-Server style the client always initiates the communication with a request to

the server, which replies with a response. This means that the client has to know the

identity and network address of the server and the server has to be a non-terminating

process. Any server can also take the role of a client to another server, however a server

may not be a client to its own clients. Because of these constraints, there are two possible

topologies using this style for decomposition.

Figure 5.3: Client-Server Topology A: Centralized

Figure 5.3 shows the first topology of components possible with this style. In this

topology there is one central server and multiple clients. The clients can be the UI device

or the devices at the location. Notice that each location has such a structure, which

is why there are multiple instances illustrated. The central component can be located

in the Hub or in a Cloud server, this will be discussed later. The second topology is

illustrated in figure 5.4, where the main component also acts as a client to the multiple

devices that now have the server role. This topology can also be seen as a layered

architecture with three layers, presentation, control and data. The environment of the

location of the devices can be seen as a database, where sensors read the data and

actuators write to it. In this sense it is very much like a Model-View-Controller pattern,

which is considered a design pattern and not an architectural style in this thesis. The

reason for this is because it is an instantiation of the layered style.
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Figure 5.4: Client-Server Topology B: Hierarchical

It is important to state the differences between the two topologies:

• In topology A, actuators will constantly have to query to see if there is a request

from the user to do something. This results in unnecessary requests to the server

which increases the workload on the server and thus reduces performance and

scalability. In topology B, the server sends a request to the devices only when

they are is a need, either from a user request or logic programmed into the Hub.

• In Topology B, devices are forced to always be in an ON state, since they have the

server role. It eliminates the possibility that devices can go into a OFF (almost

off) mode to save energy and only start up to update or check on updates every

once in a while. This type of behavior is possible in topology A, however this

might increase latency as the user would have to wait for an actuator to start up

and send a request to see if any commands have been issued by the user before

performing the action requested.

• In Topology A, the main component needs to provide an interface and all devices

need to be able to communicate with this interface. In Topology B, the devices

need to provide an interface which will be used by the main component. The

difference is which component needs to make changes when a new device is added

to the system.

• Topology A might be better for certain sensors, such as motion detectors. The

sensor would only have to send a message when a motion occurs instead of saving

an event log and sending it when requested by the main component. This could be

an indicator that we might need a style that allows for different types of interaction

depending on the type of arrival pattern.

For this class we will choose topology B moving forward, as it presents a more efficient

way of querying for data and sending actuator commands. Furthermore we can assume

that a majority of the devices are stationary since they are constrained to a location and
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are plugged into a power outlet when possible, meaning that having them always on as a

non-terminating process is not a huge price to pay. Finally, it is better to make changes

in the main component to allow communication, which is in control of the developers

of this system, than it is to require change in the sensors and actuators. However, this

topology does not perform well for motion detectors or other sensors that detect events

instead of constant measurements, as the main component will have to constantly query

for changes that might not occur for a long period.

The quality attribute effects of this client-server style on this class of IoT solutions are:

• Interoperability: The system uses the devices instead of being used. This means

that the devices simply have to provide their functionality and do not need to worry

about finding the main component to communicate with. However, this system will

need to keep track of all devices it wants to provide interoperability with for the

user and translate all communications into a format that the devices understand.

• Evolvability:

– S1. Changes to the UI are isolated to the UI component, which is a typical

client-server decomposition.

– S2. The Autonomous behavior logic will be present in the main component,

which is isolated from the UI and devices.

– S3. A new device potentially means adding a new adapter to the main com-

ponent which can translate communication to the correct data format. The

main component is also responsible for detecting new devices in this scenario.

– S4. Changes to data format for a certain device are isolated to the main

component.

• Performance: Latency depends partially on the devices, which are out of con-

trol of the developers of this system. The remaining latency is dependent on the

architecture of the main component. The more layers and components the com-

munication has to go through, the higher latency becomes.

The resources such as bandwidth and energy are used efficiently as communication

and computation only occurs when it is needed. The managing of scalability of the

system depends on which hardware the logic of the main component is located.

Putting this logic in the hub means higher performance and less scalability issues,

since each location will host their own logic. However, this decreases evolvability

as every time there is a new update to a system then this must be pushed to

all hubs. Moving this logic to a cloud component and using the hub as a simple

gateway will increase evolvability as updates only need to occur in one location,

but decrease performance and scalability since communication has to go over a

network and all users and devices communicate to a central component type.
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• Availability: The central component is a single point of failure for the system,

however the impact of this failure depends on whether we put the application logic

in the Hubs or in the Cloud. Having each Hub host their own logic means that if

the main component should fail, only the devices in that location will fail to work.

However, if the logic is hosted in the Cloud than the impact of one server going

down is much higher.

• Security: The main component is an entry point to which the attacker gains

access to all devices as it knows their identities. It is not possible to say too much

about security without having another style to compare it to.

• Privacy: Data flows through the main component, so privacy is depends on

whether the application logic is located in the Hub or in a Cloud component.

Having it in the Hub means that data never needs to leave the location and does

not share resources with other processes.

What we have seen from this first analysis is that some of the quality attribute effects

still depend on whether we have a centralized or decentralized approach, i.e. putting

the main component logic in the Cloud or in the Hub.

Peer-to-Peer

A Peer-to-Peer contains peers that are both consumers and producers of data and func-

tionality. In this sense, a peer is both a client and a server. The constraints on the

peers are that they all provide similar services and use the same communication pro-

tocol [Bas]. This is not a good fit for this class as all devices provide different types

of services. Sensors provide data while actuators provide functionality. The constraint

of having all peers be similar increases availability and performance. Availability is in-

creased because one peer failing does not affect the rest of the system. Performance is

increased because peers can always communicate with the closest or least busy peers.

However in this system, the peers cannot serve as backup for each other as they pro-

vide completely different services. Creating an abstraction layer with which all peer

nodes can communicate with each other would be too complex for such a wide array of

heterogeneous devices.

Pipes-and-Filters

The Pipe-and-Filter style is used when a system needs to perform a series of trans-

formations on the input data. The main disadvantage of this style in this context is

that it does not support interactivity. In this system we have a user interface but also

have interactivity between different components. The inherent advantages such as pre-

dictability and reusability of components provided by this style is not in high demand in

this context. This style is the least appropriate for interoperability in this set of styles

and can be omitted.
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Event-Based

In an event-based architecture there are event-producers, event-consumers and an event

bus which links the two together. The event-producers push their events to the event bus

and event-consumers can listen to those events by registering to the event bus. In this

style, the event-consumers know who the producers are and register to specific events

from specific producers. This is different than the publish-subscribe style, where the

consumer is only interested in a type of data and not where it came from.

Figure 5.5: Event-Based Topology

Figure 5.5 shows the minimum components needed to run this class in an event-based

architectural style. The exclamation point means an event has been produced, while a

question mark indicates a registration to an event. In the diagram provided, both the

UI and actuator listen to event E1 by registering for it on the Event Bus. This means

that both must have knowledge of the existence of that particular sensor and what kind

of event it produces. Once the sensor produces the E1 event, the Event Bus will notify

both the UI and the actuator.

In an Event-Based architecture, the event producers do not know who their consumers

are and do not get feedback on whether their event has been processed. This is not a

problem for the first event, however the second event might be something like “turn on

the lights”, which the actuator will respond to. However, the user will get no confir-

mation that the lights have been turned on, unless the actuator produces an event and

the ui registers to this event. Another problem with this style is that the user cannot

address individual devices, instead it can only listen to and provide generic events.

For persistence a component can always be created that listens to all events and creates

a log or saves data to a database, however this is not a priority in this class.

The quality attribute effects will be compared to the client-server style:

• Interoperability: All devices have to be able to communicate with the Event

Bus. This means that the third party devices need to change their communication
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in order to be part of this system. From the perspective of the developers of this

system, the Event-Based style is more interoperability friendly. However, from

the perspective of the third party device vendors, the Client-Server style is more

interoperability friendly. This is an indicator that stakeholder perspective can also

play a role in evaluating quality attribute effects.

• Evolvability:

– S1. There is still a separate component for the UI.

– S2. The change or addition to new autonomous behavior logic will have to

occur in each actuator by having it listen to certain events instead of in a

central component. This means that evolving the system is much harder

with this topology than it is with the Client-Server style.

– S3. Adding a new devices does not mean any change for the system itself,

the new devices just needs to either provide events or register to events via

the event-bus. This means adding new devices is easier with this style in

the perspective of the developers of this system but harder for the vendor

developers.

– S4. The devices can change their data format internally however they must

continue to interact with the event-bus, so that communication cannot change.

• Performance: The latency using this style might be higher than the Client-Server

style for certain functionality. For example, if the user is interested in a certain

sensor data value, they have to register to the Event Bus and wait for that sensor

to post an event. In the Client-Server style, the data is retrieved as soon as the user

requests it. However, if the device posts events fast enough than the event-based

style will perform better due to less messages needed.

The Event-Bus should be able to handle more interactions per time unit than

the main server component, as it only has to notify listeners that an event has

happened and possibly relay some data. The main component might also have to

perform some computation and send confirmation responses.

This style is more efficient for sensors such as motion detectors, which will only

send events when there is motion detected instead of constantly sending periodic

messages. This is again an indicator that different interaction schemes might be

needed depending on the type of sensor.

This style can also be considered slightly more scalable as the main component

only relays messages and depends on the event-consumers to process the data.

• Availability: There is no increase or decrease in availability, the Event-Bus still

serves as a central point of failure.

• Security: The Event-Bus is less of an interesting entry point for an attacker than

the main component of the Client-Server style, since it cannot initiate requests on
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command and does not keep data stored locally. Communication also only occurs

via events, making it harder for attackers to provide malicious data. In this sense,

the Event-Based style can be seen as more secure than the Client-Server Style.

• Privacy: Data is not stored on the Event-Bus, but is relayed to event-processors.

In this sense the event-based style might be considered more privacy friendly than

the client-server style granted that only trusted devices are communicating to the

event-bus.

This style might not be suitable as a primary choice, however it can be implemented

within another style such as the Client-Server style. There can be some event-based

interaction inside the main Client-Server component in order to provide autonomous

behavior.

Publish-Subscribe

The problem with the Event-Based style is that the producers do not know the con-

sumer, which in this context is necessary if the user wants to address one of its devices

individually. In the Publish-Subscribe style, the producers and consumers become even

less coupled, where publishers publish a type of data and subscribers are interested in a

type of content and do not care about the producers of data. The topology would not

look much different than that of the Event-Based style, however it would be harder to

address individual devices, which is a functionality requirement. For this reason, this

style is not explored any further for this class.

Service-Oriented

In the Service-Oriented style, service providers advertise their functionality to a service

registry, which can be used by service consumers to find appropriate services for their

needs. Once found, these service consumers can communicate directly to the service

providers. Any service provider can be a service consumer and vice versa. A common

component found in this style is called an orchestration service, which acts as a service

provider to a user interface and acts as a service consumer by using multiple services to

reach a goal. The main goal of this style is considered to be interoperability, however that

is due to the way it has been used in practice, which is to have all services communicate

using one network protocol such as SOAP. This means that there is no inherent complete

interoperability that comes with SOA, however it is aided by the registry component

which provides discovery, which is one of the tactics for providing interoperability [Bas].
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Figure 5.6: Service-Oriented Topology

The topology for this system can be viewed in figure 5.6. Note that the orchestration

service can either be put in the mobile application, in the Hub or in a Cloud component.

This choice makes a big difference for the quality attribute effects.

Orchestration in the mobile device. Having a smart app on the mobile device that

communicates directly to a registry, can find your devices and send messages directly to

them decreases latency as the UI and orchestration service are co-located, meaning that

communication occurs faster and thus one network message is eliminated. The trade-

off is that there is a bigger app running on a mobile device, which uses more energy.

Another negative point is that the orchestration logic will need to be updated in every

mobile app when there is a change, decreasing evolvability.

Orchestration in the hub. This option creates a separation of concerns between

user interface logic and application logic, which is typical in a client-server scenario. It

increases latency however, since there is an extra layer of communication that has to

go over a network. Evolvability is increased compared to the first option since only all

hubs need to be updated now.

Orchestration in the Cloud. In this option, the hub is simply used as a gateway to

the Cloud component which hosts a central orchestration service and service registry.

This is the type of architecture the SmartThings solution has, where all logic is located

in the Cloud. The advantage is that all logic is in one place, which makes it easier to

evolve the system and also allows all users to have the same version of application logic.
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Another advantage is that the hub does not have to compute much, making it possibly

cheaper to produce. The disadvantages are lower performance because communication

has to occur to a central Cloud, a higher scalability requirement as all devices and

users will be using the central Cloud component, higher internet-dependency as the hub

cannot perform any actions without an internet connection, lower availability as the

single point of failure can cause a complete system crash and less privacy since all data

will have to pass through a central Cloud component.

This makes it harder to compare this style with the previous two candidates, since all

three options are good in specific situations. However we will try to generalize the

quality attribute effects:

• Interoperability: This style inherently has a discovery component, which is one

of the tactics for providing interoperability in a software architecture. However,

the service providers still need to be able to communicate to the service registry

and describe their services in the appropriate format for this interoperability to

occur. However, once this is done, they will also be discoverable within the context

of this system.

• Evolvability:

– S1: The UI has its own component and is decoupled from the logic.

– S2: Autonomous behavior will be located in the Orchestration service com-

ponent. This is the same as the Client-Server style, where this logic isolated

from the UI and from the sensors and actuators.

– S3: A new device has to be able to communicate with the registry, however

once it is registered the orchestration service or any other service consumer

in the system can discover and use it.

– S4: Changes in the data format can be reported to the service registry by

updating the description of the service and how to invoke it. This makes it

easier for the vendors of the devices to provide newer versions.

• Performance: The best case scenario for latency is if the logic is located in

the mobile device, thus allowing direct communication with devices once they are

bound. The worst case is having to communicate with a cloud component in order

to use this logic. This decision can make latency better or worse than the two

other candidate styles.

The decision of which hardware to map the software on also has an effect on energy

consumption, as keeping the edges simple will require them to compute less and

make them cheaper to produce.

Choosing the Cloud first approach will require scalability tactics to be employed,

such as replication and layering with a load balancer. Having the logic in the

mobile devices or in the hub decreases this need.
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• Availability: The Cloud first approach creates a single point of failure, while

having the logic in the hub only removes functionality for that location. Having

the logic in the mobile device means that only one user will be affected if an

instance of the orchestration service should fail.

• Security: Typically services do not know or care who invokes them. Security in

service oriented architectures is typically solved by making agreements on how to

sign and authenticate messages within the system. However, this is not a part

of the style itself. The registry contains information on all registered services. If

an attacker gains access to this component then they will have knowledge on how

to properly invoke all devices. They can for example cause denial-of-service by

sending multiple messages to a device. The registry should in this case have a way

of authenticating its users.

• Privacy: Privacy as we have seen with the two previous styles is dependent on

where the logic is located. Having it in the Cloud means that valued sensor data

and actuator commands need to go through a central cloud component, which the

user has to trust is not being used for any other purpose. Keeping the data flow

constrained to the location means that the data does not leave the local network

except to the mobile device when it leaves the area.

The trend we are beginning to see is that the choice of centralization versus decentral-

ization makes a big difference on the quality attributes regardless of the initial style

chosen. However, the service-oriented style is the best choice so far with respect to

interoperability and allows us to map the software to hardware in three different ways,

which means that it is more flexible and can be adjusted to the needs of the system to

be built. I also includes the discovery and orchestration tactics for interoperability.

REST

The REST architectural style will provide the same topology as the client-server style

except that the components will have a uniform interface, which increases evolvability by

decoupling implementation and the services that components can provide. Furthermore,

this increases interoperability as any other component can communicate to each other

by using this uniform interface. The trade-off is in performance, since information is

transformed to a standardized format rather than one that is specific to the application’s

needs [Fie00].

The “Web of Things” concept is the idea of having sensors and actuators themselves host

web services, thus making them available as resources via standard web mechanisms[Sti08].

The architecture proposed looks similar to the topology we have provided in figure 5.6

for service oriented, where the registry service is referred to as a resource repository con-

taining the URI’s of the devices and description of services, which are machine-readable.

The repositories have two sets of references, a private set and a public set. This is in
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line with the view that each IoT solution is its own private intranet of things which can

be combined with other solutions to form a bigger network. The private set includes the

location of resources which are only allowed to be shared within the intranet, while the

public set contains resources that may be shared.

The advantage of REST and more specifically the Web of Things scenario is that the

sensors and actuators can be reused in other applications. It depends on the type and

goal of the device if this is wanted or not. The uniform interface increases interoperability

and evolvability but reduces performance.

Layered

They layered style is used to decompose a system into cohesive layers, where layers can

only communicate with the layer below it and does not have knowledge of the layers

“above” it. The layered style can be seen as an extra constraint that can be combined

with styles such as Client-Server and Service Oriented. Adding a layer means increased

evolvability but a decrease in performance. Using the layered style can yield many

different topologies, however the minimum needed is shown in figure 5.7.

Figure 5.7: Layered Topology

The presentation layer contains all UI related components, the application logic is located

in the middle layer and the logic to either connect to or accept requests from devices is

located in the networking/adapter layer. These layers do not need to be located on the

same hardware. The layered style gives us a good overview of the types of components

present, however it becomes hard to assess the quality attribute effects without any more

information.

We can fit the Client-Server topology in figure 5.4 inside these layers while still adhering

to the layered style constraints. This is illustrated in figure 5.8.
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Figure 5.8: Layered Client-Server Topology

In this context the layered style is analogous to the Client-Server style for the second

topology.

Microkernel

The Microkernel style provides a component with the bare minimum functionalities

needed for the application, called the Microkernel, that can be extended using indepen-

dent plugins. The advantage of this style is that it provides customizability by allowing

the user to only install features that are wanted instead of providing a full set of func-

tionalities for all users. This can be a useful style to use to allow users to customize

the functionality inside their hub, however is not a good choice when all of the logic is

located in one central server since there is no need for customizability.

This is the style that is being used by the Homeseer, where users can download or write

their own plugins for communicating with devices or creating autonomous behavior

logic. It is possible to design an entire application in the Microkernel style, however

this becomes more difficult in a distributed context as the only components in the

vocabulary available are the Microkernel and the Plugins. In the context of the IoT,

which is inherently distributed, it simply becomes a choice of whether or not to provide a

generic or customizable piece of software. The trade-off is that designing an architecture

in the Microkernel style is considered to be harder because it requires a lot of up front

thinking and an extensible interface for future plugins[Ric15]. This customizability does

not necessarily mean an increase in performance, it just shifts the responsibility to the
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user. If the user only installs the plugins they need than the system will be wasting less

resources.

Using a microkernel increases evolvability as all plugins and the Microkernel are de-

coupled which can also allow the software to be updated while it is still running and

customizability as all users can choose which plugins to install. The disadvantages is

that a Microkernel is much harder to design and is less efficient than a monolithic com-

ponent since they are inherently decoupled, which as we have seen has the side-effect of

increasing latency.

However, I do not find it possible to compare this style to others such as the Client-Server

and Peer-to-Peer styles. The description of this style mentions that it is a product based

style and is difficult to use in a network based setting to describe an entire system[Ric15].

It is always possible to use the Microkernel inside another style however.

As we will see moving forward, this is the only class where having a Microkernel style is

really compatible, as each location of the system might have different types of sensors

and actuators and thus will need a different subset of plugins located in the Hub. For

the next class we will see that this style is not desirable as all users and devices will

need to connect to a Cloud component, which should contain all logic and not a subset

of the logic.

Verdict

The analysis shows that there are four candidate styles for this class, which are the

Client-Server, Event-Based, Service-Oriented and REST architectural styles. The topol-

ogy for SOA can be mapped to a Client-Server style. The topology for the REST style

is identical to the Client-Server style. We have already seen that the Event-Based style

can be used, however for communicating to specific devices it will have to be used in an

unnatural way to stay within the constraints. For this reason we will also eliminate it

as a contender. The best styles will be mentioned for each quality attributes.

Interoperability. The Service-Oriented style contains the discovery and orchestration

tactic, while the REST style contains the uniform interface tactic. In practice, the two

are usually combined where the service-oriented architecture is the main style and the

communications occur with the uniform REST interface.

Evolvability. REST has the highest evolvability as components can change however

they want internally as long as the interface remains the same. Services in Service-

Oriented Architecture can always choose to change their interface as long as they also

change the description in the service registry. However this means that all components

using this service will have to adjust to these changes.

Performance. The Service-Oriented style has the most potential to achieve high per-

formance by allowing mobile devices to interact directly with sensors and actuators.
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This will decrease latency, however comes at the cost of more energy usage on mobile

devices which can be a rough trade-off in a commercial setting. However in situations

where there is a dedicated mobile device for the system and low-latency is a priority,

this trade-off is welcomed.

Availability. All styles have a single point of failure, the important decision here is

not which of the three styles to choose but rather the centralization or decentralization

of application logic. The more logic is moved the edge of the network, the more overall

availability will increase.

Security. The simple Client-Server model is in theory the most secure because it is

not easy to acquire information on how to communicate within the system. For Service-

Oriented this information is located in the registry service and for REST the attacker

already knows how the interface looks like.

Privacy. Privacy remains the same between the three styles. The important decision

is again centralization versus decentralization.

Since the main goal of this class is to provide interoperability, it is no surprise to find

that Service-Oriented and REST are the main choices.

Different sensors require alternative interaction patterns. As we have seen,

styles often constrain the direction of communication and dictates which components

can initiate communication. However, sensors might need to use different ways of com-

municating depending on their type. A motion detector for example can save a lot of

bandwidth and energy by only transmitting messages when there is a movement de-

tected instead of constantly sending an update. Another type of sensor that is used in

a real-time system might benefit more from sending a constant stream of data such as

in a Pipe-and-Filter or periodic messages in a Client-Server style.

Centralization vs. Decentralization. After eliminating styles because their con-

straints do not match the goal of this class and would have negative effects on the qual-

ity attributes, it becomes hard to see many differences between the remaining styles.

However, one decision that remains a constant factor for this class regardless of the style

chosen is whether to put the application logic in a Cloud component or in the hub. This

is best illustrated with the examples of the Homeseer and SmartThings solutions.

SmartThings has a “Cloud first” philosophy, which means that all logic is located in the

Cloud. The Cloud is also the first to know when a user or a device makes a request. This

has the advantage that the logic can be updated in one location and that all users have

access to the same logic. The hub is simply used as a gateway to the Cloud and thus can

be considered to be cheaper to produce, which is also an advantage. The disadvantage

is that performance is reduced as requests have to go over the network and be answered
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by the Cloud, scalability becomes an issues as all users and devices contend for the

same resources, privacy also becomes a concern as data has to go through the Cloud

instead of staying local, if there is no internet connection than the hub cannot provide

any functionality and also the Cloud component becomes a single point of failure for the

entire system.

In contrast, the Homeseer puts the logic in the hub, which decreases latency as described

in [BA12]. Privacy is ensured by allowing data only to flow locally. The price to pay

is evolvability, as updates need to be pushed to all hubs. However, they partially solve

this problem by using the Microkernel style. The users themselves are responsible for

downloading, purchasing or developing their own plugins. In this way it becomes a more

“Do it yourself” product. The developers will only have to push basic updates to the

Microkernel. In this decentralized architecture, there is no single point of failure where

all users of Homeseer lose functionality. Instead, failure is isolated to its respective

location.

Best style for this class. For this class the Service-Oriented style and REST are the

best styles. Combining the two to allow direct communications with devices hosting

their functionalities as web services such as Web of Things vision is a good way to

provide interoperability, which is the main goal of this class.

The difference between using Service-Oriented with REST and using it with SOAP,

which is the Web Service standard, is described in [Bas]. SOAP is characterized as

being complete while REST offers simplicity. This is because REST interfaces only have

four commands and there is no notion of type, so the application themselves are in charge

of handling semantics of interaction. Using SOAP and the WS* standards for Service-

Oriented style will provide a registry service containing machine readable descriptions

of services, which makes sure that they interact with each other in the correct way.

5.3.1.2 Class B. Location Free Heterogeneous Devices

This class of solution has the same goals as the Class A, except no assumptions can be

made about the location of the devices. This means that the designers cannot move logic

to the edge of the network. The styles proposed for the previous class all apply to this

class. Only Service-Oriented and REST styles are further analysed for this class. The

Microkernel style will not work because there is no longer room for customizability as all

users will have to use the same logic located in a central area. The layering will remain

the same as the previous class, so this will also be omitted. The Peer-to-Peer, Pipe-and-

Filter and Publish-Subscribe style are all still not compatible as their constraints do not

fit the goal of this class.

An important difference to note is that this class has no way of knowing the identity

of devices owned by the user. In the previous class this was possible as the hub could
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locate the devices in its proximity. This means that this class will have to communicate

with an entry point in the third party solutions, which can have any type of architecture.

What this also means is that all of the accounts of the third party solutions of the user

will have to be linked up to the account for this system, as there is no other way to

make the connection between user owned devices.

Figure 5.9: Location Free Heterogeneous Devices

Figure 5.9 gives an illustration of this class. The Cloud component will contain the

software for providing interoperability, syncing accounts and autonomous behavior logic.

Functional Requirements:

• The user can view measured data from sensors and control actuators of any third

party solution that they have registered to this system.

• The user can choose from a set of smart scenarios in order to create an autonomous

smart environment.

• The user can add and remove third party solution accounts to the system.

Quality Attribute Requirements:

• Interoperability: This is a primary requirement for this class, meaning that we

should consider styles that provide interactivity and possibly inherent interoper-

ability between components.

• Evolvability:

– S1: Change to UI application

– S2: Change/Addition autonomous behavior logic

– S3: New third party solution

– S4: New device in a third party solution

– S4: Change in data format of third party solution
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• Performance:. The latency in this case is dependent on the third party solutions.

It is expected to be higher than in a solution of class A, where a Hub can be used.

Scalability becomes an issue here as all communication will have to occur in a

centralized Cloud platform. Tactics such as layering and replication should be

used to handle this.

• Availability:. If the Cloud Platform is offline or unreachable, then there is no

functionality available. This is in contrast to the previous class, where the hub

could still carry on if the application logic is stored there.

• Security:. The main Cloud component remains an area of interest for attackers,

however since it runs in a Cloud component and not a limited edge device such as

a Hub, it can be argued that it has more resources to provide better security.

• Privacy:. There is no possibility of keeping data flow constrained to a location,

it has to get sent to the Cloud to be processed. The privacy level of data depends

on what kind of data is being measured by the third party solutions.

Verdict

The differences amongst styles remain the same in this context as for Class A. The styles

do not gain an advantage or disadvantage from having all of the logic moved to a Cloud

component except for the Microkernel style, which is not applicable in this context since

there is no possibility for customizability as provided by that style. The Service-Oriented

style is the best choice for this class because it allows for two different types of mapping

to hardware, both of which support interoperability. New solutions simply register their

service to the service registry and can be used by this class any time.

The first topology maps the orchestration service and the service registry to the Cloud

component. This is shown in figure 5.10.
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Figure 5.10: Service-Oriented mapping A

The advantage of this mapping is that all application logic which is located in the

orchestration service is centralized and can be changed in one place. The mobile device

only uses energy to show the UI. However, the Cloud component acts as an extra layer

increasing latency. Furthermore, scalability is a big issue as all users must constantly

communicate with the orchestration service to be able to provide functionality.

The following topology is also possible, which puts all of this logic inside the mobile

device. This is illustrated in figure 5.11.

Figure 5.11: Service-Oriented mapping B
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This has the advantage that the mobile device will be able to communicate directly to

services once it has been bound to the services it requires. This decreases latency. This

also increases availability of the system, as having the Cloud component go down only

removes the functionality of looking up new services. Scalability also becomes less of an

issue since the Cloud is only used for registration. The downside is that every update to

the orchestration logic must be pushed to all mobile devices. Furthermore, the app size

and energy usage increases on the mobile device. This can be a good trade-off for certain

specialized environments, where performance is a priority. An example could be a smart

hospital environment where all specialists and emergency responders are equipped with

special purpose mobile devices that can last an entire shift.

Mediator VS. Direct interoperability. Interoperability can be achieved by either

building a bridge between two systems or having the two systems speak the same lan-

guage. Both classes A and B are an example of building bridges, by acting as a mediator

between solutions and also the user. Such a mediator increases latency, has a potential

negative effect on privacy, creates an extra entry point for attackers, creates a single

point of error for communication, but also increases evolvability as it decouples the

systems from each other.

5.4 Observation/ Class C. Body Sensors

The Observation category deals with solutions that measure certain attributes of the

human body, where the data from one sensor is used to provide useful data. This is in

contrast to the third category of IoT Solutions, where aggregation of data from multiple

sensors is used. The user of the solution can be the person that is wearing the sensor,

for example for fitness and activity tracking. It is also possible that the user is a health

specialist that monitors patients wearing body sensors.

This category only has one class, namely the Body sensors class. One of the differences

is the scale of the network, which can be mapped to the Body Area Network (BAN)

mentioned by the IoT-A [BM]. It is relatively small in scale compared to the other

categories. The communication might be a connection between the sensor and a mobile

device using Bluetooth technology, or the sensor could also be equipped with networking

capabilities and communicate with a Cloud. One other possibility is to use the mobile

device as a gateway to the Cloud. Figure 5.12 illustrates this class of IoT solutions.



Chapter 5. Software Architectural Styles 52

Figure 5.12: Observation Category / Body Sensors Class

The reader component in this figure contains the logic for communicating with the sensor

and visualizing it in any useful way to the user. The reader could be located in a mobile

device or a web-service. This decision has an impact, however since this is a comparison

of styles we will abstract from this decision.

Functional Requirement. For this class we will only require one functionality, which

is that the system should provide a visualization of measured data from a body sensor

in a format that is useful to the user.

Quality Attribute Requirements:

• Interoperability. Interoperability is a secondary requirement for this class. This

means that we can consider how interoperability with other systems could occur in

the future given a certain style, however the other attributes are more important

for the final verdict.

• Evolvability.

– S1.New version of sensor (hardware)

– S2.Update to data process and visualization logic

• Performance. Choosing the correct rate of sampling and communication pattern

has an effect on latency and energy consumption. Scalability is not a primary

issue.

• Availability. The sensors in this class are considered to be mobile. For safety

critical systems the use of multiple wireless communication technologies should be

used. The use of another device, such as a mobile phone, as a gateway to the

Internet is also a possibility.

• Security. The sensors might not have the computational resources to perform

advanced security algorithms. Making design decisions that remove unnecessary

messages and computation can relieve the resources to be used for security pur-

poses.

• Privacy. The data in this class is considered to be personal, since the data being

measured points directly to a certain user.
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Client-Server

The Client-Server style is a good contender because it is clear that the sensor is a data

provider and the reader is a data consumer. However, the role of Client and Server

can be mapped on any of the two, providing different topologies. Both can be used

depending on the application to be built.

If the Reader component is a Web Server, than having the sensor play the role of the

Client is the best idea, since the Web Server will be a non-terminating process and

can have a static address. If the reader component is a mobile device or something

similar in the proximity of the sensor, then the sensor could play the role of the Server

which gets detected via Bluetooth. The Reader is then the component that initiates

communication. The discussion so far has been about the two components identifying

and communication with each other. However, the choice in topology also has an effect

on some of the quality attributes. The two topologies will be referred to as sensor-as-

client and sensor-as-server.

• Interoperability. Having the sensor play the role of the Server will allow other

types of readers to communicate with the sensor easier, given that they have the

exact specifications to initiate a communication and authorization. If the sensor is

the Client then this would mean updating the logic on the sensor, which in some

cases might be hard because the sensors might not have direct internet access.

• Evolvability.

– S1. A change in the sensor might mean changes in the reader component if

the sensor is in the Server role. If the sensor is the Client, then there is no

need to make any changes.

– S2. A change in the application and visualization logic will not require a

change in the sensor in any of the two topologies, as the sensor will only

continue to send data the only way it knows how or reply to requests in the

only way it knows how. The application logic and visualization can change

as long as the interface to the sensor remains the same.

• Performance. The Sensor-as-Client can save energy if it only sends a message

when a certain conditions occur. However, if we only need the data occasionally,

then having the Sensor-as-Server topology saves energy by having the sensor only

react to requests. Both can be used to provide real-time analysis by either having

the sensor periodically send its data or having the reader periodically ask for data.

This symmetry is only possible because of the scale of this class, however in other

classes we will see the difference this choice can make.

• Availability. The topologies do not make any difference with respect to avail-

ability.



Chapter 5. Software Architectural Styles 54

• Security. The Sensor-as-Client can be seen as being more secure as the identity

of the sensor is not known by the reader until a request is done. Also, in this

topology the sensor does not accept any requests, it only initiates them which is

also more secure.

• Privacy. The topologies do not make any difference with respect to privacy,

except for confidentiality which is a part of the security discussion.

The two topologies both have their advantages and disadvantages. The Sensor as a

Client should be used when new versions of sensors is likely to appear, if the messaging

pattern is event or condition based and to provide more inherent security. The Sensor

as a Server should be used when in anticipation of interoperability with another system

and if the data is only need for specific occasions (as part of a series of computations).

Peer-to-Peer

As mentioned in the previous section, there is a clear difference between the provider of

data and the consumer of the data. For this reason using a peer-to-peer style is not a

good fit, as it would mean equipping the sensor with the logic contained in the reader

and also the ability to ask the reader component for data, which is communication

possibility that is not needed. This results in waste of memory with no gain just to stay

within the constraints of the peer-to-peer style.

Pipes-and-Filters

This style can be used in the scenario where the sensor needs to send a constant stream of

data, which is transformed along the way. The advantage of using this style in contrast

to the Sensor-as-Client topology are the following:

• Interoperability: This further decreases interoperability possibility as any com-

ponent that wants to communicate to this style has to understand the output from

the final filter.

• Evolvability: The filters are independent and thus can be replaced and changed

without affecting the rest of the system, which is inherent in the pipe-and-filter

style.

• Performance: This depends on the number of filters, as there is a trade-off

between performance and evolvability which is dictated by the number of filters. If

there are too many filters, then this brings overhead because of the communication

via pipes. However if we just view the sensor as one filter than we do not gain any

evolvability over the Client-Server style.

• Availability: The data flow is one way, so the sensor does not get any confirmation

that the messages are being received.
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• Security: There is no effect on this attribute.

• Privacy: There is no effect on this attribute.

Event-Based

The event-based style can be used to send information to one or multiple recipients that

are interested in a single event. In this case, the event could be the condition that the

measured data exceeds a certain threshold. The Sensor would need to host an Event-

Bus where readers can register to. However, this same messaging pattern can also be

replicated using the Client-Server style. The only difference is that the Event-Based

style provides a decoupling between the event-source and the event-processors, since the

source does not know the identity of its listeners. This is good when there are multiple

different types of event-processors and receiving a confirmation that the message has

been received is not important.

However, in some scenarios it might be important to know for sure that an event has

arrived. The difference is presented in figure 5.13.

Figure 5.13: Comparison Client-Server and Event-Based styles for Body Sensors
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Unless the sensor needs to update multiple readers, then the event-based style does not

bring any advantages. In the examples we have seen so far, the sensor always commu-

nications with one application at a time. This would make having an event-bus with a

registry of all listeners useless in this context and it also adds latency. Furthermore, the

sensor might want to have confirmation that the message has been sent if it is a safety

critical, such as a “patient is having a heart attack” event.

Publish-Subscribe

The publish-subscribe further decouples the producers and the consumers of data, which

we have already seen is not desirable for this class.

Service-Oriented

The Service-Oriented style brings too many unnecessary components and constraints.

Interoperability is not a primary requirement and we are not interested in dynamic

lookup of services. The service registry would need to be hosted somewhere, and it

would contain many descriptions of the same type of services since we only have one

type of sensor per solution. Furthermore, some solutions do not even use the Internet

at all.

REST

The uniform interface constraint could be used in order to facilitate communication

with the device, however the REST uniform constraint also requires that services be

identifiable by an URI, meaning that it can be addressed via the Web. However for this

class of sensors it would not be the best solution as they are not likely to be connected

to the Internet directly or have a single stable gateway.

Layered

Using the layered style will result in a minimum of three layers, a presentation layer,

application layer and a sensor logic layer. The first two are located in the reader while

the last is located in the sensor. If the sensor layer is put on top, then the control flow

would be the same as the Sensor-as-Client topology. However, putting the presentation

layer on top would mean that the user would constantly have to ask for the data, where

the business logic queries the sensor, processes the data and sends it to the UI which is

the same as the Sensor-as-Server topology.

Microkernel

There is no need for customizability in this class, so the disadvantage of added complexity

is not a worthy trade-off.

Verdict

The analysis shows that in overall, the Client-Server style is the best choice for this

class. Choosing which components take the role of the Client and the Server allows
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for different types of messaging patterns that can save energy and bandwidth usage.

Interoperability with these devices should occur with close-ranged wireless technologies

such as Bluetooth and not by having a URI and webservice run on the device, since this

costs more energy and requires a steady connection, not to mention that the IP address

will constantly change since the sensor is mobile.

5.4.1 Aggregation

This category of IoT solution has the goal of collecting data from sensors, aggregating

it and visualizing it for the user. These are providers of data, creating value with only

sensors and not using any actuators. The sensors in one solutions are all from the same

vendor. This category contains four classes, where the first two are concerned with

providing information derived from all sensors in the system as a whole and the last two

are concerned with the scenario that certain data belongs to specific data groups that

own the sensors.

The difference is that the collective data group must gather all of the data in one point,

while the second group can either provide one central point or can gather data in a more

decentralized way by allowing user groups to aggregate data themselves.

Figure 5.14: Collective vs. User data scenario for aggregation category

Figure 5.14 shows the difference between the collective and user data scenario. The

collective data scenario generally does not have any privacy requirements, as the data

is open to all users. For the user-owned data scenario, the data originating from the

sensors that are owned by a user group needs to be aggregated and visualized only for

their respective owners. This means that in those scenarios privacy does play a role.

The majority of the IoT solutions we have in our dataset fall into this category. This

might be the case because sensing data is easier and less invasive than changing some-

thing in the world with an actuator.
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5.4.1.1 Class D. Active User Collective Data Solutions

This class contains solutions where the user “actively participates” by owning one or

multiple sensors that contribute to the central data storage. This data can then be used

for the benefit of all users that actively participate. Examples are the WeatherCloud,

where the user equips their car with multiple sensors in order to measure road conditions,

or the TZOA environment sensor which measures the air around the user and updates

this to a central database.

Figure 5.15: Active User Collective Data Solutions

Figure 5.15 shows the scenario of this class for one user. It is assumed that there must be

a central Cloud component in this class because the data must be aggregated somewhere

central. The dashed box indicates ownership, meaning that the user owns one ore more

sensors that provide data and at least one device which is able to visualize the data.

Functional Requirement:

• User can visualize aggregated data collected by all sensors in the system.

Quality Attribute Requirements:

• Interoperability: Interoperability is a secondary requirement for this class. This

means that we can consider how interoperability with other systems could occur in

the future given a certain style, however the other attributes are more important

for the final verdict.

• Evolvability:

– S1. New version of sensors (hardware)

– S2. Update to aggregation logic

– S3. Update to user interface
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– S4. Addition of new sensor type to the system (new type of data)

• Performance: Scalability is an inherent issue in this class because all of the data

from all sensors need to be gathered into one place for analysis.

• Availability: The sensors might be mobile so the connection to them may be

limited. The central aggregation component is a single point of failure.

• Security: In this case data integrity is the most important security goal that

needs to be ensured, as confidentiality is not a primary issue since the data is

open. Sending data in the clear instead of encrypted can increase performance.

• Privacy: The data is considered to be open and privacy is not a primary issue.

However, since each user still actively participates by owning the sensors, metadata

could be used to infer sensitive data and behavior patterns of the user.

Client-Server

In the previous two categories we considered two topologies of the Client-Server style.

For the first category we took advantage of the proximity of the devices to the hub

and also that devices belong to a user. In the Body Sensors class we could provide two

topologies because the scale of the system was very small. However in this scenario

we potentially have many sensors and one central server component (which could be

replicated and located behind a load balancer for scalability). The Server cannot know

the identities of all sensors and if the sensors are mobile they will have dynamic IP

addresses. From this we can derive that the sensors must know the identity of the server

and not the other way around.

The Server component would contain the application logic and the data storage. The

sensors would write to the data storage and the user would read from it.

Figure 5.16: Client-Server Topology

Figure 5.16 shows the topology, which is separated into a write and read section. The

communication between the sensor and Cloud can be seen as inefficient for this class,
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especially for real-time systems, since the Cloud has to send a respond for every request

containing data. It might be more efficient to use a style such as the Pipe-and-Filter

style for the write part, since data flows in one way. This will be discussed later.

Note that we have not specified where the user interface logic is. It could be a native

mobile, console or web application. There are IoT solutions in this data set that have

all three. Having a web application increases evolvability, however there will be more

workload on the central component. Of course we can assume that the central component

will be split up to address the sensors and users separately, with the central point being

the data storage.

• Interoperability: Any interoperability with this system would have to occur with

the Cloud, since the sensors and UI device do not accept requests.

• Evolvability:

– S1. New sensors should not affect any other components since the server does

not have knowledge of the clients.

– S2. The aggregation logic is located in one central Cloud component, which

makes it easier to evolve the aggregation logic.

– S3. It depends if there is a native/desktop application or a web application.

However, in both scenarios we can assume that the UI logic is separated from

the aggregation logic.

– S4. A new type of sensor would mean updating the data model to be able

to store this data. The aggregation logic might have to change to include

this new data in its calculations and the UI may also want to show this data

separately. In short, the entire system would need to be updated.

• Performance: Extra performance tactics need to be employed in order to decrease

the latency and handle scalability. Prioritizing the user reads could increase the

user perceived performance. Replicating the data and functional components can

increase the capacity. This style keeps the edges of the network as thin as possible,

which allows for sensors to be made cheaper.

• Availability: The central component is a single point of failure. Using replication

can provide extra availability.

• Security: Keeping the sensors thin would allow for the free resources to be used

to ensure data integrity, such as using a checksum of the hash values. The trade-

off is decreased performance, however if security is the priority then this might be

worth it.

• Privacy: Data passes through the central component, which could be considered

bad for privacy. However we have decided that this is not a primary requirement

for this class.
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Peer-to-Peer

We have seen that there is a clear difference between the producer and the consumer

of data. However, if for example a mobile device is used as a sensor and the UI in the

system, then we would be within the constraints of the Peer-to-Peer style. However,

since we need to perform data aggregation of all sensors in the system, there needs to

be a central data storage which is not allowed in a Peer-to-Peer style.

Pipes-and-Filters

The data in this class flows from the sensors to the user, however it would not be

very practical to model the entire system in the Pipe-and-Filter style, as the central

converging point would need to know the identity of all user devices. This assumption

cannot be made as users constantly join or leave the system. However, the Pipe-and-

Filter style could be used for the sensor part of the system.

Figure 5.17: Client-Server and Pipes-and-Filters combination

Figure 5.17 shows how this system would look like. The sensors would be configured

from the start to stream data to the Cloud Server, which has a fixed address. If par-

titioned correctly, the most computational expensive function could have its own Filter

component and run in parallel, which is a possibility with Pipes and Filters. The im-

age also illustrates the scenario where there is a native mobile and a web application,

however this can vary within this class.

The difference between using a full Client-Server style and this combination is the trade-

off between performance and availability. The combination has higher performance as

data is constantly send one way and does not have to wait for a confirmation of arrival.

On the other hand, there is no reassurance that the data reaches all the way to the

Cloud. If the Cloud is simply computing an average and the sensors send an update

every half a second, then losing some of the messages along the way might not be such

a problem. However, if it a safety critical system, then it might be better to use the

Client-Server style where the sensor is sure that its data arrives.

Event-Based
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If the goal of the system is to alert users when a certain event happens that can be

inferred from the aggregated data, than an event-based style can be used by letting

users register for certain events. An example could be if the average of all sensors

surpasses a certain threshold. The Cloud will only need to send a message to the users

when this event happens instead of having the user constantly poll for changes. This

increases bandwidth efficiency and also decreases energy consumption.

However, the trade-off is that there is no confirmation that the user receives the events.

When it is important to make sure that the message has been reached, it might be better

to use a request/response connector instead of an event-based.

Publish-Subscribe

In the same way as the event-based style could be used in this class, the publish-subscribe

class could be used to allow the database to act as a publisher that posts updates based

on certain topics. The user can subscribe to certain types of data. An example is a

weather system, where the user only wants to subscribe to weather changes in their

location. The effects are the same as the Event-Based style, except that the Publish-

Subscribe style is considered to have inherently more overhead since the Event-Service

needs to categorize the content and provide information retrieval logic, which increases

latency compared to the event-based style.

The advantage of being able to have multiple heterogeneous publishers inherent in this

style is not used here.

Service-Oriented There is no incentive to use this style since interoperability and

dynamic lookup of services is not a requirement. It would bring unnecessary components

and complexity for a system that only needs to provide data to users.

REST We have already seen that the Client-Server topology has one central server com-

ponent. It could be possible to allow this component to have a REST interface in order

to be used in other IoT solutions. This will increase interoperability but reduce perfor-

mance as information is transferred in a standardized form. This could be mitigated by

allowing the sensors and ui applications belonging to the system to still communicate

in a custom protocol and only using REST for external communication. However this

might also come with some trade-offs, such as having the same communication logic in

two places which decreases evolvability.

Layered

I could not find a layering to model this class of system which adheres to the constraints

of the layered style. This is primarily because there are two components that initiate

communication and one central convergence point. In non-IoT systems, the user is

usually the initiating party. This supports the claim that not every system can be

modeled in a layered way [GS94].
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Figure 5.18: Layered Topology

Figure 5.18 shows an example of a layering for this class. However, this is not a valid

architecture within the constraints of the layered style, since the bottom layer may

not have knowledge of the layers below it. In this figure the layer sensor is using the

aggregation layer and the aggregation layer is using the data layer. This is an important

discovery as it can point out that the standard layered style might not be usable in the

IoT since we have two points in the architecture that initiates communication, since it

is not possible for the central component to know the identity of all users and devices.

Microkernel

There is no need for customization, the inherent complexity of this style would not

provide any needed benefits.

Verdict

The Analysis shows that there are a few combinations possible between the Client-Server,

Pipe-and-Filter and Event-Based for this class to achieve the best quality attribute

effects. A REST interface can be added, converting the Client-Server into a REST style,

to increase interoperability with systems in the future.

Since the goal of this class is to aggregate data from all sensors, it becomes inevitable

to have a central component where all data converges. The best styles for each quality

attribute will now be mentioned.

• Interoperability: The REST style could provide a uniform interface, which

would allow other systems to use the data gathered by this class of solutions.

• Evolvability: For the four change scenarios analyzed, the Client-Server, Pipes-

and-Filter and Event-Based style do not differ in their ability to reduce the impact
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of change. However this does not mean that they all three offer the same level

of evolvability, simply that in this context and proposed topologies they are the

same with respect to evolvability. A Pipes-and-Filters style has independent com-

ponents, however we could also model the internal architecture of the clients and

servers in this way. The Event-Based allows for heterogeneous devices to listen to

the same events and thus decoupling them from each other using the Event Bus,

however in this class we only have one type of device that listens to the event.

• Performance: Using the Pipes-and-Filters style for the sensor-to-Cloud com-

munication can increase performance by removing the need for a confirmation

response after every message sent. The Event-Based style can improve efficiency

by only sending updates when certain events happen, if the goals of the system

can be modeled in this way. Scalability will have to be provided by using tactics

such as replication and layering.

• Availability: The Client-Server style is best for availability as it requires a re-

sponse to be sent after every request.

• Security: The Event-Based defines an interface which the users must adhere to,

which only contains the events that can be registered to. This might be considered

better for security as it gives an attacker less of an opportunity to inject malicious

input.

• Privacy: The different styles do not make a difference for privacy as the data

flows through the same components.

Information Providers. This category of solutions is the first pattern I have recog-

nized during this thesis. I noticed that there are many solutions that can be seen as

information providers, i.e. they collect data from multiple sensors and provide an anal-

ysis on the data and visualize it in a way that is useful to the users of the system. In

this way they create value without using actuators.

Two types of actors in the IoT. The analysis of the layered style shows an interesting

side-effect of having sensors and actuators as part of the system. They can be consid-

ered actors in the system, which might simply send data periodically or when an event

happens. They might also act in more autonomous ways based on complex algorithms,

meaning that it can be hard to predict when they will initiate communication over the

network, which is the same in most cases for human users. This makes it hard to model

the system in a layered way unless you consider human users using a user interface the

same as sensor and actuators. Note that this is only the case when it cannot be assumed

that the identity and network addresses of all sensors and users are known.
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5.4.1.2 Class E. Passive User Collective Data Solutions

This class looks very similar to the previous class, however the difference is that the

number of sensors do not depend on the number of users. The effect of this is that

the number of sensors is predictable and requires a less scalable system. However, in

my analysis I did not find that this was a big enough difference to alter the set of best

choices of architectural styles as all other requirements remain the same.

It could be argued that since the sensors are all known, we could use another client-server

topology where the sensors can have the Server role. However we have no guarantee that

the sensors are stationary and thus could have dynamic addresses and possibly unreliable

connectivity.

Because my analysis shows similar results for this class, I will deviate from the format

and move on to the next class. For the purpose of choosing software architectural styles,

the classes D and E can be considered equivalent. This does not mean that they are

the same type of system, as they might have different business models and varying

architecture design choices moving forward.

5.4.1.3 Class F. Stationary Homogeneous Sensors

This data contains solutions where only data from sensors belonging to the same user

group should be aggregated together. This data should only be viewed by the owners

of this data. The sensors are stationary in this class, meaning they are assumed to have

a relatively stable connection to the Internet compared to mobile sensors.

The main difference I found in my analysis of this class is that the user could run their

own central server which runs the back-end software instead of having a central server

for the entire system. It becomes less of a turnkey solution however, since the user will

have to install and maintain a server.

The effect of choosing the decentralized version, having the user run their own server,

is an increase in privacy since personal data is not shared on a Cloud server with other

users, increased performance and less of a scalability requirement and overall system

availability as the effect of a server going down only affects that user (group). The

trade-off is that each user needs to update their server when new versions come out,

there is a cost to owning a server and maintaining it.

For a solution that expects their target audience to be retailers that want to place a

few sensors in their store to get insight on customer behavior such as the Scanalytics

Floor Sensors solution, then the centralized turnkey solution might be the best choice.

However, for a solution where there are many more sensors per user, the data is more

sensitive and the user groups are companies that could likely afford or already have own

data centers, than the decentralized “Do it yourself” architecture is the best choice.
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The choice for styles remain the same as the previous two classes, where the Client-

Server style is foundation with Pipes-and-Filters and Event-Based as possible inclusions

depending on the scenario.

It remains a fact that a central component is needed in order to collect all of the data in

one place to be useful for the user. Not using a central component would mean that an

edge device, sensors or mobile devices, would need to host this data. This would not be

a good for energy consumptions and usage of memory of edge devices, which is limited

to begin with.

5.4.1.4 Class G. Mobile Homogeneous Sensors

This class is identical to the previous class except that the sensors are considered to

be mobile. The effect of this is that the connectivity of the sensors to the Internet is

considered to be less reliable. It is also more probable that the sensors use batteries,

however this is not always the case. The mapping of styles to this class results in the

same choices for the last three classes, however the less reliable connectivity needs to

be addressed with design decisions moving forward. An example could be allowing the

sensors to temporarily store data locally until there is a stable connection. This tactic

is used by the Farmobile and DAQRI Smart Helmet solutions. The trade-off is that the

sensors need to have data storage capabilities and be autonomous in the sense that they

can detect when there is no connection and switch over to the local storage. This leads

to higher cost of production of the sensors and makes it a more interesting target for

theft. It also consumes more energy than the simple stationary sensor that just pushes

its data. The battery life of the DAQRI smart helmet is estimated to a maximum of 10

hours, which is the cost of having such a smart sensor.

Another tactic that could be used is equipping the sensor with long range mobile telecom-

munications technology such as 4G, in case there is a scenario where there are no other

access points to the Internet. This tactic is also employed by Farmobile.

A third way to do this is to make use of a mobile device as a relay of data. The Truvolo

Car solution uses this tactic in order to send a steady stream of data to the Cloud

regarding the diagnostic information of a car. However this is assuming that there is a

user with a mobile device in the area and that there are not too many sensors per user.

This is not the case for all solutions in this class.

We have seen that the same styles have come up on top for the four classes belonging

to the aggregation category. This is because the goal is the collection of data, which is

best handled by having a central point of convergence. Another reason is because the

choice of which components are consumers and producers of data and functionality are

already made for this class. It is clear that the sensors are producers of data and the
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users are consumers. However, the following category introduces actuators which will

bring more opportunities for multiple styles.

5.4.2 Automation

This category contains IoT solutions that have sensors and actuators, meaning that the

read from and write to the physical world. The addition of actuators brings security and

safety concerns, as an attacker could misuse these to cause material damage or physical

harm to people. The category is split up into two classes, where the classifying attribute

is whether or not there is any autonomous behavior in the system. In this context,

autonomous behavior is defined as the system sending commands to the actuator without

the human user explicitly issuing the command. In this way, the user receives benefits

from the system without the effort of having to use it directly. The second class in this

category contains solutions where the actuators are driven by explicit user commands,

such as “turn the lights on” or “unlock car now”.

Figure 5.19: Automation

Figure 5.19 shows some of the different ways these solutions could be designed. The

term used for these of systems are Wireless Sensor and Actuator Networks (WSAN).

The boxes with S are sensors, A are actuators and SA are components that have both

sensor and actuator capabilities. As we can see in the image, there can be a direct

communication between a sensor and an actuator, where the actuator reacts to the data

measured by the sensor. There can also be a central component between the sensor and

the actuators that decide when and which actuators to send commands to. This can
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be based on predefined logic by the developers of the system or user created/selected

scenarios.

The system could also be dependent on a user, where a user is updated with sensor

information and must decide for themselves when they want to issue commands to an

actuator. And finally, there can be some solutions where the sensors and actuators are

considered as one and can communicate with each other. This last example is inspired

by the peer-to-peer style, we will discuss later how and why this style works.

5.4.2.1 Class H. Smart Systems

The smart systems class contains solutions that primarily rely on the system itself to

decide how to use actuator depending on sensor or other data. Solutions from classes

C to G can be transformed to this class if an actuator is added that reacts to the data

gathered. There is a human user in this scenario, however they have a secondary role in

this class of system. They can in some cases choose scenarios that actuators must react

to. In most of these systems there will also be a way for the human user to override

the decisions made by the system, or if the decision making logic becomes unavailable.

An example is the NEST thermostat, which still allows the users to manually change

the desired temperature of the room. For this class we will focus primarily on the

autonomous behavior part of such systems.

Functional Requirements.

• The system controls actuators without the help of human users.

• A user can choose from a set of actions to occur given a certain condition(optional).

Note that this class is very broad and there are not many examples of such systems in

the dataset of solutions used. However, this gives room for more choices of styles.

• Interoperability: Interoperability is a secondary requirement for this class. This

means that we can consider how interoperability with other systems could occur in

the future given a certain style, however the other attributes are more important

for the final verdict.

• Evolvability:

– S1. Changes to autonomous behavior logic

– S2. New Type of Sensor (New type of Data)

– S3. Addition of new actuator scenarios (Optional)
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• Performance: This class could contain solutions of any scale, might make use of

data aggregation and could have sensors and actuators connected to power outlets

or that use batteries. For this reason it is hard to say up front what latency,

scalability and resource efficiency mean in this context.

• Availability: For certain actuators it is critical that they be available even if

they cannot be reached digitally. An example is the NEST thermostat, which still

allows a user to change the room temperature from within the room even if there

is no connection to the server.

• Security: The actuators bring an extra concern to security as they can be misused

by attackers to cause harm or material damage.

• Privacy: Privacy depends on the data gathered by the sensors, for this class we

have made no assumptions about this. There could be solutions in this class where

actuators only react to a motion detector, in which case privacy is less of a concern

than when personal data is measured and collected.

Client-Server

The most simple form of a solution in this class is a one-to-one connection between

a sensor and an actuator. The sensor sends a message to the actuator to perform an

action. This is a reactive system, where data is used and not saved. Three different

messaging patterns in this style is illustrated in figure 5.20 for this first type of system.

Figure 5.20: Client-Server one-to-one Topology

In the first pattern, the Client reacts to an event and sends this to the actuator, which

proceeds to perform a change immediately to the world. An example could be an

automatic door, which opens when a person stands in front of it. The client reacts to

an event, however this does not mean that it is using the event-based style. It simply

sends a request to an actuator, which it knows the identity of, when it detects an event

in the real world.
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In the second and the third messaging pattern, the sensor is measuring the attribute x

of an object continuously. The client can either continue measuring until a certain event

happens, such as the value of x surpassing a threshold y. However, the third option has

the sensor immediately relaying data to the actuator, which must know the threshold y

and only make a change to the world when this threshold is surpassed.

The first choice is good for sporadic event arrivals, which can happen at any time and

cannot be predicted. The second pattern is good for systems that have sensors which

periodically measure some attribute in the real world and where network efficiency is

important, as it only sends a message when an event has occurred. The last option is

good for when the sensor needs to be kept as simple as possible and the event condition

is more complicated. This pushes this knowledge to the actuator.

This was an analysis of one-to-one communication between a sensor and an actuator

using the Client-Server style. For one sensor to many actuators communication, it

depends on the number of actuators which style and topology to choose. If there are

only a few actuators, then the sensor can take the role of the client and know the identity

all of the actuators and act in the same ways as in figure 5.20. The sensor can also act

as a server and have the actuators constantly ask for the value measured, however this

might result in unnecessary communication. However, for larger numbers of actuators

it might be better to host a central component which handles the communication in

a request-response or event-based way since the sensor might not have resources to

handle all requests. This adds an intermediary in the communication and thus decreases

performance as a trade-off.

If such a server is used in between the sensor and actuators, then the results of the

analysis done for the aggregation category also apply here. The actuator will take the

role of UI as data consumer. The same combination of Client-Server, Event-Based

and Pipe-and-Filter should be used for the same reasons as previously discussed. The

optional functional requirement of having a user be able to choose scenarios for the

system to carry out can be added by allowing a UI to communicate to the central

server. The complete topology in a Client-Server style for many sensors to many actuator

communications will look like figure 5.21.

We have already discussed that the sensor to Cloud communication can also be designed

in the Pipes-and-Filters style to increase efficiency at the cost of reliability. The same

trade-off can be achieved for the Cloud to actuators communication by using the event-

based style. The quality attribute effects of this style for this class will now be mentioned.

• Interoperability: This style doesn’t provide any interoperability tactics, mean-

ing it is not supported. Any system that would want to operate with the sensors,

actuators or cloud server would need the exact interface specifications and autho-

rization to do so.
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Figure 5.21: Client-Server many-to-many Topology

• Evolvability:

– S1. For the one-to-one communication topology, the condition for the second

and third pattern is considered the autonomous logic. This would need to be

changed within the sensor or actuator containing this condition check. For

the many-to-many scenario, the logic is isolated in the cloud component.

– S2. This is only applicable in the many-to-many scenario. A new type of

sensor would mean that the logic in the Cloud would also have to be updated

to support this new data, however the change will not ripple to the actuators.

– S3. A new scenario can be added in the Cloud component and it would not

require change in other components.

• Performance: Having the sensor and actuators communicate directly to each

other performs better than having an intermediary Cloud server in the middle.

However, this would require the sensor to know all of the actuators in the sys-

tem and would also require the sensors and actuators to contain the autonomous

behavior logic themselves. This reduces evolvability. As for the choice of Client-

Server style, the same trade-offs with reliability/availability that were discussed

for the aggregation category apply here.

• Availability: The central component adds a single point of failure even though

data aggregation is not a primary goal.

• Security: This type of centralized Client-Server topology has the inherent effect

that the edge devices do not accept requests, making it harder for attackers to

communicate with them.
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• Privacy: In this topology all of the data passes through a main component even

though data aggregation is not the primary goal. This could be avoided by allowing

the sensors to communicate directly to actuators, however the trade-offs were

already mentioned.

Peer-to-Peer

Up to know it has not been possible to use the peer-to-peer style as there was an inherent

hierarchy of components that comes with the goals of the different categories. However,

for this class of solution it is possible to model peers as a combination of sensor, actuators

and decision making capabilities. These peers could communicate with each other when

needed in order to perform their duties. An example could be driver-less cars that

communicate with each other in order to find the best routes and not hit each other.

Figure 5.22: Peer-to-Peer Topology

A peer-to-peer style requires that all components are both producers and consumers of

data and functionality. In the previous classes there was no possibility to create one

component that served as both, unless the mobile device is used as a sensor and a user

interface. If we think of peer-to-peer applications in the best, it required all users to

run a peer node that includes all functionality. In the same way, this can be done for

this class by merging sensors, actuators and decision making logic into one component.

The result is shown in figure 5.22. We could also model a driver-less car solution with

a centralized Client-Server style, however this will have effects on the quality attributes

that the system will exhibit.

• Interoperability: The peer-to-peer style is inherently bad for interoperability

with other systems, as communication can only occur between peers.
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• Evolvability:Inherent in the peer-to-peer style is that any change at all to the

system needs to occur in all peers. If a new type of sensor is added to one peer,

than all peers must also get this addition in order to adhere to this style.

• Performance: This style decreases latency since peers communicate directly and

not via an intermediary. It also increases scalability as every added peer not only

consumes but also provides data and functionality. This however comes at the cost

of having smarter edge devices that use more power.

• Availability: There is no single point of error in a peer-to-peer system, making

it a good style for availability. In some cases, peers my take over for each other if

a peer should fail.

• Security: Each peer needs to handle its own security.

• Privacy: Data does not pass through a central node, which can be considered

good for privacy. However, it can also be argued that the openness of the styles

to other peers could allow for unexpected and untraceable data flows.

Pipes-and-Filters

As already mentioned in the Client-Server section, the same trade-off is available in the

sensor to central component section. Due to the lack of support for interactivity of this

style, it is not suggested to use in any other scenario for this class.

Event-Based

The Event-Based can also be used as already described in the Client-Server section. This

style cannot be combined with the peer-to-peer topology provided, as it would require

either having a central event bus or having all peers run an event-bus and having peers

register to each other. This would also remove the possibility that the peers could

request data from each other explicitly.

The entire system could also be modeled in this style by running a central event-bus.

The difference with the Client-Server topology presented in figure 5.21 is that the system

can no longer provide actuator actions based on data aggregated from multiple sensors

in an efficient way. However, if data aggregation is not a requirement then this style can

be used as an efficient way to provide one sensor to many actuators communication if

the number of actuators is large and can change. In this way the sensor does not have

to know the identity of the actuators.

Publish-Subscribe

The Publish-Subscribe style can be used in the same way as the event-based style except

that the actuators will be interested in a type of content instead of an event from
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a specific sensor. The same performance and evolvability trade-off described before

between the event-based and publish-subscribe style applies here.

Service-Oriented

The Service-Oriented Style could be used to run entire services in the sensor and actuator

components. The communication with the registry would only occur to locate new

sensors and actuators, however after the addresses and interfaces are recovered from the

registry service the sensors and actuators could communicate directly with each other,

which increases performance with regards to latency.

The trade-offs are however the same as we have seen so far when comparing centralization

against decentralization. A publish-subscribe component could be used to notify sensors

or actuators when a certain “type” of devices has been registered to the system, which

increases decoupling and network efficiency and in this case adds some latency due to

the extra layer of communication provided by the event-service, however in this scenario

it might not be an issue.

The sensors and actuators can have custom interfaces for increased performance or use

a uniform interface which increases interoperability.

REST The REST uniform interface can be added to increase interoperability while

reducing performance, however the remaining effects remain the same as the choice for

the Client-Server style. This has been the case throughout this analysis since REST is

Client-Server with a uniform interface for all components that have a server role.

Layered

This class could have so many different architectures that it is possible to model some

of them in the layered style by putting a sensor logic layer, then an application layer

and finally an actuator logic layer. This can only be done of course if the control only

flows one way, and not if the sensor and actuator layers need to communicate with the

application layer.

Microkernel Because this class is still so broad, it is hard to decide if customizability

is important. If it is, then this style can be used in one of the components to provide

while giving up some performance and increasing complexity of the system.

Verdict

For this class, almost all styles are possible given certain additional requirements. We

have seen that it is possible to have a Client-Server, Peer-to-Peer and Service-Oriented

architecture, where Event-Based, Publish-Subscribe, Pipes-and-Filters and REST can

play a secondary role. However, the trade-offs come down to centralization against

decentralization which we have already seen in the previous classes.
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5.4.2.2 Class I. User-Controlled Actuators

This class contains solutions where the actuators are controlled directly by users. How-

ever the analysis does not show any important developments for choosing an architectural

style. It still depends on the same factors which style should be chosen. For this reason

I will not provide the mapping for this class as it would be redundant. By now we have

already discussed the most important findings of this mapping, these will be summarized

in the next section.

5.5 Conclusion

This chapter has provided a mapping of software architectural styles to a set of IoT

solution classes. It is clear that there is a place for all styles in the IoT, but not all

styles are a good fit in every place. We will now conclude this chapter with the most

important discoveries.

The Internet of Things and Software Architecture. After all of the analysis

done in this thesis on Internet of Things and software architectural styles, it becomes

clear that the big difference that the term Internet of Things brings to the software

architecture design process is the inclusion of two logical components, which are the

sensors and the actuators.

The sensor is a data provider while the actuators are data consumers. The details beyond

that can be abstracted from at this level of analysis. What this means for the architecture

design process is that we must consider sensors and actuators as separate components

from the start, containing the minimum logic to perform their main task. The software

to be designed needs to be decomposed and mapped to physical components.

Figure 5.23: The Internet of Things effect on the software architecture design process

Figure 5.23 shows a picture of what I consider to the “Internet of Things trinity”. The

user in this case can be a system administrator that configures the system once and
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allows the autonomous logic to perform its tasks, or it can be an someone that actively

uses the system. At the center of the trinity is data, which is used as communication

between the three parts of the trinity. Sensors provide data either to users or actuators.

Actuators receives data either from sensors or from users. The question of how this

transmission of data is done is what we try to do when designing a software architecture

and thus choosing a starting style.

This trinity alone is not enough information to suggest an adequate architecture. The

designer needs to know what the goal of the system is and what the most important

quality attributes are. If data aggregation is the goal, then it might be better to use

a Client-Server or Service-Oriented style. However, if the goal is to create indepen-

dent components with low-latency communication, then a Peer-to-Peer or decentralized

Service-Oriented style is the best choice.

The image does not give a depiction of classes A and B, since these are solutions that do

not provide sensors and actuators but instead allows interoperability to occur between

solutions or devices.

Interoperability. Interoperability between solutions in the IoT can occur by either

speaking the same language or using a mediator. The mediator can be hosted by one of

the two parties trying to communicated or by a third party. Classes A and B deal with

the scenario where a third party is used as intermediary.

Direct communication is best for performance, however since solutions can be from

different vendors it might be the case that this is not feasible depending on the design

decisions made for both parties. The second scenario is where one of the parties hosts

a mediator, typically the party that wants to “use” the other party, meaning that it

depends on the response. The last case is by using a third party mediator that provides

an infrastructure for communication between multiple parties.

For this case, the best style is the Service-Oriented style as it provides a way for the

parties to announce themselves as services and describe how they should be invoked.

They parties have to agree to use the same communication protocol and have to describe

their services in the language required by the third party solution, however once this

is done the parties remain completely decoupled from one another. The third party

mediator can use an orchestration service to script how the multiple parties should

interact. The Service-Oriented style was made for interoperability [Bas] and it shows in

this analysis.

The REST style can be used to provide a uniform interface in anticipation of interoper-

ability with another system. A good example is to put a REST interface to one of the

aggregation classes, allowing for the data to be used by other systems.

Security and Privacy. It was a difficult task to reason about security and privacy

during this analysis. For security, it comes down to freeing resources at the edge of the
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network so that they could be used for security reasons. Another indicator could be

the number of entry points an attacker has. For privacy, it came down to centralization

versus decentralization. If it was possible to keep data locally instead of sending it to a

Cloud, then the architecture is inherently friendly.

There are no architectural models for security[Bas], i.e. there is no real model for

reasoning about security at the software architecture level. A paper that describes a

reference architecture for achieving security and privacy in the IoT[Add14] concludes

by saying that the security and privacy of any system is primarily dependent on the

implementation.

The design tactics for security all have a lot to do with implementation, such as autho-

rization, encryption, data integrity checks and availability checks. For this reason I must

conclude that the analysis done in this thesis is at a high level where security cannot be

reasoned about properly.

Consumer and Producer. When designing software, we are used to thinking in terms

of consumers and producers of data and functionality. For a long time it has been that

the users of the system are the only consumers of functionality and the back-end of the

system is the provider. However, in the Internet of Things we now have sensors and

actuators, which also have a role to play. The reason that the Client-Server is suggested

as the best style in most cases in this analysis is because the sensors, actuators and

user interface tend to be on different physical components. This creates a hierarchy of

consumers that use producers, or clients that use servers.

We have seen that if the sensor, actuator (and ui if present) of a system can be located

in one physical component, then it is possible to use the Peer-to-Peer style, which brings

many benefits. This is because, as defined in the style description, a peer must be both

consumer and producer. However, if this is not the case, then it is more likely that we

will choose a more centralized style.

Pipes-and-Filter and Event-Based. The analysis shows that the Pipes-and-Filters

style can be used to send data from the sensors to its destination points, increasing

performance, network efficiency and scalability while reducing reliability by constantly

sending messages without getting a confirmation that the message has been received.

This means that the main component has less of a workload since it does not need to

send confirmation messages, meaning less use of resources.

The event-based style can be used to get the same trade-off when sending data to UI

or actuators. The added bonus is that this decouples the event-source from any of the

event-processors, which increases evolvability. It also removes the constant need for UI

or actuators to have to poll the server to see if any changes has occur, instead they

receive a notification when this has happened. This increases scalability as the main

component does not have to process the constant polling messages.
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In practice, this would be like choosing between TCP and UDP. We choose the Client-

Server style when we want to be sure that all messages reach their destination, by

receiving a confirmation from the destination for every message sent. This is analogous

to TCP connections. If we don’t care about this and just want to send messages faster,

we use UDP. UPD does not check if all messages arrive at their destination, which is

analogous to the messaging in Pipes-and-Filters and Event-Based.

Centralization Versus Decentralization. We have seen that in some scenarios there

is no choice but to have a central Cloud component for all users and devices. However in

most cases there is some choice to be made between centralization and decentralization.

Decentralization, meaning moving logic and data to the edge of the network, has the

following effects:

• Increase in performance due to less latency, less throughput requirement, Scala-

bility as central components are less taxed (if there is a central component).

• Increase in availability, since any central components become less of a single point

of failure.

• Increase in privacy, since data can remain at the edge of the network.

• Increase in bandwidth efficiency, since the edge devices can perform more tasks

without having to ask a central component, meaning less communication over the

network.

• Decrease in evolvability, since updates have to be pushed to edges instead of

changed in one location.

• Decrease in energy efficiency, since the edges have to perform more computations.

Microkernel. The Microkernel style is used to provide customizability to an applica-

tion. However, in most cases this is not useful and only brings more complexities without

any benefits. For class A it is a good fit, since not every user will have every compatible

device in their smart home or environment, meaning they can only install the plugins

they need. For the other classes I could not think of any reason to use this class.

Layered style. The layered style can be useful to illustrate the decomposition of a

system into cohesive layers. However, not all systems can be modeled in a layered way

[Ric15]. I find that this is the case for most IoT topologies, as we now have two entry

points into the system, i.e. the users and the devices. This makes it hard to model the

system in the constraints of the layered style, unless you considers users and devices to

be in the same layer, which would not be cohesive.

Sensors as initiators, actuators as reactors. Allowing sensors to be the initiating

party in communication allows for more choices when deciding on messaging patterns.
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We could choose periodic or sporadic messaging patterns, which allow for better opti-

mization to the goal of the system. For real-time systems we would want to send periodic

messages while for event-based systems such as a motion detector we want to send a

message only when it matters.

Having sensors as reactors can also be an option, in the case that the initiating party

knows the identity of the sensor and only needs the value being measured at the moment

of initiating communication.

Actuators are data consumers, so in most cases it is better to address them when needed

instead of having them constantly poll for changes. The choices are either to send

messages directly to them or using an event-based or publish-subscribe mediator.

Software Architectural Styles in the Internet of Things. The results of this

analysis shows that even with the decomposition of the IoT into multiple classes, there

are still a class where multiple styles could be chosen depending on the goal of quality

attribute requirements. What this means is that the term “Internet of Things” does not

provide enough information to choose even a starting software architectural style, which

makes it even harder to provide a reference architecture for the entire IoT. This does

not mean that the reference architectures provided so far are not useful, however there

are more than enough scenarios where they are not applicable.

This entire analysis is based on a set of IoT solutions that span multiple application

domains. However, we might find even more IoT classes and different architectures if we

expand this set to include newer solutions. What is noticeable in this set of IoT solutions

is that there are many sensor-only solutions, where the goal is to provide information to

the user. This makes it that centralized styles provide better quality attribute effects on

average for this dataset. As we move towards including more actuators into solutions, I

believe we will start to develop the need for more decentralized architectures in certain

areas.

In chapter 2 I proposed to look as the Internet of Things as an event, or at least an

attribute of a system and not as a type of system itself. If a system claims to be an IoT

solution, then they are only stating that their system includes sensors and/or actuators.

When people speak of the Internet of Things, they should refer to it as an event that is

happening and not as a type of system. This does not mean that the analysis done in

this thesis or by other literature has been in vain, as it gives a view of how things are now

for a subset of the solution space and how we can potentially move forward. However,

trying to provide statements or architectures that will hold for the entire Internet of

Things as a single domain is a difficult thing to do, thanks to the dynamic nature of the

concept.

Which software architectural styles best fit each of the IoT classes and why? We have

seen that for the integration category, the best styles are Service-Oriented and REST.

For the observation category, the Client-Server style provided the best overall quality



Chapter 5. Software Architectural Styles 80

attributes. For data aggregation, the best style was also Client-Server where certain

quality attribute requirements would suggest a Pipes-and-Filter or Event-Based style.

However, for the smart system’s class I provided both a Client-Server and a Peer-to-Peer

topology. These two styles are the opposite, meaning using either one as a starting style

for an architecture would result in completely different quality attribute effects. The

research question cannot be answered any further than this with the dataset of solutions

used.

Can the set of best styles be merged into a single reference architecture? Given the

answer to the previous question, it is not possible to merge all of these different styles

together to provide a single reference architecture for the Internet of Things. This would

have only been possible if we had the same “best style(s)” for each of the classes. How-

ever, as anticipated in the introduction, it was unlikely that such a reference architecture

could exist with the wide variety of applications that carry the term Internet of Things.

This analysis has now shown that it is indeed not possible.



Chapter 6

Conclusion

This section is the conclusion of this thesis, which contains a summary of the most

important findings and suggestions for future research in this area.

6.1 The Internet of Things

The concept of the Internet of Things is shrouded in ambiguity. First of all, there is

a difference between the definitions provided in literature and the solutions that are

available right now. The result of this is that the IoT in literature has many quality

attribute requirements that are not important to all solutions that are branded as IoT.

To further increase the confusion, the analysis done on a set of Internet of Things

solutions that exist at the moment reveals a great variety of goals, requirements and

implementations.

A classification of IoT solutions provided at least four categories of solutions with differ-

ent goals. However, increasing the size of the dataset might also increase this number.

What is the Internet of Things? Based on the analysis done in this thesis, I must

conclude with the following definition:

“The Internet of Things is the continuous increase of connectivity between the physical

world and the digital world by connecting physical entities to a network”

Which defines the IoT as an event that is happening instead of as a network, which is

how it is defined in literature. When an IoT solution is developed, it is contributing to

the Internet of Things.

However, what has been focused on in this thesis are Internet of Things solutions, which

can be referred to as an Internet of Things. The realization that there are multiple
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Internet of Things is the important message in this thesis, where the common denomi-

nator in the entire solution space is the connecting of the physical world to the digital

world by use of sensors and actuators that come in many forms.

6.2 Software Architectural Styles

There is many literature available on software architecture and in most cases they turn

out to be consistent with each other. There is an agreement that at least the quality

factors of a system is for the most part decided by the architecture. The literature

present on software architectural styles however, is very limited. Most papers have a

small section about them and refer to the paper written in 1994 by David Garlan and

Mary Shaw[GS94]. It also doesn’t help that some references refer to them as software

architectural patterns.

I have chosen the styles that are most common, in the sense that they appear in various

literature where their definitions are consistent with each other to some point. I also

used informations from web blogs and videos to confirm this.

However, I believe that there needs to be a standard reference catalog of styles with a

clear definition of what the constraints are. There are some styles I did not cover in this

thesis simply because their constraints were not clear and well documented. This needs

to become a goal for the architecture community if styles/patterns are ever to be taken

seriously in computer science moving forward.

6.3 Quality Attributes Evaluation

The methods that exist for evaluating architecture for their fulfillment of quality at-

tribute requirements operate at a lower level than is possible in this thesis. They require

far more context information in order to make a verdict. However, they did provide

some examples of how to reason about interoperability, evolvability, performance and

availability. This was harder to do for security and privacy, however this has been known

to be difficult even in later stages of architecture design.

6.4 Software Architectural Styles in the Internet of Things

The analysis of software architectural styles in the context of the IoT classes has various

results. For some classes it is clear which styles should be chosen in order to get the best

quality attribute effects. However, for the class “Smart Systems”, almost all styles could

be used since that class does not give enough context information. This is a consequence
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of the variety of solutions in the IoT. There will most likely always be a “miscellaneous”

class which contains all solutions that do not fit in the other classes.

What we have seen is that the Client-Server style seems to be applicable to receive on

average good results for each class, however I believe that this says something about the

dataset used and not for the entire IoT. The solutions used as examples for the classifi-

cation in this thesis lean towards a sensor-oriented and centralized solutions. There are

some exceptions of course, however the imbalance creates a specific type of classification

tree which is biased to some extent. However, it is not possible for me to use a dataset

which representative of all types of solutions in the IoT, as such a dataset is not likely

to exist due to the huge variety and constant evolution.

Figure 6.1: The problem scenario vs. the thesis scenario

Figure 6.1 shows the problem scenario we began with, where reference architectures

were inferred form the Internet of Things as a single domain. However this thesis argues

that these reference architectures are not applicable in reality due to the great variety

of applications. This thesis has provided some examples classes of applications and has

performed an analysis of software architectural styles on these classes.

The classification provides the first steps into achieving more specific details about the

IoT solution space. The result of this thesis is that there is a place for all styles in the

Internet of Things, however not all styles can be used in all places. There are clearly

better styles for different classes, which shows that a single reference architecture for

the Internet of Things as a single system cannot exist. The main research question is

answered with these results.
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6.5 Future research

This thesis has provided the first step of recovery in the field of software architecture

in the Internet of Things. The problem of using the term Internet of Things as context

for software architecture is a serious one as it will continue to bring confusion to the

discipline. Future research could be done by using a larger dataset of Internet of Things

solutions, preferably one which takes into account the number of solutions that have

actuators and smarter systems. In this way we can provide a better taxonomy of Internet

of Things solutions, to which we can start to provide reference architectures for with

the correct labels. This will result in designers being able to pick from a list of reference

architectures designed for “Class x” in the Internet of Things instead of a general “one

size fits all” architecture.

Another direction we could go into is to provide a formal and universal definition for the

Internet of Things, with which we can truly classify systems as being IoT or non-IoT. In

this thesis I have derived a definition based on what is considered IoT at the moment.

However, it could also be possible to come up with a new and more concrete definition

so that the IoT does not simply contain “any system that measures and changes the real

world”.

A direction that should be avoided is the proposals for more reference architectures for

the Internet of Things as a single domain.
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IoT Definition List

This appendix contains a list of definitions for the IoT found in various sources. All the

following definitions are direct quotes from the sources, which are all mentioned.

ID Definition Source

1 The Internet of Things is the network of physical

objects or “things” embedded with electronics,

software, sensors and connectivity to enable it

to achieve greater value and service by exchang-

ing data with the manufacturer, operator and/or

connected devices. Each thing is uniquely iden-

tifiable through its embedded computing system

but is able to interoperate within the existing

Internet infrastructure

Wikipedia1

2 The Internet of Things is a computing concept

that describes a future where everyday physical

objects will be connected to the Internet and be

able to identify themselves to other devices

Techopedia2

3 The Internet of Things is the network of phys-

ical objects that contain embedded technology

to communicate and sense or interact with their

internal states or the external environment

Gartner3
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ID Definition Source

4 The Internet of Things is a network that makes

all devices collaborate at all times, converse

spontaneously among themselves and with the

rest of the world, and all together make up

a kind of single virtual computer - the sum

of their respective intelligence, knowledge and

know how.

Vision and challenges for realising

the Internet of Things [SW10]

5 The Internet of Things is a new actualization

of subject-object relationships. Me and my sur-

roundings, objects, clothes, mobility, whatever,

will have an added component, a digital poten-

tiality that is potentially outside of my control

Vision and challenges for realising

the Internet of Things [SW10]

6 The Internet of Things is a dynamic global

network infrastructure with self-configuring ca-

pabilities based on standard and interopera-

ble communications protocols where physical

and virtual things have identities, physical at-

tributes, virtual personalities and use intelligent

interfaces, and are seamlessly integrated into the

information network

Vision and challenges for realising

the Internet of Things [SW10]

7 The IoT contains things that are expected to

become active participants in business, informa-

tion and social processes where they are enabled

to interact and communicate amongst them-

selves and with the environment by exchanging

data and information sensed about the environ-

ment, while reacting autonomously to the real/-

physical world events and influencing it by run-

ning processes that trigger actions and create

services with or without direct human interven-

tion

Vision and challenges for realising

the Internet of Things [SW10]

8 The Internet of Things allows people and things

to be connected anytime, anyplace, with any-

thing and anyone, ideally using any path/net-

work and any service

Vision and challenges for realising

the Internet of Things [SW10]
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ID Definition Source

9 IoT refers to the networked connections of ev-

eryday objects, which are often equipped with

ubiquitous intelligence

Internet of Things: A vision, ar-

chitectural elements, and future

directions[GP13]

10 The worldwide network of interconnected ob-

jects uniquely addressable based on standard

communication protocols

Internet of Things: A vision, ar-

chitectural elements, and future

directions[GP13]

11 The IoT is an interconnection of sensing and

actuating devices providing the ability to share

information across platforms through a unified

framework, developing a common operating pic-

ture for enabling innovative applications. This

is achieved by seamless ubiquitous sensing, data

analytics and information representation with

Cloud computing as the unifying framework

Internet of Things: A vision, ar-

chitectural elements, and future

directions[GP13]

12 The basic idea of this concept is the pervasive

presence around us of a variety of things or ob-

jects - such as Radio-Frequency Identification

tags, sensors, actuators, mobile phones, etc. -

which, through unique addressing schemes, are

able to interact with each other and cooperate

with their neighbours to reach a common goal

The Internet of Things: A Survey

[AM10]

13 The Internet of Things can be described as an

amalgamation of multiple heterogeneous digital

devices, people, and services working collabo-

ratively to solve a problem across technology

boundaries, with the ability to seamlessly inter-

act and share data about themselves and their

environment.

Reference Architectures for Privacy

Preservation in Cloud-Based IoT

Applications [Add14]

14 Based on the traditional information carriers

including the Internet, telecommunication net-

work and so on, the Internet of Things is a net-

work that interconnects ordinary physical ob-

jects with the identifiable addresses so that pro-

vides intelligent services

Internet of Things: Objectives and

Scientific Challenges [Ma11]



Appendix A. IoT Definition List 88

ID Definition Source

15 A world-wide network of interconnected objects

uniquely addressable, based on standard com-

munication protocols

Internet of Things - Applications

and Challenges in Technology and

Standardization [BS11]

16 The Internet of Things is an emerging global

Internet-based information architecture facili-

tating the exchange of goods and services in

global supply chain networks

Internet of Things - New security

and privacy challenges [Web10]

17 The notion of an Internet of Things refers to the

possibility of endowing every day objects with

the ability to identify themselves, communicate

with other objects, and possibly compute

The Software Fabric for the Internet

of Things [RA08]

18 Extending the Internet to physical objects - the

Internet of Things - promises humans to live in

a smart, highly networked world, which allows

for a wide range of interactions with this envi-

ronment

Object Recognition for the Internet

of Things [QvG08]



Appendix B

IoT Solutions Analysis

This appendix contains an analysis done on a selected list of IoT Solutions.

B.1 Methodology

Firstly the IoT Solutions will be explained and explored to illustrate the business goal.

The topology of the key components are extracted from any information available about

the solution. These components are presented in two diagrams, one of which illustrates

the cardinality of the association between the components.The second diagram shows

how the data flows between the components. The vocabulary used when discussing

software architectural styles contain components and connectors, hence the choice of

identifying this for each solution and displaying it in diagrams.

The first diagram displays the cardinalities of communication between the components

(Cardinality diagram). A one-to-many connection indicates that one instance of a com-

ponent will communicate with one or more instances of another component. For each

of these relationships we need to identify the scale, as it can reveal if scalability is im-

portant for the solution and thus which software architectural styles can be used. Also

included in the diagram is the location of the data storage and the application logic.

The second diagram contains arrows indicating the flow of messages between components

(message flow diagram). In this diagram we are interested in either the flow of data that

is measured from the sensors or command messages that are sent to actuators. Note

that not all messages between all components are illustrated, as this is out of scope.

Both diagram also indicate which components contain sensors and/or actuators.

The solutions are grouped by their respective IoT Domains. The remainder of this

appendix contains an analysis of the solutions.
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B.2 Connected Home

B.2.1 Nest Thermostat

The Nest thermostat is a smart thermostat which attempts to learn your daily routine

for temperature changes in your house. When it learns this, it will apply these changes

automatically without the user having to think about it. The user can also change the

temperature in their home via the Nest app or via the thermostat directly. Information

regarding the Nest Thermostat was found on the Nest Home page Nest1, the technical

specification page2 and the NEST developer documentation page3.

Figure B.1: Nest Thermostat

Figure B.2: Nest Thermostat cardinality diagram

Figure B.3: Nest Thermostat message flow diagram

1https://nest.com/
2https://nest.com/support/article/2nd-generation-Nest-Learning-Thermostat-technical-specifications
3https://developer.nest.com/documentation

https://nest.com/
https://nest.com/support/article/2nd-generation-Nest-Learning-Thermostat-technical-specifications
https://developer.nest.com/documentation 
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Characteristic Value

Physical Entity Home (Environment), Boiler.

Attibute(s) Temperature, Humidity, Proximity, Far-Field Activ-

ity, Near-Field Activity, Ambient light.

IoT Connector Sensor and Actuator. The Thermostat acts as both

a sensor for the room and an actuator that changes

the temperature in the room by operating the boiler

or other heating system present.

Application logic location Nest Service (Cloud).

Data storage location Nest Service (Cloud).

User Interaction Nest Mobile App (Mobile device), LCD display and

rotating ring to manually change temperature (Ther-

mostat).

Scale of system The number of requests to the Nest service is poten-

tially always growing.

Internet-Dependency Internet-Dependent. Even though the temperature

can always be manually changed by rotating the ring

on the thermostat, the functionality of using the mo-

bile app is lost. Also, the model that predicts what

temperature the room should be at resides in the Nest

service, thus the “smartness” is also absent without

an Internet connection.

Type of invocation Explicit and Implicit. The user can explicitly change

the temperature. However, the thermostat listens to

changes in the data model located in the Nest service.

If such a change (event) should occur, it triggers the

actuator which changes the temperature in the room.

Interoperability With the Nest API, an outside system can build clients

to access Nest data. The client can subscribe to

changes.

Battery life Built-in rechargeable lithium ion battery.

Autonomous behavior Nest service can learn the behavior of the user and

can predict which temperature the room should be in.

The Nest service can change the temperature of the

room without human interaction at this point.

.
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B.2.2 Homeseer

The Homeseer is a complete package for home automation. Rather than focusing on

one particular aspect of the connected home domain, homeseer offers automation for

lights, temperature, locks, security, water, energy, audio and video. A big selling point

for this solution is that they promise not to store personal user information in the cloud.

Information regarding the Homeseer was found on the home page4 and the developer

support page5.

Figure B.4: Homeseer

Figure B.5: Homeseer cardinality diagram

4http://www.homeseer.com/
5http://homeseer.com/support/homeseer/HS3/SDK

http://www.homeseer.com/
http://homeseer.com/support/homeseer/HS3/SDK
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Figure B.6: Homeseer message flow diagram
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Characteristic Value

Physical Entity Home (Environment) and potentially all connected

things inside a connected home

Attibute(s) Light, Temperature, Access (door, locks), Power, Wa-

ter, Energy, Occupancy, Audio/Video and more

IoT Connector Sensor and Actuators. Many devices are supported

Application logic location Homeseer Hometroller and also in devices depending

on which are used. Some third party devices, which re-

quire plugins to use, have their own application logic.

Data storage location Homeseer HomeTroller Hub

User Interaction Devices in the connected home can be controlled by

a tabletop android-powered touchscreen or through a

mobile app.

Scale of system The scale of the communication between the Home-

Troller and the TableTop is bound to the number

of devices of a single connected home, which is rel-

atively small in scale. The Cloud service will have to

scale, but since this is simply used as a router/gateway

for communications for the Mobile App, the resources

needed could also be relatively small.

Internet-Dependency Internet-Dependent. While they advertise that they

are internet-independent, the functionality of being

able to control your home remotely via the mobile app

is impossible without an internet connection.

Type of invocation Explicit and Implicit. The user can explicitly control

their home. Plugins can be installed in order to react

to events.

Interoperability Plugins can be installed on the HomeTroller, which

allows it to work with various technologies and devices.

Most plugins need to be bought. Interoperability is

also reached by communicating with the IFTTT web

service. Plugins cannot communicate with each other.

Battery life The HomeTrollers connect directly to power outlets.

The devices inside the house vary in battery life.

Autonomous Behavior Most interaction is done by the user choosing to

change the state of the home. Developers are able to

write their own plugins using the plugins SDK to al-

low custom triggers, actions and conditions to events.

It is also possible to program some smartness into the

HomeSeer by using the IFTTT webservice.
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B.2.3 SmartThings

Smart Things also offers a smart home environment. The main nodes are the Smart-

Things Hub and the SmartThings app. Similar to the Homeseer, the scale of the solution

can be as big as the user wants it to be. The biggest difference being that SmartThings

has a cloud service that contains the data gathered by the SmartThings system and

also contains application logic to make the system work. Another difference is that it

primarily depends on third party devices as the number of SmartThings sensors and

actuators are limited. Information regarding the SmartThings solution was found on

the home page6 and the Developer Documentation page7.

Figure B.7: SmartThings

Figure B.8: SmartThings cardinality diagram

6http://www.smartthings.com/
7http://docs.smartthings.com/en/latest/

http://www.smartthings.com/
http://docs.smartthings.com/en/latest/
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Figure B.9: SmartThings message flow diagram
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Characteristic Value

Physical Entity Home (Environment) and potentially all connected

things inside a connected home

Attibute(s) Light, Temperature, Access (door, locks), Power, Wa-

ter, Energy, Occupancy, Audio/Video and more

IoT Connector Sensor and Actuators. Many devices are supported

Application logic location All intelligence is located in the SmartApps and

SmartServices layer in the SmartThings Cloud

Data storage location A model called the “Open Physical Graph” is located

in the Cloud service which is a representation of the

real world. The model and the real world are meant

to be kept in sync.

User Interaction Mobile application and Web IDE

Scale of system The scale of the workload at the edge of the network is

very low, because it is limited to the number of devices

of a single home and the Hub is simply a gateway

to the Cloud. The Cloud service on the other hand

should be very scalable as it acts as a service for all

SmartThings users. The number of users is potentially

always increasing

Internet-Dependency Internet-Dependent. Due to the “Cloud first” philos-

ophy of SmartThings, there is a seperation of “Intelli-

gence” from edge devices. This means that if there is

no Internet, there is no functionality.

Type of invocation The user can explicitly control their home. SmartApps

can be connected to the SmartThings Hub in order to

react to events.

Interoperability The SmartThings Hub is updated constantly to inter-

operate on a syntactic level. The semantic interoper-

ability happens in the SmartApps layer in the Cloud

Battery life The SmartThings Hub connect directly to power out-

lets. The devices inside the house vary in battery life.

Autonomous Behavior Initially there is no autonomous behavior. SmartApps

can be developed and connected to the SmartThings

hub to induce autonomous behavior. SmartThings

also have a channel to communicate with the IFTTT

webservice.
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B.3 Connected Body

B.3.1 Angel Wristband

The Angel Wristband has three sensors that can monitor the health of the user. It

works with an array of fitness and health tracker mobile applications. There is an SDK

to develop for the Angel Wristband and extract the health metrics, device info, the

Raw Waveform and to configure the alarm clock which is also present in the band.

Information regarding the Angel Wristband was found on the home page8 and the SDK

GitHub page9.

Figure B.10: Angel Wristband

Figure B.11: Angel Wristband cardinality diagram

Figure B.12: Angel Wristband message flow diagram

8http://www.angelsensor.com/
9https://github.com/SeraphimSense/angel-sdk

http://www.angelsensor.com/
https://github.com/SeraphimSense/angel-sdk
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Characteristic Value

Physical Entity Human Body

Attibute(s) Heart rate, temperature, movement, pulse

IoT Connector Sensor

Application logic location The Wristband has just enough logic to understand

a request for the value of a certain sensor and send

it via a Bluetooth connection. The Applications will

contain the logic to use this data in an intelligent way.

Data storage location Applications. The applications that connect with the

Angel wristband could either store the values locally

or upload them to a server.

User Interaction Applications. The Wristband itself does not have a

user interface or gives the user feedback in any way.

Scale of system The scale of the solution is very small. There is no cen-

tral cloud server. Instead the wristband will be synced

to mobile apps via Bluetooth. There is no specifica-

tion on how many requests the wristband can take at

a time.

Internet-Dependency Internet-Independent. The communication between

the wristband and devices occur via Bluetooth com-

munication.

Type of invocation Explicit. The mobile app has to query the wristband

for the measurements.

Interoperability The SDK allows for full interoperability with the

wristband, allowing the apps to access all of the mea-

surements, an alarm clock, device info and raw wave-

form (for research). The SDK is currently supported

for Android and iOS.

Battery life There is a non replaceable rechargeable lithium poly-

mer battery in the wristband. The estimation is 7

days battery life per charge. Charge time is 1 hour.

Autonomous Behavior There is no autonomous behavior in the Angel Wrist-

band itself. It could be possible that the apps could be

programmed in a way to work without human interac-

tion, however this is out of the scope for this analysis.

B.3.2 Nymi Wristband

The Nymi band uses the user’s unique heart signature to authenticate them to a system

or device. An example of a possible application is logging into a pc or gaining access
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to an area using the Nymi band. The company offers a developer kit for the platform.

Information regarding the Angel Wristband was found on the home page10, the Nymi

SDK page11 and a whitepaper12.

Figure B.13: Nymi Wristband

Figure B.14: Nymi Wristband cardinality diagram

Figure B.15: Nymi Wristband message flow diagram

10https://www.nymi.com/
11http://www.nymi.com/dev/documentation/nymi_band.html
12https://www.nymi.com/wp-content/uploads/2013/11/NymiWhitePaper-1.pdf

https://www.nymi.com/
http://www.nymi.com/dev/documentation/nymi_band.html
https://www.nymi.com/wp-content/uploads/2013/11/NymiWhitePaper-1.pdf
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Characteristic Value

Physical Entity Human Body

Attibute(s) Heart signature

IoT Connector Sensor

Application logic location The Nymi band has application logic that allows it

to enroll the user and keep the identity available on

the band until it is taken off. The Nymi band is also

secure by running crypto.

Data storage location The user identity is stored while the once the user has

enrolled themselves by wearing the band and putting

their finger on the sensor. This data is stored on the

band. There is also a local storage of security keys.

User Interaction The user receives feedback in the form of vibration

and a LED lights. The user has to authenticate them-

selves once everytime they put on the Nymi band, but

remain authenticated until the band is taken off.

Scale of system The scale is fixed to a one-to-one connection, as it

only communicates with applications to authenticate

the user. The connection is broken once the user is

authenticated.

Internet-Dependency Internet-Independent. The communication between

the wristband and devices occur via Bluetooth com-

munication.

Type of invocation Explicit. Enrolling the identity when wearing the

band is an explicit action. Authenticating to an ap-

plication is also done explicitly.

Interoperability Applications can communicate with the Nymi band by

importing the Nymi Communications Library (NCL).

Currently Android, iOS, Mac and Windows are sup-

ported.

Battery life The estimated battery life is 5 days and takes up to

two hours to charge.

Autonomous Behavior There is no autonomous behavior. The main goal is

authentication by heart signature.

B.3.3 Zebra Motionworks

The Zebra motionworks solution uses a set of Zebra receivers (RFID) to follow the

movements of NFL players that each have an RFID transmitter tag placed inside their

shoulder pads. The system measures precise location measurements of the players to
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offer real-time stats. The coaches can use the motion data to change their strategies

and algorithms can aggregate player’s stats and display them real time for fans to create

a deeper experience. Information regarding the Zebra Motionworks was found on the

homepage13.

Figure B.16: Zebra Motionworks

Figure B.17: Zebra Motionworks cardinality diagram

Figure B.18: Zebra Motionworks message flow diagram

13https://www.zebra.com/us/en/nfl.html

https://www.zebra.com/us/en/nfl.html
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Characteristic Value

Physical Entity Human Body

Attibute(s) Location

IoT Connector Sensor reading RFID tag

Application logic location Cloud server

Data storage location Cloud server

User Interaction Tablet or mobile phone UI to view the data analysis

Scale of system The number of tags and receivers per stadium is con-

stant, so those nodes do not need to scale. The num-

ber of users using the mobile app and need to have

real time data can potentially always increase, so the

Cloud service should be scalable.

Internet-Dependency Internet-Dependent. The information gathered needs

to be uploaded to the Cloud for analysis and visual-

ization.

Type of invocation Implicit. The RFID receivers are constantly updating

the data model. The UI’s get updated based on the

changes to this model.

Interoperability There is no mention of interoperability with any type

of system.

Battery life The battery life of an active RFID tag is estimated at

around 3 to 8 years depending on the broadcast rate.

The receivers placed around the stadium are plugged

into a power outlet.

Autonomous Behavior The system is able to record movement, push it to the

server, analyze and visualize it without human inter-

vention.

B.4 Connected Retail

B.4.1 Scanalytics floor sensors

Scanalytics floor sensors extends the floor with sensors that measure how people walk

on the floor. This data can be used to analyse customer behaviour in a store. The store

can then change the arrangements of the items for sale to better emphasize the most

popular items. One of the selling points of the scanalytics floor sensor is that it does not

gather personal information. People contribute to the data anonymously. Information
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regarding the Zebra Motionworks was found on the homepage14. I tried to gain access

to the SDK but I have not received a reply from Scanalytics.

Figure B.19: Scanalytics Floor Sensor

Figure B.20: Scanalytics cardinality diagram

Figure B.21: Scanalytics message flow diagram

14http://www.scanalyticsinc.com/

http://www.scanalyticsinc.com/
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Characteristic Value

Physical Entity Floor

Attibute(s) Occupancy

IoT Connector Sensor

Application logic location Cloud server. The Floor mat is only used as a gateway

to the Internet for the sensors.

Data storage location Cloud server

User Interaction The user of the system can access an online dashboard

to view the data.

Scale of system The number of sensors per mat is fixed at 64. The

communication between the mobile app, the floor mat

and the cloud service is a one-time synchronisation of

the mats to the cloud service, so it is assumed that

this does not increase the workload. The Cloud ser-

vice needs to be scalable because the number of floor

mats and connections from online dashboards can be

potentially always increasing.

Internet-Dependency Internet-Dependent. The Floor mat needs to have an

internet connection to push the data.

Type of invocation Implicit. The moment there is a change in the occu-

pancy this is pushed to the server.

Interoperability There is an SDK to develop on this platform, but I

could not gain access to this so no more information

is known.

Battery life Connects to a power outlet.

Autonomous Behavior The system can push data do the server and visualize

it without human intervention.

B.4.2 S5 Electronic Shelf labels

The S5 Electronic Shelf labels can be placed in stores in order to keep prices of products

up to date. Transmitters called T3 are placed around the store to form a network in order

to push the prices from the management software to the S5 shelf labels. Information

regarding the S5 Electronic Shelf labels was found on the home page15.

15urlhttp://www.s5tech.com/en/
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Figure B.22: S5 Electronic Shelf labels

Figure B.23: S5 Electronic Shelf labels cardinality diagram

Figure B.24: S5 Electronic Shelf labels message flow diagram
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Characteristic Value

Physical Entity Shelf labels

Attibute(s) State

IoT Connector Actuator

Application logic location Server

Data storage location The server contains the model with all the prices. The

electronic shelf labels also store a history of their past

states.

User Interaction It depends on the type of UI that communicates with

the IT backend of the store, which contains the prices

to be pushed to the shelf labels. This is not provided

by S5, instead the S5 system can be integrated with

an existing backend.

Scale of system It depends on the type of store, however the number of

products should not increase or decrease with a huge

amount. For this scenario we assume that there is a

local central server for each store. It could be possible

that there is a cloud server that contains the prices

for a chain of stores, but this is out of scope for this

analysis.

Internet-Dependency The S5 Electronic Shelf label system itself is Internet

independent, the T3 transmitters create a local net-

work.

Type of invocation Implicit. When a prices change, these are pushed to

the correct shelf labels.

Interoperability There is an ability to integrate with the store’s back-

end system, but this has to be done by S5. There is

no further mention of interoperability.

Battery life The T3 transmitters are plugged into a power outlet.

No information about the battery life of the shelf la-

bels themselves could be found.

Autonomous Behavior The T3 transmitters can decide for themselves to

which other T3 transmitter the data should be pushed

in order to reach its destination. The shelf labels send

a message back to confirm the price has been changed,

if this is not received the price is pushed again.
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B.4.3 Nomi Brickstream live

Figure B.25: Nomi Brickstream live

Figure B.26: Nomi Brickstream live cardinality diagram

Figure B.27: Nomi Brickstream live message flow diagram
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Characteristic Value

Physical Entity Room (Environment)

Attibute(s) Occupancy

IoT Connector Sensor

Application logic location Nomi Brickstream live contains all the application

logic to analyze its own data and detect faces. A cen-

tral server is used only to aggregate the data from

multiple sensors.

Data storage location The Nomi Brickstream live sensor can store up to 30

days of full resolution video

User Interaction The user can view the analysis of the aggregated data

on a customized online dashboard.

Scale of system Each store or chain of stores run their own central

server to which the sensors report to. The system is

based on edge processing, where the nodes at the edge

contain relatively high computing capabilities, making

it easier to add more nodes since it has less effect on

the central server.

Internet-Dependency Internet-Independent. The sensor can keep collecting

data during a network outage. When the network is

restored, the sensor uploads the data to the central.

Type of invocation Explicit. The sensor is continuously recording.

Interoperability There is no mention of interoperability with other so-

lutions except for an integration with the data backend

of the store.

Battery life The Nomi Brickstream live is powered over ethernet

(POE).

Autonomous Behavior The Nomi Brickstream records video, detects faces

and pushes the data to a server without human in-

tervention.

B.5 Connected Transporation

B.5.1 WeatherCloud

In an attempt to provide better weather and road condition information, the Weath-

erCloud solution places multiple sensors inside and outside of a car. These sensors

measure precipitation rate and type, ambient lighting, dew point, ambient temperature,

pavement temperature, road conditions, slip/grip of tires and vehicle dynamics. This

data is then aggregated by an on-board Smart Hub which pushes it to the Cloud. The

resulting data on the Cloud is sent to driver’s cell phones or navigation screens or can
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be accessed through the WeatherCloud desktop application. Information regarding the

Weather Cloud was found on the homepage16.

Figure B.28: WeatherCloud

Figure B.29: WeatherCloud cardinality diagram

Figure B.30: WeatherCloud message flow diagram

16http://weathercloud.co/

http://weathercloud.co/
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Characteristic Value

Physical Entity Car

Attibute(s) Temperature , wind direction , velocity , precipitation

rate , Tire slip and grip, Pavement temperature, Road

condition , Humidity and Visibility.

IoT Connector Sensor

Application logic location The Smart Hub contains some application logic to ag-

gregate the data from the three sensors and compress

them in such a way that they can be sent to the Cloud.

The Cloud contains the rest of the application logic to

make the entire solution work.

Data storage location Data for an individual car is stored in the correspond-

ing Smart Hub, while the aggregated data for all

WeatherCloud enabled cars is stored in the Cloud.

User Interaction The user can view the data on on a desktop app or

gets a notification of important alerts inside his car

navigation system or mobile phone.

Scale of system The number of nodes inside the car is fixed to 4. The

Cloud server needs to be able to scale since the number

of users (connected cars) can increase. Each connected

car has an effect on the demand of resources for the

Cloud server.

Internet-Dependency Internet-Dependent. The Cloud is needed to complete

the solution process flow.

Type of invocation Explicit. The data is pushed from time to time to a

smart hub. Users explicitly use the desktop app to

query the current weather conditions.

Interoperability There is no mention of interoperability with any type

of system.

Battery life Two of the three sensors run on solar energy and the

third one generates energy from the accelerations of

the tire. The Smart Hub is powered by the car.

Autonomous Behavior The system will send important alerts to drivers with-

out human interaction.

B.5.2 Truvolo Connected Car Solution

The truvolo solution gives a car connectivity by plugging a small device (Truvolo Drive)

into the On-board diagnostics(OBD) port of the car, which relays data about the car

via a mobile phone to the Cloud which can then be accessed by an online dashboard.

The data available on the dashboard shows how much gas is used, how safe the car is
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being driven and monitors the status of the car and gives an alert if the car needs to

be maintained. All cars of a household can be managed by the dashboard. Information

regarding the Truvolo Connected Car Solution was found on the home page17.

Figure B.31: Truvolo

Figure B.32: Truvolo cardinality diagram

Figure B.33: Truvolo message flow diagram

17http://www.truvolo.com/

http://www.truvolo.com/
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Characteristic Value

Physical Entity Car

Attibute(s) All information available from an On-board diagnostic

IoT Connector Sensor

Application logic location Cloud server. The Truvolo Drive and the Truvolo App

simply relay the data to the Cloud which actually uses

the data.

Data storage location Cloud server.

User Interaction The user can access the data via an online dashboard.

Scale of system The Cloud service needs to scale since all Truvolo users

communicate with it and the number of users can al-

ways increase.

Internet-Dependency Internet-Dependent. The solution can not function

without a connection to the Cloud.

Type of invocation Explicit. The Truvolo app queries the Truvolo Drive

device on a regular interval and pushes the data to the

Cloud.

Interoperability There is no mention of interoperability with other so-

lutions.

Battery life The Truvolo Drive is powered by the car through the

OBD.

Autonomous Behavior Data is simply collected and analyzed.

B.5.3 Veniam Vehicular Networking

Marketed as “The Internet of Moving Things”, this IoT solution turns vehicles into

WiFi hotspots. This network can be seen as a way to provide pervasive Internet and

thus help the IoT by providing access to the Internet for devices. The reason why

Veniam is also considered an IoT Solution is because it also gathers information about

the location of the vehicle. The connected vehicles act as a sensor for the city, providing

valuable information to improve fleet management, operations and security. Information

regarding the Veniam Vehicular Networking was found on the home page18.

18https://veniam.com/

https://veniam.com/
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Figure B.34: Veniam Vehicular Networking

Figure B.35: Veniam Vehicular Networking cardinality diagram

Figure B.36: Veniam Vehicular Networking message flow diagram
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Characteristic Value

Physical Entity Vehicle

Attibute(s) Location

IoT Connector Sensor

Application logic location Cloud Platform

Data storage location Cloud Platform

User Interaction The user can access real-time monitoring of their fleet

on an online dashboard.

Scale of system The number of connected vehicles can increase rapidly.

The Cloud server needs to scale since it collects data

from all Veniam connected vehicles.

Internet-Dependency Internet-Dependent. The entire system is a network

of WiFi repeaters.

Type of invocation Explicit. The user can view the data on an online

dashboard.

Interoperability There is no mention of interoperability with other so-

lutions.

Battery life The NetRider device is powered by the vehicle’s bat-

tery.

Autonomous Behavior There is no autonomous behavior.

B.6 Smart City

B.6.1 Bitlock Bycicle Lock

Bitlock is a bycicle lock that unlocks when a smartphone containing the appropriate key

is in proximity to it. The system also remembers the last location of interaction with

Bitlock and can show a history of use. Access to the bycicle can also be shared with

other users of the app. The digital key is shared between the mobile phones, so the

Bitlock itself only needs the right key to be opened. It does not need to be connected

to the Internet. Information regarding the Bitlock was found on the home page19.

19http://bitlock.co/

http://bitlock.co/
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Figure B.37: Bitlock Bycicle Lock

Figure B.38: Bitlock cardinality diagram

Figure B.39: Bitlock message flow diagram
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Characteristic Value

Physical Entity Bycicle lock

Attibute(s) Access

IoT Connector Actuator

Application logic location The application logic is located in both the Bitlock and

the mobile app. The Cloud server acts as a storage for

user information and as a router between apps, but

also has some application logic to manage keys.

Data storage location The key is stored on the mobile app and the bitlock.

All other data regarding the history, usage, keys and

user accounts are located in the cloud.

User Interaction The user can interact with a mobile app to update the

history of use and share access to bycicles. The Bitlock

itself has a buttons in order to unlock the Bitlock in

case the battery of the phone dies.

Scale of system The connection between the Bitlock and the mobile

app is a one-to-one connection via Bluetooth. The

Cloud Service should be scalable since it is central

to the system and the number of users could always

increase.

Internet-Dependency Internet-Dependent. The Bitlock can be unlocked

with a 4 digit combination in case the phone dies.

The Bitlock communicates via Bluetooth with the mo-

bile device, so in this sense it is Internet-independent.

However, the complete solution which includes access

sharing needs the mobile app to be connected to the

Internet.

Type of invocation Explicit. The user has to not only be in proximity of

the lock, but also has to press a button on the Bitlock

in order to unlock it.

Interoperability There is no mention of Interoperability with other so-

lutions.

Battery life The estimated battery life of a Bitlock is 5 years.

Autonomous Behavior There is no autonomous behavior.

B.6.2 Array of Things

The Array of Things (AoT) is a smart city IoT solution where many sensors are placed

around the city. The sensors around Chicago at the moment collect real-time data about

the city and this data is published on an open database for researchers and the public

to use. Things like temperature, humidity, light, carbon monoxide, nitrogen dioxide
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and vibrations to name a few. The solution promises not to collect any personal data.

Information regarding the Array of Things was found on the home page20 and the Waggle

home page21, which is the platform the AoT is based on.

Figure B.40: Array of Things

Figure B.41: Array of Things cardinality diagram

Figure B.42: Array of Things message flow diagram

20https://arrayofthings.github.io/
21http://wa8.gl/

https://arrayofthings.github.io/
http://wa8.gl/
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Characteristic Value

Physical Entity City (Environment)

Attibute(s) Temperature, Humidity, Light, Carbon-Monoxide,

Nitrogen-Dioxide, Vibrations and more

IoT Connector Sensor

Application logic location The Waggle Node is considered an “Intelligent” sen-

sor because it contains logic to provide smart power

management, monitor the vitals of microsensors in its

environment, cache data, process the data from the

microsensors and contains a security module. The

Cloud contains application logic to analyse the aggre-

gated data from all sensor nodes.

Data storage location Data collected from the microsensors are kept on the

corresponding sensor node. The Cloud stores the ag-

gregated data from all sensor nodes. After analysis

and “cleaning”, the data is also stored in a public

database which can be accessed by a web portal.

User Interaction The Cloud service and Sensor nodes can be managed

by a management consoles. Users that want to access

the public data published on the open database can

use the public web portal.

Scale of system It depends on the size of the city, however each city will

host their own Cloud database with their own Public

data portal, so the scale is not global and should not

spontaneously increase since the users that manage

the Array of Things can decide themselves when to

add new sensors.

Internet-Dependency Internet-Dependent. The microsensors are connected

to the Sensor node via USB, I2C or Ethernet, but the

pushing of the data to the Cloud is done via Internet.

Type of invocation Explicit. The microsensors will stream real-time to

the sensor nodes as they are connected by wire. The

pushing of the data to the Cloud is done in regular

intervals, meaning that it pushes the data explicitly

and not event-based for example.

Interoperability Interoperability can occur by listening to changes to

the open database. There is no interoperability with

the devices themselves.

Battery life The Sensor nodes are connected to an external power

outlet and distributes the power to all sensor modules

connected to it.

Autonomous Behavior The AoT does not exhibit any autonomous behavior.
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B.6.3 Enevo Waste Collection

The Enevo waste collection solution also connects the city by measuring how full garbage

containers are so that garbage trucks can optimize their routes. The solution promises

to provide up to 50 percent in direct cost savings. It will also make the city look and

feel cleaner, as garbage containers are less likely to be full and optimized routes can lead

to less garbage trucks on the road. Information regarding Enevo Waste Collection was

found on the homepage22.

Figure B.43: Enevo Waste Collection

Figure B.44: Enevo Waste Collection cardinality diagram

Figure B.45: Enevo Waste Collection message flow diagram

22http://www.enevo.com/

http://www.enevo.com/
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Characteristic Value

Physical Entity Waste containers

Attibute(s) Fill level

IoT Connector Sensor

Application logic location The sensor applies “advanced algorithms” to deter-

mine the fill level of a container, even if the surface

is unevenly shaped. The Cloud server contains the

application logic to aggregate, analyze and predict.

Data storage location The data is stored in the Cloud server.

User Interaction The user can access the data collected from the Eveno

ONe web portal.

Scale of system The Enevo ONe Cloud server needs to be scalable as

it is central for all Enevo users and sensors.

Internet-Dependency Since all data is pushed to the Cloud, a connection

is needed. The Enevo sensors connect using wireless

GSM communication.

Type of invocation Explicit. Data is pushed on regular intervals. User

can access the data from the Enevo ONe portal.

Interoperability The Enevo ONe service provides a REST based API

for accessing and managing data, allowing for integra-

tion with other solutions.

Battery life Estimated at 10 years.

Autonomous Behavior There is no autonomous behavior.

B.7 Industrial Application

B.7.1 Farmobile Fleet Management

The Farmobile Simplicity PUC is a fleet management system for farms. It collects data

to create a digital farm record and shows information about the movement of farm

vehicles in a web or mobile app. The devices called PUC are installed on a farm vehicle

like a tractor and connects to the Cloud. This data is gathered for archive but also

for analysis. Farmobile also manages a cellular data plan for this solution. Information

regarding the Farmobile PUC Fleet Management was found on the home page23.

23https://www.farmobile.com/

https://www.farmobile.com/
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Figure B.46: Farmobile Fleet Management

Figure B.47: Farmobile cardinality diagram

Figure B.48: Farmobile message flow diagram
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Characteristic Value

Physical Entity Farm Vehicle

Attibute(s) Position, Speed

IoT Connector Sensor

Application logic location The PUC only collects data and sends it to the Cloud.

The Cloud contains the logic to process the data.

Data storage location The PUC have storage capacity of 64 gigabytes. The

data is stored locally and pushed to the Electronic

Farm Record whenever there is a cellular connection.

User Interaction The user can access the Electronic Farm Record via a

web or an iOS application.

Scale of system The Cloud server needs to be scalable since it acts as

a central components connected to all devices and UI.

Internet-Dependency Internet-Dependent. The PUC can continue to gather

information while there is no connection, but the con-

nection is needed to sync the information to the Cloud.

Type of invocation Explicit. The data is pushed to the Cloud on while

there is a connection to the Cloud. The data can be

accessed via an app.

Interoperability There is no mention of Interoperability.

Battery life The device is powered by the farm vehicle.

Autonomous Behavior There is no autonomous behavior

B.7.2 Condeco Workspace Occupancy Sensors

The Condeco Workspace Occupancy Sensor is a sensor that reports to the Cloud how a

workspace is occupied. Based on this data, the company can choose how to better use

the workspace. The occupancy sensors push their data to a Cloud service. This data

can be accessed via a web or mobile application. The application allows for many ways

to view the data. The users of the system can then decide themselves how to better use

workspaces, there are no actuators in this system. Information regarding the Condeco

Workspace Occupancy Sensors was found on the home page24.

Figure B.49: Condeco Workspace Occupancy cardinality diagram

24http://www.condecosoftware.com/products/condeco-sense/

http://www.condecosoftware.com/products/condeco-sense/
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Figure B.50: Condeco Workspace Occupancy cardinality diagram

Characteristic Value

Physical Entity (Work)space (Environment)

Attibute(s) Occupancy

IoT Connector Sensor

Application logic location The sensor only senses and pushes the data immedi-

ately every 15 seconds. The logic to be applied to the

data is in the Cloud.

Data storage location The data is stored in the Cloud.

User Interaction The data can be accessed via a web application.

Scale of system The Condeco Cloud needs to scale since it acts as a

central component for all sensors and UI.

Internet-Dependency Internet-Dependent. The sensors need to be con-

nected to the Cloud.

Type of invocation Explicit. The data is pushed every 15 seconds and

accessed via a UI.

Interoperability There is no mention of interoperability with other sys-

tems.

Battery life Estimated at 2 years.

Autonomous Behavior There is no autonomous behavior.

B.7.3 DAQRI Smart Helmet

Designed specifically for industrial applications, the DAQRI smart helmet uses an array

of sensors, cameras and augmented reality to connect your work environment simply by

being there. The cameras recognize the devices in your work environment and uploads

the state of the devices online. Other users that are also wearing the helmet in this

environment can use this data. The entire landscape of your work environment is col-

laboratively mapped by all smart helmets. The Helmet also has a screen which shows

the wearer what his work objectives are for the day, which are issued by a central server

running the DAQRI application. Information regarding the DAQRI Smart Helmet was

found on the home page25.

25http://hardware.daqri.com/smarthelmet/

http://hardware.daqri.com/smarthelmet/
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Figure B.51: DAQRI Smart Helmet

Figure B.52: DAQRI cardinality diagram

Figure B.53: DAQRI message flow diagram
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Characteristic Value

Physical Entity Industrial workplace

Attibute(s) State (Combination of attributes)

IoT Connector Sensor

Application logic location The Smart Helmet contains logic to process the data

and even runs android apps.

Data storage location Data captured is stored on the helmet and also pushed

to a central server.

User Interaction Wearer of the helmets receiver work objectives that are

viewed on the screen. Work objects and sensed data

can be handled in the Industrial 4D studio application.

Scale of system Each company hosts their own Central Server and is

thus capable of deciding themselves when to add more

Helmets. There is no central DAQRI server that col-

lects data from all Helmets in the world.

Internet-Dependency Internet-Dependent. The Smart Helmet still needs to

be connected to push the data measured and receiver

work objectives that can change during the day.

Type of invocation Not specified.

Interoperability There is an SDK to develop Android apps that run in

the Helmet, which could lead to interoperability with

other solutions.

Battery life Estimated to last “An entire shift”.

Autonomous Behavior The Helmet learns the environment with the help of

its own sensors and data collected by other helmets

that are present in the central sever.

B.8 Quality Attributes analysis

This section provides an analysis quality attributes in the Internet of Things based on

the solutions explored in appendix B. It will also be shown that not all of these quality

attributes are a priority in the reality, since there is such a huge variety of solutions.

Interoperability. The solutions that were explored exhibit various levels of interoper-

ability with other solutions. The only real example of interoperability between different

solutions in the dataset examined is in the connected home domain. The solutions in

other domains offer the possibility of interoperability for the future. There is also a

group of solutions that currently do not mention the ability to communicate with other

solutions at all.

For the connected home domain, two example of systems were analyzed which offer

interoperability between devices inside a smart home. The Homeseer solution allows
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users to buy or develop plugins for the system in order to operate with more devices.

The SmartThings solution achieves interoperability by having SmartApps run in the

Cloud which understands the different types of third party devices. Users can also

develop their own SmartApps.

Figure B.54: Homeseer VS. SmartThings Interoperability

Both solutions offer a “Hub” which acts as a central communication point between the

devices inside the home environment. Figure B.54 illustrates these two systems. The

difference between these two solutions is the location of the logic needed to understand

the communication with the devices. This logic is needed to reach semantic interoper-

ability between the multiple devices inside a smart home. For the Homeseer, the logic is

located in the Hub itself, while for the SmartThings solution this logic is located in the

SmartServices layer in the SmartThings Cloud. The SmartThings Hub merely relays

the communication to the Cloud.

This design choice has effect on the system on different levels. The interoperability be-

tween devices in the Homeseer solution is Internet-independent, the hub is customizable

(as many plugins as the user needs), can respond faster (no need to connect to the

Cloud) and is more privacy friendly.

The SmartThings Hub on the other hand shares the intelligence with all other hubs

connected to the Cloud, which makes it easier to add new intelligence to interface to

devices to all hubs at once. Because the logic is located in the Cloud, the computation

power is not restricted by the hardware on the hub. Finally, as the hub only acts as a

gateway between devices and the Cloud, it can be assumed that the SmartThings hub

costs less to make than the Homeseer hub.
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Both of these connected home solutions offer interoperability via the IFTTT26 webser-

vice. IFTTT is a webservice that allows users to link up two services by a conditional

statement called recipes. If a certain condition occurs, for example a SmartThings mo-

tion sensor picks up some movement, then the IFTTT webservice can send a message to

a Phillips Hue27 bridge to turn all the lights on. These “If This Then That” recipes can

be used for interoperability between solutions, as long as the IFTTT is given permission

to communicate with them. A reason why this is a nice feature is because it allows

people that are not programmers to create recipes that allow for interoperability and

also autonomous behavior.

What is interesting about the IFTTT and the connected home domain is that it illus-

trates another way of providing interoperability between solutions, namely using a third

party webservice as a mediator. This allows for the devices at the edge of the network

to be less interoperable and autonomous, leaving the logic in the Cloud. This leads to

Internet dependency and an increase in latency, but reduces the cost of production and

power consumption of nodes at the edge of the network.

For solutions outside of the connected home domain, interoperability comes in the form

of providing an SDK to develop apps that can communicate to the device or by providing

an API to access the system. Both types of solutions implement a sensors-as-a-service

pattern, i.e. they provide a way to collect data and access to it, however the usage of

that data depends entirely on the system that is accessing the data.

An example is the Angel Wristband, which is a wristband that can measure vital signs of

a person. How this data is used depends entirely on the app that is developed using the

SDK. Another interesting example is the Array of Things. This is a Smart City solution

where sensors are placed around a city that measure various attributes of the city. This

data is published on a public database which can be accessed through an online portal.

The use of this data depends on businesses, researchers and the general public.

Finally, there is a group of solutions that do not interoperate with any other solution.

This supports the statement that interoperability with other solutions is not important

for all IoT Solutions. There are some solutions that might not want to be open because

of security, privacy and safety reasons. They might form an interconnected network of

things with a select few solutions in the future, but not in such an open way as other

IoT solutions.

An example is the DAQRI smart helmet, which is an augmented reality based helmet

that can map an industrial environment while receiving work objectives for the worker

wearing the helmet for the day. The helmet contains many sensors and processing power

to understand its surroundings and help the workers with their daily routines while

keeping the state of the machines in an industrial workplace synced with a data model

26https://ifttt.com/recipes
27http://www2.meethue.com/nl-nl/

https://ifttt.com/recipes
http://www2.meethue.com/nl-nl/
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on a central server. Some possible reasons why interoperability is not important for this

solution is because it handles a lot of private information and the data it measures is

very complex, making it hard for another system to understand. It could also be argued

that such a system would likely evolve itself if more functionality is needed instead of

relying on other solutions, because it is such a specific and complex solution.

To summarize, the following levels of interoperability between solutions were identified

for current IoT Solutions:

• Hub/Gateway: The Hub/Gateway middleware node contains the logic to achieve

semantic interoperability between devices.

• Cloud: The Cloud component contains the logic to achieve semantic interoper-

ability between devices.

• Third Party Service: A Third party service is used as a mediator between two

IoT solutions.

• SDK: An SDK is available to develop for the platform.

• Open Database: The data measured by the IoT Solution is available to other

systems.

• No Interoperability: The solution currently does not support interoperability

with other systems.

Evolvability. Although not a lot of information is available about the modularity of

the software in IoT Solutions, one thing that is important for the IoT with respect to

evolvability is the ability to push software updates to a node via the network.

Some solutions have very thin edges, which include just sensors that push their data

to the cloud. All of the application logic for these types of solutions are this located

in the Cloud. What this means for evolvability is that the software only needs to be

updated in one location in order to evolve the system. In this way, the evolution of the

system is more easily controlled, which is also one of the characteristics we identified for

evolvability. If the knowledge is distributed amongst nodes at the edge of the network,

these updates have to be propagated to all of these nodes. Futhermore, if the edges are

less smart, they are more easily replaceable with respect to cost in case of damage or

theft. This means that the exchangeability is increased in such a scenario, allowing for

new versions of sensors to be deployed more easily. Figure B.55 illustrates this difference.
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Figure B.55: Centralization vs. Decentralization for Evolvability

Having a centralized intelligence also has an effect on evolvability with respect to in-

teroperability. If there is an environment where the number of heterogeneous devices is

likely to increase at a fast rate, having a centralized intelligence means only updating

one node in the network with the logic to communicate with these new devices. If the

edge of the network is responsible for the interoperability, these updates will have to be

pushed to these nodes. These nodes are also bound by their hardware capacity, which

is in most cases very limited.

The choice for which type of solution to develop, centralized or decentralized with respect

to evolvability, depends on the anticipated rate of change and number of nodes at the

edge. If both are high, a centralized solution can be the best choice. However, if this

is not the case and updates are infrequent, then having more logic at the edge of the

network also brings advantages such as performance and availability.

Performance. As already mentioned, decentralization of the system can lead to an

increase in performance due to low-latency. Half of the solutions examined rely com-

pletely on a centralized intelligence which is usually a Cloud component. This could

mean that for these solutions, low-latency is not the highest priority. For many of these

systems, the concept of having data “eventually consistent” , i.e. measured data from

the real world is eventually synced to its digital counterpart or the change to the digital

counterpart is eventually propagated to the edge node and changed in the real world, is

good enough.

In an environment such as a connected home, there is a reliable Internet connection

and the devices are stationary. This combination makes it possible to achieve relatively

good performance even though all of the logic is in the Cloud. Take another environment

where the connectivity might be unstable and the nodes are constantly in motion, and

suddenly having logic closer to the edge can have a big impact on performance, especially

if the device can sense, process and give feedback to the user without even needing a

connection.

The DAQRI smart helmet is an example of a smart device at the edge of the network.

It is able to completely analyze its environment while giving feedback to the user. The
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connection to a central node is only used to obtain instructions and share the data

measured with other helmets. The choice of having the intelligence in the smart helmet

itself leads to the ability of always giving an analysis of the data instead of only when a

connection is available.

The Array of Things also has some intelligence in their sensor nodes. In this case it

is not to provide low-latency but instead to limit the number of operations the central

component has to perform. The sensor nodes can pre-process the data so that the

Cloud does not have to process all the raw data from the sensors. Instead it only has to

aggregate the data from the various sensor nodes.

Scalability. For the majority of the systems analyzed (11 out of 18), the solutions have

a Cloud component which all devices and users communicate with. For these systems

nothing more can be said other than the “Cloud servers need to be scalable”. The fact

that the Cloud is scalable is a safe assumption to make, however having an architecture

that requires less scaling decreases costs.

By my estimation, the Cloud server that would need to be most scalable out of the sys-

tems evaluated is the SmartThings Cloud. Each device inside a household will commu-

nicate with this Cloud component, albeit indirectly via the SmartThings Hub. A reason

why this system is huge is because it is an example of a centralized interoperability-

enabling solution. For IoT Solutions in other domains that do not currently support

interoperability, the number of users and devices is not relatively big compared to some

of the bigger IT systems that exist today with millions of users. Scalability in the IoT

becomes more of a unique issue as services start to show up which offer interoperabil-

ity between individual IoT Solutions, thus creating a network of many devices, where

each new user brings a multitude of new sensors and thus more connections to central

components.

Some solutions have less of a scalability problem if either the number of devices or

number of users is fixed. For the Zebra Motionworks example, the number of devices is

fixed, because there is a fixed number of NFL athletes allowed to play on the field at the

same time. The number of RFID readers placed around the stadium is also fixed. The S5

Electronic Shelf solution is an example where the number of users is fixed. The number

of shelf labels might increase dramatically if the store expands or adds a new branch,

but there is always a fixed (or rather small) number of administrators that manages the

system.

There are a number of solutions where scalability does not play a role. Take for example

the Angel or the Nymi wristband. They communicate with one to a few applications at

a time via Bluetooth. In this case both the number of devices and users is fixed.

The Nomi Brickstream live team argues that their system is more scalable because

intelligence is located in the edge device, which is a camera. This makes it easier to

add many nodes as each of them do their own computations and do not cause much
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strain on the central server. This is especially important when the central server is not

necessarily in the Cloud but perhaps a private data server.

The following statements can be made regarding scalability:

• Decentralization is good for scalability, especially if the central node is not a Cloud

component, as the logic in the edge of the network decreases the workload for the

central node.

• Some systems have a fixed number of devices or fixed number of users, making

scalability less of a priority.

• Some solutions do not need to scale at all.

• Scalability in the IoT becomes more interesting when interoperability between

solutions come into play.

Availability. One of the reasons a solution might become unavailable in the IoT is if

the battery of the devices at the edge run out. Most of the solutions analyzed either plug

in to a power outlet or have pretty long battery life. The shortest battery life among

the solutions is that of the DAQRI smart helmet, which is estimated at one day.

The availability of solutions in the IoT can also be affected by connectivity issues. One

way this is handled is by allowing the device to store its measurements locally and

upload them when a reliable connection has been established. This is how the Farmobile

solution handles this problem, where connectivity in the farm lands can be limited. This

connectivity problem is also handled by the DAQRI smart helmet by allowing the device

itself to process its data locally and store it, allowing for the majority of the functionality

to remain available.

Resiliency. Most of the solutions have a central node, but it is the location of the logic

and data (centralization) that determine how big of a single point of failure this central

node is.

Take for example the DAQRI Smart Helmet, which receives its objectives and sends its

data to a central server. Should this server fall, some functionalities will be temporarily

unavailable. The Smart Helmet has enough logic, processing power and data storage to

continue functioning while the central server has time to recover.

On the other hand, a system like the SmartThings environment is entirely dependent

on the central SmartThings Cloud. Should this ever completely fail, the entire solution

would become inoperable. However, since we are talking about the Cloud, downtime

can be limited by providing active backup servers.

Decentralization can remove a single point of failure scenario, increasing overall resiliency

of the solution.
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Another way to increase resiliency in an IoT Solution is by adding multiple nodes that

measure the same thing, this is referred to as replication. Take for example the Weath-

erCloud solution, which equips cars with sensors in order to measure the weather and

road conditions. Should one or more of these cars fail, assuming there are many Weath-

erCloud enabled cars, an approximation of the weather can still be done with the data

from the remaining cars. This is different for a Nest Thermostat solution, where if the

thermostat fails the entire solution for that particular house is inoperable. The difference

between those two solutions of course is the stakeholder to which the data is relevant.

Security. It is hard to say anything about security measures that the IoT Solutions

use, because they are usually not open about this. This is to be expected as making

the security protocols used public will make it much easier for an attacker to initiate

an attack. You usually don’t find much more than a statement saying “we use security

algorithms present in online banking and large-scale web-apps”. For this attribute not

much more can be said.

Privacy.The IoT solutions exhibit various ways to provide privacy. One way is through

data minimization, where the solutions claim only to collect data that is needed. An

example is the Nomi Brickstream live, which is a camera that can identify faces so that

a store can count how many people walk in and out of the store. However, they claim

not to actually save the faces that are caught on camera. The Scanalytics floor sensors

have the same goal as the Nomi, except that they only measure movement on the floor,

which is guaranteed to be anonymous.

While both systems probably provide the same level of privacy for the same goal, the

Scanalytics floor sensors provide a sense of trustability with regards to privacy due to

the technology used.

Another example is the Array of Things, which also makes claims not to gather personal

data of people in the city. They do however measure mobile device signals to provide

an estimation of how busy certain parts of the city is.

One interesting IoT Solution with regards to privacy is the Homeseer. At the start of

this thesis, I visited the Homeseer website. The main selling point of this system at that

point was that it was privacy friendly by being Internet-independent. The Homeseer

did not store any personal information in any Cloud service because it did not have one.

This did come at a cost, because users could only control their home from inside. They

could not control the home remotely via a mobile device, which is what the SmartThings

environment provided.

However, roughly a month after I visited the website, it had been updated to include

new features. The first feature was the possibility to control the Homeseer remotely

via a mobile app. The second included the ability to communicate with the IFTTT

webservice, allowing interoperability with other systems. This is an example of how

the guarantee of privacy must be given up in order to achieve more functionality in the



Appendix B. IoT Solutions Analysis 134

IoT. This does not mean that the system does not provide privacy, it only means that

the inherent trustability of the system due to the technology and networking used is no

longer present.

The Homeseer remains the privacy-friendly alternative to the SmartThings, simply be-

cause the personal data is still not stored in the Cloud. The Cloud is simply used as

a router between the mobile app and the Homeseer Hub. From this we can conclude

that decentralizing data storage can provide more privacy, since most of the data is kept

on a local network. There is no guarantee however that no data at all is kept on the

Homeseer Cloud router, which makes privacy such a difficult issue. However, trusting

companies with data without having a full guarantee what is done with it has always

been a privacy issue even before the IoT.

An example of an IoT solution were privacy plays no role is the Zebra motionworks.

The data that is being gathered is the game behavior of NFL players on the field. This

is information that is already available to all people attending the game or watching at

home.

Taking look at some of the privacy statements made by solutions, one that stood out

is the Nymi band. For this solution, Privacy by Design28 was used. Privacy by Design

contains 7 objectives in order to ensure privacy in systems. These are the following:

• Proactive not Reactive: Anticipate and prevent privacy-invasive events before

they happen.

• Privacy as the Default Setting: Maximum degree of privacy should be the

defualt setting. Users don’t have to do anything to be ensured their privacy.

• Privacy Embedded into Design: Privacy should be an integral part of the

architecture and not an after-the-fact add-on.

• Full Functionality: Instead of considering trade-offs such as privacy vs. func-

tionality, the system should be designed in a win-win manner where both can be

achieved.

• End-to-End Security: Privacy by Design extends throughout the lifecycle of the

data collected, where at the end the data is securely destroyed.

• Visibility and Transparency: Privacy is individually verifiable to all stakehold-

ers.

• Respect for User Privacy: Design of a system should be user-centric with the

privacy of the user always in mind.

28http://www.privacybydesign.ca

http://www.privacybydesign.ca
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While it is possible to achieve more functionality while keeping privacy in the IoT, it is

harder to ensure users that the situation remains privacy-friendly after such a connec-

tion has been made with another system. Take for example the Homeseer once more,

where previously it was not possible for the system to be privacy-unfriendly because of

the technology and design choices used, namely Internet-dependent and no Cloud com-

ponent. The new version of the Homeseer could still function in a privacy-friendly way,

however it is harder for users to trust this. This is where visibility and transparency

play a role, allowing individual users to verify for themselves.

What we have learned about Privacy in the IoT Reality is the following:

• Decentralization of data storage is deemed privacy friendly.

• Privacy is promised by assuring the users that only necessary data is gathered and

not personal data (data minimization).

• There is a trade-off between Privacy and Functionality in the IoT.

• There are some solutions where privacy does not play a role at all because of the

nature of the data being gathered and processed.
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Software Architectural Styles

This section contains a definition for and a list of software architectural styles that will

be used for this thesis. The styles will be explained in short, since they are not new,

and will be illustrated in a diagram. Some of the trade-offs mentioned in literature will

be listed.

C.1 Introduction

The term software architecture refers to the process of making design decisions for a

specific system to fulfill a certain business goal. The decisions are trade-offs between

qualities that the system to be developed will have based on the requirements for this

system. The decisions made on this abstract level of design primarily have an impact

on the quality attributes1 that the system will exhibit.

The Institute of Electrical and Electronics Engineers (IEEE) defines software architec-

ture as being “the fundamental organization of a system embodied in its components,

their relationships to each other, and to the environment and the principles guiding its

design and evolution”. [CB11].

When talking about the architecture of a specific system, we abstract from implementa-

tion details and focus on the decisions that need to be made in order to achieve certain

qualities for that system. As stated in the definition above, these design decisions relate

to how the system is decomposed into components and how they interact with each

other. When the same decisions are continuously made for the same type of systems to

achieve similar goals with success, patterns start to become visible. These patterns are

known as software architectural styles.

The software architecture is an abstraction of a system, however it remains specific

for that particular system. A software architectural style is an abstraction of software

1Quality attributes are non-functional requirements.
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architecture, i.e. it abstracts from a specific system and instead looks at patterns of

design decisions that could be used in various types of systems in different domains. A

software architecture can be an instantiation of one or multiple software architectural

styles. The remainder of this chapter gives a definition of software architectural styles

and provides a list of the styles that will be used in this thesis.

C.2 Definition

Software architectural styles can be seen as guidelines for making architectural design

decisions regarding the decomposition of a system and how the components may interact.

They are based on years of experience in the field of software architecture, extracted

from successful systems.

Another definition for a software architectural style is a “coordinated set of architectural

constraints that restricts the roles/features of architectural elements and the allowed

relationships among those elements within any architecture that conforms to that style”

[Fie00].

From this definition we can derive that software architectural styles contain restrictions

on what an element in the architecture can do but also which other elements it can

interact with.

The decomposition of a system should begin based on design decisions that are likely

to change [Par72]. Inherent in all styles is the increase of evolvability of the system

due to the decoupling of components in different ways. Decomposing the system into

components and having them not be entirely dependent on each other makes it possible

for certain components to be changed without affecting the entire system.

A Software Architectural Style is a labeled collection of architectural design decisions

that are applicable to a particular context, constraining development within that context,

and yielding beneficial qualities [Tay13]. These styles can be used to design the software

architecture of a specific system. Software architectures are unique to the system they

represent. There are an infinite amount of unique software architectures (as many as

there are systems) while there are a finite amount of commonly used and well-defined

software architectural styles. Figure C.1 shows the design process using an architectural

style.
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Figure C.1: Software Architecture Design Process Life Cycle

On the top left side we have a block containing the current business goal. This business

goal is usually provided by a client. At the heart of the business goal is a problem. A

problem is defined as the difference between the current state and a desired state[CB11].

Some problems are not completely new. There might already be some knowledge on

how to solve some parts of the problem. This knowledge can be considered domain

knowledge. Every software development situation has its set of requirements made by

the client. Besides these three properties mentioned above, there are also other factors

that should be considered when analysing a situation such as the stakeholders and the

market. Who are the people that are going to be using this product? What is the

current trend on the market? There are many other factors you could think of, but this

is out of the scope of this thesis. For now, these will be represented as “Extra”. Each

situation is unique and will therefore have to be analyzed in order to choose the right

architectural style to use.

An architectural style consists of four parts. The first part is the choice of Design

Elements. It is possible to describe software architecture as a set of components and

connectors according to [GS94]. The choices for which components and connectors are

used in a style are the design elements. An example is a Client-Server style, where the

components are a Client and a Server and the connectors are requests and responses.
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However, for some styles it is not always clear what the components or connectors are,

so it is much easier to simply refer to them as design elements or the vocabulary of a

style.

The second part are the design choices. The design choices are a set of configuration

rules, topological constraints that determine allowed composition of design elements.

An example of such a constraint is that a component may be connected to at most two

other components.

The third part is semantic interpretation, which means that the composition of design

elements must have well-defined meanings. What does it mean for a class to implement

an interface? What does it mean for a particular component to be connected to another

specific component? Does it mean the first component uses the second component?

The last part contains the trade-offs and specialties. Each Architectural style has its

advantages, disadvantages and which types of systems are recommended to use this

style. These trade-offs relate to the quality attributes gained and lost when using a

particular style. It is possible to use different styles to create the same functionality,

however the measure in which quality attributes such as evolvability, interoperability

and performance efficiency are provided depend on the software architecture and thus

by the styles used (or not used).

Finally, when the first version of the software architecture is complete, an implementation

based on the architecture can be developed. The implementation can then be tested

against the requirements present in the business goal. If it solves the problems and

conforms to the requirements, then the process is done. If this is not the case, the

implementation, business goal and architecture can be iteratively reviewed and changed

to reach a situation that is desirable for the client.

The resulting software architecture of this process adheres to a software architectural

style. This software architecture can be documented in many ways and on many views

such as the logical, process, development and physical view [Kru]. Often software archi-

tecture is documented as a line and box diagram, however it is not always clear what

the lines and boxes represent. The views are used to make this more clear and the docu-

mentation of a system can contain a diagram for each view. Software architectural styles

live in the logical view, however in this thesis the physical view will also be considered as

the IoT is distributed and the mapping of software components to hardware is essential

in achieving certain quality attributes.

While there are not that many well defined styles to begin with, choosing one over the

other can have many consequences that will remain inherent in the architecture of the

system. Choosing the right starting point for the architecture of a system is the goal of

software architectural styles.
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C.3 Styles

As mentioned in the previous section, there is no ISO or IEEE standard for software

architectural styles. The most referenced to paper describing this topic is “An Introduc-

tion to Software Architecture” by David Garlan and Mary Shaw [GS94], however this

was written in 1994. The book “Software Architecture in Practice: Third Edition” is a

more recently written book that covers all of the styles mentioned by Shaw and Garlan

and even includes newer styles [Bas]. This book refers to styles as architectural patterns,

both of which are usually used synonymously in literature. These two references will

serve as the main sources for the architectural style description, however other papers

will be used as support.

It is important to note that this list is not complete. It can be argued that simply by

adding or removing a constraint, a new style can be formed. Instead the focus will be

on the most commonly used and mentioned styles in literature. An example of a style

that is left out is Microservices2, as it is relatively new and not yet well documented.

Furthermore, it is my opinion that this style can be instantiated using the Service-

Oriented style. There are probably more styles, however in this paper we will focus on

the following styles:

• Client-Server

• Peer-to-Peer

• Pipes and Filters

• Event-Based

• Publish-Subscribe

• Service-Oriented

• REST

• Layered

• Microkernel

This list of styles contains enough variety in order to illustrate the importance of making

the first architectural design step for IoT solutions, namely choosing a style. The choice

of style will remain embedded into the architecture as it evolves, meaning that making

the wrong decision early in the design phase can lead to unwanted side-effects in the

implementation of the system.

The styles will be cataloged using the following template:

2http://martinfowler.com/articles/microservices.html

http://martinfowler.com/articles/microservices.html
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Item Description

Name(s) and Abbreviation The name and abbreviation of the style. Some styles

might have multiple labels referencing to it

Reference(s) The references used to describe this style

Overview A general description of the style

Design Elements The vocabulary used in this style. The names used for

the types of components and connectors.

Constraints The type of constraints, such as how components are

connected and what they are allowed to do.

Trade-offs The general effect the style has on quality attributes

of a system implementing that style. Note that not all

effects on the quality attributes we are interested in are

documented. This will have to be analyzed separately.

Furthermore, there is no guarantee that these trade-

offs will hold, as these depend on the context of the

application being designed.

C.3.1 Client-Server (CS)

References:

• “An introduction to Software Architecture” [GS94]

• “Software Architecture in Practice” [Bas]

• “Software Architectural Styles: An Introduction” [MJ]”

• “Architectural Styles and the Design of Network-based Software Architectures”

[Fie00]

The Client-Server architectural style is a very common and well known pattern for

network-based applications . One or multiple Client components initiate a request to

a Server, which then performs some computations and responds to the Clients. This is

different from the Event-Based and Streaming invocations we have seen so far, as the

Client decides itself when to initiate a request.

One common example of a Client-Server application is a website, where the web browser

acts as a client and the website is itself is hosted on a server. The Browser initiates a

request for a website to the Server, which responds with the data necessary to illustrate

the website in the browser.
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Figure C.2: Client-Server Architectural Style

Design Elements

• Client: A client is a component that invokes services of a server component.

• Server: The server component provides services to clients.

Constraints

• Only clients can initiate communication, servers only respond to requests from

clients.

• Server components can be clients to other servers.

• Clients cannot communicate to each other.

Advantages

• Evolvability: Common services only need to be modified in a single location.

• Availability/Scalability: Centralizing control of resources allows for distribution

among physical servers.



Appendix C. Software Architectural Styles 143

Disadvantages

• Performance: The server can be a bottleneck, since all communications go through

it.

• Availability: The server is a single point of failure.

• Complexity: For some applications it can be hard to decide where to put func-

tionality.

C.3.2 Peer-To-Peer(P2P)

References:

• “An introduction to Software Architecture” [GS94]

• “Software Architecture in Practice” [Bas]

• “Software Architectural Styles: An Introduction” [MJ]”

Considered to be the opposite of the Client-Server style, the Peer-to-Peer (P2P) style

contains components which all have equivalent capabilities and responsibilities. All peers

are producers and consumers of data and functionality.

Design Elements. The only design element in this style are peers. Peers are indepen-

dent components running on a network.

Constraints

• Peers connect to each other directly, no component that processes data in between.

• Peers are both providers and consumers of data and processing power.

• The primary content is provided by peers, there are no central components pro-

viding content. There may however be a central component providing information

regarding peers (Centralized peer-to-peer).

• Peers are autonomous and control their own activities. They are not controlled by

a central component.

• Peers can be added and removed from the system at any time.

Advantages:

• Performance: Response-time only depends on connection to peer instead of con-

nection of both peers to a central server.



Appendix C. Software Architectural Styles 144

• Availability: If a peer should fall, the system would still continue to function

although the data on that peer would be gone.

• Availability; If a peer is not available, another peer can pick up the workload.

• Scalability; The system can be scaled simply by adding more peers. The supply

and the demand of resources is increased by adding peers.

Disadvantage

• Managing Security and Availability is much more complex.

• The performance and availability gains depend if the network is large enough.

C.3.3 Pipes and Filters

References:

• “An introduction to Software Architecture” [GS94]

• “Software Architecture in Practice” [Bas]

• “Architectural Styles and the Design of Network-based Software Architectures”

[Fie00]

A Pipes and Filters style contains components that are called filters because they trans-

form the data received from another filter, and output this transformed data to the

following filter in the chain [GS94]. Filters are connected to each other by Pipes, which

are routers for the data stream. Multiple instances of a filter can be run if a certain

filter has more workload. Filters can be reused in other systems where applicable as

illustrated in figure C.3.
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Figure C.3: Pipes and Filters

Design Elements

• Filter: A Filter is a component that transforms the data received from its input

port to its output port.

• Pipes: A Pipe is the connector that transports data from a filter’s output port to

another filter’s input port. The Pipe does not transform the data.

Constraints

• Filters connected by a pipe must agree on the type of data being passed along that

pipe.

• Filters are independent of each other and do not share a state.

• Filters can execute in parallel.

• Filters start to producing output as soon as they start processing input.

Advantages:

• Understandability: The entire system can be considered a composition of the

behaviors of the individual filters.
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• Reusability: Any two filters can be hooked together given that they agree on the

data being transmitted. A filter can also be reused in another system completely.

• Evolvability: New filters can be added andold filters can be replaced since they

are all independent.

• Correctness: Throughput and Deadlock analysis is made possible.

• Scalability: It is possible to individually scale certain filters by running more

instances in parallel.

Disadvantages:

• Interactivity: Due to the batch organization of processing, interactivity cannot be

handled well.

• Performance: System may have to wait for parallel instances of a filter to finish

processing the data.

• Performance: Certain implementations may force a lowest common denominator

on the transmission of the data, which may result in more work for some filters.

• Performance: Each extra filter adds to overall latency.

• Availability: If a filter in the chain of filters fail, it usually leads to failure of the

system (unless there are multiple instances of the filter running).

C.3.4 Event-Based, Event-Driven, Event-Oriented

• “An introduction to Software Architecture” [GS94]

• “Software Architecture in Practice” [Bas]

• “Software Architectural Styles: An Introduction” [MJ]”

• “Architectural Styles and the Design of Network-based Software Architectures”

[Fie00]

The Event-Based software architectural style is based on implicit invocation. As opposed

to explicit invocation, where procedures or methods are called, in implicit invocation they

are induced when a certain event takes place. The Event-Based architectural styles have

evolved through the years, with the earliest version specialized for applications running

on a single node. The components in this version were an Event Source and Event

processors, where each processor would register an interest in a specific event which was

produced by a source[GS94]. The common uses were GUI programs, where the system

reacted to clicks and performed asynchronous tasks, or debuggers that invoked methods
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such as scrolling to the source line of the breakpoint and showing the values of the

variables.

Figure C.4: Early Event-Based Style

Figure C.4 illustrates the first version of Event-based style. The Event source and

processors are all running in one application, when an event takes place in the source,

it triggers functions located inside the event processors.

The Event-Based style has since been adapted to be used in distributed systems. The

connector between component has been changed, now called the Event-Bus which is

in charge of sending the event to all listeners over the network [MJ]. This becomes

necessary as nodes that are interested in a certain event are no longer running on the

same hardware, meaning that some administration and networking has to occur.

This type of Event-Based style has been recommended for real-time systems that need

to react to external interaction and have distributed sensors. Some examples include

activity monitoring and early warning systems.

Figure C.5: Event Based Style with Event Bus
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Figure C.5 illustrates an example of an event-based system with an Event Bus. The

Event Bus and Event Source can run in the same application, however it is also possible

to have an Event-Bus run on middleware. Because the nodes are distributed across a

network, the event is pushed to the Event Processors rather than immediately reacting

to the event. Furthermore, the distributiveness makes brings the necessity to sometimes

also send data along with the event. Previously the event processors and the source

shared a state, which is not possible in a distributed system unless they all share a

database for example.

This type of event-based style comes close to the Publish-Subscribe style, however in

that style the consumer also does not know the identity of the source of the event and

is instead only interested in a type of event.

Design Elements

• Event Source: This component posts an event to the Event-Bus.

• Event Bus: The Event Bus is responsible for keeping track of all listeners of the

event and notifying them when that event has happened.

• Event Processor: Registers to the Event bus and receives a notification when

this event happens.

Constraints

• The event source does not know the identity of the event processors.

• Event processors are independent of each other.

Advantages

• Reusability: A component can be used in any other system by registering to its

event.

• Evolvability: Components can evolve or be replaced without affecting the event-

source or other event-processors.

• Performance: The ability to perform tasks in parallel lend to performance.

• Scalability: Each event processor can be scaled independently. The Event Bus

only needs to relay data and notify listeners. However, the number of connections

possible depends on the Event-Bus.

• Efficiency: For applications dominated by data monitoring rather than retrieval,

this style can increase efficiency by removing the need for polling.
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Disadvantages

• Testability: It is generally harder to recreate some events and the asynchronous

characteristics also make testing harder.

• Correctness: Due to the asynchronous nature, it is hard to reason about termina-

tion and correctness of the end state.

• Performance: The Event Bus is an intermediary and adds to overall latency. For

one-to-one communication this style is not useful.

• Availability: The Event Service is a single point of failure.

C.3.5 Publish-Subscribe

• “Software Architecture in Practice” [Bas]

• “The many faces of publish/subscribe” [EK03].

The Publish-Subscribe software architectural style contains publishers that publish data

to a central Event Service. At the same time, interested parties called Subscribers can

subscribe to events via this Event Service. The Event Service is in charge of matching

the published data with the corresponding need for it. There are three variants of this

style. These are Topic-based, Content-based and Type-based.

In Topic-based Publish-Subscribe, events are grouped into topics that are identified by

keywords. This variant might not be flexible enough for some types of systems. The

Content-based variant allows events to be classified based on their properties and not by

some predefined grouping. In this variant a subscription language is provided in order

to allow subscribers to express in detail which events they would like to subscribe to.

Type-based requires events published to have a well defined type., which allows type

safety at compile-time.

While it shares some similarities with the Event-Based architectural style, there is a

big difference. The subscribers are all interested in a type of event happening without

knowing the publisher of the event. In Event-based, the subscribers are interested in a

particular source of an event.

What this means is that a subscriber might get multiple notifications for one request,

coming from multiple publishers if the implementation allows it.

The Publish-Subscribe style is developed to provide decoupling between event sources

and event consumers in systems that are large in scale and have heterogeneous systems.

In this style, it is possible to show an interest in the weather at my location for example
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while not really being interested who provides this information. Figure C.6 illustrates

the Publish-Subscribe style.

Figure C.6: Publish-Subscribe software architectural style[EK03]

Design Elements

• Publisher: The producer of data. It pushes its data to the event service.

• Subscribe: The consumer of data. It registers its interest in a particular type

of data and receives a notification from the event service when this type of data

arrives.

• Event Service: Contains the storage and management logic for subscriptions. It is

responsible for notifying subscribers when an data of interest arrives.

Constraints

• All publishers and subscribers are connected to the event service.

• A component can be both a publisher and a subscriber.

Advantages:

• Evolvability: Publishers and Subscribers are loosely coupled and thus allow for

independent evolution.

Disadvantages:
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• Performance: The event service is an extra layer and adds to overall latency. The

Event Service increases latency more than the Event Bus for the Event-Based style

since it also has to be able to classify data and understand complex queries.

• Correctness: Due to the asynchronous nature, it is hard to reason about termina-

tion and correctness of the end state.

• Availability: The Event Service is a single point of failure.

C.3.6 Service-Oriented

• “Software Architecture in Practice” [Bas]

The Service-Oriented Architecture (SOA) style contains services that are decoupled

and have defined interfaces which can be combined to form distributed applications.

Services can communicate to each other regardless of the platform due to the platform-

independent interfaces. This makes this style very suitable for an environment containing

heterogeneous subsystems.

Figure C.7: Service-Oriented Architectural Style

Figure C.7 illustrates the types of components in Service-Oriented Architecture. First

of all, there is the service which provides a set of functionalities. A service publishes

its description to the service registry. The service registry keeps a list of all services,

their locations and their functionality. When a service requestor is in need of a service,

it first consults the registry returns the information needed to locate and communicate

with the service. From this point on the service requestor and the service can commu-

nicate, regardless of the platforms they are running on, because the communication is

standardized.

The service requestor can also be a service itself. In this case the service uses the registry

to find one or more services to complement its own functionality.

Design Elements
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• Service Registry: Keeps a record of all registered service containing their descrip-

tions as well as their interfaces.

• Service Consumer/Requestor: The component in need of functionality from an-

other service.

• Service Provider: A component that provides functionality.

Constraints

• All services are independent, meaning they do not share a state and do not have

to know the identity of each other.

• Service providers need to register their services to the service registry.

Advantages:

• Interoperability: The registry component allows for lookup of services and also

knowledge about their interfaces. Orchestration services can be used to script and

translate interactions between multiple services.

• Evolvability: Services are completely decoupled.

Disadvantages:

• Complexity: Service-Oriented Architectures are typically complex to build.

• Loss of control: The evolution of independent services cannot be controlled.

C.3.7 REST

• “Architectural styles and the design of network-based software architectures” [Fie00]

The REST architectural style is basically the same as the Client-Server style except

that the components in the server role have a uniform interface, which contains the

verbs GET, SET, POST and DELETE and a uniform addressing scheme. The trade-

off between using this style over the Client-Server style is that the uniform interface

increases evolvability by decoupling the components and interoperability as the interface

is known throughout the system. The disadvantage is decreased performance as the

uniform interface forces information to be changed into a standardized form.

The constraints of caching and stateless communication is considered as constraints for

this style, however for this thesis I have chosen to view this as implementation details

and not inherent in the style itself.
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C.3.8 Layered

• “An introduction to Software Architecture” [GS94]

• “Software Architecture in Practice” [Bas]

• “Architectural Styles and the Design of Network-based Software Architectures”

[Fie00]

The Layered software architectural style allows the developer to partition a system into

layers which can be developed and scaled independently [GS94]. Generally, a layer

only communicates with adjacent layers. Each layer provides an interface for the layer

“above it” (or “below it”, it varies). As long as this interface remains constant, the

implementation of the layer can continue to evolve without causing much change to the

entire system. In some layered systems it is allowed to skip certain layers. This is usually

due to performance reasons.

The layered style has been used for communication protocols, database systems, oper-

ating systems and Java EE applications. An interesting characteristic of a layered style

is that it can be used in combination with many other styles, which is not a statement

that holds for all styles. The layered style is also popular because it allows a mapping

of layers to organizational structure, where specific team of developers work on layers

that correspond to their expertise.

One consideration to make when using the layered architectural style is to avoid the

“sinkhole anti-pattern”, which is when a majority of the requests simply pass through

all of the layers without any processing being done in the layers[Ric15]. All systems will

have some processes that fall into this anti-pattern, a good rule is to have less than 20

percent of the requests be a simple pass through.

Figure C.8 shows an example of a common implementation of the layered architectural

style, where the system is decomposed into a presentation layer for UI, a Business layer

that handles the business logic, a Presentation layer which interfaces with the database

and the database layer that contains the database.
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Figure C.8: Layered Architecture example [Ric15]

Design Elements. The only design elements are layers, which can contain multiple

components.

Constraints

• Every piece of software is part of exactly one layer.

• There are at least two layers.

• A lower layer cannot “use” an upper layer.

Advantages:

• Evolvability: Layers chan change as long as their interfaces remain the same.

• Reusability: Layers can be reused in other systems.

• Security: Layers can be put in place to authenticate connections before allowing

anything to change in sensitive areas of the system.

• Testability: Other layers can be mocked in order to test specific layers.

Disadvantages:

• Performance: Multiple layers need to be traversed in order to fulfill a business

request.

• Suitability: Not all systems can be modeled in a layered fashion.

• Resiliency: Should one layer fail, the entire system becomes inoperabl
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C.3.9 Microkernel

• “Software Architecture Patterns: Understanding common architecture patterns

and when to use them” [Ric15]

The Microkernel architectural style is commonly used for product-based applications.

A product-based application is packaged and made available for download in versions.

The main goal is to provide a set of basic functionalities, located in the microkernel

component and a set of added functionalities in plugins. Figure C.9 illustrates this

style.

Figure C.9: Microkernel Style [Ric15]

The advantage of using this style is allowing every user of the product to only download

the plugins they will be using instead of providing a complete set of functionalities from

the very start. An example is the Eclipse IDE, where users can choose to download

whichever plugins they want to add functionality that they need.

Design Elements.

• Microkernel: The component containing the minimum functionality needed to run

the system.

• Plugin: A set of functionalities that is called by the microkernel.

Constraints

• Plugins are independent and cannot communicate to each other.

Advantages:

• Evolvability: Plugins can evolve independently without affecting each other.
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• Performance: With respect to memory used, since the user can choose to only

download and install plugins that they need.

Disadvantages:

• Complexity: It is for some cases hard to decide what the bare minimum function-

ality is and to predict which types of plugins will come in the future.

• Performance: Depending on the context, the plugins might run on other processors

or even other components in the network, increasing latency.



Appendix D

Software Architecture Evaluation

Methods

In order to reason about software architecture for the different IoT classes discerned,

there must be a way to evaluate the architecture that results when using a certain

architectural style. This chapter discusses software architecture evaluation methods and

to which degree they can be used in this thesis.

D.1 Evaluation Methods

Software architecture evaluation methods provide a way of analyzing architectures for

their quality attribute fulfillment. They can focus on one attribute or provide a gen-

eral method for analyzing multiple attributes. These methods have been collected and

compared in a paper [Mau10], providing a summary of all the methods. Half of these

methods require a high-level implementation or prototype to be used. These were omit-

ted because we only have abstract classes and lack the information that is needed in

order to build such a model.

Three examples of methods are briefly discussed, however these cannot be directly used

for this thesis but are used as inspiration for the mapping and analysis moving forward.

Attribute-Based Architectural Styles (ABAS). Attribute-Based Architectural Styles

are extension of architectural styles based on a specific need for one particular quality

attribute [KL]. With this concept they try to move away from the ad-hoc method for

choosing styles, such as “use the pipe and filter style when reuse is desired and per-

formance is not a top priority” to an approach that is based on reason. The name of

this method seemed promising, however what it does is give a model to reason about

further development of a style given a quality attribute as a priority. An example is

157
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how to reason about performance in a Pipes-and-Filter style, where latency is measur-

able response. However, only limited examples are given and does not make clear how

you could do this for other styles. The Pipes-and-Filter style is commonly used as an

example to illustrate such techniques because one of its inherent advantages is that it

provides the ability to reason about the behavior of the system as a composition of

functions (filters). Furthermore, we are interested in the difference between choosing

styles as a starting point and not in how to further develop styles.

Architecture Trade-off Analysis Method (ATAM). This evaluation method is an

evolution of the Software Architecture Analysis Method (SAAM) which contained five

steps, by adding a final step that shows which components in an architecture influence

quality attributes[KC]. The paper introducing this method argues that quality attributes

are typically evaluated in isolation, while in reality they interact with each other. The

examples of trade-offs given are between performance and modifiability, availability and

safety, and security and performance. The ATAM can be used as inspiration for asking

the right questions as well as an example of how to measure performance an availability

of software architectures, however it is developed to compare competing architectures

that closely resemble each other. The only example given is where a Client-Server style

is already chosen and they reason about the effects of adding an extra server.

Architectural-Level Modifiability Analysis (ALMA). Studies have shown that

about fifty to seventy percent of the lifecycle cost for a software system is spent on

evolving the system. The aim of this method is to address modifiability at the design

phase [BvV]. This method provides a straightforward way of reasoning about modifia-

bility of a system, by describing the changes that are likely to occur and determining

which components need to make a change. The goal is to encapsulate change to one

component or at least reduce the ripple effect of changes. These ripple effects can occur

when:

• If components need to know about the existence and names of other components

• If assumptions are made about the type of data and their relationship. A change

might cause a failure in other components that make these assumptions.

• If assumptions are made about the meaning of data. An example if is the temper-

ature data received is in Fahrenheit or Celsius.

• Internal representation of data. The example given is an array versus a linked list,

however I believe the first three points to be more relevant for this thesis.

ALMA can be used for this thesis as it is relatively simple compared to the other solutions

and allow for a comparison to be done between architectural styles with respect to

modifiability. However, in the paper they mention that the hardest part is the collection

of change scenarios, which is usually done by interviewing many stakeholders. ALMA
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is used in this thesis by providing a set of likely changes per class and evaluating how

this change will affect the entire system.

D.2 Scenario-based modeling and architectural design tac-

tics

One way of evaluating how an architecture can fulfill certain quality attribute needs is

to use a scenario model, which is used in all of the above mentioned methods. In this

model there are three main concepts. The first is the stimulus, which is an event to which

the software architecture must provide a response to, which is the second concept. The

response must be measureable. Performance is measured in time (response time) for

example. Mediating between the stimulus and the response are architectural decisions,

which have an effect on the response in some way. These architectural decisions are also

referred to as design tactics. Each quality attribute has one or more general scenarios.

However, upon closer inspection of the examples given it becomes clear that some of

these tactics and responses take place on a lower level of abstraction than we are trying

to analyze in this thesis, i.e. the initial choice of software architectural style. The choice

of scheduling policy for processes can be done after any initial software architectural

style has been chosen for example.

A list of general tactics is provided in [Bas], however I found only a subset of these

tactics to be useful for this analysis. This because they are present in some of the styles

or that the choice of style might restrict the use of certain tactics. The tactics I found

relevant are:

• Interoperability:

– Discovery Component: A component that provides the ability of discovering

services in the system and providing a description of how to interact with

them.

– Orchestration Component: A component that scripts the coordination be-

tween multiple other components which can be based on a task that needs to

be fulfilled.

– Uniform Interface: Require all participating systems to have the same struc-

ture for their interfaces.

• Evolvability:

– Reduce large components into smaller ones: This can lead to a reduce cost

per change. This is inherent in all styles through the initial decomposition

into design elements.
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– Increase semantic coherence: If two responsibilities in the same component

serve different purposes, then they should not be in the same component.

– Encapsulation: Provide an explicit interface to a component (API). Interfaces

should abstract from implementation that is likely to change, in order to

reduce coupling.

– Use an intermediary: Intermediate components can decouple components

from each other, such as the event-service in a publish subscribe style, a

shared data repository or a lookup service in SOA.

– Abstract common services: If two components provide very similar function-

ality, it might be better to move this into a single component.

• Performance:

– Manage the sampling rate: There is a trade-off between having high fidelity

data and more predictable levels of latency. By choosing to have a reduced

sampling rate it is possible to lose less messages along the way, at the cost

of less precise data. This is a decision that usually has to be made in signal

processing.

– Prioritize Events: Certain incoming events might have a higher priority due

to several reasons, one example being safety. In this case it might be better

to process the high priority tasks first and ignore lower ones if there is not

enough processing power to perform all tasks. A Pipe-and-Filter style has a

built in FIFO queue, which means that the first message that comes in is the

first that gets processed.

– Reduce Overhead: It is possible to reduce overhead by removing intermedi-

aries, co-locating resources, perform periodic cleanup of resources and running

single-threaded servers and split workload across them. The first choice is an

example of the trade-off between modifiability and performance.

– Introduce Concurrency: Process requests in parallel on different threads to

reduce blocked time.

– Maintain Multiple Copies of Computations: An example is to have multiple

servers in a client-server system to reduce contention. A load balancer is used

to assign work to the different servers. In a Peer-to-Peer system, all nodes

are copies of computations.

– Maintain Multiple Copies of Data: An example is caching, which keeps a copy

of data on storage with different access speeds.Data replication is when mul-

tiple copies of data to reduce contention, however it becomes a responsibility

of the system to keep these copies consistent.

– Schedule Resources: When there is contention for a resource, this needs to

be scheduled. This is true for processors, buffers and networks. Each need to

be individually analyzed to choose the correct scheduling policy.
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• Availability:

– Monitor component: A component that monitors the state of health of various

parts of the system. In the IoT this could be done for sensors and actuators

connected to the network.

– Voting: When having redundant components that all receive the same input

but do not give the same output, the system must have a voting mechanism

such as majority rules. The components can be exact clones, functional re-

dundancy (must give the same output to input but are differently designed)

and analytically redundant (components have the same goal but perform cal-

culations in different ways).

– Predictive modeling: Use a predictive model when certain information sources

are not available by looking at the history of data. This can be done in the

case of sensor failure in the IoT.

• Security: For security I did not find any of the tactics useful enough to mention.

The standard “identify, authenticate, authorization levels, use encryption, hash

and checksums” are details that can be added after any choice of style. However it

should be noted that there is a trade-off between security and performance. The

usage of security algorithms and tactics increases latency as the complexity of the

tasks increase.

The IoT-A also lists a set of tactics specifically meant for the IoT, however there are

no mayor changes to what is already present for the general case [BM]. In some cases

they mention very vague tactics such as “make design compromises”, which is the entire

point of designing a system.

While these tactics give a good example of what to look for when reasoning about quality

attributes, they will not be strictly used for the remainder of this analysis. They will be

referred to in specific situations when it helps illustrate a point trying to be made.

The software architecture evaluation methods reviewed all show how it is possible to

measure an architecture for performance, modifiability, availability and to some extent

security. However, in order to do this completely as proposed by these methods, you

would need more information about the system to be made and the architecture sug-

gested. Because we are dealing with classes of solutions and architectural styles, it is not

a complete fit. However, the scenario based method and the quality attribute models

can be used as reference for reasoning about the effect of architectural styles[Bas].

What these methods have in common is that they try to compare architectures that only

differ in a small way. An example is a Client-Server architecture where one variant only

has one server and the other has multiple servers. What this thesis is trying to show is

the difference between architectural styles, which is the starting point of the architecture.

These styles differ so much from each other, that we do not need absolute metrics in
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order to reason about their applicability. Instead we just need a good understanding of

what software architecture is, what the constraints of the styles are, a definition of IoT

classes and what quality attributes are and how they can be measured.

Figure D.1: Thesis domain vs. Software Evaluation Methods Domain

Figure D.1 illustrates the different between the domain of this thesis and that of soft-

ware architecture evaluation methods. The starting point indicates the phase where no

decision regarding the architecture has been made. From that point on, a style can

be chosen to build to architecture upon. In this example four styles are illustrated.

Regardless of the style chosen, many design decisions (tactics) still need to be made

before reaching the first instantiation of the software architecture. It is at this level that

software architecture evaluation methods play a role. However, for this thesis we are

interested in showing which path should be taken from the starting point in the context

of several classes of IoT solutions.



Appendix E

Discussion Panel

On the 18th of May 2015 I held a panel to discuss my project. The meeting consisted of

a presentation of the project so far, followed by an interactive session where we discussed

several IoT solutions and styles. Attendees included Geert Schuring, Hans Gringhuis,

Angelo van der Sijpt and myself. The meeting went on for two hours.

The presentation contained the following information:

• My background

• The research question

• The motivation behind the project

• An explanation of the IoT Vision (Definition and requirements)

• An explanation of the IoT Reality

• The difference between the IoT Vision and Reality

• An explanation of the IoT Illusion

• The scope of the project (Which styles and IoT solutions)

• The goals of the project (Expected results)

The following points were discussed:

• The participants think that the topic is interesting and relevant. It is important

to have this view on the Internet of Things.

• Scalability requirement for solutions should be estimated for individual compo-

nents and not entire system. Furthermore, something can be said for scalability

by checking to see if the number of users or number of devices is fixed.

• Decentralization means less bandwidth use, more autonomous behavior

163
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• Centralization means less energy consumption, devices cost less

• Think about how sensors transmit data, streaming vs iteratively vs event-based.

• Styles can be combined, so look at styles for individual communications instead of

the entire system.

• Gather more information on sensors, how much they cost, battery life etc.
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