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Abstract

In this thesis, active learning of abstract models is combined with
model checking, combining the strength of both techniques. Active learn-
ing ensures that the model is directly based on the actual implementation,
while model checking allows for easy analysis of composed networks of
learned models. Utilizing these techniques, models of TCP implementa-
tions are inferred, and a network of these models is model checked. As the
concrete input alphabet is too large to apply learning directly, a mapper
translates the inputs to an abstract domain. To perform model check-
ing on concrete models, this abstraction should be reversed. A mapper
language is proposed to make mappers easier to apply, and to make it
possible to invert mappers with a constraint solver.

1 Introduction

As our reliance on technology grows, reliability of systems becomes increasingly
important. Model checking is one way of verifying the correctness of systems.
Once a model of a system is available, it is relatively easy to check whether the
required properties hold; algorithms exists to check many kinds of specifications,
for example in temporal logic, provided that the model is not too big.

An advantage of model checking is that it easy to write and compose models.
Interaction with the actual system is not needed. However, this is also a dis-
advantage: models are checked for correctness, but how to ensure that these
models correspond with the actual behaviour? Ideally, models should be cre-
ated as part of the development process, but this is not often done in practice.
Some progress has been made to obtain models from source code [8, 13, 15].
But such techniques are not always applicable, for example with complex net-
works or in a black-box setting. In practice, many models are therefore still
hand-made, based on specifications or documentation. However, implementa-
tion errors and unspecified behaviour are then not modeled. The model itself
may also be faulty. These issues undermine the reliability of formal verification
on hand-made models.

Another way of creating models is through active learning [3, 7, 20]. This al-
lows to extract models from actual systems, by letting a learner interact with
the system under test (sut) in a black-box setting. The learner follows a learn-
ing algorithm, by which it sends inputs to the sut, and observes the outputs. A
model is then inferred which corresponds with these inputs and outputs. This
approach ensures that the obtained models correspond with the actual system,
and increases the reliability of formal verification. Model checking on learned
models has been done [11], but this was restricted to checking just the learned
model in isolation. Composition is a strength of model checking, and can be
used to scale up to networks. In contrast, checking properties for compositions
of systems is harder with test-based approaches. This approach ensures the
reliability of test-based approaches, and utilizes the flexibility of model check-
ing.

In practice, inputs and outputs of systems often contains parameters. This
makes active learning difficult: the number of inputs and outputs grows expo-
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nentially in the number of parameters. The same holds for the number of states:
a system using state variables often has a large number of states. Aarts et al. [3]
resolved this by mapping the set of concrete parameters to a small range of ab-
stract ones. This reduces the size of the model, such that it can be learned.
An abstract model is then learned: the behaviour of the actual system is then
described by the combination of this abstract model and the mapping.

These technieques have been applied to model check TCP implementations.
Model checking on TCP has been done before, for example based on code [21]
or on hand-made models [19]. In this thesis, models of TCP servers and clients
are obtained through active learning. This is based on previous work in which a
TCP server was modeled, by sending inputs over the network [14], and sections
of this article have been re-used for this thesis. The learned models, together
with a model of the network, are composed into a setup with multiple communi-
cating TCP systems which is then model checked. This is done with the NuSMV
model checker [12]. As parameter abstraction is used to reduce the input al-
phabet, an abstract model is learned which cannot be model checked directly.
For this purpose, the mapping from concrete to abstract parameters is reversed
in the model checker. The model then behaves similar to the concrete system,
and communication between a TCP client and server is simulated.

One of the contributions of this thesis is that it combines strengths of active
learning and model checking in a new way; Learned models are not only model
checked, but also composed into networks. At a technical level, the main contri-
bution is the definition of a language to define mappers, such that abstractions
are easy to write, and can be automatically reversed during the model check-
ing.

2 Preliminaries

2.1 Mealy machines

We use Mealy machines to model implementations of TCP entities. A Mealy
machine is defined as a 5-tuple M = (Q, q0, Σ, Λ,→), where

• Q is the set of states

• q0 ∈ Q is the initial state

• Σ is the set of input symbols

• Λ is the set of output symbols

• →⊆ Q×Σ × Λ×Q is the transition relation

The intuitive meaning of a Mealy machine is as follows: At any time, the ma-
chine is in a state q ∈ Q, starting in state q0. If it is in state q, upon receiving
input i, it makes a transition (q, i, o, q′) ∈→. It then changes state to q′ and

produces output o. This is also denoted as q
i/o−−→ q′.

If at most one transition can be taken for every combination of input and starting
state, the Mealy machine is deterministic. If always at least one such a transition

3



can be taken, it is said to be input-enabled.

2.2 Learning the behaviour of Mealy machines

Angluin [7] described the L*-algorithm for learning a deterministic input-enabled
finite automaton describing a system, when inputs can be actively given and it
can be observed when the system is accepting. The state of the system is not
observed. Niese [16] extended this to learning Mealy machines, in which out-
puts symbols are observed. This algorithm is used in the LearnLib [27] library,
which can be used to learn Mealy machines describing real-world systems. In
this setting, LearnLib is called the learner. L* can only learn input-enabled
Mealy machines.

The learner sends sequences of inputs to the sut, and observes all outputs. After
each sequence, the learner sends a reset-request to the sut, making it jump to
the initial state. By observing multiple sequences, it constructs a hypothesis H,
which is a Mealy machine consistent with the observed behaviour. It then asks
an equivalence oracle whether this hypothesis describes the behaviour of the sut
correctly. The equivalence oracle is implemented by picking sequences of inputs,
and comparing the outputs of the sut and the hypothesis. If any difference is
found, this is a counterexample against the hypothesis. This counterexample is
returned to the learner, which then builds a new, improved hypothesis. This
is repeated until no more counterexample is found. The hypothesis is then
accepted as a Mealy machine describing the sut.

2.3 Abstraction of parameters

Existing implementations of inference algorithms only proved effective when ap-
plied to machines with small sets of input symbols. Practical systems like the
TCP protocol, however, typically have large alphabets, as inputs and outputs
have data parameters of type integer or string. Each combination of parame-
ters is considered a different symbol. The number of states and transitions is
typically exponential in the number of parameters. As such, learning a Mealy
machine describing a sut is not feasible, and even if it would be, the resulting
number of states and transitions would be too large to describe explicitly.

A solution to this problem was proposed by Aarts et al. in [5]. In this work,
the set of concrete values of every parameter is mapped to a small domain of
abstract values in a history-dependent manner. Any interaction with the sut is
then done through a mapper component. This component translates abstract
inputs to concrete, and concrete outputs to abstract. A mapper component
is an actual system that performs the translation, whereas the translation is
formally defined by a corresponding mapper. If behaviour of the sut is defined
by a concrete Mealy machine M, then M and the mapper A together define
the abstraction of M, αA(M). This abstraction is again a Mealy machine,
but with an abstract alphabet. Although the sut still uses concrete inputs
and outputs, interaction with an abstraction of the sut can now be done with
abstract symbols through the mapper component. A graphical overview of the
learner and mapper component is given in figure 1.
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abstract output

abstract input

Learner Mapper SUT

concrete input

concrete output

Figure 1: Overview of the learner, the mapper and the sut

Formally, a mapper A is defined simply by a deterministic Mealy machine.
Suppose that I and O are the concrete input and output alphabets for the
sut, respectively. Similarly, suppose that X and Y are the abstract input and
output alphabets for the abstract Mealy machine. Then the mapper has an
input alphabet I ∪ O, and an output alphabet X ∪ Y . The transition relation
is then constrained such that concrete inputs are mapped to abstract inputs,
and concrete outputs to abstract outputs. That is, ∀(q,i,o,q′)∈→(i ∈ I ↔ o ∈
X) ∧ (i ∈ O ↔ o ∈ Y ).

LetM = (Q, q0, Σ, Λ,→) be a Mealy machine, andA = (R, r0, X∪Y,Σ∪Λ,→A)
be a mapper. The abstraction of M via A is then a Mealy machine αA(M) =
(Q×R, (q0, r0), X, Y ∪ {⊥},→α), where →α, is defined by the rules

q
i,o−→ q′, r

i/x−−→A r′
o/y−−→A r′′

(q, r)
x/y−−→α (q′, r′′)

@(r, i, x, r′) ∈→A

(q, r)
x/⊥−−−→α (q, r)

The abstraction takes abstract inputs. Translation to a concrete and back to
abstract is done according to the first rule. If multiple mapper transitions are
legal, it may take any one of them. However, for some concrete outputs there
might not exist a corresponding input, in which case ⊥ is returned according to
the second rule.

Additionaly, a mapper component can be used in the reversed direction in a sim-
ilar manner. Consider the same mapper A, and an abstract Mealy machine H =
(H,h0, X, Y,→). In that case, a concrete Mealy machine may then be simulated.
This yields the concretization ofH viaA, as γA(H) = (R×H, (r0, h0), Σ, Λ,→γ),
with →γ given by the rule

r
i/x−−→A r′

o/y−−→A r′′, h
x/y−−→ h′

(r, h)
i/o−−→γ (r′′, h′)

Again, it may occur that an abstract output cannot be concretized. Aarts
defines a second rule for this situation, again letting the concretization return ⊥.
However, when concretizing an abstracted model, this should not occur.

An abstraction or concretization is implemented by an abstracting or concretiz-
ing mapper component, respectively. As the mapper state is also part of the
state of the abstraction or concretization, reset messages sent by the learner
to the sut should also reset the mapper state. An overview of directions of
translation by mappers and mapper components is shown in figure 2. When
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mapping an abstact value to a range of concrete values, any one of those con-
crete values may be used by the mapper component, according to the formal
rules for concretization and abstraction. The assumption is made that all these
values result in the same abstract behaviour. Ideally, the mapper component
should pick useful values to test this assumption. This could be achieved by
letting the mapper component pick values randomly, with a distribution that
gives a good test coverage. For example, boundary values could be tested, as
well as some random values over the entire range.

concrete abstract
input

output
formal

mapper 

input
abstracting 

mapper output

input
concretizing

mapper output

Figure 2: Overview of directions of translation by mappers and mapper compo-
nents. Red arrows represent directions that are non-deterministic, and possibly
non-input-enabled. For this thesis, abstraction is used during learning, and
concretization is used during model checking.

Note that the mapper is described by a deterministic input-enabled Mealy ma-
chine, which implies that every concrete value is mapped to exactly one abstract
value. Translating concrete values to abstract is therefore well defined. How-
ever, mapper components need to translate abstract to concrete as well, through
the same mapping. The number of abstract symbols is typically smaller than
the number of concrete symbols. As such, an abstract value is generally not
mapped to exactly one concrete value. A mapper component is therefore not
deterministic, and possibly not input-enabled, when translating abstact sym-
bols to concrete. If no transition exist for some input, an abstracting mapper
component simply returns ⊥ and does not change state, following the mapper
definition. In the resulting abstract state machine, this causes some self-loops
with ⊥ as output, signifying that this abstract input is not enabled. For a con-
cretizing mapper component, such a transition should always exist; otherwise,
the abstract Mealy machine creates outputs which cannot be translated, and no
concretization can be made. In that case, the mapper makes no sense.

We define ≤ as trace inclusion between Mealy machines; M1 ≤ M2 denotes
that for any sequence of inputs, if M1 can produce output sequence o1, o2 . . . ,
M2 can also produce those outputs. A result found by Aarts [2] is that if
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an abstract Mealy machine H is learned for a concrete Mealy machine M, it
always holds that αA(M) ≤ H, so all traces appearing in the abstraction can
also occur in the actual system. Additionaly, Aarts has found that αA(M) ≤ H
implies M ≤ γA(H). As such, M ≤ γA(H) holds for the concretization of
learned models. This is useful for model checking of safety properties, which
say something about all traces of a Mealy machine. If such a property holds for
γA(H), the concretization of the learned model, it then also holds for M, the
system itself. Model checking can thus be done on the concretization of learned
models, and the conclusions can be extrapolated to the sut.

2.4 Characteristic function

For the transition relation →⊆ Q × Σ × Λ × Q, we define the characteristic
function χ→ : Q×Σ × Λ×Q→ B as χ→(x) = x ∈→. That is, it tells whether
a potential transition is legal according to the transition relation. Solving a
characteristic function χ→ gives the legal transitions. Solving it for given q
and i yields the matching transition (q, i, o, q′), i.e. it yields the corresponding
output and the new state. Similarly, solving it for given q and o yields the
corresponding legal inputs and the new state. In this way, finding transitions
of a Mealy machine can be reduced to solving a boolean function. This can be
done with constraint solvers or by using binary decision diagrams.

2.5 TCP

Learning and model checking will be applied to the Transmission Control Pro-
tocol [24], or TCP. This protocol is used to provide a reliable data stream
between two remote applications, through a connection. A connection pro-
gresses through several states, first establishing a connection, then sending data
bi-directionally, and finally closing the connection in either direction. TCP im-
plementations communicate with their controlling application through system
calls, and with the remote TCP implementation through TCP segments, sent
over the network. A TCP implementation may be modeled as a Mealy machine,
for which the inputs are segments and system calls, and the outputs are also
segments and return values to system calls. In our setting, each TCP segment
is sent with a single network packet. A simple state diagram is depicted in
figure 3.

TCP segments contain some parameters relevant for this thesis. Most impor-
tantly, it contains flags used to send control information. The syn-flag is used
to establish a new connection, and the fin-flag to end the connection (in one di-
rection). The rst-flag resets the connection, terminating it in both directions,
whereas the ack-flag is used to acknowledge received data. Furthermore, all
segments contain a sequence number, to ensure the correct ordering of packets,
and an acknowledgement number to acknowledge data if the ack flag is set.
The sequence number is incremented for every byte of data sent, and for any
syn and fin flag sent as well. All data with sequence numbers up to the value
of the acknowledgement value are acknowledged.
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CLOSED

LISTEN

SYN SENTSYN RCVD

ESTABLISHED

FIN WAIT 1

FIN WAIT 2

CLOSE WAIT

CLOSING
LAST ACK

TIME WAIT

Passive open Close

SYN/SYN + ACK Send/SYN

Timeout/RST
Close

Active open/SYN

SYN/SYN + ACK

Close/FIN

ACK/- SYN + ACK/ACK

Close/FIN FIN/ACK

ACK

ACK/-

FIN +
ACK-
/ACK

FIN/ACK

ACK/-

Close/FIN

ACK

Timeout after two max-
imum segment lifetimes

Figure 3: A state diagram describing TCP 1

An application may act as a TCP client or server: the server starts listening for
clients with the listen-system call. A client then performs a connect-system call,
and it sends a segment with a syn-flag to the server. The server responds with
a segment with a syn and ack, acknowledging the segment from the client.
This segment is again acknowledged by the client, and now a connection is
established. An accept-system call is done by the server to communicate this
connection to the application. Finally, a close system call can be done by either
side to close one side of the connection, which is communicated with the fin-
flag, which should be acknowledged. Alternatively, two clients can connect to
each other by connect ing simultaneously. This process is shown in figure 3, but
note that this only shows expected inputs. Unexpected inputs may be ignored,
make an implementation send a rst-flag, or cause unspecified behaviour.

1Retrieved from http://www.texample.net/tikz/examples/tcp-state-machine/. Copy-
right 2009 Ivan Griffin. Reprinted under the LaTeX Project Public License, version 1.3.
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3 Mapper programs

A mapper is formally a deterministic, input-enabled Mealy machine. Often,
its behaviour can be easily described in most programming languages, or in
logic. This is less trivial for a corresponding mapper component. A mapper
component always contains a translation from abstract to concrete, which is
non-deterministic and possibly not input-enabled. This may also be done with
programming languages that allow randomness, or by returning a range of pos-
sible outputs.

In previous research, a mapper component was only used for abstraction of an
SUT during learning. This allowed to immediately write the mapper compo-
nent, instead of defining the corresponding mapper first. The translation could
directly be programmed in the direction which was needed, and inverting the
translation from abstract to concrete could then be skipped.

However, there are two main problems with this approach. The first, problem
is that Java is an extensive, general purpose language. It is therefore difficult
to generally prove equivalence between a formal mapper definition, and an im-
plementation of a mapper component. The second, more fundemental problem
is that a mapper component is programmed to run some translations from ab-
stract to concrete. There is no simple way of inverting the translation described
by a program in an imperative language. One way to base both an abstract-
ing and a concretizing mapper component on the same mapper, is by manually
writing the two. This is time-consuming and error-prone: both components
should be each others inverses. General imperative programming languages are
not designed to achieve this.

This even yields a problem when only implementing one mapper component
instead of two; it should still correspond with a formal mapper, so the translation
from abstract to concrete should have a functional inverse. It is easy to write
mapper components which do not adhere to this restriction.

To solve these problems, a simple language is introduced which is suitable for
writing mappers. It is an imperative language, but some restrictions are necce-
sary to make a mapper behave like a Mealy machine. For example, it should be
fully deterministic, and it should have transitions: updating the state is done
when translating an input to an output.

Also, as the mapper should also be executable invertedly, there should be a way
of finding inputs corresponding to given outputs. This is difficult for a program
written in a general-purpose imperative language. Specifically, loops, recursion
and function calls, and creating variables at run-time make this into a hard
problem. As these features are not neccesary for the mappers used for TCP,
these are not supported. As such, all state variables are declared in advance; no
other variables are allowed. Additionaly, only inputs and state variables can be
read from, and only outputs and new state values can be written. Statements
are therefore not dependent on sequentiality, which makes reasoning about the
inverse execution easier.

With a mapper in this language, mapper components can be created automat-
ically. Also, the language is simple enough to extract a characteristic function
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to describe the transitions. This characteristic is used for running the program
invertedly, but is also suitable for model checking, as described in section 7. An
interpreter (written in Java) reads such a mapper program, and may execute it
normally or invertedly.

3.1 Language definition

The Language is defined in extended BackusNaur form (EBNF) [1]. All names
within angular brackets are non-terminals, whereas all names within quotes are
terminals. Square brackets are used to denote optional expressions, and braces
are used to denote expressions that may be repeated.

Program overview

A mapper program comprises a state and any number of mappings, which be-
have like transitions. Note that this differs from mappers represented by Mealy
machines, which only have one transition function. If a mapper translates in-
puts I to X and outputs O to Y , the corresponding Mealy machine would have
input alphabet I ∪ O and output alphabet X ∪ Y . A mapper program defines
separate translations from I to X and from O to Y instead. Also, following the
definition of a mapper, the state variables of the program are fixed and no new
variables can be created at runtime.

〈program〉 := {〈enumDefinition〉} [〈stateDefinition〉] {〈mapping〉}

The first expression is used to define enumerated types; this can be done simply
with the name of the type, followed by a list of values.

〈enumDefinition〉 := ’ENUM’ 〈ID〉 ’{’ 〈idList〉 ’}’

〈idList〉 := 〈ID〉 idListTl

〈idListTl〉 := {’,’ 〈ID〉}

Identifiers are used for enumeration type names, enumeration values and various
other grammar rules.

〈ID〉 := [A..Z | a..z | ][A..Z | a..z | 0-..9 | ]*

State and mappings

The state is defined as a list of variables, with types and initial values.

〈stateDefinition〉 := ’STATE’ {〈varInit〉 ’;’}

〈varInit〉 := 〈type〉 〈ID〉 ’=’ 〈expr〉

There are a few builtin types, in addition to the enumerated types defined at
the start of the program. The flags-type is used for sets of flags. In this way,
the flags of a packet can be used as one value instead of separate boolean values
for every flag, as the language does not contain array-like data types.

〈type〉 := ’bool’ | ’int’ | ’flags’ | 〈ID〉

10



Mappings have a name, and lists of arguments and outputs. These are all vari-
ables with a name and a type. Furthermore, there are statements defining the
mapping, and the update of the state. The formal input or output of a mapper
is then defined as the tuple of all arguments or all outputs, respectively.

〈mapping〉 := ’MAP’ 〈ID〉 ’(’ 〈varDeclList〉 ’->’ 〈varDeclList〉 ’)’ {stmt}
[’UPDATE’ {stmt}]

〈varDeclList〉 := 〈varDecl〉 varDeclTl

〈varDeclTl〉 := {’,’ 〈varDecl〉}

Statements

Statements can either be assignments or if-else-statements. In a mapping, as-
signments should only be done to the output variables. In state updates, assign-
ments should only be done to state variables. Every variable should be assigned
a value exactly once. In case of if-else-statements, this means that both branches
should assign to the same variables.

〈stmt〉 := 〈assign〉 | 〈ifelse〉 | 〈stmt〉 ’;’ 〈stmt〉

〈ifelse〉 := ’if’ ’(’ 〈expr〉 ’)’ ’{’ {stmt} ’}’ ’else’ ’{’ {stmt} ’}’

〈assign〉 := 〈ID〉 ’=’ 〈expr〉 ’;’

Expressions

Expressions may be literals, enumeration values denoted as type.value, vari-
ables, or operators working on other expressions. All binary operators are
right-associative. Also, rules are listed in order of precedence. The types of
expression are as expected; arithmetic operators have type int × int → int,
equality has type T × T → int for all T , etc. The has-operator is used to check
whether certain flags are set. f1 has f2 returns a boolean denoting whether all
flags of f2 are set in f1. Note that integer literals are non-negative: a negative
integer is interpreted as a unary minus operating on a positive integer. This
ensures that the expression x− 1 is not parsed as x(−1).

〈expr〉 := 〈exprlit〉
| 〈ID〉 ’.’ 〈ID〉
| 〈ID〉
| 〈expr〉 (’+’|’-’) 〈expr〉
| ’-’ 〈expr〉
| 〈expr〉 (’*’|’/’) 〈expr〉
| ’ !’ 〈expr〉
| 〈expr〉 (’==’|’ !=’) 〈expr〉
| 〈expr〉 ’has’ 〈expr〉
| 〈expr〉 ’|’ 〈expr〉
| 〈expr〉 ’&’ 〈expr〉
| ’(’ 〈expr〉 ’)’
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〈exprlit〉 := 〈bool〉 | 〈int〉 | 〈flags〉

〈bool〉 := ’true’ | ’false’

〈int〉 := digit+

〈digit〉 := ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’

〈flags〉 := ’$’ {’S’ | ’A’ | ’F’ | ’R’ | ’P’}

Furthermore, the mappers may contain C-style block-comments and line-comments,
and any form of whitespace may be used to separate tokens.

An example of a mapper language is given in code snippet 1. Note that this
program contains only one mapping; a mapper component contains at least two
(for sut inputs and outputs), sharing the state.

Code snippet 1: An example mapper

ENUM absDomain {V1 , V2}

STATE

int counter = 0;

bool isCounting = true;

MAP input(int concIn -> absDomain absOut)

if (isCounting & concIn == counter) {

absOut = absDomain.V1;

} else {

absOut = absDomain.V2;

}

UPDATE

if (absOut == absDomain.V1) {

counter = concIn + 1;

isCounting = isCounting; // unchanged

} else {

counter = 0;

isCounting = false;

}

This mapper translates an integer argument and produces an output of do-
main absDomain, an enumerated type containing two values V1 and V2. The
state consists of an integer counter and a boolean value isCounting. As long as
isCounting = true and the input follows the counter value, V1 is returned. If
another input is given, isCounting is set to false and V2 will always be returned
afterwards.

3.2 Interpreting and executing

The interpreter first parses the mapper program and creates an abstract syntax
tree. It then checks the types of expressions and variables such that only well-
typed programs are accepted. It also checks whether all mappings assign a value
to every output.
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As the mapper language is imperative, executing mappings from concrete to
abstract is quite straightforward. An overview of the data flow is given in fig-
ure 4. At the start of the interpretation, it creates a state defined by the initial
values of all state variables. When executing a mapping, a valuation for the ar-
guments should also be provided. Given such valuations, expressions may then
be reduced to values. The mapping contains assignments to output variables,
which create an output-valuation. The update of a mapping contains assign-
ments to state variables, changing the state. A mapping runs its update after
determining the output. Obviously, if-else-statements execute either branch, de-
pending on the value of the condition. The interpreter provides an interface for
other programs to execute mappings in this way, and retrieve the results. This
interface is used by the learner to translate incoming responses from the sut.
Additionaly, there is a timeout-mapping which does not have any arguments or
results, but only updates the state.

current 
state

input

Mapping output

Update
new 
state

Figure 4: Graphical overview of executing a mapping. The current state and
input are used to determine the output. Then, the current state, input, and
output may be used to update to the new state.

3.3 Semantics of expressions

The semantics of the language are quite simple when executing a mapping in
the normal direction. In sequentially executed programs, evaluated variables
can be substituted by their value. But when a mapper is evaluated invertedly,
expressions may contain input variables, which are not assigned a value before-
hand. As such, some expressions cannot be reduced. The evaluation therefore
does not yield a single value, but a more complex expression containing vari-
ables. In general, it is not neccesary to substitute any variable by its value.
The semantics of expressions are therefore simply a translation from syntax to
a similar mathematical expression.

JlitK = lit where lit is an integer, boolean, flag or enumeration literal.

JxK = x where variable x is an input or state variable.

J−exprK = −JexprK

Jexpr1 +expr2 K = Jexpr1 K+ Jexpr2 K (and similar for other operators)

For a known valuation, expressions may then be reduced by substituting vari-
ables, and by solving the mathematical expressions. As expressions may only
contain input and state variables, expressions can always be reduced to a single
variable when executing in the normal direction.
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3.4 Extracting the characteristic function

The interpreter can extract a characteristic function representing the transition
described by a mapping. Recall that formally, χ→ : Q × Σ × Λ × Q → B.
We represent this function as a boolean expression, based on the statements
of the program. This expression is built recursively from the statements of
the mapping. As may be expected from the formal definition, this expression
contains inputs, outputs, variables in the current state, and variables in the
new state. Evaluating this expression for some transition (q, i, o, q′) then yields
a boolean, denoting whether this transition is legal.

As the result of a mapper program does not depend on the order of statements,
the characteristic of multiple statements is simply the conjunction of the indi-
vidual characteristics:

χstmt1;stmt2;(q, i, o, q
′) = χstmt1(q, i, o, q′) ∧ χstmt2(q, i, o, q′)

The characteristic of an assignment to an output is a simple equality between
the output and the expression. Caution should be taken in the update of the
state: the left hand side of an assignment contains variables in the new state q′,
whereas state variables in expressions are in the current state q.

χid=expr;(q, i, o, q
′) = (id = expr) (with id a variable in o or q′)

For if-else-statements, either branch can be taken. If the first branch is taken,
the branching condition should be true. For the second branch, it should
be false. Additionaly, the characteristic of the branch that is taken should
hold.

χ if (cond) {branch1} else {branch2} (q, i, o, q′)
= (JcondK ∧ χbranch1(q, i, o, q′)) ∨ (¬JcondK ∧ χbranch2(q, i, o, q′))

In this way, a characteristic expression for both the mapping and the corre-
sponding update is found. The total characteristic is simply the conjunction of
the two.

As an example, the characteristic expression of the mapping in code snippet 1
is given. The mapping contains a single if-else-statement. Its condition gives
the characteristic expression (isCounting∧ concIn = counter). The first branch
gives the equality absOut = V1 , and the second branch gives absOut = V2 ;
The complete mapping is then the disjunction of two branches:

χinput(isCounting, counter , concIn, absOut , isCounting′, counter ′)
= ((isCounting ∧ concIn = counter) ∧ absOut = V1 )
∨ (¬(isCounting ∧ concIn = counter) ∧ absOut = V2 )

The state update yields a similar expression, containing state variables of the
current state and the new state. Combining these expressions then gives the
total characteristic function describing the transitions of this mapping.

3.5 Executing mappers invertedly

The program flow for executing a mapper invertedly is similar to normal ex-
ecution, as shown in figure 5. The difference is that the role of inputs and
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outputs of a mapping is swapped; outputs are supplied, and matching inputs
are returned. This is done by first extracting the characteristic of the mapping.
All expressions are reduced as far as possible, substituting all outputs and state
variables. This yields a boolean expression on the input variables. A constraint
solver is then used to find input values satisfying this expression, and these are
returned. The characteristic function can also be used to find the new valua-
tion of state variables. However, the update-function can always be run in the
normal direction, equivalent to normal execution, which is faster than using a
constraint solver. If no transition exists, the constraint solver will find no in-
put, and the update is not executed; this is useful for learning, as described in
section 2.3.

current 
state

Output

inverted 
mapping

input

Update
new 
state

Figure 5: Graphical overview of executing a mapping invertedly. The program
flow is similar to executing normally, but the outputs are provided and inputs
are returned.

For this purpose, the library Choco [26] has been used. This is a high-performance
constraint solver written in Java. Choco supports integer variables with arbi-
trary ranges. Boolean variables are handled as special cases of integers, with
domain {0,1}. Enumerated values are also handled as integers: for each enumer-
ated type, the values are represented as integer constants. Choco also supports
sets, and as such, flags can be represented with sets of integers. Every type of
flag is then represented by an integer constant.

Choco does not offer a constraint type for satisfaction of arbitrary boolean
expression trees. However, it offers enough constraint types to simulate every
operator in the mapper language separately. To create an expression tree, an
intermediate variable is created for every operator node. For example, the
expression x + y is made by creating a variable tmp for which the constraint
tmp = x + y holds. tmp then represents the expression, and can be used in
other constraints. The expression z ∗ (x+ y) is then again represented as tmp2,
for which tmp2 = z ∗ tmp.

Choco can tell whether solutions exists. If multiple solutions exists, Choco re-
turns one of them. There is no control over which of these solutions is returned.
As described in section 2.3, the constraint solver should ideally pick bound-
ary values with a significant chance. However, this cannot be done with most
constraint solvers.

As an example, the mapper in code snippet 1 can be run in the inverted direc-
tion. First, consider the case where isCounting = true. If V1 is expected as
output, the first branch of the mapper should be evaluated. As such, concIn
will have value counter. If V2 is expected, any other value for concIn is al-
lowed.
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Now consider the case when isCounting = false. The first branch can then never
be taken. Then there is no solution when expecting output V1, and any input
satisfies expected output V2.

3.6 Antlr

Parsing of the language is done with the Antlr 4 [22]. This is a Java-library,
which reads a dialect of EBNF-grammar, and which can then generate parser
code for a given grammar. The EBNF-grammar as described in this section
is thus used directly (in Antlr-syntax) to ensure a correct parser. The gener-
ated code can then be called to obtain a parse tree, used in the interpreter and
also for generating mappers components used in model checking, as described
in section 5.2. Antlr is able to handle left-recursion and rule precedence auto-
matically, which simplifies parsing expressions and reduces the size of the parse
tree.

4 Learning Setup

4.1 Connecting the Learner

With the mapper language available, mappers can be constructed to learn mod-
els of TCP implementations. In that case, the sut is either the server or the
client in the TCP communication. These suts are from now on called the TCP
entities. Both client and server have been modelled with LearnLib in separate,
but similar, experiments. In a real life TCP connection, there are always two
TCP entities participating. When learning a model of one TCP entity, the other
is simulated by the learner and mapper component, which can send and receive
network packets. The mapper component is the interpreter of the mapper lan-
guage, together with the mapper program it executes. In this mapper program,
actions, incoming segments, outgoing segments and timeouts are all mapped
through different mappings, so a small wrapper is used to call the appropri-
ate mapping. The sut also communicates with its application layer through
system calls, also controlled by the learner. Whereas the mapper component
implements mapping between abstract and concrete messages, we introduce the
adapter to transform these concrete messages to actual actions performed by
the system. This can be either creating TCP segments and sending it over
the network, or commanding the application layer to perform a system call.
The adapter also listens for response packets on the network and infers the re-
spective concrete outputs, which it delivers to the learner. The adapter is also
responsible for detecting system timeouts; the sut is not guaranteed to respond
with a TCP segment, so after a short time, the abstract output timeout is
concluded.

The adapter runs on the side of the learner whereas the sut runs on a different
(virtual) machine. Therefore, the adapter cannot perform system calls directly.
System calls need to be performed by an application, and therefore there is
an application running the sut. Like the adapter, it only listens to learner
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commands, and performs the corresponding system calls. For this purpose,
the application running the sut also makes a direct socket connection with
the adapter. Additionaly, this connection is also used to communicate which
port should be used to send and receive packets; After every reset, this port is
changed to prevent connections from previous runs from interfering.

With that said, we present in figure 6 the framework implemented to learn
segments of the TCP implementation. On the learner side, we use LearnLib [27],
a Java based learning library. LearnLib provides the Java implementation of the
L* based learning algorithm. A Python adapter based on Scapy [10] is used to
craft and send packets and retrieve response packets. Communication between
the mapper component and adapter is done over sockets. With virtualization,
the experiments can be run on a personal PC by running the learner on a virtual
machine and the sut on the host, or vice versa.

concrete output

SUT

Learner

abstract output

abstract input

Learnlib
abstracting

Mapper
Adapter

Adapter
TCP 

implementation

concrete input

response 
packet

request 
packet

system call 
request

system call

learner machine

sut machine

Figure 6: Overview of the experimental setup

The LearnLib implementations of L* and the observation pack algorithm [17]
are used for building model hypotheses. Equivalence testing was done with
random traces.

4.2 Application Layer Choices

The mapping from abstract to concrete values and vice versa are trivial for the
messages to and from the application layer, as they contain no parameters; the
mapper is just the identity function. According to the rfc [25], the system calls
needed to start a connection are listen and accept for the server, and connect
for the client. To terminate a connection, both sides need a close. In the
input alphabet, we have used the corresponding messages listen, accept, connect,
close connection and close server. These messages need to be interpreted as
actions for the application running the server. However, the descriptions of these
messages in the rfc abstract from many implementation details, and these inputs
do not all trivially translate one on one to system calls. As such, choices have to
be made in this implementation regarding the actual actions performed.
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Specifically, the rfc standard does not describe how sockets are used while es-
tablishing connections. All modern operating systems use a dedicated socket
to represent the listen state. When a client connects, a new socket is created
for this connection. This connection then proceeds to the next state from the
listen state, while the listening socket remains in the listen state. In this way,
many connections may be established with one listening socket. I have chosen
to use at most one listening socket and one connection socket at any time. If
a connection socket still exists when a new connection socket is created, the
old connection socket is discarded and all operations are performed on the new
socket. There are two reasons why we do not allow multiple connections at any
time:

• It would become unclear which connection close connection is supposed
to close, or over which connection a TCP segment should be sent.

• Every connection would have an own state, so the state diagram of mul-
tiple parallel connections would become needlessly complex. If the be-
haviour of individual connections can be presumed independent, this would
not add any information.

The state diagram as described in the rfc mentions only one close message, but
this does not describe the behaviour of socket implementations accurately; the
listening socket and connection socket can be closed individually, and both show
different behaviour. Closing the listening socket does not close any connections,
but prevents any new connections from being created. Closing the connection
socket terminates the connection, but does not influence the listening socket.
As such, we use the two messages close connection and close server instead of
a single close message.

Another implementation detail is that the accept and connect system calls are
blocking. The thread calling these cannot do any other system calls until the
connection is established, for which additional inputs are needed. It is ques-
tionable what the behaviour of the application should be when the learner asks
for the input sequence listen, accept, close server. The application may not be
able to close the socket if it is still blocked by the accept. This input sequence
would then cause the same behaviour as when the close server -input would not
be asked. Additional insight in the behaviour of the server is therefore gained
if the application is able to process any inputs when an accept-call is still being
done. For this reason, we have chosen to process the accept-input in a different
thread, such that additional inputs can still be processed in parallel. If an accept
is asked when this additional thread is still handling another, older accept, the
last accept is ignored. The same is done for connect.

The messages close connection and close server simply call a closing system
call on their socket. close server is only in the input alphabet of the server.
Additionaly, for the server the listening socket is already bound to an address
with a bind system call at the start of a learning sequence. The connection
socket of the client is also bound to an address with a bind. In practice, the
client address is generated only upon establishing a connection, but for learning,
it is practical to already have the address available before starting to send an
input sequence. The actions as described above should allow traces which follow
the transitions as described in the state diagram in the rfc, as well as traces
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deviating from it.

The system calls may return error messages to the application. These are not
included in the output alphabet for simplicity, as each transition may then have
two outputs: one as a tcp segment over the network, and one error message.
These inputs could be combined such that each output in the abstract model
becomes a tuple of outputs from these two channels. However, this would delay
the learning, as the learner can now proceed with the next input as a TCP
segment arrives; it would then also have to wait for error messages, which are
expected to appear less often, leading to more timeouts. Also, it is unclear
how error messages from delayed system calls accept and connect should be
handled.

4.3 Practical problems

The general setup as described in this section works, and can be used to learn
model of TCP implementations. However, there are some technical issues that
also need to be solved. These have to do mostly with the interface between the
learner and the sut.

As TCP should provide a reliable data stream even on unreliable networks,
packets are retransmitted if they are not acknowledged properly. The learner
cannot handle such retransmits; it will erroneously match the retransmit to the
input that was sent just before. Running a trace should be finished before the
first retransmits arrive, and the length of traces should thus be short enough.
In practice, this problem limits the size of the abstract input alphabet; The
number of abstract inputs determines the level of detail of the model, and the
length of input sequences needed to learn it. Alternatively, retransmits could
be detected and left out, but the sut might also send two actual responses with
the same parameters, and actual responses would then be discarded.

Another issue is the timeout output, which denotes that the sut does not
respond. The adapter concludes this output if it does not receive any network
output within a certain period. If this period is too short, the adapter may
conclude a timeout before a response from the sut arrives. Due to the issues
with retransmits, this period should also not be too long. The minimal waiting
time depends on the sut implementation, but also on the virtual machine and
on the virtual network. The delay could be shortened by giving all relelvant
processes priority in their operating systems. Different hardware gives different
minimal waiting times, but typical timeout values are in the range of 100 to 200
milliseconds.

Furthermore, there are issues with sending requested packets. Usually, TCP
packets are only sent through sockets; the network stack manages this. But
the learner requests single packets, not neccesarily according to the protocol.
Although a library such as Scapy can do this, the network stack does not know
about this. If it then receives a response, it will not recognise it as a registered
connection, and it will attempt to close the apparent connection by sending a
packet with a reset-flag. A firewall should be used to prevent these resets, while
still allowing the packets from Scapy.
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Ideally, a reset from the learner should also reset the adapter and the application
running the sut. From the side of the learner, packets are not send through
sockets, so no sockets are created and none have to be closed. The sut, however,
creates many sockets during learning, and these would accumulate if they are
not closed properly. This is done by sending a packet with a reset-flag, and by
closing any created sockets on the side of the sut. As the learner tries many
combinations of inputs, these sockets are closed in many different states. With
the application netstat [9], it is observed that not all sockets close properly
during the learning in this way. Some sockets remain in the listen state, but
the cause for this was not found. After too many sockets have been created,
creating any new sockets becomes slow, and eventually the learning cannot
continue. A work-around was to make restarts of the sut application possible
during learning.

Many of the mentioned issues manifest as non-determinism: retransmitted or
missed responses depend on timing, and this varies per trace. One input trace
might therefore yield different output traces, as these issues might or might
not occur for every attempt. By default, LearnLib assumes that the sut is
deterministic. A wrapper was added to the mapper, which checks determin-
ism; if an input trace was already learned before, the output trace should be
equal to earlier observations. Upon detecting non-determinism, the learning is
stopped.

5 Mapper implementation

5.1 Abstraction

As mentioned previously, the mapper component has several mappings. Actions
simply use the identity function, and they do not update the mapper state. TCP
segments from the learner to the sut and vice versa do need a mapping. The
parameters used in this translation are shown in table 1. The mappings are
based on the work of Aarts et al. in [5]. Like in their work, both inputs and
outputs are generated based on the sequence number, acknowledgement number
and flags found in each TCP segment.

Abstract inputs from the learner are valid and invalid . A valid input is an
input that can be sent according to the protocol. This mapper is an intuitive
interpretation of the rfc and practical experience. It is not trivial to define
when a connection is established in terms of inputs and outputs. As such, small
mistakes may exist in the initial mapper. However, these may be detected with
the model checking, and the mapper can be improved to fix these issues.

If a connection is established, a valid sequence number is equal to the last
acknowledgement received from the sut. A valid acknowledgement number
acknowledges the last sequence number received, so it is equal to that number
plus one. If no connection is established yet, any sequence number can be picked
as a fresh value, and the acknowledgement number is zero. All other values are
invalid.
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state variable domain
sutSeq integer
learnerSeq integer
learnerSeqProposed integer

concrete parameter domain
flagsIn flags
concSeqIn integer
concAckIn integer
flagsOut flags
concSeqOut integer
concAckOut integer

abstract parameter domain
absSeqIn {valid, invalid}
absAckIn {valid, invalid}
flagsIn flags
absSeqOut {current, next, zero, fresh}
absAckOut {current, next, zero, fresh}
flagsOut flags

Table 1: The domains of all mapper parameters and state variables.

By observing the responses from the sut, the mapper concludes what the current
sequence numbers from learner and sut should be. Firstly, the sut may send
acknowledgement numbers with value zero. This may occur when no connection
is established according to the sut, or when it sends a reset. As such, zero is an
abstract output. Whenever the sut sends a non-zero acknowledgement number,
this value can be based on the sequence number of the learner. When acknowl-
edging the last sequence number sent, it is equal to that number plus one. This
is represented by the abstract output next. Furthermore, the last packet may
be rejected, and the previous sequence number may then be acknowledged with
abstract output current. In all other situations, the acknowledgement number
is translated to fresh.

For the sequence number of the abstract output, we use a similar approach.
next is used to represent a sequence number that is expected according to the
last acknowledgement number sent by the learner. current is when a previ-
ously received number is re-used. zero and fresh are again used for all other
values.

5.2 Mapper program

The mapper program used to learn a models is shown in code snippet 1, 2,
and 3. This mapper works for both the client and the server. It is denoted
in mathematical representation for readability. Furthermore, unchanged state
variables should be explicitly mentioned in the mapper language. This has been
omitted in these code snippets, as well as the identity mapping for flags.

The state comprises three integer variables: the current sequence numbers of the
sut and learner, and a freshly proposed sequence number of the learner.
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sutSeq , learnerSeq , learnerSeqProposed : {0..232}

The latter is used when the learner can pick a fresh value. If it is acknowledged,
the learner can continue with that sequence number. Otherwise it is concluded
that the sequence number is rejected by the sut, and it can be reset such
that new fresh values can be picked. Furthermore, we use the constant value
not set = −3 to denote that a state variable does not have a meaningful value.
This is also the initial value of all state variables.

Code snippet 1 The mapper program for translating abstract TCP segments
from the learner to concrete segments of the sut.

map Request(flagsOut, concSeqOut, concAckOut→ absSeqOut, absAckOut)
if learnerSeq = not set ∨ learnerSeq = concSeqOut then

absSeqOut = valid
else

absSeqOut = invalid
end if
if (sutSeq = not set ∧ concAckOut = 0) ∨ (sutSeq 6= not set ∧

concAckOut = sutSeq + 1) then
absAckOut = valid

else
absAckOut = invalid

end if
end map
update

if learnerSeq = not set then
learnerSeqProposed = concSeqOut

else
learnerSeqProposed = not set

end if
end update

With these mappers it was possible to learn models, but with the model checker,
some errors in the mapper were found as described in section 7.6. Traces were
found with invalid inputs which should actually be valid according to the spec-
ifications. One of the errors was that the acknowledgement number is always
expected to be the last sequence number received, plus one. This is only the
case if the packet containing that sequence number also contains control infor-
mation, i.e. a syn or fin flag. The change to the mapper which fixes this can
be seen in code snippet 4

An additional mistake was found in recognising when the learner and sut are
connected. Establishing a connection seemed to function properly, but closing a
connection was not. If the connection was already closed with a reset according
to the sut, it could send reset-packets with an acknowledgement number zero.
The learner did not recognise that the connection was terminated, and expected
its sequence number to be acknowledged. This could be fixed by updating the
mapper according to code snippet 5.
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Code snippet 2 The mapper program for translating concrete TCP segments
from the sutto abstract segments to the learner.

map Response(flagsIn, concSeqIn, concAckIn→ absSeqIn, absAckIn)
if concSeqIn = sutSeq + 1 then

absSeqIn = next
else if concSeqIn = sutSeq then

absSeqIn = current
else if concSeqIn = 0 then

absSeqIn = zero
else

absSeqIn = fresh
end if
if concAckIn = learnerSeq+1∨concAckIn = learnerSeqProposed+1 then

absAckIn = next
else if concAckIn = learnerSeq then

absAckIn = current
else if concAckIn = 0 then

absAckIn = zero
else

absAckIn = fresh
end if

end map
update

if flagsIn has R ∨ (learnerSeqProposed 6= not set ∧ concAckIn 6=
learnerSeqProposed + 1) then

// upon receiving reset, or if a fresh seqNr from the learner is rejected
sutSeq = learnerSeq = not set

else if learnerSeqProposed = not set ∨ concSeqIn = sutSeq + 1 then
// if seqNr matches, or if a fresh seqNr from the learner is accepted
sutSeq = concSeqIn
learnerSeq = concAckIn

else if flagsIn has S then
// a syn means that the sut picked a fresh seqNr
sutSeq = concSeqIn
if concAckIn 6= 0 then

learnerSeq = concAckIn
end if

end if
learnerSeqProposed = not set

end update

Code snippet 3 The mapper program for translating timeout responses, i.e.
when the sut does not respond. As there are no parameters to translate, the
mapping itself is empty, but it still updates the state.

map Timeout
end map
update

learnerSeqProposed = not set
end update
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Code snippet 4 The correction to the validity of acknowledgement numbers,
in the Response-mapping. The update of sutSeq is now only done conditionally.

map Response
. . .

end map
update

. . .
if (flagsIn has $S) ∧ (flagsIn has $F ) then

sutSeq = concSeqIn
end if
. . .

end update

Code snippet 5 The correction to closing connections with a reset, in the
Request-mapping.

map Request
. . .

end map
update

if flagsOuthas$R then
learnerSeqProposed = sutSeq = learnerSeq = not set

else if learnerSeq = not set then
learnerSeqProposed = concSeqOut

end if
end update
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6 Learned models

With the mapper described in section 5, model of an Ubuntu 14.04 server and
client have been learned. The result is shown in appendices A and B. For the
parameters, the flags syn, fin, rst are used, as well as combinations of these
together with ack, and ack without other flags. The close server input is
not included; the learner showed some non-determinism with this input. As
mentioned in section 4.3, larger input alphabets were harder to learn due to
longer input sequences. Invalid inputs are therefore not learned, as they were
less important for the model checking, as described in section 7.

7 Model Checking TCP Entities

7.1 NuSMV

NuSMV [12] is a tool for checking specifications for state-based models. In
NuSMV, a state is modeled as a valuation of variables, each with a finite num-
ber of possible values, such as integers in a certain range, or an enumerated set
of symbolic constants. A NuSMV-model describes variables and their domains,
allowed initial states, and the possible transitions to new states. These transi-
tions are defined as invariant predicates on the current state and the next state;
Given the current state, all next states for which these invariants hold are legal.
This allows for non-determinism; if multiple states are legal, NuSMV will check
them all (if necessary).

Once specified, a model can be checked for specifications in temporal logics such
as CTL and LTL [23]. If a specification does not hold, the tool will produce
a counterexample if possible. For safety properties that do not hold, a coun-
terexample should always be given. It can also be used to find deadlock states.
Additionaly, NuSMV can be used to step through a model interactively. This
can be used to observe the behaviour of the model and to debug it.

7.2 Simulating TCP Entities

For this thesis, the behaviour of TCP entities as found by active learning is
model checked with NuSMV. This is done by composing a models of two TCP
entities, and simulating communication between the two. The Mealy machines
learned with LearnLib [27] are directly translated to NuSMV-models by a script.
However, these models take abstract inputs and produce abstract outputs, which
are not necessarily from the same domain. This makes them unsuitable for
model checking, since an abstract output from one TCP entity cannot be used
directly as an input by the other TCP entity. Therefore, the concretization of
these Mealy machines is model checked instead. For this purpose, the mappers
used during learning have been translated to NuSMV-modules as well.
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7.3 Global Overview

The global structure of the NuSMV-model as used to model check the commu-
nication between two TCP entities is displayed in figure 7. In this model, the
mapper component is used for concretization. It is split into the input abstractor
and the output concretizer.

TCP-entity

network

abstract
input

application 
layer

input abstractor
concrete 

input

output 
concretizer

network

abstract 
output

concrete
output

other TCP-
entity

application 
layer input

Figure 7: A schematic overview of the NuSMV-model. For simplicity, only
half of the setup is shown in detail, as the model is symmetric and the other
half is similar. Each rectangle is an instance of a NuSMV-module. The arrows
represent the data flow. NuSMV-variables are not mentioned explicitly in this
overview, but each arrow contains at least one variable, and modules may also
contain variables.

A TCP entity may receive an input, either from the application layer or over the
network. Concrete inputs from the network are first translated to abstract in-
puts by the input abstractor. Upon receiving an abstract input, the TCP entity
will change its state and produce an abstract output. The output concretizer
then translates this abstract output to a concrete one. Alternatively, a timeout
may be given and no concrete output is produced (but the mapper state is still
updated). If there is a concrete output, the network will then copy it to the
input of the other TCP entity. This process will then repeat, until either side
produces a timeout and communication stops. Whenever a TCP entity does
not already have an input from the network, the application layer may choose
to provide it with a system call input. This also implies that both entities may
receive an input in parallel. Situations where both entities get a system call at
the same time are thus also considered, as well as situations in which a system
call is done when the other entity is handling a network input.

Concrete sequence and acknowledgement numbers in the real implementations

26



are 32-bit numbers, but this makes the state space larger than necessary. During
model checking, integers are therefore unsigned integers in the small range, from
zero to seven. No information is lost because of this, as the learner assumes that
different numbers behave similarly anyhow, if they are mapped to the same
abstract value.

Abstract numbers are represented by symbolic constants. Flags are encoded
as ‘word’ variables, which are simply vectors of bits. In theory, flags are also
translated from abstract to concrete and vice-versa, but as this translation is
simply the identity function, so the same variable is used for both abstract and
concrete.

When no input or output is used, the corresponding variables are set to a default
value. For symbolic constants, the constant none is used, whereas integers get
the value -3 and flags are set to the zero-vector. We cannot rely on these values
alone to determine whether an input or output is given. For example, when
default concrete values are set, this may be either because of the absence of
an output, or because of a timeout-output. Also there can be only one type of
input at the same time: either a TCP segment, or a system call from the upper
layer. For this reason, there are meta-variables denoting what the input and
output for both TCP entities is: a TCP segment, a system call, a timeout, or
none when the input or output is not set. Initially, all input and output types
are none and all values are set to default. NuSMV also requires a model to
explicitly state when a variable remains unchanged. As such, when no input is
provided to a TCP entity or to a mapper module, its state is unchanged.

In addition to the modules mentioned above, NuSMV requires a main module.
This module creates instances of all other modules, and all variables that need
to be shared among modules.

7.4 Model Details

7.4.1 TCP entities

The NuSMV module used for TCP entities is shown in code snippet 2. Two
modules are generated; their general structure and interface with the network
is the same, but the states and transitions may differ. The structure of the
models of the TCP entities are direct translations from the corresponding ab-
stract Mealy machines. As such, the NuSMV code for states and transitions
is generated from the dot-files describing the Mealy machines. This module
controls the values of the abstract outputs, containing flags and a sequence and
acknowledgement number. It also sets the output type.

Code snippet 2: The module of a TCP entity. The generated lists of states and
transitions are omitted due to their length. All code shown is manually written
and generated code is inserted at the indicated positions.

MODULE TCP1(actionInput , flagsInput , seqInput ,

ackInput , flagsOutput , seqOutput , ackOutput ,

inputType , outputType)

VAR
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state : {

states are enumerated here

, ERROR};

ASSIGN

init(state) := s0;

next(state) := case

state = ERROR: ERROR;

transitions are enumerated here

inputType = NONE : state;

TRUE: ERROR;

esac;

next(flagsOutput) := case

flags outputs are enumerated here

TRUE: 0b 00000;

esac;

next(seqOutput) := case

sequence number outputs are enumerated here

TRUE: NONE;

esac;

next(ackOutput) := case

acknowledgement number outputs are enumerated here

TRUE: NONE;

esac;

next(outputType) := case

next(flagsOutput) != 0b 00000 & next(seqOutput)

!= NONE & next(ackOutput) != NONE: PACKET;

inputType != NONE: TIMEOUT;

TRUE: NONE;

esac;

The state of a TCP entity is a symbolic constants, having the domain of states
as described in the corresponding Mealy machines. Obviously, this module
updates its state according to the Mealy machine, and the initial state is re-
spected.

When no input is given, all outputs are set to their default value, and the state
remains unchanged. If an input is given, but there is no transition matching
the input, the state is set to an error-value. In the error-state, the model does
not make any transitions or give any output anymore. This occurs when this
input was not included in the input alphabet during learning. When checking a
specification, one should check that this error-state is not reached: in that case,
the specification cannot be checked for the inputs which are not learned.

7.4.2 The network and application layer

There are two network instances, one for each direction of network traffic. These
instances simply move the output of one side to the input of the other side. The
network modules are also suited for modeling an unreliable network by not
moving output to input, or by tampering with variables. The network itself
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contains no state variables. There is a separate module for the application
layer. It observes the inputs from the network, and if there is none, it may give
a system call as input.

7.4.3 Mapper

The mapper is composed of three modules: the mapper state, an input abstrac-
tor and an output concretizer. The mapper state simply lists all state variables
which are also used for active learning. It also sets the initial values accordingly,
and it ensures that the state remains unchanged if necessary. A reference to the
mapper state is given to the input abstractor and output concretizer, as they
need to read and set state variables. When an input or output is given, the state
variables are set by the input abstractor or output concretizer, respectively. The
modules receive the relevant input or output types, to know when they should
make a transition.

The construction of the input abstractor and output concretizer follows directly,
from the transition relation of the mapper. Obviously, the mapper should be the
same as the mapper used during the learning of the Mealy machine. The char-
acteristic of the transition relation is extracted from the mapper as described in
section 3. As it is a simple boolean expression, it is directly usable in NuSMS,
apart from some small differences in syntax. This transition relation is trans-
lated to NuSMV-syntax and set as an invariant. In this way, when the current
state and either the concrete or abstract symbol is defined, this invariant au-
tomatically constraints the corresponding other symbol and the next state. In
this way, NuSMV properly handles all legal transitions.

7.5 Checking specifications

The properties to check are written in LTL. LTL formula encode properties
about paths; it is satisfied if it holds for all possible paths. It is a superset
of propositional logic, and a relevant operator is the always-operator, G. The
formula Gψ specifies that ψ should hold in any point in time.

The specification to be checked is that invalid inputs should never occur at ei-
ther side. In case they do, there is something wrong in the implementation,
assuming that the learned models and the mappers are correct. This property
can be described by the formula

G(absSeqInput1 6= INV ∧ absSeqInput2 6= INV ∧ absAckInput1 6= INV ∧
absAckInput2 6= INV )

7.6 Results

The specification has been checked, for both the situation with one client and
one server, and for two clients. It was not satisfied, so invalid inputs could occur.
As the model NuSMV provides a counterexample, these could be analysed to
find the cause of the invalid input. Three main causes were found.
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1. Errors in the mapper: The mapper should capture the notion of validity,
but as described in section 5.2, this is done manually and might be incor-
rect. The model checking helped in finding these errors, and after fixing
them, these issues were all solved.

2. Errors in the learned models: Re-running the trace in the learner-setting
showed that the real implementation did not show these invalid inputs.

3. The notion of validity is not general enough. During learning, only se-
quential traces are analysed, but this cannot be generalised to concurrent
systems.

The second issue shows an important difference between theory and practice for
learning. The learning algorithm appeared to erroneously join states which could
be reached after opening and closing a connection. As such, connections could
be closed multiple times in the model, but not in the real implementation. As
a result, multiple closing packets with a fin flag could be sent instead of only
one. The first packet closes the connection, making any further fin-packets
unexpected, hence invalid. The equivalence oracle should find any difference
between a model hypothesis and the sut, but it does not. As described in
section 4, only random traces were used during these experiments. In some
cases, the erroneous output only appears in traces of length seven or more.
Then there is only a very small chance of finding these errors with random
traces. They are found with the model checker, and these traces could be used
as a counterexample for the hypothesis. In this way, these errors could be fixed,
but this is a tedious approach if not automated. As such, not all errors found
in this way are fixed.

The third issue is a more fundemental one. The notion of validity currently
defines what should be sent to the TCP entity, in case of the learning setup
by the learner. During model checking, it is about what should be sent to the
model by the other side, i.e. the other model and the network. However, in the
setting of learning, this notion is simpler than during model checking. Learning
only occurs sequentially, and every output is a response to the preceding input.
The model checker also checks concurrent situations, in which the two entities
send a packet at the same time. The received packet is then not a response to
the sent packet, as the packets crossed on the network. To prevent these invalid
inputs, a third category is therefore needed, next to only valid and invalid :
outputs that should not be sent as a response to the previous input, but that
might occur due to these concurrency issues. Network issues such as packet loss
are not modeled for this thesis, but might have the same problems. To exclude
these issues in a quicker but more restricting way, non-sequential traces can be
excluded. This can be done by adding an invariant which prevents concurrency,
or with the following LTL-formula that only looks at traces without concurrent
inputs:

G¬((inputType1 = PACKET ∨ inputType1 = ACTION) ∧ (inputType2 =
PACKET ∨ inputType2 = ACTION)
→
G(absSeqInput1 6= INV ∧ absSeqInput2 6= INV ∧ absAckInput1 6= INV ∧
absAckInput2 6= INV )
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However, this prevents checking some states which are possible in practice. In
particular, the situation with two clients can hardly be model checked, as both
entities should get a connect-input at the same time to establish a connec-
tion.

8 Future work

When combining learning of abstract models and model checking, some prac-
tical problems arise. The mapper language solves many of these, but there is
room for improvement. For example, the learner now picks concrete values with
a constraint solver, when translating abstract inputs to concrete. Constraint
solvers usually pick these values deterministically, and this does not give a good
test coverage. This is a common problem in test case generation [6], and progress
in this field could also improve learning with abstraction. Also, the behaviour
of TCP protocols is also hard to describe as a Mealy machine due to timing and
re-transmission of segments. Learning models in a less restrictive way might
help modeling these aspects, such as labeled transition systems [28]. Ideally,
learning of timed automata should be possible to perfectly infer the behaviour
of TCP implementations.

Another field of improvement is on equivalence testing. The experiments in
this thesis could be repeated with improved equivalence testing algorithms. For
example, Lee & Yannakakis [18] designed an algorithm that should find coun-
terexamples more efficiently by looking at states in the hypothesis.

The learned behaviour of TCP implementations is now mainly restricted to
establishing and closing connections, where the possibility of finding bugs is
limited. By improving the learning setup, more aspects of the behaviour may
be modeled, and more interesting results might be found for TCP. The abstract
input alphabet with only valid and invalid parameters is also somewhat limited.
Simpler input parameters may be used, which are less open to interpretation,
similar to the current abstract output alphabet. The logic to determine the
validity of inputs could then be expressed in the specifications, based on these
simple inputs, instead of directly through the mapper. Ideally, mappers could
even be constructed in an automated way by the learner as well [4].

The learning and model checking setup could also be applied to other protocols
and systems. It has proven hard to connect the sut and the learner, in such
a way that a Mealy machine could be learned. For other systems, the learned
models may be more reliable, and increasing the number of abstract inputs
might be more feasable.

Furthermore, many interesting ways of combining learning, testing and model
checking are possible. Model based testing, for example, focuses on generating
only input traces neccesary to test the specifications. This can also be done in
the setting of learning and model checking. Testing traces which are counterex-
amples to the specifications is now done manually, so another improvement is
to automate this, and to improve the equivalence oracle in this manner.
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9 Conclusions

Active learning and model checking can complement each other in terms of
strengths and weaknesses. The distance between an abstract model and an
error-prone implementation is a fundemental problem, which can be tackled by
using learned models. An abstract alphabet with valid and invalid input pa-
rameters was used, and models for TCP clients and servers were learned.

The resulting models have been model checked to verify that no invalid param-
eters were used. Model checking on learned systems worked well, and compos-
ing models into networks was succesful. This does rely on the correctness on
the learning algorithm. In particular, equivalence testing with random input
sequences proves ineffective. Model checking provides another way of finding
relevant counterexamples, but reliability of the learned models is important
nonetheless: satisfaction of a specification cannot be extrapolated the the real
system if the model is not correct.

Using abstract models for model checking gives some additional problems com-
pared to using concrete models, as abstract models cannot be composed into
networks directly. We have solved these problems by defining a mapper lan-
guage, which can translate both from concrete to abstract and vice versa. This
technique should be generalisable to learning and model checking many other
systems with abstraction.

Model checking TCP implementations has proven feasible, but difficult. practi-
cal problems make it difficult to scale up the input alphabet, and the resulting
models. No bugs in the implementations have been found, but tackling these
problems may increase the effectiveness of model checking. Within this thesis,
the abstract inputs for TCP are now expressed in terms of valid and invalid. If
events happen sequentially, this is sufficient for model checking, but to model
check concurrent systems more extensively, a broader notion is needed.
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A Server model
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