
Reverse Engineering
WirelessHART Hardware

Master Thesis

Eduardo Pablo Novella Lorente
Student Number: s4253043

The Kerckhoffs Institute
Institute for Computing and Information Sciences

Supervisors:
Dr. ir. Harald Vranken (RU)
Daniël Niggebrugge (Fox-IT)

Public Version

Nijmegen and Delft, (The Netherlands)
August 2015

Abstract

A Wireless Sensor Network (WSN) is a group of wireless nodes that use radios to monitor and
record environmental and physical conditions. Wireless Sensor Networks (WSNs) are an emerging
trend to resolve plenty of real world issues and are becoming an interesting and cutting-edge topic
for researchers to solve many challenging situations. These wireless sensors are responsible for
monitoring data from applications such as medicine, army, smart-cities, animal monitoring... All
these communications are crucial and need to remain secure during all the end-to-end communi-
cations in order to avoid the interception of adversaries. Although these wireless nodes use very
secure cryptographic algorithms, the physical security has to be taken into account as well.

This thesis is principally focused on a physical attack, concretely the “node capture” attack
on the industrial automation control standard named WirelessHART. Low-cost physical attacks
have been carried out on a couple of WirelessHART sensor nodes. The “node capture”attack
relies on full access control over the sensor node through direct physical access. Wireless nodes
contain micro-controllers, which have several security measures to stop the reading of their internal
content. Such protections are not enabled by default and they need to be analysed carefully before
their deployment. Between the low-cost attacks, the JTAG interface is one of the first backdoors
to the system which allows us to interact with the micro-controller for debugging their system,
memory and I/O ports. This thesis addresses several attempts to read out memory contents from
various wireless nodes.

The main goal of this paper is to attempt to extract the JoinKey from a couple of Wire-
lessHART nodes after their “node capture” attack. If an attacker was able to extract this key
from a sensor node, he/she would be capable to freely join to the network. Allowing him/her
to interact with the rest of nodes in a legitimate way and manipulate information or commit
‘sinkhole’-‘wormhole’ attacks in order to provoke a denial of service in the network. Finally, this
thesis concludes with a successful key retrieval for a development wireless node and not successful
for a real WirelessHART device.

Reverse Engineering WirelessHART Hardware iii

Release Notes

The present document is the Public version of a research project carried out as part of an internal
Fox-IT project. This master thesis contains the foundations of Reverse Engineering WirelessHART
Hardware project, omitting specific information (e.g. brands, manufacturers, real cryptographic
AES keys, etc). For further information you may contact Fox-IT.

iv Reverse Engineering WirelessHART Hardware

Preface

This Master’s thesis is the result of my graduation project executed at Fox-IT in The Netherlands.
The graduation project is part of my Master in Computer Science and Engineering - Information
Security Technology at the Radboud University Nijmegen. This security-focused master program
is coordinated by the Kerckhoffs Institute, a collaboration program between the University of
Twente, Radboud University Nijmegen and the Eindhoven University of Technology.

I would like to express my gratitude to everyone who helped me carry out my MSc thesis.
Concretely to my supervisors, Dr. ir. Harald Vranken (Radboud University Nijmegen) and Daniël
Niggebrugge (Fox-IT), who gave me feedback and the correct guidelines to keep going further in
my research. Additionally, some workmates who cheered me up during the long journey until my
graduation. Furthermore, I would like to name Max Duijsens, a TU/e student who was attempting
to fuzz the WirelessHART protocol, with whom I clarified some details of this thesis.

Of course, I would like to thank my family and best friends, especially my mother and older
sister. Without their trust and support, I would have never arrived here. They played an impor-
tant role in my career, as well as my good friends who I have not been able to see since I had
moved out to The Netherlands.

Finally, I am very thankful the three responsible organizations of the Kerckhoffs Institute pro-
gramme and especially to my supervisors and other teachers such as Lejla Batina, Tanja Lange,
Erik Poll, Joeri de Ruiter, Peter Schwabe and Roel Verdult. First, I have no words to describe my
experience at Radboud. It was an amazing period of time in my life where I never stopped learn-
ing and growing up, especially during my Erasmus year (2012) and MSc programme at Radboud
University Nijmegen (2013-2015).

Eduardo Pablo Novella Lorente

April-July, 2015

Reverse Engineering WirelessHART Hardware v

Contents

Contents vi

List of Figures ix

List of Tables xi

Abbreviations xii

1 Introduction 1
1.1 Introduction . 1
1.2 Goals . 2
1.3 Research Method . 3
1.4 Outline . 3

2 Background 5
2.1 Wireless Sensor Networks Applications . 5

2.1.1 Smart-houses . 5
2.1.2 Smart-cities . 6
2.1.3 Habitat monitoring . 9
2.1.4 River monitoring . 10
2.1.5 Smart-Metering . 10
2.1.6 Warfare: Tracking enemies and tactical techniques 11
2.1.7 Natural disasters . 12
2.1.8 Agriculture and animals tracking . 12

2.2 Sensor node Architecture . 13
2.2.1 Microcontroller (MCU) . 13
2.2.2 Radio . 14
2.2.3 External Memory . 16
2.2.4 Power source . 16

2.3 Highway Addressable Remote Transducer (HART) 16
2.3.1 HART Protocol . 16
2.3.2 Modulation: Audio Frequency Shift Keying (AFSK) 17
2.3.3 Communication Modes . 17
2.3.4 Network Configurations . 18
2.3.5 HART communication layers . 19
2.3.6 Packet Structure . 19
2.3.7 HART commands . 20
2.3.8 HART-IP . 20

2.4 IEEE 802.15.4 standard . 22
2.4.1 Physical layer (PHY) and Media Access Control (MAC) layers 22
2.4.2 Comparison of IEEE 802.15.4 standard and other wireless technologies . . . 23
2.4.3 IEEE 802.15.4 Device Classes . 24

vi Reverse Engineering WirelessHART Hardware

CONTENTS

2.4.4 IEEE 802.15.4 Network Topologies . 24
2.4.5 IEEE 802.15.4 Packet Structure . 25

2.5 WirelessHART . 26
2.5.1 Main Characteristics . 26
2.5.2 WirelessHART Components . 27
2.5.3 Wireless Highway Addressable Remote Transducer Protocol (WirelessHART)

Communication Layers . 28
2.6 Cryptography in WirelessHART . 33

2.6.1 Outline . 33
2.6.2 Advanced Encryption Standard (AES) . 33
2.6.3 AES Counter (CTR) . 34
2.6.4 AES Cipher Block Chaining (CBC) . 34
2.6.5 AES Cipher Block Chaining Message Authentication Code (CBC-MAC) . . 35
2.6.6 AES Counter with CBC-MAC (CCM)* . 35

2.7 Key Management in WirelessHART . 36
2.7.1 Cryptographic Keys in WirelessHART . 36
2.7.2 Joining Process . 37

2.8 Others 802.15.4 Wireless Protocols . 45
2.8.1 ZigBee . 45
2.8.2 ISA100 . 45

3 Hardware Security 47
3.1 Overview . 47
3.2 Hardware protocols . 47

3.2.1 Serial Peripheral Interface (SPI) . 47
3.2.2 JTAG . 48
3.2.3 UART . 50

3.3 Hardware Security . 50
3.3.1 Hardware protections: Fuses and lock bits 51
3.3.2 Bootstrap Loader (BSL) . 52

3.4 Physical Attacks on Wireless Sensor Networks . 53
3.4.1 Consequences and possible attacks . 54

4 Tools 57
4.1 Outline . 57
4.2 Bus Pirate v.3.6 . 57
4.3 GoodFET v.42 . 58
4.4 TL866A USB Universal Minipro Programmer . 58
4.5 AVR Dragon JTAG programmer . 59
4.6 ARM Segger J-Link JTAG programmer . 59
4.7 Open On-Chip Debugger . 59
4.8 Flashrom . 60
4.9 IDA Pro and Hex-Rays . 60

5 Targets 61
5.1 Outline . 61
5.2 Linear SmartMesh WirelessHART Starter Kit DC9007 61

5.2.1 Hardware Components: Mote DC9003A-C 62
5.2.2 Setting up a WirelessHART network . 63
5.2.3 Identifying programming interfaces in the Mote DC9003A-C 63
5.2.4 UART . 64
5.2.5 JTAG . 64
5.2.6 SPI and the Hardware Lock Key . 66
5.2.7 Firmware and JoinKey extraction . 66

Reverse Engineering WirelessHART Hardware vii

CONTENTS

5.3 Linear Access Point Manager LTP5903CEN-WHR 69
5.3.1 Firmware extraction . 69
5.3.2 Credentials Found . 69

5.4 A WirelessHART unknown-mote . 70
5.4.1 Hardware Components: unknown-mote . 70

5.5 Microcontroller TI MSP430 . 71
5.6 AVR Microcontroller . 72
5.7 The BGA chip: DN2510 . 74

6 Conclusion 77
6.1 Conclusions . 77
6.2 Further Work . 78

Bibliography 81

viii Reverse Engineering WirelessHART Hardware

List of Figures

2.1 Physical specifications of a Telos Revision B. 2004 7
2.2 General architecture for wireless sensor nodes . 14
2.3 Comparison between WirelessHART Radio Modules and their main specifications. 15
2.4 AFSK. Simultaneous Analogue and Digital Communication 17
2.5 HART Master-Slave communication between a Distributed Control System (DCS)

and field device. 18
2.6 HART two masters communication between a Personal Computer (PC), handheld

terminal and field device. 18
2.7 Network topologies in 802.15.4 . 25
2.8 Packet structure in PHY and MAC layers for the IEEE 802.15.4 standard. 26
2.9 WirelessHART Mesh Network Architecture . 28
2.10 Packet structure in HART. 29
2.11 Packet structure in WirelessHART. 30
2.12 Dissection of a WirelessHART packet at different layers. 31
2.13 Security features comparison between HART and WirelessHART. ([1] improved) . 32
2.14 AES-CTR encryption mode . 34
2.15 AES-CBC encryption mode . 35
2.16 AES-CBC-MAC authentication mode. Calculation of the Message Integrity Code

(MIC) or MAC. 36

3.1 Circular buffer using two shift registers in a SPI communication. 47
3.2 Joint Test Action Group (JTAG) architecture. Boundary scan and Test Access

Port (TAP) controller. 48

4.1 The open source hardware hacker tool ‘Bus Pirate’ v3.6 used for interacting with
chips. 57

4.2 The open source JTAG programmer ‘GoodFET’ used for debugging several wireless
radio chips. 58

4.3 The Atmel AVR Dragon programmer. 59

5.1 Dust Networks/Linear SmartMesh WirelessHART Starter Kit 62
5.2 Linear Mote DC9003A-C architecture and its ARM Cortex M3 Eterna LTC5800. . 63
5.3 Linear WirelessHART Kit set up. 64
5.4 Setting up a JoinKey through the Linear Mote Eterna API over the Universal

Asynchronous Receiver/Transmitter (UART) interface. 64
5.5 JTAG’ing the Eterna Mote-on-chip with OpenOCD and J-link ARM JTAG USB. . 65
5.6 Connecting to the TCP socket and attempting to dump the flash on the Eterna

Mote-on-chip. 65
5.7 Dumping the mote’s memory content through SPI using Linear tools. 66
5.8 Dumping the mote’s memory content through SPI using a Bus Pirate v3.6 67
5.9 Linear Mote Eterna firmware extraction by using Flashrom and Bus Pirate v3.6 . . 67
5.10 Memory dump of a Linear Mote Eterna and several Join Keys used. 68

Reverse Engineering WirelessHART Hardware ix

LIST OF FIGURES

5.11 Firmware extraction of the Linear Manager LTP5903CEN-WHR. 69
5.12 XML-RPC users and passwords not documented. 70
5.13 TI MSP430 MicroController Unit (MCU) discovered by using a microscope. 71
5.14 Hooking up cables in the JTAG pins in TI MSP430 MCU. 72
5.15 JTAG’ing the TI MSP430 MCU with the GoodFET. 72
5.16 Trying to JTAG the AVR chip with an AVR Dragon. 73
5.17 The internals of the Linear Access Point (AP) Manager and its M2510 highlighted

with red colour. 74
5.18 (1) The Radio chip DN2510 in the unknown-target and possible pins for Serial

Peripheral Interface (SPI). (2) The Radio chip in the Linear AP Manager which is
readable through a socket. 75

5.19 Dumping out the M2510 Ball Grid Array (BGA) memory through a socket and the
Bus Pirate v3.6. 75

5.20 Dumping the Linear DN2510 BGA memory by using a BusPirate v3.6. 76

x Reverse Engineering WirelessHART Hardware

List of Tables

2.1 HART protocol and OSI model. 19
2.2 Structure of a HART packet. 19
2.3 Dissection of a HART packet. 20
2.4 Examples of HART Universal commands . 21
2.5 Examples of HART Common Practice commands 22
2.6 Examples of HART Device Specific commands . 22
2.7 Comparison between IEEE 802.15.4 PHY layer according to geographical regions. . 23
2.8 Comparison between IEEE 802.15.4 and the most well-known wireless technologies. 23

3.1 SPI logical signals. 48
3.2 JTAG logical signals. 50
3.3 UART logical signals. 50

Reverse Engineering WirelessHART Hardware xi

Acronynms

6LoWPAN IPv6 over Low power Wireless Personal Area Networks

ACL Access Control List

AES Advanced Encryption Standard

AFSK Audio Frequency Shift Keying

AP Access Point

API Application Programming Interface

BGA Ball Grid Array

BGWK Broadcast Gateway Key

BNMK Broadcast Network Manager Key

bps bits per second

BPSK Binary Phase Shift Keying

BSDL Boundary Scan Description Language

BSL BootStrap Loader

BSR Boundary Scan Register

CBC Cipher Block Chaining

CBC-MAC Cipher Block Chaining Message Authentication Code

CCM Counter with CBC-MAC

CFB Cipher Feed Back

CMAC Cipher-based MAC

CPU Central Processing Unit

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

CTR Counter

DCS Distributed Control System

DES Data Encryption Standard

DLL Data Link Layer

DLPDU Data Link Layer (DLL) Protocol Data Unit

xii Reverse Engineering WirelessHART Hardware

LIST OF TABLES

DSSS Direct Sequence Spread Spectrum

ECB Electronic Code Book

ECC Elliptic Curve Cryptography

FET Flash Emulation Tool

FFD Full Function Device

GPIO General Purpose Input Output

GPS Global Positioning System

GTS Guarantee Time Slots

GW Gateway

HART Highway Addressable Remote Transducer

HK Hand-held Key

HVPP High Voltage Parallel Programming

HVSP High Voltage Serial Programming

I2C Inter-Integrated Circuit

IC Integrated Circuit

ICSP In Circuit Serial Programming

IDA Interactive Disassembler

IEEE Institute for Electrical and Electronics Engineers

IoT Internet Of Things

IP Internet Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

ISA100.11a International Society of Automation 100.11a

ISM Industrial, Scientific and Medical

IV Initialization Vector

IVT Interrupt Vector Table

JK Join Key

JTAG Joint Test Action Group

LR-WPANs Low Rate Wireless Personal Area Networks

MAC Media Access Control

MCU MicroController Unit

MFR MAC Footer

MHR MAC Header

Reverse Engineering WirelessHART Hardware xiii

LIST OF TABLES

MIC Message Integrity Code

MiWi Microchip Wireless

MMC MultiMedia Card

MSDU MAC Service Data Unit

NDA Non Disclosure Agreement

NIST National Institute of Standards and Technology

NK Network Key

NM Network Manager

NPDU Network Protocol Data Unit

OCD On-Chip Debugging

OFB Output Feed Back

O-QPSK Offset Quadrature Phase Shift Keying

OS Operating System

PAN Personal Area Network

PCB Printed Circuit Board

PC Personal Computer

PDI Program and Debug Interface

PHR PHY Header

PHY Physical layer

PKI Public Key Infrastructure

PLC Programmable Logic Controller

PPDU PHY Protocol Data Unit

PPDU Physical (PHY) Protocol Data Unit

PP Parallel Programming

PRNG Pseudo Random Number Generator

PSDU PHY Service Data Unit

PSK Pre-Shared Key

PV Process Variable

RAM Random Access Memory

RFD Reduced Function Device

RFID Radio Frequency Identification

RF Radio Frequency

ROP Return Oriented Programming

xiv Reverse Engineering WirelessHART Hardware

LIST OF TABLES

SCA Side Channel Attack

SHM Structural Health Monitoring

SHR Synchronization Header

SM Secure Manager

SM Security Manager

SoC System-on-Chip

SPI Serial Peripheral Interface

TAP Test Access Port

TDI Test Data In

TDMA Time Division Multiple Access

TDO Test Data Out

TI Texas Instruments

UART Universal Asynchronous Receiver/Transmitter

UDP User Datagram Protocol

UGWK Unicast Gateway Key

UNMK Unicast Network Manager Key

WAPMS Wireless Sensor Network Air Pollution Monitoring System

WiFi Wi-Fi

WirelessHART Wireless Highway Addressable Remote Transducer Protocol

WKK Well Known Key

WSNs Wireless Sensor Networks

WSN Wireless Sensor Network

XOR eXclusive OR

Reverse Engineering WirelessHART Hardware xv

Chapter 1

Introduction

1.1 Introduction

A Wireless Sensor Network (WSN) consists of a high number of autonomous sensor nodes and one
or a few gateway nodes. Sensor nodes are called Motes due to their small size. These motes collect
environmental information such as temperature, pressure, humidity, light conditions, movement
and natural disasters using attached sensors. This information travels wirelessly from a mote
through the network until it reaches a gateway. During the forwarding, different routes might
be taken depending on the availability of the sensor nodes routing tables. The gateway node is
normally connected to a computer from a different network in order to gather all the data sent
from the WSN. The wireless sensor networks are a combination of distributed sensing, computing
and communication [2]. These Wireless Sensor Networks (WSNs) are ad-hoc networks, where
each sensor node participates in routing by forwarding information to other sensor nodes using
the nearest neighbouring communication. Without the use of a pre-defined infrastructure until
the gateway is reached. These gateways might be bridged with other gateways either to combine
networks such as the Internet, or to extend the data transmission to a location that sensor nodes
cannot reach.

The application areas diversify a lot due to the many different application environments for the
use of such WSNs. Nevertheless, we can discuss some of the basic requisites which are common
in many areas. These sensor nodes are normally self-powered by batteries or energy harvesting
systems and they remain unattended for years in the wild. For this reason, the hardware devices
must be as cheap as possible because sooner or later they will be disposed. WSNs can be consti-
tuted of hundreds or even thousands of sensor nodes spread out over many places. The battery
degradation requires a dynamic voltage scaling during its lifetime to provide trustworthy infor-
mation. Since the lifetime is limited because of batteries, the sensor nodes use MicroController
Unit (MCU)s with very low power consumption and a vertiginous wake-up time. In spite of the
fact that sensor nodes have resource constraints, they should still be tamper resistant. The MCUs
sporadically have high computational load when they are processing distributed data, performing
data aggregation or cryptographic operations like encryption, signing or decryption. Although
the sensor nodes are using strong cryptographic protocols, they are exposed to hazardous envi-
ronments where these nodes can be stolen by an adversary. Sensor nodes should be physically
well-protected to avoid as many physical attacks as possible.

The use of sensor nodes is very well addressed in the industrial environment through the High-
way Addressable Remote Transducer (HART) protocol. In such environments, many processes
must be automated and monitored. An industrial environment is comprised of many field devices
measuring different process values and subsequently transmitting them to the host application.
The HART protocol has been used for a long time to interact in wired networks and it remains

Reverse Engineering WirelessHART Hardware 1

CHAPTER 1. INTRODUCTION

very reliable for many operations. However, the industrial community noticed the need to reduce
costs, strengthen the security and also to decrease the problems which had been arising due to
the hazardous locations where the field devices were located.

Reaching enormous oil or gas pumps at remote locations might be a really intensive and time-
consuming task for industrial workers. A solution is the Wireless Highway Addressable Remote
Transducer Protocol (WirelessHART) standard. This standard inherits all the properties of the
HART protocol while going wireless. Although many problems seem to have been resolved, going
wireless does provoke some side effects. This thesis is addressing these problems and will offer
security countermeasures and guidelines to properly protect MCUs. The HART protocol has nei-
ther authentication nor confidentiality at the different layers of the protocol. Contrary to the
HART protocol, WirelessHART provides both data integrity and confidentiality for the protocol
layers in the wireless part of the network. One of the most attractive ideas was to conserve the
backwards compatibility, allowing wired and wireless devices to work together in order to create
sensor networks.

For a long time, wireless technologies have been a real target for adversaries due to the easiness
of intercepting traffic and attacking without being seen as well as some weaknesses in their security
protocols. WSNs are also a big target due to the importance of the information they hold. For
many wireless applications, the key management relies on a Pre-Shared Key (PSK) which must be
established before communicating with each other. This PSK is known in WirelessHART as the
Join Key (JK). The JK is the indispensable requirement for becoming a member in the WSN and
is considered to be thoroughly hidden from external devices and even different wireless networks.
Owning the JK allows attackers to be authenticated into the wireless network and receive the rest
of the session keys, allowing them to interact within the network. When a JK is compromised, the
security is overcome and plenty of attacks can easily occur. To prevent this, WSNs have developed
new state-of-the-art algorithms to detect possible node capture attacks and measure timing delays
in order to predict when a node could be attacked. A successful node attack would be an attack
which is undetectable to its neighbours and ensures that the node remains alive, transmitting and
routing traffic as it normally does. If this is achieved, then the entire network is considered to be
tainted.

1.2 Goals

In order to achieve some of following goals, a black-box reverse engineering research has been
carried out. Other aims have been accomplished by merging many papers and attempting to
clarify some doubts regarding the WirelessHART joining process. The principal objectives of the
present thesis are depicted as follows:

• Address low-cost physical attacks on a couple of wireless nodes. This thesis focuses on
debugging and programming interfaces (Joint Test Action Group (JTAG), Universal Asyn-
chronous Receiver/Transmitter (UART) and Serial Peripheral Interface (SPI)). Debugging
interfaces might non-intentionally remain opened after manufacturing. We intend to observe
how many measures were applied to these wireless nodes.

• Recover the cryptographic keys stored in the internal memories of the MCU, especially the
JK which is used for the joining process in WirelessHART. Find out where the JK is stored
and propose attacks to recover it.

• Measure how difficult the key retrieval could be for a real attacker. Provide different view-
points from different attacker’s profiles and find out how much time it can take to successfully
complete a node capture attack.

• Perform an exhaustive analysis of the WirelessHART standard and focus on the security
measures applied at different layers of the standard.

2 Reverse Engineering WirelessHART Hardware

CHAPTER 1. INTRODUCTION

• Attempt to clarify the WirelessHART key management and especially the joining process
where the JK is used.

1.3 Research Method

In this thesis, the node capture research has been carried out in a secure environment without
interfering with any real activity in industrial plants. A WSN has been set up at our laboratory
and several attack vectors have been run in exactly two kinds of wireless nodes. Although this
thesis involves two brands, only all the details of one brand will be addressed. The other one
will be addressed as unknown-node and the majority of its details will remain out of the public
version. A Non Disclosure Agreement (NDA) has been signed between the different parties in or-
der to conceal any information that could cause damage to these particular WSNs. This research
does not intend to provide all the details but either is not certainly encouraging “Security through
Obscurity”. The author of this thesis is completely opposed towards this philosophy of security.
Although this thesis does not reflect all the information analysed during my MSc thesis, the most
relevant information is incorporated.

This research consists of a black-box reverse engineering without any tip from the manufacturer.
The purpose is to figure out whether a motivated attacker with non-expensive equipment and well-
known tools is capable of recovering the cryptographic keys. This thesis has been completed with
the help of hundreds of data-sheets, papers and other similar research on WSNs. The workload
of this research has consisted of approximately three and half months of security evaluation both
practical and theoretical and also around two months of writing.

1.4 Outline

In this thesis, Reverse Engineering on WirelessHART devices research is addressed. It is intended
to provide not only a theoretical approach, but also to address low-cost attacks on WSNs, such as
node capture and the use of debugging tools.

The remainder of the chapters of this thesis are structured as follows. Chapter 2 presents a
extensive background regarding WSNs and WirelessHART. Several protocols are dissected as well
as the cryptography and key management in WirelessHART protocol. Chapter 3 presents a brief
discussion about hardware security. Chapter 4 comments the hardware and software tools that
were used during this thesis. Finally, Chapter 5 presents the targets addressed in this thesis and
explains attacks applied to them. Chapter 6 has final conclusions and possible future work.

Reverse Engineering WirelessHART Hardware 3

Chapter 2

Background

This chapter attempts to provide enough background for readers in order to properly understand
the rest of chapters and mainly be able to follow the physical attacks carried out in this paper.
First of all, an extensive introduction of WSNs and their applications is addressed. Then, is an
explanation of what a wireless sensor node is comprised of and its components. After that, the
HART and the IEEE 802.15.4 standard are dissected as well as the WirelessHART protocol. The
latter is focused on its security, especially the cryptography and key management involved in
this protocol. Finally, other similar wireless protocols based on the IEEE 802.15.4 standard are
mentioned in comparison with WirelessHART.

2.1 Wireless Sensor Networks Applications

To properly understand the architecture of a WSN, we must be aware of the requirements in
the real world. Nowadays, wireless sensor networks are widely used. Some of the most common
uses of these networks can be seen in different scenarios. WSNs can be deployed in a number of
different situations. Below, we address some usages and discuss why WSNs are so indispensable
and necessary nowadays. It is important to indicate to readers that this section covers neither all
the previous related works nor the most state-of-the-art techniques in WSNs. Nonetheless, many
state-of-the-art techniques are named and discussed along with enormous applications of WSNs.

2.1.1 Smart-houses

People with reduced physical functions or elderly can be monitored thanks to intelligent sensors [3].
Modern sensor-embedded houses, also known as smart-houses, can provide assistance without lim-
iting or disturbing the resident’s daily routine, giving him/her well-being, comfort and pleasure.
Telemedicine or Telehealth are two state-of-the-art terms which reflect solutions for many difficul-
ties that disabled people experience. WSNs are successful at disease prevention, optimal control of
home appliances (ex. heating, lighting, air conditioning and ventilation), monitoring chronically ill
patients and motion detection to control patient activity. Smart-houses will undoubtedly become
part of our future housing and help us endure diseases.

In 2007 [4], authors contributed to extending the WSNs usage for home health care and patient
monitoring. First of all, they show some prototypes which could be integrated into existing
infrastructures. Secondly, they find out opportunities for health care monitoring applications and
eventually discussed why health care at home is so important and what the future would hold.
Between the prototypes, we can find ‘SleepSafe’ which aims to avoid infant deaths by detecting the
way infants are sleeping. There are studies which claim that infants sleeping on their backs reduce
the occurrence of Sudden Infant Death Syndrome (SIDS) by at least 40%. A couple of sensors
on the baby could improve detection of this problem. ‘Baby Glove’ is another prototype that is

Reverse Engineering WirelessHART Hardware 5

CHAPTER 2. BACKGROUND

aimed at issues with possible infant deaths involving low temperatures and hypo- or hyperthermia
being the most common cases. ‘Baby Glove’ consists of a swaddling baby wrap with a couple of
wireless sensors to monitor their temperature, hydration and pulse rate. ‘FireLine’ is a wireless
heart rate sensor that can be used to decrease stress and injuries through real-time fire-fighter
health monitoring. ‘Heart@Home’ is blood pressure monitor and tracking system to remedy heart
diseases. According to doctors, tracking blood pressure daily is possibly the best way to fight
against this disease. ‘LISTSENse’ is another prototype that empowers the hearing impaired with
measurement of critical audible information in their environment.

2.1.2 Smart-cities

Although wireless sensors cannot be easily seen in our cities, they are spread out everywhere, either
to oversee possible accidents, resource saving or monitoring to assure things function properly. It
is important to address what objectives need to be covered to understand better how convenient
WSNs are.

Structural Health Monitoring (SHM)

SHM is a sensor-based preventive approach which enables public safety by ensuring that the largest
structures found in cities including buildings, bridges and roads are sound. A crack sensor could
warn about an imminent catastrophic demolition and save thousands of lives.

Around 2003 [5], American and Japanese Researchers developed a wireless sensing unit for
real-time structural response measurements using MICA 1 motes as a wireless sensor. During
this time, the results showed to be promising but it was still a very new field to investigate.

In 2004 [6], WSNs only relied on data acquisition systems. Wisden, a WSN for SHM, emerged
with new novel features such as a reliable data transport using a hybrid approach of end-to-end
and hop-by-hop recovery and low-overhead data time stamping that did not require global clock
synchronization.

In 2007 [7] a WSN was deployed and tested on the 4200ft long main span and the south tower
of the Golden Gate bridge in the American district of California. In this study 64 nodes were
distributed over the main span and the tower, resulting in reliable sampled data even with 46
hops in the WSN. This research covers an accurate data acquisition system and high-frequency
sampling with time synchronized sampling that was not apparently provided for previous research
at the time of this survey. Authors claim that small packet size was a bottleneck for network data
transmission, but increasing packet size can only be carried out when the wireless sensors owns
a decent amount of RAM. During this study, MICA motes were used. This deployment seems to
have been the largest WSN for SHM in those days.

Around 2008 [8], an accelerometer sensor node was designed, calibrated and developed to sat-
isfy the requirements for structural vibration monitoring and model identification. The SHM is
based on TinyOS 2 operating system to provide a flexible software platform and scalable per-
formance. Regarding the hardware side, a microcontroller for processing each node has around
four bidirectional channels and Radio Frequency (RF) device for communicating wirelessly. This
prototype was deployed on a long-span bridge with 64 nodes obtaining accurate ambient vibration
data for identifying vibration modes of a bridge.

In 2011 [9] the Jindo Bridge, a cable-stayed bridge located in South Korea, was fitted with
sensors, improving the previous ones from one year before. This implementation encompassed
the following unique features: the world’s largest WSN for SHM to this date, power harvesting

1http://www.eol.ucar.edu/isf/facilities/isa/internal/CrossBow/DataSheets/mica2.pdf
2http://tinyos.net

6 Reverse Engineering WirelessHART Hardware

http://www.eol.ucar.edu/isf/facilities/isa/internal/CrossBow/DataSheets/mica2.pdf
http://tinyos.net

CHAPTER 2. BACKGROUND

enabled for all sensor nodes, a better and more reliable data acquisition scheme and decentralized
data aggregation; making the WSN much more scalable to a large and dense sensor network,
environmental monitoring and decentralized cable tension monitoring.

In 2012 [10], author carried out some state-of-the-art techniques in commercial aviation in
order to improve economics and safety. The number of ageing aircraft in service is increasing and
many intensive inspections must be performed to ensure safety. An ideal SHM would be able to
provide accurate details about damage type, location, severity and also estimate the remaining
life of the structure while the structure is still in use.

In 2012 [11], a wireless sensor system was tested with many of the commonly used types of
sensors in suspension bridges to prove the viability of wireless sensor network in actual implemen-
tation. Whereas ZigBee is used for short-distance communications among sensors, Code Division
Multiple Access (CDMA) for long-distance wireless communications is used with remote locations.

Garbage level

This feature could enable waste management services to empty the rubbish only from bins that
are sufficiently full, saving time and gas. Furthermore, with this promotion of public health by
enabling timely garbage collection, we can avoid bad odours and garbage overflows.

In [12], the authors propose a WSN architecture for solid waste management. Using some
known wireless sensors, TelosB 3, and data transfer nodes, authors offer the possibility to observe
the garbage bins’ measurements monitored by accessing with a normal web browser.

Figure 2.1: Physical specifications of a Telos Revision B. 2004

On the other hand, in 2014 [13], authors combined WSNs with Vehicular Ad-Hoc Networks
(VANETs). Principally what this system addresses is that garbage collecting vehicles are being
dynamically informed to clear the dustbins in real time. There is a base station that monitors the
entire garbage collection and disposal module. Moreover, databases are constantly updated and
it is possible at any time to know the status of dustbins and the location of garbage collecting
vehicles.

3http://www4.ncsu.edu/~kkolla/CSC714/datasheet.pdf

Reverse Engineering WirelessHART Hardware 7

http://www4.ncsu.edu/~kkolla/CSC714/datasheet.pdf

CHAPTER 2. BACKGROUND

Traffic and Parking management

By providing accurate information on available parking spaces, motorists save time and fuel and
cities reduce atmospheric pollution and congestion. Besides, though traffic control systems, we
can relieve traffic congestion in big cities or very crowded spaces. But not only traffic jams can
be minimised, moreover it also helps to improve the reduction of CO2 emissions.

Since expanding parking area is extremely expensive and unfeasible, between 2007 and 2013 [14]-
[15], researchers proposed a smart parking system combining Radio Frequency Identification
(RFID) and Zigbee technologies. The system can inform drivers about the amount of available
parking areas and in which areas they should be redirected to.

Various previous works can be found in 2012 [16], where authors dissected various state-of-the-
art smart parking systems and offered comparisons between them. They focused on which sort
of sensor was used, whether they are using a central server, possibility for detection of different
objects and parking methods. In this paper, a costumer would be able to determine space avail-
ability and the parking operator could predict future parking patterns and trends. This would
help avoid vehicle thefts and eventually improve parking timing for customers.

In 2013 [17], authors showed some applications and architectures used. Some of the aims
represent for instance the parking management, traffic light control, traffic optimization, safety
or pollution prevention. Authors address a study of these goals and compare all of them with
previous related work.

Noise pollution

Noise pollution is a common environmental problem affecting cities that can be detected by using
noise sensors. These are suitable for creating a real-time noise map of cities and improve the life
and health of people.

In 2007 [18] a survey is shown using traditional WSNs and obtaining decent results. The au-
thors use well-known hardware, such as Tmote Sky 4, as development hardware platform for their
research. Measuring noise might be a serious problem due to many human beings have very dif-
ferent perceptions. Microphones convert pressure fluctuations into an equivalent electrical signal
which can be processed to compute the loudness of the noise source that generated the acoustic
wave. Average loudness levels over long periods of time are commonly used as noise indicators.

In 2010 [19] another interesting proposal and apparently cheaper way of noise pollution moni-
toring can be carried out with smartphones. Nowadays, almost everyone has a smartphone near
him/her most of the time and these devices have all the necessary functions to act as wireless
sensors. Access to sensors, accelerometers, Global Positioning System (GPS), wireless devices and
connection to the Internet is all available to us right from our pockets. Kanjo proposes NoiseSpy,
a sound sensing system that turns the mobile phone into a low-cost data logger for monitoring
environmental noise.

In 2013 [20], Australian researchers proposed a pilot study of urban noise monitoring archi-
tecture using WSNs and a new noise monitoring hardware platform which processes the analogue
noise signal and converts it into sound levels ensuring privacy protection. In order to visualize
the data, Google Maps is used. This architecture attempts to be scalable and applicable to other
sensors required for city management.

4http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/tmote-sky-datasheet.pdf

8 Reverse Engineering WirelessHART Hardware

http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/tmote-sky-datasheet.pdf

CHAPTER 2. BACKGROUND

Atmospheric pollution

Wireless sensors can measure the level of dust, CO2, NO2 and SO2 to avoid respiratory diseases.
Big cities are already using more and more of these sensors to face the pollution and try to keep
it below damaging levels.

In 2010 [21], a Wireless Sensor Network Air Pollution Monitoring System (WAPMS) was built
in the Mauritius island. This innovative system claimed to notably reduce power consumption
by proposing a new recursive data aggregation algorithm. This algorithm merges data and filters
out invalid readings, sending only the right data to the main re-collector, resulting in energy saving.

In 2011 [22], a real-time WAPMS was offered to the community. In this research, authors
designed a WAPMS which was deployed in the city of Hyderabad. They used multi hop data
aggregation algorithm to deal with data gathering and routing problems. Mainly, the pollution
levels of CO2, NO2 and SO2 were analysed on this survey. In this paper a lightweight middle-ware
is developed along with a web interface to observe the live pollution data in the form of charts
and numbers.

Recently, in 2014 [23], another WAPMS was proposed through a Mobile Data Acquisition Unit
and a fixed Internet-enabled Pollution Monitoring server to recollect data. Basically, this WAPMS
relies on a mobile re-collector which gathers all the pollutant levels of CO2, NO2 and SO2 and then
packs this data along with its GPS location into frames. These frames are transmitted towards
the central-server via the Zigbee module. The server is interfaced to Google Maps to display the
location of the hardware unit.

Another research in 2014 [24] reviewed the importance of employing WSNs in air pollution
monitoring in cement factories. In a cement factory, air pollution monitoring systems very rarely
use wireless communications. There exist various well-known wired systems such as Opsis 5 and
Uras26. However, these systems just monitor the emissions from the chimney, leaving numerous
areas without coverage. Nowadays, many surveys are being constantly carried out and analysed
to progress in this field.

2.1.3 Habitat monitoring

Habitat monitoring is an important tool for assessing the threat and conservation status of species
and protected areas. The focus on the protection and preservation of the environment has been
steadily gaining relevance in scientific communities and society. WSNs represent a big impact for
this purpose due to how helpful it is for the efforts to reduce disturbance effects, predation of
endangered species and the shift to unsuitable areas.

In 2002 [25] a specific habitat monitoring application for a small island using 32 nodes was de-
veloped. This system architecture could serve numerous uses for habitat monitoring. This survey
showed the hardware requirements: sensor platform, enclosure design and sensor calibration, along
with constraints and guidelines that served as a basis for a general wireless sensor architecture for
many such applications. Ultimately, in the paper they monitored a sea-bird nesting environment
and its behaviour as an example of their application.

In 2010 [26], a similar case was carried out for monitoring sea-birds on the Skomer Island, a
United Kingdom national nature reserve. One more time, this paper contributed to the community
offering insights on design decisions, problems found and experience gained.

5http://opsis.se

Reverse Engineering WirelessHART Hardware 9

http://opsis.se

CHAPTER 2. BACKGROUND

2.1.4 River monitoring

In 2010 [27], Glatz et al. proposed the first monitoring wireless network using ultra-capacitors
as energy storage elements to compensate for the irregularity of environmental energy sources.
Instead of using self-powered sensors they relied on energy harvesting to do a perpetual operation.
Glatz et al. dissected a variety of low-power micro-controllers to find the best results focussed on
energy harvesting.

In 2013 [28], more surveys have been carried out in Brazil due to climate changes. This study
showed the city of São Carlos during the rainy season floods to protect the critical places which
were vulnerable to the risk of sudden downpours. In this paper, authors attempted to stem
the possible flooding and monitor the river water level. Authors claimed that the problem of
only an information source, the geo-spatial information, could be notably improved with the use
of WSNs. They made a real time river monitoring system, using web technology with various
wireless sensors. The next step was to increase the number of wireless sensors to detect possible
overflows. Furthermore, there are various projects on the Internet for building and deploying a
real-time sensing infrastructure for environmental monitoring. An example of one is RiverNet 6.

2.1.5 Smart-Metering

The precise measurement of certain levels is becoming a key process in smart-metering. An ex-
ample can be seen by measuring the water flow, electric current, weight of materials and goods,
liquid levels, distance of ultrasounds and distance and displacement of an object. A handful of
applications use smart-metering. Examples are electric and water consumption, pipe leakage de-
tection, agricultural irrigation, tanks level control, industrial automation, etc. More industries are
beginning to benefit from the use of wireless sensors networks.

In 2011 [29], Korean researchers proposed a test bed in Smart-grid systems, describing their
implementations and outcomes in a field demonstration that monitors the usage and generation
of electricity in a small building. Researchers deployed various smart meters, wind power genera-
tors, a photo-voltaic power generator, a battery, two electric vehicle chargers, two light controllers
and a smart outlet. The light controllers exchanged their data and control messages through
Programmable Logic Controller (PLC) and the other devices. The communication was carried
out through wireless sensors, mainly the ZigBee technology.

In 2011 [30], developments on WSNs for detection of combustible or explosive gases was an
emerging topic. Russian researchers learned to address the early gas detection with the help of a
board 2D semiconductor sensor by generating a Wireless Gas Sensor Network.

In 2013 [31], Italian researchers described a new prototype low-cost WSN for gas smart-
metering. The authors relied on a star topology network where each node could be integrated
with a standard relay gas meter. These nodes could measure the gas usage and send it to the
central node in the star. All this information was carried out through RF links. Whereas the
wireless sensor nodes were self-powered, the central node was connected directly to the electric
power. The information was processed in a Personal Computer (PC) connected to the central
node. A framework was responsible of intercepting and processing all data allowing authorized
users to check the network status through a web interface. More wireless nodes could join the
wireless network due to the self-learning of the WSN.

In 2013 [32], a study on fluid leakage in pipelines using WSNs eventually addressed issues with
four different solutions using WSNs. The WSN-based solutions were magnetic induction based,
continuous pressure monitoring, underground to above ground radio propagation and wireless
signal networks. Ultimately, they concluded that after introducing the theoretical structure for

6http://sensors.cs.umass.edu/projects/rivernet

10 Reverse Engineering WirelessHART Hardware

http://sensors.cs.umass.edu/projects/rivernet

CHAPTER 2. BACKGROUND

magnetic induction-based, deploying this system in real-life needed much work. Advantages and
disadvantages were always present, however these techniques were really useful to avoid pipelines
leakages due to their real-time detection.

In 2014 [33], authors proposed a transient pressure wave based technique coupled with wavelet
analysis to achieve reliable detection and localization of abrupt bursts and leakages. They con-
cluded the paper presenting an effective algorithm, based on the information carried in the tran-
sient pressure signal, which obtained more than 90% accuracy for hazardous situations. Similar
research has been carried out in [34] (2006), [35] (2007), [36, 37] (2008) and [38] (2011).

2.1.6 Warfare: Tracking enemies and tactical techniques

The numerous military and civilian applications of this technology have the potential to make a
considerable impact on society. The main goal of surveillance missions is to obtain and verify
information about enemy capabilities and positions of hostile targets. Such missions often involve
a high element of risk for human personnel and require a high degree of stealthiness. Therefore,
the ability to deploy unmanned surveillance missions by using WSNs is of great practical impor-
tance for the military industry. Another possible usage of WSNs has been carried out by The
DARPA project 7. Such projects have used WSNs for detecting minefields in the battlefields with
satisfactory results.

In 2004 [39], Americans carried out various experiments using ad-hoc WSNs to perceive ene-
mies. This system was capable of detecting and accurately locating shooters even in urban envi-
ronments. A group of wireless nodes were spread out and they communicate as an ad-hoc WSN.
The system was reliable even with multiple sensor failures while also offering proper coverage and
high accuracy. This paper covered acoustic signal detection, the most important middle-ware
services and the unique sensor fusion algorithm. The system performance was analysed using real
measurement data obtained at a US Army MOUT (Military Operations in Urban Terrain) facility.

In 2004 [40], American authors described and designed an implementation of a running system
for energy-efficient surveillance. The experiment counted around seventy MICA2 8 motes forming
a WSN. The system allowed a group of cooperating sensors to track and detect the locations of
moving vehicles in an energy-efficient and stealthy manner. Unlike other works, this paper claimed
to have been tested in outside settings. Furthermore, authors implemented an entire integrated
suite of protocols and application modules. Ultimately, authors concluded by explaining the key
lessons learned; both hardware and software design must not be ignored in developing usable solu-
tions. This includes realism of sensor performance, asymmetries in communication, false alarms,
and race conditions.

In 2004 [41], several American universities studied the intrusion detection in what they called
‘A Line in the Sand’ security scenario. Researchers explored the design space of sensors, signal
processing algorithms, communications, networking, and middle-ware services. A contribution of
their work is that they did not suppose a reliable network; on the contrary, they totally assumed
the unreliability of the WSN. This experiment was deployed and tested at MacDill Air Force Base
in Florida. Furthermore, less than one hundreds motes were used but the authors articulate a few
of the challenges facing extreme scaling to tens or hundreds of thousands of motes for a possible
occasion in the future.

In 2006 [42], a survey investigated the use of WSN technology for ground surveillance by Aus-
tralian researchers. The focus of this approach consisted of being able to deploy the system out-
door, detect multiple targets such as tanks or troop movements and use inexpensive off-the-shelf

7www.darpa.mil
8http://www.eol.ucar.edu/isf/facilities/isa/internal/CrossBow/DataSheets/mica2.pdf

Reverse Engineering WirelessHART Hardware 11

www.darpa.mil
http://www.eol.ucar.edu/isf/facilities/isa/internal/CrossBow/DataSheets/mica2.pdf

CHAPTER 2. BACKGROUND

wireless sensor devices. Such devices must be able to measure sensing acoustics and magnetic
signals generated by the enemies’ devices. This paper related how extremely challenging real-
time tacking is and how real-time decision making needs to be addressed. They proposed and
emphasized a Hybrid Sensor Network Architecture (HSNA) tailored specifically to address such
requirements.

In 2009 [43], American researchers from Boston outline different application scenarios in re-
mote large-scale WSNs focusing on the primary requirements for tactical environments. Authors
propose a WSN architecture based on the cluster-tree based multi-hop model with optimized clus-
ter head election and the the corresponding node design to meet the tactical requirements.

2.1.7 Natural disasters

Wildfires have been extinguished with the help of wireless sensors dropped from aircrafts overhead.
These sensors help determine temperature measurements and create a temperature map. Further-
more, many scientific studies use wireless sensors to predict volcanic eruptions. Such examples are
not comparable with the number of applications we can see today working around the globe.

In 2006 [44] a forest fires surveillance system was addressed by Korean researchers. Basically
this system utilizes a WSN, middleware and web application to detect possible forest fires. Previ-
ous investigations were using surveillance cameras with a combination of infra-red sensors system
and satellite system. As the authors claim, these systems can endure no real-time applications.

In 2006 [45] scientific researchers lead a study to collect seismic and infrasonic (low-frequency)
signals in volcanoes. Previously in 2004, this group had installed some tiny wireless sensors in the
Volcán Tungurahua in Ecuador as a proof of concept. Later in 2005, [46]-[47] in another Volcán
Reventador also located in Ecuador, the scientific researchers deployed 16 sensor nodes equipped
with a microphone and siesmometer collecting seismic and acoustic data on volcanic activity. As
many of the WSNs, this WSN comprised of wireless sensors relaying data via a multihop network
until reaching a gateway node. This gateway node was connected to the Internet through a modem
remotely allowing connectivity from a laptop. A GPS receiver was used along with a multihop
time-synchronization protocol to establish a network-wide timebase. This paper showed the design
reflections when they chose the network hardware. Ultimately, they decided to use well-known
TMote Sky 9 instead of TI MSP430 MCU for storage capacity. The outcome was greatly successful
even having some outages during some days. Scientific researchers were able to collect a great deal
of information and capture volcanic events based on the acoustics.

2.1.8 Agriculture and animals tracking

WSNs have arrived to all corners of industry and agriculture and animal tracking is not an ex-
ception. Agriculture faces many challenging problems such as climate change, water shortages,
labour shortages due to an ageing urbanized population and countless other reasons. Humanity
depends on agriculture and water and other factors for survival. Regarding animal tracking, it
might be applied for pastoral tracking or for controlling wildlife. In the ZebraNet project [48],
wireless sensors combined with GPS technology has been used to observe the zebra’s migrations.
These experiments with animals have also been seen with falcons and salmon without the use of
GPS technology.

In 2004 [49], Australian researchers described some new wireless sensor hardware developed for
pastoral and environmental applications. The paper explains the necessities of developing their
own hardware due to the problems with the radio range of the current hardware. One of the

9http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/tmote-sky-datasheet.pdf

12 Reverse Engineering WirelessHART Hardware

http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/tmote-sky-datasheet.pdf

CHAPTER 2. BACKGROUND

requirements of this industry was the support for solar cells, a proper radio range and a right and
resistant connector between the board and the RF module. At the time of this research, there
was not as much hardware available as today. Therefore, neither MICA1 10 nor any other wireless
sensors of the time fulfilled the requirements. They released a new family of wireless sensors with
the required improvements and called them: ‘Flecks’. These motes were inspired by Berkeley.
During research, different versions of ‘Flecks’ devices arose. Principally, the devices comprised
an Atmel Atmega128 processor and a Nordic 11 radio chip. Newer versions were adding GPS
and more storage in MultiMedia Card (MMC) flash memory generating ‘Flecks1’ and ‘Flecks2’
versions. These experiments allowed researchers to investigate in pastoral tracking.

In 2007 [50], researchers one again came up with a newer version of ‘Flecks’. Whereas ‘Flecks1’
and ‘Flecks2’ were operating on the 433Mhz, the newest ‘Flecks3’ was operating on the 915Mhz.
‘Flecks3’ also includes an internal clock to avoid overheads and integral solar battery due to the
sunny environment in Australia. Knowing the state of pastures and crop fields in a farm environ-
ment is crucial for farmers. From crops mature to cattle graze pastures for food, farmers must
decide when to irrigate pastures, apply fertilizers or move cattle to different pasture. Normally,
farmers rely on a combination of experience, visual observation and intuition to make such deci-
sions, however they will be nowhere near to the optimal one. This research attempted to model
herd and individual behaviour by wearing ‘Flecks3’ collars. After this research, it was feasible
to record where every mouthful of grass has been taken from, as well as where and how quickly
future pasture growth could occur.

2.2 Sensor node Architecture

This section tries to mainly analyse the parts a sensor node is comprised of. Although every sensor
node can be tailored according the requirements, eventually all sensor nodes have similar com-
ponents. This section is going deeper into each part of wireless sensor nodes as well as the most
known wireless sensor nodes. A little journey in wireless sensor nodes is addressed in this section.
A wireless sensor node is basically comprised of a main and low-power MCU to process all opera-
tions, a RF module in order to carry out wireless communications, an optional external memory
to log data in it and batteries or any source of power supply to stay alive WSNs for a long lifespan.

In Figure 2.2 is depicted an internal representation of a common wireless sensor node. Although
there exist different combinations of designing wireless sensor nodes. Figure 2.2 reflects the most
popular representation.

2.2.1 Microcontroller (MCU)

The Internet Of Things (IoT) world has arrived with tens of trillions of embedded devices around
the world. Such devices are comprised of different MCU’s families and each one of them carries
out a number of applications. Nowadays, we carry a smart-phone with us everywhere. Those
smart-phones are formed by many MCUs which are able to measure temperature, record audio,
take pictures or videos, measure pressure or acceleration and countless other things. We are con-
stantly surrounded by tiny Central Processing Unit (CPU)s. The IoT is foreseeing an enormous
amount of new devices in the upcoming years. Unlike IoT, the WSNs are not all connected over
the Internet. Although WSNs can operate through Internet Protocol version 4 (IPv4) or Internet
Protocol version 6 (IPv6) indistinctly, for security reasons only the gateways are normally con-
nected to the Internet.

A MCU, also known as µC or uC, is a tiny computer on a single Integrated Circuit (IC). Such
a chip has an internal processor core, an on-chip Flash and Random Access Memory (RAM) mem-

10http://www.eol.ucar.edu/isf/facilities/isa/internal/CrossBow/DataSheets/mica2.pdf
11http://www.nordicsemi.com/eng/Products/2.4GHz-RF

Reverse Engineering WirelessHART Hardware 13

http://www.eol.ucar.edu/isf/facilities/isa/internal/CrossBow/DataSheets/mica2.pdf
http://www.nordicsemi.com/eng/Products/2.4GHz-RF

CHAPTER 2. BACKGROUND

Main
Microcontroller

Radio Frequency
Transceiver

Power Source
(Battery)

ADC
Sensor MCU

Sensor1

External
Memory

Sensor2

Figure 2.2: General architecture for wireless sensor nodes

ory as well as other features depending on its manufacturer and scope. MCUs are mainly designed
for embedded applications. In the MCU’s world we can observe a classification of architectures
based on the number of bits. MCUs are classified by families and then organised according to
the #bits. Like the CPU, the MCU operates with words formed by a certain fixed amount of
bits depending on their architecture. MCUs also run at certain clock frequencies relying on their
hardware specifications to implement a set of machine instructions.

When WSNs manufacturers select their embedded MCUs, they face many problems to choose
the most adequate design to fulfil the WSNs requirements. Power consumption is perhaps the
most critical feature in WSNs that designers take into account before designing. The less power
consumed, the longer the lifespan is for the wireless sensor node. The physical security needs to
be discussed in detail and the MCUs must have at least sufficient anti-tampering protections to
come out unharmed after the most common physical attacks. Nonetheless, the performance is
very important as well. More important characteristics are speed, area, storage size, computing
power, maturity of the debugging tools, Application Programming Interface (API) available and
so on.

As has been explained before, a wireless sensor node has a main MCU which is responsible for
processing all data and sending it to the RF module to be transmitted. On the other side, when
the data is coming from the RF module from other wireless sensor nodes, the data needs to either
be just forwarded or preprocessed again and sent back to the next hop. Although sometimes,
there is not only a MCU, but there is always a MCU that acts as the principal one.

It is possible to combine all the requirements of a wireless sensor node in only one IC. For
example, we can combine a main MCU, RF technology, RAM memory, a sensor MCU and on-
board flash memory. Although this approach is not the most commonly used worldwide, it might
be encountered in the industry of WSNs.

2.2.2 Radio

An IEEE 802.15.4 compliant device can be attached to a module, just the transceiver itself or
a single-chip with both the RF and main MCU. In this section some RF modules are discussed
but the same information is attained to transceivers. The RF device is responsible for wirelessly
transmitting all the information in a WirelessHART communication. All the information is sent
from the main MCU to the RF chip through commands. Such commands are dependent on the

14 Reverse Engineering WirelessHART Hardware

CHAPTER 2. BACKGROUND

manufacturer of the RF module. When a manufacturer sells these RF modules, an API is manda-
tory in order for it to be easy and straightforward for re-seller’s developers. An API is a set of
instructions or commands with which a RF MCU talks to another MCU or other component.
This API is normally accessed through a UART interface with the main ports: TX (Transmission)
and RX (Reception). Depending on the manufacturer, different extra ports might be important to
establish a communication with the RF. The UART speed in a communication is also dependent
on the manufacturer; although it is normally either 9600 bits per second (bps) or 115200 bps.
Once the communication is available and the right pins are well connected, a command-response
can be started.

Softing's WirelessHART Radio Module
(WD-H)

32-bit ARM7 TDMI MCU
IEEE 802.15.4 2.4GHz

AES-128-CCM*
JTAG connector

FRAM non-volatile memory
HART7

Nivis VersaNode 220

32-bit ARM7 TDMI MCU
IEEE 802.15.4 2.4GHz

AES-128-CCM*
JTAG pins, I2C, UART, SPI

 MC13224V RF 128KB Flash
RAM 96KB ROM 80KB

 Dust Networks LTP5903-WHM

32-bit ARM Cortex-M3
IEEE 802.15.4 2.4GHz

AES-128-CCM*
SPI, UART

DN2510 RF

 Dust Networks LTP5901-WHM

32-bit ARM Cortex-M3
IEEE 802.15.4 2.4GHz

AES-128-CCM*
JTAG, SPI, UART

Anti-tampering: Hardware Lock Key
Flash 512 KB

Eterna LTC5800 RF
On-board antenna

Figure 2.3: Comparison between WirelessHART Radio Modules and their main specifications.

The RF module in a wireless node can appear in different ways: integrated on the main MCU,
in an external module, attached to the main board as another component or just simply as a mote
itself with all of it integrated in one MCU. Figure 2.3 depicts some of the WirelessHART RF mod-
ules and their key characteristics. Figure 2.3 mentions the main architecture of the WirelessHART
RF modules on the market, their programming and debugging interfaces, their anti-tampering
protections, whether they are mentioned on the datasheet and their non-volatile memory to save
persistent data. All the RF modules own an on-board Advanced Encryption Standard (AES)-128
hardware accelerator responsible for encrypting and decrypting all the communication with the
other sensors nodes.

As is shown in Figure 2.3, there are specific manufacturers of these MCUs. Some well-known
chip manufactureres are Atmel, Atmel AVR and Texas Instruments (TI). For Atmel RF modules
we can highlight:

• Transceivers. Some reference: AT86RF231, AT86RF232, AT86RF233 at 2.4GHz and AT86RF233
at 700/800/900MHz.

• RF module. Being a combination of main MCU and RF chip in an extra module. Some
references : AT86RF212B ZigBit, AT86RF233, ATmega256RFR2, ATxmega256A3U and
AT86RF212B Module, ATxmega256A3U and AT86RF233 Module.

• Single-chip. Being main and RF MCU in the same chip. The architecture is based on
ARM Cortex M0 (RF) and AVR 8-bit as main one. References: ATSAMR21E16A, AT-
SAMR21E17A, ATSAMR21E18A, ATSAMR21G16A, ATSAMR21G17A, ATSAMR21G18A.

Likewise, TI has a lot of different chips depending on the wireless protocol, focusing on IEEE
802.15.4 and WirelessHART and ZigBee, TI offers the following principal references: CC252x,
CC253x, CC263x and MSP430.

Reverse Engineering WirelessHART Hardware 15

CHAPTER 2. BACKGROUND

Sensors

Each mote or wireless node has one or several sensors attached to it. There exist different kinds
of sensors depending on the application. Mainly, the most used sensors are temperature, pressure,
movement, density, distances, noise and vibration, amongst others. At least one sensor is always
on-board in wireless nodes. Being possible to stay integrated either in the same RF module, in the
main MCU or being a dedicated MCU for acquiring measurements from the environment. When
a sensor is included in the same RF module, it is normally called a Wireless MCU. It can act as
a wireless sensor node by itself. Since some Atmel and TI MCU were already described in the
RF modules section (2.2.2) and sometimes sensor MCUs are integrated into others chips, it is not
considered relevant to dive into.

2.2.3 External Memory

Many wireless sensors are constrained by their resources and are therefore not capable of storing
all their measurements in their on-chip memories. Although MCUs have an internal flash or non-
volatile memory, it is not considered a good idea to store data in these memories. First of all
because wireless sensors have a reduced lifespan depending on their write operations. Secondly,
because as the monitoring is saving data continually, the majority of wireless sensor nodes are
equipped with an external and persistent memory. In this memory, a bunch of measurements are
stored and they remain available after switching off the wireless node. Normally these external
memories are serial memories or serial EEPROMs. Such memory devices communicate with the
MCUs through the SPI or Inter-Integrated Circuit (I2C) interfaces. Both SPI and I2C are two
serial hardware protocols based on Master-Slave communication and are consulted via command-
response protocol.

2.2.4 Power source

There are at least three known current sources: autonomous batteries, energy harvesting with solar
panels and the most unusual ones connected to the plug. Wireless sensor nodes are well-known for
being self-powered and freely spread out into the world. This fact falls on the usage of batteries
as manner of keeping the nodes alive. Since the low-power MCUs are specially designed to cut
down the consumption, MCUs are designed to stay asleep as much as they can when there is no
RF communication or serial commands from the main MCU. The node’s lifespan is estimated to
be up to 10 years, although there exist nodes that just live for around 5 years. When conditions
are harsh, the lifetime is drastically reduced to approximately 2 years. The most popular batteries
used in the wireless sensor nodes are either button batteries or a couple of the well-known AA
Mignon batteries.

2.3 HART

Before talking about some wireless protocols, it is convenient to introduce protocols which are
encapsulated through wireless technology. Once we have reviewed the details of such protocols,
the wireless technology will be easier to comprehend.

2.3.1 HART Protocol

HART [51] is an industrial and low-level network protocol which operates through 4− 20mA cur-
rent loop both analogically and digitally for mainly smart field devices. Nowadays, the HART
technology is the most widely used field devices communication protocol for intelligent process
instrumentation. In the late 1980s, a company called ‘Rosemount Inc.’ developed HART as pro-
prietary protocol for their field devices, principally based on Bell-202 protocol [52]. Around 1986,
it was released as an open protocol which has become mature through constant improvements.
However, the revolutionary idea was to combine HART with the wireless technology with the

16 Reverse Engineering WirelessHART Hardware

CHAPTER 2. BACKGROUND

purpose of reducing costs and reaching places which were extremely expensive or thought to be
impossible. This resulted in the birth of the WirelessHART protocol. The HART protocol is used
mainly in power plants, chemical factories and oil and gas industries. This protocol has neither
authentication, authorization nor encryption support.

2.3.2 Modulation: Audio Frequency Shift Keying (AFSK)

As we mentioned before, HART operates over the 4−20mA current loop. Furthermore, the HART
protocol is based on the Bell-202 [52] modem communication standard. The Bell-202 modem data
modulation uses the AFSK to encode data at a rate of 1200 bps. Basically, Bell-202 transfers serial
binary data by using frequency manipulation. The one and zero are encoded by using different
harmonics of the frequency range. Bell-202 AFSK uses a 1200Hz tone for mark, also interpreted
as unit or a binary ‘1’, and 2200Hz for space interpreted as ‘0’ in binary format. According to
Figure 2.4, the analogue signal is propagated with a different wave amplitude, resulting in a digital
signal constituted of ones and zeroes. One important thing to mention is that analogue and digital
in the same channel, allows to monitor the Process Variable (PV) from slaves to masters without
any interruption. Moreover, various digital readings can be carried out per second. As the digital
AFSK signal is phase continuous, there is no interference with the analogue 4 − 20mA signal and
two simultaneous communication channels are feasible.

Both handheld devices and field devices have an internal AFSK modem which is used to
interact on the analogue channel, whereas the PC stations must use a serial interface to connect
the AFSK modem.

Figure 2.4: AFSK. Simultaneous Analogue and Digital Communication

2.3.3 Communication Modes

In the HART protocol we can distinguish a couple of communication modes:

• Master-Slave mode. This mode is a basic master-slave communication protocol where master
devices, such as Distributed Control System (DCS), PLC, PC or a handheld device, start
the communication with slaves (smart field devices). Another option can be addressed as
master-master communication, where there is a primary master, normally a DCS, PLC or
PC, and a secondary master being a PC or a handheld device. An example can be viewed
in Figures 2.5 and 2.6.

• Burst mode. Some HART devices can additionally support this mode. The Burst mode
speeds up the communication. The master instructs and enforces the slave in order to

Reverse Engineering WirelessHART Hardware 17

CHAPTER 2. BACKGROUND

constantly broadcast a HART response. Therefore, the master is capable of receiving the
HART message at a higher rate until it instructs the slave to stop bursting.

Generally speaking, a HART loop is a communication network in which the master and slave
devices are HART compatible. A HART loop can be comprised of slaves and masters. In order to
start a HART communication, it requires at least one master device to start the communication.
When the communication has started, masters are able to send HART commands to the slaves
and receive responses.

Distributed
Control
System
(DCS)

(master)

Field
Device
(slave)

250 Ohm
Resistor

4 ... 20 mA

...100100101110011...

Power
24v

Figure 2.5: HART Master-Slave communication between a DCS and field device.

Personal
Computer
(master)

Field
Device
(slave)

250 Ohm
Resistor

4 ... 20 mA

...100100101110011...

Power
24v

HART
modem

Handheld
Terminal

(secondary
master)

...011111011011011...

Figure 2.6: HART two masters communication between a PC, handheld terminal and field device.

2.3.4 Network Configurations

Principally, HART communications are addressed according to addresses of each device. Such
device address allows us to drive traffic and be able to route data through it. In the HART
protocol we can distinguish two sorts of network configurations:

18 Reverse Engineering WirelessHART Hardware

CHAPTER 2. BACKGROUND

• Point-to-Point (Analogue and digital). This modality involves two devices such as a field
device(slave) and a PC or handheld terminal(master). By using the HART protocol, both
communication channels transmit different data. Only a PV is used in the analogue 4 −
20mA signal. The digital signal is communicating with the rest of data in the form of
PV, configuration parameters or other device information. A condition must be respected;
the device address of the field device needs to be zero in order to be able to establish
communication.

• Multidrop (Digital). Only the digital signal is used while the analogue is fixed to 4mA to
provide a current loop. In this mode, up to 15 devices can be connected in parallel to a
single wire pair. The PC host, master in the communication, is capable of assigning different
device addresses within the range of 1 to 15. Newer HART revisions allow addresses up to
63 and having each device a unique address. Unlike point-to-point, all the devices addresses
are > 0.

2.3.5 HART communication layers

In Table 2.1 below, we see a comparison between the 7 layers of the OSI model and the HART
communication layers. We address a brief detail about each HART layer to be able to understand
how HART operates.

OSI layers HART layers

Application HART commands
Presentation

Session
Transport End-to-end communications
Network Routing
Data link HART protocol rules. Master-slave protocol

Physical layer Bell 202, AFSK-bus

Table 2.1: HART protocol and OSI model.

2.3.6 Packet Structure

The structure of a HART packet is explained below and it can have different variants depending
on whether it is a master or slave packet, the command and its payload and so on. First we show
the graphical view of a HART packet structure, depicted in Table 2.2, and after that we give
a brief explanation of each field in the structure. Eventually, we provide a big picture with the
combination of the field name, its length and a small detail in Table 2.3.

Preamble StartByte Address Command ByteCount Status Payload Checksum

Table 2.2: Structure of a HART packet.

• Preamble. Between 5 and 20 bytes with the value of ‘0xFF’. It synchronises the stream before
starting between participants.

• Start Byte. It may have several different values depending on the type of message: master
to slave, slave to master or even burst message from the slave. It also contains the address
format; short or long frame depending on the HART revision.

Reverse Engineering WirelessHART Hardware 19

CHAPTER 2. BACKGROUND

• Address. For a short frame format: It contains one byte with one bit serving to distinguish
between two masters and another bit to point to burst mode packets. For a long frame
format: It contains 5 bytes, therefore the field device ID is represented with 38 bits.

• Command. This field is represented by a 1 byte numerical value which encodes the master
commands of 3 categories: Universal, Common-Practice and Device-Specific commands.

• Byte Count. This fields indicates the message length. This is the manner for the receiver to
distinguish between the payload and checksum. The amount of bytes depends on the sum
of the status and the payload bytes.

• Status. A couple of bytes are only included in responses from slaves and contain health status.
Such bytes indicate whether the communication is successful or not. In the affirmative case,
these bytes are zeroed on the slaves. Masters do not use these 2 status bytes.

• Payload. It contains data depending on the command to be executed. It could be empty
depending on the command.

• Checksum. Also called parity, it is a eXclusive OR (XOR) operation containing all the bytes
from Start Byte until the last byte of the payload and resulting into a final byte.

Summarizing, in Table 2.3 we can observe a big picture of how a HART packet seems.

Field Name Length (Bytes) Purpose

Preamble 5-20 Synchronization and Carrier Detect
Start Byte 1 Specifies Master Number
Address 1-5 Specifies slave, Specifies Master and Indicates Burst Mode
Command 1 Numerical Value for the command to be executed
Byte Count 1 Indicates the size of the Data Field
Status Master (0) Slave (2) Execution and Health Reply
Data (Payload) 0-253 Data associated with the command
Checksum 1 XOR of all bytes from Start Byte to Last byte of Data

Table 2.3: Dissection of a HART packet.

2.3.7 HART commands

The HART command set includes three classes of commands: universal, common practice and de-
vice specific. The Universal ones, as their name implies, are supported for all the HART devices.
The Universal commands allows access to basic information such as primary variables and units.
The common practice ones provide functions common to many field devices, but not all of them.
Finally, the device specific ones are functions only developed in specific field devices and usually
specified by the device manufacturer. Below, we offer some examples of the available functions on
the HART commands according to their class. Further information and technical details can be
found in the HART Field Communication Protocol Application Guide [51].

2.3.8 HART-IP

The 2-wires HART protocol has been extended to wireless mesh networks (WirelessHART) as well
as Internet Protocol (IP) networks. The latter encapsulates the HART protocol packet structure
into the IP protocol enabling the use of TCP and UDP protocols. The HART-IP extension

20 Reverse Engineering WirelessHART Hardware

CHAPTER 2. BACKGROUND

Cmd Description

00 Read Unique Identifier. Uses the polling address to establish a connection with the field device
01 Read PV
02 Read Loop Current And Percent Of Range
03 Read Dynamic Variables And Loop Current. Reads dynamic variables, PV and current loop
06 Write Polling Address
07 Read Loop Configuration. Reads the polling address and whether the loop current is active or

not
08 Read Dynamic Variable Configuration. Reads the type of each process variable
09 Read Device Variables with Status. Reads up to 4 process variables with data quality status
11 Read Unique Identifier Associated with Tag. Uses the 8-character tag to establish a connection

with the field device
12 Read Message
13 Read Tag, Descriptor, Date
14 Read Primary Variable Transducer Information
15 Read Device Information. Reads upper and lower range values and other device related
16 Read Final Assembly Number
17 Write Message
18 Write Tag, Descriptor, Date
19 Write Final Assembly Number
20 read Long Tag
21 Read Unique Identifier Associated with Long Tag
22 Write Long Tag

Table 2.4: Examples of HART Universal commands

connects to the plant networking infrastructure, provides fast access to measurement and device
diagnostics and enables enterprise-wide access to information. Any Ethernet network can be
remotely accessed from anywhere in the world as a mixed network through wired and wireless
devices. To summarise, the main scope of this protocol falls on the fast and reliable union of the
enterprise-level with the WirelessHART gateways.

Reverse Engineering WirelessHART Hardware 21

CHAPTER 2. BACKGROUND

Cmd Description

34 Write PV Damping Value
35 Write Primary Variable Range Values
38 Reset Configuration Changed Flag
40 Enter/Exit Fixed Current Mode
41 Perform Self Test
42 Perform Device Reset
44 Write Primary Variable Units
45 Trim Loop Current Zero. Adjusts the loop current to 4mA. Does not affect the range values or

the digital primary process value
46 Trim Loop Current Gain. Adjusts the loop current to 20mA. Does not affect the range values

or the digital primary process value

Table 2.5: Examples of HART Common Practice commands

Cmd Description

128 Read Unsigned Char Variable
129 Write Unsigned Char Variable
130 Read Unsigned Int Variable
131 Write Unsigned Int Variable
132 Read Float Variable
133 Write Float Variable
134 Read String Variable
135 Write String Variable
140 Reset Totalizer and Overflow
141 Reset Error Register and Mains Interrupt Counter
150 Lese Spektrum

Table 2.6: Examples of HART Device Specific commands

2.4 IEEE 802.15.4 standard

802.15.4 is a standard for wireless communications issued by the Institute for Electrical and Elec-
tronics Engineers (IEEE). IEEE 802.15.4 is a standard which specifies the Physical layer (PHY)
and Media Access Control (MAC) for Low Rate Wireless Personal Area Networks (LR-WPANs).
802.15.4 is the core for many wireless protocols such as ZigBee, International Society of Automa-
tion 100.11a (ISA100.11a), WirelessHART, and Microchip Wireless (MiWi). The upper layers are
not defined in IEEE 802.15.4 standard; such layers must be defined in the protocols themselves.

2.4.1 PHY and MAC layers

At the PHY layer, the 802.15.4 standard determines that communications must occur in any
of these three frequencies: 868 − 868.8MHz, 902 − 928MHz or the 2.400 − 2.4835GHz for the
Industrial, Scientific and Medical (ISM) bands. Although any of these bands can be used by
802.15.4 devices, the most popular band is the 2.4GHz which is open in most of the countries
worldwide with 16 channels. The 868 − 868.8MHz band is mainly used in Europe with 1 channel
whereas the 902 − 928MHz band is used in the United States and Canada with 10 channels.
The 5MHz channels ranging from 2.405 to 2.480GHz occur in the 802.15.4 standard, specifically
the 2.4GHz band. In this band, the maximum over-the-air data rate is around 250 kbps with
10-meters communication range. Although, these theoretical data rates can be reduced in half
due to overhead in the communication. Lower data rates between 20 and 40 kbps were initially

22 Reverse Engineering WirelessHART Hardware

CHAPTER 2. BACKGROUND

defined, however the newer versions support up to 100 kbps without any difficulty. The 802.15.4
standard at 2.4GHz specifies the use of Direct Sequence Spread Spectrum (DSSS) and uses an
Offset Quadrature Phase Shift Keying (O-QPSK) with half-sine pulse shaping to modulate the
RF carrier.

Geographical regions Europe Americas Wordwide

Frequency assignment 868 − 868.8MHz 902 − 928MHz 2.400 − 2.4835GHz
Number of channels 1 10 16
Channel Bandwidth 600kHz 2MHz 5MHz

Data rate 20 kbps 40 kbps 250 kbps
Modulation Binary Phase Shift Keying (BPSK) BPSK O-QPSK

Table 2.7: Comparison between IEEE 802.15.4 PHY layer according to geographical regions.

At the MAC layer, 802.15.4 uses a couple of techniques to avoid collisions when nodes start
emitting at the same time on the wireless medium. Firstly, as with many wireless technologies, the
MAC is carried out with the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)
protocol in order to avoid collision between devices. This method is described as follows: each
node listens to the medium before transmitting, then if the medium is not available or free to
transmit, the transceiver waits a random time and later tries again. Secondly, the 802.15.4 stan-
dard has a feature called real-time suitability that influences the reservation of the Guarantee
Time Slots (GTS). This technique uses a centralized node which offers timeslots to each node,
therefore they know when they are allowed to transmit in the medium. CSMA/CA is the most
common 802.15.4 protocol in the MAC layer.

Unlike the current domestic wireless networks, 802.15.4 was taken into account for being devel-
oped with lower data rate, simply connectivity, battery application in mind and low cost. Accord-
ing to these constraints, the cryptographic protocols used at the upper layers are usually using
algorithms of symmetric cryptography such as AES-128 in mode Counter with CBC-MAC (CCM)
both for confidentiality and integrity. This will be discussed in detail later. As upper layers are
dependent on the correspondent protocols, different versions of AES could be encountered.

2.4.2 Comparison of IEEE 802.15.4 standard and other wireless tech-
nologies

In Table 2.8 [53], we depict a comparison between the IEEE 802.15.4 standard with the most
popular wireless technologies such as GSM/GPRS for mobile phones, IEEE 802.11 for what we
understand as wireless devices (commonly known as Wi-Fi (WiFi))and Bluetooth, mainly for
connectivity and pairings between small devices such as smartphones or PCs.

802.15.4 GSM/GPRS CDMA 802.11 Bluetooth

Main application Monitoring control Voice and data Highspeed Internet Device connectivity
Battery life 5-10 Years 1 Week 1 Week 1 Week
Bandwidth 250 kbps Up to 2 Mbps Up to 54 Mbps 720 kbps

Typical range 10 - 100 meters Various Km 50-100 meters 10-100 meters
Advantages Low Power, cost Existing Infrastructure Speed Convenience

Table 2.8: Comparison between IEEE 802.15.4 and the most well-known wireless technologies.

Reverse Engineering WirelessHART Hardware 23

CHAPTER 2. BACKGROUND

2.4.3 IEEE 802.15.4 Device Classes

Different devices can participate in an IEEE 802.15.4 network (Figure 2.7), such are classified
depending on their functionality. The standard defines a couple of types of nodes. Therefore, we
can distinguish between Full Function Device (FFD) and Reduced Function Device (RFD). An
IEEE 802.15.4 network is comprised of both FFD and RFD nodes. To understand these types it
is interesting to review some definitions. A coordinator is FFD with network device functionality
that provides coordination between nodes and other services to the network. A Personal Area
Network (PAN) coordinator is the main controller of the PAN. A network has exactly one PAN
coordinator. After these definitions, let us define FFD; this kind of node can serve either as the
coordinator of the PAN or as a common node in the PAN network. FFD is allowed to talk to any
other device due to their total functionality. Furthermore, FFD has PAN coordinator capabilities
and accepts any topology. On the other hand, RFD can only talk to a network coordinator; they
cannot become a network coordinator.

2.4.4 IEEE 802.15.4 Network Topologies

In this chapter we will see the main network topologies used in the LR-WPANs. As many wireless
protocols use such topologies, we describe the possibilities offered in each topology. In order to
explain the most used topologies in IEEE 802.15.4, we must think about the routing organization
in a WSN. The huge number of nodes necessitates a way to organize different ways of relaying
data to the routers and gateways. At least a FFD working as coordinator is required in an IEEE
802.15.4 network. All devices are identified by a unique 64bit identifier, although 16bit might be
used in reduced environments.

In this section, we explain the following topologies in WSNs: star and mesh topologies.

• Mesh. In a WSN, in this case a mesh wireless network, all nodes transmit traffic for the
network. There is a cooperation between all nodes to distribute reliable data. This sort of
network uses a couple of techniques for relaying traffic in the network: routing or flooding.
Although routing is covered in the upper layers, the standard provides support for multi-hop
communications. If routing is chosen, then the traffic is propagated along a specific route
by hopping from node to node until it reaches its destination. This routing is managed by
self-healing algorithms in order to detect anomalies or broken paths. In a network where all
nodes cooperate, self-healing algorithms are crucial to keep the network reliable, secure and
to offer redundancy. On the other hand, if flooding is used, instead of using a specific route
for transmitting data from one node to another node, the data is sent to all the nodes in the
mesh network, including those to whom it was not necessary. This technique is very similar
to the broadcasting technique. Readers can interpret these networks as point-to-point or
peer-to-peer networks. In a mesh network the scope might be larger than star topologies
and sometimes a sort of cluster trees can be formed. In these structures, there is always a
network coordinator which is the main coordinator in the network. Besides, there are trees
comprised of at least a PAN coordinator, FFD and RFD. Since RFD are only capable of
associating with one FFD at a time, the cluster tree structure seems to have RFD and non-
coordinator FFD as leaves of the tree. Originally, mesh networks were invented for military
intentions.

• Star. A star topology is the WSN in which all nodes are directly connected to a central node,
creating a ‘star’. It is very important that the central node is the main PAN coordinator and
its nodes are FFD or RFD. All nodes transmit data to the central node, which is responsible
for transmitting data from within the network to outside of it. Each node cannot directly
connect with another node; it always needs to be routed through the central node. The main
advantage is that all data is centralized, however a very big disadvantage is that when the
central node breaks down, the WSN ceases to function properly.

24 Reverse Engineering WirelessHART Hardware

CHAPTER 2. BACKGROUND

PAN Coordinator
RFD

FFD

Star Mesh

Figure 2.7: Network topologies in 802.15.4

2.4.5 IEEE 802.15.4 Packet Structure

The frame structures have been robustly designed to work on noisy channels and reduce the
complexity to a minimum. Each protocol layer encapsulates its payload, adding layer-specific
headers and footers to be distinguished in the upper layers [54]. The IEEE 802.15.4 standard
defines four different kinds of frames structures:

• Beacon Frame. These frames are used by the PAN coordinator to transmit beacons and
synchronize with other devices. Coordinators are constantly broadcasting beacon frames to
another nodes to establish a communication. Beacon frames contain network information.

• Data Frame. This is used for transmitting all the data. This frame is normally called the
payload.

• Acknowledgement Frame. This is used for confirming successful frame receptions.

• MAC Command Frame. This is responsible for handling all MAC operations. These MAC
frames are mainly commands to indicate operations such as: association request and re-
sponse, disassociation notification, data request between many others.

Each packet or Physical (PHY) Protocol Data Unit (PPDU) can be comprised of the following
parts: Synchronization Header (SHR), PHY Header (PHR) and a PHY Service Data Unit (PSDU).
As Figure 2.8 depicts, such headers and Data units are encapsulated in different necessary fields
to fulfil the IEEE 802.15.4 standard. On the other hand, the PSDU at the PHY layer is item-
ized in detail at the upper layer. As Figure 2.8 also shows, a PSDU is constituted by a MAC
Header (MHR), MAC Service Data Unit (MSDU) and MAC Footer (MFR). In the MHR, ad-
dressing fields are filled up with both the source and destination addresses to redirect the payload.
The rest of these fields are required to correctly follow the standard.

Reverse Engineering WirelessHART Hardware 25

CHAPTER 2. BACKGROUND

Figure 2.8: Packet structure in PHY and MAC layers for the IEEE 802.15.4 standard.

2.5 WirelessHART

With more than 30 million HART devices over the entire world, HART technology is most widely
used field communication protocol in industrial environments. On account of this, the industrial
community has not slowed down of attempting to reduce costs. Million of devices’ wires could
be removed by employing wireless technology. Researchers and the industrial community have
invested time and effort in order to develop a secure and efficient new wireless protocol for the
industrial environment. Despite of reducing costs, wireless technologies are also well-known for
their ease in deployments. WSNs have strongly emerged in industrial environments as well as
many other fields.

WirelessHART is a wireless communication protocol for process automation applications based
on the proven and widely-used wired HART protocol. Summarised WirelessHART, the HART
protocol enhanced with wireless capabilities. Nonetheless, the HART compatibility between
WirelessHART and HART devices is always maintained. According to its website 12, WirelessHART
claims to consistently fulfil all specific requirements for reliability, security, cost-efficiency and ease
of use. Another claim coming from its website: “It is a simple, reliable and secure protocol!”.

2.5.1 Main Characteristics

This section intends to introduce the main aspects for the WirelessHART protocol. WirelessHART
is the first open wireless standard to be certified for industrial applications. Being an open system
allows WirelessHART to be a multi-vendor protocol and worldwide usable. Wireless networks can
be set up with different brands and all devices are capable of understanding each other.

In plant environments the communications are managed by using frequency hopping. In
WirelessHART there are 16 channels as discussed before in the IEEE 802.15.4 standard (Sec-
tion 2.4). Each channel has a bandwidth of 5 Mhz and their allocation occurs between 2.405GHz
and 2.480GHz. The WirelessHART protocol uses all channels in parallel to avoid overlaps. If
a channel is being used, then the Network Manager can utilize frequency hopping to change to
another open channel and continue with it without interruption. WirelessHART employs Time
Division Multiple Access (TDMA) to manage how the spectrum is used over time. Every trans-
mission takes place in a 10ms window called a “time slot” and on one of the 16 channels with very
precise timing. If no communication is needed, devices go into a sleep mode to conserve energy
(most devices are battery powered). Therefore, the whole WirelessHART is synchronized in these

12http://en.hartcomm.org/hcp/tech/wihart/wireless_overview.html

26 Reverse Engineering WirelessHART Hardware

http://en.hartcomm.org/hcp/tech/wihart/wireless_overview.html

CHAPTER 2. BACKGROUND

slots and the rates can reach up to 250kbps.

WirelessHART was implemented with the idea of keeping the well-known and proven HART
protocol and creating it as easy as using wired HART. The first aspect that differs from the HART
protocol is obviously the RF interface. WirelessHART is complying with the IEEE 802.15.4 −
2006 13. As we mentioned in the previous section 2.4, IEEE 802.15.4 is responsible for the PHY and
MAC layers for LR-WPANs used WirelessHART as well. The HART protocol uses a modulated
sine on the 4 − 20mA current loop, whereas in WirelessHART this is replaced by radio. This
feature produces costs savings which make the WirelessHART an attractive protocol besides its
easy and flexible installation.

2.5.2 WirelessHART Components

According to the standard, a WirelessHART network architecture is constituted by different ele-
ments. Figure 2.9 depicts all the device classes cited in the WirelessHART standard. Below such
elements are discussed and briefly explained:

• Field Devices. The wireless sensor nodes are also called motes and they act as routers.
The WirelessHART protocol normally supports up to 250 nodes in the same network al-
though some devices are capable of reaching up to 500 nodes. Such nodes carry out different
objectives in the WSN as gathering and preprocessing environmental information and com-
municate with other nodes in the same network. Finally, this information is supposed to
arrive to the Access Point (AP)s where nodes are connected to. This information is going
through the gateway until it reaches the final point of monitoring.

• Adapters. These provide wireless capabilities to the wired HART devices.

• AP. A wireless AP is responsible of transmitting all the wireless data to the Gateway.
Although there can exist WirelessHART networks without APs, deployed them into the
network can reduce the workload for the gateway, specially huge WirelessHART networks.
Such devices are wirelessly transmitting and receiving data from the wireless network and
relaying to the core network by using wired connection with the Gateway. Furthermore,
both AP and Gateway can communicate with each other through the air.

• Security Manager (SM). The Security Manager is responsible for creating and storing the
keys used in the network. The Network Manager uses the Security Manager for key manage-
ment. Besides, the Security Manager can also be used to ensure the wired communications
of the WirelessHART network.

• Network Manager (NM). The NM is a centralized entity responsible for configuring and
scheduling the WSN. The NM accepts joining requests from the Gateway, AP, field devices,
adapters and handheld devices [55]. The NM can be integrated into the Gateway (GW),
host application or process automation controller.

• GW. A GW is an AP responsible for joining the plant automation network and the wireless
network. It is the link between the NM and the WirelessHART network.

• Handheld Terminal. Portable devices used to configure the field devices. Used mostly to
write the Network ID or Join key and device monitoring.

• Host Application. This is the machine that is monitoring constantly.

13http://standards.ieee.org/findstds/standard/802.15.4-2006.html

Reverse Engineering WirelessHART Hardware 27

http://standards.ieee.org/findstds/standard/802.15.4-2006.html

CHAPTER 2. BACKGROUND

Host
Application

Process
Automation
Controller

Secure
Manager

Network
Manager

Gateway

Access
Point

Adapter

Wireless
Handheld

Field Devices

Access
Point

Access
Point

Figure 2.9: WirelessHART Mesh Network Architecture

2.5.3 WirelessHART Communication Layers

This section intends to provide a global view of the WirelessHART packet structure and its se-
curity. In Figure 2.10, a HART packet structure is depicted at different layers whereas Figure
2.11 shows the WirelessHART packet structure. The number attached in each field represents
the number of octets or bytes used and the colours help to have a quick interpretation of layers.
Eventually, in Figure 2.13 addresses a security comparison between the 7 layers of the OSI model
in WirelessHART and HART communication layers. In addition to that, we provide a brief detail
about the main features of each layer improving an existent comparison [1].

As Figure 2.12 depicts, a dissection of a WirelessHART packet at different layers from the
PHY layer until the application layer. Both the Data Link Layer (DLL) and the network layer
contain security measures. At the DLL the DLL Protocol Data Unit (DLPDU) is authenticated
through a Message Integrity Code (MIC) using AES-128-Cipher Block Chaining Message Au-
thentication Code (CBC-MAC) encryption, whereas at the network layer the Network Protocol
Data Unit (NPDU) is both authenticated by a MIC and encrypted using AES-128-Counter (CTR)
mode. At the upper layers, transport and application layers, the data is neither authenticated nor
encrypted. However, these layers wrap the encrypted and authenticated data previously at the
lower layers.

28 Reverse Engineering WirelessHART Hardware

CHAPTER 2. BACKGROUND

Wired HART

PHY Layer

Preamble (5-20)

Data-Link Layer

Delimiter (Start Byte) (1)

Address(1-5)

Application Layer

Command (1)

Byte count (1)

Response Code (1)

Device Status(0-2)

Data (Payload) (0-253)

CRC (1)

Figure 2.10: Packet structure in HART.

Reverse Engineering WirelessHART Hardware 29

CHAPTER 2. BACKGROUND

WirelessHART PDU format

PHY Layer

Preamble (4)

Delimiter (1)

Byte Count (1)

Data-Link Layer

“0x41” (1)

Address Specifier (1)

Sequence Number (1)

Network ID (2)

Destination (2-8)

Source (2-8)

DLPDU Specifier (1)

Network Layer

Control (1)

TTL (1)

ASN snippet (2)

Graph ID (2)

Destination (2-8)

Source (2-8)

(Optional) Proxy/source routing (2-4-6-8-10)

Security

Security Control (1)

Counter (1-4)

MIC (4)

Transport Layer

Transport Control (1)

Device Status (1)

Extended Device Status (1)

Application Layer

Command (2)

Byte count (1)

Data

MIC (4)

CRC (2)

Figure 2.11: Packet structure in WirelessHART.

30 Reverse Engineering WirelessHART Hardware

CHAPTER 2. BACKGROUND

Preamble Delimiter Length PPDU Payload

PPDU

 Specifier Number ID Addr. Address Specifeir Payload
0x41 Address Sequence Network Dest. Source DLPDU DLL MIC CRC

DLPDU

Control TTL
ASN

Snippet
Graph

ID
Destination

Address
Source
Address

[Proxy/source
Routing]

NPDU
Security

sub-Layer
NPDU

Payload

TPDU
Transport
Control

Device
Status

Extended
Device
Status

TPDU
Payload

Security
Control

Counter MIC

Security sub-Layer

APDU

Command Byte
Count

APDU
Payload

Figure 2.12: Dissection of a WirelessHART packet at different layers.

Reverse Engineering WirelessHART Hardware 31

CHAPTER 2. BACKGROUND

Provide Electromagnetism
Transmit raw bits

Physical

Data Link

MAC sub-layer

Network

Security Sub-layer

Transport

Session

Presentation

Application

Slot Synchronization

Set up packet Structure
Framing, Bus Arbitration

Provide hop-to-hop
security

Provide Addressing and
Routing capabilities

Provide end-to-end
Security

Provide Network
independent, transparent

routing

Provide connection
Management services

Data format converter

Provide network
 capabilities to Applications

Both HART and WirelessHART are command oriented.
At Application layer level.

No security is employed by WirelessHART

Merge point of HART and WirelessHART.
Large data set automatically segemented and reliable stream

transport.

 All data here is unencrypted

Path redundancy (Availability).
All data except NPDU header is

encrypted to provide end-to-end
security (confidentiality +

Authenticity (MIC)) between source
and destination

Authentication (MIC)
 and Integrity (CRC) between

two neighbours nodes.
Availability through Channel hopping

TDMA/CSMA

IEEE 802.15.4 2.4 GHz Wireless signals
Data rate 250 kbps

O-QPSK, DSSS modulation

Hybrid (Analogue & digital)
4-20mA Copper wiring

Bell 202. AFSK modulation

No security

Token passing
Byte oriented

Master/Slave protocol

No security

WirelessHART enabled
OSI Layers

Security Features in HART and WirelessHART

Well Known Key
Network Key

Join Key
Session Keys
Handheld Key

AES-128-CBC-MAC

AES-128-CTR
AES-128-CBC-MAC

AES-128

CCM*

AES-128

CCM*

Routing

No security

Figure 2.13: Security features comparison between HART and WirelessHART. ([1] improved)

32 Reverse Engineering WirelessHART Hardware

CHAPTER 2. BACKGROUND

2.6 Cryptography in WirelessHART

WirelessHART inherits features of the mesh networking technology but at the same time it also
incorporates many features of WSNs. The main goal in sensor networks is to monitor the actual
process and obtain as much reliable data as possible. If an adversary is able to manipulate the
network offering fake data, then our task would be compromised and tainted. Side effects could
be very disastrous producing unexpected situations. As solution of that, WirelessHART design-
ers ensured a secure communication between all the nodes with each other. All wireless data in
WirelessHART fulfils confidentiality, integrity, and the authenticity of the commands is ensured.
WirelessHART provides security just for the wireless part of the network but neither enforces to
protect nor specifies any solution for the wired part of the network [1].

In this section, we explain how WirelessHART achieves confidentiality, integrity and authen-
ticity in the wireless network. WirelessHART was designed with security in mind and all the
WirelessHART data is authenticated and encrypted on each layer using symmetric cryptography,
specifically AES-128 in CCM* mode. Nowadays, AES-128 bits is considered secure enough and
the combination of two well-known modes of AES provides both authentication and encryption of
all wireless data at the same time.

2.6.1 Outline

This section briefly discusses the AES cipher and explains a bit further the most used modes in
WSNs, especially in WirelessHART. This section is neither an in-depth discussion about how AES
was implemented nor all the AES modes available nowadays. Nonetheless, we attempt to dissect
the most important details about AES in WSNs and WirelessHART. We shortly mention the
main aspects of AES and we pinpoint what it is relevant for wireless networks as well as comment
the CCM* mode used in WirelessHART.

2.6.2 AES

Around 1997, the U.S. National Institute of Standards and Technology (NIST) announced their
wish to have a new encryption standard which would substitute the Data Encryption Stan-
dard (DES). The winner of a crypto-contest organized by NIST was the Rijndael cipher that
was developed by two Belgian cryptographers, Vincent Rijmen and Joan Daemen. AES is a block
cipher of 128 bits with three different key lengths of 128, 192 and 256 bits. Unlike its predecessor
DES, AES is not a Feistel network but is a substitution-permutation network. AES uses a 4x4
matrix structure known as AES state which can be interpreted as operations in the Galois Field
(GF) (28). As also DES carried out, the AES cipher is based on rounds. Such rounds are repeated
a number of times. In these rounds, different AES keys are created from a key schedule. This
function takes as input the AES key and generates the keys. AES has 10 rounds for 128 bit keys,
12 rounds for 192 bit keys and 14 rounds for 256 bit keys. During the so-called rounds, the AES
state is processed through different operations:

• SubBytes. This function substitutes each byte with another byte according to a lookup table.

• ShiftRows. This function is shifting the last three rows of the state cyclically a certain
number of steps.

• MixColumn. This operation mixes up the AES state columns using an irreversible linear
transformation.

• AddRoundKey. This operation combines each byte of the AES state with a block of the
round key by using bitwise XOR.

Reverse Engineering WirelessHART Hardware 33

CHAPTER 2. BACKGROUND

Apart from the above mentioned operations, AES can operate in several modes and there are
six confidentiality modes: Electronic Code Book (ECB), Cipher Block Chaining (CBC), Cipher
Feed Back (CFB), Output Feed Back (OFB), CTR and XTS-AES. The CBC-MAC and Cipher-
based MAC (CMAC) are similar authentication modes only. Furthermore, there are five combined
modes for confidentiality and authentication: CCM, GCM, KW, KWP and TKW. Only modes
used in WirelessHART are discussed in this thesis.

2.6.3 AES CTR

The AES-CTR mode was introduced by Diffie and Hellman already in 1975. The main idea of
this mode consists of a counter, a unique per-packet value. The AES-CTR uses this counter as
input for the AES encryption operation with the round key. This counter might be considered
as an Initialization Vector (IV) which is a 128-bit fresh number and the same combination of
IV and key should never be used more than once. The counter structure is as follows: a 32-bit
nonce, 64-bit IV and the least significant 32-bit a counter starting at one [56]. The nonce as its
name claims is a single use value. This nonce has to be assigned at the beginning of the security
association and it needs to be unpredictable. The IV is chosen by the encryptor and it ensures
no encryptions with the same IV-key pair. The leftmost 32-bits are a simple counter starting at
zero or one depending on the application and it is incremented subsequently in order to generate
the keystream with the round key. After the counter has been encrypted with the round key,
the resultant key stream is combined with the plaintext or message by performing a bitwise XOR
producing the first encrypted block as final output.

The AES-CTR mode is well-known for being fast and easy to pipeline. Different techniques
have been applied to this mode to make it as fast as possible depending on the architecture of
the machine. CTR mode is thoroughly considered parallelizable and many blocks can be car-
ried out at the same time both in hardware and software implementations. Disadvantages are
the easiness of error propagation detection that can help adversaries to attack the encryption [57].
On top of that, this mode only offers confidentiality and a disadvantage is the lack of data integrity.

k AES
encryption

Plaintext_0

Ciphertext_0

 Counter+0 Nonce

k AES
encryption

Plaintext_1

Ciphertext_1

 Counter+1 Nonce

k AES
encryption

Plaintext_n

Ciphertext_n

 Counter+n Nonce

Figure 2.14: AES-CTR encryption mode

2.6.4 AES CBC

Before discussing AES CBC-MAC authentication mode, it is appropriate to explain the basics of
the AES CBC encryption mode. IBM invented the CBC mode in 1976. Before encrypting this
mode combines each block of plaintext with the previous ciphertext block by performing a bitwise
XOR. In this way, each block is dependent on its predecessor. In order to create unique messages,
an IV does need to be added in the first block because there is no previous encrypted block to be
combined with.

34 Reverse Engineering WirelessHART Hardware

CHAPTER 2. BACKGROUND

In the AES CBC mode the main disadvantage is that it cannot parallelize the encryption.
However, the decryption can be carried out in a parallel mode. Furthermore, a simple bit flipped
would affect the entire subsequent blocks and would produce no clues to apply cryptoanalysis.
Unlike AES ECB, CBC offers different encryptions with the same plaintext thanks to the IV. In
ECB mode the same input produces the same output generating unnecessary leakages.

k AES
encryption

Ciphertext_0

Plaintext_0

IV

k AES
encryption

Ciphertext_1

Plaintext_1

k AES
encryption

Ciphertext_n

Plaintext_n

Figure 2.15: AES-CBC encryption mode

2.6.5 AES CBC-MAC

The AES CBC-MAC is an authentication mode where a MIC is generated also known as Message
Authentication Code (MAC) from a block cipher. Since this mode is using the CBC mode, a
slightly change in one bit produces huge changes in the output. In this mode, the message is
combined with a bitwise XOR operation with the previous encryption and starting with an IV
normally fixed to zero. The output of this operation is encrypted with the round key and subse-
quently this key stream is the input for the next bitwise XOR operation instead the IV. In this
mode all data is discarded except the final block which outputs the Message Authentication Code
(MAC). The MAC can be either a 32, 64 or 128 bits long. In WSNs, especially in Zigbee and
WirelessHART this MAC is set up to 32-bits (4 bytes). This mode can be used for both plaintext
and ciphertext. An important aspect to keep in mind is that this mode needs the exact number
of blocks and padding can be applied whether there is not data enough to calculate with.

AES CMAC is a variant of AES CBC-MAC where variable lengths of messages are accept-
able without losing security. The AES CMAC addresses the security deficiencies of the AES
CBC-MAC. See [58] and [59] for further information.

2.6.6 AES CCM*

Counter with CBC-MAC (CCM) is a generic authenticated encryption block cipher mode. This
mode combines the use of AES-128 in CTR mode for encryption and generates the MIC with
CBC-MAC mode. Both CTR and CBC modes ensure high-level security that includes both data
integrity and encryption at the same time. The AES-CTR mode is employed for the encryption
and decryption of WirelessHART NPDU payload. On the other side, the AES-CBC-MAC mode
is used for signing both at the network layer and the DLL with different keys. The difference be-
tween AES-CCM and AES-CCM* is principally that whereas AES-CCM is a combination of both
encryption and authentication, AES-CCM* can offer either just encryption or authentication [60].

AES-CCM* needs 4 byte-strings as parameters: a, m, N, K. Where m is the message to be
enciphered, K is the 128-bit AES key, N is the 13-byte Nonce used to avoid replay attacks and

Reverse Engineering WirelessHART Hardware 35

CHAPTER 2. BACKGROUND

k AES
encryption

Plaintext_0

IV=0

k AES
encryption

Plaintext_1

k AES
encryption

MAC

Plaintext_n

Figure 2.16: AES-CBC-MAC authentication mode. Calculation of the MIC or MAC.

a is the additional data to be authenticated but not enciphered. The latter is covering the byte
delimiter until the DLPDU payload.

2.7 Key Management in WirelessHART

Key management is undoubtedly one of the most important aspects regarding the security in
the WirelessHART standard. Public Key Infrastructure (PKI) is not used due to power-limited
devices or at least the standard states this statement. Possibly future implementations could use
PKI cryptography to improve the security in this industrial protocol. WirelessHART networks are
comprised of wireless and wired devices. However, the wired security is not defined nor mandatory.
Some weaknesses are found; neither non-repudiation nor security at the wired side are achieved in
the WirelessHART [1]. This standard only secures the wireless part using symmetric cryptography.

In WirelessHART there is a trusted authority that is responsible for generating, storing, revok-
ing and distributing cryptographic keys. This trusted authority is the SM and it is combined with
the use of a Network Manager that distributes these keys over the network. The WirelessHART
standard defines the amount of keys needed and their usage but does not specify how keys must be
generated, stored, revoked, renewed and distributed. It is well-claimed that the SM is responsible
for such functions but neither the design nor specific functionalities are declared in the standard.
Besides, the communication between the SM and NM is poorly documented. At this moment, we
know why and which keys are needed but we do not fully understand all the steps. Often the SM
and NM are integrated in the Gateway, but this is not always the case.

2.7.1 Cryptographic Keys in WirelessHART

In this section we clarify the keys used in the WirelessHART communications. First of all, we
discuss some aspects of wireless keys and then offer some diagrams to help readers to thoroughly
understand the key management and its distribution. In order to complete this section, the
following papers were useful: [55], [1] and [61]. The WirelessHART standard defines the following
wireless keys:

• Well Known Key (WKK). This key is a hardcoded key in the WirelessHART standard and
it is always the same. According to the standard, the WKK was randomly chosen and is:
7777 772E 6861 7274 636F 6D6D 2E6F 7267. Apparently this is not randomly chosen,
the WKK is the ASCII translation of : “www.hartcomm.org”. This key is only used during
the joining process for calculating a MIC. This MIC is attached at the DLL for either joining
requests and responses or advertisements. As the key is widespread and known to everyone,
it is only used for authenticating beacons and calculating MICs for joining requests and

36 Reverse Engineering WirelessHART Hardware

CHAPTER 2. BACKGROUND

responses. This MIC is used corresponding to the DLPDU’s MIC previously addressed in
Figure 2.12.

• JK. This is considered the main key of the WirelessHART standard. The JK is a secret and
PSK used to be authenticated with the NM. The most common scenario relies on all devices
having the same key which is installed manually through the maintenance port before being
deployed. As Access Control List (ACL)s allow for different join keys per device. The JK is
used only during the joining process and both the join request and response are encrypted
with such key at the network layer. At this layer, the JK is basically used for encrypting
the payload and calculating another MIC at the network layer. This MIC is corresponding
to the NPDU’s MIC previously addressed in Figure 2.12.

• Session Keys. Once the joining is started, the SM will create different session keys. These
run-time keys are employed after the joining process at the network layer. Each device knows
the fresh keys to encipher with during the session. Such keys are:

– Unicast Network Manager Key (UNMK). This key is ensuring end-to-end encryption
between NM and the authenticated wireless nodes in the network. This session key
is used for device management such as asking for the network’s health, timeslots and
further information. It is employed for renewing the JK whenever necessary.

– Unicast Gateway Key (UGWK). This key is ensuring end-to-end encryption between
GW and the authenticated wireless nodes in the network. This key is used for securing
the NPDU payload and the MIC calculation at the network layer.

– Broadcast Network Manager Key (BNMK). This key is used for sending global secure
messages into the wireless network between the NM and the wireless devices (inclusive
the GW). For instance operations such as routing information or network scheduling
amongst others.

– Broadcast Gateway Key (BGWK). This key is used for sending global secure messages
into the wireless network between the GW and the wireless nodes (exclusive the GW).
For instance operations such as notifications or timings amongst others.

• Network Key (NK). The NK is generated by the SM and later on this key is distributed to
all the authenticated devices in the WSN by the NM. This key is responsible for calculating
keyed MIC to secure the DLPDU. It is used after the joining process in order to substitute
the WKK. This key is used by two nodes to authenticate each other at the DLL by verifying
the MIC calculated using AES-128-CBC-MAC. Furthermore, the NM uses this key for
renewing the broadcast session keys. The NK is also called “link key” in some papers.

• Hand-held Key (HK). This key is used for peer-to-peer wireless communications between
the handheld and the field device without passing over the GW. As discussed before in the
HART section 2.3, the Handheld devices are able to connect a field device using an AFSK
modem. This key is used for securing the NPDU.

2.7.2 Joining Process

Mote joining is an operation that occurs when an unauthenticated mote wants to join to the mesh
WirelessHART network. A mote needs to deal with a security handshake in order to be connected
to the network. This security handshake is a communication between an unconnected mote and
the network manager (NM). Although the NM is the responsible for distributing all the keys
during the WirelessHART joining process, the SM is the secure interface that creates and stores
all keys. Therefore, several interfaces are involved in the joining process. It is known that in
WirelessHART when various nodes want to speak each other, they have to go through the GW.

In the Joinkey establishment, the trusted administrator can configure the join key to be ei-
ther a single key for all devices in the network or unique per device. The common join key is

Reverse Engineering WirelessHART Hardware 37

CHAPTER 2. BACKGROUND

only visible through the gateway interface. Users can recover the JoinKey by visiting the gate-
way web interface or accessing the system with administrator privileges to see the Joinkey. Only
the administrator can change the Joinkey(s). The common (or each individual) join key can be
changed in the WirelessHART gateway at any time. This change is securely propagated through
the WirelessHART mesh network; old join keys become obsolete. According the joining time, this
is partly determined by the join duty cycle. The join duty cycle determines the radio of active
listen time to doze time during the period when the mote is searching for the network 14. The
higher the join duty cycle is, the faster the joining time, with the downside of higher power con-
sumption.

This section clarifies the joining process and its subsequent session keys used in the WirelessHART
key management using protocol diagrams. A similar approach 15 has been used to improve and
provide further information as well as clarifications on the process. In the diagrams, the steps
are numbered and subsequently explained. In every subsection the numbers used are match-
ing the drawn numbers in the diagrams. Steps remarked with a * or/and a dashed line (--)

are not well-defined and they would need to be investigated further to verify them. Since the
WirelessHART provides hop-to-hop security between neighbours and end-to-end security between
nodes, this thesis represents that thus: micd([micn(x), enc(payload)]ugwk)nk. To offer hop-to-hop
security at the DLL all the nodes in the network are able to calculate the micd([X]ugwk)nk with
the global network key and prove that the message is legitimate. At the network layer the same
message is encrypted and signed another time and provides end-to-end security. At the network
layer it is specified as [X]ugwk or [micn(x), enc(payload)]ugwk. This provides data authenticity
and confidentiality generating the MIC and encrypting the payload with the UGWK.

14http://cds.linear.com/docs/en/design-note/SmartMesh_WirelessHART_Mote_Serial_API_Guide.pdf
15http://www.ietf.org/mail-archive/web/6tisch-security/current/pdfiZJLN6CKg0.pdf

38 Reverse Engineering WirelessHART Hardware

http://cds.linear.com/docs/en/design-note/SmartMesh_WirelessHART_Mote_Serial_API_Guide.pdf
http://www.ietf.org/mail-archive/web/6tisch-security/current/pdfiZJLN6CKg0.pdf

CHAPTER 2. BACKGROUND

Joining Process with Common Join Key

Joining Node Gateway Network Manager Secure Manager

Set up manually the NetworkID and pre-shared key JoinKey (jk) for all devices

(0) Generate

global Network

Key(nk)

(1) Generate

Broadcast

GW and NM

Keys(bgwk,bnmk)

with nk

(2) micd([micn,enc(Keys)]jk)wkk*

(3) micd([micn,enc(Keys)]jk)wkk*

(4) micd(Advertisement)wkk

(5) micd([micn,enc(JoinReq)]jk)wkk

(6) micd([micn,enc(JoinReq)]jk)wkk

(7) micd([micn,enc(Verif. Rq)]jk)nk*

(8) Generate

Session Keys

(9) micd([micn,enc(Verif. Rp)]jk)nk*

(10) micd([micn,enc(JoinRsp)]jk)wkk

(11) micd([micn,enc(JoinRsp)]jk)wkk

(12) Session

and Network

Keys

received and

authenticated (13) micd([micn,enc(Cmd)]unmk)nk

(14) micd([micn,enc(Cmd)]unmk)nk

(15) micd([micn,enc(Rsp)]unmk)nk

(16) micd([micn,enc(Rsp)]unmk)nk

(17) micd([micn,enc(Cmd)]bnmk)nk (18) micd([micn,enc(Cmd)]bnmk)nk

msc WirelessHART Joining Process with Common Join Key. Authentication

Reverse Engineering WirelessHART Hardware 39

CHAPTER 2. BACKGROUND

The WirelessHART Joining Process with Common Join Key is depicted as follows:

0. All the devices or interfaces are set up with the same JK manually. The SM creates the
global NK using the JK. The NK will provide hop-to-hop security by calculating a MIC at
the DLL posteriorly.

1. The SM also creates the broadcast keys using the NK.

2. The SM sends the session keys to the NM. This step is not in the WirelessHART standard
and it might have something uncompleted.

3. The NM forwards the session keys towards the GW. Likewise step 2 and it might have
something uncompleted.

4. The joining process starts with advertising. All the nodes start beaconing the spectrum to
offer the possibility to join the network for the unauthenticated nodes. These advertisements
are signed with the WKK using AES-128-CCM*. In the diagram this appears as MICd()
and it is carried out at the DLL.

5. The unauthenticated mote is awake and receives the advertisement. The mote recognises
the Network ID and starts sending a Join Request. This request is enciphered with the JK
and authenticated too at the network layer and authenticated with the WKK at the DLL.

6. The GW forwards the Join Request to the NM verifying the MIC with the WKK.

7. The NM needs to verify this Join Request and asks the SM to generate the run-time session
keys for this new mote.

8. The SM creates the session keys. The way of generation those keys are generated is unknown
although hashing techniques are used in some public implementations [61].

9. The SM sends the session keys to the NM. The NM knows the keys which will be used later
on.

10. The NM responds and sends the Join Request to the GW.

11. The GW forwards the Join Response to the unauthenticated mote.

12. The joining node proves the data integrity at the DLL with the WKK and decrypts the Join
Request with the JK. Inside there is another proof of authenticity and the payload carrying
the session keys and the NK. The joining node now knows that it is authenticated in the
WSN. The joining process is stopped right here and the security handshake is considered
over as well.

13. The NM needs to send some additional data to the new joined mote. The NM sends a
Command enciphered with the UNMK and authenticated with the global NK.

14. The GW forwards the command to the destination. The mote is able to decrypt this data
because it is using the unicast key (UNMK). With this end-to-end security is claimed.

15. Response back.

16. Response forwarded to the destination. The NM decrypts and gets the data in the response.

17. The GW sends a broadcast packet towards its neighbours by enciphering with BGWK and
signing with the global NK. All the authenticated devices must already have the broadcast
keys.

18. Likewise step 17. Broadcast.

40 Reverse Engineering WirelessHART Hardware

CHAPTER 2. BACKGROUND

Joining Process with Access Control List (ACL)

This modality is claimed to be more secure than the security handshake with only the common
Join Key. It is known that a couple of modes can occur with the ACL. Either each node has
a unique Join Key and the Manager owns an ACL with all IDentifier-JoinKey 16 pairs or, all
nodes have the same common Join Key and the Manager has an ACL of allowed devices. The
most secure mode is using unique keys for each node, although the main disadvantage of this
approach is focussed on the initial key establishment. This approach is also well-known in the
networking area as MAC filtering. Although it does not help much to strengthen the security, at
least it increases the difficulty for an adversary.

The fact that a prior configuration has to be initialized both the Join Keys and the identifier
can severely improve the system security. The main advantage of this approach is the non-necessity
to reschedule a global joining process when a node is compromised or lost. Eventually, this mode
can save lifetime for nodes and increases the security level of the WSN. However, the key estab-
lishment requires a high workload for the deployment. There exists a RAM limitation for ACL
entries up to 32 motes or 100 (by using external RAM). Therefore, this scheme is infeasible for
bigger than 32-nodes networks in the Linear and Dust Networks devices.

The WirelessHART Joining Process with the ACL is depicted as follows:

0. All the devices or interfaces are set up with the unique JK manually. The GW has an ACL
with device ID-Joinkeyid. Broadcast and network keys generation is assumed.

1. The joining process starts with the advertising. All the nodes start beaconing the spectrum to
offer the possibility to join the network for the unauthenticated nodes. These advertisements
are signed with the WKK using AES-128-CCM*. In the diagram this appears as MICd()
and is carried out at the DLL.

2. The unauthenticated mote is awake and receives the advertisement. The mote recognises
the Network ID and starts sending a Join Request. This request is enciphered with the
unique JK and authenticated too at the network layer and authenticated with the WKK at
the DLL. The Identifier travels in plaintext although signed with the JK.

3. An authenticated node acts as a proxy and forwards the Join Request to the GW

4. The GW checks if the Identifier exists in its ACL. If so, it decrypts the Join Request with
the mote’s unique JK which is known by the GW as well because it is in the list. Otherwise,
it does not decrypt the Join Request and replies with Identifier not found.

5. The Identifier was in the ACL, so the SM generates the run-time session keys (sk1) for this
node.

6. The GW sends the Join Response towards the unauthenticated mote through the proxy or
authenticated mote.

7. The authenticated mote acts as proxy and forwards the Join Response. The intermediate is
not capable of decrypting the packet because this is encrypted with a different JK which it
does not own.

8. The joining node receives the session keys and the NK and it is authenticated. The security
handshake is finished here.

Between the steps 9-12 the WirelessHART communication starts with the normal Command-
Response protocol as already explained in the previous diagram.

16Macaddress, serial number or any unique data could be used as IDentifier

Reverse Engineering WirelessHART Hardware 41

CHAPTER 2. BACKGROUND

Joining Node (1)

Mote

Node (2) Connected

Proxy

Gateway

Secure & Network manager

Set up

JoinKey1 (jk1)

Set up

JoinKey2 (jk2)

Create List

with device ID-

JoinKey pairs

(1) micd(Advertisement)wkk(1) micd(Advertisement)wkk

(2) micd([micn(ID),enc(Join Req ACL)]jk1)wkk

(3) micd([micn(ID),enc(Join Req ACL)]jk1)wkk

(4) Is the ID

in the ACL?

ID not found

(5) Generate

Session

Keys(sk1)

(6) micd([micn,enc(Join Rsp ACL)]jk1)wkk

(7) micd([micn,enc(Join Rsp ACL)]jk1)wkk

(8) Session and

Network Keys

received and

authenticated
(9) micd([micn,enc(Cmd)]sk1)nk

(10) micd([micn,enc(Cmd)]sk1)nk

(11) micd([micn,enc(Rsp)]sk1)nk

(12) micd([micn,enc(Rsp)]sk1)nk

msc WirelessHART Joining Process with Access Control List and Identifier.

Joining Process with Joinkey and ACL over the air

This mode is started with a common JoinKey in order to end up in an ACL mode with unique
JoinKeys over the air. Once the joining process is half-finished, the unauthenticated node receives
the unique Joinkey associated to it to create a final joining process over the ACL mode. The
main disadvantage of this mode is the small amount of RAM of these devices for storing ACLs.
Whether a node is compromised or lost, then the GW will only revoke a unique JoinKey instead
all of them as used with a common JoinKey.

42 Reverse Engineering WirelessHART Hardware

CHAPTER 2. BACKGROUND

Joining Node (1)

Mote

Node (2) Connected

Proxy

Gateway

Secure & Network manager

Set up manually the NetworkID and pre-shared key JoinKey (jk) for all devices

(0) Generate

global Network

Key(nk)

(1) micd(Advertisement)wkk(1) micd(Advertisement)wkk

(2) micd([micn,enc(Join Req Jk ACL)]jk)wkk

(3) micd([micn,enc(Join Req Jk ACL)]jk)wkk

(4) Generate

new unique

JoinKey(jk1)

(5) micd([micn,enc(Join Resp Jk ACL)]jk)wkk

(6) micd([micn,enc(Join Resp Jk ACL)]jk)wkk

(7) New

Join Key

received (jk1)

(8) micd([micn(ID),enc(Join Req ACL)]jk1)nk

(9) micd([micn(ID),enc(Join Req ACL)]jk1)nk

(10) Generate

session

keys(sk1)

and add ID

(11) micd([micn,enc(Join Rsp ACL)]jk1)nk

(12) micd([micn,enc(Join Rsp ACL)]jk1)nk

(13) Session

and Network

Keys

received and

authenticated

(14) micd([micn,enc(Cmd)]sk1)nk

(15) micd([micn,enc(Cmd)]sk1)nk

msc WirelessHART Joining Process with Common JoinKey and ACL over the air.

Reverse Engineering WirelessHART Hardware 43

CHAPTER 2. BACKGROUND

The WirelessHART Joining Process with Common Join Key and ACL over the air is depicted
as follows:

0. The SM creates the global NK using the JK. The SM also creates the broadcast keys using
the NK.

1. The joining process starts with the advertising. All the nodes start beaconing the spectrum to
offer the possibility to join the network for the unauthenticated nodes. These advertisements
are signed with the WKK using AES-128-CCM*. In the diagram this appears as MICd()
and is carried out at the DLL.

2. The unauthenticated mote is awake and receives the advertisement. The mote recognises
the Network ID and starts sending a Join Request. This request is enciphered with the JK
and authenticated too at the network layer and authenticated with the WKK at the DLL.
This Join Request specifies that the first steps will be carried out with the common JK but
an ACL will be created over the air later.

3. The authenticated node acts as a proxy and forwards the Join Request to the GW verifying
the MIC with the WKK.

4. The SM creates a new unique JoinKey1 for the new mote.

5. The GW responds with a Join Response with the new key

6. The proxy just forwards the response to the unauthenticated mode.

7. The mote has received a new and unique Joinkey to start with a new authentication with
ACL over the air as well as the global Network Key.

8. The half-authenticated mote sends a JoinRequest with ACL with its ID enciphered with the
new Joinkey to the network and signed with the global Network Key.

9. Intermediary motes have to collaborate in the network. Thus this packet is relayed to the
GW because this packet is proved legitimate.

10. Generate session keys (sk1) and add the ID to the ACL.

11. The GW sends back the JoinRequest as JoinResponse with the session keys inside.

12. The proxy just forwards it to the destination.

13. The mote is authenticated and has all the run-time session keys to start any communication.

14. The new authenticated mote wants to send a packet to the GW by using the command-
response protocol.

15. The proxy just forwards it to the destination. After that, the GW will answer the command
and the communication is already started maintaining both data integrity, confidentiality
and availability.

Security deficiencies in WirelessHART

Although WirelessHART was designed to be secure and reliable protocol, the current standard
does have some security limitations such as a:

• The WirelessHART does not require physical device security in the standard. Despite of the
fact that this protocol needs to be reliable and secure enough, there are no anti-tampering
measurements to stop node capture and physical attacks.

44 Reverse Engineering WirelessHART Hardware

CHAPTER 2. BACKGROUND

• Since the WirelessHART protocol does not use asymmetric cryptography some security
features are not achieved. For instance, non-repudiation cannot be carried out without
public key cryptography.

• The key management is vaguely described and there are some gaps in the security definitions.
For instance, as addressed the key management and the communication between the SM and
NM is not concise.

• The entropy sources for the randomness are not specified.

• The session keys generation is not specified either, although it is known that hashing func-
tions are involved.

• Broadcast communication between field devices is not supported.

• Once a mote is compromised, the malicious node would be able to intercept all joining
requests of its neighbourhood. Owning these Join Responses, the session keys would be
exposed to adversaries to intercept the end-to-end communications between network devices.

In [62], [1] and [63] these limitations are addressed as well as a prototype for a secure and
scalable key renewal protocol.

2.8 Others 802.15.4 Wireless Protocols

The goal of this chapter is to address similar wireless protocols based on the IEEE 802.15.4.
Although all these protocols are built upon the PHY and MAC layers, it is interesting just to
address some similarities and differences between them. The next points to discuss are various
specifications for higher protocol layers such as ZigBee or ISA100.

2.8.1 ZigBee

ZigBee 17 is a specification for a cost-effective, low-rate and low-power wireless communication pro-
tocol for home automation, monitoring and control defined around 2004. Besides home monitoring,
Zigbee has been used for many application such as smart energy systems, telecommunication ser-
vices, health care, remote control devices, retail services and other ones.

Although the ZigBee protocol has many similarities with WirelessHART, there are still many
reasons why ZigBee has not been considered suitable for use in most industrial applications. An
important difference to discuss in this context is mainly the security. Whereas ZigBee versions can
work without security, in WirelessHART there is no way to turn off the security mechanisms. Fur-
thermore, Zigbee was designed to offer confidentiality or integrity whereas WirelessHART offers
confidentiality and integrity. On the other side, in the ZigBee protocol peer-to-peer communica-
tions can happen whereas WirelessHART such communications must reach the Gateway before
arriving at the destination. In the ZigBee specification there is no frequency hopping and all the
nodes share the same channel.

A comparison of WirelessHART and ZigBee for industrial applications is available in [64].

2.8.2 ISA100

ISA100 18 is another wireless specification for industrial environments which mainly guarantees
high reliability and robustness. ISA100 was developed by the International Society of Automation
(ISA) around 2005. Nowadays, ISA100 is a competitor of WirelessHART claiming similar plant

17http://www.zigbee.org
18http://www.isa100wci.org

Reverse Engineering WirelessHART Hardware 45

http://www.zigbee.org
http://www.isa100wci.org

CHAPTER 2. BACKGROUND

needs.

Unlike the Zigbee specification, in ISA100 both authentication and confidentiality services are
independently available as in WirelessHART. The key management is basically rather similar but
ISA100 provides more flexibility allowing asymmetric cryptography. In WirelessHART, asymmet-
ric cryptography is nowadays considered either expensive in terms of power consumption or not
well-implemented yet. Regarding the encryption of messages’ payload and MIC calculation there
is a slight difference. Such security is either applied in the transport layer (ISA100) or in the
network layer (WirelessHART). Furthermore, ISA100 has an additional key, a master key that is
used to generate session keys and layer-specific keys, in comparison with WirelessHART.

A notable difference between both is that ISA100 is built over IPv6 and WirelessHART over
IPv4. ISA100 also supports a connection-less service based on User Datagram Protocol (UDP)
packets at the transport layer. ISA100 also uses IPv6 over Low power Wireless Personal Area Net-
works (6LoWPAN) at the network layer. Nevertheless, the main difference can be directly traced
to the differences in the goals of each standard. WirelessHART was designed to offer reliability,
security and appropriate fit for industrial environments and ISA100 was designed to provide flex-
ibility. This flexibility provides a variety of configurations to the manufacturers for customizing
the whole system [65].

A comparison of WirelessHART and ISA100 for industrial applications is available in [66, 65].

46 Reverse Engineering WirelessHART Hardware

Chapter 3

Hardware Security

3.1 Overview

Previous sections have addressed basic concepts about WirelessHART and WSNs, as well as some
existing approaches related to MCUs and RF modules. This section will describe the hardware
security and an in-depth description of its components. First of all, the most common hardware
protocols are addressed as well as the main debugging interfaces. Secondly, common hardware
security protections in MCUs are discussed. Eventually, some of the physical attacks found in
literature are discussed to conclude the chapter.

3.2 Hardware protocols

This section describes the main characteristics of some of the most common debugging interfaces
installed on chips and boards nowadays. These debugging interfaces are designed for testing and
programming chips during their manufacturing process. After manufacturing, chips need to be
programmed for the resellers and this is carried out through such debugging interfaces. Once these
interfaces are used to upload the firmware images, many re-sellers or manufacturers leave them
opened. This represents a security issue allowing attackers to reprogram, download and debug
the target devices. Protections are employed by some vendors although others are not aware that
these interfaces can be a backdoor for adversaries. Along this section, a brief introduction and
security issues will be addressed.

3.2.1 Serial Peripheral Interface (SPI)

Master

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Slave

Memory Memory

MOSI

MISO

SCLK

Figure 3.1: Circular buffer using two
shift registers in a SPI communication.

SPI is a serial hardware protocol for embedded systems
based on master-slave communication with a single mas-
ter. The master always starts the communication and
slaves can be selected through a slave select signal. Dur-
ing each SPI clock cycle, a full duplex data transmission
is carried out where the master sends a bit on the MOSI
line and the slave that is selected reads it, at the same
time the slave sends a bit over the MISO line and the
master gets the data. Slaves that have not been acti-
vated using their chip select, also known as slave select,
ignore the clock cycle and MOSI lines and must not drive
MISO either. The master selects only one slave at a time.
The transmissions normally use a couple of shift regis-

ters, one in the master and one in the slave. This shift register is used to send bits in a circular

Reverse Engineering WirelessHART Hardware 47

CHAPTER 3. HARDWARE SECURITY

way between master and slave over the MOSI-MISO channel.

Many MCUs have an integrated SPI interface that is the responsible for the communication
between internal components on the Printed Circuit Board (PCB). For instance, in wireless sensor
nodes the communications between the main MCU and the RF chip can be carried out by using
the SPI or UART protocol. Both chips must have an enabled SPI interface to communicate with.

Logic signals

SPI is also known as a four-wire serial bus. In order to connect through SPI, besides powering up
the device, the following logic signals must be connected to the target:

Abbreviation Description

MOSI Master Output, Slave Input
MISO Master Input, Slave Output
SCLK Serial Clock

CS Chip Select

Table 3.1: SPI logical signals.

3.2.2 JTAG

JTAG is the dominant standard for in-circuit testing for more than 20 years. This standard was
designed to handle errors in digital systems such as fabrication, packaging and verification of
boards. By using a JTAG programmer, it is possible to transfer data into internal non-volatile
device memory. Some device programmers serve a double purpose for programming as well as
debugging the device (On-Chip Debugging (OCD)). When a device is in an unknown state or
‘bricked’, a JTAG programmer can be used to write software and data into flash memory and re-
cover the device. JTAG was designed to be useful for chips manufacturers and industry. However,
this interface turns into a backdoor to the device when it is not well configured after manufacturing.

Figure 3.2: JTAG architecture. Bound-
ary scan and TAP controller.

The JTAG protocol is defined by a bidirec-
tional communication link following a Master-Slave
protocol. A JTAG link is comprised of only
one master, which always initiate the protocol
and an arbitrary number of slaves. A JTAG-
enabled system requires two essential physical com-
ponents: a TAP controller and Boundary Scan Reg-
ister (BSR). Boundary scan, shown in Figure 3.2
with black arrows, is a method for testing mod-
ern PCBs after assembly. Boundary scan can be
defined as: ‘the ability to set and read the val-
ues on pins without direct physical access’. A
BSR is a register interposed between the chip’s
logic and the I/O modules. All the signals be-
tween the device’s core logic and the pins are in-
tercepted by a serial scan path known as the
BSR. On the other side, a TAP is a state
machine that interprets the JTAG serial proto-
col.

48 Reverse Engineering WirelessHART Hardware

CHAPTER 3. HARDWARE SECURITY

There are two kind of registers associated with boundary scan: instruction and data registers.
The instruction register holds the current instruction to be carried out. Its content will be used
by the TAP controller to determine what to perform with the received signals. Although there
might be many registers in the standard, there are three primary data registers: 1

• Boundary Scan Register (BSR). This is the main testing data register. It is used to move
data to and from the I/O pins of a device.

• BYPASS register. This is a single-bit register that passes information from Test Data In (TDI)
to Test Data Out (TDO). It allows other devices in a circuit to be tested with minimal
overhead.

• IDCODE register. This register contains the ID code and revision number of the device.
This information allows the device to be linked to its Boundary Scan Description Language
(BSDL) file. The file contains details of the Boundary scan configuration for the device.

The IEEE 1149.1 standard defines a set of instructions that must be available for a device to
be considered compliant. These instructions are:

• BYPASS. This instruction causes the TDI and TDO lines to be connected via a single-bit
pass-through register (the BYPASS register). This instruction allows the testing of other
devices in the JTAG chain without any unnecessary overhead.

• EXTEST. This instruction causes the TDI and TDO to be connected to the BSR. The device’s
pin states are sampled with the ‘capture dr’ JTAG state and new values are shifted into the
BSR with the ‘shift dr’ state; these values are then applied to the pins of the device using
the ‘update dr’ state.

• SAMPLE/PRELOAD. This instruction causes the TDI and TDO to be connected to the BSR.
However, the device is left in its normal functional mode. During this instruction, the BSR
can be accessed by a data scan operation to take a sample of the functional data entering
and leaving the device. The instruction is also used to preload test data into the BSR prior
to loading an EXTEST instruction.

Other commonly available instructions include:

• IDCODE. This instruction causes the TDI and TDO to be connected to the IDCODE register.

• INTEST. This instruction causes the TDI and TDO lines to be connected to the BSR. While
the EXTEST instruction allows the user to set and read pin states, the INTEST instruction
relates to the core-logic signals of a device.

Logic signals

The JTAG interface, collectively known as a TAP, uses the following signals to support the
operation of boundary scan. The target needs to be powered up.

1http://www.xjtag.com/support-jtag/jtag-technical-guide.php

Reverse Engineering WirelessHART Hardware 49

http://www.xjtag.com/support-jtag/jtag-technical-guide.php

CHAPTER 3. HARDWARE SECURITY

Abbreviation Description

TDI Test Data In
TDO Test Data Out
TMS Test Mode Select
CLK Test Clock
GND Ground

RST (Optional) Reset
tRST target Reset

Table 3.2: JTAG logical signals.

3.2.3 UART

UART is the key component of serial communications of a computer or embedded device. Ba-
sically, UART is the hardware component that converts data between parallel and serial forms.
UARTs are now commonly included in many MCUs. Over these UART ports, it is possible to
debug, access bootloader, program the flash memory and many other actions. From now on out,
UART is also referenced as serial port in this thesis. Serial ports deal with data in byte sized
pieces. UARTs asynchronously and sequentially sends out a stream of bits, one bit at a time.
Conversely, the inbound transmission that enters the serial port via the external cable is con-
verted to parallel bytes that the computer can understand. The UART protocol adds a parity bit
on outbound and checks the parity of incoming bytes and discards the parity bit. Furthermore,
the UART allows I/O interruptions from the keyboard and mouse in order to take over the control
over the communication. It can manage other sorts of interruptions and device management that
require coordinating the computer’s speed of operation with device speeds.

In this thesis, it is shown that different MCUs are able to ‘speak’ UART between them over
the serial port. Many MCUs can be sleeping until they receive a UART command. The serial port
works in an asynchronous way letting wireless sensor nodes save energy when there is no activity in
the network. As UART communication is present in the majority of MCUs, its hardware security
is based on either the disabling of it or protecting it with a password.

Logic signals

UART is also known as serial port. In order to connect through UART, besides powering up the
device, the following logic signals must be connected to the target. Since the device is already
powered up, targets can get damaged when VCC is connected producing a short.

Abbreviation Description

TX Transmission
RX Reception

GND Ground
VCC (Optional) Power-supply

Table 3.3: UART logical signals.

3.3 Hardware Security

Many manufacturers disable the UART interface before releasing devices either disabling some
flags in the kernel or protecting it with passwords. Although a UART signal can be physically

50 Reverse Engineering WirelessHART Hardware

CHAPTER 3. HARDWARE SECURITY

active on 3.3 or 5V , its activity is completely null if it has been previously disabled via software.
Other configurations allow access to UART interfaces by entering a password. Such passwords are
secret for manufacturers and can be used to debug the device in a required case. The interface
JTAG is similar treated and it is either keyed with a password or disable via hardware protections.

Normally chips are programmed and subsequently disabled their debugging interfaces in order
to protect their access via SPI,JTAG,... Depending on chips, there exist various measures which
disable or protect the access to devices. Fuses and lock bits can be used in some architectures
although other devices do not allow their programming protections. If the device’s hardware does
not allow to protect programming or debugging interfaces, it should not be used for any security
project where sensitive information is handled.

Accessing devices should be only allowed to trusted parties. If the device is a wireless sensor
node which surely will be programmed once in its lifespan, all debugging interfaces should be
completely disabled via hardware. Only those projects which are in an experimental phase could
protect their debugging interfaces with passwords.

This section addresses various security mechanisms used in different families of architectures.
The terms ‘fuses’ and ‘lock bits’ are briefly discussed. In this thesis, our main targets have been
AVR, ARM and TI MSP430. Such ICs have some built-in security measures.

3.3.1 Hardware protections: Fuses and lock bits

In general, MCUs have three memory areas: FLASH which is dedicated to program code, SRAM
for run-time variables and EEPROM which can be used by user code to store data that have to
be preserved when the MCU is turned off. The lock bits and fuses are the fourth non-volatile
memory area available for programming. Both fuses and lock bits are preventions to avoid reading
the proprietary code from chips, enable debug interfaces, disable boot settings, set the multiplier
of the internal oscillator or if the reset pin can be used as a General Purpose Input Output (GPIO)
pin... These lock bits and fuses should be set after programming a board or a chip itself in order
to enable their hardware security.

Hardware fuses

A hardware fuse is a special area of memory that determines which and how different areas can
be accessed. Applying high voltage to certain chip’s pins can result in a blown fuse permanently.
Hardware fuses are known for being irreversible and keeping permanently locked after their blown.
For instance, whether a manufacturer provides a chip with fuses and lock bits without program-
ming, and the chip’s hardware fuses for JTAG and UART are blown, then they are locked forever.

In this research a Texas Instruments (TI) MSP430 was found without any protection. The
JTAG hardware fuse was not blown and the memory content was readable by using a GoodFET
programmer. Both ARM and AVR do not have hardware fuses but have software fuses and lock
bits.

Software fuses

A software fuse is also a dedicated area memory where each bit is meaning the activation or de-
activation of some feature. Unlike the hardware fuses, the software fuses can be programmed and
reset back. Therefore, they are reversible but there is pre-condition whether someone wants to
reprogram the fuses: ”All data will be wiped out before setting new fuses”. The erase procedure
follows a certain sequence that ensures that the FLASH and EEPROM will always be erased
before the lock bits are erased.

Reverse Engineering WirelessHART Hardware 51

CHAPTER 3. HARDWARE SECURITY

In AVR architectures, the fuses are 3 bytes containing certain information. Each bit has a
different meaning depending on the chip itself. Normally fuses are programmed with logic zero
and unprogrammed with high level or logic one.

• Extended Fuse Byte. Bit[0] and Bit[1] contain information about compatibility and watchdog
timer. The rest of bits are seldom used. But each chip has a different configuration.

• Low Fuse Byte. The low fuse byte has different options such as: clock sources, brownout
detector trigger level and start-up times (SUTx,CKSELx, BODEN).

• High Fuse Byte. This byte is using all the bits and it is the most interesting fuse byte to
find out if there is some possibility of entry in the system. These fuses might have different
bit’s position and thus are chip-dependant. However, many chips share the most important
in different order. The meaning of activation of such fuses is discussed below.

– OCDEN. Enable the On-Chip Debugging OCD. This feature is expensive in terms of
power consumption and it is disabled normally. Default value: Disabled (1).

– JTAGEN. Enable the JTAG interface. Default value: Enabled (0).

– SPIEN. Enable the SPI interface. Default value: Enabled (0).

– EESAVE. EEPROM memory is preserved after chip erase. Default value: Disabled (1).

– DWEN. Enable the DebugWire interface. Default value: Enabled (0).

– BOOTSx. Select boot block size. Default value: Enabled (0).

– BOOTRST. Select the reset vector. It makes program execution start from the bootloader
section rather a from normal flash start (0x0000). Default value: Disabled (1).

– CKOPT. Oscillator options and speed of the clock. Default value: Disabled (1).

When JTAGEN, SPIEN, DWEN are wrongly set then the only chance to recover a chip after
occasionally setting these bits is to restore the default settings with a parallel programmer High
Voltage Parallel Programming (HVPP).

Lock bits

The lock bits are a similar concept as fuses. Lock bits are mainly used to protect the memory ac-
cess and boot loader. A special memory area with some bits determining certain program memory
features. Depending on the chip type, there can be different numbers of lock bits. But the two
least bits are always present. LB1 and LB2 bits are used to lock the memory content. The boot
lock bits BLB01, BLB02, BLB11 and BLB11 are used to lock writing and reading to/from FLASH
memory either from application area or bootloader section.

When LB1 is programmed, further programming of Flash and EEPROM is disabled in high-
voltage and serial programming modes. Fuse bits are locked in both serial and high-voltage
programming modes. When both LB2 and LB1 are programmed, further reading and programming
of Flash and EEPROM is disabled in high-voltage and serial programming modes. Fuse bits are
locked in both serial and high-voltage programming modes.

3.3.2 Bootstrap Loader (BSL)

The BootStrap Loader (BSL) is an application built into TI MSP low-power MCUs. It enables
the user to communicate with the device to read from and write to its memory. This feature is
primarily used for programming the device, during prototyping, final production, and in service.
Both the FLASH and RAM can be modified as required through the BSL. The BSL is password-
protected with a password of 32-byte characters long. The BSL password is the value of the
Interrupt Vector Table (IVT) of the chip, which resides at the top of memory and is composed of

52 Reverse Engineering WirelessHART Hardware

CHAPTER 3. HARDWARE SECURITY

pointers to interrupt handlers. Concretely the chip TI MSP430 has two hardware security features:
JTAG and the BSL. Whether the hardware fuse JTAG is blown, then the only access to the chip
is through the BSL.

Goodspeed [67, 68] presents research in a Side Channel Attack (SCA) attack in the MSP430
BSL. Goodspeed provides a board called BSLCracker which is able to reduce the bruteforce at-
tack. However, the most recent attack is carried out with the flash of a current camera. The
“paparazzi” attack is targeted a physical key container called SupraBox [69]. The reason of this
attack is due to the ultraviolet rays shot with the flash of the camera. Chips are susceptible of
these kind of attacks and ultraviolet light can defeat this security mechanism.

In this thesis it was not necessary to attack the BSL since the JTAG interface for this MCU
was opened. If it was opened, deccaping techniques would have been needed to successfully extract
the memory content.

3.4 Physical Attacks on Wireless Sensor Networks

In 2005 [70], American researchers proposed several hypothetical attacks through node compro-
mise attacks. They highlighted the importance of such attacks for instance in military installations
and scientific labs. Authors of this research showed how they were capable of extracting the mem-
ory content by using the debugging interfaces (JTAG, UART). In the paper, authors ran an
experiment with the well-known Mica2 and the AVR ICE JTAG. Not only the memory or EEP-
ROM content was dumped, moreover they were able to extract the SRAM memory in a matter
of seconds. Several experiments led to obtain the cryptographic keys in all the attempts. Either
because the keys were always stored at the same location, or because keys were stored in plaintext
in the flash memory. Finally authors claim that the longest task only took around 30 seconds
and concluded at the time of writing that WSNs designers cannot trust only the software security
measurements or the secure protocols of symmetric cryptography. Although sensors use rather
secure AES encryption, the hardware part always needs to be protected carefully. To prevent this
problem the authors state that the only solution is tamper proof hardware which triggers some
type of self destruct mechanism upon attempted compromise.

In 2008 [71] and [72], Travis Goodspeed published an academic paper on how to reduce a
bruteforce attack against the BSL on MSP430 TI chips. A 32-byte password is generated from
the IVT and it is the only way to access to the chip when the fuses were blown. This side channel
timing attack is shown with a home-made physical board, BSLCracker, which is able to show the
timing leakage during the authentication and perform the attack. In 2009 [73], the same authors
showed how to exploit low-powered wireless embedded systems. GoodSpeed provides a reverse
engineering research focussed both in hardware and software. The author is capable of sniffing
buses in wireless nodes and recovering the AES cryptographic keys in matter of seconds for the
well-known CC2420 radio chips. Furthermore, an explanation of how to access firmware images
in TI MCUs is carried out. Some memory mapping techniques are shown be useful to identify
possible functions on the proprietary code as well as more software attack vectors such as stack
overflows, fuzzing techniques or how an infected node could act as a worm in the network. Fran-
cillon and Goodspeed also run experiments on how to half-blind recover the firmware image of a
MCU. In this paper, authors emphasise the fact of the existence of a bootloader ROM to break
the security of a MCU by a Return Oriented Programming (ROP) attack. Main advantages of
these attacks rely on the use of ‘gadgets’ or existing code to execute code on the target.

In 2013 [74] a paper was released explaining some vulnerabilities affecting industrial wireless
automation protocols such as ZigBee or WirelessHART. First of all, authors reverse-engineered a
binary responsible for generating the default JoinKeys for an unknown-vendor. The problem was
due to the low entropy level of the Pseudo Random Number Generator (PRNG) since developers

Reverse Engineering WirelessHART Hardware 53

CHAPTER 3. HARDWARE SECURITY

used the Linux Epoch time as seed for the random functions leaving a possible way for bruteforce
attacks. Generating the whole range of AES-128 keys between 1970/01/01 and today would allow
any adversary to recover the Joinkey in matter of minutes. Another flaw discovered in another
devices relied on the ‘Project File’, a file responsible for managing the security keys. Changing the
file, a new key was generated and subsequently distributed over the sensor nodes. Authors applied
binary diffing techniques to figure out which offsets were altering the security keys. Same issues
are reflected in several examples more along this paper. The final conclusions mainly suggest
to enforce physical security using anti-tampering mechanisms, audit the source code, never trust
vendor’s documentation and use secure out of band methods for distributing the keys.

Giacomo et al. [75] also comment on possible consequences when a node capture occurs by
analyzing the power consumption in a couple of wireless sensor nodes. Authors work on SCA
attacks in two cryptographic implementations: AES and Elliptic Curve Cryptography (ECC).
Although there are complex settings in the laboratory, authors suggest to protect sensor nodes
with low-cost side-channel countermeasures to avoid any kind of leakage. In 2008 [76], 2013 [77]
some techniques were addressed in order to strengthen the security of the WSNs. This paper is
focussed on the resistance of wireless nodes against non-invasive attacks known as SCA.

3.4.1 Consequences and possible attacks

In this thesis we address the following questions:

1. Can an adversary extract the JoinKey from the mote without interrupting WirelessHART
communications, without being seen nor detected and subsequently he/she being able to be
authenticated in the WirelessHART network?.

2. What would happen when an adversary is capable of physically stealing a node in the network
and bring it to his/her laboratory to be dissected?

3. When the motes have security protections, are they enabled by default?

The first question has several points of view and it depends on the configuration in the wireless
network. There are WSN, that have smart and efficient algorithms to detect internal problems.
An important internal issue is the ‘sinkhole’ attack that occurs when a compromised node attracts
network traffic by advertising fake routing updates. Basically what it happens is that the node
claims to know the shortest path to the base station and attracts as much traffic as possible to
itself. Obviously this can provoke denial of service in a big portion of the wireless network for
a long time. The WSNs are known to be vulnerable to this attack due to the ad-hoc network
structure and many-to-one connections between nodes and base station [78]. Targeting the closest
node to the base station would produce a huge impact in the performance of the wireless sensor
network. One of the most severe attacks to detect and defend in wireless sensor network is a
‘wormhole’ attack. Such attack occurs when a node is compromised and creates a tunnel with
another malicious node and the packets are tunneled between them in such a way that tunneled
packet arrives sooner than the normal packets relayed over a hop-to-hop route and eventually the
fake route is selected first. The wormhole puts the adversary in a very powerful position relative
to other nodes in the network and the adversary could exploit this position. This attacks is con-
sidered rather hard to stop in real life. Detecting sinkhole [79, 80] and wormhole [81, 82] attacks
can result costly and extra measures must be set up.

The second question is considered as the node leaves the environment and an alarm is rapidly
triggered in the network. Depending on the security configuration, this node capture attack could
be detected and stopped on time. Both sinkhole and wormhole attacks are available in this sce-
nario as well when there exist deficiencies in the security level. This scenario is considered less
impressive due to the security alerts.

54 Reverse Engineering WirelessHART Hardware

CHAPTER 3. HARDWARE SECURITY

The third question can be answered without going further. Since our first target, the Linear
Kit, is a development kit the security protection is disabled by default to be as more user-friendly
as possible. As it has been proved in this paper, the hardware protection was disabled by default
in the Linear Kit and thereby cryptographic keys were extracted in matter of seconds.

As explained in the Chapter Background, communications in both PHY and DLL are enci-
phered with AES-128-CCM* and they cannot be understood even whether an adversary is capable
of eavesdropping the communication. The only reasonable way to understand this data is owning
the JoinKey to be authenticated into the network and intercept join responses bringing run-time
session keys. This thesis describes several ways to obtain this cryptographic AES Joinkey.

Reverse Engineering WirelessHART Hardware 55

Chapter 4

Tools

4.1 Outline

In this section tools used both in hardware and software are briefly outlined and described. This
section aims to give an impression of the adversaries’ budget and an idea of which tools have been
employed. The author of this thesis considers the budget for this set of tools affordable for a
motivated adversary. Although more sophisticated tools could facilitate the task, this study is set
out to use tools as cheap and accessible as possible for any adversary. Expensive equipment is out
of the scope and the author has chosen the most well-known open-source hardware and software
tools. Exceptions with the disassembler and decompiler. For instance, the author considers
soldering iron, multimeter, wrapping cables, magnifier, helping-hands and basic stuff included in
our laboratory. Nevertheless, a hot air rework station was not available in this set up and it would
have been rather useful. This section sketches out a couple of JTAG programmers for the most
important MCUs’ architectures for WSNs: AVR and TI.

4.2 Bus Pirate v.3.6

Figure 4.1: The open source hardware
hacker tool ‘Bus Pirate’ v3.6 used for
interacting with chips.

The Bus Pirate is a universal electronic open hard-
ware tool capable of performing a number of hard-
ware protocols. It is informally defined as an
‘open source hacker multi-tool that talks to elec-
tronic stuff’ 1 by its designers. This hard-
ware tool has been used to talk to the major-
ity of protocols found in the MCUs involved in
this thesis. Principally, the most used proto-
col has been SPI. The Bus Pirate supports
protocols such as: UART, SPI, I2C, JTAG,
1Wire, MIDI, PC keyboard and many others. Al-
though other programmers are working much faster
for readings and writings, the Bus Pirate accom-
plished a lot of our necessities for the amount of
e25.

On the software side, the Bus Pirate offers an open
source framework which is able to speak to several protocols. The firmware also depends on the
version of hardware used and it can allow us to carry out more or less actions depending on its
version. For instance, only some versions permit using JTAG functionalities. Although the Bus

1http://dangerousprototypes.com/docs/Bus_Pirate

Reverse Engineering WirelessHART Hardware 57

http://dangerousprototypes.com/docs/Bus_Pirate

CHAPTER 4. TOOLS

Pirate already provides a framework, external applications also support this hardware. In this
thesis, the software Flashrom was used in combination with the Bus Pirate in order to speak SPI
to chips. On the hardware side as showed in Figure 4.1, the Bus Pirate is comprised of a PIC24
MCU and a USB interface with a FT232RL as well as a couple of pin-headers for programming
and debugging purposes. Our normal set up is as follows: a PC connected to the Bus Pirate over
the USB protocol, and the Bus Pirate attached to the target either with pins or soldering some
cables to the target’s pins.

4.3 GoodFET v.42

The GoodFET 2 is an open source JTAG programmer based on the TI MSP430 Flash Emulation
Tool (FET) debugger 3 and EZ430U boards. This JTAG programmer is able to communicate
with many wireless sensor nodes which use a TI MSP430 chip. On top of these chips, GoodFET
is also able to operate with some Chipcon radios with embedded 8051 cores such as the CC2430
and CC2530. It is also able to work with Nordic and Zensys (Z-wave protocol) radios as well as to
handle the SPI protocol for numerous memories and chips. As it is open source, the community is
constantly developing new software for new chips and the number of supported chips may grow.

Figure 4.2: The open source JTAG pro-
grammer ‘GoodFET’ used for debug-
ging several wireless radio chips.

On the software side, the GoodFET has an internal
firmware written in C, which is responsible of manag-
ing the communication with chips and also communi-
cates with the client. The GoodFET client is written in
Python and provides different commands for the afore-
mentioned chips. On the hardware side as showed in
Figure 4.2, the GoodFET has an MSP430F1618 as main
MCU and a TUSB3410 usb to serial converter. Basically,
the GoodFET is connected over USB to our computer
and attached to the target through its JTAG ribbon ca-
ble.

4.4 TL866A USB Universal Minipro
Programmer

Since memory dumping is one of the most basic attacks
considered, an EEPROM programmer will be necessary. As explained in the previous chapter,
some wireless sensor nodes are comprised of storage units to maintain the environment data. In
the normal case, there is either an external memory to store measurements or the on-board flash
memory in the MCU to store this data. An external memory is normally used because the lifespan
of flash memories is limited. A constant writing into the on-board flash memory would reduce the
lifetime of the wireless sensor nodes.

Our budget would not allow us to buy an expensive EEPROM programmer worth more than
e200 without adapters. Nevertheless, a really good price was found in a Chinese EEPROM
reader worth around e70 which supports more than 13000 chips. Besides, in this price many of
the most common adapters were included in the shipment. As the newer version TL866CS did
not support the In Circuit Serial Programming (ICSP) interface to program SPI memories, the
previous TL866A version was our choice. In many occasions this EEPROM programmer verified
the SPI readings carried out with the Bus Pirate or vice versa.

2http://goodfet.sourceforge.net/
3http://www.ti.com/lit/ug/slau278u/slau278u.pdf

58 Reverse Engineering WirelessHART Hardware

http://goodfet.sourceforge.net/
http://www.ti.com/lit/ug/slau278u/slau278u.pdf

CHAPTER 4. TOOLS

4.5 AVR Dragon JTAG programmer

Figure 4.3: The Atmel AVR Dragon
programmer.

Since there are many wireless nodes comprised of
AVR architecture’s MCUs, a programming inter-
face is also required. In our set up the AVR
Dragon has been picked mainly due to two fea-
tures: the price and the amount of possible pro-
gramming’s manners. This hardware tool also of-
fers support for the following programming interfaces:
SPI, High Voltage Serial Programming (HVSP), Par-
allel Programming (PP), JTAG, Program and De-
bug Interface (PDI) and aWire. For debugging pur-
poses the AVR Dragon supports JTAG, debugWire,
PDI and aWire. Some of these interfaces are At-
mel proprietary and have not been used in this re-
search. Besides ICSP and JTAG programming in-
terfaces, the AVR Dragon offers a header for HVPP.
This interface is the only solution when both SPI
and JTAG have been enabled and it is not possi-
ble the access the MCU. This feature is depen-
dant on the MCU although many of them have
this feature. The AVR Dragon supports all pro-
gramming modes for the Atmel AVR device families.
The AVR Dragon can be acquired for approximately
e50.

On the software side, the AVR Dragon can be used with different software tools including
the official Atmel Studio and some open source tools such as avrdude 4 or AVaRICE 5. On the
hardware side the AVR Dragon is mainly composed of two Atmel MCUs: ATMEGA2560 and
ATMEGA128A. The AVR Dragon is connected to our PC over the USB protocol.

4.6 ARM Segger J-Link JTAG programmer

Nowadays, the most common architecture for embedded systems is principally the ARM-based
platform. The majority of wireless sensor nodes and Managers are running on ARM architectures.
Our lab has an ARM J-Link JTAG programmer. This JTAG programmer is manufactured by
Segger and an EDU version can be used for non-commercial purposes, having the same function-
alities as the J-Link BASE model. The MCUs supported for this JTAG programmer are: any
ARM7/9/11, Cortex-A5/A8/A9, Cortex-M0/M1/M3/M4/M7, Cortex-R4, Microchip PIC32 and
some Renesas ones. The J-Link EDU version has a final price of around e60.

On the software side, this JTAG programmer has its own software from Segger. However, it can
be used with many other open source tools such as OpenOCD, Atmel Studio, Keil or Crossworks.
The J-Link JTAG programmer has a JTAG and USB port in it. This programmer is connected
over USB and attached to the target through a JTAG ribbon cable.

4.7 Open On-Chip Debugger

The OpenOCD allows to provide debugging, in-system programming and boundary-scan testing
for embedded devices. To run this software, OpenOCD needs a debug adapter to interact with the

4http://www.nongnu.org/avrdude/
5http://avarice.sourceforge.net/

Reverse Engineering WirelessHART Hardware 59

http://www.nongnu.org/avrdude/
http://avarice.sourceforge.net/

CHAPTER 4. TOOLS

target - called dongles. There are plenty of debug adapters which are supported by OpenOCD:
USB-based, parallel port-based and other standalone boxes that run OpenOCD internally. A
debug adapter is any device with a feature like On-Chip Debugging, programming interface or
boundary-scan. With this tool a user is capable of halting the MCU in order to debug it through
the GDB protocol, programming a new memory content into the flash memory, adding hardware
breakpoints at certain points or checking boundary-scan in devices.

4.8 Flashrom

Flashrom 6 is an open source utility able to interact with an enormous amount of flash chips. The
main operations depend on the chip itself and its development’s state. Between such operations we
find reading, writing, verifying, erasing and identifying flash chips. At this time, Flashrom “sup-
ports more than 450 flash chips, 286 chipsets, 450 mainboards, 75 PCI devices, 13 USB devices and
various parallel/serial port-based programmers” and thus is increasing every day. Regarding the
sockets, Flashrom supports parallel, LPC, FWH and SPI flash interfaces and various chip packages
(DIP32, PLCC32, DIP8, SO8/SOIC8, TSOP32, TSOP40, TSOP48, Ball Grid Array (BGA) and
much more. Flashrom supports many different programmers, including PC mainboards, various
PCI cards with soldered-on flash chips, and various USB/serial-port/parallel-port based program-
mers 7.

4.9 IDA Pro and Hex-Rays

The Interactive Disassembler, more commonly known as IDA, is a disassembler for computer
software which generates assembly language source code from machine-executable code. Many of
the main CPUs used for wireless sensor nodes are well supported, amongst them ARM, MIPS or
TI MSP430. IDA performs automatic code analysis for any of the aforementioned architectures.
Hex-rays is a very handy plugin for IDA, it allows to decompile ARM machine-executable code
into C-like source code. This tool has been mainly used to generate C-like code from ARM binaries
dumped from some WirelessHART devices. Although there are open source alternatives such as
Radare 8, the Hex-rays plugin converts the tool in a fantastic way to obtain ‘source code’ from
memory dumps in ARM devices. The IDA Pro license plus Hex-rays plugin is rather expensive;
the author was fortunate to be using a valid company licence. If this option was not possible,
Radare could also be used without the possession of an IDA Pro licence.

6http://flashrom.org
7http://flashrom.org/Supported_programmers
8http://www.radare.org

60 Reverse Engineering WirelessHART Hardware

http://flashrom.org
http://flashrom.org/Supported_programmers
http://www.radare.org

Chapter 5

Targets

5.1 Outline

This section addresses the two WirelessHART nodes which have been analyzed in this thesis. First
of all, the Linear SmartMesh WirelessHART Starter Kit is presented. This target is a development
board to experiment with the WirelessHART protocol. This starter kit has been rather helpful in
order to find out how WirelessHART works. The Linear kit provides APIs, source code, datasheets
and much more information about the WirelessHART environment. Secondly, an unknown-mote

is presented and analyzed. Some details about the unknown-mote will be shown in this thesis, but
some other specific details will remain out of the public version of this thesis.

After presenting the two targets, several attempts to extract both the cryptographic keys and
firmware images are technically explained. As saw in previous chapters, the main goal is to dump
the content of the MCUs’ memories where the cryptographic keys normally reside. To do so,
various techniques will be addressed and discussed. The readers should keep in mind that neither
the BGA socket for a flash programmer nor a rework station were available during this research.
Since our best guess is that the JoinKey is stored in the internal and non-volatile memory from
the RF module. Skipping this check, the likelihood of success decreases a lot.

This chapter concludes with the goal achieved for the Linear Kit but not for the unknown-mote.
In the first one it is clearly demonstrated how to retrieve the cryptographic keys out of the device
due to its default configuration. In the latter, the cryptographic keys are not extracted, but there
are possibilities of achieving this goal with a larger setup and funding for hardware tools. Although
the Linear Kit seems less secure than the unknown-mote, it is actually the other way around. The
unknown-mote has no hardware fuses in its RF chip whereas the Linear Kit is an improved version
of the unknown-mote’s chip. This fact can reflect the following question: ‘Why the keys were not
extracted if the unknown-mote had less security?’. This question is again answered through this
chapter. Both the BGA package and non-experience with such package paralyzed many attempts
of reading the keys out.

5.2 Linear SmartMesh WirelessHART Starter Kit DC9007

A DC9007 SmartMesh WirelessHART Starter Kit [83] was given in order to get started with
WirelessHART. This kit is shown in Figure 5.1 and includes the following components:

• 5 development motes (DC9003A-C) powered with button batteries (CR2032).

• 1 AP Manager (LTP5903CEN-WHR).

• 1 programming interface called Eterna Interface card (DC9006).

Reverse Engineering WirelessHART Hardware 61

CHAPTER 5. TARGETS

Figure 5.1: Dust Networks/Linear SmartMesh WirelessHART Starter Kit

Our first target is clearly the Linear mote although the reverse-engineering research in the AP
manager might provide us with some clues on how the WirelessHART protocol is implemented
in the Linear devices. The given programming interface allows us to communicate with the mote
through the Linear API.

5.2.1 Hardware Components: Mote DC9003A-C

The Dust/Linear mote is a single MCU with on-board components such as RAM, RF and flash.
The mote holds the following features:

• CPU: Eterna LTC5800WR. Mote-on-chip architecture ARM-Cortex-M3 32 bits

• Non-volatile Memory: Flash On-chip 512 KB

• Memory: On-chip SRAM 72 KB

• Clocks:

– 32kHZ crystal (a low power oscillator)

– 20MHz crystal (radio reference oscillator)

– an internal relaxation oscillator

• Hardware Crypto-Engine: AES-128 bits

• Hardware Lock Key: Fuses table 1

• Radio 802.15.4: Radio modulation and demodulation module.

As Figure 5.2 depicts all components integrated in a single chip. This chip holds all components
above mentioned and others as well as analog-digital or digital-analog converters and voltage
regulators. As all data is encrypted and decrypted, the Linear chip has an internal hardware
cryptographic engine in order to execute fast AES operations via hardware. Doing so, it is possible
to save enough memory to normally keep handling software processes. Furthermore, we can
also distinguish possible debugging interfaces to connect with such as SPI and UART. Further
information about the hardware design 2.

1http://cds.linear.com/docs/en/design-note/Board_Specific_Configuration_Guide.pdf
2http://www.linear.com/docs/42503

62 Reverse Engineering WirelessHART Hardware

http://cds.linear.com/docs/en/design-note/Board_Specific_Configuration_Guide.pdf
http://www.linear.com/docs/42503

CHAPTER 5. TARGETS

Figure 5.2: Linear Mote DC9003A-C architecture and its ARM Cortex M3 Eterna LTC5800.

5.2.2 Setting up a WirelessHART network

Once this kit was obtained, a WirelessHART network was created in our laboratory to play around
with the network and use the tools offered by Linear 3. To create this network, all the motes need
to be set up with the same NetworkID and JoinKey. All devices can be accessed through the serial
port or SSH and several APIs are helping the user to modify this data. The AP Manager also
provides a web server and can be reached through a password-protected web interface. Once all
devices are configured with the same NetworkID and JoinKey, the joining process is carried out
and eventually the WirelessHART network is considered functional. At this moment, all motes
can be set up with a known AES JoinKey and NetworkID. With this setting, our goal is now to
find out where this data is stored.

5.2.3 Identifying programming interfaces in the Mote DC9003A-C

First of all, in order to identify possible accesses to the system, the reading of datasheets is the
first step. After reading datasheets from the manufacturer, various programming interfaces are
detected and verified. Both JTAG, SPI and UART are enabled by default. This specific System-
on-Chip (SoC), also called Mote-on-Chip, has only built-in components. Therefore, our target
is the SoC Eterna, which holds on-board flash, RAM and WirelessHART module. Connections
to the Linear mote can be carried out using a USB programming board as Figure 5.3 shows or
connecting the wanted device to the mote through its pins.

3http://www.linear.com/products/smartmesh_wirelesshart

Reverse Engineering WirelessHART Hardware 63

http://www.linear.com/products/smartmesh_wirelesshart

CHAPTER 5. TARGETS

Figure 5.3: Linear WirelessHART Kit set up.

5.2.4 UART

> mset netid 1337

> mget netid

netid = 1337

> set mode slave

> mset jkey deadbeefdeadbeefdeadbeefdeadbeef

> minfo

HART stack ver 1.0.2 #1

state: Search

mac: 00:17:0d:00:00:60:13:c7

moteid: 0

netid: 1337

blSwVer: 15

ldrSwVer: 1.0.3.12

UTC time: 6842:6842

reset st: 0x100

> mget jkey

Parameter jkey is hidden

Figure 5.4: Setting up a JoinKey
through the Linear Mote Eterna API
over the UART interface.

The UART interface is used to connect over serial port;
a constrained command line interface allows us to check
the current settings. It is possible to modify the Net-
workID and JoinKey, but the JoinKey is not displayed.
Basically the shell is not providing access to the reading
of the JoinKey. However, it allows us to set up many
other parameters in a handy way. Although the UART
allows access to the device, apparently the JoinKey is
not accessible from this interface.

5.2.5 JTAG

The first attempt of recovering the AES JoinKey was
carried out via JTAG. Since our target was not sup-
ported by the software tool for JTAG,OpenOCD, some
modifications were carried out in order to declare the
FLASH, a TAP interface and the architecture. Instead
of using the Linear tools, OpenOCD and the J-Link Seg-
ger JTAG were used. After struggling with OpenOCD’s
configuration, it was possible to communicate with the
hardware through JTAG protocol. Once halted the CPU
and previously declared a flash bank, a TCP socket is re-
sponsible to interact with the hardware. All commands
sent to the hardware with the JTAG enabled and SoC
halted interact with the real hardware. Our first attempt is to dump the whole memory content
performing certain commands. Unfortunately, several errors were not possible to fix and as there
were other debugging interfaces to interact with; JTAG debugging was temporary abandoned.
Figures 5.5 and 5.6 show further details.

64 Reverse Engineering WirelessHART Hardware

CHAPTER 5. TARGETS

$ openocd -f openocd.cfg

Open On-Chip Debugger 0.8.0 (2014-10-13-10:50)

Licensed under GNU GPL v2

Info : only one transport option; autoselect ’jtag’

adapter speed: 10 kHz

adapter nsrst delay: 200

jtag ntrst delay: 200

cortex m reset config sysresetreq

Warn : Specify TAP ’ltc5800wr.cpu’ by name, not number 0

trst and srst separate srst gates_jtag trst push pull srst open drain connect deassert srst

Info : J-Link initialization started / target CPU reset initiated

Info : J-Link ARM V8 compiled Nov 25 2013 19:20:08

Info : J-Link caps 0xb9ff7bbf

Info : J-Link hw version 80000

Info : J-Link hw type J-Link

Info : J-Link max mem block 9296

Info : J-Link configuration

Info : USB-Address: 0x0

Info : Kickstart power on JTAG-pin 19: 0xffffffff

Info : Vref = 3.649 TCK = 1 TDI = 0 TDO = 1 TMS = 0 SRST = 0 TRST = 0

Info : J-Link JTAG Interface ready

Info : clock speed 10 kHz

Info : JTAG tap: ltc5800wr.cpu tap/device found: 0x4ba00477 (mfg: 0x23b, part: 0xba00, ver: 0x4)

TapName Enabled IdCode Expected IrLen IrCap IrMask

-- ------------------- -------- ---------- ---------- ----- ----- ------

0 ltc5800wr.cpu Y 0x4ba00477 0x4ba00477 4 0x01 0x03

Info : accepting ’telnet’ connection from 4444

Figure 5.5: JTAG’ing the Eterna Mote-on-chip with OpenOCD and J-link ARM JTAG USB.

edu@foxit:~$ telnet localhost 4444

Trying 127.0.0.1...

Connected to localhost.

Escape character is ’^]’.

Open On-Chip Debugger

> halt

target state: halted

target halted due to debug-request, current mode: Thread

xPSR: 0x81000000 pc: 0x000c9b96 psp: 0x200010c4

> flash banks

#0 : ltc5800wr.flash (lpc2000) at 0x00000000, size 0x00080000, buswidth 0, chipwidth 0

> flash info 0

#0 : lpc2000 at 0x00000000, size 0x00080000, buswidth 0, chipwidth 0

0: 0x00000000 (0x1000 4kB) protected

1: 0x00001000 (0x1000 4kB) protected

<SNIPPED>

28: 0x00070000 (0x8000 32kB) protected

29: 0x00078000 (0x8000 32kB) protected

lpc2000 flash driver variant: 2, clk: 4000kHz

> flash protect 0 0 29 off

cleared protection for sectors 0 through 29 on flash bank 0

> dump_image moteFlash512kb.bin 0x0 0x00080000

JTAG-DP STICKY ERROR

MEM_AP_CSW 0x23000062, MEM_AP_TAR 0x1004

Failed to read memory at 0x00001004

> dump_image maxSize.bin 0x0 0x00001000

dumped 4096 bytes in 14.105293s (0.284 KiB/s)

Figure 5.6: Connecting to the TCP socket and attempting to dump the flash on the Eterna
Mote-on-chip.

Reverse Engineering WirelessHART Hardware 65

CHAPTER 5. TARGETS

5.2.6 SPI and the Hardware Lock Key

Since the JTAG access was apparently ending up in continuous errors, a new attempt was carried
out over the SPI interface. In order to successfully read the flash content over SPI, the hardware
lock key has to be unlocked. This hardware lock key has the same function as a fuse. This
hardware lock key 4 is constructed with 4 bytes of hexadecimal data. It is considered unfeasible
to run online bruteforce attacks due to their slowness. It is well-known that online attacks against
the mote might be costly on time. If this hardware lock key is enabled, the flash memory will not
be readable until the flash memory is unlocked.

5.2.7 Firmware and JoinKey extraction

First of all, several ways are shown to extract both the cryptographic AES Joinkey and the whole
firmware image from the on-board flash.

Linear Eterna Mote

The more straightforward method to extract the flash content was over the SPI interface. The SPI
reading was carried out by using different software and hardware. The following points describe
the settings used:

• Eterna Serial Programmer and the Linear tool “ESP.exe”. An easy attempt was to use
the given programming interface called Eterna Interface card (DC9006) with the official
software provided by Linear. The connection used is depicted in Figure 5.3 which shows the
USB programming interface attached to the mote and also connected to the PC over USB.
Within seconds the memory content was dumped into a binary file. Figure 5.7 shows both
the command and the memory offset when the JoinKey was found. For this configuration,
neither soldering nor software skills are needed. The Eterna serial programmer is easily
connected to the mote and the binary provided is statically compiled with all the libraries
included.

Figure 5.7: Dumping the mote’s memory content through SPI using Linear tools.

• Bus Pirate v3.6 and flashrom. After achieving it with the official tools, we tried to per-
form the same attack but with open source tools. To do so, flashrom in combination with the
famous Bus Pirate v3.6 reproduce the same result. This configuration is depicted in Figure

4http://cds.linear.com/docs/en/software-and-simulation/040-0110rev9_Eterna_Serial_Programmer_

Guide.pdf

66 Reverse Engineering WirelessHART Hardware

http://cds.linear.com/docs/en/software-and-simulation/040-0110rev9_Eterna_Serial_Programmer_Guide.pdf
http://cds.linear.com/docs/en/software-and-simulation/040-0110rev9_Eterna_Serial_Programmer_Guide.pdf

CHAPTER 5. TARGETS

5.8. A downside is the reading speed, whereas the official tools were finishing in around
3 seconds, the Bus Pirate uses almost 1 minute to read the whole flash memory. The Bus
Pirate is known to be slow and surely another SPI programmer would read the flash memory
in matter of seconds. The precise command is depicted in Figure 5.9. After run flashrom,
we figure out the manufacturer of the flash memory. Apparently it seems to be an Atmel
AT45DB041D 5.

Finally, Figure 5.10 shows a highlighted piece of flash memory containing all the previous
JoinKeys used in the mote as well as the actual one. The JoinKeys are detected by identifying
the sequence of 2 bytes: “05 10” and the following 16 bytes are AES keys of 128 bits.

Figure 5.8: Dumping the mote’s memory content through SPI using a Bus Pirate v3.6

$ time sudo flashrom -p buspirate_spi:dev=/dev/ttyUSB0,spispeed=1M -r MoteEterna512kB.bin

flashrom v0.9.7-r1869 on Linux 3.13.0-44-generic (x86_64)

flashrom is free software, get the source code at http://www.flashrom.org

Calibrating delay loop... OK.

Found Atmel flash chip "AT45DB041D" (512 kB, SPI) on buspirate_spi.

Reading flash... done.

real 0m54.804s

user 0m6.199s

sys 0m48.022s

Figure 5.9: Linear Mote Eterna firmware extraction by using Flashrom and Bus Pirate v3.6

• TL866A EEPROM programmer. Performing the same reading with an EEPROM programmer
concludes with the extraction of the same memory content in a matter of seconds as well.
Concretely we used the TL866A programmer through ICSP pins.

5http://www.atmel.com/images/doc3443.pdf

Reverse Engineering WirelessHART Hardware 67

http://www.atmel.com/images/doc3443.pdf

CHAPTER 5. TARGETS

$ hd MoteEterna512kB.bin |egrep -i "05 10" -A 2 -B 1

*

00040800 bb f6 1e 00 00 00 00 00 31 6d 6f 74 65 2e 63 66 |........1mote.cf|

00040810 67 00 00 00 01 04 11 00 00 00 05 10 de ad be ef |g...............|

00040820 de ad be ef de ad be ef de ad be ef 03 04 39 05 |..............9.|

00040830 00 00 ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|

--

*

00046000 b2 8a 1e 00 00 00 00 00 31 6d 6f 74 65 2e 63 66 |........1mote.cf|

00046010 67 00 00 00 01 04 0f 00 00 00 05 10 de ad be ef |g...............|

00046020 de ad be ef de ad be ef de ad be ef 03 04 39 05 |..............9.|

00046030 00 00 ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|

--

*

00062000 f7 40 18 00 00 00 00 00 31 6d 6f 74 65 2e 63 66 |.@......1mote.cf|

00062010 67 00 00 00 03 04 39 05 00 00 05 10 00 11 22 33 |g.....9......."3|

00062020 44 55 66 77 88 99 00 11 22 33 44 55 ff ff ff ff |DUfw...."3DU....|

00062030 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|

--

*

00069800 f9 32 14 00 00 00 00 00 31 6d 6f 74 65 2e 63 66 |.2......1mote.cf|

00069810 67 00 00 00 05 10 00 11 22 33 44 55 66 77 88 99 |g......."3DUfw..|

00069820 00 11 22 33 44 55 03 04 ff ff ff ff ff ff ff ff |.."3DU..........|

00069830 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|

*

0006a000 ff 96 18 00 00 00 00 00 31 6d 6f 74 65 2e 63 66 |........1mote.cf|

0006a010 67 00 00 00 05 10 00 11 22 33 44 55 66 77 88 99 |g......."3DUfw..|

0006a020 00 11 22 33 44 55 03 04 39 05 00 00 ff ff ff ff |.."3DU..9.......|

0006a030 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|

*

0006b000 93 0e 18 00 00 00 00 00 31 6d 6f 74 65 2e 63 66 |........1mote.cf|

0006b010 67 00 00 00 05 10 69 69 69 69 69 69 69 69 69 69 |g.....iiiiiiiiii|

0006b020 69 69 69 69 69 69 03 04 39 05 00 00 ff ff ff ff |iiiiii..9.......|

0006b030 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|

*

0006b800 2b 73 18 00 00 00 00 00 31 6d 6f 74 65 2e 63 66 |+s......1mote.cf|

0006b810 67 00 00 00 05 10 69 69 69 69 69 69 69 69 69 69 |g.....iiiiiiiiii|

0006b820 69 69 69 69 69 69 03 04 39 05 00 00 ff ff ff ff |iiiiii..9.......|

0006b830 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|

*

Figure 5.10: Memory dump of a Linear Mote Eterna and several Join Keys used.

68 Reverse Engineering WirelessHART Hardware

CHAPTER 5. TARGETS

5.3 Linear Access Point Manager LTP5903CEN-WHR

This section describes how the firmware image from the Linear Manager LTP5903CEN-WHR was
carried out and undocumented XML-RPC credentials. Although the Linear Manager was not our
target, it is considered to mention. Furthermore, we will use its RF module to attempt its content
and analyze it.

5.3.1 Firmware extraction

In order to extract the filesystem from the AP Manager several steps must be carried out in
advance. Figure 5.11 shows the same instructions in order to dump the firmware image.

• Login in the AP Manager with administrator privileges. The default password for root is
sur+cycl3s.

• Add an IPtable rule to accept all connections.

• Dump into a TCP socket the content of mtdblock1 using netcat in server mode (listening).

• From a reachable machine in the network, connect and download the mtdblock image.

The AP Manager was already including the networking tool called netcat, therefore the
firmware extraction was trivial. If the device had not netcat, it would be always possible to
statically cross compile any version of netcat for the ARM architecture and subsequently upload
it to the router over a SSH, HTTP or USB connection.

� From the Linear shell with root privileges:

sh-3.2# cat /proc/mtd

dev: size erasesize name

mtd0: 00400000 00004000 "Bootstrap"

mtd1: 03c00000 00004000 "Partition 1"

mtd2: 00000000 00000000 "Partition 2"

sh-3.2# iptables -A INPUT -s 0.0.0.0 -j ACCEPT

sh-3.2# cat /dev/mtdblock1 | nc -l -p 6666

sh-3.2# md5sum /dev/mtdblock1

baa0c3207dbcfad16ccc655946735a5c mtdblock1

� From a normal PC:

edu@ubuntu:/tmp$ nc -n -v 192.168.99.100 6666 > mtdblock1.bin

Connection to 192.168.99.100 6666 port [tcp/*] succeeded!

edu@ubuntu:/tmp$ md5sum mtdblock1.bin

baa0c3207dbcfad16ccc655946735a5c mtdblock1.bin

Figure 5.11: Firmware extraction of the Linear Manager LTP5903CEN-WHR.

5.3.2 Credentials Found

After extracting the firmware image running in the AP Manager, a couple of suspicious users-
passwords for a XML-RPC 6 service were found. This protocol encodes requests by using XML
and uses HTTP as the transport mechanism. These passwords have been tested against the AP
Manager without success. This finding was discovered almost at the end of the thesis has not been
100% double checked.

6http://en.wikipedia.org/wiki/XML-RPC

Reverse Engineering WirelessHART Hardware 69

http://en.wikipedia.org/wiki/XML-RPC

CHAPTER 5. TARGETS

Figure 5.12: XML-RPC users and passwords not documented.

5.4 A WirelessHART unknown-mote

This section briefly addresses certain aspects of an unknown-mote. Once again, the main goal
is to retrieve the cryptographic AES JoinKey. This section explains what was attempted, what
failed, what tools were needed during the research and possible ideas for a future research on
these devices will be addressed in the last chapter. The unknown-mote has a metallic shield as
physical security. As usual, the RF module is protected with a Faraday cage. After opening up
the device and verifying that the unknown-mote was still working, it was clear that there were no
anti-tampering measures. Our first goal was to identify as many components as possible to start
finding out where the JoinKey was stored.

5.4.1 Hardware Components: unknown-mote

Once opened up, there was an annoying epoxy layer to protect the PCB. Our first attempt was
to identify the components on the device. Unlike the Linear mote, the unknown-mote has several
MCUs which are interconnected with each other. The unknown-mote follows the specifications
which were discussed in Chapter 2 with distinct MCUs for managing different tasks on the wire-
less sensor node.

The unknown-mote is comprised of the following components:

• Main CPU: AVR ATMEGA 8bits with internal flash. Fuses and lock bits.

• Radio Frequency: IEEE 802.15.4. DN2510 Dust Network. Package: BGA.

• Sensor Module: TI MSP430 MCU.

70 Reverse Engineering WirelessHART Hardware

CHAPTER 5. TARGETS

• Hardware Crypto-Engine: AES

• EEPROM: Store name and serial number of the wireless node. It can be seen covered up with
a gray rubber in Figure 5.14.

Our first approach was to read documentation and consider which were the alternatives. Ini-
tially, the hardware reverse engineering part concluded with no much information. The RF chip
had not any documentation online about its structure nor architecture. The TI chip was clearly
confusing due to the tough visibility of its chip mark. A magnifier was necessary to continue
figuring out more details about the unknown-mote. Although the main AVR SoC was clearly
identified we did not hold an AVR JTAG programmer and possibly its hardware security should
be enabled. Our initial approach was to start discarding candidates and leaves the AVR chip as
a later option. A lot of literature WSNs was pointing to TI chips and we decided to invest in a
JTAG programmer for such chips. GoodFET was our best match for our task. A hardware open
source tool with a lot of community behind of the project.

5.5 Microcontroller TI MSP430

At the time of exploring this MCU it was neither known that it was a TI chip nor that it was
a sensor module. Once the device was opened up, it was really tough to figure out the mark of
this MCU. After a while, some microscopic pictures revealed the mark as a TI msp430 MCU.
This information bumped into some research about how to extract cryptographic keys in wireless
ZigBee radios [71, 72].

Figure 5.13: TI MSP430 MCU discovered by using a microscope.

In Figure 5.13 is a clear indication that we face against a TI MSP430. Figure 5.14 depicts
the four mandatory cables in order to JTAG the MCU. Eventually, Figure 5.15 shows the device
memory dumping by using a GoodFET JTAG programmer.

After reviewed the memory content of the sensor MCU is not revealing any conclusive data
about the evidence of cryptographic keys in there. Reviewing the memory dump we did not
find the the JoinKey which we knew in advance. A bit of reverse engineering was carried out
by disassembling the memory content with Interactive Disassembler (IDA) Pro. To do so, it is
important to specify the MSP430 MCU as main CPU to disassemble machine code. After loaded

Reverse Engineering WirelessHART Hardware 71

CHAPTER 5. TARGETS

Figure 5.14: Hooking up cables in the JTAG pins in TI MSP430 MCU.

$ ~/goodfet/client$ sudo goodfet.msp430 info

Identifies as MSP430F23x0 (f237)

$ ~/goodfet/client$ sudo goodfet.msp430 dump msp430_flash_all.hex 0x0000 0xffff

Dumping from 0000 to ffff as msp430_flash_all.hex.

Dumped 000000.

Dumped 000400.

Dumped 000800.

......

Dumped 00f000.

Dumped 00f400.

Dumped 00f800.

Dumped 00fc00.

$ ~/goodfet/client$ sudo goodfet.msp430 ivt

ffc0 ffff

ffc2 ffff

ffc4 ffff

.....

ffe6 f8f8

....

fffa f76c

fffc ffff

fffe e006

Figure 5.15: JTAG’ing the TI MSP430 MCU with the GoodFET.

into IDA Pro, we were capable of obtaining cross references into the machine code. However, no-
valuable information was found nor obfuscation of the internal memory as boot loaders normally
do. Finally, we conclude that JoinKeys are not stored in TI chips and this chip is only used for
sensor tasks.

5.6 AVR Microcontroller

This section describes how to read the fuses and lock bits for an AVR chip. The concrete model
is not revealed but the process is commented. In order to read the security measures, an AVR
programmer is needed to start communicating with the chip and extract the fuses and lock bits.
As discussed before, the AVR Dragon is a low-cost offering from Atmel and it was our final choice.

In order to read the fuses and lock bits several tools were used:

• AVRdude and AVaRICE. These utilities are used for manipulating the ROM and EEPROM
contents of AVR microcontrollers using the ICSP or JTAG. Both are command-line-based

72 Reverse Engineering WirelessHART Hardware

CHAPTER 5. TARGETS

tools and do not require much space in our Operating System (OS). Our strategy was firstly
to read an AVR chip without security fuses and extract the fuses, lock bits and memory
content. Once obtained, we performed several attempts against our real AVR target without
any useful information. In conditions where fuses are disabled, the output of such programs is
to show values for the fuses and lock bits. However, if we disable the JTAG and SPI interface
on our controllable AVR, the device remains completely inaccessible. We can always clean
fuses up but removing the memory content before resetting fuses. This does not help to go
further. Figure 5.16 depicts attempts against the AVR target.

$ sudo avrdude -p mXYZ -P usb -c dragon_jtag -U lfuse:r:low:r -U hfuse:r:high:r -U efuse:r:ext:r -F

avrdude: jtagmkII_program_enable(): bad response to enter progmode command: RSP_ILLEGAL_JTAG_ID

avrdude: jtagmkII_program_enable(): bad response to enter progmode command: RSP_ILLEGAL_JTAG_ID

avrdude: JTAGEN fuse disabled?

avrdude: initialization failed, rc=-1

avrdude: AVR device initialized and ready to accept instructions

avrdude: Device signature = 0xc8974f

avrdude: Expected signature for ATmegaXYZ is XX YY ZZ

avrdude done. Thank you.

$ sudo avrdude -p mXYZ -P usb -c dragon_jtag -U flash:r:AVR_dump.hex:r

avrdude: jtagmkII_program_enable(): bad response to enter progmode command: RSP_ILLEGAL_JTAG_ID

avrdude: jtagmkII_program_enable(): bad response to enter progmode command: RSP_ILLEGAL_JTAG_ID

avrdude: JTAGEN fuse disabled?

avrdude: initialization failed, rc=-1

Double check connections and try again, or use -F to override

this check.

avrdude done. Thank you.

Figure 5.16: Trying to JTAG the AVR chip with an AVR Dragon.

• Atmel Studio 6. This the official tool which provides advanced programming and debugs
connectivity for Atmel ARM- and AVR-based MCUs, including the ability to capture data
trace information. Once created a project with our specific AVR type, we were unable to
achieve the fuses and lock bits. Unfortunately, we did not get further information after this
error:

“Unable to enter programming mode. JTAGID not valid. Debugger command
enterProgMode failed”

Concluding after various tests against the main MCU reveal that the both JTAG and SPI
interfaces seem to be disabled.

Our hypothesis was that the JoinKey was not inside of the AVR chip because as it is known,
the RF module is the only capable of encrypting and decrypting via hardware crypto-engine with
proper performance. Therefore our last attempt was to sniff the SPI bus after booting the wireless
sensor node to verify that the JoinKey was not residing inside of the AVR chip. We did not see
any evidence of the JoinKey anywhere. Since we do not hold any set up for SCA attacks nor other
more sophisticated equipment, we stopped at this point.

Reverse Engineering WirelessHART Hardware 73

CHAPTER 5. TARGETS

Figure 5.17: The internals of the Linear AP Manager and its M2510 highlighted with red colour.

5.7 The BGA chip: DN2510

Unfortunately, the RF chip is a BGA package without any public datasheet available on the Inter-
net. The mark on the chip redirects us to its manufacturer: Dust Networks. After some months of
research, we were able to access to the datasheet by constantly contacting with the manufacturer.
Knowing the pinout of balls does not provide us much help either. Nevertheless, it was discovered
that the Linear AP Manager had the same BGA chip for the radio purpose. Figure 5.17 shows
the RF chip covered with a metallic shield. Fortunately, this RF module was offered in a socket
which has pins and the pinout is kindly offered in its website. The fact of having the BGA socket
with proper pinout allowed us to interact with the programming content.

To show the process carried out, in Figure 5.17 is shown the internals of the Linear AP Man-
ager and its M2510 socket highlighted with red color also referenced in this section as Linear AP
Manager RF chip.

Figure 5.18 depicts in number (1) the RF chip DN2510 in the unknown-mote and some possible
pins. Furthermore, in (2) we appreciate the same RF chip but in the Linear AP Manager. Since
we knew the pinout of the socket, we carried out trial and error with a multimeter to bruteforce
the pins near the RF chip. As we were able to read and write the RF chip from the Linear Kit
and we also knew the SPI pins, our idea was to bruteforce the test pads around the chip on the
unknown-mote. We verified that in the Linear AP Manager some pins at the bottom of the socket,
see Figure 5.19 to observe bottom pins, were producing conductivity between the top ones by
using a multimeter. Top pins are highlighted with read lines in Figure 5.18. In order to read or
write the RF chip via SPI, at least we must know 6 pins. GROUND is easy to detect, and we
suppose that the 3 pins highlighted in Figure 5.18 are the same ones in both pictures in Figure
5.18. This leaves only 2 possible combinations. Connecting the 3 ‘possible’ pins : SCK, MISO
and MOSI as well as GND, it did not get any useful data. The way we verified if a possible
combination worked, it consisted as follows: cables were connected and we used flashrom for
reading the BGA. Finally, all readings were not finding any SPI memory and therefore no further
reading. Unfortunately, such combinations did not produce any response to our SPI readings.
Nevertheless, at the right side of the RF chip from the unknown-mote we can distinguish exactly

74 Reverse Engineering WirelessHART Hardware

CHAPTER 5. TARGETS

Figure 5.18: (1) The Radio chip DN2510 in the unknown-target and possible pins for SPI. (2)
The Radio chip in the Linear AP Manager which is readable through a socket.

5 test pads highlighted with red circles. This attempt failed either because soldering problems or
because pins were not matching properly. If we wanted to bruteforce 8 pins, the possible combina-
tions are 8! or 40320. Trying these by hand is unfeasible. An interesting project would have been
to develop a bruteforcer in an Arduino board. Similar projects are existing for finding out the
pinout of UART [84] and JTAG [84, 85]. However, this was not possible during the research period.

Figure 5.19: Dumping out the M2510 BGA memory through a socket and the Bus Pirate v3.6.

Although it has been shown how to extract the information from this BGA chip in a socket,
we still find an issue. If we can suppose a possible attack where desoldering and soldering was
possible. The idea would be to desolder the BGA chip from the unknown-mote and solder it into
the socket. Subsequently, read all data out by using a Bus Pirate and the tool flashrom. The issue
is that even when the BGA memory has been desoldered from the unknown-mote, and soldered
back into the M2510 socket. Then, there are possibilities of that the distinct firmware image is
running on the unknown-mote and the AP Manager. The Linear kit is an AP manager and its RF

Reverse Engineering WirelessHART Hardware 75

CHAPTER 5. TARGETS

chip is acting as ‘server’ or access point. However, the unknown-mote is running a software acting
as ‘client’. Furthermore, both use the same hardware wireless node, but they are not produced
by the same re-seller and we cannot verify the same behavior. Eventually, it was tried that the
Linear AP manager was able to maintain the JoinKey in a non-volatile way even without the RF
chip. It was not found any JoinKey in the BGA memory in the AP Manager either. We conclude
that this BGA target cannot be faced without proper tools and more experience with hacking
embedded devices which use BGA packages.

$ hd mote_M2510_testCS_2.bin | more

00000000 00 00 00 c4 00 44 4e 00 00 92 b4 d3 25 db 3a 4d |.....DN.....%.:M|

00000010 08 2d 25 ab ef 7e 05 18 c4 52 1a 1a dc 87 64 0a |.-%..~...R....d.|

00000020 e1 71 ad 5c 52 48 5e 60 b4 1d 61 68 b1 d2 d4 d1 |.q.xxxxx..ah....|

00000030 46 9f e3 12 8a 6b 4d f5 f1 e1 ae cd 3f 0f ed aa |F....kM.....?...|

00000040 d7 46 d9 1e a6 4d 4a 78 d0 dc 3e 8f 0a 27 80 7a |.F...MJx..>..’.z|

00000050 43 7a 9f b1 ea f3 61 c3 8c 2d 98 9d 0c 17 70 9b |Cz....a..-....p.|

00000060 3d bc 48 19 4b 3d dd 8f d8 e5 ae 56 78 ec fd 8b |=.H.K=.....Vx...|

00000070 7c f2 e5 f5 f5 10 fe dd 7e 2e 88 83 fe a9 7d 83 |e.......o.|

00000080 68 1c 17 43 16 74 c5 59 56 c7 24 e1 4f 08 9f bd |h..C.t.YV..O....|

00000090 a6 e8 f2 ec 70 f1 03 5c 01 02 25 e9 d8 3c 1e b1 |....p.. e d..<..|

000000a0 44 4d 06 0f a1 92 d6 f7 ad c4 11 0b b2 1e 4a de |DM............J.|

000000b0 2c 9f d8 5f 85 fb 29 d5 56 37 79 64 b3 d1 7f d8 |,.._..).V7yd....|

000000c0 be c0 2f 97 7a 4e f4 97 2a fb 70 ff ff ff ff ff |../.zN..*.p.....|

000000d0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|

*

Figure 5.20: Dumping the Linear DN2510 BGA memory by using a BusPirate v3.6.

Furthermore, in Figure 5.20 is shown what it was dumped in the Linear M2510 BGA memory
by using a BusPirate v3.6 and how it was carried out in Figure 5.19. Figure 5.20 shows the header
of the memory dump from a RF chip in the Linear AP Manager. A clear evidence of a proper
reading depicts the letters “DN” at the first offsets.

76 Reverse Engineering WirelessHART Hardware

Chapter 6

Conclusion

6.1 Conclusions

Taking into consideration different hurdles and successful ideas during the way of this research. I
would like to conclude that:

• During this research, several low-cost physical attacks have been carried out in WSNs. In
our first development board, we concluded recovering its cryptographic keys using hardware
techniques. In our second target was not possible to extract cryptographic keys on time
and some ideas remained for future work. However, we conclude that all the wireless sensor
nodes held their cryptographic keys inside of the on-board memory. We found out that
either the cryptographic keys were stored in a protected area or in the memory of the radio
chip without security measures. In the latter case, we were able to measure how difficult a
BGA chip could be read without proper equipment.

• The WirelessHART key management and joining process were addressed through diagrams
and explanations step-by-step to make easier their clear understanding. Some aspects re-
mained as unknown due to the no clarity and specification lacking of the WirelessHART
standard at the time of writing. We conclude that do not know how the session key deriva-
tion phase is internally done and there is no clear statement how the information is ensured
between the following WirelessHART components: Network Manager, Access Point and
Gateway. It is responsibility of certain companies the developing of such critical operations.

• We provided a journey through of the different networking layers and discussed the security
measures as well as some details about the structure of packages. We did not go deeper in
this topic due to our goals were different ones. However, security measures were discussed at
different IEEE 802.15.4 layers and the WirelessHART standard was compared with similar
wireless technologies such as Zigbee or ISA 100 in order to get an impression about their
performance and security level.

• Despite the fact that the certain information about the physical specifications was not ob-
tained until the end of the research, the approach was always to learn about hardware tech-
niques and architectures and estimate how much work would result for a motivated attacker.
We noticed how black-box projects can result tough and time-consuming tasks. However,
we believe that both wireless nodes could be improved regarding security measures.

• Initially there exists a gap between the software people who start developing hardware skills.
The learning curve might be shorter or larger depending on the target. This research taught
me various perspectives and challenges. In black-box reverse engineering projects, we totally
do not know how the project can change from one moment to another.

Reverse Engineering WirelessHART Hardware 77

CHAPTER 6. CONCLUSION

• It is known that many manufacturers enforce the use of BGA chips in hardware designs to
stop low-cost hacking techniques. Another technique is cover the flash’s tracks and pads
with glue to disturb tampering or even bury them between the PCB layers. The BGA chip
totally impeded further advance in the research of this topic. First, because the author had
neither the tools nor the knowledge to carry out a BGA rework technique. It this had been
possible, it could have been dealt from different perspectives. Unfortunately, the author of
this research did not have background on how to reball BGA chips. Furthermore, to buy a
specific socket for the programmer can be costly for a simple reading. Prices are between
e350 and e500 for a specific BGA socket for an EEPROM reader. Something that was
thought during the research was to outsource to another company to carry out this task.
Unfortunately, we were not completely sure that the JoinKey would be readable in there.
It is important to remark that we were able to dump the content of another BGA chip
since this chip was in a socket already prepared. After reading we did not have any clear
conclusion of where the JoinKey was stored. This might happen because such BGA chips
were running different firmware images. Whereas the mote was running client software, the
AP Manager was running server software. Our first target was storing the JoinKey in the
flash without any obfuscation nor encryption.

6.2 Further Work

After writing this thesis some ideas could be carried out in future research on similar WirelessHART
devices:

• Unfortunately, at the time of writing I have not been able to use any laboratory and special
equipment for SCA and suck attacks are out of the scope of this thesis. When a chip is
protected using fuses, an attacker with non-expensive equipment can carry out half of the
attacks with a proper one. With this, I want to remark that hardware attacks are very
equipment-dependent and although depending on the knowledge of anyone, an attacker can
be stopped by the lack of this exact equipment. Unlike software-based projects, this problem
is less visible in software

• The unknown-mote’s JoinKey is stored in the non-volatile flash memory in the RF chip.
Either obtain a specific BGA socket for the EEPROM reader in order to read out the flash
memory or try to keep bruteforcing some external pins to figure out which pins allow to
interact with it. According to its datasheet, neither fuses nor lock bits are used. JTAG is
not supported, leaving the SPI interface as the only programming interface in the chip.

• Since it was proven that the memory content can be extracted from the socket M2510,
which has the same BGA chip without any hardware security measures then it could result
interesting to try to desolder the BGA from the unknown-mote and solder it into the M2510
socket. This would allow us to find out whether either really the JoinKey is in there or not.
A unsolved question is if different firmware images deal the secret key storage in different
manner. Mainly because the unknown-mote runs a ‘client’ node and the Linear AP Manager
runs a ‘server’ node or manager mode.

• Although we recovered the JoinKey for the Linear WirelessHART Kit Starter, it would be
really interesting to set the fuses and attempt different and techniques in order to extract
the cryptographic key. If this idea is carried out, a more sophisticated laboratory must be
also set up.

• The WirelessHART standard is not well defined yet regarding its session keys generation. It
is believed to be secure because using AES-128 bits in CBC-MAC mode. However, neither we
know how the PRNG is internally implemented in devices nor where the entropy is coming
from. Along the document several cases have been shown where keys were generated by
using the date as seed for the PRNG. An interesting research could be focused on this topic.

78 Reverse Engineering WirelessHART Hardware

CHAPTER 6. CONCLUSION

The main problem found is the lack of information for certain points of the WirelessHART
standard. Even the contactless smartcards most widely used nowadays seem to mess up
this very important topic as well. Further research would be an interesting and challenging
future research.

• An interesting idea is to bring these devices to a SCA laboratory and try to extract the
cryptographic keys by Differential Power Analysis techniques. For this set-up, we should
power up the mote and take over the control of sending commands to the RF chip. Sending
random payloads to be encrypted would produce different power consumption. This would
allow us to apply statistical techniques to precompute the 16-bytes long for the AES-128
cipher. Controlling the trigger to measure just during the encryption process also sets out
some challenging task. To conclude, these devices do not seem to be ready to be resilient
against SCA attacks. Although no SCA attacks have been carried out, these targets might
not have countermeasures against such attacks.

Reverse Engineering WirelessHART Hardware 79

Bibliography

[1] Shahid Raza. Secure communication in wirelesshart and its integration with legacy hart.
2010. ixix, 28, 32, 33, 36, 45

[2] D. Puccinelli and M. Haenggi. Wireless sensor networks: applications and challenges of
ubiquitous sensing. IEEE Circuits and Systems Magazine, 5(3):19–31, 2005. 1

[3] Marie Chan, Daniel Estève, Christophe Escriba, and Eric Campo. A review of smart
homes- present state and future challenges. Computer methods and programs in biomedicine,
91(1):55–81, July 2008. 5

[4] Chris R Baker, Kenneth Armijo, Simon Belka, Merwan Benhabib, Vikas Bhargava, Nathan
Burkhart, Artin Der Minassians, Gunes Dervisoglu, Lilia Gutnik, M Brent Haick, et al.
Wireless sensor networks for home health care. In Advanced Information Networking and
Applications Workshops, 2007, AINAW’07. 21st International Conference on, volume 2, pages
832–837. IEEE, 2007. 5

[5] BF Spencer. A study on building risk monitoring using wireless sensor network mica mote. In
First International Conference on Structural Health Monitoring and Intelligent Infrastructure,
Japan, pages 353–363, 2003. 6

[6] Ning Xu, Sumit Rangwala, Krishna Kant Chintalapudi, Deepak Ganesan, Alan Broad,
Ramesh Govindan, and Deborah Estrin. A wireless sensor network for structural monitoring.
In Proceedings of the 2nd international conference on Embedded networked sensor systems,
pages 13–24. ACM, 2004. 6

[7] Sukun Kim, Shamim Pakzad, David Culler, James Demmel, Gregory Fenves, Steven Glaser,
and Martin Turon. Health monitoring of civil infrastructures using wireless sensor networks. In
Information Processing in Sensor Networks, 2007. IPSN 2007. 6th International Symposium
on, pages 254–263. IEEE, 2007. 6

[8] Shamim N Pakzad, Gregory L Fenves, Sukun Kim, and David E Culler. Design and implemen-
tation of scalable wireless sensor network for structural monitoring. Journal of Infrastructure
Systems, 14(1):89–101, 2008. 6

[9] Hongki Jo, Sung-Han Sim, Kirill A Mechitov, Robin Kim, Jian Li, Parya Moinzadeh,
BF Spencer Jr, Jong Woong Park, Soojin Cho, Hyung-Jo Jung, et al. Hybrid wireless smart
sensor network for full-scale structural health monitoring of a cable-stayed bridge. In Pro-
ceedings of the SPIE Smart Structures/NDE Conference, 2011. 6

[10] Nicholas Brigman. Structural Health Monitoring in Commercial Aviation. 2012. 7

[11] MJ Chae, HS Yoo, JY Kim, and MY Cho. Development of a wireless sensor network system
for suspension bridge health monitoring. Automation in Construction, 21:237–252, 2012. 7

[12] S Longhi, D Marzioni, E Alidori, G Di Buo, M Prist, M Grisostomi, and M Pirro. A Wireless
Sensor Network Architecture for Solid Waste Management. pages 1–4. 7

Reverse Engineering WirelessHART Hardware 81

BIBLIOGRAPHY

[13] Narendra Kumar G, Chandrika Swamy, and K N Nagadarshini. Efficient Garbage Disposal
Management in Metropolitan Cities Using VANETs. 2(3), 2014. 7

[14] Jatuporn Chinrungrueng, Udomporn Sunantachaikul, and Satien Triamlumlerd. Smart Park-
ing: An Application of Optical Wireless Sensor Network. 2007 International Symposium on
Applications and the Internet Workshops, pages 66–66, 2007. 8

[15] Manjusha Patil and Vasant N Bhonge. Wireless Sensor Network and RFID for Smart Parking
System. International Journal of Emerging Technology and Advanced Engineering, 3(4):188–
192, 2013. 8

[16] Satish V Reve and Sonal Choudhri. Management of Car Parking System Using Wireless
Sensor Network. 2(7):262–268, 2012. 8

[17] Mohamed Amine Kafi, Yacine Challal, Djamel Djenouri, Messaoud Doudou, Abdelmadjid
Bouabdallah, and Nadjib Badache. A Study of Wireless Sensor Networks for Urban Traffic
Monitoring: Applications and Architectures. Procedia Computer Science, 19:617–626, 2013.
8

[18] Wireless sensor networks for environmental noise monitoring. 6th GI/ITG Workshop on
Sensor Networks, pages 1–4, 2007. 8

[19] Eiman Kanjo. Noisespy: A real-time mobile phone platform for urban noise monitoring and
mapping. Mobile Networks and Applications, 15(4):562–574, 2010. 8

[20] Jayavardhana Gubbi, Slaven Marusic, Aravinda S. Rao, Yee Wei Law, and Marimuthu
Palaniswami. A pilot study of urban noise monitoring architecture using wireless sensor
networks. Proceedings of the 2013 International Conference on Advances in Computing, Com-
munications and Informatics, ICACCI 2013, (1999):1047–1052, 2013. 8

[21] Kavi K Khedo, Rajiv Perseedoss, Avinash Mungur, University Of Mauritius, and Mauritius.
A Wireless Sensor Network Air Pollution Monitoring System. Science, 2:15, 2010. 9

[22] Raja Vara Prasad Y, Mirza Sami Baig, Rahul K Mishra, P Rajalakshmi, U B Desai, and S N
Merchant. Real Time Wireless Air Pollution Monitoring System. Ictact Journal on Commu-
nication Technology: Special Issue on Next Generation Wireless Networks and Applications,
2:370–375. 9

[23] Vasim K Ustad and Suhas S Kibile. Zigbee Based Wireless Air Pollution Monitoring System
Using Low Cost. 10(9):456–460, 2014. 9

[24] Godbless Swagarya, Shubi Kaijage, and Ramadhani S Sinde. A Survey On Wireless Sensor
Networks For Air Pollution Monitoring. 3(5):5975–5979, 2014. 9

[25] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and John Anderson.
Wireless sensor networks for habitat monitoring. Proceedings of the 1st ACM international
workshop on Wireless sensor networks and applications - WSNA ’02, page 88, 2002. 9

[26] Tomasz Naumowicz, Robin Freeman, Holly Kirk, Ben Dean, Martin Calsyn, Achim Liers,
Alexander Braendle, Tim Guilford, and Jochen H. Schiller. Wireless sensor network for habi-
tat monitoring on skomer island. In The 35th Annual IEEE Conference on Local Computer
Networks, LCN 2010, 10-14 October 2010, Denver, Colorado, USA, Proceedings, pages 882–
889, 2010. 9

[27] Philipp M Glatz, Christian Steger, and Reinhold Weiss. A wireless sensor node for river
monitoring using MSP430 and energy harvesting. 10

82 Reverse Engineering WirelessHART Hardware

BIBLIOGRAPHY

[28] Ĺıvia C Degrossi, Guilherme G Amaral, Eduardo S. M. De Vasconcelos, João Porto De
Albuquerque, and Jó Ueyama. Using Wireless Sensor Networks in the Sensor Web for Flood
Monitoring in Brazil. Proceedings of the 10th International ISCRAM Conference Baden-
Baden, Germany, May 2013, (May):458–462, 2013. 10

[29] Kwang-soo Kim and Tae-wook Heo. A Smart Grid Testbed using Wireless Sensor Networks
in a Building. SENSORCOMM 2011 : The Fifth International Conference on Sensor Tech-
nologies and Applications, (c):371–374, 2011. 10

[30] Andrey Somov, Alexander Baranov, Alexey Savkin, Denis Spirjakin, Andrey Spirjakin, and
Roberto Passerone. Development of wireless sensor network for combustible gas monitoring.
Sensors and Actuators A: Physical, 171(2):398–405, 2011. 10

[31] Oscar Rorato, Silvano Bertoldo, Claudio Lucianaz, Marco Allegretti, and Riccardo No-
tarpietro. An Ad-Hoc Low Cost Wireless Sensor Network for Smart Gas Metering.
2013(March):61–66, 2013. 10

[32] Tariq Al-Kadi, Ziyad Al-Tuwaijri, and Abdullah Al-Omran. Wireless sensor networks for
leakage detection in underground pipelines: A survey paper. Procedia Computer Science,
21:491–498, 2013. 10

[33] Sidra Rashid, Saad Qaisar, Husnain Saeed, and Emad Felemban. A Method for Distributed
Pipeline Burst and Leakage Detection in Wireless Sensor Networks Using Transform Analysis.
2014, 2014. 11

[34] Imad Jawhar, Nader Mohamed, Khaled Shuaib, and Al Ain. A Framework for Pipeline
Infrastructure Monitoring Using Wireless Sensor Networks. Measurement, pages 1–7, 2006.
11

[35] I. Stoianov, L. Nachman, S. Madden, T. Tokmouline, and M. Csail. PIPENET: A Wireless
Sensor Network for Pipeline Monitoring. 2007 6th International Symposium on Information
Processing in Sensor Networks, pages 264–273, 2007. 11

[36] Nader Mohamed and Imad Jawhar. A Fault Tolerant Wired / Wireless Sensor Network
Architecture for Monitoring Pipeline Infrastructures Nader Mohamed and Imad Jawhar.
(August):186–191, 2008. 11

[37] M Lin and Y Wu. Wireless sensor network: Water distribution monitoring system. Radio
and Wireless Symposium, 2008 IEEE, pages 775 – 778, 2008. 11

[38] Sunhee Yoon, Wei Ye, John Heidemann, Brian Littlefield, and Cyrus Shahabi. SWATS:
Wireless sensor networks for steamflood and waterflood pipeline monitoring. IEEE Network,
25:50–56, 2011. 11

[39] Gyula Simon, Miklós Maróti, Ákos Lédeczi, György Balogh, Branislav Kusy, András Nádas,
Gábor Pap, János Sallai, and Ken Frampton. Sensor network-based countersniper system.
In Proceedings of the 2nd international conference on Embedded networked sensor systems,
pages 1–12. ACM, 2004. 11

[40] Tian He, Sudha Krishnamurthy, John A Stankovic, Tarek Abdelzaher, Liqian Luo, Radu
Stoleru, Ting Yan, Lin Gu, Jonathan Hui, and Bruce Krogh. Energy-efficient surveillance
system using wireless sensor networks. In Proceedings of the 2nd international conference on
Mobile systems, applications, and services, pages 270–283. ACM, 2004. 11

[41] Anish Arora, Prabal Dutta, Sandip Bapat, Vinod Kulathumani, Hongwei Zhang, Vinayak
Naik, Vineet Mittal, Hui Cao, Murat Demirbas, Mohamed Gouda, et al. A line in the sand: a
wireless sensor network for target detection, classification, and tracking. Computer Networks,
46(5):605–634, 2004. 11

Reverse Engineering WirelessHART Hardware 83

BIBLIOGRAPHY

[42] Tatiana Bokareva, Wen Hu, Salil Kanhere, Branko Ristic, Neil Gordon, Travis Bessell, Mark
Rutten, and Sanjay Jha. Wireless sensor networks for battlefield surveillance. In Proceedings
of the land warfare conference, 2006. 11

[43] Sang Hyuk Lee, Soobin Lee, Heecheol Song, and Hwang Soo Lee. Wireless sensor network
design for tactical military applications: Remote large-scale environments. In Proceedings
of the 28th IEEE Conference on Military Communications, MILCOM’09, pages 911–917,
Piscataway, NJ, USA, 2009. IEEE Press. 12

[44] Byungrak Son, Yong-sork Her, and J Kim. A design and implementation of forest-fires
surveillance system based on wireless sensor networks for south korea mountains. International
Journal of Computer Science and Network Security (IJCSNS), 6(9):124–130, 2006. 12

[45] Geoffrey Werner-Allen, Konrad Lorincz, Mario Ruiz, Omar Marcillo, Jeff Johnson, Jonathan
Lees, and Matt Welsh. Deploying a wireless sensor network on an active volcano. Internet
Computing, IEEE, 10(2):18–25, 2006. 12

[46] Geoffrey Werner-Allen, Jeff Johnson, Mario Ruiz, Jonathan Lees, and Matt Welsh. Monitor-
ing volcanic eruptions with a wireless sensor network. In Wireless Sensor Networks, 2005.
Proceeedings of the Second European Workshop on, pages 108–120. IEEE, 2005. 12

[47] Geoff Werner-Allen, Konrad Lorincz, Jeff Johnson, Jonathan Lees, and Matt Welsh. Fidelity
and yield in a volcano monitoring sensor network. In Proceedings of the 7th symposium on
Operating systems design and implementation, pages 381–396. USENIX Association, 2006. 12

[48] Pei Zhang, Christopher M. Sadler, Stephen a. Lyon, and Margaret Martonosi. Hardware
design experiences in ZebraNet. Proceedings of the 2nd international conference on Embedded
networked sensor systems - SenSys ’04, page 227, 2004. 12

[49] Pavan Sikka, Peter Corke, and Leslie Overs. Wireless sensor devices for animal tracking and
control. In Local Computer Networks, 2004. 29th Annual IEEE International Conference on,
pages 446–454. IEEE, 2004. 12

[50] Tim Wark, Peter Corke, Pavan Sikka, Lasse Klingbeil, Ying Guo, Chris Crossman, Philip
Valencia, Dave Swain, and Greg Bishop-Hurley. Transforming agriculture through pervasive
wireless sensor networks. Pervasive Computing, IEEE, 6(2):50–57, 2007. 13

[51] HART Communication Foundation LIT 34. HART Field Communication Protocol. 1999. 16,
20

[52] Electron18. Bell 202 Interface specification for transmission of binary data by frequency
manipulation FSK. 2010. 16, 17

[53] White Paper of Digi.com. Demystifying 802.15.4 and ZigBee. 2008. 23

[54] Naagesh S Bhat. Design and implementation of ieee 802.15. 4 mac protocol on fpga. arXiv
preprint arXiv:1203.2167, 2012. 25

[55] Juan Héctor Sánchez. Master thesis: Wirelesshart network manager. 2011. 27, 36

[56] Russell Housley. Using advanced encryption standard (aes) counter mode with ipsec encap-
sulating security payload (esp). 2004. 34

[57] Helger Lipmaa, David Wagner, and Phillip Rogaway. Comments to nist concerning aes modes
of operation: Ctr-mode encryption. 2000. 34

[58] Morris Dworkin. Recommendation for block cipher modes of operation: The CMAC mode for
authentication. US Department of Commerce, Technology Administration, National Institute
of Standards and Technology, 2005. 35

84 Reverse Engineering WirelessHART Hardware

BIBLIOGRAPHY

[59] Junhyuk Song, Radha Poovendran, Jicheol Lee, and Tetsu Iwata. The aes-cmac algorithm.
RFC4493, IETF (June 2006), 2006. 35

[60] Vigil Security N. Ferguson MacFergus Hifn, R. Housley. Counter with cbc-mac (ccm). 35

[61] Shahid Raza, Thiemo Voigt, Adriaan Slabbert, and Krister Landernas. Design and implemen-
tation of a security manager for wirelesshart networks. In Mobile Adhoc and Sensor Systems,
2009. MASS’09. IEEE 6th International Conference on, pages 995–1004. IEEE, 2009. 36, 40

[62] Shahid Raza, Adriaan Slabbert, Thiemo Voigt, and Krister Landernas. Security considera-
tions for the wirelesshart protocol. In Emerging Technologies & Factory Automation, 2009.
ETFA 2009. IEEE Conference on, pages 1–8. IEEE, 2009. 45

[63] Shahid Raza, Gianluca Dini, Thiemo Voigt, and Mikael Gidlund. Secure key renewal in
wirelesshart. Real-time Wireless for Industrial Applications (RealWin11)-CPS Week, 2011.
45

[64] Tomas Lennvall, Stefan Svensson, and Fredrik Hekland. A comparison of wirelesshart and zig-
bee for industrial applications. In IEEE International Workshop on Factory Communication
Systems, volume 2008, pages 85–88, 2008. 45

[65] Mark Nixon and TX Round Rock. A comparison of wirelesshart and isa100. 11a. Whitepaper,
Emerson Process Management, 2012. 46

[66] Gengyun Wang. Comparison and evaluation of industrial wireless sensor network standards
isa100. 11a and wirelesshart. 2011. 46

[67] Travis Goodspeed. A side-channel timing attack of the msp430 bsl. Black Hat USA, 2008. 53

[68] Travis Goodspeed. Practical attacks against the msp430 bsl. 2008. 53

[69] Braden Thomas. Reverse Engineering the Supra iBox. BlackHat USA, 2014. 53

[70] Carl Hartung, James Balasalle, and Richard Han. Node compromise in sensor networks: The
need for secure systems. Department of Computer Science University of Colorado at Boulder,
2005. 53

[71] Travis Goodspeed. A side-channel timing attack of the msp430 bsl. Black Hat USA, 2008.
53, 71

[72] Travis Goodspeed. Practical attacks against the msp430 bsl. In Twenty-Fifth Chaos Com-
munications Congress. Berlin, Germany, 2008. 53, 71

[73] Travis Goodspeed. Reversing and exploiting wireless sensors. Arlington, VA, February, 2009.
53

[74] Lucas Apa and Carlos Mario Penagos Hollman. Compromising industrial facilities from 40
miles away. IOActive Technical White Paper, 2013. 53

[75] Giacomo De Meulenaer and François-Xavier Standaert. Stealthy compromise of wireless
sensor nodes with power analysis attacks. In Mobile Lightweight Wireless Systems, pages
229–242. Springer, 2010. 54

[76] Kanthakumar Pongaliur, Zubin Abraham, Alex X Liu, Li Xiao, and Leo Kempel. Securing
sensor nodes against side channel attacks. In High Assurance Systems Engineering Sympo-
sium, 2008. HASE 2008. 11th IEEE, pages 353–361. IEEE, 2008. 54

[77] Zoya Dyka and Peter Langendörfer. Improving the security of wireless sensor networks by
protecting the sensor nodes against side channel attacks. In Wireless Networks and Security,
pages 303–328. Springer, 2013. 54

Reverse Engineering WirelessHART Hardware 85

BIBLIOGRAPHY

[78] Edith CH Ngai, Jiangchuan Liu, and Michael R Lyu. An efficient intruder detection algorithm
against sinkhole attacks in wireless sensor networks. Computer Communications, 30(11):2353–
2364, 2007. 54

[79] Vinay Soni, Pratik Modi, and Vishvash Chaudhri. Detecting sinkhole attack in wireless sensor
network. International Journal of Application or Innovation in Engineering & Management,
2(2), 2013. 54

[80] Murad A Rassam, Anazida Zainal, Mohd Aizaini Maarof, and Mohammed Al-Shaboti. A
sinkhole attack detection scheme in mintroute wireless sensor networks. In Telecommunication
Technologies (ISTT), 2012 International Symposium on, pages 71–75. IEEE, 2012. 54

[81] Issa Khalil, Saurabh Bagchi, and Ness B Shroff. Mobiworp: Mitigation of the wormhole
attack in mobile multihop wireless networks. Ad Hoc Networks, 6(3):344–362, 2008. 54

[82] Zaw Tun and Aung Htein Maw. Wormhole attack detection in wireless sensor networks.
World Academy of Science, Engineering and Technology, 46:2008, 2008. 54

[83] Dust Networks and Linear. Dc9007a - smartmesh wirelesshart starter kit. 2013. 61

[84] Nathan Fain. Jtagenum. 27c3: JTAG/Serial/FLASH/PCB Embedded Reverse Engineering
Tools and Techniques, 2010. 75

[85] Joe Grand. Jtagulator. Grand Idea Studio, 2013. 75

86 Reverse Engineering WirelessHART Hardware

BIBLIOGRAPHY

Reverse Engineering WirelessHART Hardware 87

	Contents
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Introduction
	Goals
	Research Method
	Outline

	Background
	Wireless Sensor Networks Applications
	Smart-houses
	Smart-cities
	Habitat monitoring
	River monitoring
	Smart-Metering
	Warfare: Tracking enemies and tactical techniques
	Natural disasters
	Agriculture and animals tracking

	Sensor node Architecture
	Microcontroller (MCU)
	Radio
	External Memory
	Power source

	HART
	HART Protocol
	Modulation: AFSK
	Communication Modes
	Network Configurations
	HART communication layers
	Packet Structure
	HART commands
	HART-IP

	IEEE 802.15.4 standard
	PHY and MAC layers
	Comparison of IEEE 802.15.4 standard and other wireless technologies
	IEEE 802.15.4 Device Classes
	IEEE 802.15.4 Network Topologies
	IEEE 802.15.4 Packet Structure

	WirelessHART
	Main Characteristics
	WirelessHART Components
	WirelessHART Communication Layers

	Cryptography in WirelessHART
	Outline
	AES
	AES CTR
	AES CBC
	AES CBC-MAC
	AES CCM*

	Key Management in WirelessHART
	Cryptographic Keys in WirelessHART
	Joining Process

	Others 802.15.4 Wireless Protocols
	ZigBee
	ISA100

	Hardware Security
	Overview
	Hardware protocols
	Serial Peripheral Interface (SPI)
	JTAG
	UART

	Hardware Security
	Hardware protections: Fuses and lock bits
	Bootstrap Loader (BSL)

	Physical Attacks on Wireless Sensor Networks
	Consequences and possible attacks

	Tools
	Outline
	Bus Pirate v.3.6
	GoodFET v.42
	TL866A USB Universal Minipro Programmer
	AVR Dragon JTAG programmer
	ARM Segger J-Link JTAG programmer
	Open On-Chip Debugger
	Flashrom
	IDA Pro and Hex-Rays

	Targets
	Outline
	Linear SmartMesh WirelessHART Starter Kit DC9007
	Hardware Components: Mote DC9003A-C
	Setting up a WirelessHART network
	Identifying programming interfaces in the Mote DC9003A-C
	UART
	JTAG
	SPI and the Hardware Lock Key
	Firmware and JoinKey extraction

	Linear Access Point Manager LTP5903CEN-WHR
	Firmware extraction
	Credentials Found

	A WirelessHART unknown-mote
	Hardware Components: unknown-mote

	Microcontroller TI MSP430
	AVR Microcontroller
	The BGA chip: DN2510

	Conclusion
	Conclusions
	Further Work

	Bibliography

