
Master Thesis
Computer Science

Radboud University Nijmegen

Client-side performance profiling of
JavaScript for web applications

Author:
Thomas Nägele
thom@snagele.nl

Supervisor Radboud University:
prof. dr. Jozef Hooman

hooman@cs.ru.nl

Supervisors Topicus:
Remco Zigterman

remco.zigterman@topicus.nl

Mark Brul
mark.brul@topicus.nl

24th June 2015

Abstract

Modern web applications greatly rely on JavaScript to be executed on the computer
of the client. Since every user runs the application on their own computer, there are
many different hardware and software combinations. From the developers perspective,
it is therefore difficult to identify performance issues that may occur at run-time. This
thesis describes the development of a generic profiler for JavaScript in web applications.
Client-side performance in the context of web applications is defined and contributing
factors to this performance are explained. Before constructing a profiling method,
first an evaluation method is constructed to quantitatively compare different methods.
A few of methods are proposed and evaluated, after which one profiling method is
implemented. Next, an integration tool is developed to enable easy integration with
any web application. As expected, the profiler has some impact on the performance of
the application, but it was found to be accurate, easy to use and portable.

Acknowledgements

First of all, I would like to thank Topicus for giving me the opportunity to carry out
this research. In particular, I would like to thank Remco Zigterman and Mark Brul
for their guidance and support throughout the process. Also, many thanks to my
supervisor, Jozef Hooman, who provided me with loads of feedback on every draft I
sent. His feedback and ideas have helped me enormously. I also would like to thank
Joost Visser for taking the time to act as second reader. Finally, last but not least,
thanks to my friends and family who supported me, read bits and pieces of this thesis
and provided additional feedback. Thank you.

Contents

1 Introduction 1
1.1 Background information . 1
1.2 Problem statement . 2
1.3 Approach . 3
1.4 Scientific context . 5

2 Web applications 7
2.1 General architecture . 7
2.2 Page rendering . 8

2.2.1 Web application workflow . 9
2.3 JavaScript . 10

2.3.1 Benchmarks . 11
2.3.2 Profilers . 12
2.3.3 Static program analysis . 13
2.3.4 Frameworks . 13
2.3.5 AngularJS . 15

2.4 Interact CTG . 19
2.4.1 CTG . 19
2.4.2 Architecture . 19

3 Profiling performance 22
3.1 Definition of client-side performance . 22

3.1.1 Classical definition of performance 22
3.1.2 End-user definition of performance 24
3.1.3 Technical definition . 24

3.2 Performance analysis method properties 25
3.3 Method evaluation . 26

3.3.1 Accuracy . 27
3.3.2 Impact . 31
3.3.3 Usability . 31
3.3.4 Portability . 32

4 Methods for performance profiling 33

i

Contents Thomas Nägele

4.1 Manual profiling . 33
4.1.1 Pre-evaluation . 33

4.2 Manual logging . 34
4.2.1 Pre-evaluation . 35
4.2.2 Implementation . 35
4.2.3 Post-evaluation . 37
4.2.4 Issues . 39

4.3 Manual Logging improved . 40
4.3.1 Implementation . 40
4.3.2 Post-evaluation . 45

5 Integration 48
5.1 Aspect Oriented Programming . 48
5.2 Integration tool . 49

5.2.1 Implementation . 49
5.2.2 Improvements . 50
5.2.3 Limitations . 51
5.2.4 Concluding grade . 51

6 Conclusion 53
6.1 Discussion . 54
6.2 Related work . 55
6.3 Future work . 55

Appendix A Benchmark results 59
A.1 Dromaeo JavaScript Tests . 59
A.2 Sunspider 1.0.2 . 60
A.3 Kraken 1.1 . 60
A.4 Octane 2.0 . 61

Appendix B Accuracy test 62
B.1 Sources . 62

B.1.1 Array . 64
B.1.2 String . 65
B.1.3 Date . 66
B.1.4 Json . 68
B.1.5 Regexp . 68

B.2 Results from built-in JavaScript profiler 69
B.3 Results from Manual Logging method 69
B.4 Results from improved Manual Logging method 69

All sources mentioned in this thesis can be found in the following repository:
https://bitbucket.org/phpnerd/jsprofiler/

ii

https://bitbucket.org/phpnerd/jsprofiler/

Chapter 1

Introduction

1.1 Background information

The problem statement for this Master’s thesis stems from a question raised by Topicus
Healthcare. Topicus Healthcare develops an application, Interact CTG1, that monitors
the birth of a baby. This application is based on a server-client architecture. The
server component receives data from a cardiotocograph (CTG) produced by another
party and processes this. A client is able to fetch this data from the server and display
it to the user in any form.

A CTG is a machine that records the foetal heartbeat and the uterine contractions
during pregnancy. With a CTG the health status of the unborn child is monitored. It
can also be used to perform smaller investigation during the last phase of pregnancy
can be performed to check whether the child is healthy or not.

The client is a web application which should run in all common browsers and is the
front-end of the whole system. The client is written in AngularJS2 and communicates
with the REST [1] server written in Java. Figure 1.1.1 displays a high level overview
of the system and its connections.

The server, written in Java, functions as a REST server. REST (Representational
State Transfer) is a design principle used for requesting, storing and deleting data on
the server and is used for the Hypertext Transfer Protocol (HTTP) and commonly used
for building Application Programming Interfaces (APIs).

1http://www.topicus.nl/zorg/tweede-lijn-en-transmuraal/verloskunde/product/

interact-ctg
2https://angularjs.org/

1

http://www.topicus.nl/zorg/tweede-lijn-en-transmuraal/verloskunde/product/interact-ctg
http://www.topicus.nl/zorg/tweede-lijn-en-transmuraal/verloskunde/product/interact-ctg
https://angularjs.org/

Chapter 1. Introduction Thomas Nägele

CTG Server

Client 2Client 1 Client 3 Client X

HTTP HTTP HTTPHTTP

Figure 1.1.1: High level overview of the Interact CTG system.

1.2 Problem statement

Because the front-end is a web application which can run from any browser, Topicus
does not have any influence on its environment. There are quite some different browsers
that may load the application, running on numerous different operating systems. In
addition to this problem, the hardware on which the application runs can also be any
configuration you may think of. The number of configurations is therefore practically
infinite and the web application can never be tested on all those configurations.

Also, when a client contacts the Topicus support with a complaint about the application
being too slow, it is not always possible to rerun the scenario as described by the client
in a similar – or preferably identical – configuration. For debugging purposes it is,
however, very important to precisely locate the problem in the source code.

The front-end of Interact CTG uses AngularJS, which is a JavaScript framework for
creating dynamic web pages. JavaScript is interpreted and executed by a JavaScript
engine in the browser. Because there are quite a few JavaScript engines and each
browser uses a different JavaScript engine, the performance of these browsers when
processing JavaScript may vary. It is therefore possible that the users of a web applic-
ation experience different performance when running the application.

Hence, the aim is to create a method to measure the performance of a web application
at the client. This measurement should not only measure the performance of the web
application, but should also enable localisation of parts of code that have a negative
impact on the performance. With these results it may be possible to improve the speed
of the web application in future releases. This analysis may be specific for AngularJS,
but may be applicable for JavaScript in general as well. This analysis corresponds, in
contrast to static code analysis, to a real-world performance scenario.

To be able to measure the performance of an application, it is important to define
performance for this application. There are a couple different possible measures for
performance in the field of web applications. Measures like latency, page render time
and user interaction speed all contribute to the overall performance of the web applic-

2

Chapter 1. Introduction Thomas Nägele

ation and can therefore be seen as potential subjects of complaints from clients. For
a complete analysis of the performance of the web application, a well-defined list of
measures for performance should be made.

Research questions

The main target of this research is to create a method to measure the client-side
AngularJS performance of a web application, considering that there are many different
configurations possible as client system. The main question for this research can be
formulated as follows.

How to measure the client-side AngularJS performance of a web application
in such a way that performance problems can be diagnosed?

This question may be split up in the following parts.

1. What is performance in the context of AngularJS and web applications in general?

• What causes differences in performance of the same web application when
running on different machines or web browsers?

2. How to analyse AngularJS performance?

• How much does analysing the AngularJS performance affect the results?

• Is the method generalisable to JavaScript?

3. How can the results be validated?

• Are the results correct?

4. Is the method easy to extend to other projects?

• What should be done to use this method for another project?

• For what kind of projects is this method usable or suitable and for what
projects it is not?

5. What actions should the end-user perform to report a problem diagnosis with the
developed method?

• How to minimise the effort the client has to do?

1.3 Approach

First of all, it is important to define performance in the context of the existing web
application. For this, literature should be found on front-end performance of web

3

Chapter 1. Introduction Thomas Nägele

applications in general. In addition to this, user experiences can be obtained, leading
to a common definition of performance.

Additionally, it is useful to know what causes the differences in performance on differ-
ent web browsers or on different systems. The results of investigation should lead to
examples of weaknesses and strong points of specific web browsers or systems. With
these examples, small web applications can be developed as some sort of test set to
help measuring the performance.

Next, research needs to be done on how to measure the performance as defined in the
first stage of the research. Existing techniques for this may apply or small prototypes
can be developed in this stage to do some kind of analysis on small pieces of code. Mul-
tiple methods can be tested. These methods are then evaluated on a set of properties
to determine the usability of the method. These properties are the following.

• Accuracy
How correct the method is in measuring the performance of the web application.
This can be measured by testing the analysis on the set of sample programs as
mentioned before. These sample programs contain known weaknesses for differ-
ent browsers and try to exploit those weaknesses. If the analysis of the results
succeeds to pinpoint these weaknesses within the programs, it is a correct meas-
urement.

• Impact
The impact of the method on the actual performance of the web application.
This can be calculated by subtracting the execution time without this method
from the execution time when applying this method for analysis.

• Usability
How usable this method is for the end-user of the application. Should the user
perform all kinds of operations or is it just one click on a button? To be able to
compare this property of the methods, for each method a list should be created
with the actions to be performed by the end-user.

• Portability
Is the method relatively easy to apply to different project? What should be done
to apply this method on another web application?

Every method is validated for these properties to determine its suitability for a web
application. This phase should lead to answers on the second question. Whether this
method is generalisable for JavaScript in general can possibly be determined later. The
most suitable method is selected and a larger prototype implementing this method for
the Interact CTG web application will be developed.

Halfway developing this larger prototype for the Interact CTG web application, this
prototype should be reviewed and evaluated to determine whether this is still the most
suitable method. Depending on the results either a new prototype based on a different

4

Chapter 1. Introduction Thomas Nägele

method can be built or the current prototype should be finished.

Once this prototype is implemented for this particular web application, it is useful
to check whether this method can be generalised for JavaScript in general. By using
methods that are in compliant with JavaScript itself instead of using AngularJS-specific
methods, the method is more likely to be applied to a more general context. Also, it
is important to determine whether this method is portable, e.g. can be used for other
projects and, if applicable, what projects are suitable to perform this analysis on. To
achieve this, some other projects can be selected to apply this method to. Of course,
it is convenient to start thinking about this in an early stage, because it is always less
work to start early on working on a more general solution, if possible.

1.4 Scientific context

JavaScript has become increasingly popular over the last couple of years. This is
partly caused by JavaScript slowly moving from a typical web programming language
to a more general purpose language [2]. For web applications, dozens of JavaScript
frameworks are available to enhance the programmability, usability and visibility of
the web application. Examples of some widely used frameworks are jQuery3, Dojo4,
Prototype5 and AngularJS6. These frameworks are being used on millions of websites.

The measurement and improvement of performance of web applications has received
considerable attention for as long as web applications exist. Most performance improve-
ments are done at the side of the server by increasing scalability [3] of the back-end or
making the application more efficient, e.g. by using a smart cache [4].

The performance of a web application at the client side is often not measured or just
tested for usability. There are, however, some widely used JavaScript benchmark suites
for measuring the performance of web browsers. Unfortunately, these benchmarks fail
to represent the performance of a browser on a typical website [5]. For this reason,
research [6] was done to construct new JavaScript benchmarks that are able to measure
performance like it would be on a real website.

The main focus of such a benchmark is not to measure the performance of a web
application itself, but to measure its performance within a specific browser [7]. It is
therefore still not useful for debugging purposes, because no detailed analysis on the
web application itself is generated. Also, a benchmark performed at the client can
only confirm or deny whether the performance of the web application is as reported
by the client. That is why a new method of measuring and analysing the JavaScript
performance of a web application need to be developed.

3http://jquery.com/
4http://dojotoolkit.org/
5http://prototypejs.org/
6https://angularjs.org/

5

http://jquery.com/
http://dojotoolkit.org/
http://prototypejs.org/
https://angularjs.org/

Chapter 1. Introduction Thomas Nägele

This thesis contains two chapters with background information and definitions, two
chapters that describe implementation efforts and one final concluding chapter. The
first chapter introduces the problem and formulates the research questions and sci-
entific context. Then, chapter 2 describes web applications and JavaScript. The third
chapter then defines performance and constructs an evaluation method. Chapter 4 pro-
poses a couple of method for performance profiling and describes the implementations.
Chapter 5 then describes possible integration methods and implements one of them.
The final chapter draws a conclusion for this thesis, adds a discussion and proposes
some possible future works.

6

Chapter 2

Web applications

A web application is any application that runs in a browser [8]. Web applications are
downloaded from a server and are often capable of interacting with the server. With
the emergence of AJAX (Asynchronous JavaScript And XML [9]) and responsive web
design [10, 11], many old-fashioned applications were converted to web applications for
use on desktops, tablets and mobile phones, rather than on one specific system.

2.1 General architecture

A web application must be built in a language – or languages – that the web browser
understands. Languages like HTML [12, 13], CSS [14] and JavaScript [15] are widely
used for the development of web applications. HTML stands for HyperText Markup
Language and describes the structure and content of a web page. CSS (Cascading Style
Sheets) contain the layout of individual components of the HTML, e.g. text colour,
font-size and page width. Together, HTML and CSS describe the layout and content of
a web page. Many web applications also use Java applets [16], Flash components [17]
and Silverlight1 to add interactive content. These web applications are nowadays being
replaced with web applications built with only HTML, CSS and JavaScript, because
these older technologies are often platform-dependent, thus difficult to maintain for
running on different devices.

Modern web applications typically use AJAX to communicate with the server without
the need of reloading the whole page on every user action. AJAX is used to send an
asynchronous request to the server and uses callback functions for handling the response
from the server. This response is then interpreted and used for adding content to the
page. A web application often depends on these requests for its flexibility. Note that
not all modern web applications use AJAX: Java, Flash, Silverlight and page-reloads

1http://www.microsoft.com/silverlight/

7

http://www.microsoft.com/silverlight/

Chapter 2. Web applications Thomas Nägele

are still being used.

2.2 Page rendering

To render a web page, a browser consists of two separate engines [18]. The layout
engine creates a visual representation of the HTML together with the stylesheets, both
in CSS and built-in. The JavaScript engine processes and executes the JavaScript code.

The browser itself manages the Document Object Model (DOM [19]), which holds the
contents of the web page in a structured model. This DOM is created from the HTML
code of the web page. The layout engine applies the available stylesheets – defined in
the CSS – to the DOM to complete the page and to finally display it to the user.

The JavaScript engine interprets and executes the included JavaScript code. To enable
the interactive behaviour of a web application, the execution includes the attachment
of event handlers to the DOM. With these event handlers, the DOM can be altered by
the JavaScript code after the whole page has been rendered and displayed to the user,
thus providing interactive behaviour.

Because JavaScript is interpreted and executed within the browser of the end-user, per-
formance also dependens on both the layout- and JavaScript engine at the client-side.
Since both engines are usually developed independently from the browsers, browser
manufacturers have a choice of which layout- and JavaScript engine to include with
their browser. Therefore, all browsers perform differently when rendering or interacting
with a web site. Table 2.2.1 gives an overview of the five most popular browsers [20] as
well as their layout- and JavaScript engines. For all browsers, the current stable builds
are used as reference. For convenience, the version number is also displayed.

Engines

Browser Version Manufacturer Layout JavaScript

Chrome2 40 Google Blink3 V84

Firefox5 35 Mozilla Gecko6 SpiderMonkey7

Internet Explorer8 9+ Microsoft Trident9 Chakra

Opera10 27 Opera Blink V8

Safari11 8 Apple WebKit12 Nitro13

Table 2.2.1: An overview of the five most popular browsers and the engines that are
included with them.

2https://www.google.nl/chrome
3http://www.chromium.org/blink
4https://code.google.com/p/v8/
5https://www.mozilla.org/nl/firefox/new/
6https://developer.mozilla.org/en-US/docs/Mozilla/Gecko
7https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey

8

https://www.google.nl/chrome
http://www.chromium.org/blink
https://code.google.com/p/v8/
https://www.mozilla.org/nl/firefox/new/
https://developer.mozilla.org/en-US/docs/Mozilla/Gecko
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey

Chapter 2. Web applications Thomas Nägele

Web applications are usually only tested on – a subset of – these five browsers. This is
caused by the total market share of these browsers, which is more than 95% [20].

2.2.1 Web application workflow

All web applications are built on the same principles and therefore share a common
architecture. When a web application is loaded in the client’s browser, the web ap-
plication starts interacting with the user and the server. Figure 2.2.1 shows a typical
interaction architecture for a web application after the main page has been loaded.

Client-side / Browser

User Interface

JavaScript Engine

JavaScript call HTML, CSS

Web Server or API

Database, back-end

Server side

HTTP request DataHTTP(S)

User

Figure 2.2.1: Architectural overview of a typical web application. Based on Figure 1
by J. Garett [9].

Since web applications are much alike on an architectural level, a common workflow
for web applications can be defined as follows. This workflow is based on [9].

1. The browser requests a page from the server by sending an HTTP request.

2. The server returns the requested page to the browser.

3. This page (HTML, CSS) is interpreted by the layout engine, which generates a
visual representation of the page. Additional resources, such as scripts, images
and style sheets, linked from the initial page are fetched with HTTP requests as
well.

8http://www.microsoft.com/windows/ie/
9https://msdn.microsoft.com/en-us/library/aa741317.aspx

10http://www.opera.com/
11https://www.apple.com/safari/
12http://www.webkit.org/
13http://trac.webkit.org/wiki/JavaScriptCore

9

http://www.microsoft.com/windows/ie/
https://msdn.microsoft.com/en-us/library/aa741317.aspx
http://www.opera.com/
https://www.apple.com/safari/
http://www.webkit.org/
http://trac.webkit.org/wiki/JavaScriptCore

Chapter 2. Web applications Thomas Nägele

4. The script engine executes the scripts (JavaScript) included with the web page
and attaches handlers to DOM objects.

5. When a user action triggers a handler, the handler function is executed. This
function may send an AJAX call to the server or update the DOM itself. If
an AJAX request is made, a function is attached to the request to handle the
response. Otherwise, the DOM is updated and the workflow ends.

6. The server processes the AJAX request and responds with a result. While pro-
cessing the request, the server may need to fetch data from a database or an
external system. A structured response is sent back to the client.

7. The attached AJAX listener handles the result from the server and updates the
DOM.

Steps five to seven are repeated for every action the user requests in which an AJAX
call is required. Not all user actions require an AJAX call to the server to update the
DOM. If no AJAX call is sent, only step five is repeated for the user action.

2.3 JavaScript

JavaScript [21] is a dynamic, object-oriented scripting language, mostly used to create
web applications. It was developed for Netscape in 1996 by Brendan Eich [22, 23].
At first, the language was named LiveScript, which evolved to JavaScript within a
year. JavaScript was supposed to incorporate more advanced web applications in the
browsers without the need for Java applets.

ECMA (European Computer Manufacturers Association14) standardised JavaScript
in 1997, making JavaScript one of the implementations of ECMAScript [24]. Other
implementations of the ECMA standard are ActionScript15 and JScript16. The latest
stable release of JavaScript, version 1.8.5, is compliant with ECMAScript 5. This
version will also be the default version for this research.

Like Java, JavaScript code is compiled to bytecode, which is comparable with machine
instructions, and then executed on a virtual machine, which acts like a sandbox and
offers memory protection. These virtual machines often implement a garbage collector
to clean up unused objects, functions and variables, thus freeing memory. This virtual
machine is implemented within the JavaScript engine, which most commonly resides
within a web browser.

Whereas old-fashioned JavaScript engines were completely integrated in a web browser
and were not interchangeable with any other application, modern engines are developed

14http://www.ecma-international.org/
15http://help.adobe.com/livedocs/specs/actionscript/3/
16https://msdn.microsoft.com/library/hbxc2t98.aspx

10

http://www.ecma-international.org/
http://help.adobe.com/livedocs/specs/actionscript/3/
https://msdn.microsoft.com/library/hbxc2t98.aspx

Chapter 2. Web applications Thomas Nägele

as standalone applications and are therefore capable to run JavaScript code outside a
browser [21]. This evolution also boosted the performance of the JavaScript engines.

Because JavaScript can now be executed outside a browser and performs well on modern
systems, more applications are being developed. Node.js17, for example, is a JavaScript
framework designed to run standalone JavaScript applications, or more specifically:
servers and services written in JavaScript.

2.3.1 Benchmarks

Since browsers have become more important over the last few years, also the perform-
ance of a browser becomes more important. Also, browsers have become more accurate
in interpreting and displaying web pages, causing all browsers to display a web page
equally good. Therefore, it is increasingly difficult to distinguish the browsers from one
another.

Therefore, benchmarks have become important tools to compare browsers: Browser
developers nowadays use results of benchmarks to promote their product. Browser
performance can significantly affect the user experience and is therefore an important
aspect of a browser. Because this is so important, AreWeFastYet18 automatically
monitors the JavaScript performance of different browsers by executing benchmarks on
the latest versions.

A benchmark [25, 26] is a program designed to measure the performance of hardware or
software. Most benchmarks only yield one or more scores, representing the performance
of the system. These scores provide an easy comparison method when comparing the
performance of two different systems with each other.

Quite some benchmarks are available for browser testing. Some of them are focused
on benchmarking the full browser. These benchmarks measure the performance of
the browser in terms of DOM modification, JavaScript execution and page rendering.
Examples of such benchmark suites are Peacekeeper19 and Browsermark20.

Additionally, there are some pure JavaScript benchmark tools. These benchmarks
only measure the JavaScript execution performance of the browsers or stand-alone
JavaScript engines. Some of these benchmarks are a direct offspring of a JavaScript
engine. Those benchmarks often are being used during development of the JavaScript
engine for performance optimisations. Table 2.3.1 provides an overview of the most
popular benchmarks for browsers and JavaScript engines available.

The column ‘JS engine’ specifies what JavaScript engine is also being developed by the
same developer as the benchmark. If the benchmark is ‘full’, the benchmark is meant

17http://nodejs.org/
18http://www.arewefastyet.com/
19http://peacekeeper.futuremark.com/
20http://browsermark.rightware.com/

11

http://nodejs.org/
http://www.arewefastyet.com/
http://peacekeeper.futuremark.com/
http://browsermark.rightware.com/

Chapter 2. Web applications Thomas Nägele

for measuring the performance of the whole browser. If it is not, the benchmark only
measures JavaScript execution performance.

Name Developer(s) JS engine Full Notes

Benchmark.js21 Mathias Bynens,
John-David Dalton

- No

Browsermark Rightware - Yes

Dromaeo22 Mozilla SpiderMonkey No

JSLitmus23 Robert Kieffer - No

Kraken24 Mozilla SpiderMonkey No

Octane25 Google V8 No Successor of the
V8 benchmark26

Peacekeeper FutureMark - Yes

SunSpider27 WebKit WebKit No

Table 2.3.1: An overview of popular benchmarks for web browsers.

Although there are quite a few benchmarking applications, previous research [27] shows
that these benchmarks do not reflect the performance of actual web applications well:
Benchmarks run faster with just-in-time compilation [28] techniques, but real-world
web applications showed an increased execution time; benchmarks use less anonym-
ous functions than real-world web applications do; the eval-function, which is used
for executing code from a string, is used much more in real-world web applications.
In addition, these benchmarks only measure rather static behaviour of a JavaScript
application, whereas real-world web applications deal with interactive user interfaces
and unknown behaviour from the side of the user. Therefore, the benchmarks do not
represent web applications in terms of performance and do not seem to be suitable as
comparator for browser performance for web applications.

2.3.2 Profilers

A profiler [29] is a tool for monitoring the dynamic execution behaviour of a program. A
profiler measures the memory usage, execution time and typical instructions during the
execution of a program. Therefore, profiling is a form of dynamic program analysis and
is often used to check or benchmark programs during development to locate possible
bugs or inefficiencies in the source code.

21http://benchmarkjs.com/
22http://dromaeo.com/
23http://www.broofa.com/Tools/JSLitmus/
24http://krakenbenchmark.mozilla.org/
25https://developers.google.com/octane/
26http://v8.googlecode.com/svn/data/benchmarks/v7/run.html
27http://www.webkit.org/perf/sunspider/sunspider.html

12

http://benchmarkjs.com/
http://dromaeo.com/
http://www.broofa.com/Tools/JSLitmus/
http://krakenbenchmark.mozilla.org/
https://developers.google.com/octane/
http://v8.googlecode.com/svn/data/benchmarks/v7/run.html
http://www.webkit.org/perf/sunspider/sunspider.html

Chapter 2. Web applications Thomas Nägele

A profiler provides insight in the execution behaviour of a program for debugging
purposes. This analysis is also used to improve the performance or decreasing the
memory footprint of an application. An analysis can show which methods consume
excessive amounts of memory or CPU-time. With this analysis, a developer can try to
improve the function and therefore improve the performance of the application.

Browsers often have built-in developer tools to provide the developers of web applica-
tions with a toolbox for debugging web applications. One of the components of such
toolboxes is a JavaScript profiler. This profiler is often capable of measuring both the
CPU execution time and usage of the heap. Additionally, most browser support ex-
ternal developer tools – including profilers – as well. A popular example for Firefox is
Firebug28.

2.3.3 Static program analysis

Static program analysis [30] is an analysis method that analyses an application without
running the application. The analysis is based on the machine code, bytecode or source
code of the application. This form of analysis is often performed during development.
Software Development Kits (SDKs) usually check the syntax of the code during devel-
opment and warn the developer if any errors are found before compiling or running.

For JavaScript, numerous forms of static analysis have been implemented. These ana-
lyses often cover type checking [31] or security [32]. Static program analysis is also
used for estimating code maintainability and performance. This method strongly re-
sembles a performance benchmark for applications of which the application execution
is predictable. Since JavaScript is usually event-driven, the application flow of the
application cannot be predicted: it is unknown which parts of the code are executed.
Therefore, static code analysis is not capable of predicting the JavaScript performance
in a web application.

2.3.4 Frameworks

For JavaScript, numerous frameworks have been built, especially for building web ap-
plications. These frameworks are all built to increase development speed and obtain
better source code in terms of maintainability. Since JavaScript engines can be ex-
ecuted stand-alone as well, some stand-alone server-side JavaScript frameworks, such
as Node.js29, were created.

Most JavaScript frameworks, however, focus on the client-side of web applications.
These frameworks add more convenient DOM selectors to JavaScript, add interact-
ive functionality and provide methods for AJAX requests. The most popular client-

28http://getfirebug.com/
29http://nodejs.org/

13

http://getfirebug.com/
http://nodejs.org/

Chapter 2. Web applications Thomas Nägele

size JavaScript frameworks, according to W3Techs [33], are jQuery30, Modernizr31,
MooTools32 and Prototype33.

The code in listings 2.1, 2.2 and 2.3 all contain equal functionality, but use regular
JavaScript, jQuery and MooTools respectively. In each fragment, the object with id
equal to ‘component’ is fetched from the DOM and its visibility is toggled. If the object
was visible, it will become hidden and vice versa.

1 var element = document.getElementById("component");

2 if (element.style.display == "none") {

3 element.style.display = "block";

4 } else {

5 element.style.display = "none";

6 }

Listing 2.1: JavaScript code to toggle ‘component’ without using any framework.

1 var element = $("#component");

2 element.toggle ();

Listing 2.2: JavaScript code to toggle ‘component’ with jQuery.

1 var element = $$(’#component ’);

2 element.toggle ();

Listing 2.3: JavaScript code to toggle ‘component’ with MooTools.

Both jQuery and MooTools include an easy-to-use toggle-function to toggle compon-
ents. Also, the code to fetch the element from the DOM is much shorter. Another
widely used JavaScript feature is making an AJAX request to the server through the
XMLHttpRequest-object. Listing 2.4, 2.5 and 2.6 display how an AJAX-request is
done without framework, with jQuery and MooTools respectively.

1 var xmlhttp;

2 if (window.XMLHttpRequest) {

3 xmlhttp = new XMLHttpRequest ();

4 } else {

5 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

6 }

7 xmlhttp.onreadystatechange = function () {

8 if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

9 document.getElementById("placeholder").innerHTML = xmlhttp.

responseText;

10 }

11 };

12 xmlhttp.open("GET", "response.html", true);

13 xmlhttp.send();

Listing 2.4: A sample AJAX request sent without the use of any framework.

30http://jquery.com/
31http://modernizr.com/
32http://mootools.net/
33http://prototypejs.org/

14

http://jquery.com/
http://modernizr.com/
http://mootools.net/
http://prototypejs.org/

Chapter 2. Web applications Thomas Nägele

1 $.ajax({

2 url: "response.html",

3 }).done(function(response) {

4 $("#placeholder").html(response);

5 });

Listing 2.5: A sample AJAX request with jQuery.

1 var request = new Request ({

2 url: ’response.html’,

3 method: ’get’,

4 onSuccess: function(response) {

5 $$("#placeholder").set(’html’, response);

6 }

7 });

8 request.send();

Listing 2.6: A sample AJAX request with MooTools.

Frameworks provide all sorts of functionality in a structured and more readable way.
The resulting code is better readable, maintainable and shorter compared to the code
when no framework is used. The overhead caused by the need to download the frame-
work first is very small, since many of these widely used frameworks are already cached
by a browser, because they are accessible via a shared CDN (Content Delivery Net-
work).

2.3.5 AngularJS

AngularJS is an open-source JavaScript framework used to develop web applications [34].
It is written in JavaScript and uses common web technologies like HTML, CSS and,
of course, JavaScript and focuses on building single-page web applications. AngularJS
aims to simplify the development of web applications by separating DOM manipulation
from the controllers by using a Model-View-Controller (MVC) architectural pattern.

One of the advantages of AngularJS is its implementation of directives. AngularJS
itself contains some built-in directives, but the developer can also create his or her own
directives. A directive is an implementation of a custom HTML element. This can be
an element, attribute, class or comment and basically extends native HTML. Directives
allow the developer to write small parts of functionality that can be reused in other
web applications. It is also possible to override the browser-specified behaviour of an
HTML element.

Additionally, AngularJS clearly separates models, views and controllers. Controllers
are defined within script-tags or in external JavaScript files. The view is represented
with the HTML-document, to which data from the model can be bound. The model
holds all variable data for the page and can be accessed from anywhere within the same
scope. AngularJS features two-way data binding, so that when the view changes, the
model changes accordingly and when the model is changed, the view updates.

15

Chapter 2. Web applications Thomas Nägele

Two-way data binding is provided with dirty-checking. A so-called digest loop checks
whether a field has been modified – is dirty – and updates the values that depend on
it. This includes other objects or fields within the model and the view in which it is all
displayed. In modern browsers, this loop is being replaced with the Object.observe()-
method34 for the sake of performance. This method provides native browser support
for observing objects instead of using a custom-made dirty-checking loop, which is some
sort of busy waiting.

AngularJS also offers a method to create services to add more persistent functionality
to the web application. These services are loaded once and only when they are required.
AngularJS includes a number of built-in services, such as the $http-service, which sup-
plies easy-to-use methods to communicate with the back-end of an application through
AJAX-calls.

An AngularJS app starts loading once the DOM is completely loaded by the browser. It
then creates the components required to run, e.g. a $compile-service and a $rootScope.
The $compile-service finds all directives and links them to the $rootScope. Once the
app is running, AngularJS catches events with its own digest loop and handles them.

Listing 2.7 shows a sample application written in AngularJS. This application contains
some basic functionality of AngularJS. The application requests the user to enter his
or her name and displays this name in a heading. When the button after the input
field for the name is clicked, an alert message is displayed to the user. If a name is
provided, a table containing all roles as defined in the controller is shown. These roles
are ordered by name, descending. If the role is admin (admin field is set to true), the
second column displays ‘yes’, otherwise ‘no’.

1 <!DOCTYPE html>

2 <html data -ng-app="app" data -ng-controller="Test3Controller">

3 <head lang="en">

4 <meta charset="UTF -8">

5 <title>AngularJS Example </title >

6 <script src="https :// ajax.googleapis.com/ajax/libs/angularjs /1.3.14/

angular.min.js"></script >

7 </head>

8 <body>

9 Please enter your name:

10 <input type="text" data -ng-model="fullname">

11 <button data -ng-click="clickEvent ()">Click here!</button >

12 <h3>Welcome {{ fullname }}!</h3>

13 <table data -ng-show="fullname.length > 0" border="1" cellspacing="0"

cellpadding="5">

14 <tr>

15 <th>Name</th>

16 <th>Admin</th>

17 </tr>

18 <tr data -ng-repeat="role in roles | orderBy:’-name ’">

19 <td>{{role.name}}</td>

34
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/observe

16

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/observe

Chapter 2. Web applications Thomas Nägele

20 <td>{{role.admin ? "yes" : "no" }}</td>

21 </tr>

22 </table>

23 <script >

24 var app = angular.module(’app ’, []).

25 controller(’Test3Controller ’, function ($scope) {

26 $scope.roles = [

27 { name: "Administrators", admin: true },

28 { name: "Teachers", admin: false },

29 { name: "Students", admin: false }

30];

31
32 $scope.clickEvent = function () {

33 alert($scope.fullname + " clicked the button!");

34 };

35 });

36 </script >

37 </body>

38 </html>

Listing 2.7: A small example application written with AngularJS.

Below, the relevant lines for AngularJS in this web application are briefly explained.
The code itself can be copied into a file and tested in any browser.

Line 2 tells AngularJS that the whole document should be handled as an app with
name ‘app’, using the ‘Test3Controller‘ controller.

Line 6 includes the AngularJS framework into the web application.

Line 10 defines a model name within the $scope.

Line 12 contains an AngularJS expression, which can be used by adding {{expression }}
to the HTML-document. This line binds the name-model from the $scope to
the view and displays its value.

Line 11 binds a click event to the button. clickEvent() is now triggered when the
button is clicked.

Line 13 uses the ng-show directive, which decides whether the table is shown or not.
This depends on the length of the value of the name model.

Line 18 initialises a loop over all elements in roles and orders them. This tr-tag is
repeated as well in the loop.

Lines 19-20 contain the body of each row. The name of a role is displayed in the first
cell, whether this role has administrative rights in the second.

Line 24 creates a new module called ‘app’. This module is then linked to the app
directive as created on line 2.

Line 25 creates a controller called ‘Test3Controller’ which is used by the application
and defines a $scope.

17

Chapter 2. Web applications Thomas Nägele

Lines 26-30 define an array of roles within the $scope.

Lines 32-34 define a function clickEvent() that displays an alert message.

Figure 2.3.1 shows the web application as it is interpreted and displayed by Google
Chrome. In this figure, ‘Jimmy’ has been entered as name. This name is also visible in
the welcome message. With two-way data binding, the welcome message changes when
modifying the name value instantly. Also, the condition whether to show the table or
not is re-evaluated when the name is changed. This re-evaluation causes the table to
show or hide when entering a name. Figure 2.3.2 shows the interface when the button
is clicked.

Figure 2.3.1: Our example AngularJS application as it is displayed by Google Chrome.

Figure 2.3.2: Our example AngularJS application when the button is clicked.

18

Chapter 2. Web applications Thomas Nägele

2.4 Interact CTG

Interact CTG35 is an application that provides an interface to a cardiotocograph
(CTG). It is being developed and maintained by Topicus. The application can be
connected to Topicus’ Electronisch Patiëntendossier (EPD) for data sharing, but can
also be used as a stand-alone application.

Interact CTG receives and stores data from a CTG and displays the data in a web
interface. Within the interface, it is possible to save traces and add comments. It is
also possible to answer predefined questions regarding the state of the patient.

2.4.1 CTG

A cardiotocograph [35] is a measuring device to monitor the foetal heart rate and uterine
contractions. The device is used during childbirth as well as for regular checkups on the
foetus during pregnancy. CTG devices usually print the results of their measurements
on paper or display it on a screen. For Interact CTG, the signals are captured, converted
and stored in a database. These measurements are used to check the health status of
the child, e.g. by estimating the oxygen level based on the heart rate.

2.4.2 Architecture

Interact CTG consists of two REST [1] APIs and a database. One API is the Back-end
API, which receives and processes all data measured by the CTG. The second API is
the Front-end API, which handles the requests from the web application.

The output of the CTG is converted to XML [36] format by a custom-built conversion
module and then sent to the Back-end API as JSON [37]. This API parses and stores
the data to the database. Since the measuring frequency of the CTG is 4 Hz, a set of
measurements is only sent to the Back-end API every two to three seconds.

The Front-end REST API serves content to its clients. This API receives requests from
the web browser in which the web application is loaded, executes or queries them and
replies in JSON format. This API is also connected to the database, but queries data
as well as it stores or modifies data. The web application itself can be hosted within
the same application as the front-end API or in an external HTTP server, such as
Apache36.

Both REST APIs are built using Spring37. Spring is an open source Java38 framework

35http://www.topicus.nl/zorg/producten/product/interact-ctg
36http://httpd.apache.org/
37http://spring.io/
38http://www.oracle.com/nl/java/overview/index.html

19

http://www.topicus.nl/zorg/producten/product/interact-ctg
http://httpd.apache.org/
http://spring.io/
http://www.oracle.com/nl/java/overview/index.html

Chapter 2. Web applications Thomas Nägele

with extensions to JavaEE39. The APIs both run on the Jetty40 web server. For
handling large amounts of data, MongoDB41 is used as database server. The web
application communicates with the front-end API with JSON over HTTP(S).

The Interact CTG application can be deployed as a standalone application or as an
additional module to Topicus’ EPD solution. With both applications installed, data
can be exchanged between the applications to provide a more complete overview of the
status and history of a patient. The EPD stores its data in its own database and is
capable of exchanging data over Java Messaging Services (JMS42). Figure 2.4.1 shows
all components of Interact CTG and its connections, including the EPD.

CTG Converter

Back-end API

CTG Database

Front-end APIWeb Server

Browser

JMS EPD

EPD Database

HTTP(S) JSONHTML

HTTP(S), JSON

Figure 2.4.1: Detailed overview of the architecture of Interact CTG.

Both databases do not necessarily need to be installed on the same machine as the
applications run from. Also, the web server may run on another machine. It is valid
to run all applications and databases from a single machine as well.

The web application fetches new data from the Front-end API every two seconds.
Because the CTG converter sends data to the Back-end API every two to three seconds,
the total theoretical latency is four to five seconds. In practice, some additional time
is lost on processing and the network. The absolute minimum time consumed for a

39http://www.oracle.com/technetwork/java/javaee/overview/index.html
40http://www.eclipse.org/jetty/
41https://www.mongodb.com/
42http://docs.oracle.com/javaee/6/tutorial/doc/bncdq.html

20

http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.eclipse.org/jetty/
https://www.mongodb.com/
http://docs.oracle.com/javaee/6/tutorial/doc/bncdq.html

Chapter 2. Web applications Thomas Nägele

measurement to reach the CTG web application is four seconds, while the maximum
is anything above four seconds that is still acceptable by the configuration. This is,
however, acceptable, since the network- and processing latency is usually not very high
and measurements are used to detect patterns instead of direct threats.

21

Chapter 3

Profiling performance

To analyse the client-side performance of web applications, first a definition of per-
formance should first be established. Section 3.1 defines client-side performance within
the context of a web application. Section 3.2 describes the properties to test this
method on. Finally, Section 3.3 describes how these properties are used to evaluate the
performance analysis method.

3.1 Definition of client-side performance

3.1.1 Classical definition of performance

Since performance itself is not a generally applicable metric, the performance of a
computer system is typically determined from a set of metrics for performance. There
are numerous performance metrics that measure parts of the performance of a computer
system or the performance of an application as experienced by the user. However, not
all metrics are usefully applicable to any system. Which metrics are useful depends
on the purpose and nature of the system and is to be determined for each system
specifically. Widely used performance metrics for both hardware- and software systems
are listed below [38, 39].

Execution time
The execution time is the time it takes a program to complete its task. This
task may be a complete execution of the program or a smaller sub-task. The
execution time is typically expressed in (milli)seconds, but can also be expressed
in clock-ticks to provide a more CPU-independent unit measure.

Throughput
Throughput is typically expressed by a certain amount of successfully completed
jobs per second. Examples are bits per second, documents per second or redirects

22

Chapter 3. Profiling performance Thomas Nägele

per second. This metric directly relates to the speed of the hardware the software
runs on.

Resource consumption
Resource consumption is the amount of hardware resources used at a certain
point in time. Examples are CPU-utilisation, memory footprint or bandwidth
usage. Typically, a lower resource consumption is better.

Availability
Availability is used to express the amount of time a computer system is actually
available for clients in relation to the amount of time the system is expected to
be available by the customer. It is also used outside the context of computer
systems and basically tells something about the reliability of the system. The
higher the availability, the more stable the system is. For hardware, availability
is often influenced by hardware failures, such as broken components and power
failure. Within the context of software, bugs are of significant influence on the
availability.

Bandwidth
Bandwidth expresses the maximum data flow in and out of a computer system or
component. It is usually expressed in Mbps (Megabits per second) or Gbps (Gig-
abits per second). Bandwidth is a typical metric for hardware performance, since
software bandwidth is determined by the hardware bandwidth. In the context of
a network, bandwidth typically specifies the maximum speed of communication
between different machines. On an internal level, bandwidth specifies the max-
imum speed of communication between hardware components, such as the CPU
and memory.

Response time
Response time is the time taken by a round-trip from the client to the server.
This includes the request being made, sent, processed and a response being sent
back again. The response time is typically expressed in milliseconds, but may
also be expressed in any other time unit. Response time is a metric which is
typically used in the context of network applications, but response time may also
be used outside the context of a network: in the context of one machine, the
response time equals the execution time. A lower response time typically results
in a higher performance.

These metrics are used to define performance for computer systems. Often, the general
performance of a system is defined by using multiple metrics. Additionally, these
metrics are used to define minimum requirements for computer systems. For example,
a company may require an availability of at least 99% for a computer system. Each
system may have other combinations of performance metrics that are important.

23

Chapter 3. Profiling performance Thomas Nägele

3.1.2 End-user definition of performance

For web applications, user experience is one of the most important properties used to
determine the usability of the application. Especially for interactive web applications,
it is important to deliver a smooth user experience. The user experience is highly
affected by the time taken to update the page with new content, also known as waiting-
or loading time [40, 41]. Longer loading times typically lead to a decrease in the user
satisfaction.

From the perspective of a user, a web application provides the user with visual inform-
ation through a screen. This screen is typically the only way to access information that
is of interest to the user. By requesting new information from the server and loading
it into the screen, the user navigates through the web application and its data. While
loading new content, the user typically waits until loading is completed and the content
is displayed on the screen. When this process takes more time than expected by the
user, this negatively affects the user experience.

The user experience is often closely related to the perception of performance of a
web application by a user. A fast-loading web application is believed to be a good
performing application, thus having a high performance. As a result, for the end-user
performance strongly correlates to the speed at which content is presented.

3.1.3 Technical definition

The user-perceived performance depends on a couple of processes invisible to the user.
As depicted in Figure 2.2.1, the user only interacts with the user interface, but the
actual content is created by the layers below. To fetch new content from the server,
the following layers are active.

JavaScript engine
The engine typically handles the user input by calling a sequence of functions
upon an event triggered by the user. After sending a request for data to the web
service, it usually awaits the response to process it and update the user interface.

Network
The requests sent by the JavaScript engine and received from the web service
travel over the network. Since the distance between sender and receiver is typic-
ally large, passing through this layer consumes a significant amount of time.

Web service
The web service receives, processes and responds to a request from a client. To
process a request, the service should sometimes request additional data from a
back-end or database and construct a response based on this data.

Optionally: Back-end
When the web service should request data from a back-end or database, this layer

24

Chapter 3. Profiling performance Thomas Nägele

requires some time to receive and process the request and eventually respond to
it. If the back-end does not run on the same machine as the web service, some
additional time is spent on an additional network layer.

These layers all contribute to the performance as it is experienced by the user, since
all layers are processed for every request (implicitly) made by the user. From the
perspective of the user, these layers can be categorised as an internal layer (JavaScript
engine) and an external layer (network, web service and back-end). The actions in the
internal layer take place on the machine of the client, whereas the actions performed
in the external layer take place at an external party or server.

Since the focus for this research is on the client-side performance of web applications,
the performance of the internal layer must be measured. From the perspective of the
internal layer, the external layer acts like a black box en should be measured as such.
Therefore it is out of scope to measure throughput, availability or bandwidth at the
server-side or in the network. Consequently, time, as both execution time (internal)
and response time (external), is selected to provide a useful indication of performance.

To obtain clear directions for the developer, it is convenient that the execution times
of parts of the program. Internally, all functions executed are measured to provide
the developed some insight on the execution speed. The external performance can be
expressed by measuring the response times of the server from the client-side code. By
doing so, the server is treated as a black box. Therefore, this paper uses the following
definition of performance.

• The execution time of all separate functions and the total execution time of the
web applications together form the client-side performance of the web application.

• As part of the client-size performance, also the response time from the server.
This response time implicitly includes network traffic, latency and processing
time at the server-side.

Performance measurements at the client-size provide the required guidance for a de-
veloper to find and solve performance issues in the front-end. This should lead to better
– or faster – web applications without the explicit need for help from the customer to
locate an issue.

3.2 Performance analysis method properties

To be able to compare different performance analysis methods, a set of properties is
defined. This set of properties is used for determining the overall quality of a method
and helps to find the best suitable method for an application. The properties used in
this paper are the following.

Accuracy
The accuracy of the method is the most obvious property to test for. The method

25

Chapter 3. Profiling performance Thomas Nägele

should provide information to the developer that is correct and helps to locate
the performance issue in the source code. A fixed set of sample web applications
functions as benchmark for this accuracy. The sample applications all contain
known performance issues, which should be located by applying the method.
More about these sample applications is described in Section 3.3.1.

Impact
In order to correctly measure the performance of the web application itself, the
analysis should not have a significant impact on the performance, thus on the
results. If the analysis does have an impact on the performance, the impact must
be constant: for each item that is measured, a constant amount of analysis time
must be subtracted. By doing so, the resulting performance is not affected by
the overhead of the analysis itself.

Usability
The method should be easy to use or trigger by both the user and developer or
administrator. The customer should not be asked to perform series of actions
in order to create a useful performance analysis on his or her system. The de-
veloper or administrator should not do this either. The usability is used to grade
the amount of work that is expected from both the customer and developer or
administrator to deliver a useful performance analysis.

Portability
For software companies, it is important to have a set of standardised methods
that can easily be applied in different projects. The portability grades the amount
of work needed to be done to use the performance analysis method for another
web application.

These four properties cover the most important aspects of the method to analyse per-
formance of a web application.

3.3 Method evaluation

In order to grade methods for performance evaluation, the properties described in
section 3.2 are used. This section describes how these properties will be graded to
compare performance analysis methods. A method is graded for each of these four
properties, after which a total grade for the method can be calculated. This grade is a
weighted average of the four sub-grades. Definition 1 displays the formal definition.

Definition 1. Gtotal = 2
5 ·Gaccuracy + 1

10 ·Gimpact + 3
10 ·Gusability + 1

5 ·Gportability

In Definition 1, Gtotal expresses the total score as a grade between 0 and 10. The grade
is constructed from the grades of the four properties described in this section. The

26

Chapter 3. Profiling performance Thomas Nägele

weights of the components can be changed to match the wishes of the customer or
developer testing the analysis method. The following list explains the weights.

• 40% weight for accuracy, because it is the most important goal of the analysis.
If the method fails to collect usable information for the developer, the method
should not be considered to be a good method.

• 10% weight for impact, because the method should not influence the performance
of the web application significantly, but it is more important to collect correct
results. Additionally, the performance of the application may drop significantly,
but only if the performance is decreased by a constant factor. As long as the
performance decrease is a constant time, the impact only accounts for 10% of the
total grade.

• 30% weight for usability, because the customer should not be requested to per-
form a whole set of actions to analyse the performance and submit the results
to the developer. Additionally, the developer should not be asked to set up a
whole testing environment either. Therefore it is acceptable if the customer and
developer should only perform a limited set of actions.

• 20% weight for portability, because the developer should not spend large amounts
of time on a method which is used occasionally. Since only manually entered
lines of code are considered in this property, this directly reflects the effort for
the developer to include the method in a new project. Because this action is
only performed once for each project, the property’s weight is less than those of
actions that are repeated more often.

Additionally, a developer is free to add requirements to a method. For example, a
method that receives an insufficient grade (< 5) for either one of the properties may
be marked as unsuitable. For this research, a method is not acceptable if any grade is
lower than 5 or if the analyses from clients cannot be processed automatically, e.g. when
manual contact by phone or email to send the analyses to the developer is required.

3.3.1 Accuracy

Because browsers use different JavaScript engines, web applications written in JavaS-
cript may perform differently across browsers. In order to establish a measure for ac-
curacy, a test is developed. This test contains pieces of JavaScript code that is known
to perform quite different on specific browsers. If the performance analysis method is
able to direct the developer to all these weaknesses and assigns correct priorities to
performance issues, the accuracy is high.

In order to develop such a test application, the performance differences between browsers
need to be located. To do this, we used the benchmarks that are available on the web
and evaluated the results. The benchmarks were all executed in a virtual machine run-
ning on Windows 7 SP1 with 1GB of memory and one CPU-core (Intel Core i5-3337U,

27

Chapter 3. Profiling performance Thomas Nägele

1,7∼2,7 Ghz). Each benchmark was executed three times. Appendix A explains the
benchmarks that were executed and contains the results achieved. The benchmark
results for Dromaeo, Sunspider, Kraken and Octane can be found in Appendix A.1,
A.2, A.3 and A.4 respectively.

Based on these results, some tests are selected for each browser to measure the accuracy.
The lists below show the benchmark topics that were significantly slower for specific
browsers. If a topic is listed for a browser, this the browser did not perform well on
this test.

• Chrome

– String, Sunspider

– 3D, Sunspider

• Firefox

– Arrays, Dromaeo

– Json, Kraken

– Regexp, Octane

– Mandreel, Octane

• Opera

– String, Sunspider

– Date, Sunspider

– 3D, Sunspider

• Internet Explorer

– Json, Kraken

– Date, Sunspider

– Regexp, Octane

– Control Flow, Sunspider

The benchmark results clearly show similarities between Chrome and Opera, caused
by the fact that both browsers use the Blink and V8 engines. A sample application
containing some of these elements is constructed to measure the accuracy of a method
constructed.

Accuracy test construction

The benchmarks described above revealed some JavaScript subjects that would show
clear performance differences between browsers. From these subjects, five commonly
used subjects were selected and implemented in an application comparable to the bench-
marks used to find these subjects. All tests were aligned around an execution time of
600 ms in Google Chrome 41.0.2272.118 on the developer machine. All tests were then
run on the virtual machine which was also used to find the subjects for the accuracy
test.

Arrays
The array test (Appendix B.1.1) is based on the array test as found in Dromaeo
and initialises arrays by using two different methods and runs splice, shift,

28

Chapter 3. Profiling performance Thomas Nägele

unshift, push and pop operations. Every test is repeated 10.000 times with an
array of length 30.000.

Strings
The string-test (Appendix B.1.2) initialises string objects and performs a number
of string methods. Strings of length 220 are constructed from words of length
11, which are generated randomly by concatenation. Even characters are set
to uppercase characters, odd characters are set to lowercase. Finally, the word
is trimmed before being concatenated with the long word (220 characters). For
every long word, the split, substring and charAt methods are applied. This
process is repeated until a total of 300.000 (small) words is generated.

Dates
The date-test (Appendix B.1.3) is based on the date-test as found in Sunspider
and extends the JavaScript Date object with a formatDate method. This method
is very similar to the PHP implementation of date1. A date is formatted in a way
as specified by the user by passing a string. This argument contains characters
corresponding to elements of the date to be printed. For example, ‘H’ corresponds
to the hour. This test initialises a Date object and starts a loop. Every cycle of
this loop formats the date and adds a large number of milliseconds to it. This
loop contains 35.000 cycles.

JSON
The JSON-test (Appendix B.1.4) consists of a large JavaScript array of around
70 kB. This array contains 65 objects with 22 attributes each. The function
first performs the stringify operation on the object for 700 times. Then, the
resulting string is parsed another 700 times.

Regular expressions
Before the regular expression test (Appendix B.1.5) starts, a random string of one
million characters is generated. Hereafter, eleven regular expressions are executed
on the random string for 100 times each.

Results

To verify whether these tests are suitable to test the accuracy of a method for analysing
the front-end performance of a web application, the tests were executed as benchmarks
on the system used in Section 3.3.1 to find performance differences between browsers.
The same (versions of) browsers are used and the hosting machine remains unchanged.

Figure 3.3.1 displays the normalised execution times as measured by the accuracy
evaluation script. Lower is faster. The averaged values measured are displayed in
Appendix B.2.

1http://php.net/manual/en/function.date.php

29

http://php.net/manual/en/function.date.php

Chapter 3. Profiling performance Thomas Nägele

Array String Date Json Regexp

−0.5

0

0.5

1

1.5

N
o
rm

al
is

ed
ex

ec
u

ti
on

ti
m

e

Chrome Firefox Opera Internet Explorer

Figure 3.3.1: Normalised results for the accuracy test for evaluation. Lower is faster.

The results of the accuracy test confirm the results from the benchmarks used to
identify the test subjects. The results clearly show performance differences between
the browsers, although these differences are not always as expected by the previous
benchmarks on which these tests are based. However, the results are very useful to test
the accuracy. From the results, the following statements can be formed.

• Internet Explorer is very fast at array operations.

• Firefox is slow at string operations.

• Opera is slower than Chrome at date operations.

• Chrome and Opera are fastest at JSON operations.

• Internet Explorer is slow at executing regular expressions.

To check a method for its accuracy, these five statements should be verified. It is not
important to what degree the method matches the execution times of this reference test
as long as the statement can be confirmed from the results. The number of confirmed
statements for each method determines the grade for accuracy that is given. This
number shall be called nconfirmed, where 0 ≤ nconfirmed ≤ 5.

Since accuracy is an important property of the method evaluation, a grade for this
property cannot be calculated linearly. A method that can confirm only three out
of five statements should already be graded as insufficiently accurate. Therefore, an
exponential decrease in grade is used to create a definition for the accuracy.

Definition 2 (Accuracy). Gaccuracy = 5
√

11nconfirmed − 1

30

Chapter 3. Profiling performance Thomas Nägele

3.3.2 Impact

The impact can be measured by comparing the execution time of the application with
and without performance analysis. Since the execution time is the main metric for the
performance analysis, this value alone should be sufficient to calculate the impact.

Definition 3 (Impact). Gimpact = 10− 10·(twith−twithout)
twithout

In Definition 3, Gimpact is the grade for the impact on performance of the method,
where a negative number for Gimpact (Gimpact < 0) is set to Gimpact = 0. twith is the
execution time of the web application in milliseconds with the performance analysis
running. twithout is the execution time of the application without the analysis. twithout

can be measured by using the built-in profiler of a browser. The constant factor 10 is
used to express the grade degradation factor: the grade would be 0 when the application
takes two times as much time to execute compared to the version in which the analysis
method is not applied. A higher constant factor would lead to faster grade degradation,
e.g. a lower grade for an equal impact.

The impact can only be calculated once the method is applied to a project. Since each
viable method is implemented only as a prototype, it would be unnecessary to apply
the method to a whole project. Therefore, each viable method is applied to a small part
of the CTG project. One of the most JavaScript intensive functions built by Topicus
itself is a jQuery plug-in for rendering CTG graphs. This plug-in will therefore be the
part of the project to which the method is applied.

The impact is measured upon opening the Dashboard of the CTG application, in which
four graphs are rendered. For each browser, the Dashboard is opened eight times, after
which the results are measured across all browsers to calculate the average execution
time of the rendering of the graphs. This process is repeated twice: once without the
analysis method, once with the method implemented.

3.3.3 Usability

The usability of the method is expressed by a set of categories. The developer or
customer should determine or estimate the amount of work required to perform a useful
performance analysis using the method developed. The amount of work corresponds
to one of the categories which results in a single grade. Table 3.3.1 lists and defines
the categories that express the usability.

This table should be used to estimate the usability for the end-user of an analysis
method and result in a single grade.

31

Chapter 3. Profiling performance Thomas Nägele

Grade Title Amount of work (m) in minutes

0 Large effort m > 60

2 Quite large effort 20 < m ≤ 60

4 Moderate effort 10 < m ≤ 20

6 Little effort 5 < m ≤ 10

8 Very little effort 0 < m ≤ 5

10 No effort m = 0

Table 3.3.1: Usability categories definition for the performance analysis methods.

3.3.4 Portability

Portability should be measured by estimating the amount of work a developer has to
do to include the performance analysis method in a new project. Since Lines Of Code
(LOC) is a commonly used metric to estimate the size of a project or the amount of
work that has been put into a project, portability will be measured by using LOC as
a metric, also resulting in a single grade. For JavaScript web applications, only the
number of lines of JavaScript code will be considered in this metric.

Definition 4 (Portability). Gportability = 10− 25·(LOCwith−LOCwithout)
LOCwithout

In Definition 4, Gportability is the grade for portability, where a negative number (Gportability <
0) is set to Gportability = 0. LOCwith is the number of lines of code for the application
with the addition of the performance analysis method, where LOCwithout is the number
of lines of code without the method. Only the lines of code that should be manually
typed by the developer should be counted, because only those lines of code are to be
typed by the developer. Less lines of code to add to a project results in a higher grade,
because it is typically less work for the programmer, resulting in a higher grade. The
factor 25 expresses the grade degradation speed. The larger the number, the more
expensive additional lines of code will be in terms of the grade: 40% additional lines
of code results in a 0 as grade for portability. This degradation can be manipulated by
selecting a different factor.

The portability is, like the impact, calculated from the application of the analysis
method on the graphs plug-in for the CTG project. The number of lines of code with
and without the method are counted and used to calculate a grade.

32

Chapter 4

Methods for performance
profiling

This chapter describes several methods to analyse the client-side performance of a web
application. For every method, a pre-evaluation is done. If this is done with positive
result, the method is implemented and post-evaluated.

4.1 Manual profiling

Manual profiling is the most basic method to analyse the client-side performance of a
web application. The built-in JavaScript profiler of the browser is used to measure the
performance of the application. The results are saved and sent to the developer, who
can use the results to locate the performance issue. The following list shows a general
workflow for this method.

1. The user reports a suspected performance issue to the developer.

2. The developer sends an email explaining the procedure and a document explaining
how to profile the application using the built-in profiler.

3. The user uses the profiler to profile the application, then stores and sends the
result to the developer.

4. The developer imports and analyses the profile.

4.1.1 Pre-evaluation

Accuracy: 10
Because all JavaScript code is executed in the JavaScript engine within the

33

Chapter 4. Methods for performance profiling Thomas Nägele

browser, the profiler is able to directly measure execution time of the JavaS-
cript functions. Therefore, the results of this method are expected to locate
performance issues correctly, consequently grading it with 10 points.

Impact: 10
Since the profiler is a layer built in the JavaScript engine, it is expected to be one
of the fastest possible methods, resulting in 10 points.

Usability: 2
The total amount of work is estimated between 30 to 60 minutes total. The
user must first learn how to work with the profiler, which takes most of the time.
Hereafter, a profile should be made, which cannot be done during regular working
activities, because the parallel use of the profiler significantly decreases working
efficiency. Usability is therefore graded 2 points.

Portability: 10
From the perspective of the developer, this method is applicable to any project
regarding a web application. No work from the developer is required during
development, because it is a standalone method to analyse the performance.

The estimated final grade for this method is Gtotal = 7, 6. However, this method
probably violates one of the additional requirements: all grades must be higher or
equal to 5. Since the estimated grade for usability is 2, this method is probably not
suitable for performance analysis.

Additionally, the assumption that all browsers contain JavaScript profilers does not
hold. Mobile browsers, for example, usually do not include a JavaScript profiler. Also,
it is difficult to automatically process all profiles recorded by users, because every
profiler may store its profile in a different format. Consequently, this method appears
not to be suitable as method to analyse client-side performance of web applications.

4.2 Manual logging

Manual logging involves the addition of code to automatically construct an execution-
profile for the web application. The developer should add one logging statement at the
beginning of a function and one at the end. These statements should start and end the
measuring of the function and store the result in a profiler-object.

Since enabling the profiler for all users of the web applications would eventually lead
to inconvenience for the users, this method requires a more targeted approach towards
the users. The resulting code after adding this method would be larger and therefore
slower in execution than the code without this method. Therefore, also an interface
should be created which allows the developer to switch on the profiler for a specific user.
Additionally, a function to send the analysis to the developer should be developed. A
typical workflow for this method follows.

34

Chapter 4. Methods for performance profiling Thomas Nägele

1. The user reports a suspected performance issue to the developer.

2. The developer replies and enables the profiler for the user.

3. The user uses the web application as usual, results are automatically sent to the
developer.

4. After some time, the developer disables the profiler again and analyses the results.

4.2.1 Pre-evaluation

Accuracy: 10
Since all functions are measured by adding statements to the function itself, it is
expected that this method can identify all performance issues within the code.

Impact: 7
Because this method involves the addition of two methods per function, the ex-
ecution time is likely to increase. However, the methods to be executed for each
function call should not be computation intensive, resulting in an estimated in-
crease in execution time of 30%.

Usability: 8
Both the user and developer have very little work to do to perform such a perform-
ance analysis. The estimated time is less than 5 minutes, since it only involves a
simple email conversation and turning a feature on and off for one specific user.

Portability: 5
Manually adding lines of code for performance analysis to every function within a
project requires some additional effort from the developer. Assuming a function
contains an average of 10 lines of code, the total amount of lines is increased by
20%.

The estimates final grade for this method is Gtotal = 8, 1, which is slightly higher than
manual profiling. This method also meets the additional requirements: all grades are
equal or higher to 5 and no manual transmission of analysis results are required.

4.2.2 Implementation

Manual logging is implemented by adding a JavaScript package to the web application,
in which a Profiler -object is created. The Profiler both holds all profiles of functions
and is used to start and stop profiling of a function. The data structure of the resulting
profile is tree-like. Functions called during the execution of others are displayed as
child-functions and also account for parts of the total execution time for their parent
function.

35

Chapter 4. Methods for performance profiling Thomas Nägele

To profile specific functions within the application, start and stop methods from the
profiler should be called. Start requires a single argument containing the name of
the function. This is used to identify the function being called to the developer. The
profiler calculates the execution time of the function and stores the function-profile in
the tree.

Listing 4.1 shows a small – partial – implementation of a confirmation dialog in JavaS-
cript. This code contains statements to profile the functions executed. Every function,
including the anonymous functions, starts with a function call to the profiler to notify
the profiler a new function has started executing. At the end of the function execution,
the profiler is again notified about the function being terminated.

1 function showConfirmDialog(message , okCallback , cancelCallback) {

2 profiler.start(’showConfirmDialog ’);

3 document.getElementById(’okButton ’).onclick = okCallback;

4 /* --- do stuff --- */

5 profiler.stop();

6 }

7
8 function hideConfirmDialog () {

9 profiler.start(’hideConfirmDialog ’);

10 document.getElementById(’confirmDialog ’).style.display = ’none’;

11 profiler.stop();

12 }

13
14 function deleteItem () {

15 profiler.start(’deleteItem ’);

16 showConfirmDialog(’Are you sure you want to delete this item?’,

function () {

17 profiler.start(’anonymous function 1’);

18 alert(’Deleted!’);

19 hideConfirmDialog ();

20 profiler.stop();

21 }, function () {

22 profiler.start(’anonymous function 2’);

23 hideConfirmDialog ();

24 profiler.stop();

25 });

26 profiler.stop();

27 }

28
29 deleteItem ();

Listing 4.1: A sample application that uses the profiler.

The application contains three main functions, which are basically explained below.

showConfirmDialog receives a message and two callbacks from its caller. The func-
tion injects the message into the DOM and attaches the event handlers to the
onclick -events on the buttons. Then, it sets the dialog display mode to ‘block’.

hideConfirmDialog hides the confirmDialog by setting its display mode to ‘none’.

36

Chapter 4. Methods for performance profiling Thomas Nägele

deleteItem calls the showConfirmDialog and defines the anonymous functions which
are attached to the buttons within the dialog. The OK-button displays an alert-
message with the text ‘Deleted!’ and hides the dialog; the Cancel-button only
hides the dialog.

After defining these functions, the deleteItem-function is called by default. When the
execution of this code completes, the profiler can be closed, after which the profile can
be displayed or saved to a database.

Since this application does not contain large amounts of functionality, the profile recor-
ded from running the application is small. Profiles are returned in the JSON-format in
a tree-structure and contain all function calls with their execution times and possible
functions called within. A possible output for the sample application in Listing 4.1 is
displayed in Table 4.2.1.

Main 6562 ms execution time, of which 5631 ms idle time

deleteItem 5 ms

showConfirmDialog 3 ms

anonymous function 1 925 ms

hideConfirmDialog 0 ms

Table 4.2.1: Possible result from the profiler.

From this profile, it is clear that deleteItem is executed first. This function calls
showConfirmDialog before returning, which implies the execution time of showConfirmDialog
is included in the execution time of deleteItem. The callback-function attached to
the OK-button is eventually executed, which calls hideConfirmDialog. Some fast
functions execute too fast for the profiler to accurately measure. These functions are
typically reported to execute 0 to 1 millesecond, since 1 millisecond is the most accurate
a profiler written in JavaScript can be. This is limited by the maximum accuracy of
the built-in Date-object in JavaScript.

4.2.3 Post-evaluation

To establish whether this method is suitable to analyse the performance of a web
application, the method is implemented in the accuracy test. This implementation is
graded, based on the four properties defined.

Accuracy: 10
Figure 4.2.1 displays the results of the accuracy test for this implementation (Ap-
pendix B.3). The results show a clear similarity with the results achieved in the
reference benchmark. The five identifying accuracy properties as described in
Section 3.3.1 should be checked to calculate a grade for accuracy.

• Internet Explorer is very fast at array operations: confirmed.

37

Chapter 4. Methods for performance profiling Thomas Nägele

Array String Date Json Regexp

−0.5

0

0.5

1

1.5
N

o
rm

a
li

se
d

ex
ec

u
ti

o
n

ti
m

e

Chrome Firefox Opera Internet Explorer

Figure 4.2.1: Normalised results for the accuracy test for evaluation of the Manual
Logging method. Lower is faster.

• Firefox is slow at string operations: confirmed.

• Opera is slower than Chrome at date operations: although the difference is
small, it can be confirmed.

• Chrome and Opera are fastest at JSON operations: confirmed.

• Internet Explorer is slow at executing regular expressions: confirmed.

Since all five statements can be confirmed by the accuracy test, the resulting
grade is a 10.

Impact: 5,9
The impact is calculated by measuring the total execution time of the graphs
being drawn to the screen in the CTG application with and without performance
analysis implemented. Table 4.2.2 displays the average execution times across the
browsers for each test, including the sum of execution times. The execution time
difference is expressed in the column ‘Difference’, which is based on the execution
time without analysis method. The grade for Impact can than be calculated as
follows: Gimpact = 10− 10·(496−353)

353 = 5, 9.

Usability: 8
As long as the process of sending and receiving the profile which is created by the
profiler is automated, this profiler requires little effort from both the developer
and the user. The amount of work to be performed together is expected to be
less than 5 minutes, resulting in Gusability = 8.

38

Chapter 4. Methods for performance profiling Thomas Nägele

Without With Difference

Chrome 209,2 351,0 67,78%

Firefox 292,6 387,8 32,54%

Opera 235,6 348,2 47,79%

Internet Explorer 673,8 895,2 32,86%

Average 352,8 495,6 40,46%

Table 4.2.2: Total execution time of the execution test with and without the perform-
ance analysis.

Portability: 8,4
After counting the manually written lines within the CTG project after imple-
menting this performance analysis method and comparing it with the number of
lines without the method, a grade for portability can be calculated. Table 4.2.3
shows the number of lines of code before and after the implementation of the
profiler in the project.

graph.js Lines of code

Without profiler 1297

With profiler 1381

Difference 84

Table 4.2.3: The number of lines of code within the scope with and without the per-
formance analysis method.

The grade for portability can now be calculated as defined: Gportability = 10 −
25·(1381−1297)

1297 = 8, 4.

With these four grades the final grade for this method is calculated: Gtotal = 2
5 · 10 +

1
10 · 5, 9 + 3

10 · 8 + 1
5 · 8, 4 = 8, 7. Since all sub-grades are equal or higher 5, the process

around the method is viable to be automated and the resulting final grade is 8, 7, this
method is likely to be useful for web applications.

4.2.4 Issues

Although the evaluation shows this is likely to be a suitable method for performance
analysis for web applications, there are still issues to overcome. Two of the biggest
issues that should be solved are the following.

• When running the profiler for a while, the profile can become too large to
handle. Since the String test within the accuracy test performs a large amount of
random() function calls, the profile grew to a size not all browsers could handle.

39

Chapter 4. Methods for performance profiling Thomas Nägele

To overcome this issue, this function is not profiled. A more permanent solution
is required for this method to be used in production.

• Asynchronous function calls will break the call hierarchy displayed by the profile
being recorded, since these functions are started within a function, but will usually
return after their parent function is finished. AJAX-calls will therefore show up
incorrectly in the profile and corrupt the profiles of other function calls.

• Non-empty return statements may result in incorrect profiles. If a return state-
ment calls a function, this function is not recorded at the correct position in the
profile, since the profiling of the parent function has already finished. This child
function is therefore displayed at the same depth as its parent in the profile tree.
Additionally, if the return statement contains a large computation or a function
call, the profile does not contain the complete execution time, because the return
statement is not included.

• It is not convenient for the programmer to manually add statements to each
function to start and stop the profiler. Therefore, a more developer-friendly
method should be developed. However, the method implies the manual addition
of lines of code to the source, which makes this issue trivial.

4.3 Manual Logging improved

Since manual logging is a viable method to analyse client-side web application perform-
ance, this method is improved. This section describes the changes and improvements
made to the original method from Section 4.2.

The main focus was to address the issues described in Section 4.2.4, except for the
last issue, since this issue is addressed in Chapter 5. The improvement of the method,
however, is done with future automation in mind. Since the pre-evaluation does not
differ from the post-evaluation of the first manual logging method described, this section
is discarded.

4.3.1 Implementation

The implementation of the original manual logging method is largely unchanged. The
most important changes are explained below.

Smaller profile object

Since large amounts of functions caused the profile object to increase significantly
over time, the first version of the profiler became very slow when saving or displaying
profiler. Hence, it was important to decrease the size of the profile. This is achieved

40

Chapter 4. Methods for performance profiling Thomas Nägele

by grouping equal function calls within the same scope. A scope consists of a set
of functions executed sequentially with the same parent function. For every grouped
function call, the following relevant additional attributes are stored.

calls: the number of times this function has been called in this scope.

averageTime: the average time each function executed. This is calculated from by
dividing the totalTime by the number of function calls.

minTime: the minimum execution time for the function.

maxTime: the maximum execution time for the function.

Note that if a function call occurs only once in a scope averageTime equals minTime,
maxTime and totalTime.

Grouping takes place upon starting a function. After its scope is found, findElement
checks whether this function already exists in the profile for the scope. If not, the
function is added to the scope; if it does exist, its attributes are updated. A similar
function runs upon stopping the function.

The resulting profile is potentially significantly smaller than when using the original
manual logging method. For example, the formateDate function in the date test
(Appendix B.1.3) created for testing the accuracy of a method runs 35.000 times on
an object. This execution is performed sequentially within the same scope (runDate).
With the original manual logging method, this scope would have 35.000 child function,
each containing 10 children. With the improved method, runDate’s scope only contains
1 child. This child contains only 8 children, since two functions are executed twice. In
total, the profile object contains 9 children below runDate instead of 350.000. Since
this is a rather extreme example – it is a benchmark – the gain is not always this
significant.

Since grouping results in a significant overhead for each function call, it is expected to
have a higher impact on the overall performance when the profiler is enabled.

Asynchronous function calls

Asynchronous function calls, such as AJAX requests, require callback functions to be
passed. These callback functions are executed upon a certain event, such as receiving a
response from the server. These functions then handle the response. Since their parent
function, in which the function is attached to the listener, has already been terminated,
the execution of the callback function is profiled in another scope than their parents
scope. The profile therefore resembles the actual execution order of the functions, but
does not provide a hierarchical overview of function calls to the developer.

For example, Listing 4.2 contains the function fetchData that performs a basic AJAX
request to the server and alerts the response to the user. To achieve this, an xmlhttp

41

Chapter 4. Methods for performance profiling Thomas Nägele

object is created and an onreadystatelistener function is attached (line 4). Line 11
and 12 send the request for models/model 1.json to the server.

1 function fetchData () {

2 profiler.start(’fetchData ’);

3 var xmlhttp = new XMLHttpRequest ();

4 xmlhttp.onreadystatechange = function () {

5 profiler.start(’anonymousFunction1 ’);

6 if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

7 alert(xmlhttp.responseText);

8 }

9 profiler.stop();

10 };

11 xmlhttp.open("GET", "models/model_1.json");

12 xmlhttp.send();

13 profiler.stop();

14 }

Listing 4.2: An example of a function performing an AJAX request.

Value State

0 UNSENT

1 OPENED

2 HEADERS RECEIVED

3 LOADING

4 DONE

Table 4.3.1: Possible XMLHttp
readyState values [42].

The five possible values for the readyState
are displayed in Table 4.3.1. With every
transition of the readyState to the next,
the listener is called, resulting in four calls
to the listener function. In this case, this
function only performs some additional ac-
tions once the readyState equals 4 – when
the response is ready. Since the first call to
the listener only initialises and sends the
xmlhttp request, this is the only time the
function is called within its parent func-
tion. All other calls to the listener are performed asynchronously and are therefore
profiled outside its parents scope.

1. Main

2. fetchData

3. anonymousFunction1

4. anonymousFunction1

5. anonymousFunction1

6. anonymousFunction1

(a) Ordered tree

1. Main

2. fetchData

3. anonymousFunction1

4. anonymousFunction1

5. anonymousFunction1

6. anonymousFunction1

(b) Hierarchical tree

Table 4.3.2: Two possible profile trees for the execution of fetchData in Listing 4.2.

Table 4.3.2a displays the resulting profile when using the profiler as described in Sec-
tion 4.2. The listener – anonymousFunction1 – is called four times, due to changes of
the readyState value.

42

Chapter 4. Methods for performance profiling Thomas Nägele

For the developer, a more convenient way of constructing the tree would be a hier-
archical one, as displayed in Table 4.3.2b. This tree constructs its profile in a way
that is consistent with the source code of the program. All four calls to the listener
should therefore be child functions of fetchData. The original manual logging method
is not able to construct hierarchical profiles, but can only construct profiles based on
the execution order.

To overcome this issue, callback functions should be marked as such by the developer.
The profiler will then store the current scope of this function upon execution. When
the function later in time executes, the scope in which it should be profiled is fetched,
after which the hierarchical structure that exists in the code is maintained. It is,
however, not possible to automatically detect which – sometimes anonymous – functions
are executed asynchronously. Therefore, the developer should manually specify these
functions. Because the integration process should eventually be automated, this is not
a viable solution.

Another theoretical solution is to extend the XMLHttp object, which is used for AJAX
requests to the server, with code to start and stop the profiler on the right time to
store the callback function in the right hierarchical scope. Since not all browsers allow
the extension of the XMLHttp object, this solution would not be compatible with all
browsers, which is also an important requirement for the methods.

Considering that there is no viable solution for profiling the asynchronous function
calls, this method cannot place callback methods in their hierarchical scope. Instead,
the profiler gives an overview of the order in which functions are executed.

Non-empty returns

JavaScript functions may return values, statements or functions. The original manual
logging method cannot handle non-empty returns. Therefore, a function containing
a non-empty return statement should be stopped just before the return statement.
This, however, does not profile the whole function, since the return statement may
also contain calculations or function calls. Possible recursive function calls would also
become sequential function calls according to this profiler.

The improved version supports an optional second argument for the stop method.
This argument contains the return statement, which is executed before stopping the
measurement for its parent function. The resulting profile is therefore more correct
(recursive functions are displayed correctly in the tree) and accurate (since the return
statement is measured as well).

43

Chapter 4. Methods for performance profiling Thomas Nägele

1 function rand(max) {

2 profiler.start(’rand’);

3 profiler.stop();

4 return Math.floor ((Math.random () * max) + 1);

5 }

Listing 4.3: A rand function using the original manual logging method.

1 function rand(max) {

2 profiler.start(’rand’);

3 return profiler.stop(’rand’, Math.floor ((Math.random () * max) + 1));

4 }

Listing 4.4: A rand function using the improved manual logging method.

Listing 4.3 uses the original manual logging method, which starts and stops the profiling
of this function without actually measuring something, because the actual content of
the function is placed inside the return statement. Listing 4.4 shows how the improved
manual logging method can be used to measure the statements in the return statement
as well. Also, the function name is placed in the first argument of stop to enable
grouping as described in Section 4.3.1.

Listings 4.5 shows a function fact that uses recursion to calculate the factorial of a
given number with the original manual logging method applied.

1 function fact(n) {

2 profiler.start(’fact’);

3 if (n <= 0) {

4 return 0;

5 }

6 if (n === 1) {

7 return n;

8 }

9 profiler.stop();

10 return n * fact(n-1)

11 }

Listing 4.5: A fact function using the original manual logging method.

The resulting profile tree when calling fact(4), will be like displayed in Table 4.3.3

Main

fact(4)

fact(3)

fact(2)

fact(1)

fact(0)

Table 4.3.3: Profile from the original profiler for running fact(4).

44

Chapter 4. Methods for performance profiling Thomas Nägele

This tree is incorrect, as every call of the recursive function fact is the child of its
parent. These calls should therefore be recorded as children of each other, resulting in
a nested instead of sequential structure. With the improved manual logging method,
this function should be changed to the code displayed by Listing 4.6.

1 function fact(n) {

2 profiler.start(’fact’);

3 if (n <= 0) {

4 return 0;

5 }

6 if (n === 1) {

7 return n;

8 }

9 return profiler.stop(’fact’, n * fact(n-1));

10 }

Listing 4.6: A fact function using the improved manual logging method.

This code would yield the profile as displayed in Table 4.3.4 for a function call to
fact(4). This profile contains a nested structure, and therefore shows the recursive
behaviour of fact correctly.

Main

fact(4)

fact(3)

fact(2)

fact(1)

fact(0)

Table 4.3.4: Profile from the improved profiler for running fact(4).

4.3.2 Post-evaluation

Accuracy: 10
Figure 4.3.1 shows the results of the accuracy test for the improved implement-
ation of the Manual Logging method. Again, the results are similar to those of
the reference benchmark, but the five identifying accuracy properties should be
checked to calculate the accuracy.

• Internet Explorer is very fast at array operations: confirmed.

• Firefox is slow at string operations: confirmed.

• Opera is slower than Chrome at date operations: confirmed, although the
differences are very small.

• Chrome and Opera are fastest at JSON operations: confirmed, although the
differences between the four browsers are smaller.

45

Chapter 4. Methods for performance profiling Thomas Nägele

Array String Date Json Regexp

−0.5

0

0.5

1

1.5
N

o
rm

al
is

ed
ex

ec
u

ti
on

ti
m

e

Chrome Firefox Opera Internet Explorer

Figure 4.3.1: Normalised results for the accuracy test for evaluation of the improved
Manual Logging method. Lower is faster.

• Internet Explorer is slow at executing regular expressions: confirmed.

Since all five properties can be confirmed from the accuracy test, the grade for
accuracy for this method is a 10.

Impact: 5,2
Table 4.3.5 shows the average execution times of the rendering of the graphs on
the dashboard page of the CTG application. The grade can be calculated as
follows: Gimpact = 10− 10·(495−335)

335 = 5, 2.

Without With Difference

Chrome 226,4 365,0 61,22%

Firefox 262,4 355,2 35,37%

Opera 223,6 384,0 71,74%

Internet Explorer 629,2 876,6 39,32%

Average 335,4 495,2 47,64%

Table 4.3.5: Total execution time of the execution test with and without the perform-
ance analysis.

Usability: 8
Since this method only involves a technical improvement to the profiler, the
expected total time the end-user and developer need to spend on creating an
analysis is less than 5 minutes. Therefore, the grade for usability remains the
same as before: Gusability = 8.

46

Chapter 4. Methods for performance profiling Thomas Nägele

Portability: 8,4
The number of lines of code within graph.js is used to calculate the grade for
portability of this method. The amount of code that needs to be typed by the
developer has increased a little, since the name of the function must be given
as argument to stop the function. However, this does not affect the number
of lines the developer should type. The number of lines is slightly decreased,
because return statements can now be joined with the stop method. Table 4.3.6
displayed the number of lines of code of graph.js with and without the profiler
applied. The grade for portability is computed as follows: Gportability = 10 −
25·(1379−1297)

1297 = 8, 4.

graph.js Lines of code

Without profiler 1297

With profiler 1379

Difference 82

Table 4.3.6: The number of lines of code within the scope with and without the per-
formance analysis method.

With these four grades, the final grade is calculated: Gtotal = 2
5 · 10 + 1

10 · 5, 2 + 3
10 ·

8 + 1
5 · 8, 4 = 8, 6. This final grade is slightly lower than the original method. Since

all properties are grades at least 5 points and secondary requirements are met, this
method is suitable for use in a project.

Although the final grade for the improved method is slightly lower than that of the
original method, the improved method is more suitable. The resulting profile contains
all relevant information, but is significantly smaller and therefore more usable for pro-
cessing. To keep the profile small, similar items are grouped by the profiler. Grouping
requires some additional logic in the profiler, which decreases execution speed of the
profiler itself, as shown by the grade for impact. However, when processing or trans-
ferring the profile, the costs for a huge profile will be significantly higher than those of
the additional logic in the profiler to keep the profile small.

47

Chapter 5

Integration

This chapter describes methods that can be used to integrate the performance analysis
method described in Section 4.3 with any web application project. It is important that
the addition of the profiler integrates with a build process in a working environment.

5.1 Aspect Oriented Programming

Aspect Oriented Programming (AOP, [43]) is a programming paradigm that adds ad-
ditional behaviour to source code without the need to modify the original code. A
commonly used method for this is the addition of annotations to the code. Hence,
AOP is regularly used to add logging statements to functions. Doing so, the developer
does not need to add the logging statements manually to the functions. Also, the code
is better readable, since the functions only define the behaviour that is expected from
the function, without the additional logging statements.

Since JavaScript does not support annotations, AOP for JavaScript is implemented
like an extension of an existing function that adds behaviour and executes the ori-
ginal function. By overloading every function, profiling statements could be added to
every function. This creates a large overhead for the developer. Additionally, there
are frameworks available123 to use AOP in JavaScript. However, every function should
manually or automatically be modified to enable profiling statements to be execution
upon function calls. This can be done by prepending the function name or adding
comments, depending on the framework used. Since this method depends on a frame-
work that should be added to the project and it also involves some overhead for the
developer, the use of frameworks for AOP in JavaScript is not suitable.

1http://aspectjs.com/
2https://github.com/raganwald/YouAreDaChef
3http://mulli.nu/2010/05/07/aop-js/

48

http://aspectjs.com/
https://github.com/raganwald/YouAreDaChef
http://mulli.nu/2010/05/07/aop-js/

Chapter 5. Integration Thomas Nägele

Additionally, the developer can pick specific functions to profile by overloading the
function. While this increases flexibility, it also decreases the correctness of the profiles
obtained from the profiler, since it is not always the case a full profile is recorded.
In order to overload all functions within the project – including frameworks that are
used – the developer should spend a large amount of time. Automatic injection is
possible, but creates a significant overhead in the code. Therefore, Aspect Oriented
Programming is not suitable for integrating the profiler in a project.

5.2 Integration tool

The statements that need to be added to profile the JavaScript execution of a web
application are very predictable. These function calls to the profiler object only require
the name of the function that is being profiled and need to be placed consistently on the
correct location within the code. Therefore, the insertion of these profiler statements
to existing source code could relatively easy be automated. Therefore, a tool was
developed that allows the integration of the profiler statements within an existing
project or file.

5.2.1 Implementation

Our tool parses the input source(s) and inserts the statements that are required to
profile all functions. It can also store the code of the profiler itself to a given destination.
The tool handles three types of files.

JavaScript files: The extension of these files is .js. These files are parsed, after
which profiling statements are inserted and the file is written to the given output.

Markup files: The extension of these files is .htm, .html or .php. These files may
contain JavaScript code within script-tags. The files are read and searched
for <script type="text/javascript"> tags. The contents of these tags are
processed as JavaScript files, after which the resulting file is written to the given
output.

Other files: These files do not match any format of the above and are copied to the
given destination.

JavaScript code – both from files and embedded code snippets – is parsed by the Mozilla
Rhino4 JavaScript parser to obtain an Abstract Syntax Tree (AST). This AST is then
modified by inserting profiler statements to enable the functions to make use of the
profiler. The following steps are performed on the AST.

1. Find all function nodes in the tree.

4https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino

49

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino

Chapter 5. Integration Thomas Nägele

2. Add a profiler.start call in front of every function body.

3. Recursively call step 1 with the function body as tree.

4. Find all return statements within the scope of this function and rewrite them to
stop the profiler for this function.

5. If the function does not end with a return statement, add a profiler.stop to
the end of the function body.

This is the algorithm to apply the profiler to a given script. This routine is repeated
for every script that is found in the input directory. Additionally, the tool can store
the source containing the profiler itself in a given directory. Once the tool detects that
files will be removed or overwritten, it prompts the user whether to continue or not.
Table 5.2.1 provides an overview of the arguments that are accepted by the tool.

Argument Description

-f When set, the user will not be prompted when files are being
removed or overwritten.

-fullpath When set, the function name in the call to the profiler is set to
the relative path instead of only the name of the source file.

-help When set, a help message is displayed to the user.

-if file Provides an input file or directory to apply the profiler to.

-of file Provides an output file or directory to write the output to. If this
argument is not set, the tool will overwrite the input file with its
output.

-pf file When set, the source of the profiler itself is written to this file. If
a directory is given, Profiler.js is written in this directory; if a file
(.js) is given, the source is written to this file.

Table 5.2.1: Accepted arguments for the integration tool.

The tool was developed in Java 85, since this language included support for both
Mozilla Rhino and Apache Commons CLI6. Also, the default developing environment
of Topicus is based on Java 8.

5.2.2 Improvements

Although the improved manual logging method is capable of reporting performance
statistics to the developer rather clearly by displaying the name of the function, these
results may yield ambiguous results when used in a large project. Since function names
may be used multiple times throughout a project in different contexts, these may
eventually not be unique, making them unsuitable as main identifier.

5http://www.oracle.com/technetwork/java/javase/overview/java8-2100321.html
6https://commons.apache.org/proper/commons-cli/

50

http://www.oracle.com/technetwork/java/javase/overview/java8-2100321.html
https://commons.apache.org/proper/commons-cli/

Chapter 5. Integration Thomas Nägele

To overcome this issue, the file name and line number where the function is declared
are now passed as arguments to the profiler and stored in the profile. The profiler itself
has been modified to support these additional properties.

5.2.3 Limitations

Although our integration tool is capable of handling most common JavaScript sources
and snippets, some assumptions have been made that limit its functionality. The
limitations of the tool are listed below.

• Functions defined in eval expressions will not be subject to the application of
the profiler statements. Since these functions are defined as text, this text should
first be parsed again in search for function definitions. This introduces a possible
infinite recursion and is considered to be a bad practice and makes the tool
unnecessarily complex. Therefore, function declarations using eval expressions
will not be injected with profiler statements.

• Definition of functions by initialising the Function object are not supported,
since this is considered to be an implicit eval expression. The function body
is passed as string argument to the Function object, making it unnecessarily
complex.

• Files not having the the extension .js, .htm, .html or .php are considered not to
contain JavaScript content. The source of the tool, however, allows rather easy
extension to other file types when required.

• Files or folders cannot be selected or excluded individually for application of the
profiler within a single run of the tool. The tool can only operate on one file or
a whole folder. A workaround is to run the tool for each file separately.

5.2.4 Concluding grade

Since the original profiler has been changed to store both the file name of the source and
the line number on which the function is declared, the resulting profile is expected to
become larger than with the improved version of the method. A larger profile is likely
to be handled slower, resulting in a lower grade for impact. Also, the developer should
add significantly less lines of code to a project to apply the profiler to it, resulting in a
higher grade for portability. Therefore, these two grades are revised and the resulting
final grade of the method including the integration tool is calculated.

51

Chapter 5. Integration Thomas Nägele

Impact

Table 5.2.2 shows the execution times in milliseconds to draw four CTG graphs on
the dashboard of the CTG application. As in the previous impact tests, the test was
conducted five times on each browser for both with and without a profiler applied to
the graph.js file.

Without With Difference

Chrome 238,0 364,8 53,28%

Firefox 275,6 365,2 32,51%

Opera 220,0 353,0 60,45%

Internet Explorer 609,4 826,2 35,58%

Average 335,8 477,3 42,16%

Table 5.2.2: Total execution time of the execution test with and without the perform-
ance analysis.

The results may be a little surprising, since the impact of the profiler appears to be
smaller than before. The profiler, however, has been extended to store both the file
name of the source file and the line number on which the function is declared, which
was expected to be slightly slower. Since the difference is only 5%, it is more likely to
be related to environmental causes such as overall CPU load than to the profiler itself.
Altogether, the extension does not have any measurable influence on the impact on the
performance of the profiler. Since the grade has been changed, however, the impact
grade is recalculated: Gimpact = 10− 10·(477−336)

336 = 5, 8.

Portability

Since this tool is built to decrease the amount of work for the developer, it is expected
that the portability grade will increase. With this tool, the developer does not need
to manually add profiler statements to the source, resulting in a significant decrease
of the amount of work for the developer. Instead, the developer should perform one
command to apply the profiler on the project. Therefore, no manually typed code
needs to be added to the project sources, resulting in a high grade: Gportability =

10− 25·(1297−1297)
1297 = 10.

Because the functionality of the method has not changed, both accuracy and usability
are assumed to remain unchanged. The resulting final grade for the method with
integration tool can then be calculated: Gtotal = 2

5 · 10 + 1
10 · 5, 8 + 3

10 · 8 + 1
5 · 10 = 9, 0.

Since the combination of the profiler and the integration tool results in the highest
graded method, this combination is very suitable to use for client-side performance
analysis.

52

Chapter 6

Conclusion

This thesis describes the steps that were taken towards a method to measure the client-
side performance of web applications. A definition of client-side performance within the
context of web applications was formulated and properties on which to evaluate possible
methods were defined. With these properties, an evaluation method was developed.
Two profiling method were suggested, of which one method was eventually implemented
and improved in the next step. Finally, an integration method to apply the profiling
method to a project was implemented.

In addition to the overall speed of the hardware of a computer, the browser has an
impact on the performance of a web application running on a computer. The differences
between browsers are caused by the different JavaScript engines that are used. From the
perspective of a user, a web application performs badly when it is slow or unresponsive.
This is caused by slow execution of JavaScript by the JavaScript engine, which handles
the execution of the actions triggered by the user. Therefore, performance of a web
application is mainly determined by the execution time of functions in JavaScript and
the total execution time of JavaScript code within the application.

To select suitable methods, four measurable properties were introduced to conduct
verifiable evaluations on the profiling methods: accuracy, impact, usability and port-
ability. These properties were translated to four metrics which are combined into one
final grade for each profiling method. This grade expresses the suitability of the method
to measure the performance of a web application at the client-side.

A profiling method is presented that involves adding statements to function declarations
in JavaScript to create a profile tree at run-time. This profile tree holds information
about every executed function, function name, location and execution time. The pro-
filer should be included in the web page to be used and is written in pure JavaScript,
independent of any JavaScript framework that could be included. It is therefore ap-
plicable to any web application written in JavaScript. To increase the portability of
the method, an integration tool is constructed to integrate the profiler in a file or a

53

Chapter 6. Conclusion Thomas Nägele

project. This tool automatically adds profiling statements to the source code, which
significantly speeds up the integration process for the developer.

The method was evaluated with positive result. It is accurate, user friendly and port-
able. The impact on the performance of the application, however, is significant, as it
decreases by roughly 45%. Due to this impact, the method should only target spe-
cific users for performance analyses. Use of the profiler in production environments
targeting all users would slow the application down significantly.

Altogether, the method can be applied to any web application that is built with Java-
Script and has the ability to provide the developer with detailed information about the
execution speed at the end-users.

6.1 Discussion

In Section 3.3, an evaluation method is constructed containing four quantitative metrics
and two additional conditions that should be met by a profiling method. While defining
profiling methods, it became clear that this definition was not sufficient to determine
the suitability of a method for application in a project. Additional requirements were
necessary.

Section 4.2.4 describes issues with the original manual logging method. One of the
issues is that the resulting profile is too large to send over the internet and slows down
the browser significantly. The size of the profile is, however, never mentioned in the
evaluation method. This property appeared to be of importance for the evaluation
method, but was not included. In Section 4.2.3, the final grade for the method turned
out to be lower than the method proposed earlier. The method that received a lower
grade, however, was improved. This decision seems to ignore the results from the
evaluation method. These examples show that the proposed evaluation method needs
refinement.

Section 3.3.1 describes the construction of an accuracy test for the evaluation method.
Although the goal of this paper is to develop a method to measure the performance of
JavaScript execution in any browser, the accuracy test is constructed based on results
of only the four most popular browsers on the market. Consequently, there may be
more performance differences between browsers that have not been considered in this
paper. These differences may not be identified with the method presented.

The benchmarks carried out in Section 3.3.1 were executed in a virtual machine. There-
fore, these benchmarks may not result in very trustworthy results, as the amount of
CPU time depends on the overall load of the system as a whole instead of only the
browser running the benchmark. The results, however, were usable, since they were
only used to compare the browsers with each other.

54

Chapter 6. Conclusion Thomas Nägele

6.2 Related work

When it comes to general JavaScript execution behaviour, the works of both Martin-
sen, Grahn [44] and Martinsen, Grahn and Isberg [27] should be noted. These papers
investigate the execution behaviour of JavaScript in a large set of popular web ap-
plications. This research, however, does not result in a generic method to record the
execution behaviour of any web application.

Little scientific research has been carried out towards an implementation of a generic
JavaScript profiler that could be included in any web application. However, some solu-
tions have been developed, including AngularJS Batarang1, Benchpress2 and Zone.js3.
These tools, however, are meant to be used to debug specific parts of the source code
by the developer, instead of using the tool in a production environment. Also, these
tools depend on frameworks to be included with the application.

6.3 Future work

Although an integration tool has been developed to easily integrate the JavaScript
profiler in a project, more work is needed to be able to use the approach. To be able
to store and analyse the results of the profiler, a connector should be created for the
back-end to which the client can push the profile that was collected. Also, a mechanism
should be created that enables the developer to target specific users to run the profiler.
Finally, the profiler should include methods that start and stop the profiler at specified
moments and sends the profile to the back-end.

The current implementation of the profiler outputs the recorded profile as JSON string.
This string contains a structured tree of all the functions that were executed during
the profiling process. This tree, however, is not yet convenient for the developer to use,
as it does not incorporate any visual aspect. To make the tree better readable for the
developer, a visualisation tool should be developed or found that visualises the JSON
string.

As mentioned in Section 6.1, the evaluation method requires some more refinement
before it can be used on similar problems. However, the requirements and metrics
that can be added, depend on the application on which the method should be applied.
The evaluation method could therefore be extended with addition requirements and
metrics. While developing a method, those that are useful can then be selected.

Finally, a case study could be done to the profiling method applied to an application.
This study should provide an answer to the question whether the profiling method is
useful in practice or not.

1https://github.com/angular/angularjs-batarang
2https://github.com/angular/benchpress
3https://github.com/btford/zone.js/

55

https://github.com/angular/angularjs-batarang
https://github.com/angular/benchpress
https://github.com/btford/zone.js/

Bibliography

[1] R. T. Fielding, Architectural styles and the design of network-based software ar-
chitectures. PhD thesis, University of California, Irvine, 2000.

[2] G. Richards, S. Lebresne, B. Burg, and J. Vitek, “An Analysis of the Dynamic
Behavior of JavaScript Programs”, SIGPLAN Not., vol. 45, pp. 1–12, June 2010.

[3] B. Stone, “Monitoring and control engine for multi-tiered service-level manage-
ment of distributed web-application servers”, Nov. 23 2004. US Patent 6,823,382.

[4] J.-C. Bolot and P. Hoschka, “Performance engineering of the world wide web:
Application to dimensioning and cache design”, Computer Networks and ISDN
Systems, vol. 28, no. 7, pp. 1397–1405, 1996.

[5] P. Ratanaworabhan, B. Livshits, and B. G. Zorn, “JSMeter: Comparing the be-
havior of JavaScript benchmarks with real web applications”, in Proceedings of
the 2010 USENIX conference on Web application development, pp. 3–3, USENIX
Association, 2010.

[6] G. Richards, A. Gal, B. Eich, and J. Vitek, “Automated Construction of JavaScript
Benchmarks”, SIGPLAN Not., vol. 46, pp. 677–694, Oct. 2011.

[7] J. Nielson, C. Williamson, and M. Arlitt, “Benchmarking modern web browsers”,
in 2nd IEEE Workshop on Hot Topics in Web Systems and Technologies, 2008.

[8] D. Nations, “Web Applications: What is a web application?”. http://webtrends.
about.com/od/webapplications/a/web_application.htm. Accessed: 2015-02-
18.

[9] J. J. Garrett, “Ajax: A new approach to web applications”. https://courses.cs.
washington.edu/courses/cse490h/07sp/readings/ajax_adaptive_path.pdf,
2005. Accessed: 2015-02-18.

[10] E. Marcotte, Responsive web design. Editions Eyrolles, 2011.

[11] K. Natda, “Responsive Web Design”, Eduvantage, vol. 1, no. 1, 2013.

[12] D. Raggett, A. Le Hors, and I. Jacobs, “Html 4.01 specification”, W3C recom-
mendation, vol. 24, 1999.

56

http://webtrends.about.com/od/webapplications/a/web_application.htm
http://webtrends.about.com/od/webapplications/a/web_application.htm
https://courses.cs.washington.edu/courses/cse490h/07sp/readings/ajax_adaptive_path.pdf
https://courses.cs.washington.edu/courses/cse490h/07sp/readings/ajax_adaptive_path.pdf

Bibliography Thomas Nägele

[13] World Wide Web Consortium, “Html5 specification”, Technical Specification, Jun,
vol. 24, p. 2010, 2010.

[14] B. Bos, H. W. Lie, C. Lilley, and I. Jacobs, “Cascading style sheets, level 2 CSS2
specification”, 1998.

[15] B. Eich, “JavaScript at Ten Years”, SIGPLAN Not., vol. 40, pp. 129–129, Sept.
2005.

[16] D. Kramer, “The Java Platform”, White Paper, Sun Microsystems, Mountain
View, CA, 1996.

[17] J. Gay, “The history of Flash”, Adobe Systems Inc, 2001. http://www.adobe.

com/macromedia/events/john_gay/index.html, Accessed: 2015-02-18.

[18] A. Grosskurth and M. W. Godfrey, “A reference architecture for web browsers”, in
Software Maintenance, 2005. ICSM’05. Proceedings of the 21st IEEE International
Conference on, pp. 661–664, IEEE, 2005.

[19] G. Nicol, L. Wood, M. Champion, and S. Byrne, “Document object model (DOM)
level 3 core specification”, 2001.

[20] StatCounter, “StatCounter Global Stats: Top 5 Desktop, Tablet & Con-
sole Browsers from Feb 2014 to Feb 2015”. http://gs.statcounter.com/

#browser-ww-monthly-201402-201502. Accessed: 2015-03-13.

[21] D. Flanagan, JavaScript: the definitive guide. ”O’Reilly Media, Inc.”, 2006.

[22] “A Short History of JavaScript”. https://www.w3.org/community/webed/wiki/
A_Short_History_of_JavaScript. Accessed: 2015-02-20.

[23] Brendan Eich, “Brendan Eich”. https://brendaneich.com/. Accessed: 2015-02-
20.

[24] ECMAScript, ECMA and European Computer Manufacturers Association and
others, “ECMAScript Language Specification”, 2011.

[25] K. M. Dixit, “The SPEC benchmarks”, Parallel Computing, vol. 17, no. 1011,
pp. 1195 – 1209, 1991. Benchmarking of high performance supercomputers.

[26] J. L. Henning, “SPEC CPU2000: Measuring CPU performance in the new millen-
nium”, Computer, vol. 33, no. 7, pp. 28–35, 2000.

[27] J. K. Martinsen, H. Grahn, and A. Isberg, “A comparative evaluation of JavaScript
execution behavior”, in Web Engineering, pp. 399–402, Springer, 2011.

[28] J. Aycock, “A brief history of just-in-time”, ACM Computing Surveys (CSUR),
vol. 35, no. 2, pp. 97–113, 2003.

[29] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A call graph execution
profiler”, in ACM Sigplan Notices, vol. 17, pp. 120–126, ACM, 1982.

57

http://www.adobe.com/macromedia/events/john_gay/index.html
http://www.adobe.com/macromedia/events/john_gay/index.html
http://gs.statcounter.com/#browser-ww-monthly-201402-201502
http://gs.statcounter.com/#browser-ww-monthly-201402-201502
https://www.w3.org/community/webed/wiki/A_Short_History_of_JavaScript
https://www.w3.org/community/webed/wiki/A_Short_History_of_JavaScript
https://brendaneich.com/

Bibliography Thomas Nägele

[30] P. Louridas, “Static code analysis”, Software, IEEE, vol. 23, no. 4, pp. 58–61,
2006.

[31] S. H. Jensen, A. Møller, and P. Thiemann, “Type analysis for JavaScript”, in
Static Analysis, pp. 238–255, Springer, 2009.

[32] S. Guarnieri and V. B. Livshits, “GATEKEEPER: Mostly Static Enforcement
of Security and Reliability Policies for JavaScript Code.”, in USENIX Security
Symposium, vol. 10, pp. 78–85, 2009.

[33] W3Techs, “Usage of JavaScript libraries for websites”. http://w3techs.com/

technologies/overview/javascript_library/all. Accessed: 2015-02-27.

[34] A. Lerner, Ng-Book - the Complete Book on Angularjs. Fullstack.io, 2013.

[35] Z. Alfirevic, D. Devane, G. Gyte, et al., “Continuous cardiotocography (CTG) as
a form of electronic fetal monitoring (EFM) for fetal assessment during labour”,
Cochrane Database Syst Rev, vol. 3, no. 3, p. CD006066, 2006.

[36] World Wide Web Consortium and others, “Extensible markup language (XML)
1.1”. http://www.w3.org/TR/2006/REC-xml11-20060816/, 2006. Accessed:
2015-02-27.

[37] T. Bray, “The JavaScript Object Notation (JSON) Data Interchange Format”.
http://tools.ietf.org/html/rfc7159.html, 2014. Accessed: 2015-02-27.

[38] R. Jain, The art of computer systems performance analysis. John Wiley & Sons,
2008.

[39] D. Menasce, “QoS issues in web services”, Internet Computing, IEEE, vol. 6, no. 6,
pp. 72–75, 2002.

[40] F. F.-H. Nah, “A study on tolerable waiting time: how long are web users willing
to wait?”, Behaviour & Information Technology, vol. 23, no. 3, pp. 153–163, 2004.

[41] F. Culwin and X. Faulkner, “Brewsing the Web: Delay, Determination and Satis-
faction”, in 2013 46th Hawaii International Conference on System Sciences, vol. 5,
pp. 5018–5018, IEEE Computer Society, 2001.

[42] M. D. Network and individual contributors, “Xmlhttprequest”. https://

developer.mozilla.org/en/docs/Web/API/XMLHttpRequest. Accessed: 08-06-
2015.

[43] G. Kiczales, J. Lamping, C. Lopes, J. Hugunin, E. Hilsdale, and C. Boyapati,
“Aspect-oriented programming”, Oct. 15 2002. US Patent 6,467,086.

[44] J. Martinsen and H. Grahn, “A methodology for evaluating javascript execution
behavior in interactive web applications”, in Computer Systems and Applications
(AICCSA), 2011 9th IEEE/ACS International Conference on, pp. 241–248, Dec
2011.

58

http://w3techs.com/technologies/overview/javascript_library/all
http://w3techs.com/technologies/overview/javascript_library/all
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://tools.ietf.org/html/rfc7159.html
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest

Appendix A

Benchmark results

This appendix contains the results of the benchmarks that were executed in a virtual
machine running Windows 7 SP1. The virtual machine was assigned 1GB of memory
and one CPU-core (Intel Core i5-3337U, 1,7∼2,7 Ghz). Each benchmark was executed
three times, after which the results were averaged.

The following versions of the browsers were used.

• Google Chrome 41.0.2272.101 m

• Mozilla Firefox 36.0.4

• Opera 28.0.1750.48

• Microsoft Internet Explorer 11.0.9600.17691

A.1 Dromaeo JavaScript Tests1

Chrome Firefox Opera Internet Explorer

Arrays 1388,46 (0,98) 652,06 (0,46) 1469,75 (1,04) 1712,49 (1,21)

Base64 1916,36 (1,35) 1146,86 (0,81) 1883,98 (1,33) 1607,78 (1,14)

Eval 444,61 (0,59) 442,04 (0,58) 488,45 (0,64) 1808,3 (2,38)

Regex 536,7 (1,69) 174,61 (0,55) 530,64 (1,67) 173,05 (0,55)

3D 2256,2 (1,38) 2146,93 (1,31) 2193,73 (1,34) 1072,58 (0,66)

Strings 3174,9 (1,30) 2848,07 (1,17) 3147,34 (1,29) 2075,54 (0,85)

Table A.1.1: Average Dromaeo benchmark results in runs per second and normalised
with the average results of the browsers. Higher is faster.

1http://dromaeo.com/?dromaeo

59

http://dromaeo.com/?dromaeo

Appendix A. Benchmark results Thomas Nägele

A.2 Sunspider 1.0.22

Chrome Firefox Opera Internet Explorer

3D 75,43 (1,11) 64,13 (0,94) 74,17 (1,09) 58,67 (0,86)

Access 23,37 (0,68) 18,6 (0,54) 23,7 (0,69) 72,13 (2,09)

Bitops 18,5 (0,63) 11,33 (0,39) 24,9 (0,85) 62,83 (2,14)

Control Flow 2,9 (0,41) 2,57 (0,36) 3,3 (0,46) 19,63 (2,77)

Crypto 28,63 (0,78) 25,77 (0,70) 36,57 (0,99) 56,13 (1,53)

Date 32,6 (0,90) 33,27 (0,92) 37,13 (1,03) 41,67 (1,15)

Math 28,07 (0,86) 16,93 (0,52) 28,07 (0,86) 57,87 (1,77)

Regex 9,47 (0,95) 10,67 (1,07) 9,7 (0,98) 9,87 (0,99)

String 120,63 (1,08) 95,23 (0,86) 134,5 (1,21) 94,73 (0,85)

Table A.2.1: Average Sunspider benchmark results in milliseconds and normalised with
the average results of the browsers. Lower is faster.

A.3 Kraken 1.13

Chrome Firefox Opera Internet Explorer

AI 168,43 (0,81) 129,93 (0,62) 168,03 (0,80) 370,53 (1,77)

Audio 847,1 (0,88) 862,33 (0,89) 841,27 (0,87) 1316,57 (1,36)

Imaging 432,6 (0,85) 377,03 (0,74) 427,93 (0,84) 801,97 (1,57)

Json 136,97 (0,87) 162,1 (1,02) 140,87 (0,89) 192,73 (1,22)

Stanford 593,37 (0,80) 583,6 (0,79) 609,13 (0,82) 1170,5 (1,58)

Table A.3.1: Average Kraken benchmark results in milliseconds and normalised with
the average results of the browsers. Lower is faster.

2http://www.webkit.org/perf/sunspider-1.0.2/sunspider-1.0.2/driver.html
3http://krakenbenchmark.mozilla.org/kraken-1.1/driver.html

60

http://www.webkit.org/perf/sunspider-1.0.2/sunspider-1.0.2/driver.html
http://krakenbenchmark.mozilla.org/kraken-1.1/driver.html

Appendix A. Benchmark results Thomas Nägele

A.4 Octane 2.04

Chrome Firefox Opera Internet Explorer

Richards 21384 (1,14) 20940 (1,12) 21831 (1,16) 10857 (0,58)

Deltablue 28409 (1,31) 16715 (0,77) 33281 (1,54) 8172 (0,38)

Crypto 19180 (1,10) 19171 (1,10) 18583 (1,07) 12520 (0,72)

Raytrace 40512 (1,22) 39945 (1,20) 42246 (1,27) 10270 (0,31)

EarleyBoyer 29523 (1,22) 24056 (0,99) 30212 (1,25) 13270 (0,55)

Regexp 3037 (1,31) 1747 (0,75) 3046 (1,31) 1452 (0,63)

Splay 11707 (1,25) 11260 (1,21) 11363 (1,22) 3008 (0,32)

SplayLatency 12201 (1,31) 8708 (0,93) 14428 (1,55) 2001 (0,21)

NavierStokes 18883 (0,93) 24434 (1,20) 19074 (0,94) 19165 (0,94)

pdf.js 10269 (1,21) 7991 (0,94) 9901 (1,17) 5784 (0,68)

Mandreel 11584 (1,33) 4043 (0,46) 11069 (1,27) 8087 (0,93)

MandreelLatency 9182 (0,92) 12125 (1,21) 8601 (0,86) 10165 (1,01)

GB Emulator 30739 (1,19) 31437 (1,22) 28227 (1,09) 12770 (0,50)

CodeLoad 11028 (1,02) 13407 (1,23) 9885 (0,91) 9122 (0,84)

Box2DWeb 15982 (1,67) 6386 (0,67) 10562 (1,10) 5371 (0,56)

zlib 41085 (1,23) 39119 (1,17) 41700 (1,25) 11316 (0,34)

Typescript 15787 (1,04) 12575 (0,83) 13903 (0,91) 18680 (1,23)

Table A.4.1: Average Octane benchmark results in points assigned by the benchmark
suite and normalised with the average results of the browsers. Higher is faster.

4http://octane-benchmark.googlecode.com/svn/latest/index.html

61

http://octane-benchmark.googlecode.com/svn/latest/index.html

Appendix B

Accuracy test

B.1 Sources

1 <!DOCTYPE html>

2 <html>

3 <head lang="en">

4 <meta charset="UTF -8">

5 <title >Method Accuracy Evaluation </title >

6 <style >

7 button {

8 width: 200px;

9 display: block;

10 margin: 15px;

11 }

12 .resultsHolder {

13 width: 300px;

14 border: 1px solid #000;

15 border -radius: 5px;

16 padding: 3px 10px;

17 }

18 </style >

19 <script type="text/javascript">

20 var text;

21 var runArray = function () {},

22 runString = function () {},

23 runDate = function () {},

24 runJson = function () {},

25 runRegexp = function () {};

26 function run(type) {

27 if (type === "Regexp")

28 text = String.random (1e6);

29 console.log("Running " + type + "..");

30 var startTime = new Date();

31 eval("run" + type + "()");

32 var duration = new Date() - startTime;

33 console.log("Finished " + type + " (" + duration + " ms).");

62

Appendix B. Accuracy test Thomas Nägele

34 var node = document.createElement("li");

35 node.innerHTML = type + ": " + duration + " ms";

36 document.getElementById("results").appendChild(node);

37 }

38 function runAll () {

39 run("Array");

40 run("String");

41 run("Date");

42 run("Json");

43 run("Regexp");

44 }

45 </script >

46 </head>

47 <body>

48 <h3>Method Accuracy Evaluation for Master Thesis </h3>

49
50 <button onclick="run(’Array ’)">Run Array functions </button >

51 <button onclick="run(’String ’)">Run String functions </button >

52 <button onclick="run(’Date ’)">Run Date functions </button >

53 <button onclick="run(’Json ’)">Run Json functions </button >

54 <button onclick="run(’Regexp ’)">Run Regexp functions </button >

55 <button onclick="runAll ()">Run All functions </button >

56 <div class="resultsHolder">

57 <h4>Results </h4>

58 <ul id="results">

59 </div>

60
61 <script type="text/javascript" src="js/array.js"></script >

62 <script type="text/javascript" src="js/string.js"></script >

63 <script type="text/javascript" src="js/date.js"></script >

64 <script type="text/javascript" src="js/jsonData.js"></script >

65 <script type="text/javascript" src="js/json.js"></script >

66 <script type="text/javascript" src="js/regexp.js"></script >

67 </body>

68 </html>

Listing B.1: HTML code that contains the layout and scripts for accuracy evaluation.

63

Appendix B. Accuracy test Thomas Nägele

B.1.1 Array

1 var ARR_LENGTH = 3e4;

2 var ARR_ROUNDS = 1e4;

3 var arr , tmp , a;

4
5 function runArray () {

6 for(var i = 0; i < ARR_ROUNDS; i++) {

7 arr = [];

8 arr.length = ARR_LENGTH;

9 }

10
11 for(var i = 0; i < ARR_ROUNDS; i++)

12 arr = new Array(ARR_LENGTH);

13
14 arr = [];

15 for(var i = 0; i < ARR_ROUNDS; i++)

16 arr.unshift(ARR_LENGTH);

17
18 arr = [];

19 for(var i = 0; i < ARR_ROUNDS; i++)

20 arr.splice(0, 0, ARR_LENGTH);

21
22 a = arr.slice();

23 for(var i = 0; i < ARR_ROUNDS; i++)

24 tmp = a.shift();

25
26 a = arr.slice();

27 for(var i = 0; i < ARR_ROUNDS; i++)

28 arr.splice(0, 1);

29
30 arr = [];

31 for(var i = 0; i < ARR_ROUNDS; i++)

32 arr.push(i);

33
34 a = arr.slice();

35 for(var i = 0; i < ARR_ROUNDS; i++)

36 tmp = a.pop();

37 }

Listing B.2: JavaScript code that performs array operations.

64

Appendix B. Accuracy test Thomas Nägele

B.1.2 String

1 var STR_ROUNDS = 3e5;

2 var STR_LENGTH = 11;

3 var STR_WORDLEN = 220;

4
5 var chars = ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l"

, "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z

", " "];

6
7 function rand(max) {

8 return Math.round(Math.random () * max) % max;

9 }

10
11 String.randomC = function(length) {

12 var s = new String ();

13 var c;

14 for(var i = 0; i < length; i++) {

15 c = chars[rand(chars.length)];

16 c = i % 2 === 0 ? c.toUpperCase () : c.toLowerCase ();

17 s += c;

18 }

19 return s.trim();

20 }

21
22 function runString () {

23 var str = new String ();

24 var words = 0;

25 var s;

26 for(var i = 0; i < STR_ROUNDS; i++) {

27 s = String.randomC(STR_LENGTH);

28 str = str.concat(str , s);

29 if (str.length > STR_WORDLEN) {

30 str.split(" ");

31 str.charAt (765);

32 str.substring (333, 666);

33 str = new String ();

34 words ++;

35 }

36 }

37 if (words < STR_ROUNDS * STR_LENGTH / STR_WORDLEN)

38 console.error("Invalid number of words! (" + words + ")");

39 }

Listing B.3: JavaScript code that performs string operations.

65

Appendix B. Accuracy test Thomas Nägele

B.1.3 Date

1 var DATE_ROUNDS = 3.5e4;

2 var DATE_STEP = 652918732;

3
4 Date.prototype.formatDate = function(input ,time) {

5 var methods = ["Y", "m", "M", "d", "D", "H", "i", "s"];

6 var months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug",

"Sep", "Oct", "Nov", "Dec"];

7 var days = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"];

8
9 function Y() {

10 return self.getFullYear ();

11 }

12
13 function m() {

14 var m = self.getMonth () + 1;

15 return m < 10 ? "0" + m : m;

16 }

17
18 function M() {

19 return months[self.getMonth ()];

20 }

21
22 function d() {

23 var d = self.getDate () + 1;

24 return d < 10 ? "0" + d : d;

25 }

26
27 function D() {

28 return days[self.getDay ()];

29 }

30
31 function H() {

32 return self.getHours () < 10 ? "0" + self.getHours () : self.getHours

();

33 }

34
35 function i() {

36 return self.getMinutes () < 10 ? "0" + self.getMinutes () : self.

getMinutes ();

37 }

38
39 function s() {

40 return self.getSeconds () < 10 ? "0" + self.getSeconds () : self.

getSeconds ();

41 }

42
43 var self = this;

44 if (time) {

45 var prevTime = self.getTime ();

46 self.setTime(time);

47 }

66

Appendix B. Accuracy test Thomas Nägele

48
49 var spl = input.split("");

50 var res = [];

51 for(var c = 0; c < spl.length; c++) {

52 if (methods.indexOf(spl[c]) >= 0)

53 res[c] = eval(spl[c] + "()");

54 else

55 res[c] = spl[c];

56 }

57
58 if (prevTime)

59 self.setTime(prevTime);

60
61 return res.join("");

62 };

63
64 function runDate () {

65 var date = new Date("2015 -04 -10 09:21:54");

66
67 for(var i = 0; i < DATE_ROUNDS; i++) {

68 date.formatDate("D d M Y (d-m-Y), H:i:s");

69 date.setTime(date.getTime () + DATE_STEP);

70 }

71 }

Listing B.4: JavaScript code that performs date operations.

67

Appendix B. Accuracy test Thomas Nägele

B.1.4 Json

The JSON test requires a large JSON object. Since this file is too big to include in
the paper, it is provided as an external resource. jsonData.js contains a single variable
declaration for the variable jsonData and assigns a JSON object of roughly 70 kB.

1 var JSON_ROUNDS = 700;

2 var tmp;

3
4 function runJson () {

5 for (var i = 0; i < JSON_ROUNDS; i++)

6 tmp = JSON.stringify(jsonData);

7 for (var i = 0; i < JSON_ROUNDS; i++)

8 JSON.parse(tmp);

9 }

Listing B.5: JavaScript code that performs JSON operations.

B.1.5 Regexp

1 var REGEX_ROUNDS = 100;

2
3 var regex = [

4 /(htrs([b]+) lkjc |([a]*)([b]+)([a]+))/i,

5 /((a|b)+)/i,

6 /sxpl([a-zA -Z]{3 -8})lp/,

7 /ln?mas(_{2})/,

8 /tra*khba/,

9 /\s(abc|def|ghi|jkl|mno|pqr|stu|vwx|yz)\s([a-f]{1 -3})/i,

10 /^[\s\xa0]+|[\s\xa0]+$/g,

11 /(((\w+) :\/\/) ([^\/:]*) (:(\d+))?) ?([^#?]*) (\?([^#]*))?(#(.*))?/,

12 / /,

13 /^\s*(([a]+) |([b]+)+)(\S*(\s+\S+)*)\s*$/,

14 /^[A-Z0 -9._%+-]+@[A-Z0 -9. -]+\.[A-Z]{2 ,4}/i

15];

16
17 String.random = function(length) {

18 var s = "";

19 for(var i = 0; i < length; i++)

20 s += chars[rand(chars.length)];

21 return s;

22 };

23
24 function runRegexp () {

25 regex.forEach(function(rex) {

26 for (var i = 0; i < REGEX_ROUNDS; i++)

27 rex.exec(text);

28 });

29 }

Listing B.6: JavaScript code that executes regular expressions on text.

68

Appendix B. Accuracy test Thomas Nägele

B.2 Results from built-in JavaScript profiler

Chrome Firefox Opera Internet Explorer

Array 510,8 (1,31) 380,3 (0,97) 522,3 (1,34) 149,0 (0,38)

String 697,5 (0,76) 1460,4 (1,59) 713,0 (0,78) 792,1 (0,87)

Date 369,5 (0,91) 358,8 (0,89) 454,3 (1,12) 433,3 (1,07)

Json 797,3 (0,85) 1053,4 (1,12) 807,5 (0,86) 1107,8 (1,18)

Regexp 661,3 (0,51) 598,8 (0,46) 659,6 (0,50) 3310,6 (2,53)

Table B.2.1: Results for the accuracy test for evaluation as read from the built-in
JavaScript profiler. Lower is faster.

B.3 Results from Manual Logging method

Chrome Firefox Opera Internet Explorer

Array 575,1 (1,32) 397,5 (0,92) 623,8 (1,44) 139,9 (0,32)

String 1225,3 (0,78) 2264,6 (1,44) 1279,5 (0,81) 1536,3 (0,97)

Date 1030,6 (0,90) 1061,8 (0,92) 1184,0 (1,03) 1323,1 (1,15)

Json 783,4 (0,75) 1020,9 (0,98) 783,9 (0,75) 1573,0 (1,51)

Regexp 647,1 (0,55) 583,9 (0,49) 650,4 (0,55) 2851,3 (2,41)

Table B.3.1: Results for the accuracy test for the evaluation as read from the Manual
Logging method (Section 4.2). Lower is faster.

B.4 Results from improved Manual Logging method

Chrome Firefox Opera Internet Explorer

Array 539,5 (1,33) 372,1 (0,92) 539,3 (1,33) 167,5 (0,41)

String 1247,8 (0,81) 2364,4 (1,53) 1350,3 (0,88) 1201,6 (0,78)

Date 1020,8 (0,99) 955,5 (0,92) 1165,6 (1,13) 998,9 (0,96)

Json 783 (0,83) 1029,3 (1,09) 778,9 (0,83) 1170,5 (1,24)

Regexp 706,9 (0,55) 609,5 (0,48) 734,4 (0,57) 3075,3 (2,4)

Table B.4.1: Results for the accuracy test for the evaluation as read from the improved
Manual Logging method (Section 4.3). Lower is faster.

69

	Introduction
	Background information
	Problem statement
	Approach
	Scientific context

	Web applications
	General architecture
	Page rendering
	Web application workflow

	JavaScript
	Benchmarks
	Profilers
	Static program analysis
	Frameworks
	AngularJS

	Interact CTG
	CTG
	Architecture

	Profiling performance
	Definition of client-side performance
	Classical definition of performance
	End-user definition of performance
	Technical definition

	Performance analysis method properties
	Method evaluation
	Accuracy
	Impact
	Usability
	Portability

	Methods for performance profiling
	Manual profiling
	Pre-evaluation

	Manual logging
	Pre-evaluation
	Implementation
	Post-evaluation
	Issues

	Manual Logging improved
	Implementation
	Post-evaluation

	Integration
	Aspect Oriented Programming
	Integration tool
	Implementation
	Improvements
	Limitations
	Concluding grade

	Conclusion
	Discussion
	Related work
	Future work

	Appendix Benchmark results
	Dromaeo JavaScript Tests
	Sunspider 1.0.2
	Kraken 1.1
	Octane 2.0

	Appendix Accuracy test
	Sources
	Array
	String
	Date
	Json
	Regexp

	Results from built-in JavaScript profiler
	Results from Manual Logging method
	Results from improved Manual Logging method

