
Master’s thesis
Computing Science

Radboud University

Smaller Sound
Compression for FM MPX

Author
Mathijs Vos BSc.
m@thijsvos.nl

Company Supervisor
Hans van Zutphen MSc.
hans@thimeo.com

Supervisor
dr. David N. Jansen
dnjansen@cs.ru.nl

Second assessor
prof. dr. Jozef Hooman

hooman@cs.ru.nl

November 23, 2015

Smaller sound Compression for FM MPX

Abstract

Currently, no compression method is available that is suitable to cope directly with a
multiplexed FM radio signal. Common audio codecs such as MP3 or Vorbis are not suitable
because all information modulated into high frequencies (stereo, RDS) would be removed,
since these codecs remove everything humans cannot hear.

In this thesis, we proposed a compression method suitable for FM MPX. It is capable
of storing stereo audio and RDS (radio data system) information. We then performed
an A/B/X test to find out if test subjects could distinguish the processed signal from the
original signal. Using a bit rate of 320 kb/s, less than 25% of the test subjects could perceive
a difference (confidence 95%). This makes the codec suitable for slower connections, such
as T1 lines or satellite feeds.

1

Smaller sound Compression for FM MPX

Acknowledgements

Hans asked me: “is it customary to write ‘we’ in such a document?”. And yes, I believe
it is. For I alone could not have completed this thesis. Not without the help of all people
who contributed to it in some way.

So, first of all: thanks, Hans, for having many, many, many ideas. And sharing
them with me so I could truly build a working codec that achieved impressive results (for
me, at least). Thanks too for offering feedback and for putting your equipment at my thesis’
disposal.

Thanks David, for the fortnightly meetings where you gave lots of useful feedback, keep-
ing my project on track and helping me to successfully complete it.

Thanks Jozef, for taking the time to assess my thesis.
The AB/X test could not have taken place without the help of Maarten Daam (N1),

who provided access to the room we used as testing lab. Thank you!
All people who took the time to come to the testing lab and took part in the test, a

warm thank you (I hope the liquorice and candy bars made up for the inconvenience).
Last but not least: thanks to Leif Claesson, for bringing zure matten to Hans’ office and

for redecorating the place (which was much needed, sorry Hans). That helped a lot!

2

Smaller sound Compression for FM MPX

Contents
1 Problem statement 4

1.1 Introduction . 4
1.2 FM stereo multiplexing . 4
1.3 Digital MPX . 5
1.4 Existing codecs . 5
1.5 About this thesis . 5

2 Existing audio compression techniques 7
2.1 Lossless compression . 7
2.2 Lossy waveform-based compression . 7
2.3 Lossy perception-based compression . 7
2.4 Overview . 8

3 Building the algorithm 8
3.1 Online or offline . 8
3.2 Samplerate . 8
3.3 Prediction . 10

3.3.1 The SHORTEN-predictors . 11
3.3.2 Predicting per sample . 12
3.3.3 A better predictor . 12
3.3.4 Downside of prediction . 13

3.4 Residual coding . 13
3.4.1 Only noise . 13
3.4.2 Determining the prediction quality . 14
3.4.3 Calculating the step size . 14

3.5 Entropy coding . 14
3.6 Back to MPX . 15

3.6.1 Stereo pilot . 15
3.6.2 RDS . 15
3.6.3 Clipping the composite signal . 16

4 Evaluation 17
4.1 Technical evaluation . 17

4.1.1 Prediction . 17
4.1.2 Delay . 17

4.2 Subjective evaluation . 17
4.2.1 Test method . 19
4.2.2 Hypothesis . 19
4.2.3 Samples used . 19
4.2.4 Test subjects . 21
4.2.5 Equipment . 21
4.2.6 Subject preparation . 21
4.2.7 The test . 22
4.2.8 Test results . 22
4.2.9 Hypothesis evaluation . 22

4.3 Conclusion & outlook . 24

References 26

3

Smaller sound Compression for FM MPX

1 Problem statement

1.1 Introduction
While a lot of effort is put into popularising digital radio (e.g. DAB+) in Europe, the transition
process is quite slow and in some countries digital radio seems to be reaching only a very small
audience compared to FM (Kleinsteuber, 2006; Lax, Ala-Fossi, Jauert, & Shaw, 2008). In some
countries the introduction of DAB+ has been put on hold for lack of popularity. This leads us
to believe that FM-radio will still be here in the coming years.

The FM signal is usually not broadcast directly from the studio, but from separate transmitter
sites some distance away. This means the audio signal has to be transported to one or more
of these transmitter sites. A direct analog line is seldomly available, so instead the signal is
transmitted digitally via a satellite connection or through a Studio Transmitter Link, which can
be a leased network line or a wireless point-to-point connection. Wireless connections are error-
prone and only useful if the distance between the transmitter site and the studio is relatively small
(a maximum range of 15km is not uncommon). Older leased lines are not always fast enough to
support transmitting an uncompressed signal (for example, T1 lines are quite common, providing
a maximum data rate of 1.544 Mbit/s). Leasing satellite bandwidth is very expensive, so only
slower connections are affordable. For example, Dutch radio station 538 (the #1 ranked station
in august 2015) uses a satellite feed with a bandwidth of 384 kb/s to feed their transmitters.

Hence, a full signal containing all elements necessary for FM broadcasting cannot be trans-
mitted directly to the transmitter site. Instead stereo audio is streamed to the transmitter site,
using for example MP2 to compress the audio, lowering the bandwidth required to transmit
the signal. Then, at the transmitter site, a full FM-signal has to be generated from the audio.
This means using either a pc with a software-based FM processor (which might be undesirable
because the transmitter site may be hard to reach in case something is wrong with the pc), or
using a hardware-based processor (which might be undesirable because prices of $8000 or more
for these devices are not uncommon).

Ideally, all necessary FM processing is performed directly at the source (the studio), elimi-
nating the need for separate expensive processors at the transmitter site. In this case, the full
FM signal would need to be streamed to the transmitter. This is only possible if we can lower
the bandwidth required, by performing compression on the stream. Ideally, only a very light
device would be needed at the transmitter site, to decompress the signal and maybe to perform
some light processing on the resulting signal.

1.2 FM stereo multiplexing
So what’s exactly needed for FM broadcasting? Only one signal can be modulated onto the FM
carrier frequency. However, radio stations want to broadcast in stereo (requiring a separate left
and right audio channel) and they want to send textual information and other metadata along
with their signal as well (Radio Data Signal or RDS, e.g. containing information on traffic, the
type of music played and alternative frequencies)1.

To allow all this information to be broadcast using just one signal, the independent signals
are multiplexed to one signal which can then be modulated onto a carrier wave. The structure
of the multiplexed signal (MPX) intended for FM broadcasts can be found in table 1.

A radio receiving the FM signal first demodulates the MPX signal from the carrier wave.
It then detects if a 19 kHz tone (the stereo pilot) is present. If this is the case, it generates a
38 kHz tone by doubling the frequency of the pilot. It then multiplies the L−R signal with this
38 kHz tone to obtain the original L − R signal in the 0-15 kHz frequency range. Older radios
that do not support stereo broadcasts automatically fall back to mono output, as they play back
the whole signal as if it were mono – the stereo information present in the high frequencies is
simply not heard by the human ear, or even not reproduced by the loudspeaker.

1See European Committee for Electrotechnical Standardization, 1998

4

Smaller sound Compression for FM MPX

Frequency Data

0 - 15 kHz L+R signal, mono (sum of left and right audio channel)
19 kHz Stereo pilot (tone indicating the presence of and providing a way to

demodulate the L-R part)
23 - 38 kHz L−R signal (right audio channel subtracted from left channel)
38 - 53 kHz L−R signal, mirrored (may be absent if ‘single side band’ used)

∼54.6 - ∼59.5 kHz RDS data (Radio Data Signal)

Table 1: The lay-out of a multiplexed FM signal. More data may be present above 60 kHz, but
we ignore that for now.

1.3 Digital MPX
The multiplexed signal contains frequencies up to around 60 kHz (if stereo and RDS are used).
This means that a sample rate of at least 120 kHz is required to reconstruct the analogue signal
according to the Nyquist-Shannon sampling theorem (Shannon, 1949). In practice, often a sample
rate of 128 kHz is used, providing some headroom. Assuming the bit depth is 16, this would lead
to a required bandwidth of about 2 Mb/s if the signal is transported in an uncompressed form.
For modern glass-fiber connections this is not a problem. However, for older, slower connections
(such as T1 lines), or for expensive satellite feeds, this is too high a bit rate. Hence we want to
perform some form of compression on the signal.

1.4 Existing codecs
One way to compress the signal would be to use existing audio compression methods, such as the
lossy codecs MPEG-1 Layer 2 (MP2), MPEG-1 Layer 3 (MP3) (e.g., Pan, 1995; Brandenburg,
1999) or Ogg Vorbis (Montgomery, 2015), or lossless codecs such as FLAC (Coalson, 2014). The
compression reached with lossless codecs varies over time and highly depends on the input audio
signal. This makes lossless codecs unsuitable for streaming, since no maximum bandwidth can
be guaranteed.

The main problem with using existing codecs to code MPX is that they are optimized for the
way the human ear works. For example, everything outside the hearing range of the human ear
is thrown away (Pan, 1995; Brandenburg, 1999). This makes lossy codecs unsuitable to directly
store an MPX signal: a lot of data is modulated above 20 kHz, which would all be discarded.
Another problem is that it is not guaranteed that peaks in the signal before compression are
at the same level as peaks in the signal after decompression (see figure 1). This may cause the
signal to temporarily become too loud. If the signal that is too loud is then modulated onto a
carrier wave, this will cause the FM signal to become too ‘wide’ (i.e. wider than the 75 kHz
bandwidth allowed), which will not only harm the quality of signal reception, but is illegal as
well.

1.5 About this thesis
The goal of this thesis is to design, implement and evaluate an audio codec that can be used
to compress FM MPX signals. In order to do this, we will first discuss the various existing
techniques to compress audio signals (section 2). Then we will develop an algorithm to compress
MPX (section 3), which will have the following characteristics:

• It does not cause peaks in the audio signal

• It does store all data to be able to reconstruct the full MPX signal upon decompression,
including RDS and stereo pilot

• It does result in a bit rate low enough to at least be able to transport the signal using a
T1 connection, but ideally even lower (around the bit rate of a high-quality MP3-stream,
320 kb/s)

5

Smaller sound Compression for FM MPX

(a) The original, non-compressed audio Waveform (Red Hot Chili Peppers - Cali-
fornication). Measured peak level: −06.02 dBFS

(b) The waveform of the same track, after compression with MP3 at 128 kb/s CBR.
Measured peak level: −03.82 dBFS

(c) The waveform of the same track, after compression with Ogg/Vorbis at q4
(roughly 128 kb/s VBR). Measured peak level: −02.79 dBFS

Figure 1: Comparison of peak level after compression with various codecs

6

Smaller sound Compression for FM MPX

• It does allow for streaming audio with low latency (1 ms), although lower bit rates may
mean higher latency and vice versa.

The compression will not be lossless, hence the audio quality will not be fully preserved. We will
evaluate the compression method in terms of perceived audio quality (section 4).

2 Existing audio compression techniques

2.1 Lossless compression
Lossless compression of audio enables the exact reconstruction of the original waveform when
decompressing the signal. Most audio files do not contain random noise but ‘normal’ sound (like
music). This can be exploited in the compression process, as some assumptions can be made
about the data. It is even possible to predict to some extent what comes next. One compression
method that works in this way is for example SHORTEN (Robinson, 1994).

In SHORTEN, for every sample that is to be encoded, first a prediction is made about the
value of that sample. A linear predictor is used, meaning that the predicted value of the sample
is calculated as a linear combination of a given number of samples that were seen before. This
is called the prediction-step. In the next step, called residual coding, the difference between this
prediction and the actual value is calculated. The difference-values of all samples are further
compressed using a Huffman-code. After compression a file size of about 42% compared to the
original can be reached (Robinson, 1994). This means that –in theory– we could reach a bit rate
of roughly 840 kb/s for the MPX-signal we started with.

One problem however is that this method cannot guarantuee a fixed bit rate. Also a bit rate
of around 840 kb/s is still too high for what we want to achieve.

2.2 Lossy waveform-based compression
In the paper by Robinson (1994) a lossy version of SHORTEN is briefly described. This method
allows for a fixed bit rate to be used. To achieve this fixed bit rate, the signal-to-noise ratio
varies over time. The downside of this is that the quality of the encoded audio may vary a lot
depending on the original audio signal.

With Pulse Code Modulation (PCM), audio is sampled at a fixed interval (e.g. for CD-
audio the sample rate is 44.1 kHz). For each sample the value is stored with a fixed bit depth
(16 bits per sample for CD-audio). A way of compressing audio is by using ADPCM (Benvenuto,
Bertocci, Daumer, & Sparrell, 1986). Nowadays it is used mainly in telephony, but it is suitable
to compress any form of audio.

With ADPCM, instead of the exact sample value, only the difference compared to the previous
sample is stored. This in itself does not yet allow for compression, as this difference value may
still be so big that a full 16-bit integer is needed to store it. However the number of bits per
delta-value may be reduced by storing an approximation of this value instead of the exact value.
With µ-law or A-law coding as used in telephony (Benvenuto et al., 1986) only four bits per
delta-value are used. To still be able to cover the full range a logarithmic scale is used to map
the four bit values to a larger range. This does cause a problem: this method of compression
may cause peaks, because the delta-value is approximated and the value reconstructed upon
decompression may be larger than the actual value.

Both ADPCM and lossy SHORTEN are waveform-based compression methods. This means
that they store an approximation of the waveform, without taking the auditive perception of
human beings into account.

2.3 Lossy perception-based compression
While waveform-based compression methods often try to reduce the bit rate by trying to ef-
ficiently code samples in the time-domain, other codecs exist that operate on the frequency
domain. Popular lossy codecs such as MP3 (e.g., Pan, 1995; Brandenburg, 1999) and Ogg Vorbis
(Montgomery, 2015) are based on this principle. One advantage of operating on the frequency

7

Smaller sound Compression for FM MPX

domain, is that these codecs are able to take certain properties of the human auditive system
into account. The human ear is more sensitive to detail in some frequency ranges than in others,
so to save data some frequency ranges can be stored with less precision. Usually these codecs
are based upon some model of the way the human ear responds to sound, and they exploit its
properties to throw away data or to store data with less precision.

The lossy perception-based codecs mostly use the Modified Discrete Cosine Transform (e.g.
as in Pan (1995)), Discrete Wavelet Transform (as in Sinha and Tewfik (1993)) or a combination
of the two (as in Sinha and Johnston (1996)) to transform data in the time domain (samples) to
data in the frequency domain (bins) where the data is then compressed in some way. However,
this method of compressing audio is meant to keep the audio perceptually equal to the original
signal. In practice this means that while the audio may sound the same to the human ear, the
waveform is not kept intact at all, and often peaks are introduced due to the way the compression
works.

2.4 Overview
An overview of basic audio compression techniques is given in table 2. These techniques are used
in popular audio codecs, such as MPEG-1 layer 3, Ogg/Vorbis and FLAC.

Psycho-acoustic modeling forms the basis of lossy codecs such as Ogg/Vorbis. In combination
with filter banks it allows for a high compression ratio without introducing too many audible
artifacts. In this thesis, however, we will not use either of these two methods. The main reason
is that when using this method for compression, an approximation of the audio data is stored in
the frequency domain. This makes it impossible to guarantee no peaks occur in the signal upon
decoding.

3 Building the algorithm
What follows is a description of the compression principles we selected and an explanation of
how we got to this solution. We combined several existing techniques together with ideas of our
own. We discuss technical properties of the algorithm where we think this is relevant. Further
evaluation of the sound quality is done in a subjective way, this is described in section 4. A
scheme describing the global data streams within this algorithm can be found in figure 2.

3.1 Online or offline
Most codecs available nowadays are designed to be used in an offline way (i.e. all audio data to
be compressed is already available at the beginning of the process). Some can be used online (i.e.
in audio streaming applications), however in this case the latency is often high as the algorithm
is designed to be used on blocks of data of a fixed size (introducing a minimum delay).

Our goal is to create a codec that allows for very-low-delay streaming. As such we attempt
to design the largest part of the codec such that it works on individual samples instead of on
blocks of samples. However, it seems infeasable to transfer the samples one-by-one over a network
connection (because the relative overhead of e.g. metadata would become very large and because
the signal quality would be heavily influenced by network jitter). Dividing the data into blocks
thus is inevitable at some point in the process. The stability of the stream could be improved
further by maintaining a small buffer on the decoding end, however this does introduce extra
latency.

3.2 Samplerate
Most lossy codecs reach the same bitrate regardless the samplerate of the original file. Take
for example a file containing audio with frequencies up to 20 kHz. When the file is sampled
at 48 kHz, the bitrate after compression with a lossy codec such as MP3 will be the same as
when compressing the same file sampled at 44.1 kHz. This is easily explained by the way these
codecs work. They store frequencies rather than samples. Thus only the frequencies present in

8

Smaller sound Compression for FM MPX

Name Description Used in

Filter
banks

A filter bank is used to divide the input au-
dio signal into multiple frequency bands.
Since the human ear is more sensitive to
some frequencies than to others, the fre-
quencies the ear is less sensitive to can be
stored in a less precise way while still not
causing audible differences.

Most perception-based lossy
codecs, such as the Modi-
fied Discrete Cosine Trans-
form in MPEG-1 Layer 3
(MP3) (Pan, 1995), Ogg/Vorbis
(Montgomery, 2015) and the
proposal of Princen and John-
ston (1995), or Discrete Wavelet
Transform in the proposal of
Sinha and Johnston (1996).

Psycho-
acoustic
modeling

To determine what data needs to be stored
more precisely to minimize the audible dis-
tortion, an algorithm exploiting a psychoa-
coustic model that describes certain prop-
erties of the human auditory system can
be used.

For example MP3 (see
Pan, 1995) and Ogg/Vorbis
(Montgomery, 2015), where it is
used on top of filter banks.

Entropy
coding

In order to reduce the number of bits
needed to store the audio data, entropy-
coding is used to get better compression.
Well-known entropy-coding methods in-
clude Huffman coding (Huffman et al.,
1952) and arithmetic coding (Moffat et al.,
1998).

Used in both lossless and lossy
codecs (a.o. FLAC (Coalson,
2014) and MP3).

Intra-
channel
decorrela-
tion

Instead of storing each channel sepa-
rately (left and right in stereophonic au-
dio), higher compression can usually be
achieved by taking the correlation between
channels into account. Methods include
mid/side stereo (lossless) and joint stereo
(lossy).

E.g. MP3 supports dual chan-
nel, mid/side stereo (L+R/L−R)
and joint stereo (exploiting the
(in-)accuracy of the localization
of certain frequencies by the hu-
man ear). FLAC uses mid/side
stereo to preserve losslessnes.

Predictive
modeling

When using PCM the value of each sam-
ple is stored directly. To achieve better
compression, a predictive model could be
used. The model predicts the value of the
next sample to come, and only the differ-
ence between the prediciton and the actual
value is stored. Most of the time, this will
require less bits than directly storing the
sample values.

Described in Robinson (1994)
and Hans and Schafer (2001)
and for example used in FLAC.
Also used in some more advanced
variants of ADPCM.

Table 2: A selection of basic audio compression principles

9

Smaller sound Compression for FM MPX

MPX Demodulation L/R

Pilot
(3.6.1)

RDS
(3.6.2)

Compression
(3.2 / 3.5)

Packaging

Transmission
(not implemented)

Reverse
(3.6)

Limiting
(3.6.3)

Figure 2

the signal are relevant, and the samplerate does not have a direct influence (though MP3’s block
size is determined by it).

However, the same property will not hold for our codec. We will store samples, not frequencies.
Because of this a file with a lower samplerate will result in a lower bitrate and vice versa. FM
audio can contain frequencies up to roughly 16 kHz. Therefore it makes sense to downsample the
audio before performing any other type of processing. To store all frequencies accurately and to
leave some headroom we will use a samplerate of 36 kHz. This will save data, though a downside
is that resampling results in extra latency. How much depends on the method of resampling:
just six samples for linear interpolation (0.03 ms at 192 kHz), and up to 4096 samples if a Fourier
transform is involved for pre- or post-filtering (21.3 ms at 192 kHz).

3.3 Prediction
A technique used by various lossless compression methods is predictive modeling. A model is
used to predict the value of the next sample or samples, given a number of previous samples.
This technique is also called Linear Predictive Coding (e.g., Makhoul, 1975).

Prediction in its simplest form is assuming the next sample has the same value as the last.
In order to be able to reproduce the true value of the second sample, only the difference with
the first sample is to be saved. For example, if the first sample has value 100, and the second
sample has value 120, for the latter only 20 need be saved to get back to the original value of
120. This prediction method can be further generalised to save the differences of differences or
even the differences thereof. However at some point the differential value needs more bits to save
than the original value. In practice it does not make sense to go beyond 3rd order differences
(Craven & Gerzon, 1996).

A generalisation of the ‘previous sample predictor’ is the FIR (finite impulse response) pre-
dictor. With this type of predictor, each sample is predicted as being a linear combination of
past samples:

10

Smaller sound Compression for FM MPX

N∑
i=1

a−i · s−i

where s−1 is the previous sample, s−2 is the sample before that, etcetera; and a−1 is the
constant to multiply the previous sample with, a−2 the constant to multiply the sample before
that with and so forth. Different sets of values for a could be used, choosing a set that best
reflects the audio to encode.

The FIR-method is easy to understand, easy to implement and has a low computational cost
as only linear calculations are involved. It is used in for example SHORTEN and AudioPAK
(Robinson, 1994; Hans & Schafer, 2001). Robinson (1994) claim that in practice higher-order FIR
predictors do not predict significantly better than second-order FIR predictors. Keeping compu-
tational complexity in mind, they suggest using second-order FIR predictors, as the compression
level rises only slightly when using higer level FIR’s or IIR’s (Infinite Impulse Response).

Craven and Gerzon (1996) propose to use IIR predictors instead, as these are capable of
more accurately predicting acoustic signals compared to using a FIR predictor. Especially if the
material to compress contains a lot of high frequencies it makes sense to prefer an IIR above
a FIR predictor. IIR’s can model audio data containing high frequencies and lots of dynamics.
FLAC is a popular lossless compression method that uses IIR prediction models (Coalson, 2014).

An IIR predictor is more tricky to implement, as the constants to be used in the calculation
will have to be updated “on the fly” in order to keep the prediction accurate. This might also
lead to a high computational cost.

Although the claims of Robinson (1994) about the performance of FIR compared to IIR seem
to contradict those by Craven and Gerzon (1996), we decided to start with the simpler FIR
predictors to find out how they perform ourselves.

3.3.1 The SHORTEN-predictors

In theory, the predictors mentioned by Robinson (1994) and Hans and Schafer (2001) result in
a residual signal with a flat frequency response, meaning that only noise remains intact. This
makes sense, as noise consists of random samples and thus is unpredictable.

The four predictors of SHORTEN are as follows (s0 being the prediction value):

s10 = 0 (1)

s20 = s−1 (2)

s30 = 2 · s−1 − 1 · s−2 (3)

s40 = 3 · s−1 − 3 · s−2 + 1 · s−3 (4)

In both the SHORTEN and AudioPAK algorithms, the input audio is divided into blocks of a
certain length. Then, each predictor is used on that block, and the predictor leaving the smallest
residual signal is chosen. Then the predictor number is stored with each block, so that upon
decoding that same predictor can be used to reconstruct the original signal again. A visualisation
of the behaviour of these predictors can be found in figure 3.

For our purpose however, this is an unsuitable approach. First of all, due to the part of the
algorithm that divides the audio into chunks, a minimum latency is introduced. This could be
solved by reducing the block size to a small number of samples. However, this would cause the
required bandwith to increase, as per block the predictor has to be stored, and the smaller the
block size becomes, the larger the relative overhead of storing the predictor will be.

The second problem is that chunking the audio may lead to audible distortion. SHORTEN
was meant as a lossless codec, so upon decoding the exact same samples as in the original
stream are reconstructed. We are not trying to build a lossless codec, and thus the samples will

11

Smaller sound Compression for FM MPX

-3 -2 -1 prediction
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

s01
s02
s03
s04
True sample values

Figure 3: Illustrated behaviour of the four linear predictors.

not be reconstructed exactly: they will be an approximation of the original sample values. By
choosing different predictors for each block, sample values will be approximated in a different
way. Each block may sound differently depending on the predictor chosen. A similar problem
occurs in the widely-used codec MP3, where the precision of the audio stored varies per block
of 20ms (Brandenburg, 1999). This results in audible artifacts referred to as pre-ringing and
post-ringing.

3.3.2 Predicting per sample

To mitigate these problems, we use a different method of predicting samples (but using the same
prediction formulae as in SHORTEN). Assume at least four samples have already been encoded
by our algorithm. A fifth sample s5 then enters our system and needs to be encoded. For each
predictor, we calculate the predicted value of sample s4 using the values of previous samples s3,
s2 and s1. The predictor that outputs the value closest to s4 is deemed the best predictor. We
then use this predictor to predict the value of s5, using in our calculation the values of samples
s2, s3 and s4. This way, we do not need to store the chosen predictor at all, because in the
decoding stage the same deterministic choice can be made as we only choose based on historical
data. Furthermore: it is not necessary to do chunking of audio, as we can do this prediction per
sample instead of per block.

3.3.3 A better predictor

The SHORTEN prediction method works reasonably well for lower frequencies. On signals
containing high frequencies, the prediction becomes less and less accurate. When used in a
lossless codec, this may influence the bit rate, but when it is used in a lossy codec, it directly
influences sound quality. Ideally, the predictor performs equally well across the whole spectrum,
not only on the lower end.

Keiler, Arfib, and Zölzer (2000) present multiple methods to dynamically calculate the coef-
ficients used in a FIR calculation. All methods depend on previous samples, for which a small
buffer needs to be maintained. Since in our case the previous samples are rounded based on
previous predictions, using a FIR with dynamic coefficients effectively gives us an IIR predictor.

We have opted for the autocorrelation method, as this method has an algorithmic complexity
of O(N) with N being the size of the block the prediction is performed on (Keiler et al., 2000).

12

Smaller sound Compression for FM MPX

With this method, for a block of length N an approximation of the autocorrelation sequence is
calculated by

R(i) =
1

N

N∑
n=i+1

u(n)u(n− i)

Where u(n) is sample sn with a Hamming window applied to it. Then, to obtain the coeffi-
cients ai for i = 1, . . . , p for a predictor of order p, the following equations are to be solved:

p∑
k=1

akR(i− k) = R(i)

for i = 1, . . . , p (Keiler et al., 2000). The solution to this can be calculated efficiently using e.g.
Levinson-Durbin recursion (see e.g. Makhoul, 1975; Levinson, 1949; Durbin, 1960). Then, the
next sample is predicted:

sN+1 =

N∑
N−p+1

aksk

3.3.4 Downside of prediction

A downside of using predictors per sample is that this codec will not be able to (partly) recon-
struct packets in case of network packet loss. This can be solved partially by starting each block
with three “full” sample values instead of difference values, in the case of the FIR predictor. This
way the internal state of the predictors can be safely reset at the beginning of each block. For
the IIR predictor this would not work, in this case p full samples would be required to accurately
restore all sample values. Or the predictor could be reset at the beginning of each block.

The impact of packet loss can also be diminished by sending the data for the left and right
channel in separate packets, so that the decoder is able to temporarily switch to mono audio in
case one of the packets is missing or arrives too late. On the downside, this will lead to a higher
latency as the decoder has to wait until both the packets for left and for right are received before
it is able to reconstruct the signal. We currently have not implemented any of these methods, as
our implementation is not yet suitable for online usage.

3.4 Residual coding
After the value of a sample is predicted, the difference between the prediction and the actual
value is stored. However, the value will not be stored exactly: only an approximation of the value
will be stored. This is where the algorithm becomes lossy. The question is how to determine
what a good approximation of a difference value is. The value needs to be accurate enough so
that no audible distortion is introduced, but it should not be too precise as then more data would
be needed to store the value.

3.4.1 Only noise

The basic assumption is that the prediction step produces a residual signal with a flat frequency
response, meaning that every frequency is present with more or less the same power as other
frequencies (white noise). Instruments causing noise-like sounds in music are for example crash
cymbals and hi-hats.

When rounding difference values we are essentially adding noise to the signal, as each sample
will be reconstructed with a slight deviation compared to the original signal. However, we
assumed the predictors perform the worst on noise-like sounds and perform the best on clear,
pure sounds. The basic idea is thus to store a difference value very accurately when the predictors
are giving accurate results (small difference values, pure sound) and to store the value with a
rough approximation when the predictors yield results that deviate a lot from the original signal
(large difference values, noise-like sound). This way noise will mostly be introduced in sounds
that were already noise-like. We expect that this type of noise will not be audible.

13

Smaller sound Compression for FM MPX

3.4.2 Determining the prediction quality

When the deviation between the values predicted and the actual values is small, the predictors
produce accurate results. High differential values indicate a poor predictor performance. To
estimate this performance, we keep track of the average absolute deviation. Calculating a true
average or mean would introduce the need for quite a lot of computational power. Therefore we
choose to approximate the root mean square of the differences:

q =

√
α∆2 + βq2

α+ β = 1

We empirically determined that using α = 0.1 and β = 0.9 yields good results.

3.4.3 Calculating the step size

The differential values are rounded to a nearby value that can be efficiently stored. To determine
the value to round to, first a step size δ is calculated. The value q obtained in the previous
step is first multiplied with a scaling parameter w. The smaller the value of this parameter, the
more precise the sample difference values can be stored because less rounding occurs. Choosing
a higher value for this parameter leads to more rounding (and thus probably to a lower audio
quality), but might reduce the bitrate because the number of possible results is smaller.

δ = q · w

Then the differential value will be rounded to n · δ with n ∈ Z chosen such that the rounded
value lies as close as possible to the original value. The value that is then actually stored is n.

Important to note is that this same method can be used on the decoding side without the
need for sending extra information. The process entirely relies on the prediction quality of past
samples which is known on both sides. Because of this the approximated value can be restored
from n.

In our implementation we choose w for each block such that the bit rate remains roughly
constant. If the size of the previous block is too large (or if it is very close to the maximum), we
can use w to temporarily lower the audio quality in order to make sure the current block will be
smaller than the allowed maximum. If constantness of bit rate would not be a problem (in case
the coding is done offline) then w could be fixed, which would result in a more constant audio
quality.

3.5 Entropy coding
The resulting rounded values from the previous step are entropy coded in order to save bits.
Although in a worst-case scenario n can still be quite large (in theory it could still require 16 bits
to store), this is very unlikely. Due to the way n is calculated, it is likely to be a small number (if
the predictors would always predict the next sample with an accuracy of 100%, n would always
be 0). Therefore we can save bits by using a short bitcode for small and likely numbers and a
long bitcode for large and unlikely numbers.

To achieve this we implemented Huffman coding (Huffman et al., 1952). In order to reach
efficient compression with Huffman, it is important to choose the weights assigned to each entry
in the tree correctly or a sub-optimal coding tree is generated. One way to determine these
weights would be to keep track of a histogram and to directly use the sample occurence of the
previous block as input to the Huffman algorithm. This way however sudden changes in values
cannot be coded efficiently (which occur for example when for some reason the predictors do not
predict accurately). The size of the block is constant. We used a size of 128 samples per channel
per block.

14

Smaller sound Compression for FM MPX

Figure 4: Demodulated RDS signal, resampled to 4750 Hz (194 kHz)

To solve this we have chosen to use an approximated histogram of the current block, where the
approximation is sent along with the other data towards the decoding site. The approximation
consists of the first 2b entries of the histogram, where each entry −x is summed together with
entry x (the entries after entry 2b are assumed to have a very small chance of occuring). Parameter
b is fixed and can be used to make a trade-off between bit rate and precision of the Huffman
histogram. With a total bit rate of 320 kb/s, we used b = 4. The entries in the histogram are
scaled to fit in 4 bits, leaving a relatively small overhead while still a good approximation of the
optimal Huffman code is obtained.

3.6 Back to MPX
Thus far we only described the coding method to code ‘normal’ audio. In order to be able to
generate a full FM MPX signal upon decoding, more information is needed than just the audio
signal. Both the stereo pilot and RDS data are needed to reconstruct the full signal.

3.6.1 Stereo pilot

The stereo pilot is a tone with a frequency of 19 kHz, ± 2 Hz according to the standard (European
Committee for Electrotechnical Standardization, 1998). Because of this small deviation allowed,
we cannot assume that the tone has an exact frequency of 19 kHz. The easiest way would be
to transfer the pilot as samples, but this would require a sample rate of 38 kHz. Because the
samples will be highly predictable, these samples can probably be compressed quite efficiently.

However the most efficient way to transfer the pilot correctly would be to send one number
providing information on the phase of the pilot. This is the method we have chosen to implement.
Using a phase locked loop or PLL (see e.g. Hsieh & Hung, 1996) the phase of the pilot is tracked
at each input sample. The phase of the last sample in a block is stored and transmitted to the
decoder. The decoder assumes a pure tone of 19 kHz, but makes small adjustments to reach
the correct phase at the end of the block. This way the pilot can be reconstructed accurately
without sending large amounts of data.

3.6.2 RDS

Multiple methods can be thought of to compress RDS data. One way would be to decode the
signal to obtain a bitstream, which can then be turned into a waveform again upon decoding.
However different RDS encoders may cause different signal characteristics depending on how the
RDS standard was interpreted. When the data is decoded to a bitstream, these characteristics
are not reconstructible by the decoder. The result may be that the RDS waveform is slightly
different compared to the original, which may cause large deviations in the MPX waveform.

When RDS is demodulated from the MPX data, what remains is a highly repetitive signal
(see figure 4). A similar approach as we use to compress audio could be applied to the RDS
stream, as the signal is easily predictable (when downsampled to exactly 19,000

4 Hz the number
of different sample values is relatively low and thus they can be stored precisely with just a few
bits).

However an even simplier method is possible. The volume of the signal is relatively low:
usually it equals around 4.5% of the total MPX volume. Since the maximum volume is known,

15

Smaller sound Compression for FM MPX

(a) Original RDS, demodulated from MPX, resam-
pled to 4750 Hz and normalized to 0dBFS (b) Original RDS, downscaled to 6 bit

(c) Original RDS, downscaled to 5 bit (d) Original RDS, downscaled to 4 bit

Figure 5: Comparison of RDS signal using different bit depths.

a smaller number of bits can be used to store the samples of the data signal. We expect some
rounding of sample values will not hurt the signal quality, as the phase remains intact. As can
be seen in figure 5, at 4 bits per sample the waveform starts to get more distorted. Though this
still might be good enough to guarantuee good signal reception, to be on the safe side we choose
to use 5 bits per sample.

Furthermore the recommended bandwidth for RDS is ∼ 2.0 kHz (European Committee
for Electrotechnical Standardization, 1998), which means we need a minimum sample rate of
∼ 4.0 kHz. Because the RDS data is synced with the 19 kHz pilot tone, it makes sense to
choose 19000

4 = 4750 Hz as sample rate for the data signal. Sending a signal with 4750 samples
per seconds and 5 bits per sample leads to an extra data stream of ∼ 23 kb/s, which we think is
acceptable.

3.6.3 Clipping the composite signal

So far the algorithm still cannot guarantuee no peaks will occur in the final signal. Small
deviations in sample values for the left or right channel might cause relatively large peaks in the
composite signal. For example, assume a sample value of 0.5 for the left channel and a value of
0.5 for the right channel, leading to L + R = 1.0 and L − R = 0 and (L + R) + (L − R) = 1.0.
Say these values are then rounded to 0.6 and 0.4, respectively (the actual rounding depends of
course on the internal state of the predictors). L + R then still is 1.0, but L − R now has the
value 0.2 and (L+ R) + (L− R) is now 1.2 which is a disallowed peak. In practice these peaks
might be very small or very large, depending on the point in time as L−R is multiplied with a
38 kHz tone.

Sample values change just a bit when they were part of a sound that was easy to predict.
When the prediction starts getting less accurate, sample values change more and more. The
predictors are – at least in theory – capable of predicting pure tones very precisely, but start
performing worse when the sound gets more noise-like. Therefore sample values get rounded
more and thus cause peaks when the samples are part of noise. However especially in sounds
that are already noisy, a bit more noise is probably not easily detectable by the human ear.

The signal can thus be fixed by simple clipping of the samples outside the allowed range,
without audible distortion. To completely eliminate possible distortion in the spectrum that
clipping might cause (which also might clutter the frequency spectrum and might thereby harm
reception quality), we implemented a simple limiter. The limiter holds a small buffer and starts

16

Smaller sound Compression for FM MPX

Step Description Delay
Demodulation Fourier transform – for best precision with block size

of 4096 samples

4096
192000s = 21.33ms

Downsampling Depends on resampling method – if filtering is applied,
the same block as in the previous step can be used,
giving no extra latency. However at least six samples
are needed at 192000 kHz before the next sample at
36000 kHz can be calculated

6
192000s = 0.03ms

Prediction Depends on predictor order – we used 15 15
192000s = 0.08ms

Packaging Depends on the block size chosen - the smaller the block
size, the larger the relative overhead. We used 128

128
192000s = 0.66ms

Limiting Depends on limiter look-ahead – we used 96 96
192000s = 0.50ms

Total 22.61ms

Table 3: Estimated minimum delay of the coding method

to temporarily lower the volume (both backwards and forwards) when a sample lies outside the
allowed range. The result is a clean signal that conforms to the specification without having
introduced extra audible noise.

4 Evaluation

4.1 Technical evaluation
4.1.1 Prediction

We performed a small-scale technical evaluation, comparing the two types of predictors: the
SHORTEN FIR-predictors, and the more advanced prediction method by Keiler et al. (2000).
We compared the predictors by feeding them a 20 second logarithmic sweep from 20 Hz to
15 kHz. We measured the absolute difference between the predicted value and the actual value.
The results can be found in figure 6. The curve displays the absolute deviation between predictor
and true value, measured in dBFS. As we suspected earlier, the more advanced IIR predictor is
more stable, in the sense that its performance across the spectrum is more constant than that of
the FIR predictor.

4.1.2 Delay

With our current implementation, the codec is not suitable for online use. We have used libraries
for e.g. resampling that were meant to be used offline. These libraries use relatively large buffers
internally, causing a high delay when used online. The total delay of our current implementation
is close to 5 seconds. However, the coding method does not impose a minimum delay on its own
– the delay is mainly caused by these libraries. Replacing them with a version suitable for online
usage should be easy and may reduce the delay drastically. An estimation of the theoretical
minimum delay can be found in table 3.

The delay is mainly caused by the demodulation and resampling stages. The demodulation
stage could be replaced with one that does not require fourier transforms (a method emulating
the way analog car radio’s demodulate the signal could be used). The delay of the resampling
stage depends on the method of resampling. A lower quality resampler might still give acceptable
results but less delay.

4.2 Subjective evaluation
Of course we can analyse the performance of our codec in various technical ways (measuring the
amount of noise introduced, for example). But this does not directly tell us anything on how
the result of the codec is perceived by humans. If a lot of noise is introduced, but a sufficient
amount of other sounds is present, it might be the case that the noise is not perceived, or the

17

Smaller sound Compression for FM MPX

(a) Absolute deviation between log sweep and value predicted by FIR

(b) Absolute deviation between log sweep and value predicted by autocorrelation-IIR

(c) Absolute deviation between reversed log sweep and value predicted by FIR

(d) Absolute deviation between reversed log sweep and value predicted by autocorrelation-IIR

Figure 6: Comparison of predictor performance on a log sweep. A lower value indicates a smaller
deviation from the real sample value. The X axis represents time.

18

Smaller sound Compression for FM MPX

noise is perceived but is not annoying. To find out how well the codec performs subjectively and
to find at which bitrate it becomes ‘transparent’, we will perform listener tests.

4.2.1 Test method

The subjective evaluation should be double-blind so that neither the test subject nor the re-
searcher know in advance which sample (as in fragment, not as in measurement of the sound
wave) the subject is listening to. An often used method is the so called A/B/X test (Clark,
1982). In an A/B/X test, a listener is presented three samples: A, B and X. One of the samples
A or B is the sample that was processed with our codec, the other one is the original, lossless
signal. The third sample X is randomly chosen to be the exact same as A or to be the exact same
as B. The listener is then asked to make the decision “X is A” or “X is B”. If the test subject can
truly distinguish A and B, they will anser the question correctly most of the time. If the subject
is guessing (they cannot hear the difference between A and B), we expect they answer 50% of
the samples correctly. In our test, we have chosen to fix A to be the unprocessed sample, where
B was the processed sample.

4.2.2 Hypothesis

Because of the limited number of trials per subject and per track, we can not say anything useful
about the results of one particular subject, nor of the results of one particular track. However
to get a first impression of how well the compression method performs in terms of subjective
quality, we state the following:

Hypothesis. Less than 25% of the test subjects can perceive a difference between the unprocessed,
received FM signal and the processed, received FM signal.

4.2.3 Samples used

We picked music samples semi-randomly from music broadcast by customers of Stereo Tool :

• Arrow Classic Rock (Dutch internet / DAB radio station)

• N1 (Dutch public local radio station)

• Sky Radio Hits (Dutch internet radio station)

• Sky Radio 80s (Dutch internet radio station)

The samples were selected such as to cover a wide set of musical genres. A full list can be
found in table 4.

Aditionally, we used a recording of the NOS Journaal, which is a Dutch news bulletin provided
by national news organization and broadcaster NOS. All samples were created from lossless
sources and thus are of CD-quality originally. They where then processed for FM broadcasting,
using Stereo Tool with preset Analog Pleasure FM (as used by N1). An RDS stream was present
in all FM samples, but was not used in the test.

We then compressed the samples using two different bit rates: 256 kb/s and 320 kb/s. The
compressed files were decompressed again to obtain a file suitable for FM broadcasting. Then all
files (including the ‘original’ FM samples) were fed to an FM transmitter running a low power
setting. The signal was recorded using an USB-based receiver and the tool SDR#. The distance
between the transmitter and the receiver was roughly 2 meters, allowing for good reception
despite the low power setting of the transmitter. A picture of the recording setup is found in
figure 7.

For usage in our A/B/X tool, the samples needed to be perfectly aligned to allow for seamless
switching between A, B and X. To achieve this we converted the pieces to a high samplerate
(192 kHz) using Adobe Audition set to the highest quality resampler available. They were then
aligned and converted back to 44.1 kHz, again using Adobe Audition with the highest quality
resampler.

19

Smaller sound Compression for FM MPX

Artist Title Genre

AC/DC Highway To Hell Hardrock, Bluesrock, Heavy metal
Axwell & Ingrosso Sun is Shining Progressive House
Bee Gees Night Fever Pop, Disco
Ben Gold Where Life Takes Us Trance
Creedence Clearwater Revival Down On The Corner Roots rock
Daft Punk Get Lucky Disco, Funk
Dire Straits Sultans of Swing Roots rock, Pub rock, Blues rock
Ed Sheeran Thinking Out Loud Soft rock, Blue-eyed soul
Fleetwood Mac Everywhere Soft rock
Jay-Z Empire State of Mind Hip hop
Klangkarussell Sonnentanz Nu-jazz, Deep house
Mark Knopfler What It Is Roots rock, Folk rock, Blues
Muse Starlight Alternative rock, Space rock, Pro-

gressive rock
NOS Journaal News bulletin
Owl City Fireflies Synthpop
Shaggy Angel Reggae fusion
DNA & Suzanne Vega Tom’s Diner Trip hop, Electronica, New jack

swing
The Script Superheroes Pop
Toto Africa Soft rock
Van Morrison Brown Eyed Girl Rock, British R&B

Table 4: List of fragments used in the A/B/X test. Genres according to Wikipedia.

Figure 7: The test generation setup

20

Smaller sound Compression for FM MPX

Figure 8: The test setup

The last stage of the decompression involves a simple limiter to ensure the signal complies
with the FM standard. The limiter is easily replaced with one of better quality. Since we want
the limiter to influence the result as little as possible, the samples were normalized to -15LUFS
using the ITU-R BS.1770-2 loudness standard. This prevents the user from recognizing a sample
X as being A or B based on just a difference in perceived loudness.

4.2.4 Test subjects

To obtain proper test results a random set of test subjects should be used. However given the
limited time available for a master’s thesis, we did not use an aselect group of subjects. The
subjects consisted mostly of Computing Science students and employees of a public local radio
station (N1). Further research should be conducted with a more varied set of subjects. In total
18 subjects took part in the test.

4.2.5 Equipment

The tests were performed in an office space with a carpeted floor and a soft ceiling, providing
reasonable acoustics. We equipped the room with a pair of studio monitor speakers (Focal Alpha
50), connected to a laptop through a USB soundcard (Steinberg UR22). The speakers were aimed
towards the subject, at a distance of 1 m. A picture of the test setup can be found in figure 8.

4.2.6 Subject preparation

We instructed the subject on the test. First we explained what the test was about: comparing
compressed audio samples with potentially lower audio quality and the original signal. We then
presented the subject with a sample that was compressed using a very low bitrate (192 kb/s),
as to make the artifacts introducted by the codec clear. This prevents the subject from learning
while performing the test (which is necessary to obtain independent test results), and provides
more useful results as the subject knows what to listen for (Clark, 1982). We told the subjects
sample A was unprocessed and that sample B was processed, but that X could be either of the
two, randomly.

The subjects were told they had a time limit of 50 minutes, but that it would be no problem
if they didn’t finish the test completely.

21

Smaller sound Compression for FM MPX

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

1

2

3

4

5

6

Correctly answered samples

256 kb/s

Percentage correct

O
cc

ur
en

ce

Figure 9: Distribution of percentage answers correct at 256 kb/s

4.2.7 The test

The test was performed using a web-based A/B/X tool2. Subjects could operate the tool using
either a mouse or a keyboard (a printed list of shortcuts was made available to the subject). The
tool allowed for seamless switching between A, B and X. Controls for seeking inside the sample
were available as well (allowing the subject to rewind the sample as often as desired).

The subject was able to change the volume at all times using a physical knob. The subject
was instructed on what volume setting to use: not too high because it makes it harder to perceive
subtle differences, and not too low for the same reason.

Samples were randomised in order and in bit rate. Each subject was confronted with 10 sam-
ples at 256 kb/s and 10 samples at 320 kb/s. The order of the samples was randomised, so that
bit rates were mixed and so that no two subjects had the same order of test material. In total
173 samples were tested at 256 kb/s, 172 samples were tested at 320 kb/s.

At the end of the test we asked each subject to fill in a small questionnaire. Subjects were
asked how confident they were about their answers, indicated on a 1–10 scale (1 being the least
confident and 10 being the most). We also asked participants to answer how they would describe
the difference (if perceived at all) and if one of the versions sounded better or more annoying
than the other one.

4.2.8 Test results

The scores achieved by the participants and the results of their filled in questionnaire can be
found in table 5. The score distribution of the two bit rates can be found in figure 9 and 10,
respectively.

4.2.9 Hypothesis evaluation

Earlier we stated our hypothesis in section 4.2.2. We will now verify this hypothesis for each of
the two bit rates. We assume all tests performed to be independent.

Null hypothesis. 25% of the test subjects can perceive the difference between A and B.

From the null hypothesis follows:
2Available from http://abx.digitalfeed.net

22

Smaller sound Compression for FM MPX

Nt Nc %all %256 %320 C Remarks

18 10 56% 56% 56% 2 Niet storend, verschillen echt alleen na
goed zoeken en dan “zou dit het wel eens
kunnen zijn”, af en toe iets ‘blikkeriger’?

20 12 60% 60% 60% 7 De een klonk ‘warmer’. (A)
20 12 60% 60% 60% 3 Niet noemenswaardig.
20 11 55% 70% 40% 4 Zo nu en dan is B iets minder zuiver,

zeker bij verschillen tussen hoog en laag
(na elkaar) zijn zo nu en dan te horen.
Ook bij stemmen zijn wel wat verschillet-
jes te horen. Echter is dit wel erg lastig.

20 9 45% 30% 60% 9 Soms klonk de ene versie (A) wat voller
dan de andere. Soms waren achter-
grondinstrumenten duidelijker te horen.

16 12 75% 78% 71% 3 / 10* M.n. “S” klanken (zelfde effect als
nieuws). Soms ook stemmen (zelfde ef-
fect als Tom’s Diner start). Iets minder
hoog in B bij Toto?

20 12 60% 60% 60% 3 Af en toe klein verschil, maar dan was
1 fragment niet overduidelijk beter of
slechter.

20 14 70% 80% 60% 4 Nee, ik kon geen verschil horen (gegokt)
20 8 40% 50% 30% 10 Geen verschil gemerkt
11 7 64% 60% 67% 4 Muziek A klonk wat voller / helderder

soms
20 13 65% 60% 70% 8 Heldere tonen (clean gitaar, gerinkel, etc)

minder helder. Niet fijner / minder fijn,
nauwelijks verschil. Alleen merkbaar met
heel vaak opnieuw luisteren.

20 13 65% 70% 60% 8 Bij geen enkele track had ik het gevoel
dat het vervelend in het gehoor lag. Ik
moest mijn best doen om de verschillen
goed te horen.

20 11 55% 70% 40% 3 Op sommige punten dacht ik in de gecom-
primeerde versie iets meer ruis / lichte
kraakjes te horen. Qua luisterplezier was
er voor mij geen verschil.

20 7 35% 40% 30% 3 Amper te horen.
20 8 40% 30% 50% 6 Ja, soms is het niet verklaarbaar, maar

voelt een van de versies (A) prettiger aan.
20 11 55% 60% 50% 3 Verschil minimaal voor mijn gehoor elke

versie prima
20 6 30% 40% 20% 3 Haast geen verschil, bij twee nummers

dacht ik het te horen (duidelijk). In de
lage tonen anders.

20 10 50% 50% 50% - -

345 186 Avg Avg Avg Avg (averages weighted by Nt, N256 and N320,
53.9% 56.6% 51.2% 5.0 respectively.)

Med
4.0

Table 5: Responses of test subjects. Nt is total number of samples tested, Nc number of samples
correct, %all is percentage correct, %256 is percentage correct at 256 kb/s and %320 is percentage
correct at 320 kb/s. C is confidence subject indicated on their answers.
*Answered inconsistently, not taken into account for averaging.

23

Smaller sound Compression for FM MPX

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

1

2

3

4

5

6

Correctly answered samples

320 kb/s

Percentage correct

O
cc

ur
en

ce

Figure 10: Distribution of percentage answers correct at 320 kb/s

Expected correctness Total correctness
75% subjects are guessing 50% correct 0.75 · 0.5 = 37.5% correct
25% subjects perceive difference 100% correct 0.25 · 1.0 = 25.0% correct
100% subjects p = 62.5% correct

256 kb/s. 173 tests were taken, 98 samples were answered correctly.

We approximate the binomial distribution with µ = p · N = 0.625 · 173 = 108.125 and
σ =

√
p(1− p) ·N =

√
0.625 ∗ 0.375 ∗ 173 ≈ 6.37 by a normal distribution N(µ, σ). We can

reject the null hypothesis with confidence 95% if at most k = Φ−1(0.05) · σ + µ = −1.64 · 6.37 +
108.125 = 97.68 samples are correct.

98 samples were answered correctly. This means we cannot conclude with confidence 95% that
less than 25% of the test subjects perceives the difference between A and B, because 98 � 97.68.

320 kb/s. 172 tests were taken, 88 samples were answered correctly.

We approximate the binomial distribution with µ = p · N = 0.625 · 172 = 107.5 and σ =√
p(1− p) ·N =

√
0.625 ∗ 0.375 ∗ 172 ≈ 6.35 by a normal distribution N(µ, σ). We can reject the

null hypothesis with confidence 95% if at most k = Φ−1(0.05)·σ+µ = −1.64·6.35+107.5 = 97, 09
samples are correct.

88 samples were answered correctly. This means we can reject the null hypothesis with
significance α = 5%, since 88 ≤ 97.09, and we accept the main hypothesis, namely less than 25%
of test subjects can perceive a difference between A and B.

4.3 Conclusion & outlook
In this thesis we have proposed a new compression method, composed of various techniques found
in literature. Our codec is unique in the sense that it is the first known (or at least the first
written about) that is aware of the structure of FM MPX, thereby able to achieve a relatively
high compression ratio compared to lossless coding, while abiding by the FM specification and
while making sure the effect on the audio quality is not perceivable.

Some subjects indicated that they were able to spot minor differences between sample A and
sample B, but then had a hard time indicating which of the two was equal to X. Therefore it
may be that in some cases a difference can be perceived, but will not likely be when a reference
sample is absent.

24

Smaller sound Compression for FM MPX

Looking at the results, a bit rate of 320 kb/s provides such sound quality that no, or only
a small difference is perceived while the bit rate is still acceptably low. For example Dutch
radio station 538 uses a satellite connection of 384 kb/s, on which only audio is transported, not
full MPX. They are an example of a station that could use our codec to transport their signal,
eliminating the need for extra sound processors at each transmitter site.

The codec created for this thesis is still very much a prototype. No streaming functionality
was implemented, only files can be processed. If a streaming option was implemented directly,
the delay between input and output would be very large (around 5 seconds). This is partly due
to the use of offline libraries for e.g. resampling and filtering. It is also partly due to buffers
present in the code, which are there to make things work, but could possibly be removed if the
whole codebase was re-designed from scratch.

There is more that should be improved on this codec. For example, while the bit rate is
relatively stable, sometimes short spikes occur. We experienced this problem, but as the codec
was used in an offline way this posed no real problem. This is undesirable when streaming
however, because it could cause short hiccups in the audio as it takes too long to submit one
data packet. A mechanism should be put in place to protect against this.

Furthermore, a number of constants is used in the code (mentioned earlier in the description
of the algorithm). For these constants, we picked values determined empirically, by making a
rough guess of a good value followed by iteratively testing and updating of the constant. This
yielded good results, but it is possible the constants are still far from optimal (they were never
updated and tested in combination, for instance).

At the moment no mechanism is present to take stereo correlation into account. When coding
a stereo signal, actually two full mono streams are stored. This could be made more efficient,
because in practice the correlation between the left and right channel is often high. The bit rate
could be lowered or the audio quality could be improved by making use of this.

Some technicians do not want to put pc’s at their transmitter sites because pc’s “feel” less
stable than hardware-based processors. Because our implementation is fully software-based, a
pc of some kind (everything between a server and a raspberry pi) is needed at the transmitter
site. It may be that these technicians will also distrust the use of a computer used for this codec.

Currently, we have only considered FM MPX with stereo audio and RDS. However, it is
possible to store more than that in MPX. For example RDS2, a standard currently under con-
sideration, uses more than one subcarrier. Our codec is not directly suitable for this. For every
additional part of the multiplexed signal, a way to compress and store it has to be designed in
order to guarantuee good quality and an acceptable bit rate.

Also, our codec currently assumes the mirrored L–R part is perfectly symmetrical tot the
original L–R. While this does indeed hold for the output of some sound processors (e.g. Stereo
Tool), it is not always the case. To be able to reconstruct the original MPX signal, this possible
asymmetry should be coped with as well. This should not have a big impact on bit rate, as
the asymmetry is probably only minor and thus needs only a small amount of data to store
(an exception to this is single side band (SSB), were the mirrored L–R part is absent, leaving a
lot of asymmetry – but this could be stored efficiently by using one bit indicating the use of SSB).

So, a lot is to be improved before this codec can finally be put into practice. However when
this is done, the idea of having such a codec might appeal to a lot of radio stations who only
have access to slow connections and are on a tight budget. Eliminating the need of separate
sound processors for each transmitter site, the ability to stream full MPX directly (even over
slow connections) might be very useful.

25

Smaller sound Compression for FM MPX

References
Benvenuto, N., Bertocci, G., Daumer, W. R., & Sparrell, D. K. (1986). Report: The 32-kb/s

ADPCM coding standard. AT&T technical journal , 65 (5), 12–22.
Brandenburg, K. (1999). MP3 and AAC explained. In Audio engineering society conference:

17th international conference: High-quality audio coding.
Clark, D. (1982). High-resolution subjective testing using a double-blind comparator. Journal

of the Audio Engineering Society , 30 (5), 330–338.
Coalson, J. (2014). The FLAC format. Xiph foundation. Retrieved March 2015, from https://

xiph.org/flac/documentation_format_overview.html
Craven, P. G., & Gerzon, M. A. (1996). Lossless coding for audio discs. Journal of the Audio

Engineering Society , 44 (9), 706–720.
Durbin, J. (1960). The fitting of time-series models. Revue de l’Institut International de Statis-

tique, 233–244.
European Committee for Electrotechnical Standardization. (1998). Specification of the radio

data system (RDS) for VHF/FM sound broadcasting in the frequency range from 87,5 to
108,0 MHz.

Hans, M., & Schafer, R. W. (2001). Lossless compression of digital audio. Signal Processing
Magazine, IEEE , 18 (4), 21–32.

Hsieh, G.-C., & Hung, J. C. (1996). Phase-locked loop techniques. a survey. Industrial Electron-
ics, IEEE Transactions on, 43 (6), 609–615.

Huffman, D. A., et al. (1952). A method for the construction of minimum redundancy codes.
Proceedings of the IRE , 40 (9), 1098–1101.

Keiler, F., Arfib, D., & Zölzer, U. (2000). Efficient linear prediction for digital audio effects..
Kleinsteuber, H. J. (2006). A great future? Digital radio in Europe. Recherches en Communi-

cation, 26 (26), 135–144.
Lax, S., Ala-Fossi, M., Jauert, P., & Shaw, H. (2008). DAB, the future of radio? the development

of digital radio in four European countries. Media, Culture & Society , 30 (2), 151–166.
Levinson, N. (1949). The Wiener RMS error criterion in filter design and prediction, Appendix

B of Wiener, n.(1949). Extrapolation, Interpolation, and Smoothing of Stationary Time
Series.

Makhoul, J. (1975). Linear prediction: A tutorial review. Proceedings of the IEEE , 63 (4),
561–580.

Moffat, A., Neal, R. M., & Witten, I. H. (1998). Arithmetic coding revisited. ACM Transactions
on Information Systems (TOIS), 16 (3), 256–294.

Montgomery, C. (2015). Vorbis I specification.
Pan, D. (1995). A tutorial on MPEG/audio compression. IEEE multimedia, 2 (2), 60–74.
Princen, J., & Johnston, J. D. (1995). Audio coding with signal adaptive filterbanks. In Acoustics,

speech, and signal processing, 1995. icassp-95., 1995 international conference on (Vol. 5,
pp. 3071–3074).

Robinson, T. (1994). SHORTEN: Simple lossless and near-lossless waveform compression.
Shannon, C. E. (1949). Communication in the presence of noise. Proceedings of the IRE , 37 (1),

10–21.
Sinha, D., & Johnston, J. (1996). Audio compression at low bit rates using a signal adaptive

switched filterbank. In Proceedings of the acoustics, speech, and signal processing, 1996. on
conference proceedings., 1996 ieee international conference-volume 02 (pp. 1053–1056).

Sinha, D., & Tewfik, A. H. (1993). Low bit rate transparent audio compression using adapted
wavelets. IEEE Transactions on Signal Processing , 41 (12), 3463–3479.

26

