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Abstract
We enroll more and more personal pervasive devices because these simplify our
everyday lives. In order to verify the identity of these devices we use authentica-
tion protocols. Although simple authentication often suffices, users would like to
remain anonymous during these authentications. Many privacy-preserving authen-
tication protocols have been proposed that claim security and privacy. However,
most of them are vulnerable in either their design or their proof of concept.

In this research, we focus on the design of a novel authentication protocol
that preserves the privacy of embedded devices. A Physically Unclonable Func-
tion (PUF) generates challenge-response pairs that form the source of authenticity
between a server and multiple devices. We rely on Authenticated Encryption (AE)
for confidentiality, integrity and authenticity of the messages. A challenge updat-
ing mechanism combined with an authenticate-before-identify strategy is used to
provide privacy. The major advantage of the proposed method is that no shared
secrets need to be stored into the device’s non-volatile memory. We design a pro-
tocol that supports server authenticity, device authenticity, device privacy, and
memory disclosure. Following, we prove that the protocol is secure, and forward
and backward privacy-preserving via game transformations. Moreover, a proof of
concept is presented that uses a 3-1 Double Arbiter PUF, a concatenation of repe-
tition and BCH error-correcting codes, and the AE-scheme Ketje. We show that
our device implementation utilizes 8,305 LUTs on a 28 nm Xilinx Zynq XC7Z020
System on Chip (SoC) and takes only 0.63 ms to perform an authentication oper-
ation.
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Chapter 1. Introduction

1.1 Introduction

Nowadays, RFID-technology and the Internet of Things (IoT) are hot topics due
to the increasing desire to simplify our everyday lives via pervasive devices. Hence,
we see a shift from simple identification of devices towards complex authentica-
tion protocols, in which a challenging feature to implement is the protection of
the entity’s privacy. Because these entities belong to individuals who may want
to preserve their privacy, we notice a shift on focusing more on privacy-preserving
authentication protocols [17]. With the use of state-of-the-art cryptographic tech-
niques, device-to-server authentication can be implemented while protecting the
privacy with respect to outsiders.

One solution is to use Symmetric Key Cryptography (SKC), with a pre-shared key
(PSK) and a key-updating mechanism in order to randomize device credentials at
each successful authentication [33]. However, storing these PSKs requires Non-
Volatile Memory (NVM) which, in the field of Hardware Security, is considered to
be easily compromised by an attacker. Another option is to use Physically Unclon-
able Functions (PUFs), physical entities that are similar to algorithmic one-way
functions. PUFs act on challenges, returning noisy PUF responses that are close
enough between equal PUF instances, but far enough between different PUF in-
stances. Using PUFs, one can refrain from storing a PSK in the device’s NVM.
Instead, one only needs to store a challenge which, similar to the aforementioned
construction, is updated on a successful authentication. The strength of this con-
struction is that these challenges are not secret and can safely be stored in NVM.
By using a PUF, one needs to implement a Fuzzy Extractor (FE) that can pro-
duce an unpredictable key from the non-uniform and noisy PUF responses. On
top of that, the FE provides for the recovery of old PUF responses from fresh PUF
responses using error-correcting codes.

In order to cover the need for anonymous authentication in the IoT, research has
to be done into lightweight privacy-preserving authentication protocols. A PUF-
based privacy-preserving authentication protocol might be the solution. However,
no such protocol exists yet that both claims security and privacy, and presents a
secure proof of concept.

1.2 Related Work

PUFs were first introduced as physical random functions by Pappu et al. [52].
Since then, many PUF constructions have been proposed [27, 30, 36, 22, 62]. Maes
researched PUFs for his PhD thesis, in which he gives a thorough explanation of
PUF constructions, properties and applications [42]. More recent, Machida et al.
proposed a 3-1 Double Arbiter PUF (DAPUF) which substantially decreases the
prediction rate of delay-based Strong1 PUF responses [39].

1In contrast to a Weak PUF that can only generate a limited amount of responses, a Strong
PUF can generate 2l Challenge-Response Pairs (CRPs), where l is the number of bits in the
challenge.
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1.3. Scope and Contributions

Many PUF based protocols have been proposed [44, 29, 48, 3]. Majzoobi et al.
propose the Slender PUF protocol, an efficient and secure method to authenticate
the responses generated from a Strong PUF [44]. Their protocol does not rely
on FEs and error-correcting codes because response fragments are authenticated
using statistical methods. However, as Delvaux et al. pointed out, the implement-
ation of the Slender protocol is subjected to Pseudo-Random Number Generator
(PRNG) exploitation [17]. Herrewege et al. propose a reversed FE, putting the
computationally less complex generation procedure in the device, and the more
complex reproduction procedure on the server [29]. However less severe than the
exploit in the Slender protocol, their proof of concept is also subjected to a PRNG
issue [17]. Moriyama et al. propose a provably secure privacy-preserving authen-
tication protocol that uses a different PUF response at every authentication, and
thus changing the device credential after every successful authentication [48]. Aysu
et al. [3] propose a provably secure protocol based on the protocols by Herrewege
et al. and Moriyama et al.. Their protocol is optimized for resource-constrained
platforms like Radio-Frequency Identification (RFID) devices. The authors evalu-
ate the design using a PUF and True Random Number Generator (TRNG) based
on Static Random-Access Memory (SRAM), a Pseudo-Random Function (PRF)
using the SIMON block-cipher and a Reverse FE (RFE) based on Bose-Chaudhuri-
Hocquenghem (BCH) codes. While this is the first effort to describe an end-to-end
design and evaluation of a provable secure privacy-preserving PUF-based authen-
tication protocol, their interleaved FE construction is vulnerable to linear equation
analysis [3, p. 12]. Moreover, the authors use an additional PSK that does not
increase the entropy of the communicated messages. Thus, this additional PSK
can be considered overhead.

1.3 Scope and Contributions

This research focusses on improving the results of the most recent, aforementioned
PUF-based privacy-preserving authentication protocol as proposed by Aysu et al.
[3]. We do this by integrating a single, compact cryptographic primitive, namely
Authenticated Encryption (AE), into a PUF-based privacy-preserving authentic-
ation protocol. In contrast to the protocol by Aysu et al., we aim to construct a
secure FE and aim to abstain from using a PSK between server and devices. With
this, we hope to improve the overall efficiency of the protocol. Therefore, our main
research question is:

How does the integration of Authenticated Encryption in a PUF-based
privacy-preserving authentication protocol affect its performance in re-
lation to other similar, existing authentication protocols?

For this, we design, prove and implement a novel PUF-based privacy-preserving
authentication protocol using AE. We summarize our contributions as follows:

• We present the theoretical design of a novel PUF-based privacy-preserving
authentication protocol using AE. By doing this we present a generic ap-
proach to create any implementation of the protocol provided the quality of
PUF responses.

3



Chapter 1. Introduction

• We prove that the proposed protocol is mathematically secure, and forward
and backward privacy-preserving, under the condition on the security of the
AE-scheme and the quality of the PUF responses. For this we define a new
type of Strong Extractor (SE), the Entropy Accumulator (EA), which is part
of the FE.

• We present a proof of concept of the device on a development board and
the server on a PC such that we can elaborate on the performance of the
end-to-end design of the protocol. By doing this we present one of the first
use-cases of the lightweight AEAD-scheme Ketje, which is part of the run-
ning Competition for Authenticated Encryption: Security, Applicability and
Robustness (CAESAR).

• We make a comparison of the proposed protocol’s performance with other
similar, existing authentication protocols.

• We argue about the applicability of the proposed protocol in RFID-technology
and the IoT.

1.4 Research Methodology

In order to answer our research question, we use the following research methodo-
logy:

• Literature study. We carry out a literature study towards authentication
protocols in general, and the techniques used in the PUF-based privacy-
preserving authentication protocol by Aysu et al. [3] in particular. Moreover,
we study techniques that might improve the performance and security of the
protocol.

• Theoretical design. Based on the literature study, we design a PUF-based
privacy-preserving authentication protocol using AE. The aim is to replace
the Symmetric Key Encryption (SKE) and the PRF from Aysu et al. [3]
with a single, compact cryptographic primitive (Authenticated Encryption
with Associated Data (AEAD)) that provides for confidentiality of the PUF
responses, authenticity of the devices and the server, and integrity of the
transmitted data. Moreover, a secure PUF needs to be selected that forms
the basis for the design of a FE in particular and the protocol in general.

• Mathematical proof. We think that a novel protocol should be provably secure
and privacy-preserving. Hence, we give mathematical proof for both the
security as well as forward and backward privacy.

• Proof of concept. In order to evaluate the performance of the proposed pro-
tocol, we physically implement the device on a development board. On top
of that, we implement the server on a PC such that we create an end-to-end
design.
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1.5. Relevance

1.5 Relevance

As mentioned before, RFID-technology and the IoT is emerging. While the tech-
nology often is not new, by interconnecting devices and entities in the World Wide
Web (WWW), we create a new type of web, the World-Sized Web (WSW) [60].
In this WSW devices and entities are moving through the network, roaming from
access point to access point. One might consider that without proper privacy-
preserving authentication protocols, data gets leaked about the specific devices
and their locations in time. This traceability is a concern that affects everyone.
To illustrate this, the Open Web Application Security Project (OWASP) has in-
troduced a Top 10 IoT vulnerabilities, in which in the fifth place, there is “Privacy
Concerns” and in the second place, there is “Insufficient Authentication/Authoriz-
ation” [51]. This shows that the online community realizes effort should be devoted
to both aspects of lightweight privacy-preserving authentication protocols, namely
privacy and authentication.

On the other hand, one might consider conventional use-cases for RFID-technology,
e.g. in supply chains or in access control. In these scenarios, the amount of devices
is substantially reduced in comparison with the IoT. However, a company might
want to disclose articles that wear RFID tags and their locations to competitors.
Also, in access control, organizations might want to disclose to outsiders what
key figures entered where at what times. This demands for a lightweight privacy-
preserving authentication protocol.

In addition, this thesis is written in the partial fulfillment of the requirements for
the degree Master of Computing Science in Software Science. With this work the
author shows his skills in writing, reasoning, specifying, building and managing a
project.

1.6 External Validity

As mentioned, since the introduction of PUFs, many authentication protocols have
been proposed that rely on key generation by PUFs. However, many of them were
either not provably secure or were insecure in their proof of concept. Depending
on how successful this research proves to be, the protocol can be implemented in
nodes in the IoT, or on a smaller scale in RFID devices in conventional use-cases.
With the protocol, a generic approach is presented to construct any instance of the
protocol provided the quality of the PUF responses, the desired maximum failure
rate for the authentications and the desired security level. A designer can choose
which PUF to use, which error-correcting codes and which AEAD-scheme. This
way, the protocol might prove useful for a variety of applications.

In order to validate this research externally, a 20-page paper is submitted to the
Fifth International Workshop on Lightweight Cryptography for Security & Privacy
(LightSec 2016, Aksaray University, Cappadocia, Turkey).
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Chapter 1. Introduction

1.7 Outline

In Chapter 2 we describe the theoretical foundation for further chapters. This
chapter starts by giving notation and preliminaries before describing and defining
PUFs, error-correcting codes, FEs and AE. In Chapter 3 we describe the proposed
privacy-preserving authentication protocol, which we call the Concealing Ketje
Protocol (CKP), named after the lightweight AEAD-scheme Ketje. This chapter
starts by defining the security considerations before presenting the CKP with all
of its elements. In Chapter 4 we first describe the security model and formal se-
curity definitions before presenting the security and privacy proof of the proposed
protocol. In Chapter 5 we describe a proof of concept of the CKP. Chapter 6 both
describes the results from the protocol as supported by the mathematical found-
ation as well as the results from the protocol supported by the proof of concept.
Finally, in Chapter 7 we present the conclusions, discussion and future work.

6



CHAPTER

TWO

BACKGROUND

In this chapter we describe the theoretical foundation for further chapters. The
information includes notation and preliminaries as well as theoretical background
on the topics addressed in this thesis.

We start by describing the notation that is used throughout this thesis in Section
2.1. Section 2.2 describes the preliminaries. Following, in Section 2.3 we describe
Physically Unclonable Functions (PUFs), which is the component that forms the
basis of our privacy-preserving authentication protocol. Section 2.4 describes repe-
tition codes and Bose-Chaudhuri-Hocquenghem (BCH) codes, two error-correcting
codes that are being used in the Fuzzy Extractor (FE), which is one of the main
components in our protocol. FEs are being described in Section 2.5. The chapter
concludes in Section 2.6 by describing Authenticated Encryption (AE) in general
and Authenticated Encryption with Associated Data (AEAD) in particular.

7



Chapter 2. Background

2.1 Notation

In this section we describe the general notation that is used throughout this thesis.
For a detailed description of the specific notation used, please consult the Nomen-
clature starting at page 95. We use notation from Cryptography [33, 56], Coding
Theory [47, 63, 41, 28] and Information Theory [61, 55], the three theoretical found-
ations our protocol is mainly based on. In general, we use the following notation:

• Classes and sets are denoted by calligraphic letters, e.g. A,B, . . . ,Z.

• Vectors and (binary) variables/strings are denoted by capitalized roman let-
ters, e.g. A ∈ A, B ∈ B, . . . , Z ∈ Z.

– Varying instances of variable A are identified using superscript (e.g. A′,
A1 or Aold)

– A = [1, 1, 0] denotes a binary string with characters A0 = 0, A1 = 1 and
A3 = 1 with a(x) = x2 + x its polynomial.

– B2→0 denotes the substring of B with characters B2,B1 and B0.

– E = C ‖ D denotes the concatenation of strings C and D.

– |F | = n denotes the length n, or the amount of bits of F .

– I = G⊕H denotes the bitwise exclusive-OR (XOR) of strings G and H.

– 〈J,K〉 denotes a tuple of strings J and K.

• Functions are either denoted by function( · , . . . , · ), where · denotes an
input to the function, or by calligraphic letters similar to sets1.

2.2 Preliminaries

In this section we give the preliminary definitions that are being used throughout
this thesis. Again, we use definitions from Cryptography [33, 56], Coding Theory
[47, 63, 41, 28] and Information Theory [61, 55]. We define the Hamming distance
and Hamming weight, Shannon entropy, min-entropy and statistical distance.

2.2.1 Hamming Distance and Hamming Weight

The Hamming distance, introduced by Hamming [28] is defined as follows:

Definition 2.1 (Hamming distance). The Hamming distance HD(Y, Y ′) between
two binary vectors Y, Y ′ ← Y of the same length is the number of positions in both
vectors with differing values:

HD(Y, Y ′) = |{i : Yi 6= Y ′i }|

1The context in which calligraphic letters are used clearly reveals the denotation.
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2.2. Preliminaries

The distance metric dist(Y, Y ′) over two binary vectors Y, Y ′ ← Y is defined by
the Hamming distance. Similarly, the Hamming weight is defined as [28]:

Definition 2.2 (Hamming weight). The Hamming weight HW(Y ) of a vector
Y ← Y is the number of positions with non-zero values:

HW(Y ) = |{i : Yi 6= 0}|

Note that HW(Y ⊕ Y ′) = HD(Y, Y ′).

2.2.2 Shannon Entropy

The measurement of entropy we use is Shannon entropy, introduced by Shannon
[61]:

Definition 2.3 (Shannon entropy). The Shannon entropy H(Y ) of a discrete ran-
dom variable Y ← Y is defined as:

H(Y ) = −
∑
Yi∈Y

Pr(Yi) ∗ log2 Pr(Yi)

The entropy of a binary variable Y ← {0, 1}l with probabilities Pr(Yi = 1) = p
and Pr(Yi = 0) = 1− p (0 ≤ i < l) is defined in the binary entropy function h(p):

h(p) = −p log2(p)− (1− p) log2(1− p) (2.2.1)

Sometimes we use an approach that expects the worst outcome to Shannon en-
tropy, which is the min-entropy introduced by Rényi [55]. If Y ∈ Y is uniformly
distributed, the Shannon Entropy and min-entropy are equal. However, if this is
not the case, the ‘worst-case’ scenario is taken for the min-entropy.

We define the min-entropy as follows [42, p. 206]:

Definition 2.4 (Min-entropy). The min-entropy H̃∞(Y ) of a random variable Y ∈
Y is defined as:

H̃∞(Y ) = − log2 max
Yi∈Y

Pr(Yi)

9
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2.2.3 Statistical Distance

The statistical distance is a measure of distinguishability between two probability
distributions (e.g. random variables/vectors/strings).

We define the statistical distance as follows [19, p. 528]:

Definition 2.5 (Statistical distance). The statistical distance SD(A,B) between
two probability distributions A and B is:

SD(A,B) =
1

2

∑
V ∈V
|Pr(A = V )−Pr(B = V )|,

where Pr(x) denotes the probability that x occurs and V denotes the set from which
the statistical distance is sampled using V .

2.3 Physically Unclonable Functions

PUFs are entities that are intrinsically embodied in physical structures. The main
characteristic of a PUF is that it should be easy to evaluate but hard to predict,
moreover, it should be practically impossible to duplicate. Because of its equi-
valence to algorithmic one-way-functions, PUFs might be ideal for cryptographic
purposes.

Although the following definition is somewhat decrepit, we can still use it to illus-
trate the general idea of a PUF [21, p. 2]:

Definition 2.6 (Physical Unclonable Function). A Physical Unclonable Function
is a function that maps challenges to responses and that is embodied in a physical
object. It satisfies the following properties:

1. Easy to evaluate: the physical object can be evaluated in a short amount of
time.

2. Hard to characterize: from a number of measurements performed in poly-
nomial time, an attacker who no longer has the device and who only has a
limited (polynomial) amount of resources can only obtain a negligible amount
of knowledge about the response to a challenge that is chosen uniformly at
random.

This definition was superseded by numerous broader and often more complex defin-
itions of which Armknecht et al. [1] try to unify them all. For this thesis, we follow
Maes [42] as he covers the main characteristics we need to describe a PUF.

A PUF is mainly characterized by its reproducibility, uniqueness, identifiability, un-
clonability and unpredictability, which are defined by the intra- and inter-distance
of the PUF responses [42, p. 20-23, 61-64].

Before we give these definitions, we first introduce the notion of a PUF class,
denoted as P, which is the set of PUFs that share the same PUF construction type

10
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(see Section 2.3.5). The set of all possible challenges X which can be applied to an
instance of P is denoted as XP .

2.3.1 Intra-distance and Reproducibility

When challenging a single PUF multiple times with the same challenge, there is a
chance that the response bits are different in both responses. We call the probability
that a single bit is different between measurements the bit-error probability pe. This
is one of the characteristics of a PUF and is defined by its intra-distance, which is
defined as follows [42, p. 20]:

Definition 2.7 (Intra-distance). A PUF response intra-distance is modeled as a
random variable describing the distance between two PUF responses from the same
PUF instance using the same challenge:

Dintra
puf i(X) = dist(Y i ← puf i(X), Y i

′
← puf i(X)),

with Y i and Y i
′
two distinct and random evaluations of PUF instance puf i on the

same challenge X. Additionally, the PUF response intra-distance for a random
PUF instance and a random challenge is defined as the random variable:

Dintra
P = Dintra

puf←P(X ← XP)

The intra-distance provides reproducibility of any unique PUF instance puf0≤i<n ∈
P (where n is the total number of PUFs in the PUF class P), which means that if
two measurements are performed on the same PUF, then these responses are with
high probability close to each other. More precisely, reproducibility is defined as
follows [42, p. 61]:

Definition 2.8 (Reproducibility). A PUF class P exhibits reproducibility if:

Pr(Dintra
P is small) is high

Note that Maes does not introduce a theoretical or experimental bound. For now,
an unbounded perspective suffices. We introduce a theoretical bound ε in the
formal security definitions in Section 4.2 needed for the security and privacy proofs
in Section 4.3.
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2.3.2 Inter-distance and Uniqueness

The inter-distance is defined as follows [42, p. 22]:

Definition 2.9 (Inter-distance). A PUF response inter-distance is modeled as a
random variable describing the distance between two PUF responses from different
PUF instances using the same challenge:

Dinter
P (X) = dist(Y ← puf(X), Y ′ ← puf ′(X)),

with Y and Y ′ evaluations of the same challenge X on two random but distinct
PUF instances puf ∈ P and puf ′ ( 6= puf) ∈ P. Additionally, the PUF response
inter-distance for a random challenge is defined as the random variable:

Dinter
P = Dinter

P (X ← XP)

The inter-distance provides uniqueness of any PUF instance puf0≤i<n in the PUF
class P (where n is the total number of PUFs in the PUF class P), which implies
that responses of measurements performed on different PUFs (taking into account
that one of the PUFs might be fake) are with high probability far apart. More
precisely, uniqueness is defined as follows [42, p. 62]:

Definition 2.10 (Uniqueness). A PUF class P exhibits uniqueness if:

Pr(Dinter
P is large) is high

2.3.3 Identifiability

Reproducibility of a PUF instance puf i ∈ P and uniqueness between PUF in-
stances puf i,puf j ∈ P (where i 6= j) provides identifiability of PUF instance
puf i ∈ P. More precisely, identifiability is defined as follows [42, p. 62]:

Definition 2.11 (Identifiability). A PUF class P exhibits identifiability if it is
reproducible and unique, and in particular if:

Pr(Dintra
P < Dinter

P ) is high

2.3.4 Unclonability and Unpredictability

For cryptographic applications, unclonability and unpredictability are essential.
The characteristic of unclonability assures that physically and technically, a PUF
instance puf i′ ∈ P is difficult (or even impossible) to create from an other PUF
instance puf i ∈ P. More precisely, unclonability is defined as follows [42, p. 63]:

Definition 2.12 (Unclonability). A PUF class P exhibits unclonability it is hard
to apply and/or influence the creation procedure in such a way as to produce two
distinct PUF instances puf ,puf ′ ∈ P for which it holds that:

Pr(dist(Y ← puf(X), Y ′ ← puf ′(X)) < Dinter
P (X)) is high,

12
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for X ← XP . Ultimately, it should be hard to produce two PUF instances for which
it holds that:

Pr(dist(Y ← puf(X), Y ′ ← puf ′(X)) > Dintra
P (X)) is low

The characteristic of unpredictability ensures that unobserved responses remain
sufficiently random, even after observing responses to other challenges on the same
PUF instance. More precisely, unpredictability is defined as follows [42, p. 64]:

Definition 2.13 (Unpredictability). A PUF class P exhibits unpredictability if it
is hard to win the following game for a random PUF instance puf ∈ P:

• In a learning phase, one is allowed to evaluate puf on a limited number
of challenges and observe the responses. The set of evaluated challenges is
X ′P and the challenges are either randomly selected (weak unpredictability) or
adaptively chosen (strong unpredictability).

• In a challenging phase, one is presented with a random challenge X ← XP \
X ′P . One is required to make a prediction Y pred for the response to this
challenge when evaluated on puf . One does not have access to puf , but
the prediction is made by an algorithm predict which is trained with the
knowledge obtained in the learning phase: Y pred ← predict(X).

• The game is won if:

Pr(dist(Y pred ← predict(X), Y ← puf(X)) < Dinter
P (X)) is high

One way of carrying out this experiment is by using Machine Learning (ML) at-
tacks. Recent studies have shown that PUF responses can be predicted in some
practical scenarios [58, 57]. It is evident that a PUF should be designed carefully,
taking this risk into account.

2.3.5 PUF Construction Types

Various PUF construction types have been proposed, a few of them are being dis-
cussed in this section: Static RAM (SRAM) PUFs, Arbiter PUFs, Ring Oscillator
PUFs (ROPUFs) and Non-Intrinsic (PUF-like) PUFs [42].

2.3.5.1 SRAM PUFs

SRAM PUFs were first introduced by Guajardo et al. [27] and Holcomb et al. [30].
SRAM PUFs are based on the principle that upon power cycling an SRAM cell, its
transient behavior either sets the value of the cell to 0 or 1. This transient behavior
is intrinsically introduced due to the random process variations in the production
of the cells. Hence, these variations are cell-specific and will (upon power cycling)
determine the state of the cell with a high probability to a certain value. This
value is called the preferred initial operating point and is introduced by a race
condition in the electrical flow upon powering the SRAM. However, once in a while
this value will be different from the preferred initial operating point because of the
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race condition, which makes SRAM usable in a PUF construction. Challenges and
responses can be created by adhering to memory addresses as challenges and the
state of the SRAM as the PUF response. Before challenging the PUF with a same
challenge (memory address), a power cycle needs to be executed. This construction
is closely related to a One-Time Pad (OTP) where addresses are mapped to the
state of the SRAM [33]. However, with each power cycle there is a chance that the
pad changes from the previous measurement.

2.3.5.2 Arbiter PUFs

Figure 2.1 illustrates an Arbiter PUF, a type of delay-based PUF which was first
introduced by Lee et al. [36]. Here, the multiplexers that act on the same challenge
bit Ci (0 ≤ i < n, |C| = n) are called a switch block, and the two negative-AND
(NAND) ports are called an arbiter. An arbiter PUF is based on the idea that
there exists a race condition between signals of two digital paths on an Integrated
Circuit (IC). This race condition, or the delay of a path, is introduced by the
random process variations in the production of the IC. This behavior makes the
measurements of the delays usable in a PUF construction. An arbiter (usually a
simple latch) either sets the response to 0 or 1, depending on what signal arrived
first at the arbiter. Often, the paths are implemented using switch blocks (usually
multiplexers) that act on a challenge bit. These switch blocks either let signals
switch from digital paths or keep their paths. By concatenating a number of these
switch blocks, a challenge can be sent to the PUF. In order for the response to have
sufficient length, a number of these race conditions can be measured in parallel.
For example, by measuring n arbiter PUFs in parallel using the same challenge,
a n-bit response can be obtained. It is evident that this solution substantially
increases the area of the IC. Another option is to measure responses sequentially
using differing challenges. For example, one could append n bits to the challenge
address space to measure 2n responses, obtaining a 2n-bit response. It is evident
that this solution substantially increases the latency of PUF responses.

Figure 2.1: An arbiter PUF as introduced by Lee et al. [36]. denotes the input
of the PUF, denotes the output of the PUF.

The responses of these PUFs can easily be predicted using ML-attacks. Machida
et al. have shown that conventional arbiter PUFs have a prediction rate of 86%[40].
However, arbiter PUFs are used in various constructions that provide for a good
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prediction rate (i.e. approximating 50%). One example is discussed in the next
section, various others by Machida et al. [40].

2.3.5.3 Ring Oscillator PUFs

Figure 2.2 illustrates a ROPUF, another type of delay-based PUF which was first
introduced by Gassend et al. [22]. In this figure, the configurable delay can (for
example) be the delay introduced in the arbiter PUF from Section 2.3.5.2 or a series
of inverters. This PUF is based on the measurements of the frequencies of digital
oscillating circuits. Again, the differences in these measurements are introduced
by the random process variations in the production of the IC. Usually, a ROPUF
consists of a number of ring oscillators and an equal amount of frequency counters
[43]. After measuring the frequencies of these oscillators, an ordering of these
frequencies, and an encoding of this ordering reveals a PUF response. A challenge
can be introduced by adding multiple oscillators in batches. This challenge, fed to
a multiplexer can indicate from which oscillator in the batch the frequency needs
to be measured.

Figure 2.2: A ROPUF as introduced by Gassend et al. [22].

2.3.5.4 Non-Intrinsic (PUF-like) PUFs

Various non-intrinsic (PUF)-like PUFs have been proposed that have randomness
that has been explicitly introduced. These PUFs are non-intrinsic because they are
not completely integrated in an embedding device and/or they are not produced in
the standard manufacturing process of their embedding device. Tuyls and Škorić
[62] describe optical, coating and acoustic PUFs.

2.3.5.4.1 Optical PUFs An optical PUF is based on either absorption, trans-
mission, reflection, scattering or a combination thereof, of a microstructural surface.
The idea is that this surface has random variations in one of these characteristics
introduced in the production of the surface. These random variations in the micro-
structural surface can be used in a PUF construction by challenging it at different
locations on the surface. An example is to shoot a laser through a transparent
material (e.g. glass) and observe the speckle pattern using a camera [62].
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2.3.5.4.2 Coating PUFs A coating PUF is based on the dielectric variation
of the coating of an IC. During manufacturing, the coating is doped with dielectric
particles that respond with a different capacitance value on differing voltage inputs
with varying frequencies. These differing capacitance values can be used in a PUF
construction by challenging the PUF with different voltage inputs.

2.3.5.4.3 Acoustic PUFs An acoustic PUF is a PUF that is based on the
response of sending an acoustic wave to an object. The acoustic wave propagates
through the object and scatters on randomly distributed inhomogeneities that are
introduced during manufacturing of the object. These differing wave responses can
be used in a PUF construction by pointing the acoustic wave at different locations
on the surface of the object as challenges.

2.4 Error-Correcting Codes

When sending data over a noisy channel, there is a chance that this data might
be corrupted. For example, when sending a single bit, there is a probability
Pr(“bit flipped”) = p that this bit gets flipped. This is due to a Binary Symmetric
Channel (BSC) [63, p. 2], as depicted in Figure 2.3.

Figure 2.3: The BSC.

In this figure,

Pr(“1 received” | “0 transmitted”) = Pr(“0 received” | “1 transmitted”) = p, and

Pr(“0 received” | “0 transmitted”) = Pr(“1 received” | “1 transmitted”) = 1− p.

The BSC can be used to model various media, for example the aforementioned
noisy channel (tele-communications, satellite communication), a storage medium
or PUFs. In this thesis we only consider the BSC in a PUF scenario where multiple
measurements on the same challenge return noisy responses. We require that the
protocol’s channel is ideal (i.e. no errors occur during communication).

In order to recover the original data from the possibly corrupted data, error-
correcting codes are used [41, p. 1]. Error-correcting codes have the ability to
correct up to t bits of original data from the transmitted information.

Although error-correcting codes are often used for transmitted data, we can also
use them for reconstructing PUF-responses.

16



2.4. Error-Correcting Codes

Example 2.4.1. Take two of the same PUF challenges X on the same PUF puf i,
Y i ← puf i(X) and Y i

′ ← puf ′i(X), with Y i = [0, 1, 0, 1, 0, 1, 1, 0] and Y i
′

=
[0, 1, 1, 1, 0, 0, 1, 0]. This can be seen as the transmission of PUF response Y i using
the PUF puf i under the influence of a BSC, receiving the PUF response Y i

′
. We

say that the error vector, indicating which bits have been ‘corrupted’, of these two
response vectors is E = Y i ⊕ Y i′ = [0, 0, 1, 0, 0, 1, 0, 0]. C

One way of carrying out error correction to the errors that were introduced in the
example is to encode the PUF response Y i and decode the second PUF response
Y i
′
. Specific codes used in an encoding have the ability to carry out error detection

to the error(s) introduced by a BSC. Error detection leads to error correction, which
helps us obtain the PUF response Y i in a decoding.

We describe binary repetition codes and binary BCH codes which are used in our
proposed protocol to recover PUF responses.

2.4.1 Repetition Codes

One of the most basic error-correcting codes is the class of binary repetition codes,
or repetition codes. As the name suggests, the codeword for a bit is the repetition
of that bit such that probability indicates the original bit in a decoding.

We define binary repetition codes as follows:

Definition 2.14 (Binary Repetition Code). A binary linear code CREP(n, 1, t) with
codewords 0 = [0, 0, . . . , 0] and 1 = [1, 1, . . . , 1] is called a binary repetition code of
length n and error correcting capability t = bn−1

2 c.

2.4.1.1 Encoding

As we have mentioned before, the most basic form of encoding a string is by repeat-
ing its characters for a number of n times. There are more advanced techniques of
using repetition codes, of which one will be described in Section 3.5.3.1.

Example 2.4.2. Take the binary repetition code CREP(n, 1, t) with n = 3 and
t = bn−1

2 c = 1. An encoding of the message M = [0, 1, 1, 0] of length lM = 4
results in the codeword W = [0, 0, 0] ‖ [1, 1, 1] ‖ [1, 1, 1] ‖ [0, 0, 0] of length lW =
4 ∗ n = 12. C
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2.4.1.2 Decoding

Decoding of a received codeword W ′ = W ⊕E of length lW ′ and error vector E is
performed by measuring the Hamming weight of the n-bit substrings of W ′.

Take the binary repetition code CREP(n, 1, t). Let us say a messageM of length lM
was encoded using this code. We can decode the received codeword W ′ as follows
(for 0 ≤ i < lM ):

If HW(W ′i·n+(n−1)→i·n) > t then we take Mi = 1 and Mi = 0 otherwise. (2.4.1)

This gives the highest probability that the decoding of the substrings represents
the original message. There is a chance that the decoding will be faulty, as more
than t bits in the n-bit string might be corrupted in the channel. The probabilistic
foundation of repetition codes does not support detection of this faulty decoding.
For this, the more complex BCH codes can be used which will be described in
Section 2.4.2.

Example 2.4.3. Take the messageM = [0, 1, 1, 0] and the codewordW = [0, 0, 0] ‖
[1, 1, 1] ‖ [1, 1, 1] ‖ [0, 0, 0] from Example 2.4.2 and an error vector E = [0, 0, 0] ‖
[0, 0, 1] ‖ [0, 1, 0] ‖ [1, 0, 1]. The received codeword results in W ′ = W ⊕ E =
[0, 0, 0] ‖ [1, 1, 0] ‖ [1, 0, 1] ‖ [1, 0, 1]. Using Formula 2.4.1, a decoding of the received
codeword W ′ results in the received message M ′ = [0, 1, 1, 1]. C

As we can see M ′0 6= M0 because HW(W ′2→0) > t, thus M0 = 1 whereas the
original bit was 0. In this specific case, the number of errors in the error vector was
higher than the error correcting capability t. In order to prevent this behavior, one
can use a better coding technique, a different code with a higher error correcting
capability (increasing the overhead on the channel), or one can use a concatenation
of error-correcting codes, which is being described in Section 3.5.3.

2.4.2 BCH Codes

BCH codes are a class of cyclic error-correcting codes that are constructed using
finite fields. The algebraic foundation of BCH codes makes them ideal for error
correction.

For any positive integer m ≥ 3 and t < 2m − 1, there exists a binary BCH code
with the following parameters [45, 47, p. 99]:

• The block-length of a code is the amount of bits that the code acts on. When
encoding a message larger than the block-length, the code is applied to a
multiple of the block-length. The block-length of the code is given by:

n = 2m − 1 (2.4.2)

• The number of parity-check bits is the number of bits that are used to detect
and correct errors in the code. The number of parity-check bits is given by:

n− k ≤ m · t (2.4.3)
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• The minimum distance is the minimum of HD(U, V ) over all distinct code-
words U and V . If the following condition holds, the decoder will always
decode correctly when there are t or fewer errors.

dmin ≥ 2t+ 1 (2.4.4)

We define a binary BCH code as follows:

Definition 2.15 (Binary BCH Code). A binary BCH code CBCH(n, k, t) is called
a binary BCH code of order m, length n = 2m − 1, distance d, error correcting
capability t = bd−1

2 c and primitive element α ∈ GF(2m):

CBCH(n, k, t) = {(W0, . . . ,Wn−1) ∈ GF(2m) | w(x) = Wn−1x
n−1 + · · ·+W1x+W0

satisfies ∀ 1 ≤ i ≤ 2t : w(αi) = w(α2i) = · · · = w(α(n−1)i) = 0}

2.4.2.1 Encoding

In order to encode a messageM of length k we first need to construct the generator
polynomial.

Let Φi(x) be the minimal polynomial of αi, the primitive element. Then the
generator polynomial g(x) must be the least common multiple of Φ1(x), Φ2(x),
· · · , Φd−1(x), i.e.,

g(x) = LCM(Φ1(x),Φ2(x), · · · ,Φd−1(x)) (2.4.5)

The degree of the generator polynomial g(x) is at most m · t, hence, the number
of parity-check bits (n− k) is at most m · t (Formula 2.4.3).

Example 2.4.4. Let α be a primitive element ofGF(24) generated by the primitive
polynomial p(x) = x4 + x+ 1 [14]. The finite field table is given in Appendix B.1.
The minimal polynomials Φi(x) (1 ≤ i ≤ n) of α are2:

Φ1(x) = (x+ α)(x+ α2)(x+ α4)(x+ α8)

= x4 + x+ 1

Φ3(x) = (x+ α3)(x+ α6)(x+ α12)(x+ α9)

= x4 + x3 + x2 + x+ 1

Φ5(x) = (x+ α5)(x+ α10)

= x2 + x+ 1

Φ7(x) = (x+ α7)(x+ α14)(x+ α13)(x+ α11)

= x4 + x3 + 1

2Note that conjugates are omitted. A conjugate is a minimal polynomial Φj(x) that is equal
to Φi(x) (i < j). For example, in Example 2.4.4, Φ1(x) = Φ2(x) = Φ4(x) = Φ8(x).
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Then, using Formula 2.4.5, the double-error-correcting (t = 2, d = 5) BCH code of
length n = 24 − 1 = 15 (Formula 2.4.2) is generated by:

g(x) = LCM(Φ1(x),Φ3(x))

= (x4 + x+ 1)(x4 + x3 + x2 + x+ 1)

= x8 + x7 + x6 + x4 + 1

Hence, n− k = 8 such that this is a CBCH(n, k, t) = CBCH(15, 7, 2) BCH code. C

The remainder polynomial r(x) that contains the parity-check bits is obtained by:

r(x) = xn−k ·m(x) mod g(x) (2.4.6)

Example 2.4.5. Take the message M = [1, 1, 0, 0, 1, 1, 0] with message polynomial
m(x) = x6 +x5 +x2 +x and generator polynomial g(x) = x8 +x7 +x6 +x4 + 1 as
calculated in Example 2.4.4, the remainder polynomial r(x) is obtained by using
Formula 2.4.6:

r(x) = x8(x6 + x5 + x2 + x) mod x8 + x7 + x6 + x4 + 1

= x14 + x13 + x10 + x9 mod x8 + x7 + x6 + x4 + 1

= x3 + 1

C

Finally, the code polynomial w(x) is obtained by:

w(x) = xn−km(x) + r(x) (2.4.7)

Example 2.4.6. Take the message polynomial m(x) = x6 + x5 + x2 + x and the
remainder polynomial r(x) = x3 + 1 as calculated in Example 2.4.5, the code
polynomial w(x) is obtained by using Formula 2.4.7:

w(x) = x8(x6 + x5 + x2 + x) + x3 + 1

= x14 + x13 + x10 + x9 + x3 + 1

As a result, the codeword for the message M = [1, 1, 0, 0, 1, 1, 0] is given by
W = [1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1]. C

2.4.2.2 Decoding

As per Definition 2.15, the decoding is based on the following algebraic character-
istic:

∀ 1 ≤ i ≤ 2t : w(αi) = Wn−1α
(n−1)i + · · ·+W2α

2i +W1α
i +W0 = 0 (2.4.8)
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The decoding of a received codeword W ′ = W ⊕ E with codeword polynomial
w′(x) = W ′n−1x

n−1 + · · · + W ′1x + W ′0 and error polynomial e(x) = En−1x
n−1 +

· · ·+ E1x+ E0 is performed in four steps:

1. Compute the syndromes Si (1 ≤ i ≤ 2t).

2. Determine the error-locator polynomial σ(x).

3. Find the error-locator polynomial coefficients σ1, σ0, . . . , στ (τ ≤ t).

4. Carry out the error correction using the error correction polynomial e′(x).

Here, τ is the actual number of errors in the code. We describe these four steps in
the following sections.

2.4.2.2.1 Syndrome Computation We can compute the syndromes Si (1 ≤
i ≤ 2t) using:

Si = w′(αi)

= W ′n−1α
(n−1)i + · · ·+W ′2α

2i +W ′1α
i +W ′0

(2.4.9)

Example 2.4.7. Take the message M = [1, 1, 0, 0, 1, 1, 0] and its codeword W =
[1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1] as calculated in Section 2.4.2.1. By applying the
error vector E = [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0] on this message, we obtain the
received codeword W ′ = [1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1]. Hence, the codeword
polynomial is given by: w′(x) = x14 + x13 + x9 + x3 + x2 + 1.

The four syndromes are computed using Formula 2.4.9 and Table B.1 from Ap-
pendix B:

S1 = α14 + α13 + α9 + α3 + α2 + 1

= α+ 1 = α4

S2 = α28 + α26 + α18 + α6 + α4 + 1

= α2 + 1 = α8

S3 = α42 + α39 + α27 + α9 + α6 + 1

= α3 + α2 + 1 = α13

S4 = α56 + α52 + α36 + α12 + α8 + 1

= α

C

2.4.2.2.2 Error Locator Polynomial Coefficients The error locator poly-
nomial can be expressed as follows:

σ(x) = (1− βτx) . . . (1− β2x)(1− β1x)

= στx
τ + · · ·+ σ1x+ σ0,

(2.4.10)

where τ ≤ t is the number of errors in the code.
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In the case τ ≤ t, the number of roots (of which the calculation is given in Section
2.4.2.2.3) is equal to the degree of the error locator polynomial. If we find a higher
degree of the error locator polynomial σ(x), we can conclude that there were more
errors in the code than its error correcting capability t (i.e. τ > t). In this case, no
errors can be located. In order to prevent this behavior, one can use a better coding
technique, a different code with a higher error correcting capability (increasing the
overhead on the channel), or one can use a concatenation of error-correcting codes,
which is being described in Section 3.5.3.

The coefficients of σ(x) are:

σ0 = 1

σ1 = βτ + · · ·+ β2 + β1

σ2 = βτ−1βτ + · · ·+ β1β3 + β1β2

σ2 = βτ−2βτ−1βτ + · · ·+ β1β2β4 + β1β2β3

...
στ = β1β2 . . . βτ

(2.4.11)

In order to solve the coefficients of the error locator polynomial, one has to solve
the Newton’s identities [47, p. 130]:

S1 + σ1 = 0

S2 + σ1S1 = 0

S3 + σ1S2 + σ2S1 + σ3 = 0

...
Sτ + σ1Sτ−1 + · · ·+ στ−1S2 + στS1 = 0

(2.4.12)

The objective is to find the minimum degree polynomial σ(x) whose coefficients
satisfy these Newton identities.

Various algorithms have been proposed to find these coefficients: the Peterson-
Gorenstein-Zierler algorithm [24], the Berlekamp-Massey algorithm [6] and Euclid’s
algorithm [54]. For the purpose of this thesis and because of the complexity of
these algorithms, we stop the description for finding the error-locator polynomial
coefficients here. For a detailed description, we encourage the reader to consult
Moreira and Farrell [47] or any of the papers these algorithms were introduced in
[47, 24, 6, 54].

Example 2.4.8. Take the received codeword W ′ = [1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1,
0, 1] and its syndromes S1 = α4, S2 = α8, S3 = α13 and S4 = α from Example 2.4.7.
Using the Berlekamp-Massey algorithm we obtain the error locator polynomial
σ(x) = α12x2 +α4x+ 1 with σ0 = 1, σ1 = α+ 1 = α4 and σ2 = α3 +α2 +α+ 1 =
α12. C
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2.4. Error-Correcting Codes

2.4.2.2.3 Finding Roots of Error Locator Polynomial The roots of the
error locator polynomial σ(x) are β−1

τ , . . . , β−1
2 , β−1

1 , the inverse of the error loca-
tion numbers.

One way of solving the roots for σ(x) is by brute-forcing the finite field elements
in the error locator polynomial and check whether the following condition holds:

σ(αi) = 0 (2.4.13)

This is called the Chien search, as introduced by Chien [15].

• If this condition holds, then there was an error at the inverse position of i,
i.e. in position n− i.

• If this condition does not hold, there was no error.

Example 2.4.9. Take the error locator polynomial σ(x) = α12x2 + α4x + 1 with
σ0 = 1, σ1 = α4 and σ2 = α12 as computed in Example 2.4.8. Evaluating σ(x) for
x = α, x = α2, . . . , x = αn (where n = 2m − 1, Formula 2.4.2) gives the following
set of equations:

σ(α) = α12(α)2 + α4(α) + 1

= (α3 + 1) + (α2 + α) + 1

= α3 + α2 + α+ 2

= α3 + α2 + α

6= 0

σ(α2) = α12(α2)2 + α4(α2) + 1

= α3 + α2 + α+ 1

6= 0

...

σ(α15) = α12(α15)2 + α4(α15) + 1

= α3 + α2 + 1

6= 0

Solving these equations we find σ(α5) = 0 and σ(α13) = 0. Hence, the roots of the
error locator polynomial σ(x) = α12x2 + α4x + 1 are β−1

2 = 5 and β−1
1 = 13 for

which Formula 2.4.13 holds. C

2.4.2.2.4 Error Correction Once the roots β−1
τ , . . . , β−1

2 , β−1
1 of the error

locator polynomial σ(x) = στx
τ + · · ·+σ1x+σ0 are found, we can obtain the error

correction polynomial:

e′(x) = xn−β
−1
τ + · · ·+ xn−β

−1
2 + xn−β

−1
1 (2.4.14)

Finally, we can obtain the recovered codeword polynomial w′′(x):

w′′(x) = w′(x) + e′(x) (2.4.15)
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Example 2.4.10. Take the received codeword W ′ = [1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1,
0, 1] (w′(x) = x14 +x13 +x9 +x3 +x2 + 1) and the roots β−1

2 = 5 and β−1
1 = 13 of

the error locator polynomial σ(x) = α12x2 + α4x + 1 from the previous exercises.
The error correction polynomial is given by using Formula 2.4.14:

e′(x) = x15−5 + x15−13

= x10 + x2

This gives us the error correction vector E′ = [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0].
We can see that E′ = E (Exercise 2.4.7). Finally, we can obtain the original
codeword polynomial using Formula 2.4.15:

w′′(x) = (x14 + x13 + x9 + x3 + x2 + 1) + (x10 + x2)

= x14 + x13 + x10 + x9 + x3 + 1

This gives us the recovered codeword W ′′ = [1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1]. We
can see that W ′′ = W (Exercise 2.4.7). Hence, we recovered the original message
M = [1, 1, 0, 0, 1, 1, 0]. C

2.5 Fuzzy Extractors

Fuzzy Extractors (FEs) were first introduced to turn biometric information into
keys usable for cryptographic applications [19]. This biometric data, for example
iris scans or fingerprints can be used as a key, where the key must be derived from
measurements that are slightly different. With the use of a FE, this data is turned
into a key with nearly uniform randomness and helper data to recover this key using
another measurement of the biometrics. Even though FEs were first introduced
for biometric information, a FE can be used to produce cryptographic keys from
any key that is not precisely reproducible and not distributed uniformly given that
these keys are ‘close enough’ to each other. For the purpose of this thesis, FEs are
used to correct noisy PUF responses into unpredictable keys.

Using a generation procedure, the FE can convert the biometric input into an key
that is unpredictable. Moreover, using a generation procedure the FE can produce
public information about the biometric input such that this input can exactly be
recovered using error-correction codes. These two steps are performed in a Strong
Extractor (SE) and a (), respectively. A reproduction procedure can recover the
original biometric input from the public information produced by the generation
procedure of the FE. Using the same Strong Extractor (SE) as was used in the
generation procedure, this biometric input is converted into the same key.
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2.5.1 Strong Extractor

The Strong Extractor (SE) converts the noisy data that is not distributed uniformly
into a key that is unpredictable. We define a SE as follows [19, p. 528]:

Definition 2.16 (Strong Extractor). An efficient (n,m′, k, ε)-strong extractor is a
polynomial time probabilistic function Ext(W,X) : {0, 1}n → {0, 1}n such that for
all min-entropy m′ distributions W we have:

SD(〈Ext(W,X), X〉, 〈Ul, X〉) ≤ ε, where

Ul denotes the uniform distribution on an l-bit binary string and Ext(W,X) stands
for applying Ext to W using uniformly distributed randomness X.

In other words, a SE can extract a uniformly distributed key from non uniformly
distributed input W and uniformly distributed randomness X.

Practically, to obtain a high security level, strong assumptions about the min-
entropy of the randomness source have to be made. This is often impossible [43, p.
306] and multiple practical solutions have been proposed. Moreover, because we
need to use uniformly distributed randomness X which has to be shared between
generation and reproductions, large entropy losses need to be taken into account.
This makes the overall key generation as defined in Definition 2.16 impractical.

Some solutions are to use a cryptographic hash function [34] or a Pseudo-Random
Function (PRF). For example, one can append a random variable to the noisy
data and hash this into a key (salting). However still, one has to make strong
assumptions about the min-entropy of the noisy data.

We call these constructions Average-case Extractors (AcEs), which we define as
follows [20, p. 10]:

Definition 2.17 (Average-case Extractor). Let Ext(W,X) : {0, 1}n → {0, 1}l be
a polynomial time probabilistic function which uses r bits of randomness. We say
that Ext(W,X) is an efficient average-case (n,m, l, ε)-strong extractor if for all
pairs of random variables (W, I) such that W is an n-bit string satisfying H̃∞ =
(W | I) ≥ m, we have

SD(〈Ext(W,X), X, I〉, 〈Ul, X, I〉) ≤ ε,

where X is uniform on {0, 1}r.

In other words, if there is enough entropy inW (taking into account the entropy loss
introduced by I) and there is enough entropy in X, Ext(W,X) is indistinguishable
from random (Ul).
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2.5.2 Secure Sketch

The Secure Sketch (SS) converts the noisy data that is not distributed uniformly
into helper data that can be used to recover that same noisy data. Almost always,
SSes use encoding of (a composition of) error-correcting codes as described in
Section 2.4.

Let W be the set of all possible noisy and non uniformly distributed vectors with
distance function dist(W,W ′) (W,W ′ ∈ W) as described in Section 2.2.1. We
define a SS as follows [19, p. 529]:

Definition 2.18 (). An (W,m,m′, t)-secure sketch is a randomized map SS(X) :
W → {0, 1}∗ with the following properties:

1. There exists a deterministic recovery function Rec(W ′, H) allowing to re-
cover vector W from its sketch H = SS(W ) and any vector W ′ close to W :
for all W,W ′ ∈ M satisfying dist(W,W ′) ≤ t, we have Rec(W ′,SS(W )) =
W .

2. For all random variables W ∈ W with min-entropy m, the average min-
entropy of W given SS(W ) is at least m′. That is H̃∞ = (W | SS(W )) ≥ m′.

In other words, we are able to recover a vector W using another vector W ′ close to
W and the helper data H generated from the secure sketch H = SS(W ). Moreover,
the entropy loss during the construction of H = SS(W ) is m−m′.

When using an error-correcting code C(n, k, t) for the SS, knowledge of the helper
data H does not fully disclose the entropy of W , only n − k bits of this helper
data. Thus, we can use, store and communicate H publicly where it still has
H(W )− (n− k) bits of entropy left in H [43, p. 305]. The bit error probability pe
and entropy ρ of the PUF determine the (composition of) error-correcting codes
used in the design of the SS. This should be optimized such that no information is
leaked about the key.

2.5.3 Fuzzy Extractor

Now that we have described a SE and a SS, we can start defining a FE. As men-
tioned before the FE composes a generation procedure and a reproduction proced-
ure.

We define a FE as follows [19, p. 530]:

Definition 2.19 (Fuzzy Extractor). A (W,m, l, t, ε)-fuzzy extractor is a given by
two procedures (Gen,Rep).

1. Gen(W ) is a probabilistic generation procedure, which on input W ∈ W
outputs an “extracted” string R ∈ {0, 1}l and a public string H. We require
that for any distribution W on W of min-entropy m, if 〈R,H〉 ← Gen(W ),
then we have SD(〈R,H〉, 〈Ul, H〉) ≤ ε.
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2. Rep(W ′, H) is a deterministic reproduction procedure allowing to recover R
from the corresponding public string H and any vector W ′ close to W : for
all W,W ′ ∈ W satisfying dist(W,W ′) ≤ t, if 〈R,H〉 ← Gen(W ), then we
have Rep(W ′, H) = R.

In other words, a random binary variable R can be constructed using noisy and
non-random input W using a generation procedure. Moreover, using a reproduc-
tion procedure, this randomness R can be recovered, given a second noisy and
non-random input W ′ and the helper data H as constructed by the generation
procedure.

We can use Definition 2.17 (Average-case Extractor), Definition 2.18 () and Defin-
ition 2.19 (Fuzzy Extractor) to prove that we can construct a FE from SS [20, p.
13]:

Lemma 2.1 (Fuzzy Extractor from ). Assume SS(X) is a (W,m,m′, t)-secure
sketch with recovery procedure Rec(W ′, H), and let Ext(W,X) be an average case
(n,m′, k, ε)-strong extractor. Then the following (Gen,Rep) is a (W,m, l, t, ε)-
fuzzy extractor:

1. Gen(W ): set H = 〈SS(W ), X〉, R = Ext(W,X), output 〈R,H〉

2. Rep(W ′, 〈H,X〉): recover W = Rec(W ′, H) and output R = Ext(W,X).

Proof. From Definition 2.18 ()

H∞(W |SS(W )) ≥ m′

And since Ext(W,X) is an average-case (n,m′, k, ε)-strong extractor (Definition
2.17), from Definition 2.19 (Fuzzy Extractors) we get:

SD(〈Ext(W,X),SS(W ), X〉, 〈Ul,SS(W ), X〉) = SD(〈R,H〉, 〈Ul, H〉) ≤ ε

Corollary 2.1 (Fuzzy Extractor from ). If Rec is an (W,m,m′, t)-secure sketch
and Ext is an (n,m′ − log2( 1

δ ), l, ε)-strong extractor, then the above construction
from Lemma 2.1 (Gen,Rep) is a (W,m, l, t, ε+ δ)-fuzzy extractor.
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2.6 Authenticated Encryption

Before AE, protocol designers used a generic composition paradigm for which they
concatenate a privacy-only encryption scheme with a Message Authentication Code
(MAC) [5, 33]. However, this naive approach demands multiple procedures which
substantially reduces efficiency of the protocols. AE improves efficiency by provid-
ing confidentiality, integrity and authenticity into a single, compact mode [56].
However, there was still a need to efficiently authenticate a message header be-
longing to the plaintext or cipher-text. Authenticated Encryption with Associated
Data (AEAD)3 provides for this by additional authentication of data other than
the plaintext. We define an AEAD-scheme as follows [56, p. 4]:

Definition 2.20 (AEAD-scheme). An authenticated-encryption scheme with asso-
ciated data (AEAD-scheme) is a three-tuple

Π = (K, E ,D).

Associated to Π are sets of strings N ⊆ {0, 1}∗ indicating the nonce, M⊆ {0, 1}∗
indicating the message and AD ⊆ {0, 1}∗ indicating the associated data, for example
a header.

• The key space K is a finite nonempty set of strings.

• The encryption algorithm E is a deterministic algorithm that takes strings
K ∈ K, N ∈ N , M ∈ M and A ∈ AD and returns string 〈C, T 〉 =

EN,AK (M) = EK(N,A,M).

• The decryption algorithm D is a deterministic algorithm that takes strings
K ∈ K, N ∈ N , A ∈ AD, C ∈ {0, 1}∗ and T ∈ {0, 1}∗ and returns
DN,AK (〈C, T 〉), which is either a string inM or the distinguished symbol In-
valid.

We require that DN,AK (EN,AK (M)) = M for all K ∈ K, N ∈ N , M ∈ M and
A ∈ AD.

3In this thesis, we refer to AEAD by referring to AE.
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CHAPTER

THREE

PROTOCOL DESIGN

In this chapter we describe the proposed privacy-preserving authentication pro-
tocol, the Concealing Ketje Protocol (CKP). In this protocol a trusted server
and a set of deployed devices will authenticate each other where devices require
anonymous authentication such that they are untraceable. As a starting point
we take the PUF-based privacy-preserving authentication protocol as proposed by
Aysu et al. [3]. However, we want to correct a few design-flaws in the protocol and
improve its overall performance. First, the protocol proposed by Aysu et al. makes
use of a Fuzzy Extractor (FE) that can be broken using linear equation analysis as
pointed out by Becker [3, p. 12]. Moreover, the FE makes use of a pre-shared key
(PSK), which increases the overhead of the protocol. We design a new FE that has
enough entropy in its output and that does not use a PSK. Second, the protocol
uses two cryptographic primitives, namely Symmetric Key Encryption (SKE) and
Pseudo-Random Function (PRF), of which for the SKE the SIMON block-cipher
is used, an encryption scheme introduced by the untrustworthy National Security
Agency (NSA) [18, p. 113] (Snowden revelations [25]). We replace these primitives
with a single, compact cryptographic primitive, namely Authenticated Encryption
with Associated Data (AEAD).

In Section 3.1 we present the security considerations that play a role in the design
of the proposed protocol, which will be presented and elaborated in Section 3.3.
In Section 3.2 we present the considerations that we need to take due to the avail-
able hardware. Section 3.4 describes the 3-1 Double Arbiter PUF (DAPUF) as is
used in our protocol. The extraction of the device credentials together with the
construction of the helper data is described in the Reverse FE (RFE), Section 3.5.
Finally, our choice for the lightweight AEAD-scheme, Ketje, will be described in
Section 3.6.
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3.1 Security Considerations

In this section we present the security considerations that play a role in the design of
the proposed protocol. We identify the operational and cryptographic properties
that a device to be authenticated should adhere to, we present the trust- and
attacker model and we present the considerations we take providing the available
hardware.

3.1.1 Operational and Cryptographic Properties

For the security considerations of the operational and cryptographic properties we
follow Lee et al. [38]. These properties describe what considerations need to be
made when designing a privacy-preserving authentication protocol in general and
an untraceable device in particular.

3.1.1.1 Scalability

Many protocols face the pitfall that they are not scalable because of the computa-
tional workload on the server that increases linearly with the number of devices.
Considering that these authentication protocols often work for a large amount of
devices, a thoughtful design is necessary. Our protocol is also subject to this risk,
which means that we elaborate on the design rationale to minimize this risk. More
about this in Section 6.3.

3.1.1.2 Anti-cloning

It should not be possible to clone a device. One property that a device needs to
have is that it should have a key that is unique in the sense that it all the bits of the
credential should be unpredictable. This way, if an attacker succeeds to crack one
of the devices, he/she cannot use this secret to clone any of the other devices. We
base our countermeasure mainly on the use of a Physically Unclonable Function
(PUF). At every authentication the device credentials are freshly generated to an
unpredictable value.

3.1.1.3 Security Against the Replay Attack

This property implies that an attacker should not be able to authenticate a device
using a replayed message (i.e. he/she should not be able to successfully carry
out Man-in-the-Middle (MitM) attacks). This implies that all communication over
the channel should have enough entropy. We base our countermeasure against
this attack mainly on the use of a FE. The FE provides for a fresh key at every
authentication-try which has enough entropy considering the transmitted messages.
Moreover, the AEAD-scheme provides for confidentiality, integrity and authenticity
of the messages in the communication channel.
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3.1.1.4 Security Against the Tracking Attack

It should not be possible for an attacker to trace a device over multiple authentica-
tions. Moreover, it should not be possible to identify a device by probing the device
with challenges. This property ensures that our protocol is privacy-preserving with
respect to outsiders, which means that a device (and its owner) remain anonymous.
We base our countermeasure against this attack on a True Random Number Gen-
erator (TRNG), by using the unpredictable PUF responses both as input (seed)
and as output of the TRNG.

3.1.1.5 Backward/Forward Un-traceability

This property, that is stronger than the un-traceability property, implies that it
should not be possible to track a device in past or future communications, provided
that an attacker has cracked a device. If an attacker manages to recover a key from
a device, he should not be able to identify a particular device in the past or in the
future. This property ensures that a device (an its owner) remain anonymous al-
ways. We base our countermeasure on the authenticate-before-identify strategy we
adopted. Devices do not carry, store or communicate device specific identification
numbers (IDs), which is not needed because of the use of a PUF that ensures
authenticity of the device. Moreover, all communication appears random to an
attacker.

3.1.2 Trust Model

In order to roll out devices, we present a trust model. Our trust model is mainly
based on Aysu et al. [3], the starting point of our proposed protocol. We identified
the following trust bases:

• Devices are enrolled in a secure environment using a one-time interface.

• A trusted server and a number of devices will authenticate each other while
devices need to remain anonymous.

• Our channel is ideal, i.e. no errors will occur due in the Binary Symmetric
Channel (BSC) as described in Section 2.4.

• After enrollment, the server remains trusted but devices are subjected to an
attacker.

• The attacker may not know the identity of a device such that the device
cannot be tracked.
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3.1.3 Attacker Model

In order to prove the security of the proposed protocol, an attacker model needs to
be constructed. Our attacker model is mainly based on Aysu et al. [3], the starting
point of our proposed protocol.

We identified that the attacker may have two goals:

1. The attacker may want to impersonate a device which will result in a violation
of the security.

2. The attacker may want to trace devices in between authentications which will
result in a violation of the privacy.

These two main goals will be the subjects of the proofs as described in Chapter 4.

We identified the following permissions and constraints for the attacker:

• An attacker can modify all communication between the server and devices.

• An attacker can know the result of the authentication.

• An attacker can access the Non-Volatile Memory (NVM) of the devices.

• An attacker cannot modify data stored in the NVM of the devices.

• An attacker cannot perform implementation attacks on the device and the
server.

• An attacker cannot reverse engineer the PUF such that he can predict PUF
responses.

• An attacker does not have access to intermediate values on the device (i.e.
the registers on the device).

• An attacker cannot physically trace every device in between authentications.

• An attacker cannot use other (non-cryptographic) mechanisms to identify a
device (e.g. the one proposed by Lee et al. [37]).

3.2 Available Hardware

In order to give performance results of the proposed protocol, we implement the
device on a Zedboard by Avnet Inc. [2]. The basic specifications of the Zedboard
are given in Appendix A. The main operating chip on the Zedboard is the Zynq R©-
7000 All Programmable System on Chip (SoC) by Xilinx Inc. [64]. This SoC is
composed of a Processing System (PS) with two Advanced RISC Machine (ARM)
cores and 28 nm Programmable Logic (PL) that is equivalent to the Xilinx 7-series
Field Programmable Gate Arrays (FPGAs).

The Zedboard does not have Static RAM (SRAM) that can be power-cycled, which
means that we are restricted in the use of SRAM PUFs. We propose to use an
existing and recently proposed PUF by Machida et al. [39], which has promising
results for the design rationale of our proposed protocol.
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3.3 Protocol

The proposed authentication protocol is illustrated in Figure 3.2, its setup phase is
illustrated in Figure 3.1. The protocol is based on a PUF that produces noisy, but
recoverable, responses on equal challenges due to the unique physical characteristics
of the Integrated Circuit (IC) [42]. Because of this behavior, the PUF is identifiable
from other PUFs. A FE can extract a key from this noisy data produced by the
PUF using helper data generated from a previous key-extraction [19]. However, the
recovery procedure is of a higher complexity than the generation of the helper data
that is used for this reconstruction. A reverse FE reverses this behavior by placing
the helper data generation in the device and the more complex reconstruction in
the server [29]. In order to preserve privacy, the device credential is updated at
each successful authentication, which results in fresh PUF responses, and thus fresh
keys.

The setup procedure is used to synchronize the PUF response of the the device
with the server. The responses in the server database will be used to exhaustively
search for a matching device. The setup procedure is illustrated in Figure 3.1 and
works as follows. In a trusted environment, the server produces a random challenge
X1. The device uses this challenge to produce a PUF response Y 1 which is being
sent to the server. The challenge is being stored in the device non-volatile memory.
The server stores the response in a database on index n, indicating the number of
the device. Notice that the response is stored at Y and Y old in order to prevent
desynchronization.

Server S({〈Y, Y old〉}n) Device Devi(puf i( · ), X)

X1 ← TRNG

X1

−−−−−−→ Y 1 ← puf i(X
1)

X := X1

〈Y, Y old〉n := 〈Y 1, Y 1〉 Y 1

←−−−−−−
n := n+ 1

Figure 3.1: Setup phase.

The authentication phase as illustrated in Figure 3.2 works as follows. First, the
server generates an unpredictable challenge A and sends this to the device. The
device uses the challenge X stored in its non-volatile memory to produce a PUF
response Y 1′ . From this PUF response, helper data H and an unpredictable key R
is generated using the FE’s generation procedure FE.Gen. Consecutively, a new
challenge X2 is randomly generated by the device such that it can be updated on
a successful authentication. This challenge is fed to the device’s PUF in order to
receive a new PUF response Y 2. Following, a nonce N is randomly generated such
that the PUF response can be encrypted using the AEAD-scheme. The resulting
cipher-text C1, its tag T 1 and the nonce N will be sent to the server. The server
performs an exhaustive search over the database, recovering a key for each index.
These keys are used to try to decrypt the cipher-text C1 using the tag T 1, challenge
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Server S({〈Y, Y old〉}n) Device Devi(puf i( · ), X)

A← TRNG
A−−−−−→ Y 1′ ← puf i(X)

〈R,H〉 ← FE.Gen(Y 1′)
X2 ← TRNG
Y 2 ← puf i(X

2)
N ← TRNG
〈C1, T 1〉 ← EN‖0,AR (Y 2)

T 2 ← TRNG
〈H,N,C1, T 1〉
←−−−−−−−−−−−

for 0 ≤ i < n :
R = FE.Rec(Y,H)

if Y 2 ← DN‖0,AR (〈C1, T 1〉) :

〈 · , T 2〉 ← EN‖1,AR ( · )
〈Y, Y old〉i := 〈Y 2, Y 〉

“if no device was authenticated” :
“repeat search with old values”

T 2

−−−−−−→ 〈 · , T 2′〉 ← EN‖1,AR ( · )
if T 2′ == T 2 :
X := X2

Figure 3.2: Authentication phase. |A|, |H|, |N |, |C1|, |T 1|, |T 2| ≥ k and PUF re-
sponses Y should contain enough entropy w.r.t. H s.t. |R| ≥ k.

A and nonce N . If there is a successful authentication, the server produces another
tag T 2 using E , but with nonce N2 ‖ 1 instead of N2 ‖ 0 in order to create another
instance of E . This tag is sent to the device. Moreover, the server updates the
old PUF-response Y with the new PUF response Y 2. If there were no successful
authentications, the server repeats the procedure over the previous PUF responses
in the database. If after this there were still no successful authentications, the
server responds with a random value for T 2. Finally, the device checks the tag T 2

with its own produced tag in order to reveal whether the authentication succeeded.
If the authentication succeeded, the device updates the old challenge X with the
new challenge X2.

The remainder of this chapter is dedicated to present a generic approach to create
any instance of CKP. This generic approach requires the quality of PUF responses
〈pe, ρ〉, the desired maximum for the failure rate of the authentications pfail and
the desired security level k in order to design the instance. We use the presented
examples to construct an instance that forms the basis of our proof of concept in
Chapter 5.
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3.4 3-1 Double Arbiter PUF

The type of PUF used in the protocol motivates most of the other design parameters
for the rest of the protocol. For example, depending on the bit-error-probability
pe of a PUF response-bit, the inter- and intra-distances of the PUF responses, the
entropy of the PUF responses ρ and the desired maximum for the failure rate of
the authentications pfail, both the number of PUF responses as well as the type
and size of error-correcting codes is motivated.

We implement the DAPUF as proposed by Machida et al. [39] because its char-
acteristics are promising for the parameters of our protocol. We use 1275 PUF
responses on 64-bit challenges, of which 40 bits are used for the challenge, 12 bits
are used to obtain the 1275 unique PUF responses and 12 bits are used to produce
random numbers, including a seed for the TRNG that is updated at the beginning
of every authentication. More about this design rationale in Section 3.5.1.

This section first presents the design of the DAPUF before elaborating on the main
characteristics of the PUF as were described in Section 2.3.

3.4.1 DAPUF Design

In Section 2.3.5.2 we have discussed the arbiter PUF which was illustrated in Figure
2.1. Recent studies have shown that Machine Learning (ML) attacks can predict
future PUF responses [58, 57], violating the unpredictability characteristic of a
PUF as is described in Definition 2.13. Hence, Machida et al. proposed to alter the
design of arbiter PUFs in order to prevent ML attacks having effect.

In Figure 2.1 from Section 2.3.5.2, we call the collection of switch blocks a selector
chain. Figure 3.3 illustrates the DAPUF as proposed by Machida et al.. The
DAPUF acts on 64-bit challenges, which means that a selector chain contains 64
switch blocks. The DAPUF is composed of three of these selector chains all acting
on the same challenge X. Using an ‘enable’ signal E (EL and ER), the competition
is started between the left signals EL and the right signals ER. For each of the
combination of left- or right signals an arbiter is used to measure which signal
arrived first at the arbiter. After measuring these race conditions, the results are
exclusive-OR (XOR)’ed to collect the 1-bit PUF response Y . By challenging the
DAPUF with 1275 different challenges, we obtain a 1275-bit PUF response.

We call the PUF class of the proposed DAPUF P3-1.
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Figure 3.3: DAPUF as proposed by Machida et al. [39]. denotes a bitwise XOR,
denotes the input of the DAPUF and denotes the output of the DAPUF.

3.4.2 Intra-distance and Reproducibility

As described in Section 2.3.1, the intra-distance provides reproducibility of any
unique DAPUF instance puf0≤i<n ∈ P3-1 (where n is the total number of DAPUFs
in the DAPUF class P3-1), which means that if two measurements are performed
on the same DAPUF, then these responses are with high probability very close to
each other.

The reproducibility results (its inverse is called ‘steadiness’) are given in Table 3.1
[40]. In the table, steadiness is calculated by challenging the DAPUF instance puf a
number ofm times with a set of n equal challengesX. Of them n-bit responses, the
Hamming distances HD(Y, Y ′) between two arbitrary PUF responses Y , Y ′ ← Y
is calculated (thus a total of

(
m
2

)
combinations) and averaged. These distances

are equivalent to the intra-distance as is described in Definition 2.7. Finally, the
calculated average is divided by the bit-length n of the responses. This way, we
immediately find the bit-error-probability pe of DAPUF class P3-1. This is the
average probability that a response bit is different between challenges. Ideally, the
average steadiness is 0%. From the table we see that the average steadiness is
approximately 12%, which means that the bit-error-probability pe is 0.12. These
results have been achieved by taking m = 128 and n = 128. The reproducibility is
100%− steadiness = 88%.
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Table 3.1: Results of the overall evaluation of the 3-1 Double Arbiter PUF [40].

Metric FPGA Results

Prediction rate [%] A 56.47
(with 1,000 training B 57.45
data) C 56.75

Steadiness [%] A 14.11
B 10.93
C 10.35

Uniqueness [%] A with B 50.60
B with C 51.34
C with A 48.78

Randomness [%] A 55.68
B 52.54
C 53.59

3.4.3 Inter-distance and Uniqueness

As described in Section 2.3.2, the inter-distance provides uniqueness of any DAPUF
instance puf0≤i<n in the DAPUF collection P3-1 (where n is the total number of
DAPUFs in the DAPUF class P3-1), which implies that responses of measurements
performed on different DAPUFs are with high probability far apart.

The uniqueness results are given in Table 3.1 [40]. In the table, uniqueness is
calculated by challenging two DAPUF instances puf i and puf j (i 6= j) on two
distinct FPGAs a number of n times using randomly chosen challenges X. Of
these two n-bit responses Y , Y ′ ← Y, the the Hamming distances HD(Y, Y ′) is
calculated. This distance is equivalent to the inter-distance as is described in
Definition 2.9. Finally, the distance metric is divided by the bit-length n of the two
responses. Ideally, the average uniqueness between DAPUF instances is 50%. From
the table we see that the average uniqueness is approximately 50%, which is close
to ideal. These results have been achieved by taking n = 5, 000 measurements.

3.4.4 Unclonability and Unpredictability

As described in Section 2.3.4, unclonability assures that physically and technically,
a DAPUF instance puf i′ ∈ P3-1 is difficult (or even impossible) to create from an
other DAPUF instance puf i ∈ P3-1.

Because of the characteristics explained in Section 2.3.5.2, arbiter PUFs and thus
also DAPUFs are hard to clone. There are several un-plausible techniques an
attacker might try [36].

• An attacker can try to clone the PUF by remembering all Challenge-Response
Pairs (CRPs). However, this is implausible because this requires applying an
exponential amount of challenges.
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• An attacker can try to reproduce the PUF such that the behavior is equal
to the original PUF. However, this is implausible because of the random
variations that are intrinsically introduced in the manufacturing process.

• An attacker can probe the PUF physically such that delays can be measured
and a timing model can be constructed to predict future PUF responses.
However, probing with sufficient precision is likely to be very difficult, and
will likely cause the delays to be influenced by the probe.

• An attacker could build a non-invasive model, a so called “virtual counterfeit”.
However, until now, no such model has been proposed.

As described in Section 2.3.4, unpredictability ensures that unobserved responses
remain sufficiently random, even after observing responses to other challenges on
the same DAPUF instance. This characteristic applies both to the prediction rate
of the DAPUF class P3-1, as well as the randomness of the DAPUF class P3-1.

First, from Table 3.1 we see that the prediction rate is approximately 57%, which
approximates a random guess (i.e. 50%). This is a considerable improvement for
arbiter PUF constructions because the prediction rate of conventional arbiter PUFs
is 86% [40, p. 8].

Second, from the table we see that the randomness is approximately 54%. This
randomness is calculated by challenging a DAPUF instance puf a number of n
times with randomly chosen challenges X. Then, the Hamming weight HW(Y ) of
the result is calculated, giving the number of ones in the PUF response Y . Finally,
this number is divided by the number of challenges n, giving the probability that
a PUF response-bit is Y i = 1. The randomness of 54% (Pr(Y i = 1) = 0.54) has
been achieved by taking n = 216 measurements. From this result, we can calculate
the entropy of the PUF responses ρ using the binary entropy function h(p) from
Formula 2.2.1, Section 2.2.2:

ρ = = −Pr(Y i = 1) log2(Pr(Y i = 1))−Pr(Y i = 0) log2(Pr(Y i = 0))

= −0.54 log2(0.54)− 0.46 log2(0.46)

= 0.9954

(3.4.1)

The entropy of the PUF responses ρ = 0.9954 is an extremely good result consid-
ering true randomness is ρ = 1. From this entropy and the bit-error-probability
pe = 0.12 as calculated in Section 3.4.2, we conclude that the quality of the PUF
responses is 〈pe = 0.12, ρ = 0.9954〉-P3-1. These findings will be used to motivate
the design of the RFE.

3.5 Reverse Fuzzy Extractor

As mentioned in Section 3.3, we use a reverse FE construction with the computa-
tionally lighter generation procedure in the device and the computationally heavier
reproduction procedure on the server. In order to be able to recover the PUF re-
sponses, we use a concatenation of error-correcting codes as introduced by Bösch
et al. [13], which is a technique to increase the correction rate while minimizing
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the computational overhead. Our proposed RFE uses a concatenation code of a
repetition code CREP(n, 1, t) = CREP(5, 1, 2) and a Bose-Chaudhuri-Hocquenghem
(BCH) code CBCH(n, k, t) = CBCH(255, 139, 15). The 1275-bit PUF response is cut
into words of 5 bits, which are encoded using the repetition code. The first bit
of each word (total of 255 bits) is used to extract a key of 128 bits by using the
AEAD-scheme with an empty message. The other four bits of each word (total of
1020 bits) are used to produce helper data that can recover the value of the first bit
of each word. In order to further decrease the failure rate of the authentications,
for these 255 recovered bits a BCH code with error correcting capability of 15 bits
is used.

3.5.1 RFE Design Rationale

In this section, we describe the design rationale of the parameters of the concat-
enation code. Our goal is to construct a 128-bit key from the DAPUF responses
with quality 〈pe = 0.12, ρ = 0.9954〉. In this rationale, we assume that all bits of
the PUF response are independent.

3.5.1.1 Fail rate

We aim for a fail rate of pfail = 10−6, which is considered an acceptable fail rate
for standard performance levels [42].

The probability that a received codeword of n bits has more than t errors is given
by [26, 13]:

Pr(“>t errors”) =

n∑
i=t+1

(
n

i

)
pie(1− pe)n−i

= 1−
t∑
i=0

(
n

i

)
pie(1− pe)n−i,

(3.5.1)

where pe is the bit-error-probability.

When using a CREP(5, 1, 2) repetition code, we can decrease the bit-error-probability
pe = 0.12 to:

pe,REP = 1−
2∑
i=0

(
5

i

)
0.12i(1− 0.12)5−i

= 0.01432

Using a CBCH(255, 139, 15) BCH code on top of that further decreases the bit-
error-probability pe,REP = 0.01432 to a fail rate pfail of:

pfail = 1−
15∑
i=0

(
255

i

)
0.01432i(1− 0.01432)255−i

= 1.176 · 10−6
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As a result, using a concatenation code of a CREP(5, 1, 2) repetition code and a
CBCH(255, 139, 15) BCH code achieves a fail rate that is acceptable for standard
performance levels [42].

3.5.1.2 Entropy

When implementing a concatenation code, careful considerations of the input en-
tropy is necessary, otherwise the output might yield zero leftover entropy [35].
When using a CREP(5, 1, 2) repetition code on 5-bit words of the 1275-bit PUF
response, 4-bits per word are disclosed as helper data. Hence, we have an entropy
loss of:

HREP loss = 4 · 255 = 1020 bits

The entropy loss of the CBCH(255, 139, 15) BCH code is introduced by the random
string that is needed to construct the code. Hence, we have an entropy loss of:

HBCH loss = n− k = 255− 139 = 116 bits

As a result, the total entropy loss of the 1275-bit PUF response by disclosing the
helper data is:

Hloss = HREP loss + HBCH loss = 1020 + 116 = 1136 bits

This leaves (1275−1136) ·ρ = 139 ·0.9958 = 138 bits of entropy left in the 255 bits
of the BCH codeword. These 255 bits will be compressed in a 128-bit key using
using the AEAD-scheme.

3.5.2 Extraction

As mentioned in the previous section, the 255 bits (RREP) will be compressed into
a 128-bit key. This method is similar to the construction of Maes et al. [43] and
Kelsey et al. [34]. An advantage is that the AEAD-scheme can be used for this
construction, minimizing the number of primitives that need to be implemented
on the device. Moreover, not using additional randomness decreases the amount
of data that needs to be communicated between server and device. However, the
amount of entropy in the input needs to be carefully considered.

For this construction we introduce the novel definition of a new type of Extractor,
the Entropy Accumulator (EA):

Definition 3.1 (Entropy Accumulator). Let Acc(W ) : {0, 1}n → {0, 1}l (n < l)
be a polynomial time probabilistic function. We say that Acc(W ) is an efficient
(n,m, l, ε)-entropy accumulator if for all pairs of random variables (W, I) such that
W is an n-bit string satisfying H̃∞ = (W | I) ≥ m, we have

SD(〈Acc(W ), I〉, 〈Ul, I〉) ≤ ε.
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We prove that we can construct a FE from s using Definition 3.1 (Entropy Accu-
mulator), Definition 2.18 () and Definition 2.19 (Fuzzy Extractor):

Lemma 3.1 (Fuzzy Extractor from II). Assume SS(X) is a
(W,m,m′, t)-secure sketch with recovery procedure Rec(W ′, H), and let Acc(W )
be an (n,m′, k, ε)-entropy accumulator. Then the following (Gen,Rep) is a
(W,m, l, t, ε)-fuzzy extractor:

1. Gen(W ): set H = SS(W ), R = Acc(W ), output 〈R,H〉

2. Rep(W ′, H): recover W = Rec(W ′, H) and output R = Acc(W ).

Proof. From Definition 2.18 (Secure Sketch)

H∞(W |SS(W )) ≥ m′

And since Acc(W ) is a (n,m′, k, ε)-entropy accumulator (Definition 3.1), from
Definition 2.19 (Fuzzy Extractors) we get:

SD(〈Acc(W ),SS(W )〉, 〈Ul,SS(W )〉) = SD(〈R,H〉, 〈Ul, H〉) ≤ ε

Corollary 3.1 (Fuzzy Extractor from II). If Rec is an (W,m,m′, t)-secure sketch
and Acc is a (n,m′−log2( 1

δ ), l, ε)-entropy accumulator, then the above construction
from Lemma 3.1 (Gen,Rep) is a (W,m, l, t, ε+ δ)-fuzzy extractor.

3.5.3 Secure Sketch

We use a concatenation code of a CREP(5, 1, 2) repetition code and a CBCH(255, 139,
15) BCH code for the Secure Sketch (SS) [13]. This section will describe both code
constructions in more detail.

3.5.3.1 Repetition Code

As mentioned in Section 2.4.1.1, there are more advanced techniques of using repe-
tition codes. Simply repeating bits of the PUF response will disclose information
in the helper data about this response.

3.5.3.1.1 Encoding Figure 3.4 illustrates the repetition code encoding con-
struction. In this figure, Y denotes the 5-bit word of the original PUF response
and HREP denotes the 4-bit helper data that is used by the decoder to retrieve the
first bit of Y , RREP.

Example 3.5.1. See Figure 3.4. As an example we take Y = [1, 0, 1, 1, 0]. The
repetition code encoding construction gives the helper data HREP = [1, 0, 0, 1] and
secret value RREP = [1]. C
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Figure 3.4: Repetition code encoding construction. denotes an XOR.

Note that, as we have assumed in the calculation of the leftover entropy (Section
3.5.1.2), the 4-bit helper data HREP does not disclose any information about the
first bit of the 5-bit PUF response word Y .

The first bit of the 5-bit word Y , RREP, will be encoded using the BCH code.

3.5.3.1.2 Decoding Figure 3.5 illustrates the repetition code decoding con-
struction. In this figure, Y ′ denotes the 5-bit word of the stored PUF response,
HREP denotes the 4-bit received helper data and S denotes the resulting syndrome
vector. If the Hamming weight HW of the syndrome vector S is larger than t,
chances are that the first bit of Y ′ was faulty. Note that this construction will
wrongly correct a bit that was assumed faulty if the number of errors e > t. Hence,
we need the BCH code construction on top of the repetition code construction.

Figure 3.5: Repetition code decoding construction. denotes a bitwise XOR.

Example 3.5.2. See Figure 3.5. As an example we take Y = [1, 0, 1, 1, 0] from
Example 3.5.1 and Y ′ = [0, 0, 1, 1, 1]. The repetition code decoding construction
gives the syndrome vector S = [1, 1, 1, 0]. The Hamming weight HW of the syn-
drome vector S is HW = 3 > t, thus, highly likely the secret value RREP equals
RREP = [1]. C
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3.5.3.2 BCH Code

In order to further decrease the fail rate pfail, a BCH code with error correcting
capability t = 15 is applied over the binary string that contains the first bit of the
5-bit PUF response words. Then using Formulas 2.4.2 to 2.4.4 we take a BCH code
CBCH(n, k, t) with order m = 8, block-length n = 2m − 1 = 255, error correcting
capability t = 15, message length k = 139, n−k = 116 parity-check bits and design
distance d = 2t+ 1 = 31.

3.5.3.2.1 Encoding As mentioned in Section 2.4.2.1, for BCH encoding we
have to construct the generator polynomial g(x). This generator polynomial forms
the basis of the Linear Feedback Shift Register (LFSR) design in the hardware of
the device, more about this in Section 5.2.2.

Let α be a primitive element of GF(28) generated by the primitive polynomial
p(x) = x4 + x3 + x2 + 1. The finite field table is partially given in Appendix B.2.
Then, using Formula 2.4.5, we find the generator polynomial g(x):

g(x) = x116 + x114 + x111 + x108 + x107 + x106 + x105 + x103 + x102 + x101

+ x99 + x98 + x97 + x95 + x93 + x90 + x89 + x88 + x87 + x84 + x82

+ x77 + x76 + x74 + x73 + x72 + x70 + x67 + x65 + x64 + x63 + x59

+ x58 + x57 + x56 + x54 + x53 + x49 + x48 + x47 + x45 + x44 + x42

+ x41 + x40 + x39 + x38 + x31 + x30 + x25 + x23 + x22 + x20 + x19

+ x18 + x17 + x9 + x8 + x4 + x3 + 1

Figure 3.6 illustrates the BCH code encoding construction that we use. Note that
we use a random message polynomialm(x) of degree 139 to construct the remainder
polynomial r(x) (and thus the code polynomial w(x)) using the previously calcu-
lated generator polynomial g(x). This codeword W (the code polynomial w(x))
is then XOR’ed with the binary string that contains the first bit of the all the
5-bit PUF response words RREP. The resulting string is the helper data HBCH.
Using this construction, we can encode a 255-bit string instead of a 139-bit string
as described in Section 2.4.2.

Figure 3.6: BCH code encoding construction. denotes a bitwise XOR,
denotes the input string and denotes the output string.
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3.5.3.2.2 Decoding Decoding is executed on the server. Figure 3.7 illustrates
the BCH code decoding construction that we use. First the helper data HBCH that
is received from the device is XOR’ed with the string that contains the recovered
first bit of the all the 5-bit PUF response words R′REP, this results in the received
codeword W ′. Note that this string might still contain faulty bits. Then, this
received codewordW ′ is decoded into the recovered codewordW ′′, which is XORed
with HBCH to produce the recovered PUF response bits R′′REP.

Figure 3.7: BCH code decoding construction. denotes a bitwise XOR,
denotes the input strings and denotes the output string.

3.6 Ketje

In our implementation of the protocol we use the AEAD-scheme Ketje, one of the
56 candidates in the Competition for Authenticated Encryption: Security, Applic-
ability and Robustness (CAESAR) [7] which was announced in 2013 at the Early
Symmetric Crypto workshop in Mondorf-les-Bains, Luxembourg. Similarly to the
Advanced Encryption Standard (AES) [16], the European Network of Excellence in
Cryptology (ECRYPT) Stream Cipher Project (eSTREAM, [4]), SHA-3 (Keccak
[8]) and the Password Hashing Competition (PHC) (Argon2 [12]), CAESAR seeks
to select a portfolio of algorithms that enhances AEAD applicability.

We use the AEAD-scheme Ketje for the EA in the RFE, the encryption and de-
cryption of the second PUF response Y 2 and the computation of the authenticator
T 2.

Ketje is an AEAD-scheme that is aimed at constrained devices such as Radio-
Frequency Identification (RFID) tags and nodes in the Internet of Things (IoT)
[11]. The scheme is composed of Ketje Jr and Ketje Sr, of which Ketje Jr is
an even more lightweight variant with a security level of 96 bits. However, for the
security level of our protocol (128 bits), we use Ketje Sr. As a result, we describe
all metrics of Ketje Sr. Also, when we mention Ketje we refer to the specific
instance of Ketje Sr.

As with all AEAD schemes, Ketje relies on nonce uniqueness in order for the
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crypto-system to be semantically secure1. For Ketje this is very important, as
it can be broken when messages are encrypted with the same nonce. For the
permutations, Ketje uses Keccak-p, a permutation that relies on a round reduced
version Keccak-f [8]. The construction that calls these permutations is called
MonkeyDuplex which is based on the duplex construction that is described by
Bertoni et al. [9]. The mode that calls the MonkeyDuplex construction is called
MonkeyWrap, which is similar and functionally equivalent to SpongeWrap,
also described by Bertoni et al. [9].

3.6.1 Keccak-p

The Keccak cryptographic primitive is a subset of the SHA-3 cryptographic hash
function that has been standardized by the National Institute of Standards and
Technology (NIST) [49]. Hence, Keccak-p(b, nr) relies on a round reduced version
of Keccak-f(b) which is defined by its width b = 25 · 2l, with b ∈ {25, 50, 100, 200,
400, 800, 1600}, and its number of rounds nr [8]. More specifically, Keccak-
p(b, nr) consists of the last nr rounds of Keccak-f(b), when nr = 12 + 2 · l,
Keccak-p(b, nr) = Keccak-f(b).

During the permutations of Keccak-p(b, nr), there are five operations that act on
a state T (x, y, z) that is illustrated in Figure 3.8. The size of this state is T (5, 5, w),
with w = 2l. For 0 ≤ a, b < 5 and 0 ≤ c < w, we call T (x, b, z) a plane, T (x, y, c)
a slice, T (a, y, z) a sheet, T (x, b, c) a row, T (a, y, c) a column, T (a, b, z) a lane
and T (a, b, c) a bit. For Ketje, Keccak-p(b, nr) with b = 400 and l = 4 is used.
nr varies per operation in the MonkeyDuplex construction, more about this in
Section 3.6.2.

Figure 3.8: State T (x, y, z) of Keccak-p.

The permutations of one round R(T ) on the state T (x, y, z) are described by five
operations:

R(T ) = ι(T ) ◦ χ(T ) ◦ π(T ) ◦ ρ(T ) ◦ θ(T ) (3.6.1)

The operations in the x and y coordinates are in modulo 5, whereas operations in
the z coordinate is in modulo w.

1Here a system “[...] is semantically secure if whatever an eavesdropper can compute about
the cleartext given the cipher-text, he can also compute without the cipher-text.” [23].
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3.6.1.1 θ-operation

Figure 3.9 illustrates the θ-operation. The θ-operation is linear and aimed at
diffusion of the state. θ is given by the following formula:

θ(T (x, y, z)) = T (x, y, z) +

4∑
y′=0

T (x− 1, y′, z) +

4∑
y′=0

T (x+ 1, y′, z − 1) (3.6.2)

x

y z z

Figure 3.9: θ-operation.

3.6.1.2 ρ-operation

Figure 3.10 illustrates the ρ-operation. The ρ-operation consists of translations
within the lanes aimed at providing inter-slice dispersion. ρ is given by the following
formula:

ρ(T (x, y, z)) = T
(
x, y, z − (t+ 1)(t+ 2)

2

)
, (3.6.3)

with t satisfying 0 ≤ t < 24 and
[
0 1
2 3

]t [
1
0

]
=

[
x
y

]
in GF(5)2×2, or t = −1 if

x = y = 0.

Figure 3.10: ρ-operation.
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3.6.1.3 π-operation

Figure 3.11 illustrates the π-operation. The π-operation is based on a transposition
of the lanes that provides dispersion aimed at long-term diffusion. π is given by
the following formula:

∀ z : π(T (x, y, z)) = T (x′, y′, z), (3.6.4)

with
[
x
y

]
=

[
0 1
2 3

] [
x′

y′

]
.

Figure 3.11: π-operation.

3.6.1.4 χ-operation

Figure 3.12 illustrates the χ-operation. The χ-operation is the only nonlinear
mapping of Keccak-p. χ is given by the following formula:

∀ y, z : χ(T (x, y, z)) = T (x, y, z) + (T (x, y, z) + 1) · T (x+ 2, y, z) (3.6.5)

Figure 3.12: χ-operation.
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3.6.1.5 ι-operation

The ι-operation consists of applying round-constants in order to disrupt symmetry.
ι is given by the following formula:

ι(T (x, y, z)) = T (x, y, z) + RCi (3.6.6)

Here, RCi is given by the following formula, indicating the round-constant for
round i:

RCi(0, 0, 2
j − 1) = rc(j + 7i), ∀ 0 ≤ j ≤ l,

and all other values of RCi(x, y, z) are zero. The values rc(t) ∈ GF(2) are given
by the LFSR:

rc(t) = (xt mod x8 + x6 + x5 + x4 + 1) mod x

3.6.2 MonkeyDuplex

In this section, we give a brief description of the MonkeyDuplex construction.
For a full description we encourage the reader to consult Bertoni et al. [11, 10].

The MonkeyDuplex construction was introduced by Bertoni et al. [10] and then
improved by the same authors [11]. The construction is aimed at building stream
ciphers and authenticated encryption schemes. MonkeyWrap, which describes
the AEAD-mode of Ketje builds on top of MonkeyDuplex, more about this in
Section 3.6.3.

Figure 3.13 illustrates the MonkeyDuplex construction. In this figure, we see that
the MonkeyDuplex construction is composed of three operations: start, step
and stride. These three operations use a permutation function f (e.g. Keccak-
p(b, nr)) with different number of rounds nr.

• With calls to D.step(σ, ℓ) and D.stride(σ, ℓ) one can inject a bit string σ of up to r− 2
bits. AĞer the bits are injected, either f [nstep] or f [nstride] is applied to the state and
the first ℓ bits of the state are extracted, with ℓ ≤ r. These interfaces are similar but
serve different purposes. Both aim at providing resistance against state retrieval,
but in addition, D.stride() also aims at providing resistance against output forgery.
Hence this requires that nstep < nstride. Typically we also have nstride < nstart.

The MќћјђѦDѢѝљђѥ construction is illustrated in Figure 1.

Figure 1: The MќћјђѦDѢѝљђѥ construction

We originally proposed the concept of the MќћјђѦDѢѝљђѥ construction in [5]. We
slightly modified the definition since then due to new insights.

3.1 Specification

In this section we formally specify MќћјђѦDѢѝљђѥ with pseudo-code in Algorithm 1.

3.2 Rationale

MќћјђѦDѢѝљђѥ is meant to be used in a keyedmode. During its start-up it shall be loaded
with I containing a secret key and a nonce and during operation an aĴacker shall not have
access to the inner state.

The values of r, nstart, nstep and nstride are meant to be tuned to target some given
security strength s, possibly assuming the data complexity is below some (large) value.
We relate the security strength s to the complexity of state reconstruction, to the highest
differential probability (DP) of differentials over the permutation f [nstart], and the highest
DP of differentials between MќћјђѦDѢѝљђѥ input and output across stride calls. We now
list three informal security claims that express the criteria underlying the choice of r, nstart,
nstep and nstride.

Claim 1 (Solitary state retrieval hardness). For an aĴacker that can adaptively make D.step()
and D.stride() calls to a single MќћјђѦDѢѝљђѥ instance with unknown inner state, there shall be
no algorithm that succeeds in reconstructing its inner state with success probability above N2−s.

6

Figure 3.13: The MonkeyDuplex construction.

The MonkeyDuplex(f , r, nstart, nstep, nstride) construction works as follows:

start starts the MonkeyDuplex construction on an empty state of b bits. The
operation sets the state with the string I padded up to b bits. Here, in the
padding, a single bit 1 is appended to I, followed by the minimum number of
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bits 0 followed by a single bit 1 such that the length of the result is a multiple
of b. Subsequently, the permutation function f(nstart) is applied to the state.

step can process an injection of string σi of up to r− 2 bits, Here, equal to start,
padding is applied before an XOR with the current state. Subsequently, the
permutation function f(nstep) is applied to the state. Finally, the first l bits
of the state are extracted (where l ≤ r), denoted in the figure by b · c.

stride is similar to step, however, stride aims at providing resistance to output
forgery on top of providing resistance against state retrieval. As a result, we
require nstep < nstride.

3.6.3 MonkeyWrap

In this section, we give a brief description of the MonkeyWrap construction. For
a full description we encourage the reader to consult Bertoni et al. [11].

As mentioned, the MonkeyWrap construction acts as Ketje’s AEAD-mode and
builds on top of the MonkeyDuplex construction. Equivalent to the encryption-
scheme E and decryption-scheme D of the AEAD-scheme Π as described in Defin-
ition 2.20, Section 2.6, MonkeyWrap is composed of a construction to wrap (E)
and a construction to unwrap (D). The wrapping construction takes as input a
message M and associated data A respectively and outputs a cryptogram C and
a tag T respectively. The unwrapping construction reverses this by taking the as-
sociated data A, a cryptogram C and a tag T as input and returning the message
M if the tag T is correct.

Figure 3.13 illustrates the wrapping of a message and associated data using the
MonkeyWrap construction. In this figure, the MonkeyWrap key should be a
Secret Unique Value (SUV), which means that it is composed of the key K and a
unique nonce N . An advantage of the construction is that we can produce a tag T
without cryptogram C by inputting an empty message M . This is useful for the
EA of the FE and the computation of the authenticator T 2 in our protocol.
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Figure 2: Wrapping a header and a body with MќћјђѦWџюѝ
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Figure 3.14: The wrapping of a message and authenticated data using the Mon-
keyWrap construction.

The start, step and stride operations in the figure are the operations in the
MonkeyDuplex construction as described in Section 3.6.2. For Ketje the per-
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mutation function is f = Keccak-p(400), the input blocks are of size r = 32, the
number of rounds in start is nstart = 12, the number of rounds in step is nstep = 1
and the number of rounds in stride is nstride = 6.
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CHAPTER

FOUR

SECURITY ANALYSIS

In this chapter we describe the security analysis of the proposed privacy-preserving
authentication protocol, the Concealing Ketje Protocol (CKP). We follow the
security analyses of the protocols described by Aysu et al. [3] and Moriyama et al.
[48] because of the fact that our protocol is based thereon. By doing this, we
also base our security analysis on the indistinguishability-based security model
of Juels and Weis [32]. Moreover, we consider an active attacker who is able to
desynchronize the shared secret between the device and the server [50]. Hence, we
assume that the server and the device are able to execute an honest session before
and after the challenge phase in the privacy definition.

In Section 4.1 we describe the security model. Section 4.2 describes the formal
security definitions. Finally, in Section 4.3 we prove the security and the privacy
of the proposed protocol.
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4.1 Security Model

In this section we describe the security model, the formal description of the security
policy that describes the proposed protocol. We describe the communication model,
the theoretical security and the theoretical privacy.

4.1.1 Communication Model

With the security considerations described in Section 3.1 in mind, we take one
trusted server S({〈Y, Y old〉}n) with n devices Devi(puf i( · ), X). Here, the set of
n devices is denoted as ∆ := {Dev0,Dev1, . . . ,Devn−1}. We denote the security
parameter as k.

Following Aysu et al. [3] and Moriyama et al. [48], devices will be enrolled in a trus-
ted environment, this happens in a setup phase using a setup algorithm Setup(1k)
which generates public parameter P and shared-secret Y . Here P denotes all the
public parameters available to the environment (P := X1 ‖ N1 ‖ 〈H,N2, C1, T 1〉 ‖
T 2 in our protocol) and Y denotes the secret Physically Unclonable Function (PUF)
response. During the authentication phase, the server S remains trusted, however,
the devices ∆ and the communication channel will be subjected to the actions of an
attacker. At the end of the authentication phase, both the server and the device will
output acceptance (B0 = 1) or rejection (B0 = 0) as result of the authentication.

We call the sequence of communication between the server and the device a session,
which is distinguished by a session identifier I. This session identifier I is the
transcript of the authentication phase (I := N1 ‖ 〈H,N2, C1, T 1〉 ‖ T 2 in our
protocol). Whenever the communication messages generated by the server and the
device are honestly transferred until they authenticate each other, we call that a
session has a matching session (i.e. I is untampered with). The correctness of the
proposed authentication protocol is that the server and the device always accept
the session if the session has the matching session.

4.1.2 Security

Following Aysu et al. [3] and Moriyama et al. [48], we consider the canonical security
level for authentication protocols, namely the resilience to the Man-in-the-Middle
(MitM) attack. This means that the power of an attacker is modeled by letting
the attacker control all communication of the protocol. As mentioned earlier, if
and only if the communication message is honestly transferred, the authentication
results for both the server S and the device Devi will be B0 = 1. Supplementary
to the security requirement of resilience to MitM attacks, we permit the attacker
to access the information stored in the non-volatile memory of the device Devi in
between sessions (X in our protocol).

Figure 4.1 illustrates the security evaluation on a theoretical level. In this figure,
ExpSec

Ψ,A(k) denotes the security experiment between the proposed protocol Ψ and
an attacker A with security parameter k (128-bits in our protocol).

52



4.1. Security Model

ExpSec
Ψ,A(k)

〈P, Y 〉 ← Setup(1k)
〈Devi, I

′〉 ← A〈Launch,SendServer,SendDev,Result,Reveal〉(P,S,∆)
B0 := Result(Devi, I

′)
Output B0

Figure 4.1: Security experiment ExpSec
Ψ,A(k).

After the setup phase, and thus after receiving 〈P,S,∆〉, the attacker A can query
the server S and the device Devi with the oracle queries
O := 〈Launch,SendServer,SendDev,Result,Reveal〉:

• Launch(1k): Launch the server S to start a new session with security para-
meter k.

• SendServer(M): Send an arbitrary message M to the server S.

• SendDev(Devi,M): Send an arbitrary message M to device Devi ∈ ∆

• Result(G, I): Output whether the session I of G is accepted or not where
G ∈ {S,∆}.

• Reveal(Devi): Output all the information stored in the Non-Volatile Memory
(NVM) of Devi.

The advantage of attacker A against Ψ is defined as:

AdvSec
Ψ,A(k) := Pr(ExpSec

Ψ,A(k)→ 1 | “I of G has no matching session”) (4.1.1)

We define security of an authentication protocol as follows:

Definition 4.1 (Security). An authentication protocol Ψ holds the security against
MitM attacks with memory compromise if for any probabilistic polynomial time
attacker A, AdvSec

Ψ,A(k) is negligible in k (for large enough k).

In other words, the security of authentication protocol Ψ is based on the fact that
the advantage of an attacker is insignificant if k is large enough.

4.1.3 Privacy

Following Aysu et al. [3] and Moriyama et al. [48], we define the privacy definition
using indistinguishability between two devices. Here, an attacker selects two devices
and tries to distinguish the communication, and thus the identification, between
the two devices.

We use the privacy experiment between an attackerA := 〈A1,A2,A3〉 as illustrated
in Figure 4.2.

Similar to the security experiment described in Section 4.1.2, the attacker can
interact with the devices and the server through the oracle queries
O := 〈Launch,SendServer,SendDev,Result,Reveal〉.
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ExpIND∗−b
Ψ,A (k)

〈P, Y 〉 ← Setup(1k)

〈Dev∗0, I
0′ ,Dev∗1, I

1′〉 ← AO1 (P,S,∆)
b← {0, 1}
∆′ := ∆ \ 〈Dev∗0,Dev∗1〉
ψ0 ← Execute(S,Dev∗0)
ψ1 ← Execute(S,Dev∗1)

〈I0′′ , I1′′〉 ← AO2 (S,∆′, I(Dev∗b), ψ0, I
0′ , ψ1, I

1′)
ψ′0 ← Execute(S,Dev∗0)
ψ′1 ← Execute(S,Dev∗1)

B0 ← AO3 (S,∆′, ψ′0, I0′′ , ψ′1, I
1′′)

Output B0

Figure 4.2: Privacy experiment ExpIND∗−b
Ψ,A (k) in which it is allowed to communic-

ate with two devices.

After the setup-phase, and similar to the security experiment, the attacker interacts
with the server and two randomly chosen devices through the oracle queries O.
These two devices Dev∗0,Dev∗1 are being sent to the challenger who flips a coin
to choose with which device the attacker will communicate anonymously. This
anonymous communication is accomplished by adding a special identity I which
honestly transfers the communication messages between A and Dev∗b .

It is trivial that the attacker can trace devices in case the Reveal query is issued
when there are no successful authentications. Hence, we provide re-synchronization
before and after the anonymous access by adding the Execute query. This query
does a normal protocol execution between the server S and the device Dev∗i . Dur-
ing this execution, the attacker can not modify the communications, however the
transcript ψi is delivered to the attacker.

The advantage of the attacker is defined as:

AdvIND∗

Ψ,A (k) := |Pr(ExpIND∗−0
Ψ,A (k)→ 1)−Pr(ExpIND∗−1

Ψ,A (k)→ 1)| (4.1.2)

We define privacy of an authentication protocol as follows:

Definition 4.2 (Privacy). An authentication protocol Ψ holds forward and back-
ward privacy if for any probabilistic polynomial time attacker A, AdvIND∗

Ψ,A (k) is
negligible in k (for large enough k).

In other words, the privacy preservation of authentication protocol Ψ is based on
the fact that the advantage of an attacker is insignificant if k is large enough.
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4.2 Formal Security Definitions

In this section, we describe the formal security definitions of the several protocol
components by following Aysu et al. [3] and Moriyama et al. [48].

4.2.1 Physical Unclonable Function

We define a PUF using the definitions described in Section 2.3 and the definition
described by Aysu et al. [3, p. 24].

For this definition we use Y ← puf i(X) ∈ P as a notation for a PUF puf i ∈ P
which takes challenge X and produces response Y . To distinguish between multiple
devices, we denote the PUF class P as {puf0( · ),puf1( · ), . . . ,pufn−1( · )}, where
n is the number of devices. We denote the set of all possible challenges X which
can be applied to an instance of P as XP . We say that the PUF class P is a
〈n, l, d, h, ε〉-secure PUF class P if the following conditions hold:

1. For any PUF instance puf i( · )← P and for any input X ← XP ,

Pr(dist(Y ← puf i(X), Y ′ ← puf ′i(X)) < d) = 1− ε

2. For any two PUF instances puf i( · ),puf j( · )← P, where i 6= j and for any
input X ← XP ,

Pr(dist(Y ← puf i(X), Y ′ ← puf j(X)) > d) = 1− ε

3. For any PUF instance puf i( · ) ← P and for any two inputs Xa, Xb ← XP ,
where a 6= b,

Pr(dist(Y ← puf i(X
a), Y ′ ← puf i(X

b)) > d) = 1− ε

4. For any PUF instance puf i( · )← P and for any input Xa ← XP ,

Pr(H̃∞(Y ← puf i(X
a) | {Y j ← puf j(X

b)}0≤j<n, 0≤b<l, i6=j, a6=b) > h) = 1−ε

These conditions provide that the intra-distance Dintra
P is smaller than d, the inter-

distance Dinter
P (from two metrics) is larger than d and the min-entropy of the PUF

class P is always larger than h.

Definition 4.3 (〈n, l, d, h, ε〉-secure PUF class P). A PUF class P satisfies 〈n, l, d, h, ε〉-
secure PUF class P if all the above conditions hold.

4.2.2 Fuzzy Extractor

We define a Fuzzy Extractor (FE) using the definitions described in Section 2.5
and the definition described by Aysu et al. [3, p. 24].
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A 〈d, h, ε〉-FE consists of two algorithms: a key generation algorithm Gen and a
reconstruction algorithm Rec. Gen takes as input variable Z and outputs key R
and helper data H. For correctness, Rec recovers the key R from input variable
Z ′ and helper data H if the distance dist between Z and Z ′ is at most d. The FE
provides unpredictable outputs if the min-entropy of input Z is at least h. In that
case, R is statistically ε-close to a uniformly random variable in {0, 1}k, even if the
helper data H is disclosed.

Definition 4.4 (〈d, h, ε〉-secure FE). A FE satisfies 〈d, h, ε〉-secure FE if the fol-
lowing conditions hold:

1. Pr(R := Rec(Z ′, H) | 〈R,H〉 = Gen(Z), dist(Z,Z ′) ≤ d) = 1

2. If H̃∞(Z) ≥ h, 〈R,H〉 = Gen(Z) is statistically ε-close to 〈R′, H〉 where
R′ ← {0, 1}k is chosen uniformly at random.

4.2.3 AEAD-scheme

We take the definition of an AEAD-scheme Π from Definition 2.20, Section 2.6.

The security of the AEAD-scheme Π is defined by the following experiment (Chosen-
Plaintext Attack (CPA)) between a challenger and an attacker A:

1. First, the challenger randomly selects coin b ← {0, 1} and secret key K ←
{0, 1}k.

2. The challenger then prepares a truly random function RF.

3. The attacker A can adaptively issue an oracle query to the challenger to
obtain a response of a function.

(a) If b = 1 and the attacker A sends message M ← {0, 1}∗, challenge
N ← {0, 1}k and associated data A ← {0, 1}∗, the challenger responds
with 〈C, T 〉 = EN,AK (M).

(b) On the other hand, if b = 0, the challenger inputs the message M ←
{0, 1}∗, challenge N ← {0, 1}k and associated data A ← {0, 1}∗ to RF
and responds with its result 〈C ′, T ′〉.

4. Finally, the attacker outputs a guess b′. If b′ = b, the attacker wins the
experiment.

Similarly, this construction can be applied to test the security of the decryption
algorithm DN,AK (〈C, T 〉).

The advantage of the attacker to win the experiment is defined by AdvΠ
A(k) =

|2 ·Pr(b′ = b)− 1|.

Definition 4.5 (ε-secure AEAD-scheme). An AEAD-scheme is an ε-secure AEAD-
scheme if for any probablistic polynomial time attacker A, AdvΠ

A(k) ≤ ε.
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4.3 Security Proofs

In this section, we give the security proof and privacy proof for the proposed
protocol. We follow the proof by game-transformations as described by Aysu et al.
[3] and Moriyama et al. [48].

4.3.1 Security

Theorem 4.1 (Security). Let PUF instance puf∗ ← P be a 〈n, l, d, h, ε1〉-secure
PUF, FE be a 〈d, h, ε2〉-secure FE and the AEAD-scheme be an ε3-secure AEAD-
scheme. Then our protocol Ψ is secure against MitM attacks with memory com-
promise. Especially, we have AdvSec

Ψ,A(k) ≤ l · n · (ε1 + ε2 + ε3).

Proof. The aim of the attacker A is to violate the security experiment which means
that either the server or a device accepts a session without it being the matching
session. We call Si the advantage that the attacker wins the game in Game i. We
consider the following game transformations:

Game 0: This is the original game between the challenger and the attacker.

Game 1: The challenger randomly guesses the device Dev∗ ← ∆. If the attacker
does not impersonate Dev∗ to the server, the challenger aborts the game.
Thus, the attacker needs to participate in session I∗ and cannot tamper with
the communication.

Game 2: Assume that l is the upper bound of the number of sessions that the
attacker can establish in the game. For 0 ≤ j < l, we evaluate or change the
variables related to the session between the server and Dev∗ up to the l-th
session as the following games:

Game 2-j-1: The challenger evaluates the output from the PUF instance
puf∗ implemented in Dev∗ at the j-th session. If the intra-distance is
larger than d, the inter-distance is smaller than d or the min-entropy of
the output is smaller than h, the challenger aborts the game.

Game 2-j-2: The output from the FE H is changed to a random variable.

Game 2-j-3: The output from the encryption algorithm EN‖0,AR (Y ) of the
AEAD-scheme is derived from a truly random function RF.

Game 2-j-4: The output from the encryption algorithm EN‖1,AR ( · ) of the
AEAD-scheme is derived from a truly random function RF.

The strategy of the security proof is to change the communication messages cor-
responding to the target device Dev∗ to random variables. However, we must take
care of the PUF construction and challenge-update mechanism in our protocol that
updates the secret PUF response Y . Hence, we must proceed with the game trans-
formation starting from the first invocation of device Dev∗. The communication
messages gradually change from Game 2-j-1 to Game 2-j-4, and when these are
finished, we can move to the next session. This strategy is recursively applied up
to the upper bound of l of the sessions that the attacker can establish.
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In short, if the implemented PUF instance creates enough entropy, the FE can
provide variables that are statistically close to random strings. Then, this output
can be applied as a key for the AEAD-scheme which both authenticate the device
as well as encrypt the next secret PUF response Y 2. Finally, the server can be
authenticated using the AEAD-scheme without encrypting a message.

Lemma 4.1 (Random Guess). S0 = n · S1 (where n is the number of devices).

Subproof. The violation of security means that there is a session which the server
or device accepts while the communication is modified by the attacker. Since we
assume that the number of devices is at most n, the challenger can correctly guess
the related session with a probability of at least 1/n. �

Lemma 4.2 (PUF Response). |S1 − S2-1-1| ≤ ε1 and |S2-(j−1)-4 − S2-j-1| ≤ ε1 for
any 1 ≤ j < l if the PUF instance puf∗ is a 〈n, l, d, h, ε1〉-secure PUF.

Subproof. We now assume that the PUF instance puf∗ satisfies a 〈n, l, d, h, ε1〉-
secure PUF in advance. This means that the intra-distance Dintra

P is smaller than
d, the inter-distance Dinter

P is larger than d and the min-entropy of the PUF class P
is always larger than h except the negligible probability ε1. Since S1 and S2-(j−1)-4
assume these conditions except the negligible probability ε1 and S2-1-1 and S2-j-1
require these conditions with probability 1, respectively, the gap between them is
bounded by ε1. �

Lemma 4.3 (FE Output). ∀ 0 ≤ j < l, |S2-j-1 − S2-j-2| ≤ ε2 if the FE is a
〈d, h, ε2〉-secure FE.

Subproof. From the subproof of Lemma 4.2, we can assume that the PUF instance
puf∗ provides enough min-entropy h. Then the property of the 〈d, h, ε2〉-secure
FE guarantees that the output for the FE is statistically close to random and no
attacker can distinguish the difference between the two games. �

Lemma 4.4 (Authenticated Encryption). ∀ 0 ≤ j < l, |S2-j-2−S2-j-3| ≤ AdvΠ
A(k)

for a probabilistic polynomial time algorithm B.

Subproof. We construct the algorithm B which breaks the security of our AEAD-
scheme Π. B can access the real encryption algorithm EN‖0,AR (Y ), the real decryp-
tion algorithm DN‖0,AR (〈C1, T 1〉) or the truly random function RF. B sets up all
secret keys and simulates our protocol except the n-th session (the current session).
When the attacker invokes the n-th session B sends the uniformly random distrib-
uted challenge A← {0, 1}k as the output of the server. When the attacker A sends
the challenge A∗ to a device Devi, B randomly selects a nonce N and issues this to
the oracle instead of the real computation of EN‖0,AR (Y ). Upon receiving 〈C, T 〉, B
continues the computation as the protocol specification and outputs 〈H,N,C1, T 1〉
as the device’s response. When the attacker sends 〈H∗, N∗, C1∗ , T 1∗〉, B issues chal-
lenge A and nonce N∗ to the oracle oracle and obtains either Y or the distinguished
symbol Invalid.

If B accesses the real encryption and decryption algorithms 〈E ,D〉, this simulation
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is equivalent to Game 2-j-2. Otherwise, the oracle query issued by B is completely
random and this distribution is equivalent to Game 2-j-3. Thus we have |S2-j-2 −
S2-j-3| ≤ AdvΠ

A(k). �

Lemma 4.5 (Authentication). ∀ 0 ≤ j < l, |S2-j-3 − S2-j-4| ≤ 2 ·AdvΠ
A(k) for a

probabilistic polynomial time algorithm B.

Subproof. Consider an algorithm B which interacts with the encryption algorithm
EN‖1,AR ( · ) and truly random function RF. B runs the setup procedure and sim-
ulates the protocol up to the n-th session. Similarly to the subproof of Lemma
4.4, when the attacker invokes the n-th session B sends the uniformly random dis-
tributed challenge A ← {0, 1}k as the output of the server. B continues the com-
putation as the protocol specification and outputs 〈H,N,C1, T 1〉 as the device’s
response. If the attacker A has sent the challenge A∗ to a device Devi, B ran-
domly selects nonce N and issues this to the oracle instead of the real computation
EN‖1,AR ( · ). When the attacker sends 〈H∗, N∗, C1∗ , T 1∗〉, B issues challenge A and
nonce N∗ to the oracle and obtains T 2.

If B accesses the real encryption algorithm E , this simulation is equivalent toGame
2-j-3. Otherwise, the oracle query issued by B is completely random and this
distribution is equivalent toGame 2-j-4. Thus we have |S2-j-3−S2-j-4| ≤ AdvΠ

A(k).
�

When we transform Game 0 to Game 2-l-4, there is no advantage of the attacker
to violate the security. Given the fact that the attacker knows the PUF challenge
X from the device’s NVM, the attacker cannot produce a valid PUF response. This
results in the fact that the attacker cannot produce a key R which matches any of
the keys in the server’s database. This means that the cryptogram produced by an
attacker will never by accepted by the decryption algorithm of the AEAD-scheme
in the server. Additionally, changing the authenticator T 2 will only prevent the
device from updating its PUF challenge, this is why the server also performs an
exhaustive search over the old (j − 1) PUF responses.

Therefore, no attacker can successfully mount the MitM attack in our proposed
protocol.
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4.3.2 Forward and Backward Privacy

In this section, we give the privacy proof for the proposed protocol.

Theorem 4.2 (Privacy). Let PUF instance puf∗ ← P be a 〈n, l, d, h, ε1〉-secure
PUF, FE be a 〈d, h, ε2〉-secure FE and the AEAD-scheme be an ε3-secure AEAD-
scheme. Then our protocol Ψ holds forward and backward privacy.

Proof. This proof will be similar to the proof of Theorem 4.1. However, we remark
that it is important to assume that our protocol satisfies security first for privacy
to hold. This is because if security does not hold, a malicious attacker might be
able to desynchronize the secret PUF response Y of device Dev∗ to a chosen one.
In that case, even if the attacker honestly transfers the communication message
between I(Dev∗) and the server in the challenging phase the authentication result
is always B0 = 0 and the adversary can observe whether device Dev∗ was selected
as the challenge device.

Based on the same Game transformation that was describes in the proof of The-
orem 4.1, we continuously change the communication messages for the deviceDev∗,
however, we now call this device Dev∗1. We do a similar game transformation for a
second target device Dev∗2. In Game 1, the attacker can guess which device will
be chosen by the challenger in the privacy game with probability of at least 1/n2.
Upon continuing, the game transformation in Game 2 is applied to the sessions
related to device Dev∗1 and device Dev∗2. Then, all the message transcripts of the
Game transformations are changed to random variables and no biased informa-
tion which identifies the challenger’s coin is leaked. Also here, information stored
in the NVM (X in our protocol) of devices Dev∗1 and Dev∗2 will not disclose any
information because these memories are updated from random sources.

Therefore, no attacker can distinguish any two devices with probability higher than
1/n2, hence, the proposed protocol satisfies forward and backward privacy.
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CHAPTER

FIVE

PROOF OF CONCEPT

Following the protocol design as described in Chapter 3, this chapter gives a proof
of concept of the proposed protocol. To this end, we implement the device on a
Zedboard and the server on a Linux PC.

In Section 5.1 we describe the architecture of the system. Accordingly, in Section 5.2
we describe the architecture of the device for which we describe the 3-1 Double Ar-
biter PUF (DAPUF), Bose-Chaudhuri-Hocquenghem (BCH) encoder and Ketje
in more detail. Finally, in Section 5.3 we describe the server implementation.
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5.1 System Architecture

Figure 5.1 illustrates the system architecture of the device and server. The device is
implemented on a Zedboard which contains a Xilinx Zynq-7000 All Programmable
System on Chip (SoC) XC7Z020-CLG484-1 (see Appendix A.1 for specifications).
The server is implemented on a Linux PC. We design the system architecture using
Xilinx Vivado and the Xilinx Vivado Software Development Kit (SDK).

The Zynq SoC is composed of 28 nm Programmable Logic (PL) and a Processing
System (PS), which can both be programmed through the Universal Serial Bus
(USB) Joint Test Action Group (JTAG). Apart from other components, the PS
contains two Advanced RISC Machine (ARM)-cores, of which one is used to:

1. control the communication between the device and the server by reading
and writing Advanced Extensible Interface (AXI)-addresses from the device
and sending and receiving serial data through the Universal Asynchronous
Receiver/Transmitter (UART);

2. update the Physically Unclonable Function (PUF) challenge on the device
Non-Volatile Memory (NVM) by re-writing to a SD-card pugged into the
Zedboard.

The central communication travels through a bus, the Central Interconnect (CI),
which is connected with all the components on the Zynq. Communication between
the device and the ARM-core is supported with a 32-bit AXI.

Figure 5.1: System architecture of the Device and Server.
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5.2 Device

In this section we describe the architecture of the device. We describe the architec-
tures of the DAPUF, BCH encoder and Ketje in more detail. The source code of
the device is given in Appendix C.2.1. We design the device in VHSIC Hardware
Description Language (VHDL) using Xilinx Integrated Development Environment
(IDE) for High Level Synthesis (HLS) and Xilinx ISE Simulator (iSim) for testing.

Figure 5.2 illustrates the floor-planning of the device as generated by Xilinx Vivado.
In this figure, in the top left, the full area of the SoC is illustrated; on the right side
the area is illustrated that contains the device logic. The green area represents the
PS which uses the yellow, purple and pink logic to set and reset the AXI peripherals.
Furthermore, four Physical Blocks (Pblocks) have been defined to constrain the
DAPUF component (white logic), the BCH encoder (light blue logic), the Ketje
component (orange logic) and the controller (blue logic) to specific areas on the
SoC. The three selector chains of the DAPUF are clearly visible (in white).

Figure 5.2: Floor-planning of the device.
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The controller (blue logic) is composed of seven processes:

Main process : The main process handles all responses for the DAPUF and starts
the other processes accordingly. The order of the various subprocesses can
be summarized as follows:

1. Update the seed by challenging the DAPUF.

2. Generate the PUF response Y 1′ by challenging the DAPUF. Subsequently,
the repetition encoder process is started.

3. Generate the random value for BCH encoding by challenging the DAPUF.
Subsequently, the BCH encoder process is started.

4. Generate the challenge N by challenging the DAPUF. Subsequently, the
Ketje mode is set to accumulate the entropy of the PUF response Y 1′ .
Finally, the Ketje process is started.

5. Generate the second challenge X2 by challenging the DAPUF.

6. Generate the second PUF response Y 2 by challenging the DAPUF. Sub-
sequently, the Ketje mode is set to encrypt the second PUF response
Y 2. Finally, the Ketje process is started.

7. When the Ketje process is finished the Ketje mode is set to compute
the authenticator T 2′ and the Ketje process is started.

8. Finally, the process waits to receive the authenticator T 2 from the server
and compares this with T 2′ . If they are equal, the challengeX is updated
with X2.

DAPUF challenger process: This process challenges the DAPUF by setting an
‘enable’ signal and the challenge at the first clock cycle. At the third clock
cycle, the response is either 0 or 1. This process is repeated every three clock
cycles.

Linear Feedback Shift Register (LFSR) process: This process feeds the PUF
challenge space. It can operate on two modes, either to feed challenges for
the 1275-bit PUF responses, or to feed challenges for the random variables.
For both modes, 12 bits have been reserved in the challenge space. As a
result the full challenge space of 64 bits is decreased to 64− 12− 12 = 40-bit
challenges per authentication. More about this, and about the distribution
of the bits, is explained in Section 6.1. The LFSR is either reset with initial
value [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1], or with the seed as the initial value.

Repetition encoder process: The repetition encoder encodes the DAPUF re-
sponse and sets the results to the output. The 255-bit DAPUF response is
fed to the BCH encoder.

BCH encoder process: The BCH encoder encodes the 255-bit using a random
number generated by the DAPUF and sets the results to the output.

Ketje mode process: This process sets Ketje’s values according to a specified
mode. This mode either signals to accumulate the entropy of the PUF re-
sponse Y 1′ , to encrypt the second PUF response Y 2, or to compute the
authenticator T 2′ .
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Ketje process: This process feeds all input data to the Ketje component at the
correct clock cycles. Depending on the mode Ketje is running, inputting the
message M is skipped or not. As a result, the cipher-text and tag is received
or only the tag.

5.2.1 DAPUF

As mentioned in Section 3.4 we implement the DAPUF as proposed by Machida
et al. [39]. We obtained the source code designed for a Xilinx Virtex-7 fromMachida
et al. and adapted this to work for the Xilinx Zynq. This design heavily relies on
the constraints that set the specific logic and location of the components in Vivado.
These constraints can be set using the following Tool Command Language (Tcl)
commands:

set_property BEL <logic-type> [get_cells <address>]
set_property LOC <slice> [get_cells <address>]

Where <logic-type> is replaced with the desirable type of logic, <slice> with
the desirable slice location and <address> with the specific address of the com-
ponent in Vivado’s Netlist. Without these constraints, Vivado will replace the
Multiplexers (MUXes) with Look-Up Tables (LUTs) because these require less
area and can operate on a higher frequency. The source code of the implemented
DAPUF is given in Appendix C.2.3 and the constraints in Appendix C.2.4.

Figure 5.3a illustrates the floor-planning of the first three switch blocks in the three
selector chains of the DAPUF as generated by Xilinx Vivado. In the top of the
figure, the two registers that contain the ‘enable’ signals EL and ER are illustrated.
Then, in three columns all MUXes are constrained to their own logic slice such that
path-lengths are equal for equivalent paths.

Figure 5.3b illustrates the floor-planning of the last switch blocks and the arbiters
of the DAPUF as generated by Xilinx Vivado. Also here, all MUXes and negative-
ANDs (NANDs) are constrained to their own logic slice such that path-lengths are
equal for equivalent paths.

Because of the fact that race conditions are undesirable in conventional Field Pro-
grammable Gate Array (FPGA) designs, the following Tcl command should be
used as a pre-script to Vivado’s bitstream generation:

set_property SEVERITY {Warning} [get_drc_checks LUTLP-1]

Without this command, Vivado will not allow to generate the bitstream that is
needed to program the PL through the USB JTAG.
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(a) Floorplanning of the start.

(b) Floorplanning of the finish.

Figure 5.3: Floorplanning of 3-1 Double Arbiter PUF.
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5.2.2 BCH Encoder

The implemented BCH encoder is designed using a paper by Mathew et al. [46].
The source code of the implemented BCH encoder is given in Appendix C.2.5.

Figure 5.4 illustrates the LFSR that is constructed using the generator polynomial
g(x) as was calculated in Section 3.5.3.2. We omitted the exponents 9 to 107 in
the formula and the figure for clarity:

g(x) = x116 + x114 + x111 + x108 + · · ·+ x8 + x4 + x3 + 1

Figure 5.4: Block diagram of the BCH encoder. denotes an exclusive-OR
(XOR), denotes the input bit, denotes the output bit. The indices cor-
respond to the bit locations and the exponents of the generator polynomial g(x).

Using this architecture, in 139 clock cycles, the coefficients of the random BCH
input polynomial m(x) are fed to the LFSR. Once this is finished, in 116 clock
cycles, the coefficients of the redundancy polynomial r(x) are obtained. Finally, in
the controller these two can be concatenated to obtain the codeword polynomial
w(x).

5.2.3 Ketje

We obtained the source code of the Ketje hardware implementation from Bertoni
et al.. The received implementation is designed for the Competition for Authentic-
ated Encryption: Security, Applicability and Robustness (CAESAR) and thus fol-
lows the George Mason University (GMU) hardware Application Program Interface
(API) for authenticated ciphers [31]. Because this Authenticated Encryption with
Associated Data (AEAD)-core is excessively large, we only use the Ketje cipher-
core. This cipher-core can perform encryption with message 〈C, T 〉 = EN,AK (M),
encryption without message 〈 · , T 〉 = EN,AK ( · ) and decryption DN,AK (〈C, T 〉).
Moreover, it supports sessions such that session based encryption and decryption
is possible. We need the Ketje hardware implementation for encryption (for which
we have fixed input sizes) but not for decryption. Although this cipher-core is still
too large for our purposes, we accept the overhead.
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5.3 Server

The server is implemented on a Linux PC using the Python programming language
version 2.7.10 [53]. The source code is given in Appendix C.2.5.

Algorithm 1 gives the server-side setup procedure, which is performed in a trusted
environment. We rely on serial communication between the PC and the Zedboard
through the USB UART.

Algorithm 1 Server-side setup procedure
1: procedure Main
2: X1 ← TRNG(40) . generate random bit-string of length 40
3: Device ← X1 . send serial data to device
4: Y 1 ← Device . receive serial data from device
5: Y[n]← Y 1 . n: number of devices
6: Yold[n]← Y 1

7: n := n+ 1
8: return 1

Algorithm 2 gives the server-side authentication procedure. Note that because of
the conditional branches, this implementation does not prevent an attacker from
performing Side-Channel Analysis (SCA). However, for simplicity, in Section 3.1
we stated that an attacker can not perform any implementation attacks. In order
to prevent an attacker from successfully performing SCA attacks, one should design
a leakage resilient implementation using sound cryptographic engineering.

Also note that the authentication procedure both tries to authenticate devices over
the most recent PUF responses as well as the older PUF responses. This is needed
because in the event of a loss of connection (card tearing) in the last communication
(receiving the authenticator T 2 from the server), a desynchronization will take place
between the server and the device.
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Algorithm 2 Server-side authentication procedure
1: procedure Main
2: T 2 ← TRNG(128) . generate random bit-string of length 128
3: B0 := 0 . set authentication result to 0
4: A← Start
5: H,N,C1, T 1 ← Device . receive serial data from device
6: for 0 ≤ i < n do . n: number of devices
7: Y ← Y[i]
8: B0, T

2 ←AuthenticateTry(Y,H,C1, T 1, A,N, T 2)
9: Y ← Yold[i]

10: B0, T
2 ←AuthenticateTry(Y,H,C1, T 1, A,N, T 2)

11: Device ← T 2 . send serial data to device
12: return B0

13: procedure Start
14: A← TRNG(40) . generate random bit-string of length 40
15: Device ← A . send serial data to device
16: return A
17: procedure AuthenticateTry(Y,H,C1, T 1, A,N, T 2)
18: R← FE.Rec(Y,H)
19: if Y 2 ← Ketje.Dec(R,C1, T 1, N ‖ 0, A) then
20: T 2 ← Ketje.Enc(R, [ ], N ‖ 1, A)
21: Y[i]← Y 2

22: Yold[i]← Y
23: B0 := 1 . update the authentication result to 1
24: return B0, T

2

25: procedure FE.Rec(Y,H)
26: R′ := [ ]
27: for 0 ≤ i < 255 do
28: R′ += [REP.Dec(Y [i · 5 : i · 5 + 5], H[i · 4 : i · 4 + 4])]
29: R′′ ←BCH.Dec(R′, H)
30: return R′′

31: procedure REP.Dec(y, h)
32: s := [y[0] xor y[i+ 1] xor h[i] for i in range(4)]
33: if sum(s) > 2 then . Hamming weight of the syndrome vector
34: e := 1
35: else
36: e := 0
37: return e xor y[0]
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CHAPTER

SIX

RESULTS

This chapter describes the research results of the protocol. We both describe results
from the protocol as supported by the mathematical foundation as well as results
from the protocol supported by the proof of concept.

In Section 6.1 we calculate the quality of the Physically Unclonable Function (PUF)
responses and compare these to the specified quality by Machida et al. [39]. Sec-
tion 6.2 summarizes the hardware performance in terms of timing and utilization.
Following, in Section 6.3 we discuss the software performance. In Section 6.4 we
analyze our protocol using a benchmark for PUF-based authentication protocols
[17]. Finally, in Section 6.5 we compare our protocol with the protocol proposed
by Moriyama et al. [48] and Aysu et al. [3].
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6.1 PUF Response Analysis

Although in Section 3.5.1 we assumed that all the PUF response bits are independ-
ent, we found out this is not the case. This is best illustrated with Figure 6.1a.
In this figure we see two PUF selector chains each having two data paths. These
selector chains have been initialized with two different challenges that only differ
at the Least Significant Bits (LSBs). We can see that by doing this, the length of
the path fragments that differ in both selector chains is very small. As a result, the
probability that the results of the arbiters are different is small. A possible reason
why this is not reflected in the results by Machida et al. [39] is that they challenge
the PUF instances with random challenges (weak unpredictability, see Definition
2.13, Section 2.3.4). Moreover, the Machine Learning (ML) algorithm is trained
with only 1,000 training samples, which means that the probability of having two
challenges with low Hamming distance is small.

(a) Differentiation at LSBs. (b) Diffused differentiation.

Figure 6.1: Illustration of dependency in PUF response bits.

This characteristic means that the 12 bits that are used to retrieve the PUF re-
sponses in the protocol need to be diffused throughout the challenge space resulting
in the highest probability of having different data paths. This construction is il-
lustrated in Figure 6.1b. Same holds for the 12 bits that are used to retrieve the
random variables in the protocol. Moreover, we found out that by feeding these
12 bits using a Linear Feedback Shift Register (LFSR) instead of a counter, more
diffusion is created in the switch blocks.

Table 6.1 summarizes the quality of the PUF responses that have been obtained by
challenging three PUF instances using the construction that is used in our proof of
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concept. Because of the limited amount of Zedboards available, we implemented
these three PUFs on the same System on Chip (SoC) at different locations. This
gives us a good approximation of the PUF response quality on distinct SoCs. The
metrics are calculated similarly as Machida et al. did in their paper [39]. However,
our results have been achieved by challenging three PUF instances with 40-bit
challenges multiple times, obtaining multiple 1275-bit responses. More specific-
ally, steadiness is calculated by challenging the PUF a number of m = 1275 times
with a set of n = 128 equal challenges. Of the 128 1275-bit responses, the Ham-
ming distances between two arbitrary PUF responses is calculated and averaged.
Uniqueness is calculated by challenging two PUF instances a number of m = 1275
times with a set of n = 500 randomly chosen challenges. Of each of these

(
500
2

)
pairs of 1275-bit responses, the the Hamming distances are calculated and aver-
aged. Finally, randomness is calculated by challenging a PUF instance a number
of m = 1275 times with a set of n = 500 randomly chosen challenges. Then, the
Hamming weight of these 500 1275-bit results is calculated and averaged.

Table 6.1: Quality of the PUF responses.

Metric DAPUF Results

Steadiness [%] A 5.51
B 4.03
C 7.38

Uniqueness [%] A with B 45.54
B with C 46.47
C with A 43.56

Randomness [%] A 65.56
B 62.92
C 70.74

From this table, and Table 3.1 we can see that in the 3-1 Double Arbiter PUF
(DAPUF) in our SoC the measure for steadiness is lower (6% versus 12%), which
means that our implementation has a higher reproducibility. Moreover, the ran-
domness of our implementation is higher (66% versus 54%), meaning that the prob-
ability of a response bit being ‘1’ is higher. To illustrate the effect of the measured
quality, we calculate whether enough entropy is left for the Entropy Accumulator
(EA) (Definition 3.1) to construct a 128-bit key. Moreover, a recalculation of the
fail rate pfail will indicate the performance of the authentications.

We recalculate the entropy of the PUF responses ρ using the binary entropy func-
tion h(p) from Formula 2.2.1, Section 2.2.2:

ρ = −Pr(Y i = 1) log2(Pr(Y i = 1))−Pr(Y i = 0) log2(Pr(Y i = 0))

= −0.66 log2(0.66)− 0.34 log2(0.34)

= 0.9248

(6.1.1)
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Recall from Section 3.5.1.2 that 139 · ρ bits of entropy is left in the 255 bits of
the Bose-Chaudhuri-Hocquenghem (BCH) codeword due to entropy losses through
the communicated helper data. Thus, 139 · 0.9248 = 128 bits of entropy is left to
accumulate the 255 bits BCH codeword, which is just enough to construct a 128-bit
key. As a result, no information about the key will be leaked through the helper
data.

Next, we recalculate the fail rate pfail using Formula 3.5.1, Section 3.5.1.1. When
using the implemented CREP(5, 1, 2) repetition code, we decrease the bit-error-
probability pe = 0.06 to:

pe,REP = 1−
2∑
i=0

(
5

i

)
0.06i(1− 0.06)5−i

= 0.001970

Using the implemented CBCH(255, 139, 15) BCH code on top of that further de-
creases the bit-error-probability pe,REP = 0.001970 to a fail rate pfail of:

pfail = 1−
15∑
i=0

(
255

i

)
0.001970i(1− 0.001970)255−i

= 8.438 · 10−15

This is a considerable improvement because we aimed for a fail rate of pfail = 10−6.

6.2 Hardware Performance

This section elaborates on the hardware performance of the proof of concept. The
results have been generated by Vivado without the use of Block RAM (BRAM) or
Digital Signal Processors (DSPs) and without optimization of the DAPUF design.
Synthesis settings are set at Default and optimization options are set at Area.
Furthermore, we allow race conditions to occur due to the nature of the DAPUF.

6.2.1 Timing

By using this specific DAPUF, timing results are suboptimal. Because of the long
paths the signals have to travel through the DAPUF, the path delay is high. In
the worst case scenario, the data path delay is 76.509 ns which means that the
maximum frequency of the SoC is 12 MHz. Considering that some Symmetric Key
Encryption (SKE) hardware implementations can run in the magnitude of GHz’s,
the achieved result is suboptimal. However, the authentication phase of the device
takes 8205 clock cycles, which on the frequency of 12 MHz takes 0.63 ms. As
a result, our proof of concept might not be applicable to devices in the Internet
of Things (IoT) but only to conventional use in Radio-Frequency Identification
(RFID) systems.
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6.2.2 Utilization

Table 6.2 summarizes the number of Look-Up Tables (LUTs) per component that
have been generated by Vivado without optimization in the implementation such
that the DAPUF’s design is kept. In total, our proof of concept utilizes 8,305 LUTs.
Similar to the timing results, these utilization results are suboptimal. In this case
the registers take a lot of area because of the long variables in the protocol. We
explicitly did not replace these registers with BRAM and DSPs because we want
to mimic a passive RFID device which normally does not have these kinds of
components.

Table 6.2: Number of LUTs per component.

Component LUTs

Controller 5,464
Ketje 2,630
DAPUF 195
BCH encoder 16

Total 8,305

6.3 Software Performance

The computation time of the server-side protocol increases linearly in the number
of devices in the database. In our implementation the execution time of the server-
side protocol is 0.05 · n seconds. This means that our implementation might not
be applicable to devices in the IoT but only to conventional use in RFID systems.

In a real world scenario, the server would be implemented in hardware which could
substantially decrease the execution time. We can not say anything about the
performance of a hardware implementation, but it is promising for IoT applications.
However, in RFID applications this protocol is more suitable because the number
of devices is lower and the maximum execution time is often larger.
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6.4 Benchmark Analysis

We analyze our protocol using the recently proposed benchmark for PUF-based
authentication protocols [17]. The benchmark results can be summarized as follows:

Resources: Our device uses a PUF, True Random Number Generator (TRNG),
Fuzzy Extractor (FE)Gen procedure, cryptographic primitive (AEAD-scheme)
and a one-time interface.

PUF type: Our PUF is a so-called Strong PUF, indicating that the number of
Challenge-Response Pairs (CRPs) is at most 2l, where l is the number of bits
in the challenge.

#CRPs: The amount of CRPs for n authentications is n + 1 because we use a
one-time interface for the setup.

Claims: The protocol supports server authenticity, device authenticity, device pri-
vacy, and memory disclosure.

#Authentications: The protocol can support d-authentications for a perfect pri-
vacy use-case and ∞-authentications without token anonymity.

Robustness: Our PUF is noise-robust because of the error correction and modeling-
robust because of the EA.

Authenticity: Mutual authentication provides for both server and device authen-
ticity.

Denial-of-Service (DoS) prevention: There is no internal synchronization which
means that our implementation is not susceptible to DoS attacks.

Scalability: The execution time of the server per authentication is linear in the
amount of devices.

6.5 Protocol Comparison

Table 6.3 summarizes the comparison between the proposed protocol (Concealing
Ketje Protocol (CKP)) and the protocols by Moriyama et al. [48] and Aysu et al.
[3]. The characteristic that all these protocols have in common is that they are
all provably secure PUF-based privacy-preserving protocols. However, the paper
by Moriyama et al. only provides a theoretical basis for their proposed protocol,
instead of also giving a proof of concept. As a result, no sensible answer can be
given to the question whether their protocol is practical or not. On the other
hand, the protocol by Aysu et al. uses the paper by Moriyama et al. as a basis.
As mentioned, this protocol is vulnerable to linear equation analysis of the FE
output [3, p. 12]. Their performance results would highly likely be worsened
because their FE needs to be redesigned. To this end, most likely they need more
PUF response bits to meet the failure rate requirements. As a consequence, their
hardware implementation needs more LUTs and might run slower. Moreover, their
implementation stores a key in Non-Volatile Memory (NVM) that does not increase
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the unpredictability of the communication messages. This overhead is eliminated
in our protocol.

Table 6.3: Comparison with previous work.

Reference Moriyama [48] Aysu [3] CKP

Proofs for security and
privacy

3 3 3

Implemented parties 7 device, server device, server
Security flaws 7 31 7
Reconfiguration
method

7 modify SW,
update

microcode

follow generic
approach,

modify HW and
SW

Demonstrator 7 FPGA, PC SoC, PC
Security-level k 64-bit/128-bit 128-bit
NVM PUF challenge

& key
PUF challenge

& key
PUF challenge

Device FE procedure Rec Gen Gen
PUF type 7 Weak PUF Strong PUF
PUF instance 7 SRAM DAPUF
Hardware platform 7 XC5VLX30 XC7Z020
Communication inter-
face

7 bus, UART bus, UART

Execution time (clock
cycles)

7 18,597 8,205

Logic cost (w/o PUF) 7 1,221 LUTs 6,579 LUTs

1Due to a vulnerability in their implemented FE.
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7.1 Conclusions

In this research we have proposed a novel PUF-based privacy-preserving authen-
tication protocol. We base the authenticity of a device on the Challenge-Response
Pairs (CRPs) of the Physically Unclonable Function (PUF). Because the responses
on equal challenges are not equal, error-correcting codes have to be applied to
recover previous PUF responses. Moreover, because the PUF responses are not
uniformly distributed, an Entropy Accumulator (EA) is proposed to ‘compress’ the
response into a key. Additionally, confidentiality, authenticity and integrity is sup-
ported by an AEAD-scheme. Privacy is preserved by using a challenge updating
mechanism in the device’s Non-Volatile Memory (NVM). We have evaluated the
protocol both by providing a mathematical proof as well as providing a proof of
concept.

We evaluated the security and privacy of the protocol using a mathematical proof.
We defined a communication model where we assume full control of the attacker
over the communication channel as well as read permissions of the device’s NVM.
We defined security with a security experiment in which the attacker can per-
form unlimited oracle queries to a device and server that have been setup already.
The correctness of the protocol is that the server and the device always accept
the session if and only if the session has a matching session. We defined privacy
using a similar construction. However in the privacy experiment, the attacker
communicates with two devices of which one of the devices honestly transfers the
communication messages to the attacker. A re-synchronization step is added in
the experiment to make sure successful authentications can occur. The experiment
can be won if the attacker can distinguish with which device he has been commu-
nicating. We prove security and privacy using a game transformation that shows
that all communication in the channel appears random to the attacker always.

We evaluated the applicability and practicality of the protocol by presenting a proof
of concept. We have seen that there is a dependency in 3-1 Double Arbiter PUF
(DAPUF) response bits when the challenges are close to each other. Also, we have
seen that the quality of the DAPUF responses differ on our System on Chip (SoC)
with regard to the Field Programmable Gate Array (FPGA) used by Machida
et al. [40]. However, these differences are small enough for our implementation
to be considered secure and thus privacy-preserving with respect to our security
considerations. Because of the use of the DAPUF, timing is suboptimal. However,
we still achieve an authentication delay of only 0.63 ms which might make our proof
of concept applicable to use for the Internet of Things (IoT) and to conventional
use-cases with RFID-technology (e.g. in access control and in supply chains).
Also, we have seen that because of the large intermediate registers, utilization is
suboptimal.

Concluding, we have seen that in comparison to other similar authentication pro-
tocols our implementation does not need a key in NVM and is simpler in its design.
Although our implementation is slower and consumes more resources, we claim to
have an implementation that is both secure and privacy-preserving with respect to
our security considerations.
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7.2 Discussion

Although the protocol is mathematically secure and privacy-preserving, we did not
achieve a faster and smaller proof of concept in relation to Aysu et al. [3]. This
is mainly due to the implemented PUF which defines the design of the Fuzzy Ex-
tractor (FE) and the variable sizes in the protocol. Moreover, the authentication
time of the server is linear in the number of devices in the database, which makes
the protocol impractical with a substantially large number of devices. As a result,
our proof of concept might not be practical for use in the IoT but only for conven-
tional use with Radio-Frequency Identification (RFID) technology. There might be
various options to design an instance that is applicable to the IoT. We summarize
them as follows.

• We can optimize the Ketje scheme which is now a hardware implementation
extracted from the George Mason University (GMU) hardware Application
Program Interface (API) for Competition for Authenticated Encryption: Se-
curity, Applicability and Robustness (CAESAR). Because we use fixed in-
stances of the Ketje scheme, a lot of optimizations are possible.

• Another option is to optimize the controller of our device, which is now
implemented using various processes. Sound cryptographic engineering can
substantially optimize the area of the SoC.

• With a Strong PUF that has higher quality, following the generic approach,
much smaller protocol variables can be achieved, decreasing the area con-
sumption on the Integrated Circuit (IC).

• A different type of PUF can substantially increase the operating frequency of
the IC, which decreases the delay of authentication. One solution can be to
use a non-intrinsic PUF that are physically embedded in an IC, for example
a coating PUF.

• The server could run in parallel, substantially decreasing the time it takes to
authenticate a device.

These options can make the protocol more applicable for various use-cases. How-
ever, this is not guaranteed because we rely on a Strong PUF which is still in
a young research field. If it turns out that practically a Strong PUF cannot be
implemented, our PUF-based protocol is only usable with a bounded amount of
authentications with respect to a Weak PUF. However, the protocol can be used
without without token anonymity and can also easily be adapted to be used with
biometric sources like fingerprints and iris-scans.

7.3 Future Work

This research mainly focussed on designing a new type of PUF-based privacy-
preserving authentication protocol, namely with the use of an AEAD-scheme. Be-
cause our proposal provides a protocol design, a mathematical proof and a proof
of concept, three aspects can be further examined in future research.
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The design of our protocol might be optimized further. Similar to what this research
has achieved with relation to the protocol by Aysu et al. [3]. It would be interesting
to see whether we overlooked specific aspects that improve the protocol.

Moreover, our proofs are based on the advantage of a probabilistic polynomial time
attacker. Many scientists consider this asymptotic approach outdated and propose
a concrete or exact approach specifying precise estimates of the computational
complexities of adversarial tasks. It would be interesting to see whether our proof
can easily be adapted to this approach.

Our proof of concept might be optimized further. Mainly, future research has to
be carried out towards Strong PUF implementations, because these form the basis
of our protocol. A Strong PUF that has better quality of PUF responses can
substantially reduce the consumption of the device.

7.4 Closing Remarks

Although we have seen that the Concealing Ketje Protocol (CKP) is mathematic-
ally secure, it is questionable whether our proof of concept is secure because of the
implemented DAPUF. As mentioned, we discovered that the DAPUF response bits
are dependent on the input challenge. This makes the DAPUF responses predict-
able when the challenges are adaptively chosen in a Machine Learning (ML) attack
(Definition 2.13, Section 2.3.4). In a personal communication, Maes, who studied
PUFs for his PhD [42], even pointed out: “[...] there are not so much arguably
secure implementations of Strong PUFs, it is even debatable whether they can be
build at all.”.

We close this thesis with a recent quote from Bruce Schneier, a renowned specialist
in cryptography, security and privacy. This quote matches the conclusions of this
thesis and serves as subject for thought.

“ [...] math has no agency; it can’t actually secure anything. For
cryptography to work, it needs to be written in software, embed-
ded in a larger software system, managed by an operating system,
run on hardware, connected to a network, and configured and op-
erated by users. Each of these steps brings with it difficulties and
vulnerabilities. ”
Bruce Schneier, Cryptography Is Harder than It Looks, 2016 [59]
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APPENDIX

A

HARDWARE SPECIFICATIONS

A.1 Zedboard

This appendix contains the basic specifications of the Zedboard, illustrated in Fig-
ure A.1 [2]. The Zedboard includes a Zynq R©-7000 by Xilinx Inc. [64].

• Zynq R©-7000 28 nm All Programmable SoC XC7Z020-CLG484-1

– Equivalent to Xilinx 7 Series Programmable Logic Artix R©-7 FPGA

– 85K Programmable Logic Cells (∼1.3M Approximate ASIC Gates)

– 53,200 LUTs

– 106,400 Flip-Flops (FFs)

– 560 KB Extensible Block Random-Access Memory (RAM) (140x36 Kb
Blocks)

– 220 Programmable Digital Signal Processor (DSP) Slices (18x25 Mul-
tiply Accumulators (MACCs))

• Memory

– 512 MB Double Data Rate Type Three (DDR3)

– 256 Mb Quad-SPI (QSPI) Flash

– 4 GB SD-card

• Onboard Universal Serial Bus (USB)-Joint Test Action Group (JTAG) Pro-
gramming

• 10/100/1000 Ethernet

• USB On-The-Go (OTG) 2.0 and USB-Universal Asynchronous Receiver/Trans-
mitter (UART)
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• Processing System (PS) & Programmable Logic (PL) Input/Output (I/O)
expansion (FPGA Mezzanine Card (FMC), Peripheral Module (Pmod) Com-
patible, Xilinx Analog to Digital Converter (XADC))

• Multiple displays (1080p High-Definition Multimedia Interface (HDMI), 8-bit
Video Graphics Array (VGA), 128 x 32 Organic LED (OLED))

• Inter-IC Sound (I2C) Audio coder/decoder (CODEC)

VGA

XADC
Header

FMC
(LPC)

Push SwitchesSlide SwitchesPmods

Pmods

USB OTG

USB UART

JTAG

USB
JTAGPower

Zynq

* SD card cage and QSPI Flash reside on backside of board

OLED

DDR3

Audio I/O GbE HDMI

Figure A.1: Functional Overlay of the Zedboard by Avnet Inc. [2].
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APPENDIX

B

GALOIS FIELD TABLES

B.1 GF(24) generated by p(x) = x4 + x+ 1

Table B.1: Galois Field table GF(24) as generated by the primitive polynomial
p(x) = x4 + x+ 1. REP denotes ‘representation’.

Power REP Polynomial REP Binary REP
0 0 {0, 0, 0, 0}
1 1 {0, 0, 0, 1}
α α {0, 0, 1, 0}
α2 α2 {0, 1, 0, 0}
α3 α3 {1, 0, 0, 0}
α4 α + 1 {0, 0, 1, 1}
α5 α2 + α {0, 1, 1, 0}
α6 α3 + α2 {1, 1, 0, 0}
α7 α3 + α + 1 {1, 0, 1, 1}
α8 α2 + 1 {0, 1, 0, 1}
α9 α3 + α {1, 0, 1, 0}
α10 α2 + α + 1 {0, 1, 1, 1}
α11 α3 + α2 + α {1, 1, 1, 0}
α12 α3 + α2 + α + 1 {1, 1, 1, 1}
α13 α3 + α2 + 1 {1, 1, 0, 1}
α14 α3 + 1 {1, 0, 0, 1}
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B.2 GF(28) generated by p(x) = x4 + x3 + x2 + 1

Table B.2: Galois Field table GF(28) as generated by the primitive polynomial
p(x) = x4 + x3 + x2 + 1. REP denotes ‘representation’.

Power REP Polynomial REP Binary REP
0 0 {0, 0, 0, 0, 0, 0, 0, 0}
1 1 {0, 0, 0, 0, 0, 0, 0, 1}
α α {0, 0, 0, 0, 0, 0, 1, 0}
α2 α2 {0, 0, 0, 0, 0, 1, 0, 0}
α3 α3 {0, 0, 0, 0, 1, 0, 0, 0}
α4 α4 {0, 0, 0, 1, 0, 0, 0, 0}
α5 α5 {0, 0, 1, 0, 0, 0, 0, 0}
α6 α6 {0, 1, 0, 0, 0, 0, 0, 0}
α7 α7 {1, 0, 0, 0, 0, 0, 0, 0}
α8 α4 + α3 + α2 + 1 {0, 0, 0, 1, 1, 1, 0, 1}
α9 α5 + α4 + α3 + α {0, 0, 1, 1, 1, 0, 1, 0}
α10 α6 + α5 + α4 + α2 {0, 1, 1, 1, 0, 1, 0, 0}
...

...
...

...
...

...
α132 α7 + α5 + α4 + α3 {1, 0, 1, 1, 1, 0, 0, 0}
α133 α6 + α5 + α3 + α2 + 1 {0, 1, 1, 0, 1, 1, 0, 1}
α134 α7 + α6 + α4 + α3 + α {1, 1, 0, 1, 1, 0, 1, 0}
α135 α7 + α5 + α3 + 1 {1, 0, 1, 0, 1, 0, 0, 1}
α136 α6 + α3 + α2 + α + 1 {0, 1, 0, 0, 1, 1, 1, 1}
α137 α7 + α4 + α3 + α2 + α {1, 0, 0, 1, 1, 1, 1, 0}
α138 α5 + 1 {0, 0, 1, 0, 0, 0, 0, 1}
α139 α6 + α {0, 1, 0, 0, 0, 0, 1, 0}
α140 α7 + α2 {1, 0, 0, 0, 0, 1, 0, 0}
α141 α4 + α2 + 1 {0, 0, 0, 1, 0, 1, 0, 1}
α142 α5 + α3 + α {0, 0, 1, 0, 1, 0, 1, 0}
α143 α6 + α4 + α2 {0, 1, 0, 1, 0, 1, 0, 0}
α144 α7 + α5 + α3 {1, 0, 1, 0, 1, 0, 0, 0}
...

...
...

...
...

...
α243 α6 + α5 + α4 + α3 + α2 + 1 {0, 1, 1, 1, 1, 1, 0, 1}
α244 α7 + α6 + α5 + α4 + α3 + α {1, 1, 1, 1, 1, 0, 1, 0}
α245 α7 + α6 + α5 + α3 + 1 {1, 1, 1, 0, 1, 0, 0, 1}
α246 α7 + α6 + α3 + α2 + α + 1 {1, 1, 0, 0, 1, 1, 1, 1}
α247 α7 + α + 1 {1, 0, 0, 0, 0, 0, 1, 1}
α248 α4 + α3 + α + 1 {0, 0, 0, 1, 1, 0, 1, 1}
α249 α5 + α4 + α2 + α {0, 0, 1, 1, 0, 1, 1, 0}
α250 α6 + α5 + α3 + α2 {0, 1, 1, 0, 1, 1, 0, 0}
α251 α7 + α6 + α4 + α3 {1, 1, 0, 1, 1, 0, 0, 0}
α252 α7 + α5 + α3 + α2 + 1 {1, 0, 1, 0, 1, 1, 0, 1}
α253 α6 + α2 + α + 1 {0, 1, 0, 0, 0, 1, 1, 1}
α254 α7 + α3 + α2 + α {1, 0, 0, 0, 1, 1, 1, 0}
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C

SOURCE CODE LISTINGS

This appendix lists the most relevant source code produced in this research. For
clarity, similar lines of code have been omitted which is indicated by comments.

C.1 Software

C.1.1 Server

1 #******************************************************************************************************#
2 # Author: J.G. (Gerben) Geltink # g.geltink@gmail.com
3 # Module: Server Side Protocol # main.py
4 # This module describes the server side protocol of the device DAPUF in the Conceiling Ketje
5 # Protocol as presented by the guiding MSc thesis: Geltink, J. G. (2016). "Conceiling Ketje: A
6 # Lightweight PUF-based Privacy Preserving Authentication Protocol".
7 #
8 # Copyright (c) 2016 J.G. Geltink under MIT license
9 #******************************************************************************************************#

10 import commands
11 import timeit
12 import serial
13 import random
14 import struct
15
16 ser = 0
17
18 def init_serial():
19 global ser #Must be declared in Each Function
20 ser = serial.Serial()
21 ser.baudrate = 115200
22 ser.port = ’/dev/ttyACM0’ #If Using Linux
23 ser.timeout = 10
24 ser.open() #Opens SerialPort
25
26
27 def xor_bitarray(a, b):
28 return map(lambda x: x[0] ^ x[1], zip(a, b))
29
30 def int_to_bitlist(n, length):
31 return [n >> i & 1 for i in range(length-1,-1,-1)]
32
33 def bitlist_to_int(bitlist):
34 out = 0
35 for bit in bitlist:
36 out = (out << 1) | bit
37 return out
38
39
40
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41 def int_to_hexstring(i, n):
42 string = hex(i);
43 if string[len(string)-1] == "L":
44 return string[2:len(string)-1].zfill(2*n)
45 else:
46 return string[2:].zfill(2*n)
47
48 def int_to_bytelist(n, length):
49 return [ n >> (8*i) & 0xff for i in range(length-1,-1,-1)]
50
51 def bch_dec(a_prime, hd):
52 ’’’Code derived from Robert Morelos-Zaragoza: Encoder/decoder for binary BCH codes in C (Version 3.1, 1997)
53 using BCH(255,139,15)
54 NOTE: not in constant time!’’’
55 t = 15
56 length = 255
57 n = 255
58 cw_prime = xor_bitarray(a_prime, hd)
59 cw = cw_prime[:]
60 # print ’cw_prime\t’, cw_prime
61 # index->polynomial form: alpha_to[] contains j=alpha^i;
62 alpha_to = [1, 2, 4, 8, 16, 32, 64, 128, 113, 226, 181, 27, 54, 108, 216, 193, 243, 151, 95, 190, 13, 26, 52,

104, 208, 209, 211, 215, 223, 207, 239, 175, 47, 94, 188, 9, 18, 36, 72, 144, 81, 162, 53, 106, 212,
217, 195, 247, 159, 79, 158, 77, 154, 69, 138, 101, 202, 229, 187, 7, 14, 28, 56, 112, 224, 177, 19,
38, 76, 152, 65, 130, 117, 234, 165, 59, 118, 236, 169, 35, 70, 140, 105, 210, 213, 219, 199, 255, 143,
111, 222, 205, 235, 167, 63, 126, 252, 137, 99, 198, 253, 139, 103, 206, 237, 171, 39, 78, 156, 73,

146, 85, 170, 37, 74, 148, 89, 178, 21, 42, 84, 168, 33, 66, 132, 121, 242, 149, 91, 182, 29, 58, 116,
232, 161, 51, 102, 204, 233, 163, 55, 110, 220, 201, 227, 183, 31, 62, 124, 248, 129, 115, 230, 189,
11, 22, 44, 88, 176, 17, 34, 68, 136, 97, 194, 245, 155, 71, 142, 109, 218, 197, 251, 135, 127, 254,
141, 107, 214, 221, 203, 231, 191, 15, 30, 60, 120, 240, 145, 83, 166, 61, 122, 244, 153, 67, 134, 125,
250, 133, 123, 246, 157, 75, 150, 93, 186, 5, 10, 20, 40, 80, 160, 49, 98, 196, 249, 131, 119, 238,

173, 43, 86, 172, 41, 82, 164, 57, 114, 228, 185, 3, 6, 12, 24, 48, 96, 192, 241, 147, 87, 174, 45, 90,
180, 25, 50, 100, 200, 225, 179, 23, 46, 92, 184, 0]

63 # polynomial form -> index form: index_of[j=alpha^i] = i
64 index_of = [-1, 0, 1, 231, 2, 207, 232, 59, 3, 35, 208, 154, 233, 20, 60, 183, 4, 159, 36, 66, 209, 118, 155,

251, 234, 245, 21, 11, 61, 130, 184, 146, 5, 122, 160, 79, 37, 113, 67, 106, 210, 224, 119, 221, 156,
242, 252, 32, 235, 213, 246, 135, 22, 42, 12, 140, 62, 227, 131, 75, 185, 191, 147, 94, 6, 70, 123,
195, 161, 53, 80, 167, 38, 109, 114, 203, 68, 51, 107, 49, 211, 40, 225, 189, 120, 111, 222, 240, 157,
116, 243, 128, 253, 205, 33, 18, 236, 163, 214, 98, 247, 55, 136, 102, 23, 82, 43, 177, 13, 169, 141,
89, 63, 8, 228, 151, 132, 72, 76, 218, 186, 125, 192, 200, 148, 197, 95, 174, 7, 150, 71, 217, 124,
199, 196, 173, 162, 97, 54, 101, 81, 176, 168, 88, 39, 188, 110, 239, 115, 127, 204, 17, 69, 194, 52,
166, 108, 202, 50, 48, 212, 134, 41, 139, 226, 74, 190, 93, 121, 78, 112, 105, 223, 220, 241, 31, 158,
65, 117, 250, 244, 10, 129, 145, 254, 230, 206, 58, 34, 153, 19, 182, 237, 15, 164, 46, 215, 171, 99,
86, 248, 143, 56, 180, 137, 91, 103, 29, 24, 25, 83, 26, 44, 84, 178, 27, 14, 45, 170, 85, 142, 179,
90, 28, 64, 249, 9, 144, 229, 57, 152, 181, 133, 138, 73, 92, 77, 104, 219, 30, 187, 238, 126, 16, 193,
165, 201, 47, 149, 216, 198, 172, 96, 100, 175, 87]

65 t2 = 2 * t; #2* error correcting capability
66 # first form the syndromes
67 syn_error = False
68 s = [0 for i in range(t2+1)]
69 for i in range(1, t2+1):
70 for j in range(length):
71 if (cw_prime[j] != 0):
72 s[i] ^= alpha_to[(i * j) % n]
73 if (s[i] != 0):
74 syn_error = True
75 s[i] = index_of[s[i]]
76 # print ’s\t’, s[1:]
77 # print ’syn_error\t’, syn_error
78 if syn_error:
79 # /* initialise table entries */
80 d = [0 for i in range(t2 + 2)]
81 elp = [[0 for i in range(t2 + 2)] for j in range(t2 + 2)]
82 l = [0 for i in range(t2 + 2)]
83 u_lu = [0 for i in range(t2 + 2)]
84 d[0] = 0; #/* index form */
85 d[1] = s[1]; #/* index form */
86 elp[0][0] = 0; #/* index form */
87 elp[1][0] = 1; #/* polynomial form */
88 for i in range(1,t2):
89 elp[0][i] = -1; #/* index form */
90 elp[1][i] = 0; #/* polynomial form */
91 l[0] = 0;
92 l[1] = 0;
93 u_lu[0] = -1;
94 u_lu[1] = 0;
95 u = 0; # 0 -> t2+1
96 while True:
97 u += 1
98 if (d[u] == -1):
99 l[u + 1] = l[u]

100 for i in range(l[u] + 1):
101 elp[u + 1][i] = elp[u][i]
102 elp[u][i] = index_of[elp[u][i]]
103 else:
104 # search for words with greatest u_lu[q] for
105 # which d[q]!=0
106 q = u - 1
107 while ((d[q] == -1) and (q > 0)):
108 q -= 1
109 # have found first non-zero d[q]
110 if (q > 0):
111 j = q
112 while True:
113 j -= 1
114 if ((d[j] != -1) and (u_lu[q] < u_lu[j])):
115 q = j;
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116 if not (j > 0):
117 break
118 # have now found q such that d[u]!=0 and u_lu[q] is maximum
119 # store degree of new elp polynomial
120 if (l[u] > l[q] + u - q):
121 l[u + 1] = l[u]
122 else:
123 l[u + 1] = l[q] + u - q
124 # form new elp(x)
125 for i in range(t2):
126 elp[u + 1][i] = 0
127 for i in range(l[q] + 1):
128 if (elp[q][i] != -1):
129 elp[u + 1][i + u - q] = alpha_to[(d[u] + n - d[q] + elp[q][i]) % n]
130 for i in range(l[u] + 1):
131 elp[u + 1][i] ^= elp[u][i]
132 elp[u][i] = index_of[elp[u][i]]
133 u_lu[u + 1] = u - l[u + 1]
134 # form (u+1)th discrepancy
135 if (u < t2):
136 # no discrepancy computed on last iteration
137 if (s[u + 1] != -1):
138 d[u + 1] = alpha_to[s[u + 1]]
139 else:
140 d[u + 1] = 0
141 for i in range(1,l[u+1]+1):
142 if ((s[u + 1 - i] != -1) and (elp[u + 1][i] != 0)):
143 d[u + 1] ^= alpha_to[(s[u + 1 - i] + index_of[elp[u + 1][i]]) % n]
144 # put d[u+1] into index form
145 d[u + 1] = index_of[d[u + 1]]
146 if not ((u < t2) and (l[u + 1] <= t)):
147 break
148 u += 1
149 if (l[u] <= t): # Can correct errors
150 # put elp into index form
151 for i in range(l[u] + 1):
152 elp[u][i] = index_of[elp[u][i]]
153 sigma = []
154 for i in range(l[u] + 1):
155 sigma += [elp[u][i]]
156 # print ’sigma(x) =\t’, sigma
157 # Chien search: find roots of the error location polynomial
158 reg = [0 for x in range(l[u]+1)]
159 root = [0 for x in range(l[u])]
160 loc = [0 for x in range(l[u])]
161 for i in range(1,l[u]+1):
162 reg[i] = elp[u][i]
163 count = 0
164 for i in range(1,n+1):
165 q = 1
166 for j in range(1, l[u]+1):
167 if (reg[j] != -1):
168 reg[j] = (reg[j] + j) % n
169 q ^= alpha_to[reg[j]]
170 if (q == 0): # store root and error location number indices
171 root[count] = i
172 loc[count] = n - i
173 count += 1
174 if (count == l[u]):
175 # print ’Roots:\t’, loc
176 print "\t#errors corrected BCH\t", str(len(loc))
177 for i in range(l[u]):
178 cw[loc[i]] ^= 1
179 else:
180 1 == 1
181 print ’\tBCH incomplete decoding: errors detected’
182 # print ’cw\t’, cw
183 return xor_bitarray(cw, hd)
184
185 def rep_decode(hd_rep, y_1):
186 errors = 0
187 e = [7, 11, 13, 14, 15] #faulty syndromes
188 r_p = 0
189 ry_p = 0
190 for i in range(255):
191 hd = (hd_rep >> 4*i) & 0b1111
192 y = (y_1 >> 5*i) & 0b11111
193 y_pb = (y_1 >> 5*i) & 0b1
194
195 if y_pb == 1: #compute syndromes
196 s = 0b1111 ^ (y >> 1) ^ hd
197 else:
198 s = 0 ^ (y >> 1) ^ hd
199
200 if s in e:
201 r_pb = y_pb ^ 1
202 errors += 1
203 else:
204 r_pb = y_pb
205
206 r_p += r_pb << i #LSB on right
207
208 print "\t#errors corrected REP\t", str(errors)
209 return r_p
210
211
212 x = random.randint(1,2**64)
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213 x_list = int_to_bytelist(x, 16)
214 init_serial()
215 ser.write([0x90])
216 ser.write(x_list[:4])
217 ser.write(x_list[4:8])
218 y_1 = ser.readline()[0:-1]
219 print "device set up:\t", y_1[-64:], "<Y> (showing rightmost 32 bytes)"
220 print "------------------------------\n"
221 ser.close()
222
223 while(1):
224
225 n1 = random.randint(1,2**128)
226
227 init_serial()
228
229 n1_list = int_to_bytelist(n1, 16)
230 ser.write([0x90])
231 ser.write(n1_list[:4])
232 ser.write(n1_list[4:8])
233 ser.write(n1_list[8:12])
234 ser.write(n1_list[12:])
235
236 print "challenge sent:\t\t", int_to_hexstring(n1,16), "<N1>"
237
238 hd_rep = ser.readline()[0:-1]
239 hd_bch = ser.readline()[1:-1]
240 c = ser.readline()[1:-1]
241 n2 = ser.readline()[1:-1]
242 t = ser.readline()[1:-1]
243
244 ser.close()
245
246 print "responses received:\t", t, "<HD, N2, C1, T1> (only showing T1)"
247
248 hd_rep = int(hd_rep, 16)
249 y_1 = int(y_1, 16)
250 hd_bch = int(hd_bch,16)
251 hd = int_to_bitlist(hd_bch, 255)
252 c = [c[i:i+8] for i in range(0,len(c),8)]
253 c.reverse()
254 c = "".join(c) # c is feeded in reverse
255 clen = 160
256 klen = 16
257 nlen= 16
258 adlen = 16
259 tlen = 16
260 auth = False
261
262 start = timeit.default_timer()
263 r_p = rep_decode(hd_rep, y_1)
264 a_prime = int_to_bitlist(r_p, 255)
265 r_pp = bch_dec(a_prime, hd)
266 r_pp = bitlist_to_int(r_pp)
267 r_pp_str = int_to_hexstring(r_pp, 32)
268
269 key = r_pp_str[:32] # left part of r_pp
270 nonce = n2
271 ad = r_pp_str[32:] # right part of r_pp
272 ad = ad[24:] + ad[16:24] + ad[8:16] + ad[:8] #ad is feeded in reverse!
273 challenge = r"./Ketje_enc " + key + " " + str(klen) + " " + nonce + " " + str(nlen) + " " + ad + " " + str(

adlen)# + c + str(clen) + t + str(tlen)
274 response = commands.getstatusoutput(challenge)
275 dev_key = response[1].split()[0]
276 # print "dev_key = [" + dev_key + "]"
277
278
279 nonce = int_to_hexstring(n1,16)
280 ad = n2
281 ad = ad[24:] + ad[16:24] + ad[8:16] + ad[:8] #ad is feeded in reverse!
282
283 challenge = r"./Ketje_dec " + dev_key + " " + str(klen) + " " + nonce + " " + str(nlen) + " " + ad + " " +

str(adlen) + " " + c + " " + str(clen) + " " + t + " " + str(tlen)
284 response = commands.getstatusoutput(challenge)
285 y_2 = response[1].split()[0]
286 y_2 = [y_2[i:i+8] for i in range(0,len(y_2),8)]
287 y_2.reverse()
288 y_2 = "".join(y_2) # y_2 is received in reverse
289
290 if (y_2 == "".zfill(320)):
291 t2 = random.randint(1,2**128)
292 y_1 = int_to_hexstring(y_1,160)
293 else:
294 auth = True
295 y_1 = y_2
296 nonce = int_to_hexstring(n1,16)
297 ad = int_to_hexstring(int(n2, 16) + 2**127, 16)
298 ad = ad[24:] + ad[16:24] + ad[8:16] + ad[:8] #ad is feeded in reverse!
299 challenge = r"./Ketje_enc " + dev_key + " " + str(klen) + " " + nonce + " " + str(nlen) + " " + ad + " "

+ str(adlen)# + c + str(clen) + t + str(tlen)
300 response = commands.getstatusoutput(challenge)
301 t2 = response[1].split()[0]
302 t2 = int(t2,16)
303 end = timeit.default_timer()
304
305 if auth:
306 print "\033[92mSUCCESFULL AUTHENTICATION\033[0m"
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307 print "PUF resp updated\t", y_2[-64:], "<Y> (showing rightmost 32 bytes)"
308 else:
309 print "\033[91mNO AUTHENTICATION\033[0m"
310
311 t2_list = int_to_bytelist(t2, 16)
312 init_serial()
313 ser.write([0x90])
314 ser.write(t2_list[:4])
315 ser.write(t2_list[4:8])
316 ser.write(t2_list[8:12])
317 ser.write(t2_list[12:])
318 ser.close()
319 print "authenticator sent:\t", int_to_hexstring(t2,16), "<T2>"
320
321 print "Elapsed time:\t", (end-start)
322 print "------------------------------"
323 raw_input("\033[95mPress ENTER for a new authentication\033[0m")
324 print "------------------------------"

C.2 Hardware

C.2.1 CKP Device

1 /******************************************************************************************************/
2 // Author: J.G. (Gerben) Geltink // g.geltink@gmail.com
3 // Module: CKP Device // ckp_dev.c
4 // This module describes the device in the Conceiling Ketje Protocol as presented by the
5 // guiding MSc thesis: Geltink, J. G. (2016). "Conceiling Ketje: A Lightweight PUF-based
6 // Privacy Preserving Authentication Protocol".
7 //
8 // Copyright (c) 2016 J.G. (Gerben) Geltink under MIT license
9 /******************************************************************************************************/

10
11 #include "platform.h"
12 #include "xbasic_types.h"
13 #include "xparameters.h"
14 #include <stdio.h>
15
16 Xuint32 *baseaddr_p = (Xuint32 *)XPAR_CKP_DEV_2_0_S00_AXI_BASEADDR;
17
18 void rcv_int(int a){ //receives a 32-bit word
19 int i = 0;
20 int val = 0;
21 for(i=0;i<4;i++)
22 val = val + (inbyte() << (8*(3-i)));
23 *(baseaddr_p+a) = val;}
24
25 void wait_rcv(){ //waits for a byte indicating the start of a word
26 for(;;)
27 if (inbyte() == 0x90)
28 break;}
29
30 int main() {
31 init_platform();
32
33 //Setup phase
34 wait_rcv(); //wait for starting byte
35 rcv_int(1); //receive left word of X1
36 rcv_int(0); //receive right word of X1
37 *(baseaddr_p+4) = 0xFACADE01; //set data ready
38 for(;;) //wait until data is ready
39 if (*(baseaddr_p+93) == 0xACCEDE01)
40 break;
41 //send Y
42 xil_printf("%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08

x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n\r", *(baseaddr_p+133), *(baseaddr_p+132),

*(baseaddr_p+131), *(baseaddr_p+130), *(baseaddr_p+129), *(baseaddr_p+128), *(baseaddr_p+127), *(
baseaddr_p+126), *(baseaddr_p+125), *(baseaddr_p+124), *(baseaddr_p+123), *(baseaddr_p+122), *(baseaddr_p
+121), *(baseaddr_p+120), *(baseaddr_p+119), *(baseaddr_p+118), *(baseaddr_p+117), *(baseaddr_p+116), *(
baseaddr_p+115), *(baseaddr_p+114), *(baseaddr_p+113), *(baseaddr_p+112), *(baseaddr_p+111), *(baseaddr_p
+110), *(baseaddr_p+109), *(baseaddr_p+108), *(baseaddr_p+107), *(baseaddr_p+106), *(baseaddr_p+105), *(
baseaddr_p+104), *(baseaddr_p+103), *(baseaddr_p+102), *(baseaddr_p+101), *(baseaddr_p+100), *(baseaddr_p
+99), *(baseaddr_p+98), *(baseaddr_p+97), *(baseaddr_p+96), *(baseaddr_p+95), *(baseaddr_p+94));

43
44 //Authentication phase (repeat forever)
45 while(1){
46 wait_rcv(); //wait for starting byte
47 rcv_int(3); //receive leftmost word of N1
48 rcv_int(2); //receive next word of N1
49 rcv_int(1); //receive next word of N1
50 rcv_int(0); //receive rightmost word of N1
51 *(baseaddr_p+4) = 0xFACADE02; //set data ready
52 for(;;) //wait until data is ready
53 if (*(baseaddr_p+93) == 0xACCEDE02)
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54 break;
55 //send HD_rep
56 xil_printf("%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x

%08x%08x%08x%08x%08x%08x%08x%08x\n\r", *(baseaddr_p+36), *(baseaddr_p+35), *(baseaddr_p+34), *(
baseaddr_p+33), *(baseaddr_p+32), *(baseaddr_p+31), *(baseaddr_p+30), *(baseaddr_p+29), *(baseaddr_p
+28), *(baseaddr_p+27), *(baseaddr_p+26), *(baseaddr_p+25), *(baseaddr_p+24), *(baseaddr_p+23), *(
baseaddr_p+22), *(baseaddr_p+21), *(baseaddr_p+20), *(baseaddr_p+19), *(baseaddr_p+18), *(baseaddr_p
+17), *(baseaddr_p+16), *(baseaddr_p+15), *(baseaddr_p+14), *(baseaddr_p+13), *(baseaddr_p+12), *(
baseaddr_p+11), *(baseaddr_p+10), *(baseaddr_p+9), *(baseaddr_p+8), *(baseaddr_p+7), *(baseaddr_p+6),

*(baseaddr_p+5));
57 //send HD_bch
58 xil_printf("%08x%08x%08x%08x%08x%08x%08x%08x\n\r", *(baseaddr_p+44), *(baseaddr_p+43), *(baseaddr_p+42), *(

baseaddr_p+41), *(baseaddr_p+40), *(baseaddr_p+39), *(baseaddr_p+38), *(baseaddr_p+37));
59 //send C2
60 xil_printf("%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x

%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n\r", *(baseaddr_p+84), *(baseaddr_p
+83), *(baseaddr_p+82), *(baseaddr_p+81), *(baseaddr_p+80), *(baseaddr_p+79), *(baseaddr_p+78), *(
baseaddr_p+77), *(baseaddr_p+76), *(baseaddr_p+75), *(baseaddr_p+74), *(baseaddr_p+73), *(baseaddr_p
+72), *(baseaddr_p+71), *(baseaddr_p+70), *(baseaddr_p+69), *(baseaddr_p+68), *(baseaddr_p+67), *(
baseaddr_p+66), *(baseaddr_p+65), *(baseaddr_p+64), *(baseaddr_p+63), *(baseaddr_p+62), *(baseaddr_p
+61), *(baseaddr_p+60), *(baseaddr_p+59), *(baseaddr_p+58), *(baseaddr_p+57), *(baseaddr_p+56), *(
baseaddr_p+55), *(baseaddr_p+54), *(baseaddr_p+53), *(baseaddr_p+52), *(baseaddr_p+51), *(baseaddr_p
+50), *(baseaddr_p+49), *(baseaddr_p+48), *(baseaddr_p+47), *(baseaddr_p+46), *(baseaddr_p+45));

61 //send N2
62 xil_printf("%08x%08x%08x%08x\n\r", *(baseaddr_p+88), *(baseaddr_p+87), *(baseaddr_p+86), *(baseaddr_p+85));
63 //send T1
64 xil_printf("%08x%08x%08x%08x\n\r", *(baseaddr_p+92), *(baseaddr_p+91), *(baseaddr_p+90), *(baseaddr_p+89));
65 wait_rcv(); //wait for starting byte
66 rcv_int(3); //receive leftmost word of T2
67 rcv_int(2); //receive next word of T2
68 rcv_int(1); //receive next word of T2
69 rcv_int(0); //receive rightmost word of T2
70 *(baseaddr_p+4) = 0xACCEDE02; //set data ready
71 } return 0; }

C.2.2 CKP Device Core

1 --------------------------------------------------------------------------------------------------------
2 -- Author: J.G. (Gerben) Geltink -- g.geltink@gmail.com
3 -- Module: CKP Device Core -- ckp_dev_core.vhd
4 -- This module describes the device core of the Conceiling Ketje Protocol as presented by the
5 -- guiding MSc thesis: Geltink, J. G. (2016). "Conceiling Ketje: A Lightweight PUF-based
6 -- Privacy Preserving Authentication Protocol".
7 --
8 -- Copyright (c) 2016 J.G. Geltink under MIT license
9 --------------------------------------------------------------------------------------------------------

10 LIBRARY IEEE;
11 USE IEEE.STD_LOGIC_1164.ALL;
12 USE IEEE.NUMERIC_STD.ALL;
13
14 ENTITY ckp_dev_core IS
15 PORT ( clk : IN STD_LOGIC;
16 pdi1 : IN STD_LOGIC_VECTOR (31 DOWNTO 0); --public data input
17 pdi2 : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
18 pdi3 : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
19 pdi4 : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
20 pdi5 : IN STD_LOGIC_VECTOR (31 DOWNTO 0); --input instruction
21 pdo1 : OUT STD_LOGIC_VECTOR (31 DOWNTO 0); --public data output
22 pdo2 : OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
23 -- pdo2 to pdo87 OMITTED FOR CLARITY
24 pdo88 : OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
25 pdo89 : OUT STD_LOGIC_VECTOR (31 DOWNTO 0); --output instruction
26 pdo90 : OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
27 -- pdo91 to pdo127 OMITTED FOR CLARITY
28 pdo128 : OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
29 pdo129 : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
30 );
31 END ckp_dev_core;
32
33 ARCHITECTURE Behavioral OF ckp_dev_core IS
34 --COMPONENT DECLARATIONS
35 COMPONENT DAPUF
36 PORT(
37 clk : IN STD_LOGIC;
38 rst_n : IN STD_LOGIC;
39 idata : IN STD_LOGIC_VECTOR(63 DOWNTO 0);
40 esig : IN STD_LOGIC;
41 Answer : OUT std_logic
42 );
43 END COMPONENT;
44 COMPONENT bch255_139_31enc
45 PORT(
46 clk : IN STD_LOGIC;
47 reset : IN STD_LOGIC;
48 din : IN STD_LOGIC;
49 vdin : OUT STD_LOGIC;
50 dout : OUT std_logic
51 );
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52 END COMPONENT;
53 COMPONENT ketjeSr --component received from Guido Bertoni
54 PORT(
55 clk : IN STD_LOGIC;
56 rst : IN STD_LOGIC;
57 npub : IN STD_LOGIC_VECTOR(127 DOWNTO 0);
58 nsec : IN STD_LOGIC_VECTOR(127 DOWNTO 0);
59 key : IN STD_LOGIC_VECTOR(127 DOWNTO 0);
60 rdkey : IN STD_LOGIC_VECTOR(127 DOWNTO 0);
61 bdi : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
62 exp_tag : IN STD_LOGIC_VECTOR(127 DOWNTO 0);
63 len_a : IN STD_LOGIC_VECTOR(63 DOWNTO 0);
64 len_d : IN STD_LOGIC_VECTOR(63 DOWNTO 0);
65 key_ready : IN STD_LOGIC;
66 key_updated : OUT STD_LOGIC;
67 key_needs_update : IN STD_LOGIC;
68 rdkey_ready : IN STD_LOGIC;
69 rdkey_read : OUT STD_LOGIC;
70 npub_ready : IN STD_LOGIC;
71 npub_read : OUT STD_LOGIC;
72 nsec_ready : IN STD_LOGIC;
73 nsec_read : OUT STD_LOGIC;
74 bdi_ready : IN STD_LOGIC;
75 bdi_proc : IN STD_LOGIC;
76 bdi_ad : IN STD_LOGIC;
77 bdi_nsec : IN STD_LOGIC;
78 bdi_pad : IN STD_LOGIC;
79 bdi_decrypt : IN STD_LOGIC;
80 bdi_eot : IN STD_LOGIC;
81 bdi_eoi : IN STD_LOGIC;
82 bdi_read : OUT STD_LOGIC;
83 bdi_size : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
84 bdi_valid_bytes : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
85 bdi_pad_loc : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
86 bdi_nodata : IN STD_LOGIC;
87 exp_tag_ready : IN STD_LOGIC;
88 bdo_ready : IN STD_LOGIC;
89 bdo_write : OUT STD_LOGIC;
90 bdo : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
91 bdo_size : OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
92 bdo_nsec : OUT STD_LOGIC;
93 tag_ready : IN STD_LOGIC;
94 tag_write : OUT STD_LOGIC;
95 tag : OUT STD_LOGIC_VECTOR(127 DOWNTO 0);
96 msg_auth_done : OUT STD_LOGIC;
97 msg_auth_valid : OUT std_logic
98 );
99 END COMPONENT;

100
101 --SIGNAL DECLARATIONS
102 SIGNAL esig_IN : STD_LOGIC := ’0’; --PUF enable SIGNAL
103 SIGNAL res : STD_LOGIC := ’0’;
104 SIGNAL challenge : STD_LOGIC_VECTOR(63 DOWNTO 0);
105 SIGNAL seed1 : STD_LOGIC_VECTOR(11 DOWNTO 0) := x"001"; --TODO: into NVM
106 SIGNAL chal1 : STD_LOGIC_VECTOR(39 DOWNTO 0) := (OTHERS => ’0’); --TODO: into NVM
107 SIGNAL setup : STD_LOGIC := ’0’;
108 SIGNAL seed2 : STD_LOGIC_VECTOR(11 DOWNTO 0) := (OTHERS => ’0’);
109 SIGNAL chal2 : STD_LOGIC_VECTOR(39 DOWNTO 0) := (OTHERS => ’0’);
110 SIGNAL pufresp : STD_LOGIC_VECTOR(1279 DOWNTO 0) := (OTHERS => ’0’);
111 SIGNAL c1 : STD_LOGIC_VECTOR(1279 DOWNTO 0) := (OTHERS => ’0’);
112 SIGNAL pdi : STD_LOGIC_VECTOR(127 DOWNTO 0) := (OTHERS => ’0’);
113 SIGNAL nce2 : STD_LOGIC_VECTOR(126 DOWNTO 0) := (OTHERS => ’0’);
114 SIGNAL t1 : STD_LOGIC_VECTOR(127 DOWNTO 0) := (OTHERS => ’0’);
115 SIGNAL t2 : STD_LOGIC_VECTOR(127 DOWNTO 0) := (OTHERS => ’0’);
116 SIGNAL bchrnd : STD_LOGIC_VECTOR(138 DOWNTO 0) := (OTHERS => ’0’);
117 SIGNAL rep_res : STD_LOGIC_VECTOR(254 DOWNTO 0) := (OTHERS => ’0’);
118 SIGNAL hd_rep : STD_LOGIC_VECTOR(1019 DOWNTO 0) := (OTHERS => ’0’);
119 SIGNAL bch_cw : STD_LOGIC_VECTOR(115 DOWNTO 0) := (OTHERS => ’0’);
120 SIGNAL dev_key : STD_LOGIC_VECTOR(127 DOWNTO 0) := (OTHERS => ’0’);
121 SIGNAL ctrl_puf_resp : STD_LOGIC := ’0’;
122 SIGNAL ctrl_rst_puf : STD_LOGIC := ’0’;
123 SIGNAL ctrl_rst_rep : STD_LOGIC := ’0’;
124 SIGNAL ctrl_index : STD_LOGIC_VECTOR(11 DOWNTO 0) := (OTHERS => ’0’);
125 SIGNAL ctrl_index2 : STD_LOGIC_VECTOR(7 DOWNTO 0) := (OTHERS => ’0’);
126 SIGNAL ctrl_cnt : STD_LOGIC_VECTOR(7 DOWNTO 0) := (OTHERS => ’0’);
127 SIGNAL ctrl_rst_bch : STD_LOGIC := ’0’;
128 SIGNAL ctrl_rst_ketje : STD_LOGIC := ’0’;
129 SIGNAL rst_bch : STD_LOGIC := ’0’;
130 SIGNAL din_bch : STD_LOGIC := ’0’;
131 SIGNAL dout_bch : STD_LOGIC;
132 SIGNAL ctrl_rst_lfsr : STD_LOGIC := ’0’;
133 SIGNAL ctrl_lfsr : STD_LOGIC := ’0’;
134 SIGNAL ctrl_comp_t2 : STD_LOGIC := ’0’;
135 SIGNAL ctrl_checkandupd : STD_LOGIC := ’0’;
136 SIGNAL lfsr : STD_LOGIC_VECTOR(11 DOWNTO 0);
137 SIGNAL ctrl_ketje_mode : STD_LOGIC_VECTOR(1 DOWNTO 0) := (OTHERS => ’0’);
138 SIGNAL npub_reg : STD_LOGIC_VECTOR(127 DOWNTO 0) := (OTHERS => ’0’);
139 SIGNAL key_reg : STD_LOGIC_VECTOR(127 DOWNTO 0) := (OTHERS => ’0’);
140 SIGNAL ad_reg : STD_LOGIC_VECTOR(127 DOWNTO 0) := (OTHERS => ’0’);
141 SIGNAL rst_ketje : STD_LOGIC := ’0’;
142 SIGNAL npub : STD_LOGIC_VECTOR(127 DOWNTO 0) := (OTHERS => ’0’);
143 SIGNAL key : STD_LOGIC_VECTOR(127 DOWNTO 0) := (OTHERS => ’0’);
144 SIGNAL bdi : STD_LOGIC_VECTOR(31 DOWNTO 0) := (OTHERS => ’0’);
145 SIGNAL key_ready : STD_LOGIC := ’0’;
146 SIGNAL key_needs_update : STD_LOGIC := ’0’;
147 SIGNAL npub_ready : STD_LOGIC := ’0’;
148 SIGNAL bdi_ready : STD_LOGIC := ’0’;
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149 SIGNAL bdi_ad : STD_LOGIC := ’0’;
150 SIGNAL bdi_nsec : STD_LOGIC := ’0’;
151 SIGNAL bdi_eot : STD_LOGIC := ’0’;
152 SIGNAL bdi_eoi : STD_LOGIC := ’0’;
153 SIGNAL bdo : STD_LOGIC_VECTOR(31 DOWNTO 0);
154 SIGNAL tag_write : STD_LOGIC;
155 SIGNAL tag : STD_LOGIC_VECTOR(127 DOWNTO 0);
156
157 --UNUSED SIGNAL DECLARATIONS (will be synthesized out)
158 SIGNAL rst_puf : STD_LOGIC := ’0’; --PUF reset signal
159 --OMITTED: vdin_bch_unused, nsec, rdkey, exp_tag, len_a, len_d, rdkey_ready, nsec_ready, bdi_proc, bdi_pad,

bdi_decrypt, bdi_size, bdi_valid_bytes, bdi_pad_loc, bdi_nodata, exp_tag_ready, bdo_ready, tag_ready,
key_updated, rdkey_read, npub_read, nsec_read, bdi_read, bdo_write, bdo_size, bdo_nsec, msg_auth_done,
msg_auth_vali,

160
161 --STATE DECLARATIONS
162 TYPE puf_state_type IS (idle,chall,exec,recv);
163 SIGNAL puf_state : puf_state_type := idle;
164 TYPE rep_state_type IS (idle,exec,set);
165 SIGNAL rep_state : rep_state_type := idle;
166 TYPE bch_state_type IS (idle,restart,exec,get,set);
167 SIGNAL bch_state : bch_state_type := idle;
168 TYPE resp_state_type IS (idle,get_seed2,get_pufresp1,get_bchrnd,get_chal2,get_nce2,get_pufresp2,wtaeadenc,

checkandupd);
169 SIGNAL resp_state : resp_state_type := idle;
170 TYPE ketje_state_type IS (idle,ldkey,ldnce,initstate,ldad,wtad,comptag,ldmsg,wtmsg,lstmsg);
171 SIGNAL ketje_state : ketje_state_type := idle;
172
173 BEGIN
174 DAPUF_0: DAPUF PORT MAP (
175 clk => clk,
176 rst_n => rst_puf,
177 idata => challenge,
178 esig => esig_in,
179 Answer => res
180 );
181 BCH_ENCODER: bch255_139_31enc PORT MAP (
182 clk => clk,
183 reset => rst_bch,
184 din => din_bch,
185 vdin => vdin_bch_unused,
186 dout => dout_bch
187 );
188 KETJE: ketjeSr PORT MAP (
189 clk => clk,
190 rst => rst_ketje,
191 npub => npub,
192 nsec => nsec,
193 key => key,
194 rdkey => rdkey,
195 bdi => bdi,
196 exp_tag => exp_tag,
197 len_a => len_a,
198 len_d => len_d,
199 key_ready => key_ready,
200 key_updated => key_updated,
201 key_needs_update => key_needs_update,
202 rdkey_ready => rdkey_ready,
203 rdkey_read => rdkey_read,
204 npub_ready => npub_ready,
205 npub_read => npub_read,
206 nsec_ready => nsec_ready,
207 nsec_read => nsec_read,
208 bdi_ready => bdi_ready,
209 bdi_proc => bdi_proc,
210 bdi_ad => bdi_ad,
211 bdi_nsec => bdi_nsec,
212 bdi_pad => bdi_pad,
213 bdi_decrypt => bdi_decrypt,
214 bdi_eot => bdi_eot,
215 bdi_eoi => bdi_eoi,
216 bdi_read => bdi_read,
217 bdi_size => bdi_size,
218 bdi_valid_bytes => bdi_valid_bytes,
219 bdi_pad_loc => bdi_pad_loc,
220 bdi_nodata => bdi_nodata,
221 exp_tag_ready => exp_tag_ready,
222 bdo_ready => bdo_ready,
223 bdo_write => bdo_write,
224 bdo => bdo,
225 bdo_size => bdo_size,
226 bdo_nsec => bdo_nsec,
227 tag_ready => tag_ready,
228 tag_write => tag_write,
229 tag => tag,
230 msg_auth_done => msg_auth_done,
231 msg_auth_valid => msg_auth_valid
232 );
233
234 pdo81 <= nce2(31 DOWNTO 0);
235 pdo82 <= nce2(63 DOWNTO 32);
236 pdo83 <= nce2(95 DOWNTO 64);
237 pdo84 <= ’0’ & nce2(126 DOWNTO 96);
238 pdo85 <= t1(31 DOWNTO 0);
239 pdo86 <= t1(63 DOWNTO 32);
240 pdo87 <= t1(95 DOWNTO 64);
241 pdo88 <= t1(127 DOWNTO 96);
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242
243 pdi <= pdi4 & pdi3 & pdi2 & pdi1;
244
245 lfsr_proc : PROCESS(clk, ctrl_rst_lfsr)
246 BEGIN
247 IF (ctrl_rst_lfsr = ’1’) THEN
248 IF (ctrl_lfsr = ’1’) THEN
249 lfsr <= seed1(11 DOWNTO 1) & ’1’;
250 ELSE
251 lfsr <= x"001";
252 END IF;
253 ELSIF RISING_EDGE(clk) THEN
254 lfsr(0) <= lfsr(11);
255 lfsr(1) <= lfsr(0);
256 lfsr(2) <= lfsr(1);
257 lfsr(3) <= lfsr(2) XOR lfsr(11);
258 lfsr(4) <= lfsr(3) XOR lfsr(11);
259 lfsr(5) <= lfsr(4);
260 lfsr(6) <= lfsr(5);
261 lfsr(7) <= lfsr(6) XOR lfsr(11);
262 lfsr(8) <= lfsr(7);
263 lfsr(9) <= lfsr(8);
264 lfsr(10) <= lfsr(9);
265 lfsr(11) <= lfsr(10);
266 END IF;
267 END PROCESS; --p(x) = 1001100100001
268
269 resp_proc : PROCESS(clk)
270 BEGIN
271 IF RISING_EDGE(clk) THEN
272 CASE resp_state IS
273 WHEN idle =>
274 ctrl_rst_ketje <= ’0’;
275 IF (pdi5 = x"facade01") AND (setup = ’0’) THEN
276 chal1 <= pdi1 & pdi2(7 DOWNTO 0);
277 resp_state <= get_seed2;
278 ctrl_index <= x"000";
279 ctrl_rst_puf <= ’1’;
280 pdo89 <= x"facade01"; --data not ready
281 ELSIF (pdi5 = x"facade02") THEN
282 pdo90 <= (OTHERS => ’0’);
283 pdo91 <= (OTHERS => ’0’);
284 pdo92 <= (OTHERS => ’0’);
285 -- pdo93 to pdo126 OMITTED FOR CLARITY
286 pdo127 <= (OTHERS => ’0’);
287 pdo128 <= (OTHERS => ’0’);
288 pdo129 <= (OTHERS => ’0’);
289 resp_state <= get_seed2;
290 ctrl_index <= x"000";
291 ctrl_rst_puf <= ’1’;
292 pdo89 <= x"facade02"; --data not ready
293 END IF;
294 WHEN get_seed2 =>
295 IF (ctrl_index = x"000") THEN
296 ctrl_rst_puf <= ’0’;
297 ctrl_rst_lfsr <= ’1’;
298 ctrl_lfsr <=’1’;
299 --challenge <= chal1(39 DOWNTO 36) [ & chal1(35 DOWNTO 33) & lfsr(11) & ’0’]* EXAMPLE
300 challenge <= chal1(39 DOWNTO 36) & chal1(35 DOWNTO 33) & lfsr(11) & ’0’ & chal1(32 DOWNTO 30) & lfsr

(10) & ’0’ & chal1(29 DOWNTO 27) & lfsr(9) & ’0’ & chal1(26 DOWNTO 24) & lfsr(8) & ’0’ & chal1(23
DOWNTO 21) & lfsr(7) & ’0’ & chal1(20 DOWNTO 18) & lfsr(6) & ’0’ & chal1(17 DOWNTO 15) & lfsr(5)
& ’0’ & chal1(14 DOWNTO 12) & lfsr(4) & ’0’ & chal1(11 DOWNTO 9) & lfsr(3) & ’0’ & chal1(8

DOWNTO 6) & lfsr(2) & ’0’ & chal1(5 DOWNTO 3) & lfsr(1) & ’0’ & chal1(2 DOWNTO 0) & lfsr(0) &
’0’;

301 END IF;
302 IF (ctrl_index = x"00c") THEN
303 resp_state <= get_pufresp1;
304 ctrl_index <= x"000";
305 seed1 <= seed2;
306 ctrl_lfsr <=’0’;
307 ELSIF (ctrl_puf_resp = ’1’) THEN
308 --challenge <= chal1(39 DOWNTO 36) [ & chal1(35 DOWNTO 33) & lfsr(11) & ’0’]* OMITTED
309 ctrl_rst_lfsr <= ’0’;
310 seed2(TO_INTEGER(UNSIGNED(ctrl_index))) <= res;
311 ctrl_index <= STD_LOGIC_VECTOR(UNSIGNED(ctrl_index) + 1);
312 END IF;
313 WHEN get_pufresp1 =>
314 IF (ctrl_index = x"000") THEN
315 ctrl_rst_lfsr <= ’1’;
316 --challenge <= chal1(39 DOWNTO 36) [ & chal1(35 DOWNTO 33) & ’0’ & lfsr(11)]* OMITTED
317 END IF;
318 IF (ctrl_index = x"4fb") THEN
319 IF (pdi5 = x"facade01") AND (setup = ’0’) THEN
320 resp_state <= idle;
321 setup <= ’1’;
322 pdo90 <= pufresp(31 DOWNTO 0);
323 pdo91 <= pufresp(63 DOWNTO 32);
324 pdo92 <= pufresp(95 DOWNTO 64);
325 -- pdo93 to pdo126 OMITTED FOR CLARITY
326 pdo127 <= pufresp(1215 DOWNTO 1184);
327 pdo128 <= pufresp(1247 DOWNTO 1216);
328 pdo129 <= pufresp(1279 DOWNTO 1248);
329 pdo89 <= x"accede01"; --data ready
330 ELSE
331 resp_state <= get_bchrnd;
332 ctrl_rst_rep <= ’1’; --start repetition code in rep_proc
333 ctrl_index <= x"000";
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334 END IF;
335 ELSIF (ctrl_puf_resp = ’1’) THEN
336 --challenge <= chal1(39 DOWNTO 36) [ & chal1(35 DOWNTO 33) & ’0’ & lfsr(11)]* OMITTED
337 ctrl_rst_lfsr <= ’0’;
338 pufresp(TO_INTEGER(UNSIGNED(ctrl_index))) <= res;
339 ctrl_index <= STD_LOGIC_VECTOR(UNSIGNED(ctrl_index) + 1);
340 END IF;
341 WHEN get_bchrnd =>
342 IF (ctrl_index = x"000") THEN
343 ctrl_rst_lfsr <= ’1’;
344 ctrl_rst_rep <= ’0’;
345 ctrl_lfsr <=’1’;
346 --challenge <= chal1(39 DOWNTO 36) [ & chal1(35 DOWNTO 33) & lfsr(11) & ’0’]* OMITTED
347 END IF;
348 IF (ctrl_index = x"08b") THEN
349 resp_state <= get_chal2;
350 ctrl_rst_bch <= ’1’; --start bch code in bch_proc
351 ctrl_ketje_mode <= "01";
352 ctrl_index <= x"000";
353 ctrl_lfsr <=’0’;
354 ELSIF (ctrl_puf_resp = ’1’) THEN
355 --challenge <= chal1(39 DOWNTO 36) [ & chal1(35 DOWNTO 33) & lfsr(11) & ’0’]* OMITTED
356 ctrl_rst_lfsr <= ’0’;
357 bchrnd(TO_INTEGER(UNSIGNED(ctrl_index))) <= res;
358 ctrl_index <= STD_LOGIC_VECTOR(UNSIGNED(ctrl_index) + 1);
359 END IF;
360 WHEN get_chal2 =>
361 IF (ctrl_index = x"028") THEN
362 resp_state <= get_nce2;
363 ctrl_index <= x"000";
364 ctrl_lfsr <=’0’;
365 ELSIF (ctrl_puf_resp = ’1’) THEN
366 --challenge <= chal1(39 DOWNTO 36) [ & chal1(35 DOWNTO 33) & lfsr(11) & ’0’]* OMITTED
367 ctrl_rst_bch <= ’0’;
368 chal2(TO_INTEGER(UNSIGNED(ctrl_index))) <= res;
369 ctrl_index <= STD_LOGIC_VECTOR(UNSIGNED(ctrl_index) + 1);
370 END IF;
371 WHEN get_nce2 =>
372 IF (ctrl_index = x"07f") THEN
373 resp_state <= get_pufresp2;
374 ctrl_rst_ketje <= ’1’; --start computing dev-key
375 ctrl_index <= x"000";
376 ctrl_lfsr <=’0’;
377 ELSIF (ctrl_puf_resp = ’1’) THEN
378 --challenge <= chal1(39 DOWNTO 36) [ & chal1(35 DOWNTO 33) & lfsr(11) & ’0’]* OMITTED
379 nce2(TO_INTEGER(UNSIGNED(ctrl_index))) <= res;
380 ctrl_index <= STD_LOGIC_VECTOR(UNSIGNED(ctrl_index) + 1);
381 END IF;
382 WHEN get_pufresp2 =>
383 IF (ctrl_index = x"000") THEN
384 ctrl_rst_lfsr <= ’1’;
385 --challenge <= chal2(39 DOWNTO 36) [ & chal2(35 DOWNTO 33) & ’0’ & lfsr(11)]* OMITTED
386 END IF;
387 IF (ctrl_index = x"4fb") THEN
388 resp_state <= wtaeadenc;
389 ctrl_index <= x"000";
390 ctrl_rst_ketje <= ’1’; --start computing C^1,T^1
391 ctrl_ketje_mode <= "10";
392 ELSIF (ctrl_puf_resp = ’1’) THEN
393 --challenge <= chal2(39 DOWNTO 36) [ & chal2(35 DOWNTO 33) & ’0’ & lfsr(11)]* OMITTED
394 ctrl_rst_lfsr <= ’0’;
395 ctrl_rst_ketje <= ’0’;
396 pufresp(TO_INTEGER(UNSIGNED(ctrl_index))) <= res;
397 ctrl_index <= STD_LOGIC_VECTOR(UNSIGNED(ctrl_index) + 1);
398 END IF;
399 WHEN wtaeadenc =>
400 IF (ctrl_comp_t2 = ’1’) THEN
401 ctrl_rst_ketje <= ’1’; --start computing T^2
402 ctrl_ketje_mode <= "11";
403 resp_state <= checkandupd;
404 pdo89 <= x"facade09";
405 ELSE
406 ctrl_rst_ketje <= ’0’;
407 END IF;
408 WHEN checkandupd =>
409 IF (ctrl_checkandupd = ’1’) THEN
410 pdo89 <= x"accede02"; --data ready
411 ELSE
412 ctrl_rst_ketje <= ’0’;
413 END IF;
414 IF (pdi5 = x"accede02") AND (ctrl_checkandupd = ’1’) THEN
415 IF (pdi = t2) THEN
416 chal1 <= chal2;
417 pdo89 <= x"accede03"; --finished AND accepted
418 END IF;
419 resp_state <= idle;
420 END IF;
421 WHEN OTHERS =>
422 ctrl_rst_ketje <= ’0’;
423 END CASE;
424 END IF;
425 END PROCESS;
426
427 puf_proc : PROCESS(clk)
428 BEGIN
429 IF (ctrl_rst_puf = ’1’) THEN
430 puf_state <= chall;
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431 ELSIF RISING_EDGE(clk) THEN
432 CASE puf_state IS
433 WHEN chall =>
434 esig_in <= ’1’;
435 puf_state <= exec;
436 WHEN exec =>
437 esig_in <= ’0’;
438 ctrl_puf_resp <= ’1’;
439 puf_state <= recv;
440 WHEN recv =>
441 ctrl_puf_resp <= ’0’;
442 puf_state <= chall;
443 WHEN OTHERS =>
444 END CASE;
445 END IF;
446 END PROCESS;
447
448 rep_proc : PROCESS(clk)
449 BEGIN
450 IF (ctrl_rst_rep = ’1’) THEN
451 rep_state <= exec;
452 ELSIF RISING_EDGE(clk) THEN
453 CASE rep_state IS
454 WHEN exec =>
455 FOR i IN 0 TO 254 LOOP
456 rep_res(i) <= pufresp(i*5);
457 hd_rep(i*4) <= pufresp(i*5) XOR pufresp(i*5+1);
458 hd_rep(i*4+1) <= pufresp(i*5) XOR pufresp(i*5+2);
459 hd_rep(i*4+2) <= pufresp(i*5) XOR pufresp(i*5+3);
460 hd_rep(i*4+3) <= pufresp(i*5) XOR pufresp(i*5+4);
461 END LOOP;
462 rep_state <= set;
463 WHEN set =>
464 pdo1 <= hd_rep(31 DOWNTO 0);
465 pdo2 <= hd_rep(63 DOWNTO 32);
466 pdo3 <= hd_rep(95 DOWNTO 64);
467 -- pdo4 to pdo29 OMITTED FOR CLARITY
468 pdo30 <= hd_rep(959 DOWNTO 928);
469 pdo31 <= hd_rep(991 DOWNTO 960);
470 pdo32 <= "0000" & hd_rep(1019 DOWNTO 992);
471 rep_state <= idle;
472 WHEN OTHERS =>
473 END CASE;
474 END IF;
475 END PROCESS;
476
477 bch_proc : PROCESS(clk)
478 BEGIN
479 IF (ctrl_rst_bch = ’1’) THEN
480 bch_state <= restart;
481 ctrl_index2 <= x"00";
482 ELSIF RISING_EDGE(clk) THEN
483 CASE bch_state IS
484 WHEN restart =>
485 rst_bch <= ’1’;
486 bch_state <= exec;
487 WHEN exec =>
488 IF (ctrl_index2 = x"8c") THEN
489 bch_state <= get;
490 ctrl_index2 <= x"00";
491 ELSE
492 rst_bch <= ’0’;
493 din_bch <= bchrnd(TO_INTEGER(UNSIGNED(ctrl_index2)));
494 ctrl_index2 <= STD_LOGIC_VECTOR(UNSIGNED(ctrl_index2) + 1);
495 END IF;
496 WHEN get =>
497 IF (ctrl_index2 = x"74") THEN
498 bch_state <= set;
499 ctrl_index2 <= x"00";
500 ELSE
501 bch_cw(TO_INTEGER(UNSIGNED(ctrl_index2))) <= dout_bch;
502 ctrl_index2 <= STD_LOGIC_VECTOR(UNSIGNED(ctrl_index2) + 1);
503 END IF;
504 WHEN set =>
505 pdo33 <= bch_cw(31 DOWNTO 0) XOR rep_res(31 DOWNTO 0);
506 pdo34 <= bch_cw(63 DOWNTO 32) XOR rep_res(63 DOWNTO 32);
507 pdo35 <= bch_cw(95 DOWNTO 64) XOR rep_res(95 DOWNTO 64);
508 pdo36 <= (bchrnd(11 DOWNTO 0) XOR rep_res(127 DOWNTO 116)) & (bch_cw(115 DOWNTO 96) XOR rep_res(115

DOWNTO 96));
509 pdo37 <= bchrnd(43 DOWNTO 12) XOR rep_res(159 DOWNTO 128);
510 pdo38 <= bchrnd(75 DOWNTO 44) XOR rep_res(191 DOWNTO 160);
511 pdo39 <= bchrnd(107 DOWNTO 76) XOR rep_res(223 DOWNTO 192);
512 pdo40 <= ’0’ & (bchrnd(138 DOWNTO 108) XOR rep_res(254 DOWNTO 224));
513 bch_state <= idle;
514 WHEN OTHERS =>
515 END CASE;
516 END IF;
517 END PROCESS;
518
519 ketje_mode_proc : PROCESS(ctrl_ketje_mode)
520 BEGIN
521 IF (ctrl_ketje_mode = "01") THEN --keygen
522 key_reg <= ’0’ & rep_res(254 DOWNTO 128);
523 npub_reg <= ’0’ & nce2;
524 ad_reg <= rep_res(127 DOWNTO 0);
525 ELSIF (ctrl_ketje_mode = "10") THEN --enc
526 key_reg <= dev_key;
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527 npub_reg <= pdi;
528 ad_reg <= ’0’ & nce2;
529 ELSIF (ctrl_ketje_mode = "11") THEN --authenticator
530 key_reg <= dev_key;
531 npub_reg <= pdi;
532 ad_reg <= ’1’ & nce2;
533 END IF;
534 END PROCESS;
535
536 ketje_proc : PROCESS(clk)
537 BEGIN
538 IF (ctrl_rst_ketje = ’1’) THEN
539 ketje_state <= ldkey;
540 rst_ketje <= ’1’;
541 ctrl_cnt <= x"00";
542 ctrl_checkandupd <= ’0’;
543 ctrl_comp_t2 <= ’0’;
544 ELSIF RISING_EDGE(clk) THEN
545 CASE ketje_state IS
546 WHEN ldkey =>
547 rst_ketje <= ’0’;
548 key <= key_reg;
549 key_needs_update <=’1’;
550 key_ready <=’1’;
551 ketje_state <= ldnce;
552 WHEN ldnce =>
553 key_needs_update <=’0’;
554 key_ready <=’0’;
555 npub <= npub_reg;
556 npub_ready <=’1’;
557 ketje_state <= initstate;
558 WHEN initstate =>
559 npub_ready <=’0’;
560 IF (ctrl_cnt = x"0c") THEN --so total of 14 clk_periods
561 ctrl_cnt <= x"00";
562 ketje_state <= ldad;
563 ELSE
564 ctrl_cnt <= STD_LOGIC_VECTOR(UNSIGNED(ctrl_cnt) + 1);
565 END IF;
566 WHEN ldad =>
567 bdi <= ad_reg(TO_INTEGER(UNSIGNED(ctrl_cnt))*32+31 DOWNTO TO_INTEGER(UNSIGNED(ctrl_cnt))*32);
568 bdi_ready <= ’1’;
569 bdi_ad <=’1’;
570 IF (ctrl_cnt = x"03") AND (ctrl_ketje_mode = "10") THEN
571 bdi_eot <=’1’;
572 ELSIF(ctrl_cnt = x"03") THEN
573 bdi_eoi <=’1’;
574 bdi_eot <=’1’;
575 END IF;
576 ctrl_cnt <= STD_LOGIC_VECTOR(UNSIGNED(ctrl_cnt) + 1);
577 ketje_state <= wtad;
578 WHEN wtad =>
579 bdi <= x"00000000";
580 bdi_ready <= ’0’;
581 bdi_ad <= ’0’;
582 bdi_eot <=’0’;
583 bdi_eoi <=’0’;
584 IF (ctrl_cnt = x"04") AND (ctrl_ketje_mode = "10") THEN
585 ketje_state <= ldmsg;
586 ctrl_cnt <= x"00";
587 ELSIF (ctrl_cnt = x"04") THEN
588 ketje_state <= comptag;
589 ctrl_cnt <= x"00";
590 ELSE
591 ketje_state <= ldad;
592 END IF;
593 WHEN ldmsg =>
594 bdi <= pufresp(TO_INTEGER(UNSIGNED(ctrl_cnt))*32+31 DOWNTO TO_INTEGER(UNSIGNED(ctrl_cnt))*32);
595 bdi_ready <= ’1’;
596 IF (ctrl_cnt = x"27") THEN
597 bdi_eot <=’1’;
598 END IF;
599 ctrl_cnt <= STD_LOGIC_VECTOR(UNSIGNED(ctrl_cnt) + 1);
600 ketje_state <= wtmsg;
601 WHEN wtmsg =>
602 bdi <= x"00000000";
603 bdi_ready <= ’0’;
604 bdi_eot <=’0’;
605 bdi_eoi <=’0’;
606 IF (ctrl_cnt = x"28") then
607 ketje_state <= lstmsg;
608 c1(TO_INTEGER(UNSIGNED(ctrl_cnt))*32-33 DOWNTO TO_INTEGER(UNSIGNED(ctrl_cnt))*32-64) <= bdo;
609 ctrl_cnt <= x"00";
610 ELSIF (ctrl_cnt /= x"00") AND (ctrl_cnt /= x"01") THEN
611 c1(TO_INTEGER(UNSIGNED(ctrl_cnt))*32-33 DOWNTO TO_INTEGER(UNSIGNED(ctrl_cnt))*32-64) <= bdo;
612 ketje_state <= ldmsg;
613 ELSE
614 ketje_state <= ldmsg;
615 END IF;
616 WHEN lstmsg =>
617 IF (ctrl_cnt = x"01") THEN
618 c1(1279 DOWNTO 1248) <= bdo;
619 ketje_state <= comptag;
620 ctrl_cnt <= x"00";
621 pdo41 <= c1(31 DOWNTO 0);
622 pdo42 <= c1(63 DOWNTO 32);
623 pdo43 <= c1(95 DOWNTO 64);
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624 -- pdo44 to pdo76 OMITTED FOR CLARITY
625 pdo77 <= c1(1183 DOWNTO 1152);
626 pdo78 <= c1(1215 DOWNTO 1184);
627 pdo79 <= c1(1247 DOWNTO 1216);
628 pdo80 <= bdo;
629 ELSE
630 ctrl_cnt <= STD_LOGIC_VECTOR(UNSIGNED(ctrl_cnt) + 1);
631 END IF;
632 WHEN comptag =>
633 IF (tag_write = ’1’) THEN
634 IF (ctrl_ketje_mode = "01") THEN --keygen
635 dev_key <= tag;
636 ketje_state <= idle;
637 ELSIF (ctrl_ketje_mode = "10") THEN --enc
638 t1 <= tag;
639 ctrl_comp_t2 <= ’1’;
640 ketje_state <= idle;
641 ELSIF (ctrl_ketje_mode = "11") THEN --authenticator
642 t2 <= tag;
643 ketje_state <= idle;
644 ctrl_checkandupd <= ’1’;
645 END IF;
646 END IF;
647 WHEN OTHERS =>
648 END CASE;
649 END IF;
650 END PROCESS;
651
652 end Behavioral;

C.2.3 3-1 DAPUF

1 /******************************************************************************************************/
2 // Author: J.G. (Gerben) Geltink // g.geltink@gmail.com
3 // Module: 3-1 DAPUF // dapuf.v
4 // This module describes the device DAPUF in the Conceiling Ketje Protocol as presented by the
5 // guiding MSc thesis: Geltink, J. G. (2016). "Conceiling Ketje: A Lightweight PUF-based
6 // Authentication Protocol".
7 //
8 // Copyright (c) 2015 Sakiyama, Machida, Iwamoto All Rights Reserved.
9 // Adapted by J.G. (Gerben) Geltink, Copyright (c) 2016 under MIT license

10 /******************************************************************************************************/
11
12
13 /************************************ 3-1 DAPUF Module begin ******************************************/
14 module DAPUF(clk, rst_n, idata, esig, Answer);
15
16 input clk; // Clock signal
17 input rst_n; // Reset signal
18 input [63:0] idata; // 64-bit challenge
19 input esig; // Input signal
20 output Answer; //1-bit response
21
22 /************************************ Wire/Register Definition begin **********************************/
23 //reg [63:0] idata;
24 reg Answer_reg;
25
26 wire a0,a1,a2,//// a3 to a64 OMITTED FOR CLARITY
27 wire b0,b1,b2,//// b3 to b64 OMITTED FOR CLARITY
28 wire c0,c1,c2,//// c3 to c64 OMITTED FOR CLARITY
29 wire d0,d1,d2,//// d3 to d64 OMITTED FOR CLARITY
30 wire e0,e1,e2,//// e3 to e64 OMITTED FOR CLARITY
31 wire f0,f1,f2,//// f3 to f64 OMITTED FOR CLARITY
32 wire res_a,res_b,res_c,res_d,res_e,res_f;
33 /************************************ Wire/Register Definition begin **********************************/
34
35 /************************************ Generate Input Signal begin *************************************/
36 //assign idata = idata;
37
38 FDCE #(
39 .INIT(1’b0) // Initial value of register (1’b0 or 1’b1)
40 ) sig_reg_a (
41 .Q(a0), // Data output
42 .C(clk), // Clock input
43 .CE(1’b1), // Clock enable input
44 .CLR(1’b0), // Asynchronous clear input
45 .D(esig) // Data input
46 );
47
48 FDCE #(
49 .INIT(1’b0) // Initial value of register (1’b0 or 1’b1)
50 ) sig_reg_b (
51 .Q(c0), // Data output
52 .C(clk), // Clock input
53 .CE(1’b1), // Clock enable input
54 .CLR(1’b0), // Asynchronous clear input
55 .D(esig) // Data input
56 );
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57 /*************************************** Generate Input Signal end ************************************/
58
59 /*************************************** First Selector Chain begin ***********************************/
60 MUXF7 MUX_000(.O(a1), .I0(a0), .I1(a0), .S(idata[0])); // synthesis attribute keep of a1 is true;
61 MUXF7 MUX_001(.O(b1), .I0(c0), .I1(c0), .S(idata[0])); // synthesis attribute keep of b1 is true;
62 MUXF7 MUX_002(.O(a2), .I0(a1), .I1(b1), .S(idata[1])); // synthesis attribute keep of a2 is true;
63 MUXF7 MUX_003(.O(b2), .I0(b1), .I1(a1), .S(idata[1])); // synthesis attribute keep of b2 is true;
64 //// MUX_005 to MUX_123 OMITTED FOR CLARITY
65 MUXF7 MUX_124(.O(a63), .I0(a62), .I1(b62), .S(idata[62])); // synthesis attribute keep of a63 is true;
66 MUXF7 MUX_125(.O(b63), .I0(b62), .I1(a62), .S(idata[62])); // synthesis attribute keep of b63 is true;
67 MUXF7 MUX_126(.O(a64), .I0(a63), .I1(b63), .S(idata[63])); // synthesis attribute keep of a64 is true;
68 MUXF7 MUX_127(.O(b64), .I0(b63), .I1(a63), .S(idata[63])); // synthesis attribute keep of b64 is true;
69 /*************************************** First Selector Chain end *************************************/
70
71 /*************************************** Second Selector Chain begin **********************************/
72 MUXF7 MUX_128(.O(c1), .I0(a0), .I1(a0), .S(idata[0])); // synthesis attribute keep of c1 is true;
73 MUXF7 MUX_129(.O(d1), .I0(c0), .I1(c0), .S(idata[0])); // synthesis attribute keep of d1 is true;
74 MUXF7 MUX_130(.O(c2), .I0(c1), .I1(d1), .S(idata[1])); // synthesis attribute keep of c2 is true;
75 MUXF7 MUX_131(.O(d2), .I0(d1), .I1(c1), .S(idata[1])); // synthesis attribute keep of d2 is true;
76 //// MUX_132 to MUX_251 OMITTED FOR CLARITY
77 MUXF7 MUX_252(.O(c63), .I0(c62), .I1(d62), .S(idata[62])); // synthesis attribute keep of c63 is true;
78 MUXF7 MUX_253(.O(d63), .I0(d62), .I1(c62), .S(idata[62])); // synthesis attribute keep of d63 is true;
79 MUXF7 MUX_254(.O(c64), .I0(c63), .I1(d63), .S(idata[63])); // synthesis attribute keep of c64 is true;
80 MUXF7 MUX_255(.O(d64), .I0(d63), .I1(c63), .S(idata[63])); // synthesis attribute keep of d64 is true;
81 /*************************************** Second Selector Chain end ************************************/
82
83 /*************************************** Third Selector Chain begin ***********************************/
84 MUXF7 MUX_256(.O(e1), .I0(a0), .I1(a0), .S(idata[0])); // synthesis attribute keep of e1 is true;
85 MUXF7 MUX_257(.O(f1), .I0(c0), .I1(c0), .S(idata[0])); // synthesis attribute keep of f1 is true;
86 MUXF7 MUX_258(.O(e2), .I0(e1), .I1(f1), .S(idata[1])); // synthesis attribute keep of e2 is true;
87 MUXF7 MUX_259(.O(f2), .I0(f1), .I1(e1), .S(idata[1])); // synthesis attribute keep of f2 is true;
88 //// MUX_260 to MUX_379 OMITTED FOR CLARITY
89 MUXF7 MUX_380(.O(e63), .I0(e62), .I1(f62), .S(idata[62])); // synthesis attribute keep of e63 is true;
90 MUXF7 MUX_381(.O(f63), .I0(f62), .I1(e62), .S(idata[62])); // synthesis attribute keep of f63 is true;
91 MUXF7 MUX_382(.O(e64), .I0(e63), .I1(f63), .S(idata[63])); // synthesis attribute keep of e64 is true;
92 MUXF7 MUX_383(.O(f64), .I0(f63), .I1(e63), .S(idata[63])); // synthesis attribute keep of f64 is true;
93 /*************************************** Third Selector Chain end *************************************/
94
95 /*************************************** Generate Response begin **************************************/
96 SRL SRL_0(.S(a64), .R(c64), .Q(res_a)); // synthesis attribute keep of res_a is true;
97 SRL SRL_1(.S(c64), .R(e64), .Q(res_b)); // synthesis attribute keep of res_b is true;
98 SRL SRL_2(.S(e64), .R(a64), .Q(res_c)); // synthesis attribute keep of res_c is true;
99 SRL SRL_3(.S(b64), .R(d64), .Q(res_d)); // synthesis attribute keep of res_d is true;

100 SRL SRL_4(.S(d64), .R(f64), .Q(res_e)); // synthesis attribute keep of res_e is true;
101 SRL SRL_5(.S(f64), .R(b64), .Q(res_f)); // synthesis attribute keep of res_f is true;
102
103 assign Answer = Answer_reg;
104
105 always @(posedge clk or negedge rst_n) begin
106 if (~rst_n) begin
107 //rst_n was unneccesary => changed by JGG
108 Answer_reg <= res_a^res_b^res_c^res_d^res_e^res_f;//1’b0; // Reset
109 end
110 else begin
111 Answer_reg <= res_a^res_b^res_c^res_d^res_e^res_f;
112 end
113 end
114 /************************************* Response Generating Part end ***********************************/
115 endmodule
116 /*************************************** 3-1 DAPUF Module end *****************************************/
117
118
119 /*************************************** SR Latch Module begin ****************************************/
120 module SRL(S, R, Q);
121 input S,R;
122 output Q;
123 wire QB;
124
125 NAND2 NAND_0(.I0(S), .I1(QB), .O(Q)); // synthesis attribute keep of Q is true;
126 NAND2 NAND_1(.I0(R), .I1(Q), .O(QB)); // synthesis attribute keep of QB is true;
127 endmodule
128 /*************************************** SR Latch module end ******************************************/
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C.2.4 Constraints

1 #******************************************************************************************************#
2 # Author: J.G. (Gerben) Geltink # g.geltink@gmail.com
3 # Module: Xilinx Design Constr # constr.xdc
4 # This module describes the design constraints of the device DAPUF in the Conceiling Ketje
5 # Protocol as presented by the guiding MSc thesis: Geltink, J. G. (2016). "Conceiling Ketje: A
6 # Lightweight PUF-based Authentication Protocol".
7 #
8 # Copyright (c) 2016 J.G. Geltink under MIT license
9 #******************************************************************************************************#

10
11 #**************************************** Start registers begin ***************************************#
12 set_property BEL BFF [get_cells CKP_DEV_CORE_0/DAPUF_0/sig_reg_a]
13 set_property LOC SLICE_X56Y149 [get_cells CKP_DEV_CORE_0/DAPUF_0/sig_reg_a]
14 set_property BEL AFF [get_cells CKP_DEV_CORE_0/DAPUF_0/sig_reg_b]
15 set_property LOC SLICE_X56Y149 [get_cells CKP_DEV_CORE_0/DAPUF_0/sig_reg_b]
16 #***************************************** Start registers end ****************************************#
17
18 #************************************* First Selector Chain begin *************************************#
19 set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_000]
20 set_property LOC SLICE_X54Y148 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_000]
21 set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_001]
22 set_property LOC SLICE_X55Y148 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_001]
23 set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_002]
24 set_property LOC SLICE_X54Y147 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_002]
25 set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_003]
26 set_property LOC SLICE_X55Y147 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_003]
27 #### MUX_004 to MUX_123 OMITTED FOR CLARITY
28 set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_124]
29 set_property LOC SLICE_X54Y86 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_124]
30 set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_125]
31 set_property LOC SLICE_X55Y86 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_125]
32 set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_126]
33 set_property LOC SLICE_X54Y85 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_126]
34 set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_127]
35 set_property LOC SLICE_X55Y85 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_127]
36 #*************************************** First Selector Chain end *************************************#
37
38 #************************************* Second Selector Chain begin ************************************#
39 set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_128]
40 set_property LOC SLICE_X56Y148 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_128]
41 set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_129]
42 set_property LOC SLICE_X57Y148 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_129]
43 set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_130]
44 set_property LOC SLICE_X56Y147 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_130]
45 set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_131]
46 set_property LOC SLICE_X57Y147 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_131]
47 #### MUX_132 to MUX_251 OMITTED FOR CLARITY
48 set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_252]
49 set_property LOC SLICE_X56Y86 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_252]
50 set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_253]
51 set_property LOC SLICE_X57Y86 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_253]
52 set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_254]
53 set_property LOC SLICE_X56Y85 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_254]
54 set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_255]
55 set_property LOC SLICE_X57Y85 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_255]
56 #************************************** Second Selector Chain end *************************************#
57
58 #************************************* Third Selector Chain begin *************************************#
59 set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_256]
60 set_property LOC SLICE_X58Y148 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_256]
61 set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_257]
62 set_property LOC SLICE_X59Y148 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_257]
63 set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_258]
64 set_property LOC SLICE_X58Y147 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_258]
65 set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_259]
66 set_property LOC SLICE_X59Y147 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_259]
67 #### MUX_260 to MUX_379 OMITTED FOR CLARITY
68 set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_380]
69 set_property LOC SLICE_X58Y86 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_380]
70 set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_381]
71 set_property LOC SLICE_X59Y86 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_381]
72 set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_382]
73 set_property LOC SLICE_X58Y85 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_382]
74 set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_383]
75 set_property LOC SLICE_X59Y85 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_383]
76 #*************************************** Third Selector Chain end *************************************#
77
78
79 #*************************************** Generate Response begin **************************************#
80 set_property BEL C6LUT [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_5/NAND_0]
81 set_property LOC SLICE_X59Y82 [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_5/NAND_0]
82 set_property BEL C6LUT [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_0/NAND_1]
83 set_property LOC SLICE_X56Y84 [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_0/NAND_1]
84 set_property BEL C6LUT [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_1/NAND_1]
85 set_property LOC SLICE_X58Y83 [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_1/NAND_1]
86 set_property BEL C6LUT [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_0/NAND_0]
87 set_property LOC SLICE_X54Y84 [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_0/NAND_0]
88 set_property BEL C6LUT [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_2/NAND_1]
89 set_property LOC SLICE_X54Y82 [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_2/NAND_1]
90 set_property BEL C6LUT [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_1/NAND_0]
91 set_property LOC SLICE_X56Y83 [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_1/NAND_0]
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92 set_property BEL C6LUT [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_3/NAND_1]
93 set_property LOC SLICE_X57Y84 [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_3/NAND_1]
94 set_property BEL C6LUT [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_2/NAND_0]
95 set_property LOC SLICE_X58Y82 [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_2/NAND_0]
96 set_property BEL C6LUT [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_4/NAND_1]
97 set_property LOC SLICE_X59Y83 [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_4/NAND_1]
98 set_property BEL C6LUT [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_3/NAND_0]
99 set_property LOC SLICE_X55Y84 [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_3/NAND_0]

100 set_property BEL C6LUT [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_5/NAND_1]
101 set_property LOC SLICE_X55Y82 [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_5/NAND_1]
102 set_property BEL C6LUT [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_4/NAND_0]
103 set_property LOC SLICE_X57Y83 [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_4/NAND_0]
104 #**************************************** Generate Response end ***************************************#

C.2.5 BCH Encoder

1 --------------------------------------------------------------------------------------------------------
2 -- Author: J.G. (Gerben) Geltink -- g.geltink@gmail.com
3 -- Module: BCH encodeer -- bch.vhd
4 -- This module describes the device BCH encoder of the Conceiling Ketje Protocol as presented by
5 -- the guiding MSc thesis: Geltink, J. G. (2016). "Conceiling Ketje: A Lightweight PUF-based
6 -- Authentication Protocol".
7 --
8 -- Copyright (c) 2016 J.G. Geltink under MIT license
9 --------------------------------------------------------------------------------------------------------

10
11 -- ring for encoder
12 LIBRARY ieee;
13 USE ieee.std_logic_1164.ALL;
14 USE WORK.const.ALL;
15
16 ENTITY ering IS
17 PORT (clk, rll, din: IN std_logic;
18 dout : OUT std_logic); --output serial data
19 END ering;
20
21 ARCHITECTURE eringa OF ering IS
22 SIGNAL rin, rout: std_logic_vector(0 TO nk-1) := (others => ’0’); -- ring register
23 SIGNAL rin0: std_logic;
24 BEGIN
25 dout<= rout(nk-1);
26 rin0 <= (din XOR rout(nk-1)) AND rll;
27
28 rin(0)<= rin0;
29 rin(1) <= rout(0);
30 rin(2) <= rout(1);
31 rin(3) <= rout(2) XOR rin0;
32 rin(4) <= rout(3) XOR rin0;
33 rin(5) <= rout(4);
34 rin(6) <= rout(5);
35 rin(7) <= rout(6);
36 rin(8) <= rout(7) XOR rin0;
37 rin(9) <= rout(8) XOR rin0;
38 rin(10) <= rout(9);
39 rin(11) <= rout(10);
40 rin(12) <= rout(11);
41 rin(13) <= rout(12);
42 rin(14) <= rout(13);
43 rin(15) <= rout(14);
44 rin(16) <= rout(15);
45 rin(17) <= rout(16) XOR rin0;
46 rin(18) <= rout(17) XOR rin0;
47 rin(19) <= rout(18) XOR rin0;
48 rin(20) <= rout(19) XOR rin0;
49 -- rin(21) to rin(99) OMITTED FOR CLARITY
50 rin(100) <= rout(99);
51 rin(101) <= rout(100) XOR rin0;
52 rin(102) <= rout(101) XOR rin0;
53 rin(103) <= rout(102) XOR rin0;
54 rin(104) <= rout(103);
55 rin(105) <= rout(104) XOR rin0;
56 rin(106) <= rout(105) XOR rin0;
57 rin(107) <= rout(106) XOR rin0;
58 rin(108) <= rout(107) XOR rin0;
59 rin(109) <= rout(108);
60 rin(110) <= rout(109);
61 rin(111) <= rout(110) XOR rin0;
62 rin(112) <= rout(111);
63 rin(113) <= rout(112);
64 rin(114) <= rout(113) XOR rin0;
65 rin(115) <= rout(114);
66 -- Generator polynomial: 100110001100000001111011010000110000001111101101110001101111000111010010111
67 -- 011000010100111100101011101110111100100101
68 -- Number of XOR gates= 59
69
70 PROCESS BEGIN
71 WAIT UNTIL clk’EVENT AND clk=’1’;
72 rout<= rin;
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73 END PROCESS;
74 END eringa;
75
76 --------------------------------------------------------------------------
77 -- COUNTER MODULO n FOR ENCODER BCH CODE (n,k)
78 -- pe- parallel data in; rll-ring loop lock
79 LIBRARY ieee;
80 USE ieee.std_logic_1164.ALL;
81 USE WORK.const.ALL;
82
83 ENTITY ecount IS
84 PORT (clk, reset: IN std_logic;
85 vdin: OUT std_logic);
86 END ecount;
87
88 ARCHITECTURE ecounta OF ecount IS
89 SIGNAL cout: std_logic_vector(0 TO m-1); -- cout in GF(2^m); cout= L^count
90 SIGNAL vdinR, vdinS, vdin1: std_logic;
91 BEGIN
92 vdinR<= cout(0) AND NOT cout(1) AND NOT cout(2) AND NOT cout(3) AND NOT cout(4) AND cout(5) AND NOT cout(6) AND

NOT cout(7);
93 -- reset vdin if cout==k-1
94 vdinS<= ( NOT cout(0) AND cout(1) AND cout(2) AND cout(3) AND NOT cout(4) AND NOT cout(5) AND NOT cout(6) AND

cout(7)) OR reset;
95 -- vdinS=1 if cout==n-1
96 vdin<= vdin1 AND NOT reset;
97
98 PROCESS BEGIN
99 WAIT UNTIL clk’EVENT AND clk=’1’;

100 IF vdinR=’1’ THEN
101 vdin1<= ’0’;
102 ELSIF vdinS=’1’ THEN
103 vdin1<= ’1’;
104 END IF;
105 END PROCESS;
106
107 PROCESS BEGIN -- increment or reset cout in ring, cout=L^count
108 WAIT UNTIL clk’EVENT AND clk=’1’;
109 cout(0)<= cout(m-1) OR reset;
110 cout(1)<= cout(0) AND NOT reset;
111 cout(2)<= (cout(1) XOR cout(m-1)) AND NOT reset;
112 cout(3)<= (cout(2) XOR cout(m-1)) AND NOT reset;
113 cout(4)<= (cout(3) XOR cout(m-1)) AND NOT reset;
114 cout(5)<= cout(4) AND NOT reset;
115 cout(6)<= cout(5) AND NOT reset;
116 cout(7)<= cout(6) AND NOT reset;
117 END PROCESS; --p(x) = 100011101
118 END ecounta;
119
120 -----------------------------------------------------------------
121 -- ENCODER
122 LIBRARY ieee;
123 USE ieee.std_logic_1164.ALL;
124
125 ENTITY bch255_139_31enc IS
126 PORT (clk, reset, din: IN std_logic;
127 vdin, dout: OUT std_logic); --output serial data
128 END bch255_139_31enc; -- vdin - valid data in - to enable external data shifting
129
130 ARCHITECTURE enca OF bch255_139_31enc IS
131 SIGNAL vdin1, rin, rout, rll: std_logic;
132 -- rll-ring loop lock, pe-parallel enable din
133
134 COMPONENT ecount --counter encoder
135 PORT(clk, reset: IN std_logic; vdin: OUT std_logic);
136 END COMPONENT;
137 FOR ALL: ecount USE ENTITY WORK.ecount (ecounta);
138 COMPONENT ering --ring for encoder
139 PORT(clk, rll, din: IN std_logic; dout: OUT std_logic);
140 END COMPONENT;
141 FOR ALL: ering USE ENTITY WORK.ering (eringa);
142 BEGIN
143 c1: ecount
144 PORT MAP (clk, reset, vdin1);
145 r1: ering
146 PORT MAP (clk, rll, rin, rout);
147 rin<= din AND NOT reset;
148 rll<= vdin1 AND NOT reset;
149 vdin<= vdin1;
150
151 PROCESS BEGIN
152 WAIT UNTIL clk’EVENT AND clk=’1’;
153 dout<= (NOT vdin1 AND rout) OR (vdin1 AND rin);
154 END PROCESS;
155 END enca;
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