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Abstract: Multi-class image segmentation and pixel-level 

labeling of the frames that make up a video could be made 

more efficient by incorporating temporal information. 

Recently, Convolutional Neural Networks (ConvNets) have 

made an impressive positive impact on the single image 

segmentation problem. In this paper, in order to further 

increase labeling accuracy, we propose a method for 

integrating short-term temporal information with structural 

scene information by using a conditional random field 

(CRF). In our proposed method, ConvNet prediction 

refinement was achieved by exploiting a fully connected 

CRF as a post-processing step. Our main contribution is 

focused on taking into account the scene dynamics in 

semantic image segmentation. For extracting these 

dynamics we used scene dense optical flow. Inference in 

this dynamic CRF will consider both scene appearance and 

dense optical flow information. We show that by utilizing 

temporal information, the accuracy of semantic image 

segmentation can be improved with a small incurring 

additional computational overhead. Our proposed method, 

achieved 64.5 average IoU score applied on the Cityscapes 

urban data set with 19 different semantic classes compared 

to 62.1 IoU when no optical flow information was 

employed. 

 

Introduction 

Low-level video segmentation is an important 

objective in many application areas such as 

robotics, object tracking, video coding, video 

perception, action recognition and scene 

understanding. The video segmentation problem, 

often boils down to processing of the individual 

images of a sequence while ignoring the dynamic 

information among frames that can be derived 

from the relative scene displacements. Because 

the performance of scene parsing based on 

processing of single images suffers from changes 

in the appearance of objects due to e.g. 

considerable changes in illumination, available 

motion based clues in video are a valuable source 

of information that can be considered for image 

semantic segmentation [Zhang et al. 2010]. 

Although the beneficial effects of using the 

temporal data in video are acknowledged, in 

comparison with the extensive research that has 

been carried out on single image segmentation, 
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Fig. 1. Semantic video segmentation workflow 



just a few studies were carried out on dynamic 

video segmentation. The present study tries to fill 

a gap in the literature by proposing a new 

methodology for integrating dynamic and 

structural information of a scene for pixel-level 

labeling of video frames. 

The past decade has seen the rapid successful 

development of Convolutional Neural Networks 

(ConvNets) in many fields of machine learning 

applications. As a matter of fact, ConvNets have 

been successfully applied to pixel level 

classification [Ciresan et al. 2012, Farabet et al. 

2013, Ronneberger et al. 2015, Long et al. 2015]. 

Research has shown that the use of standard 

ConvNet architectures for low-level processing 

such as pixel labeling, has some shortcomings 

[Long et al. 2015, Chen et al. 2016]. While these 

models show promising results in coding of high-

level image structure, which is an advantage in 

object-oriented recognition tasks such as object 

categorization, bounding box localization, action 

recognition and video classification, because of 

their low spatial accuracy, these models have 

some shortcomings in pixel-level classification 

tasks [Chen et al. 2014]. 

  Recently, several attempts have been made to 

address the problem of low spatial accuracy of 

standard ConvNets. Previous studies on the image 

segmentation problem have introduced two 

successful approaches. One approach is tangled 

multi-resolution processing of the input image by 

introducing bypass connections between 

intermediate and output layers of a ConvNet 

[Long et al. 2015]. This modification in the 

standard architecture of a ConvNet implements 

data flows fusion by combining semantic 

information from a deep, coarse layer with 

appearance information from a shallow, fine 

layer. Another approach is constructing coarse-to-

fine hierarchical predictor networks, by passing 

the preceding coarse prediction to another 

ConvNet [Eigen & Fergus 2015]. In the context 

of the second approach, some researchers used 

probabilistic graphical models such as 

Conditional Random Fields (CRFs) as a post-

processing stage for a pixel classifier that can be a 

ConvNet [Chen et al. 2014]. The CRF model is 

applied to the low-resolution prediction of the 

ConvNet for increasing the accuracy of the pixel-

level label assignment. A similar method can be 

seen in [Zheng et al. 2015] where the CRF was 

embedded as the last layer of a ConvNet. By 

reformulating the inference stage of the CRF 

model, it became possible to train both the 

ConvNet and CRF model parameters 

simultaneously end-to-end by using gradient-

based optimizations. 

Our method follows the second approach. Here 

we use the CRF as a post-processing unit not just 

for pairwise labeling of pixels in a single image 

but also for integrating temporal information 

between successive frames (Fig. 1).     

In order to take into account the temporal 

information among the frames of a video in a 

ConvNet, two different strategies have been 

devised by researchers. These strategies can be 

encountered in the computer vision and image 

perception community, mostly for video 

classification and action recognition tasks. 

According to the first strategy, multiple frames of 

a video in a predefined time window (overlapping 

blocks) are used as input to a ConvNet for 

performing prediction on a single reference frame 

such as predicting the tag of a reference frame in 

video classification task. In this context, 

information fusion among multiple frames 

depends on the structure of ConvNet [Karpathy et 

al. 2014]. The ConvNet architecture in this 

approach similar to Time Delay Neural Network 

(TDNN) needs to train on the sequential data by 

using a sliding window on different time points 

[Wöhler & Anlauf 2001]. Although these sort of 

architectures are ideal for analyzing motion 

patterns but providing a large scale sequential 

data with pixel-level label annotated could be a 

problematic issue in video segmentation task. 

Furthermore, the advantage of pre-training the 

ConvNet on the available single image large-

scale databases like Pascal VOC [Everingham 

et.al, 2015] cannot be held anymore.  



Another strategy for including temporal 

information is by using short or long-term optical 

flow displacement fields between several 

successive frames [Wu et al. 2015, Simonyan & 

Zisserman 2014, Kundu et al. 2016]. To this end, 

in recent work, besides training the ConvNet for 

learning the spatial structure in images, a second 

network was used for learning the scene optical 

flow to capture the temporal information of the 

stream of images [Wu et al. 2015, Simonyan & 

Zisserman, 2014]. Similar to this approach, we 

utilize the scene optical flow of successive frames 

in the context of a semantic video segmentation 

task but instead of employing a second network 

that should be trained in parallel for learning the 

optical flow, we include the optical flow as a 

temporal consistency criterion between semantic 

objects among frames in the post processing 

stage. Incorporating the temporal data among 

frames can be done by adding the displacement 

vector field to the feature space of the pairwise 

potential term of the CRF model. This approach 

has two advantages in comparison with the 

method that has been mentioned previously. 

Firstly, different to the training of a ConvNet with 

an architecture similar to a TDNN, our model can 

be trained also on a database with single 

annotated images. Secondly, we don’t need to 

define a dense CRF with edges between two or 

more frames which reduces the computational 

cost dramatically. Our approach is an extension to 

[Chen et al. 2014] that used a ConvNet as a pixel 

label unary classifier (called DeepLab) and a 

post-processing CRF model. We extend the post 

processing spatial CRF model to work on 

sequences of images by importing scene optical 

flow and doing inference on spatiotemporal data 

for increasing the accuracy of pixel labeling (Fig. 

2). 

    Integrating ConvNet, CRF and Dense 

Optical Flow Components 

For performing efficient inference in a fully 

connected CRF model, we used the method 

proposed by [Krähenbühl & Koltun, 2012]. In 

this section, we will describe how the CRF model 

is used for segmenting a sequence of images by 

using spatiotemporal data. 

 

Inference in a Fully Connected CRF on 

Spatiotemporal Data 

Let us consider a random field for the labels 

assigned to the pixels which is defined over a set 

of random variables X, 

X = {X1,..., Xn} 

DeepLab 

Fully Connected CRF 

Dense Optical Flow 
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Fig. 2. Schematic of the processing sequence on input data [Chen et al. 2014] 



 Each random variable can take on a value in a set 

of predefined labels. In addition, we need to 

consider a random field defined over random 

variables I, 

I ={I1,...,IN} 

where I represents input images of size N. For 

example, in case of color images, Ij is the RGB 

vector of pixel j and xj indicates the label 

assigned to pixel j. 

The distribution of (X, I) is a CRF when the 

random variables X conditioned on I, obey the 

Markov property w.r.t. the graph: 

 

𝑝(𝑋𝑖|𝐼, 𝑋𝑗, 𝑖 ≠ 𝑗) = 𝑝(𝑋𝑖|𝐼, 𝑋𝑗, 𝑖~𝑗)                    (1) 

where i~j indicates that i and j are neighbors in 

graph. This CRF is characterized by a Gibbs 

distribution:  

𝑃(𝑋|𝐼) =
1

𝑍(𝐼)
𝑒−𝐸(𝑋|𝐼)                                            (2) 

where the energy is defined as  

𝐸(𝑋|𝐼) = ∑ 𝜓𝑐(𝑋𝑐|𝐼)𝑐∈𝐶𝐺
                                    (3)  

and G is the graph on X and each clique c in the 

set of cliques CG in G induces a potential 𝜓𝑐. In a 

fully connected pairwise CRF model, G is a 

complete graph on X and CG is the set of all 

unary and pairwise cliques. So, the corresponding 

Gibbs energy can be written as: 

 

𝐸(𝑋|𝐼) = ∑𝜓𝑢(𝑥𝑖)

𝑖

+ ∑𝜓𝑝

𝑖<𝑗

(𝑥𝑖 , 𝑥𝑗)              (4) 

where i and j range from 1 to N. The unary 

potential 𝜓𝑢(𝑥𝑖) is computed independently for 

each pixel by training a classifier. The classifier 

produces a distribution over Xi given image 

features such as shape, texture, location and 

color, as used in [Krähenbühl and Koltun, 2011]. 

This classifier can be a deep ConvNet [Chen et al. 

2014, Zheng et al. 2015].  

As computing 𝑃(𝑿|𝑰) is intractable, similar to 

[Krähenbühl and Koltun, 2011], we used mean 

field approximation that replaces the P(X) 

distribution with an easier factorial distribution 

𝑄(𝑿) for doing inference. 

𝑄(𝑿) = ∏ 𝑄𝑖(𝑋𝑖)𝑖                                                   (5)  
By minimizing the KL-divergence D(Q||P) among 

all distributions Q we obtain an approximation for 

P(X).  

The key idea for efficient inference in fully 

connected models lies in defining the pairwise 

edge potentials as a linear combination of 

Gaussian kernels in an arbitrary features space. In 

[Krähenbühl and Koltun, 2011], this feature space 

for single image segmentation has been taken to 

consist of spatial location and RGB values. The 

author introduces a pairwise potential of the form: 

𝜓𝑝(𝑥𝑖 , 𝑥𝑗) = 𝜇(𝑥𝑖 , 𝑥𝑗) ∑[𝑤(𝑚). 𝑘(𝑚)(𝑓𝑖 , 𝑓𝑗)]

𝐾

𝑚=1

(6) 

where 𝜇(𝑥𝑖, 𝑥𝑗) is a label compatibility function 

which can be defined in a simple way by using a 

Potts model:  

𝜇(𝑥𝑖 , 𝑥𝑗) = {
1    if 𝑥𝑖 ≠ 𝑥𝑗

0   otherwise
                                 (7)  

 

and where 𝑘(𝑚) is a Gaussian kernel defined as: 

 

 𝑘(𝑚)(𝑓𝑖 , 𝑓𝑗) = exp [−
1

2
(𝑓𝑖, 𝑓𝑗)

𝑇
𝛬(𝑚)(𝑓𝑖 , 𝑓𝑗)]  (8) 

 

The vectors fi and fj are feature vectors consisting 

of spatial position, color and, in our work, also 

field displacement between two successive 

frames for pixels i and j. The terms 𝑤(𝑚) are 

linear combination weights. The shape of each 

kernel 𝑘(𝑚) is characterized by a symmetric 

positive-definite precision matrix Λ(𝑚). 

For the multi-class image sequence segmentation 

and labeling, we propose using three kernels 

(m=3) that are defined in terms of the positions pi 

and pj, color vectors Ii and Ij and the difference of 

field displacement vectors (optical flow) Ui and 

Uj. 

 

𝑘(𝑓𝑖, 𝑓𝑗) = 𝑤(1) exp(
|𝑝𝑖−𝑝𝑗|

2

2𝜎𝛼
2

)

+ 𝑤(2) exp(
|𝑝𝑖−𝑝𝑗|

2

2𝜎𝛽
2

−
|𝐼𝑖−𝐼𝑗|

2

2𝜎𝛾
2

)

+ 𝑤(3) exp(
|𝑝𝑖−𝑝𝑗|

2

2𝜎𝛽
2

−
|𝑈𝑖 − 𝑈𝑗|

2

2𝜎𝛿
2

) 

                                                                                              (9) 
 

Here, the Ui and Uj are the absolute differences of 

optical flow in two directions between preceding 

and following frames w.r.t. the reference frame 

for pixel i and j. The first term in equation (9) is a 



smoothness kernel which removes small disjoint 

regions. The second term is an appearance kernel 

which emphasizes nearby pixels with similar 

color are likely to be in the same class 

[Krähenbühl and Koltun, 2011]. The third term is 

a temporal kernel which measures the temporal 

consistency between pixels of two successive 

frames in video.  

The kernel parameters will be learnt from data by 

using grid search on a validation set that consists 

of 10 images with known ground truth. Figure 3 

plots the high-dimensional grid search space of 

hyper-parameters in equation (9) against the 

segmentation performance (IoU score) assessed 

on a validation set. Five different choices for the 

contribution of temporal information (𝑤(3) ∈

{0,1,2,3,5}) are indicated by different graph 

colors. 

 

 
Fig. 3. Parallel coordinates plot of grid search space 

for adjusting seven hyper-parameters of equation (9). 

Different color graphs represent different values for 

the weight of temporal kernel (𝑤(3)). The left axis 

show normalized average IoU score and the solid 

black line represent the best parameter set by 

evaluating on validation set. 

 

Embedding the optical flow information by 

defining a temporal kernel in the pairwise 

potential 𝜓𝑝(𝑥𝑖, 𝑥𝑗) of the energy function has the 

advantage of doing inference in a complete graph 

that has been defined just on pixels of a single 

image field. Therefore, we do not need to add 

new edges between consecutive frames for 

incorporating the dynamic information as 

introduced in [Wang & Ji, 2005] and [Xiao and 

Quan, 2009] or by defining a massive complete 

graph on a block of frames [Kundu et al. 2016].  

 

Experimental Results 

We evaluated our method on a new dataset for 

scene understanding in an urban environment. 

The Cityscapes Dataset [Cordts et al. 2015 and 

2016] consists of a sequence of urban street scene 

images with 5000 annotated frames with 

2048×1024 pixel size (2975 train/500 validation/ 

1525 unrevealed test frames). The images have 

been recorded from 50 different cities during 

different seasons. The Cityscapes dataset consists 

of 30 classes of which 19 are used as semantic 

labels in evaluations. Any other object in the 

frames that do not belong to these 19 classes 

should be assigned a void (i.e. unknown) label in 

prediction. In addition, each annotated frame in 

the dataset is the 20th image from 30 frame video 

snippets.  

For tackling the limitation of GPU memory in 

training the ConvNet on full resolution images, 

we trained the ConvNet on randomly cropped 

patches of size 318×318 pixels from original 

training images. In the prediction mode due to the 

use of a fully convolutional network in the 

DeepLab architecture, the network can perform 

prediction on arbitrary input image sizes, 

including the original full resolution images. 

 For assessing the semantic segmentation result, 

the standard Jaccard Index that commonly known 

as Pascal VOC Intersection over Union (IoU) 

metric [Everingham et.al, 2015],was measured on 

the unrevealed test set1. 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
                                                  (10)   

Here, TP, FP and FN are true positive, false 

positive and false negative for each class. Table 1 

shows the average and individual IoU on 1525 

test images by different state-of-the-art methods. 

                                                           
1 www.cityscapes-dataset.com 
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Figure 4 shows some example frame and the 

scene optical flow, ground truth and the 

prediction of DeepLab+CRF method with and 

without using temporal data. As can be seen from 

the figure, the label prediction over some regions 

of image improves when the temporal 

information is incorporated in the energy 

function. This has been shown quantitatively in 

Table 2.  

Experiment Average IoU 

DeepLab+CRF (baseline) 62.1 

DeepLab+CRF+Opticalflow 64.5 

 

Table 2. Segmentation performance on the test set 

with and without using temporal information. 
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Adelaide_context 

[Shen & Reid, 2015] 
71.6 98 83 91 44 51 51 65 72 92 72 94 82 61 94 61 65 54 62 71 

DeepLabv2-CRF 

[Chen et al. 2016] 
70.4 98 81 90 49 47 50 58 67 92 69 94 80 60 94 57 68 58 58 69 

LLR-4x 

[Ghiasi & Fowlkes, 2016] 
68.3 98 79 90 42 48 57 65 69 92 69 95 81 59 94 42 55 44 52 68 

Dilation10 

[Yu and Koltun, 2015] 
67.1 98 79 90 37 48 53 59 65 92 69 94 79 55 93 46 53 48 52 66 

DPN 

[Li et al. 2015] 
66.8 98 79 90 40 46 51 57 65 92 69 95 78 54 93 45 53 50 52 65 

Adelaide 

[Lin et al. 2015] 
66.4 97 79 88 45 48 34 56 62 90 70 92 73 52 91 55 62 52 55 63 

FCN 8s 

[Long et al. 2015] 
65.3 97 78 89 35 44 47 60 65 91 69 94 77 51 93 35 49 47 52 67 

Our method 

(DeepLab+DynamicCRF)  
64.5 97 78 89 38 45 39 51 62 91 58 94 77 54 93 42 53 50 53 64 

Pixel-level Encoding for 

Instance Segmentation 

[Uhrig et a. 2016] 

64.3 97 78 89 28 40 52 60 65 91 68 94 78 54 92 34 42 43 53 67 

DeepLab LargeFOV 

Strong 

[Chen et al. 2014] 

63.1 97 78 88 44 41 30 45 55 89 67 93 71 49 91 49 57 49 48 59 

CRFasRNN 

[Zheng et al. 2015] 
62.5 96 74 88 48 41 35 50 60 91 66 94 70 35 90 39 58 55 44 55 

ENet 

[Paszke et al. 2016] 
58.3 96 74 85 32 33 44 34 44 89 61 91 66 38 91 37 51 48 39 55 

Segnet basic 

[Badrinarayanan et al. 

2015] 

57.0 96 73 84 29 29 36 40 45 87 64 92 63 43 89 38 43 44 36 52 

 
Table 1. Benchmark on Cityscapes dataset based on average of IoU score  

 



Improvement of the accuracy of scene parsing by 

incorporating temporal information in a video has 

been reported before [Zhang et al. 2010, Xiao & 

Quan 2009, Wang & Ji 2005, Yu & Koltun 

2015]. In [Zhang et al. 2010] a set of extracted 

features from a dense depth map for each 

superpixel of an image were classified using a 

Random Forest. To enhance segmentation 

accuracy, the author used a weighted average of 

the posterior probabilities of label assignment for 

each superpixel over neighbor frames. Although 

this kind of smoothing approach can help for 

improving the accuracy when the displacement 

field between neighboring frames is small, this 

condition can be violated easily at the boundaries 

of objects. For example those regions that belong 

Reference Frame DeepLab+CRF Diff. of Optical Flow Our method Ground truth 

Fig. 4 (a) Results on some untrained Cityscapes images (b) zoomed inside rectangle 

(a) 

(b) 



to moving cars in urban scene images. In other 

related work for image sequence segmentation by 

using probabilistic graphical models [Xiao & 

Quan 2009, Wang & Ji 2005], the authors attempt 

to include the temporal information among 

multiple frames in the video for predicting the 

pixel label of the reference frame. The key idea is 

to extend the graph edges across the frames. This 

approach will capture temporal consistency but to 

make inference in such a huge graph feasible, two 

modifications were devised which potentially can 

limit the performance of the image segmentation. 

Firstly, the graph has been defined on superpixels 

which are the outcome of an over-segmenting 

process. Consequently, any inefficiency or 

occurring error in this process of finding 

superpixels in images cannot be corrected in the 

remainder of the computations. Secondly, to 

remedy the computational cost of inference in a 

dense graph, they defined some constrains on 

graph topology like the number of edges that can 

connect to each node [Xiao & Quan, 2009] or a 

limitation on the spatial length of edges in the 

graph [Wang & Ji 2005]. Due to a breakthrough 

method for performing efficient inference in a 

dense CRF by [Krähenbühl & Koltun, 2012], now 

it is possible to define a dense graph on the pixels 

of a single image. 

Instead of defining a graph with edges between 

the frames of a video and in contrast to the 

previous approaches, we used scene dense optical 

flow to utilize the temporal consistency between 

frames. By using the dense optical flow as 

estimated by the method described in [Brox et al. 

2007], we expected that together with the 

brightness and gradient consistency as well as 

spatiotemporal smoothness constraints between 

two successive frames label assignments could be 

improved. For better capturing the structure of the 

scene, we used the absolute difference of 

estimated displacement field between previous 

and next frames relative to the reference frame. 

Very recently, it came to our attention that 

another group has pursued a very similar 

approach for extending the idea of using fully 

connected CRF for doing inference in multiple 

frames of video [Kundu et al. 2016]. Although 

both approaches are highly similar, there are 

some main differences in technical and 

theoretical aspects of our work and theirs. Kundu 

et al. used Dilation Unary classifiers [Yu & 

Koltun 2015] which was reported to yield a 

slightly higher accuracy than the unary classifier 

(DeepLab) that we used according to the 

evaluation that has been done in [Cordts et al. 

2016]. The main difference between our approach 

and [Kundu et al. 2016] pertains to the way that 

temporal information has been incorporated in the 

CRF model. They defined a dense CRF with 

edges over a number of frames (around 100 

frames) centered by the reference frame while we 

just define the CRF with edges inside the 

reference frame. In our method, the displacement 

field will be added as an extra feature to the 

feature space of the pairwise potential term by 

defining a temporal consistency kernel. In our 

method we just use the optical flow that has been 

extracted from preceding and following frames to 

the reference frame. This approach will reduce 

the computational time of our proposed method 

considerably relative to the alternative 

implementation. 

 

Conclusion 

In this paper, our aim was to consider the scene 

dynamic information between the streams of 

frames in the video in order to increase the 

accuracy of semantic image segmentation. We 

showed that the integration of temporal 

information such as optical flow and the 

appearance based visual content of the scene can 

be done by using a CRF model. Instead of 

defining a dense graph over two or multiple 

frames of video and consequently doing inference 

in this extremely high-dimensional space, we 

included the temporal consistency between 

frames as an extra feature in the pairwise 

potential of the CRF energy function. This CRF 

model has been defined over the pixels of a single 



image field. This makes application of our 

method computationally feasible. However, this 

study has been unable to outperform recent state-

of-the-art methods on the benchmark leaderboard. 

Our results do support the idea that involving 

scene dynamic information is beneficial when 

comparing results with a baseline architecture 

that ignores temporal consistency. 
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Appendix 

 

A1. Optical Flow 

 Optical flow is the distribution of apparent velocities of movement of brightness patterns 

in an image that can give an important information about the spatial arrangement of the 

objects in the scene [Horn & Schunck 1981]. The relative movement of the object and the 

camera is the source of optical flow in video data. In this section, at first we briefly describe 

the optical flow formulation and then we will explain the method that we used in our project 

for estimating of the scene optical flow. 

Let consider the image brightness at point (x,y) and at the time t with I(x,y,t). Now if we 

ignore the changes in light source during a short time, the brightness of a particular point in 

the pattern will remain constant while the pattern moves (
𝜕𝐼

𝜕𝑡
= 0), then:  

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + 𝑢, 𝑦 + 𝑣, 𝑡 + 1)             (11) 

By using the chain rule for differentiation, we have: 

𝜕𝐼

𝜕𝑥
.
𝜕𝑥

𝜕𝑡
+

𝜕𝐼

𝜕𝑦
.
𝜕𝑦

𝜕𝑡
+

𝜕𝐼

𝜕𝑡
= 0 → 𝐼𝑥. 𝑢 + 𝐼𝑦. 𝑣 + 𝐼𝑡 = 0 ∨ 𝛻𝐼𝑇 . 𝑉⃗ = −𝐼𝑡        (12) 

where 𝐼𝑥, 𝐼𝑦 and 𝐼𝑡 are gradients of the image in x, y and t dimensions respectively and the 

vector 𝑉⃗  is the displacement field vector in x and y directions. As we can see this linear 

equation with two unknown u and v, cannot be solved. This is known as aperture problem of 

optical flow that needs additional constrain to be soluble. A considerable amount of literature 

has been published on devising constrains for this problem. In [Baker et al. 2011] a 

comprehensive study for evaluating recent works in this field has been reported. Most of the 

proposed algorithms for optical flow tackle the problem as the optimization of a global 

energy function. This energy function consists of two terms: 

𝐸𝐺𝑙𝑜𝑏𝑎𝑙 = 𝐸𝐷𝑎𝑡𝑎 + 𝜆. 𝐸𝑃𝑟𝑖𝑜𝑟                   (13) 

where the 𝐸𝐷𝑎𝑡𝑎 presents the consistency of the optical flow with the input images. As 

mentioned before because the data term is ill-posed with fewer constraints than unknowns 

the prior term 𝐸𝑃𝑟𝑖𝑜𝑟 denotes the constraints favor a certain flow fields over others. One 

common constrains could be a smoothness prior [Baker et al. 2011].   

Most accurate optical flow algorithms require several seconds to many minutes per frame for 

estimating a dense displacement field over all pixels of an image. There are some efficient 



methods that implemented on GPU and are publically available. In this project, we used the 

dense optical flow as estimated by the method described in [Brox et al. 2007]. This algorithm 

was implemented on GPU and is freely available in OpenCV2 library for both academic and 

commercial use. In Brox et al. method, instead of considering equation (11) for using raw 

intensity values, the gradient of the image is considered. So the equation (11) is replaced with 

𝛻𝐼(𝑥, 𝑦, 𝑡) = 𝛻𝐼(𝑥 + 𝑢, 𝑦 + 𝑣, 𝑡 + 1)           (14) 

This modification benefits the robustness of gradient w.r.t. illumination changes in compare 

with raw intensities and could be more desirable for outdoor images such as urban scene 

images. According to this method, the data term is defines as 

𝐸𝐷𝑎𝑡𝑎(𝑢, 𝑣) = ∫ 𝜓(|𝐼(𝑥 + 𝑤) − 𝐼(𝑥)|2 +  γ|∇𝐼(𝑥 + 𝑤) − ∇𝐼(𝑥)|2) 𝑑𝑥

Ω

   (15) 

where 𝜓(𝑠2) = √𝑠2 + 𝜖2 role like L1 normalization and 𝜖 is just used for numerical reasons. 

For the prior term they introduced a spatiotemporal smoothness term: 

𝐸𝑝𝑟𝑖𝑜𝑟(𝑢, 𝑣) = ∫ 𝜓(|∇𝜀𝑢|2 + |∇𝜀𝑣|2) 𝑑𝑥

Ω

      (16) 

where 𝛻𝜀: (𝜕𝑥, 𝜕𝑦, 𝜕𝑡)
𝑇
 presents spatiotemporal gradient. Therefore, the total energy function 

according to equation (13) is determined. For minimization of this nonlinear energy function, 

the author used Euler-Lagrange minimization and numerical approximation. Here, we skip 

the details of the energy optimization for this method that is out of the scope of this project. 

The discontinuity pattern in the estimated scene optical flow is a source of discrimination 

between objects in the scene for image segmentation task. We employed this optical flow 

information that preserves the coherence of sequential images for video segmentation. 

According to our experiments, the computational time of this algorithm for images with 

2048×1024 pixels on GPU GTX960M is around 4 fps. 

       

A2. Inference in Conditional Random Field (CRF) 

The Conditional Random Field (CRF) is a well-known probabilistic method for structured 

prediction. There are many data analysis applications that involve predicting a large number 

                                                           
2 opencv.org 



of variables that depend both on each other and on other observed variables. As an example, 

for image segmentation task in computer vision field, the label of every pixel in a natural 

image depends on both the labels of its neighbors and the visual contents of the image. The 

CRF was employed in wide areas and particularly it is well suited to image segmentation in 

computer vision, labeling of the words in a sentence in natural language processing [Sha & 

Pereira 2003, Smith & Osborne 2005], sequence modeling in speech recognition [Zweig & 

Nguyen 2009], gene finding in bioinformatics [Settles 2004] and some other miscellaneous 

application like estimating the score in the GO game [Stern et al 2004]. 

An important advantage of employing the CRF in compare with other ordinary classifiers is 

the prediction of a label for a single sample by considering the other labels for the sequence 

of input samples. The sequential data in this context can be defined in the spatial or temporal 

domain.  

CRF is a type of probabilistic graphical model (PGM) which a probabilistic model is 

expressed by a graph that structured between random variables according to their conditional 

dependencies.  PGM can be divided into two categories; generative or discriminative models. 

While generative models try to model a joint probability distribution P(X,I) over input (I) 

and output (X) , the discriminative models attempt to model the conditional distribution 

P(X|I) directly which is demanded in classification purposes. However, in general, generative 

models have advantages but when input data has high dimensionality and strong 

dependencies among its variables, constructing a probability distribution over them can lead 

to an intractable model and on the other hand ignoring these dependencies can lead to an 

inaccurate model. In these cases, a discriminative model such as CRF has the advantage of 

compactly model the multivariate output (X) with the ability to conditioning on input data (I) 

for prediction [Sutton & McCallum 2010]. In continue, we explain the methods for doing 

inference in CRF models that refers to the computing of the marginal distribution P(X|I). 

Several algorithms for performing inference in CRF model similar to any other graphical 

models have been proposed in textbooks. However there are some exact inference algorithms 

for general graphical models like the junction tree algorithm but, depends on the complexity 

of graph the inference procedure needs exponential time [Sutton & McCallum 2010]. Apart 

from some standard graph topology like linear-chain that a standard inference algorithm 

works well, doing exact inference for complex graph should resort with approximation 



algorithm. The Monte Carlo algorithms and the Variational method algorithms are two 

families of computational methods for this purpose. 

With this brief introduction to CRF model, in continue we concentrate on using the CRF 

model for image segmentation task. As mentioned before defining a CRF model that has 

been expressed by a complete graph on every pixel in the image consists billions of edge 

connections between the nodes in its graph. Doing inference in such a dense graph by using 

MCMC method is not computationally feasible. In an example that demonstrated by  

Krähenbühl and Koltun, doing inference for a fully connected CRF by using the MCMC 

method took 36 hours for partial convergence of the algorithm for an image with a common 

resolution [Krähenbühl & Koltun, 2012].  

The Mean Field Approximation is a popular algorithm among Variational methods in 

inference and data modeling. In this algorithm, instead of computing the exact intractable 

distribution P(X) a substitute distribution Q(X) by minimizing the KL-divergence D(Q||P) 

among all distributions Q is computed which Q(X) is usually expressed as a factorial 

distribution: 

𝑄(𝑿) = ∏𝑄𝑖(𝑋𝑖)

𝑖

 

In [Krähenbühl & Koltun, 2012] shown that minimizing the KL-divergence will obtain the 

below approximate distribution: 

𝑄𝑖(𝑥𝑖 = 𝑙) =
1

𝑍𝑖
exp [−𝜓𝑢(𝑥𝑖) − ∑ 𝜇(𝑙, 𝑙′)∑ 𝑤(𝑚) ∑𝑘(𝑚)(𝑓𝑖, 𝑓𝑗)𝑄𝑗(𝑙

′)

𝑗≠𝑖

𝐾

𝑚=1
𝑙′∈𝐿

]  (17) 

 

then the iterative updating of Mean field approximation algorithm would be as below: 

 

Step 1: Initialize Q just by using unary potential 

 𝑄𝑖(𝑥𝑖) =
1

𝑍𝑖
exp[−𝜓𝑢(𝑥𝑖)] 

Step 2: Message passing for all 𝑋𝑗 to all 𝑋𝑖 

 𝑄̃𝑖
(𝑚)(𝑙) = ∑ 𝑘(𝑚)(𝑓𝑖 , 𝑓𝑗). 𝑄𝑖(𝑙), 𝑚 = 1, . . , 𝐾𝑖≠𝑗  

Step 3: Compatibility transform 

𝑄̂𝑖(𝑥𝑖) = ∑𝜇(𝑚)(𝑥𝑖, 𝑙)

𝑙∈𝐿

.∑𝑤(𝑚)𝑄̃𝑖
(𝑚)

(𝑙)

𝑚

 

Step 4: Local update and normalizing 𝑄𝑖(𝑥𝑖) distribution 

𝑄𝑖(𝑥𝑖) = exp [−𝜓𝑢(𝑥𝑖) − 𝑄̂𝑖(𝑥𝑖)] 



Step 5: If not converged, return to Step 2 

 

The details of convergence and efficient computational considerations for message passing 

step was discussed in [Krähenbühl & Koltun, 2012]. 

Although according to this approach and replacing the pairwise edge potentials of CRF 

model with a linear combination of Gaussian kernels has advantages but there are also some 

shortcomings. For example the widths of Gaussian kernels (𝜎) are constant value that are 

adjusted by evaluating the performance of algorithm on the validation set with a brute force 

method such as grid search. Since kernel width controls the impact of other pixels on one 

pixel according to their spatial distance (for spatial kernel) and the appearance similarity 

distance (for appearance kernel), this kernel width cannot be adjusted optimally for all 

diverse semantic objects in the image. For example in urban scene images the road region 

usually expands in a large area of the image while the traffic sign often has a small compact 

area. Using a same spatial kernel width for both of these two objects causes misleading in the 

case of large kernel width for traffic sign object or it causes missing the connection between 

pixels in case of small kernel width for road object. The current approach is based on using a 

brute force algorithm like grid search and monitoring the average IoU score on a defined 

validation set for finding a set of suboptimum values including the Gaussian kernel widths 

for CRF energy function. Further studies, which take these variables into account, will need 

to be undertaken. 
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