
An Abstract Automata Learning
Framework

Gerco van Heerdt

June 28, 2016

Master Thesis
Computing Science

Radboud University Nijmegen

First Supervisor Second Supervisor
Prof. Dr. F.W. Vaandrager MSc J.S. Moerman
f.vaandrager@cs.ru.nl joshua.moerman@cs.ru.nl

External Supervisor Second Assessor
Dr. A. Silva Prof. Dr. B.P.F. Jacobs
alexandra.silva@ucl.ac.uk bart@cs.ru.nl

Abstract

Advanced applications of automata learning demand in-
creasinly complex learning algorithms that are hard to reason
about. We use the language of category theory to develop a
unifying framework for the study of automata learning and
show that by a slight generalization minimization and confor-
mance testing are covered as well. The results are expected
to inspire or even form the basis of new algorithms. As an
example, we instantiate the framework to set the first steps
towards an algorithm that learns nominal automata.

Contents
1 Introduction 4

2 Automata Theory, Categorically 9
2.1 Basics . 9
2.2 Automata . 18
2.3 Languages . 23
2.4 A Minimal Realization 26

3 Automata Learning 34
3.1 Approximating the Total Response 36

3.1.1 Observation Tables 46
3.1.2 Discrimination Trees 48

3.2 Learning from Samples 54
3.3 The MAT Model . 56
3.4 Discussion . 63

4 Unifying Learning and Minimization 65
4.1 Conformance Testing 74

5 Moore Automata 78

2

6 Algebraic Structure 81
6.1 Automaton Wrappers 100
6.2 Counterexample Analysis 105
6.3 Discussion . 110

7 Symmetry 113
7.1 Observation Tables 119
7.2 Infinite Alphabets 122
7.3 Termination . 139
7.4 Discussion . 141

8 Conclusions 143

References 145

3

1 Introduction
To help increase confidence in the correctness of a computer system,
many methods have emerged, some of which use a simplified automa-
ton model of the system. For example, in model checking [31, 16]
one verifies properties for the model, which is relatively efficient
compared to directly testing the system. In fact, there may be no
analogous testing method available at all to determine whether a
property holds for the system. Unfortunately, constructing a model
manually often requires a lot of time from a person having expert
knowledge of the system.

Active automata learning is a technique that infers an automaton
of a system just by providing inputs and observing the correspond-
ing outputs, thus enabling the use of model checking on arbitrary
systems [58]. Moreover, the ability to extract models has found
many applications in analyzing the differences of systems that are
supposed to perform the same task.

The classical automata learning algorithm due to Angluin [7]
reduces the learning problem to the problem of determining equiva-
lence of an automaton with the system. That is, the learner repeat-
edly constructs a hypothesis automaton and asks an oracle if it is
correct. If not, a counterexample, i.e., an input that witnesses the
inequivalence of the hypothesis with the system, is provided, which
is used by the learner to refine the hypothesis. In practice, deter-
mining the equivalence of a hypothesis with the system has to be
approximated using a finite number of tests. The implementation
of this algorithm and its derivatives in tools such as LearnLib [45]
opened the doors to numerous applications.

An application that has been explored recently is the rejuvena-
tion of legacy components. Schuts et al. [63] learned automata of
both the new and the old implementation of software that in a real
development project at Philips had to be replaced as a result of
the introduction of new hardware. Using these learned models, they
were able to identify a discrepancy that had not been found using the
existing unit test cases. This discrepancy corresponded to an issue

4

in the new implementation. Interestingly, they also found a mistake
in the old implementation. By adjusting the implementations, the
process could be repeated, and eventually the implementations were
equal (up to the approximations used by the learning algorithm).

One of the major uses of automata learning that has been get-
ting attention for over a decade now is the comparison of imple-
mentations of a network protocol with one another and with their
specification. For example, de Ruiter and Poll [32] found new flaws
in three out of nine TLS implementations for which they manually
inspected learned models. Cho et al. [29] gained new insights into
botnet protocols by inferring models for them. They also observed
that learning may be used for fingerprinting by extracting from a
learned model behavior that is unique to the corresponding imple-
mentation. This same observation was made by de Ruiter and Poll:
all of the evaluated TLS implementations exhibited unique behavior.

When the target is a network protocol, it is relatively easy for
a computer program to send inputs and observe outputs. Chalupar
et al. [27] show that there are also applications to systems that re-
quire physical interaction: they built a Lego robot to operate smart-
card readers used for Internet banking, and using this setup inferred
automata for these devices. With this approach they confirmed a
previously known vulnerability in one of the readers.

A final important observation is that whereas testing meth-
ods usually yield at most one counterexample, the model obtained
through automata learning allows to extract a description of all in-
valid behavior. This observation was put to practice by Chapman
et al. [28], who learn a description of the errors in a program up to
a user-defined abstraction.

Automata learning is well understood in its classical setting of
deterministic automata and trivial generalizations thereof. However,
the network protocols mentioned earlier make use of entities such as
sequence numbers that in this formalism would result in an infinite
number of states. Aarts et al. [1] advocate the use of a mapper
that abstracts from these entities so that a finite model can still be
learned. Constructing such a mapper manually requires time and

5

expert knowledge of the protocol. Subsequent research has therefore
gone into automating this process [38, 2].

The expressiveness of the automata learned through these au-
tomatically refined abstractions was still more limited than desired.
Although progress has been made in this respect [3], much of the fur-
ther research has been directed towards adapting the learning algo-
rithm to directly learn so-called register automata [25, 40, 39, 23, 26],
where states are equipped with registers that on a transition are as-
signed and can be compared with the symbol that is being read
using a suitable predefined set of operations. Unfortunately, these
algorithms have become rather complicated. Moreover, although
the algorithms seem to use properties adapted from Angluin [7],
which is also true of algorithms learning other types of automata [e.g.
22, 8], no unifying formalism has been developed to study automata
learning independent of the targeted automaton type. Without an
abstract framework that captures results irrelevant of the type of
automata involved, there is little guidance to the development of
algorithms in yet unexplored settings. Firm abstract results could
be of great help in designing the increasingly complicated learning
algorithms.

In this thesis, we lay the foundations of an automata learning
framework using the language of category theory by expanding on
ideas first explored by Jacobs and Silva [46]. Category theory is ca-
pable of both abstracting from and generalizing mathematical struc-
tures. In computer science, many concepts can be described as alge-
bras or coalgebras, both of which have been studied thoroughly in a
categorical setting [4, 62]. The fields of algebra and coalgebra come
together in the study of automata.

The use of an abstract language does imply that no detailed
general algorithms can be developed. Our focus is on the core of
the learning algorithm. We provide a fully abstract characterization
of the data structures used in learning and study on this level the
properties that allow for the construction of a hypothesis. Moreover,
we identify sufficient conditions for the hypothesis to be correct.
These results do not directly induce a generalization of Angluin’s

6

algorithm. In particular, they do not suggest what should be done
with a counterexample for a hypothesis. However, we show that
some things can still be said on this topic and that in the specific
cases studied the full algorithm follows without too much effort.

Although we use the language of category theory to derive re-
sults with maximum applicability, no advanced category theoretical
results will be applied. Section 2 introduces all the necessary con-
cepts and proceeds to develop a basic theory of automata on an
abstract level. This is merely a simplified presentation of the pio-
neering work by Arbib and Manes [10, 11]. An important topic is the
theoretical construction of the unique minimal automaton accepting
a given language.

Based on this theory of automata, we develop an abstract frame-
work for the conceptual study of automata learning in Section 3. We
show in detail how the main data structures used in active learning
of deterministic automata fit in this framework. In Section 4 we
observe that, by a simple generalization, our framework can also
be used to study minimization procedures. Although the automata
learning algorithm by Angluin is known to approximate the minimal
automaton for the target language, no explicit formalism that gener-
alizes the data structures used in learning and minimization seems
to have been developed before. After explaining how reachability
analysis and state merging procedures formally relate to concepts in
automata learning, we shortly discuss in Section 4.1 how a specific
kind of conformance testing fits in the developed framework as well.

It is often observed that Angluin’s algorithm can straightfor-
wardly be generalized to an arbitrary output set. We briefly discuss
this generalization in Section 5, where we also review some practical
optimizations.

More category theory is introduced in Section 6, where we lift
our basic assumptions to the category of algebras over a monad.
Finally, Section 7 instantiates these results to the category of sets
equipped with a group action for a given group, which we study in
more detail. This setting is made non-trivial by allowing certain
infinite groups. The result is a first automata learning algorithm for

7

languages accepted by nominal automata [21]. Thus, we provide a
starting point for a generalization of register automata based in a
theory that is being studied extensively.

Specific related and future work will be discussed in Sections 3.4,
6.3, and 7.4, and some final considerations are given in Section 8.

8

2 Automata Theory, Categorically
Category theory provides an abstract framework in which many
mathematical structures can be studied uniformly. In computer
science and engineering, automata are fundamental structures that
formalize a vast range of computational models. A desire to study
these different models simultaneously naturally motivated research
into rephrasing automata theoretical results in the language of cat-
egory theory. An inclination towards this can already be found in a
paper by Arbib and Zeiger [14], and subsequently Arbib and Manes
set forth a series of articles that lifted results to a much more ab-
stract level [10, 11, 12, 13]. Arguably their most successful target
was a characterization of minimality and the existence of unique
minimal automata, which recently led to a generalization of a pecu-
liar minimization algorithm that turns out to exploit a duality that
had been investigated by the aforementioned authors [24].

In this section we tailor the theory of Arbib and Manes to our
subsequent purposes. We assume familiarity with basic set theory
and regular languages, but no knowledge about category theory is
required. Therefore, we recall in Section 2.1 the basic definitions
and facts needed to make this document self-contained. For a com-
prehensive exposition the reader is referred to the excellent works by
Mac Lane [51] and more recently Awodey [15]. Section 2.2 describes
automata abstractly, and the concept of a language is investigated
in Section 2.3 to prepare for the identification of minimal automata
in Section 2.4.

2.1 Basics
Definition 2.1 (Category). A category C comprises a class ObjC
of objects and for all objects A and B in ObjC a class HomC(A,B)
of morphisms, which can be composed in the following sense: if
f ∈ HomC(A,B) and g ∈ HomC(B,C), then there exists a morphism
g ◦ f ∈ HomC(A,C). Composition is required to be associative—
(h◦g)◦f = h◦(g◦f)—and for each object A there must be an identity

9

morphism idA ∈ HomC(A,A), in such a way that f◦idA = f = idB◦f
for f ∈ HomC(A,B).

If the intended category C is clear, we write f : A→ B in favor
of f ∈ HomC(A,B). Alternatively, we may write A

f
// B , which in

particular allows for the diagrammatic reasoning that often speaks
more to the imagination than ordinary equations. For instance, we
could have expressed the identity equation f ◦ idA = f = idB ◦ f by
stating that the diagram

A
id ��

f
//

f

$$

B
id��

A
f
// B

must commute, which means that for all nodes X and Y in the
diagram there is at most one distinct path from X to Y when these
paths are interpreted as morphisms X → Y by folding sequences (in
inverse order) using composition.

The category Sets has all sets as its objects, and for sets A and B
the morphisms HomSets(A,B) are simply the functions with domain
A and codomain B. For sets A, B, and C and functions f : A→ B
and g : B → C, we have the usual composition

(g ◦ f)(a) = g(f(a))

for each a ∈ A, and the identity morphism on a set A is the identity
function idA(a) = a. The convention is that function application
binds stronger than composition. The identity laws are seen to hold
by noting that

(f ◦ idA)(a) = f(idA(a)) = f(a) and
(idB ◦ f)(a) = idB(f(a)) = f(a),

from which we conclude f ◦ idA = f = f ◦ idB , and for associativity

10

we have

((h ◦ g) ◦ f)(a) = (h ◦ g)(f(a)) = h(g(f(a)))

= h((g ◦ f)(a)) = (h ◦ (g ◦ f))(a).

We keep Sets as our main example of a category throughout
much of this thesis, where all categories of importance have sets
with possibly additional structure as objects and structure preserv-
ing functions, homomorphisms, between those as morphisms.

What can be described as a homomorphism of categories is called
a functor. These allow us to describe relations between categories
and sometimes to derive more structured categories at an abstract
level.

Definition 2.2 (Functor). A functor F from a category C to
a category D assigns to each object A in ObjC an object F (A)
in ObjD and to each morphism f : A → B in C a morphism
F (f) : F (A) → F (B) in D. These must preserve identities and
composition: F (idA) = idF (A) and F (g ◦ f) = F (g) ◦ F (f).

We denote such a functor by F : C→ D and often write FA and
Ff rather than F (A) and F (f). By convention, functor application
binds stronger than composition.

If F : C → D and G : D → E are functors, then GF : C → E
defined on objects by GF (A) = G(F (A)) and on morphisms by
GF (f) = G(F (f)) is also a functor:

GF (idA) = G(F (idA)) = G(idFA) = idG(FA) = idGFA and

GF (g ◦ f) = G(F (g ◦ f)) = G(Fg ◦ Ff) = G(Fg) ◦G(Ff)

= GFg ◦GFf.

There is for each category C an identity functor IdC : C → C
defined by IdC(A) = A on objects and IdC(f) = f on morphisms.
We simply have

IdC(idA) = idA = idIdC(A) and
IdC(g ◦ f) = g ◦ f = IdC(g) ◦ IdC(f).

11

For all categories C and D and a fixed object D in D, there is
a constant functor C → D that assigns D to all objects in C and
idD to each morphism in C. The proof of functoriality is similar
to the one for the identity functor, except that for preservation of
compositions one uses that idD = idD ◦ idD.

For a fixed set A, the functor (−) × A : Sets → Sets assigns
to every set B the Cartesian product B × A, and given a function
f : B → C, we define f ×A : B ×A→ C ×A, written f × idA as an
instance of a more general definition, by (f × idA)(b, a) = (f(b), a)
for all a ∈ A and b ∈ B. Note that indeed idB × idA is the identity
on B ×A, and for g : C → D,

((g ◦ f)× idA)(b, a) = ((g ◦ f)(b), a) = (g(f(b)), a)

= (g × idA)(f(b), a)

= (g × idA)((f × idA)(b, a))

= ((g × idA) ◦ (f × idA))(b, a).

Given any functor F : C→ C, called an endofunctor because its
domain and codomain coincide, we can define a category Alg(F)
of algebras for F . Here the objects are tuples (A, a), where A is
an object and a : FA → A a morphism in C. The morphisms
f : (A, a) → (B, b) in Alg(F) are those morphisms f : A → B in
C that make the diagram below on the left commute.

FA
Ff
//

a ��

FB
b��

A
f
// B

FA
F idA //

a ��
a

''

FA
a��

A
idA

// A

FA
Ff
//

a ��

FB
Fg
//

b��

FC
c��

A
f
// B

g
// C

We call such a morphism an F -algebra homomorphism. Recall that
F idA = idFA, so that the middle diagram is easily seen to commute,
which means that identities in C are always F -algebra homomor-
phisms. The composed diagram on the right shows that the com-
position of F -algebra homomorphisms f and g executed in C yields
again an F -algebra homomorphism g ◦ f :

g ◦ f ◦ a = g ◦ b ◦ Ff = c ◦ Fg ◦ Ff = c ◦ F (g ◦ f).

12

Together, this means that composition and identities can simply be
inherited from C.

The above calculation is easily reproduced visually in the dia-
gram that was shown earlier on the right—a process referred to as
diagram chasing. In proofs, we often give only a composed diagram
for which individual parts are known to commute and leave the ac-
tual derivation to the reader.

There exists a forgetful functor Alg(F) → C that maps each
F -algebra (A, a) to the object A in C and each F -algebra homo-
morphism f : (A, a) → (B, b) to the morphism f : A → B in C.
Preservation of identities and composition is trivial for this functor
due to those in Alg(F) being inherited from the ones in C.

Algebras for the functor (−) × A : Sets → Sets are sets S
equipped with a function f : S × A → S. One can think of this
as a system with a state space given by S and that has for each
state s ∈ S and symbol a ∈ A a successor state f(s, a). The for-
getful functor “forgets” about the successor information by mapping
each such system to its state space.

Another endofunctor in the category of sets and functions for
a fixed set A is the exponent functor (−)A that maps each set B
to BA, which is the set of functions A → B; it maps each function
f : B → C to fA : BA → CA given by fA(g) = f◦g for all g : A→ B.
We have idAB(g) = idB ◦ g = g, and regarding compositions,

(h ◦ f)A(g) = h ◦ f ◦ g = hA(f ◦ g) = hA(fA(g)) = (hA ◦ fA)(g).

Yet another endofunctor on Sets is the list functor (−)∗ that
maps each set A to the free monoid A∗ on A—that is, A∗ contains
all words over the alphabet A. Here we adopt terminology that will
be useful later when talking about automata and languages. Such
a word is either the empty word ε or the concatenation u · a of a
word u with a symbol a. We extend concatenation to words and
often write uv in lieu of u · v for words u, v ∈ A∗. The length of a
word u ∈ A∗ is denoted by |u|. Given a function f : A → B, the
function f∗ : A∗ → B∗ is defined by pointwise application of f . A

13

proof of functoriality, which for both properties involves induction
on the structure of words, is left as an exercise.

The power set functor P : Sets → Sets maps each set to its
power set and each function f : A→ B to Pf : PA→ PB given by
P(f)(U) = {f(a) | a ∈ U} for each U ⊆ A. The functor clearly
preserves identities, and for any g : B → C we have

P(g ◦ f)(U) = {(g ◦ f)(a) | a ∈ U} = {g(b) | b ∈ {f(a) | a ∈ U}}
= P(g)({f(a) | a ∈ U}) = (P(g) ◦ P(f))(U).

An important notion that allows us to identify objects in a cat-
egory as essentially the same is that of an isomorphism.

Definition 2.3 (Isomorphism). A morphism f : A → B in some
category C is an isomorphism if it has an inverse—i.e., if there exists
a morphism g : B → A in C satisfying g ◦ f = idA and f ◦ g = idB .
In this case, the objects A and B are said to be isomorphic (in C).

Note that this inverse g, sometimes denoted f−1, is of course
also an isomorphism. Given any object A in an arbitrary category,
the identity idA is its own inverse and thus an isomorphism: we have
idA◦ idA = idA. In Sets, the isomorphisms are precisely the bijective
functions, and in Alg(F) for an endofunctor F on a category C, the
isomorphisms are precisely the F -algebra homomorphisms that are
isomorphisms in C.

The concepts of injectivity and surjectivity can also be general-
ized quite elegantly.

Definition 2.4 (Monos and Epis). A morphism f : A → B in a
category C is monic, or a mono, if for all objects X and morphisms
g1, g2 : X → A such that f ◦ g1 = f ◦ g2 we have g1 = g2; f is epic,
or an epi, if for all objects X and morphisms h1, h2 : B → X with
h1 ◦ f = h2 ◦ f we have h1 = h2.

In diagrams, we indicate monos by tailed arrows (// //) and epis
by double-headed arrows (// //) whenever these properties are rele-
vant.

14

As suggested, the monos in Sets are precisely the injective func-
tions while the epis are the surjective functions.

In general, we have that an isomorphism f is monic—whenever
f ◦g1 = f ◦g2 we have g1 = f−1◦f ◦g1 = f−1◦f ◦g2 = g2—and epic,
but conversely an epic mono may not be an isomorphism. Further,
if f and g are any morphisms such that g ◦ f is defined and epic,
then g is epic: assume h1◦g = h2◦g so that h1◦g◦f = h2◦g◦f , and
thus because g ◦ f is an epi we have h1 = h2. In a similar fashion,
we can show that if g ◦ f is a mono, then so is f .

Epis and monos may allow us to identify a unique morphism sat-
isfying some property. For instance, suppose there exists a morphism
f making the diagram below commute.

A

g

??
e // // B

f
// C //

m // D

A dotted arrow will always be used to represent the assertion that a
morphism can be found to complete the diagram. Now if f ′ : B → C
is any morphism satisfying g = m ◦ f ′ ◦ e, then

m ◦ f ′ ◦ e = g = m ◦ f ◦ e,

so because m is a mono we have f ′ ◦ e = f ◦ e, and using that e is
epic we conclude that f ′ = f .

Uniqueness plays quite an important role in category theory,
where many concepts can be brought back to the following key con-
cept.

Definition 2.5 (Initial Object). An initial object in a category C
is an object A such that for any object B in C there exists a unique
morphism A→ B.

An initial object itself is unique up to unique isomorphism. That
is, supposing A and B are both initial in C, there exists a unique
isomorphism A → B in C. This can be seen as follows. By ini-
tiality, there exist unique morphisms φ : A → B and ψ : B → A.

15

To see that these are inverse to each other, note that the identities
idA : A → A and idB : B → B are unique elements of HomC(A,A)
and HomC(B,B) respectively, which means that ψ ◦ φ = idA and
φ ◦ ψ = idB .

What could be considered the converse of this fact also works: if
A is initial and B is any object isomorphic to A, then B is initial.
Letting φ : A→ B be the isomorphism, there is for each object C a
unique morphism c : A→ C, so if f : B → C is any morphism, then
f ◦ φ = c by initiality of A, and thus f = f ◦ φ ◦ φ−1 = c ◦ φ−1.

In Sets, the initial object exists and is the empty set: there
exists a unique trivial function ∅ → A for each set A. This example
may not seem very exciting, but the concept becomes powerful when
additional structure is introduced. We will often describe an initial
object in a category derived from a category C just in terms of C,
sometimes without making explicit that it concerns an initial object
in some category.

Analogous to the initial object, there is also a notion of a final
object. Instead of defining this formally, we introduce the important
concept of duality.

Proposition 2.6 (Opposite Category). For each category C, there
is an opposite category Cop given by

ObjCop = ObjC, HomCop(A,B) = HomC(B,A),

and composition (denoted • here just to contrast ◦ in C) defined by
g • f = f ◦ g for f : A → B and g : B → C in Cop. It satisfies
(Cop)op = C.

Proof. Note that in C we have f : B → A and g : C → B, so that
f ◦ g : C → A in C and thus f ◦ g : A → C in Cop. This validates
the definition of composition. The identity and associativity laws in
C carry over to Cop:

f • idA = idA ◦ f = f = f ◦ idB = idB • f and
(h • g) • f = f ◦ (g ◦ h) = (f ◦ g) ◦ h = h • (g • f).

16

Moreover, (Cop)op = C, for Obj(Cop)op = ObjCop = ObjC and

Hom(Cop)op(A,B) = HomCop(B,A) = HomC(A,B).

A final object in C can now be defined as an object that is initial
in Cop. Thus, A is final if and only if for each object B there exists a
unique morphism B → A. In Sets it is any singleton set. The main
advantage of this definition is that we get many results for free by
translating results about initial objects. For instance, final objects
are unique up to isomorphism because initial objects are unique up
to isomorphism, and because the isos in Cop are precisely those in
C (g ◦ f = idA if and only if f • g = idA). This technique applies to
many other concepts as well. For instance, an endofunctor in Cop

is precisely one in C, and the monos in Cop are precisely the epis in
C.

For an endofunctor F : C → C we have seen the construction
of the category Alg(F) of F -algebras. As we have just noted, F is
also an endofunctor on Cop, say F • : Cop → Cop, and so we may
construct the quite different category Alg(F •), which, interpreted
over C, is the category CoAlg(F) of coalgebras for F . Here the
objects are pairs (A, a) of an object A with a morphism a : A→ FA
in C, and an F -coalgebra homomorphism f : (A, a) → (B, b) is a
morphism f : A→ B in C that makes the diagram below commute.
Identities and composition are again inherited from C.

A
f
//

a ��

B
b��

FA
Ff
// FB

There is an interesting duality exhibited by the functors (−) ×
A and (−)A: by means of currying, we find that Alg((−) × A)
and CoAlg((−)A) are isomorphic. Despite being another important
concept in category theory, and despite being used heavily by Arbib
and Manes [12], we will not cover the topic of adjoint functors.

17

2.2 Automata
Deterministic automata (DA) for an input alphabet A consist of
a set of states including an initial state and a subset of accepting
states, together with a function that assigns to each pair of a state
and an input symbol a successor state.

In a more abstract setting, we fix a base category B and in this
category an initial state object I, an output object Y , and a functor
D : B→ B that describes the type of dynamics of our automata. We
will develop the general theory abstractly while drawing motivation
from the DA example.

Definition 2.7 (Automaton). An automaton consists of a state
object Q in B together with an initial state map initQ : I → Q,
an output map outQ : Q→ Y , and a dynamics δQ : Q→ DQ.

We employ here a naming scheme that avoids an overabundance
of declarations. However, note that formally an automaton should
be identified as a tuple (Q, initQ, outQ, δQ) such that the same state
object may form different automata. Also note that we may leave
out subscripts if the automaton is clear from the context.

A formal automaton Q is visualized in Figure 2.1 on the left. On
the right, we instantiate to DA by taking B to be the category Sets
of sets and functions and defining I = 1, Y = 2, and D = (−)A. It
is well known that elements of Q correspond bijectively to functions
1 → Q for a singleton set 1, say {∗}, and that a subset F ⊆ Q can
be represented by its characteristic function χF : Q → 2, where we
take 2 = {0, 1}. Specifically, χF (q) = 1 if q ∈ F and χF (q) = 0 if
q 6∈ F . A state q ∈ Q is thus accepting if and only if out(q) = 1.

For instance, consider the DA depicted in Figure 2.2. We indicate
the initial state by an unlabeled arrow and draw a double circle
around accepting states. An arrow from state q to q′ labeled by input
symbol a implies that δ(q)(a) = q′. The diagram of our example

18

I
init // Q

out //

δ
��

Y

DQ

1
init // Q

out //

δ
��

2

QA

Figure 2.1: Formal automata

q0//
b
++

a

		

q1

b

kk

a

		

Figure 2.2: Example DA

automaton thus corresponds to the definition below.

Q = {q0, q1} out(q0) = 0 δ(q0)(a) = δ(q1)(b) = q0

init(∗) = q0 out(q1) = 1 δ(q1)(a) = δ(q0)(b) = q1

Note that the dynamics of a DA can equivalently be described
as a function Q × A → Q, which leads one to wonder if it could
happen that the dynamics of some sort of automaton can only be
described by a morphism DQ → Q. There is, however, nothing to
worry about: in this case we can swap I and Y while moving to the
opposite base category Bop, where such a structure does fall under
our definition of an automaton.

For DA one often wants to talk about the state reached after
reading a word and the language accepted by each state, both of
which are defined by repeatedly applying the transition function. To
recover these concepts abstractly, we start dissecting the structure
of our automaton model.

Definition 2.8 (Input System). An input system is an object K in
B equipped with morphisms initK : I → K and δK : K → DK. A
morphism f : K → L between input systems K and L is an input
system homomorphism if the diagram below commutes.

I
initK //

initL ##

K
δK //

f
��

DK
Df
��

L
δL // DL

19

Input systems and their homomorphisms form a category that
inherits identities and composition from B, very much like the cat-
egories of algebras and coalgebras that we saw in Section 2.1. A
generalization of the set of all words over A now arises in this cat-
egory as an initial object, which we assume to exist. That is, we
assume an input system @ such that for each input system K there
exists a unique input system homomorphism rK : @→ K as shown
below on the left.

I
init@ //

initK ##

@
δ@ //

rK
��

D@

DrK��
K

δK // DK

1
init@ //

initK ""

A∗
δ@ //

rK
��

(A∗)A

rAK��

K
δK // KA

We refer to rK as the reachability map [10] of K.
In the context of DA, @ is the set A∗ of finite words over A

as shown in the diagram on the right. Here the initial state is the
empty word, and the dynamics concatenates symbols to words:

init@(∗) = ε δ@(u)(a) = ua.

The reachability map rK : A∗ → K is defined by induction on the
length of words:

rK(ε) = initK(∗) rK(ua) = δK(rK(u))(a).

For the DA in Figure 2.2 (which is an input system if we forget
about outQ) and u ∈ A∗, r(u) = q0 if the number of b’s in u is even;
otherwise, r(u) = q1.

Let us prove that rK as defined here for the DA setting is indeed
a unique input system homomorphism. To see that it is an input
system homomorphism, note that

(rK ◦ init@)(∗) = rK(ε) = initK(∗) and

(rAK ◦ δ@)(u)(a) = rAK(δ@(u))(a) = (rK ◦ δ@(u))(a) = rK(δ@(u)(a))

= rK(ua) = δK(rK(u))(a) = (δK ◦ rK)(u)(a).

20

For uniqueness, consider any input homomorphism f : A∗ → K.
Thus, f ◦ init@ = initK and fA ◦ δ@ = δK ◦ f . We prove f = rK by
induction on the length of words:

f(ε) = f(init@(∗)) = (f ◦ init@)(∗) = initK(∗) = rK(ε) and

f(ua) = f(δ@(u)(a)) = (f ◦ δ@(u))(a) = fA(δ@(u))(a)

= (fA ◦ δ@)(u)(a) = (δK ◦ f)(u)(a) = δK(f(u))(a)
(IH)
= δK(rK(u))(a) = δK(rK(u))(a) = rK(ua).

We went from automata to input system by disregarding the
output maps. If, instead, we forget about the initial state map, we
arrive at output systems.

Definition 2.9 (Output System). An output system is an object K
in B equipped with morphisms outK : K → Y and δK : K → DK. A
morphism f : K → L between output systems K and L is an output
system homomorphism if the diagram below commutes.

K
outK

{{

δK //

f
��

DK
Df
��

Y L
outLoo

δL // DL

We assume additionally that the category of output systems and
their homomorphisms has a final object, which gives us a universe
of behavior for our automata. Thus, we assume an output system
Ω such that for every output system K there exists a unique output
system homomorphism oK : K → Ω as shown below on the left.

K
outK

{{

δK //

oK
��

DK
DoK��

Y Ω
outΩoo

δΩ // DΩ

K
outK

{{

δK //

oK
��

KA

oAK��

2 2A
∗outΩoo

δΩ // (2A
∗
)A

We refer to oK as the observability map [10] of K.

21

For DA, the situation is shown on the right. In this case, Ω is
the set 2A

∗
of languages over the alphabet A,1 equipped with an

output map that determines whether a language accepts the empty
word and a dynamics that computes for each input symbol the left
derivative of the given language with respect to that symbol:

outΩ(l) = l(ε) δΩ(l)(a)(v) = l(av).

For instance, consider for the alphabet A = {a, b} the language
{a, ba, aba}. Its left derivative with respect to a is

δΩ({a, ba, aba})(a) = {ε, ba}.

Thus, the words that do not begin with an a disappear, and from
the other words the a at the beginning is removed.

The observability map oK : K → 2A
∗
is defined by induction on

the length of words: for any state k ∈ K,

oK(k)(ε) = outK(k) oK(k)(av) = oK(δK(k)(a))(v).

We leave the proof as an exercise.
For the DA in Figure 2.2, o(q0) is the language of all words

over {a, b} that contain an odd number of b’s, whereas o(q1) is the
language of all words that contain an even number of b’s.

An automaton Q is both and input system and an output system,
with the dynamics being shared by these substructures. We define
an automaton homomorphism to be both an input and an output
system homomorphism. This gives us a category Aut of automata
and their homomorphisms such that composition and identities are
inherited from B, as is easily checked.

We may forget about both the initial state maps and the out-
put maps, in which case we are left with simple coalgebras for the
functor D. Let Dyn be the category of these coalgebras and their
homomorphisms, which we refer to as dynamorphisms.

1In intuitive descriptions and examples we often treat languages as sets of
words, whereas formal definitions work with functions A∗ → 2. This conversion
is kept implicit.

22

2.3 Languages
For an automaton Q, and a DA in particular, we now have the
following situation:

I
init@ ��

initQ

))

Y

@
rQ

//

δ@
��

Q
oQ

//

outQ 55

δQ

��

Ω

δΩ
��

outΩ
OO

D@
DrQ

// DQ
DoQ

// DΩ

1
init@ ��

initQ

((

2

A∗
rQ

//

δ@
��

Q
oQ

//

outQ
66

δQ

��

2A
∗

δΩ
��

outΩ
OO

(A∗)A
rAQ
// QA

oAQ
// (2A

∗
)A

We would like to talk about the semantics of the automaton as a
whole—i.e., we seek an abstract characterization of the language be-
ing accepted by Q. Immediately there are two candidate definitions:
we could observe the direct output after every input—outQ ◦ rQ—or
we could observe the behavior of the initial state—oQ ◦ initQ. These
correspond to equivalent representations of a language: a function
L : A∗ → 2 can also be seen as a function L : 1 → 2A

∗
. It turns

out that this correspondence works very abstractly, and there is an
important intermediate representation.

Proposition 2.10 (Language Representation). The following types
of morphisms correspond bijectively to one another:

L : @→ Y in B

tL : @→ Ω in Dyn

L : I → Ω in B .

They turn @ and Ω into automata such that tL is an automaton
homomorphism.

Proof. If we have a morphism out@ = L : @ → Y , then Ω is an
automaton; if, instead, we have a morphism initΩ = L : I → Ω, then
@ is an automaton. We define tL either as o@ or as rΩ in these

23

respective cases.

@
out@

{{

δ@ //

o@
��

D@

Do@��

Y Ω
outΩoo

δΩ // DΩ

I
init@ //

initΩ ##

@
δ@ //

rΩ
��

D@

DrΩ��

Ω
δΩ // DΩ

To avoid ambiguity, these are written as o@,L and rΩ,L.
Now suppose that, instead, we have a dynamorphism tL. We

define L and L as the following compositions.

I
init@ //

L ''

@

tL
��

L

��

Ω
outΩ
// Y

Taking out@ = L and initΩ = L, this directly extends tL to an
automaton homomorphism.

For bijectivity of these operations, note that by definition we
have outΩ ◦ o@,L = L and rΩ,L ◦ init@ = L. We thus only need to
show o@,outΩ◦tL = tL and rΩ,tL◦init@ = tL, but these follow using the
uniqueness properties of observability and reachability maps from
the fact that tL is an automaton homomorphism.

Let us explore tL for a language L : A∗ → 2 while we verify that
the corresponding L : 1→ 2A

∗
is defined as expected.

Proposition 2.11. Given a language L : A∗ → 2, tL : A∗ → 2A
∗

and L : 1→ 2A
∗
are

tL(u)(v) = L(uv) L(∗)(u) = L(u).

Proof. The dynamorphism tL is obtained in the proof of Proposi-
tion 2.10 as o@ (specifically, o@,L), which we recall being defined
inductively:

o@(u)(ε) = out@(u) o@(u)(av) = o@(δ@(u)(a))(v)

= L(u) = o@(ua)(v).

24

A trivial proof by induction on the length of words v yields
tL(u)(v) = o@(u)(v) = L(uv). Furthermore,

L(∗)(u) = (tL ◦ init@)(∗)(u) = tL(ε)(u) = L(u).

To keep things simple, we refer also in the abstract setting to a
morphism L : @→ Y as a language.

Definition 2.12 (Language). A morphism L : @ → Y is called
a language. The corresponding dynamorphism tL is the total re-
sponse [11] of the language L. We define the language LQ accepted
by an automaton Q as LQ = outQ ◦ rQ.

Next, we interpret the correspondence of Proposition 2.10 for an
automaton.

Proposition 2.13. Given an automaton Q, we have

tLQ = oQ ◦ rQ LQ = oQ ◦ initQ.

Proof. Taking tL = oQ ◦ rQ, which is known to be a dynamorphism,
we use the operations defined in the proof of Proposition 2.10 to
find in the commutative diagrams below that the corresponding L
is outQ ◦ rQ = LQ and that L is oQ ◦ initQ. By bijectivity of the
construction, this completes the proof.

Q

oQ
��

outQ

$$
@

tL //

L

??

rQ
::

Ω
outΩ // Y

I
init@

//

L
��

initQ ##

@
tL

//

rQ
��

Ω

Q

oQ

::

Note that Proposition 2.13 equivalently says that rQ and oQ are
automaton homomorphisms with respect to the automaton exten-
sions of @ and Ω for the language LQ. To conclude this section, we
show that automaton homomorphisms witness language equivalence
of the participating automata.

25

Proposition 2.14. For any two automata Q and R, if there exists
an automaton homomorphism f : Q→ R, then LR = LQ.

Proof. Since f is in particular an input system homomorphism, we
have by initiality of @ that rR = f ◦ rQ. Therefore, and using that
f is an output system homomorphism,

LR = outR ◦ rR = outR ◦ f ◦ rQ = outQ ◦ rQ = LQ.

2.4 A Minimal Realization
The usual construction due to Nerode [54] of a minimal automa-
ton for a language L takes certain equivalence classes as the state
space, but it can equivalently be seen as taking the image of the
total response tL. Towards an abstract version of this construction,
we introduce a specific type of factorization systems. For a more
abstract treatment we commend the work of Adámek et al. [5].

Definition 2.15 (Factorization System). A factorization system for
a category C is a pair (E ,M) of classes of morphisms in C such that

(F1) both E andM are closed under composition;
(F2) all morphisms in E are epis; all morphisms inM are monos;
(F3) if g ◦ f ∈ E , then g ∈ E ; if g ◦ f ∈M, then f ∈M;
(F4) each morphism f in C can be decomposed as f = m◦ e, where

e ∈ E and m ∈M; and
(F5) for each commutative square in C as below on the left,

U
i // //

f
��

V
g
��

W //
j
// X

U
i // //

f
��

V
d

||
g
��

W //
j
// X

(2.1)

where i ∈ E and j ∈ M, there exists a diagonal d making the
triangles on the right commute.

Note that both triangles commute if this is the case for one of
them. For instance, if d◦i = f , then j◦d◦i = j◦f = g◦i, from which

26

j◦d = g follows because i is an epi; for the same reason this diagonal
d is necessarily unique. The diagonalization property is equivalent
to the factorizations being unique up to unique isomorphism, and
thus a factorization system intuitively provides a canonical image
for each morphism. We only give a proof for the implication here [5,
Proposition 14.4].

Proposition 2.16 (Uniqueness of Factorizations). If for any mor-
phism f : U → V in a category with a factorization system (E ,M)
we have f = m1◦e1 = m2◦e2 for e1 : U →W and e2 : U → X and E
and m1 : W → V and m2 : X → V inM, then there exists a unique
isomorphism φ : W → X satisfying φ ◦ e1 = e2 and m1 = m2 ◦ φ.

Proof. There are two commutative squares for which we can find
unique diagonals:

U
e1 // //

e2
��

W
φ

{{
m1
��

X //
m2 // V

U
e2 // //

e1
��

X
ψ

{{
m2
��

W //
m1 // V

Then also

U
e1 // //

e2

##
e1

��

W
φ

{{
m1

��

X
ψ

{{

m2

##
W //

m1 // V

U
e2 // //

e1

##
e2

��

X
ψ

{{
m2

��

W
φ

{{

m1

##
X //

m2 // V

commute, so by uniqueness of the diagonals we conclude ψ◦φ = idW
and φ ◦ ψ = idX .

We will rely quite heavily on (F2), which may be interpreted as
the system providing a notion of some sort of minimality rather than
an even more vague notion of canonicity. The properties (F1) and
(F3) become relevant only when learning is considered.

27

In the category of sets and functions, we take the factorization
system

(surjective functions, injective functions),

which satisfies (F1) through (F3) as we have seen in Section 2.1.
Before proceeding to the other properties, we first define define for
any function f : U → V the sets

im(f) = {f(u) ∈ V | u ∈ U} and
ker(f) = {(u1, u2) ∈ U × U | f(u1) = f(u2)},

and give the following more elaborate lemma that will also be useful
later.

Lemma 2.17. Consider functions f and g that complete the respec-
tive diagrams below in Sets.

C
x

f
��

D //
u // E

K
v // //

y

L

g
��

M

The function f exists if and only if im(x) ⊆ im(u); the function g
exists if and only if ker(v) ⊆ ker(y).

Proof. If f exists, then for any element c ∈ C, f(c) ∈ D satisfies
u(f(c)) = x(c). Conversely, assume that for every c ∈ C there exists
a d ∈ D such that u(d) = x(c), and let f(c) be that d. It follows
immediately that u(f(c)) = x(c).

If g exists, then for all k1, k2 ∈ K with v(k1) = v(k2) we have

y(k1) = g(v(k1)) = g(v(k2)) = y(k2).

Conversely, assume that for all k1, k2 ∈ K with v(k1) = v(k2)
we have y(k1) = y(k2). For each l ∈ L, pick any k ∈ K that
satisfies v(k) = l, which is possible since v is surjective, and define
g(l) = y(k). Consider k′ ∈ K, define l = v(k′), and let k be the

28

element of K such that v(k) = l and g(l) = y(k) as provided by the
above definition. This gives us

g(v(k′)) = g(l) = y(k),

and finally y(k) = y(k′) follows from our assumption after observing
that v(k) = l = v(k′).

Now note that a function f : U → V can be factorized as

U
e // //

f

??im(f) //
m // V , where e(u) = f(u) and

m(v) = v.

We can readily see that e is surjective and that m is injective.
For each commuting square of functions as in (F5), the diagonal

exists by Lemma 2.17 if im(g) ⊆ im(j), which is seen from surjectiv-
ity of i:

im(g) = im(g ◦ i) = im(j ◦ f) ⊆ im(j).

On an abstract level, we assume thatB has a factorization system
(E ,M) and that D preservesM (i.e., if f ∈M, then Df ∈M). The
latter implies that we have factorizations of automaton homomor-
phisms, which will lead to the identification of minimal automata.

Lemma 2.18. If h : U → V in Aut is factorized as m ◦ e through
an object M in B, then M is an automaton such that m and e are
automaton homomorphisms.

Proof. We define initM and outM as the compositions indicated be-
low on the left.

I
initU ��

initM

&&

Y

U
e // //

h

??M //
m //

outM 88

V
outV
OO

U
e // //

δU ��

M

δM

��

m��

DU
De ��

V
δV��

DM //
Dm
// DV

U
e //

h ''
δU ��

M
m��

DU
De ��

Dh
''

V
δV��

DM
Dm
// DV

29

The dynamics δM is obtained as the diagonal running through the
rectangle in the middle. This requires commutativity thereof, which
we derive on the right from m ◦ e = h being a dynamorphism.

It remains to show thatm and e are automaton homomorphisms.
By the definition of initM above, e commutes with the initial states;
by the definition of outM , m commutes with the output maps. More-
over, the definition of the δM causes both e and m to be dynamor-
phisms. Thus, we only check outU = outM ◦ e and initV = m ◦ initM
(the non-triangular regions below are homomorphism properties of
h):

M

m
��

outM

$$
U

h //

outU

??

e
::

V
outV // Y

I
initU

//

initV
��

initM $$

U
h

//

e
��

V

M

m

::

Lemma 2.19. If a commuting square through which a diagonal is
obtained using the factorization system in B is a square of automa-
ton homomorphisms, then the diagonal is also an automaton homo-
morphism.

Proof. Consider a commuting square of automaton homomorphisms
as below, and suppose we have obtained d as the diagonal in B.

U
i // //

f
��

V
d

||
g
��

W //
j
// X

We prove that d is an automaton homomorphism by showing

j ◦ d ◦ initV = j ◦ initW
outW ◦ d ◦ i = outV ◦ i

δV ◦ d ◦ i = Dd ◦ δU ◦ i,

from which the expected results follow using that j is a mono and i

30

an epi.

I
initW //

initX

,,initV

��

W��
j��

X

V
d
//

g 88

W
OO j
OO

V
d // W

outW

��

U
i
OOOO

f

88

outU ��i ����

V
outV

// Y

V
δV // DV

Dd

��

U
i
OOOO

δU //

i ���� f $$

DU
Di

99

Df
%%

V
d
// W

δW

// DW

Proposition 2.20 (Automaton Factorizations). The category Aut
has a factorization system inherited from B. Specifically, it is given
by

({e ∈ E | e is an automaton homomorphism},
{m ∈M | m is an automaton homomorphism}).

Proof. Because automaton homomorphisms that are epic (monic)
in B are also epic (monic) in Aut, we see that the properties (F1)
through (F3) are inherited directly. Furthermore, (F4) is provided
by Lemma 2.18, and with Lemma 2.19 we conclude that (F5) also
holds.

Before constructing a minimal automaton, we need to define min-
imality. Using the following definition, the uniqueness property of
factorizations is automatically transferred to minimal automata.

Definition 2.21 (Minimality [11]). An input system U is called
reachable if its reachability map rU is in E . An output system V
is called observable if its observability map oV is inM. We call an
automaton minimal if it is both reachable and observable.

For DA this coincides with the usual notion of minimality: a DA
is minimal if all of its states can be reached from the initial state
(reachability) and no two states accept the same language (observ-
ability).

Consider the DA in Figure 2.3. It is neither reachable—state
q3 cannot be reached—nor observable—states q1 and q2 accept the

31

q3
b //a

++
q0
??

b
++

a

		

q1

b

kk

a
++ q2

b

OO a
kk

Figure 2.3: DA that is neither reachable nor observable

same language. If we remove q3 and merge q1 with q2, we arrive at
a minimal DA that is isomorphic to the one shown in Figure 2.2.

Considering the fact that the total response is an automaton
homomorphism that can be factorized, it is now a trivial task to
identify a minimal automaton for a given language.

Proposition 2.22 (Minimal Realization). There exists a unique
(up to automaton isomorphism) minimal automaton M satisfying
LM = L.

Proof. We have seen in Proposition 2.10 that tL is an automaton ho-
momorphism, so using Proposition 2.20 we factorize tL = oM ◦ rM
through an automaton M . Note that oM and rM in this definition
are automaton homomorphism, so by uniqueness of the reachability
and observability maps this validates our suggestive naming. Fur-
thermore, since rM is defined to be in E and oM is defined to be in
M, the automaton M is minimal. By Proposition 2.13,

tLM = oM ◦ rM = tL,

and hence we have LM = L. Uniqueness follows immediately from
the uniqueness of factorizations.

Let us spell out the resulting automaton: tL = oM ◦ rM is a
factorization through M in Aut, which is just a factorization in B
with the additional definitions initM = rM ◦ init@, outM = outΩ ◦oM ,

32

and the dynamics δM being obtained using diagonalization:

@
rM // //

tL

??M //
oM // Ω

I
init@ ��

initM

((

Y

@
rM

// //

δ@
��

M
oM

//

outM
66

δM

��

Ω

δΩ
��

outΩ
OO

D@
DrM // DM // DoM // DΩ

In the specific case of DA, this results in the definition

M = {tL(u) | u ∈ A∗} initM (∗) = tL(ε)

δM (tL(u))(a) = tL(ua) outM (tL(u)) = L(u),

where by Proposition 2.11 we can think of tL(u) as the residual
language after reading the word u ∈ A∗. Indeed, with our definition
of factorizing functions in Sets, oM is just an inclusion.

For instance, recall that the automaton Q in Figure 2.2 is the
minimal realization for the language L of words over {a, b} contain-
ing an odd number of b’s. The states of the isomorphic automaton
M are given by the languages accepted by the states of Q—the
language of words containing an odd number of b’s for q0 and the
language of words containing an even number of b’s for q1.

33

3 Automata Learning
In active automata learning, a language L is known in that we may
askmembership queries, where we submit a word u ∈ A∗ and retrieve
whether u ∈ L. However, no complete description of L is given; the
goal of the learner is to find an automaton H such that LH = L.

We do not consider passive learning, where membership queries
are not allowed, but a sample, a partial description of L, is given.
There are some very strong complexity results against finding the
minimal DA consistent with the sample, most notably by Pitt and
Warmuth [59], who show that finding even an approximately mini-
mal DA is NP-hard.

Surprisingly, the popular active learning theory also traces back
to the paper by Arbib and Zeiger [14], who, apart from motivating
an abstract study of automata, generalized an identification proce-
dure for linear systems developed by Ho [37]. The idea is that the
conceptual construction of the minimal automaton due to Nerode
[54]—the factorization of tL, as we have formulated it—can be re-
placed by limiting the total response fromA∗ → 2A

∗
toA≤n → 2A

≤m

for n,m ∈ N such that for each state q in the minimal automaton
there is a word u ∈ A≤n = {v ∈ A∗ | |v| ≤ n} that reaches q
(rM (u) = q) and for all states q1, q2 ∈ M there is a word v ∈ A≤m
that distinguishes q1 from q2 (oM (q1)(v) 6= oM (q2)(v)).

This concept was optimized by Gold [36], who additionally notes
that rather than assuming a given upper bound on the number of
states of M and using it to choose sufficiently large n and m, one
may learn indefinitely by iteratively increasing these parameters so
that the automaton is learned in the limit.

Procedures introduced by Gold to still produce an automaton
at incomplete stages were picked up by Angluin [7], who provides a
polynomial time algorithm using a quite different assumption: she
assumes that any automaton can be tested for equivalence with M ,
yielding a counterexample in the case of a negative result. These
enquiries are referred to as equivalence queries. Equivalence queries
are used to produce a sequence of hypothesis automata, where each

34

next hypothesis has more states than the previous one and the last
automaton in the sequence is M .

From a practical perspective, the assumption of being able to
determine equivalence with M amounts to abstracting away from
the hardest part of the problem. In a way, the automata learning
problem is as hard as the problem of answering equivalence queries.
If we can answer equivalence queries, then Angluin’s algorithm can
be applied to learn M . The algorithm asks a number of equivalence
queries that is linear in the size of M , and, abstracting from those
and the membership queries, the algorithm itself runs in polynomial
time (in the sizes of M and A), provided that counterexamples are
of polynomial length. Conversely, if we can learn an automaton
equivalent to a certain black box, we can determine equivalence of
any automaton with that black box by using the usual automata
theoretical methods to determine equivalence. These methods can
also be polynomial, provided that the learning algorithm produces
an automaton of polynomial size.

One way to realize equivalence queries is by using a confor-
mance testing algorithm. In general, conformance testing consists
in testing conformance of some system with a given specification by
means of experimentation [65]. We confine ourselves here to the case
where the specification is an automaton and conformance amounts
to equivalence with that automaton. A well-known example of a
conformance tester in this sense is the W -method due to Vasilevskii
[67] and Chow [30]. Berg et al. [19] show a correspondence between
the learning algorithm of Angluin and the W -method that is much
stronger than the reductions mentioned above. We will explain part
of this in Section 4.1. That is, we will explain the W -method using
concepts and results that will be developed in the present section
for learning.

One could wonder if the conformance tester could not be inte-
grated into the learning algorithm, yielding a likely more optimized
version of the algorithm by Gold. The approach of Angluin, how-
ever, enjoys the usual advantage of a modular design: if conformance
testing methods, or any other realizations of equivalence queries, al-

35

ready exist for the type of automata under consideration, they can
easily be plugged into the learning algorithm, and one method can be
replaced by another without much effort. We can even weaken the
correctness requirement for the algorithm and adopt a stochastic
setting, where the conformance tester is implemented by drawing
tests from A∗ at random, assuming some probability distribution.
This was already suggested by Angluin [7], who places the result-
ing algorithm in the probably approximately correct (PAC) learning
framework due to Valiant [66].

The remainder of this section is organized as follows. We develop
for our abstract setting the concept of an approximation of the total
response in Section 3.1, and we show that it encompasses different
structures proposed for Angluin-style learning. Section 3.2 subse-
quently further explains and generalizes the observations of Gold,
and we turn to Angluin’s concrete algorithm in Section 3.3. Sec-
tion 3.4 concludes with related and future work.

3.1 Approximating the Total Response
We can think of tL as an infinite table with rows and columns such
that a cell in a row with label u ∈ A∗ and a column with label v ∈ A∗
has the value tL(u)(v) = L(uv). That is, each cell records whether
the corresponding row label concatenated with the column label is
in the language. Since the automatonM is the factorization (image)
of tL, its states are given by the different rows in this table. We will
assume that M is a finite set so that the number of distinct rows is
finite, but note that we face two problems in naively computing the
image of tL: first, we cannot iterate over all of A∗; second, we cannot
compare or even represent arbitrary elements of 2A

∗
. To overcome

these problems, we study approximations of the total response.

Definition 3.1 (Approximation). An approximation is a tuple
(S, P, σ, π) comprising objects S and P and morphisms σ : S → @
and π : Ω → P in B. We call the composition ξ defined below the

36

approximated response associated with such an approximation.

S
σ //

ξ

44@
tL // Ω

π // P

One can think of σ as representing an inclusion S ⊆ A∗ and of
π as partitioning the set of languages 2A

∗
into partitions named by

the elements of P . In general, however, we do not require σ to be
monic or π to be epic.

Arguably the simplest kind of approximation for DA is the one
underlying the observation tables [36, 7] that will be introduced later.
Here one takes finite sets S,E ⊆ A∗ and defines P = 2E along with
σS(s) = s for each s ∈ S and πE(l)(e) = l(e) for e ∈ E. The elements
of S are referred to as access strings while the elements of E are
called experiments. We define the observation table approximation

T(S,E) = (S, 2E , σS , πE)

for convenience. The infinite table tL is now limited into the finite
table ξ: σS selects a finite set of rows while πE picks a finite number
of columns. That is, the approximated response is as follows.

Proposition 3.2. For T(S,E), the function ξ : S → 2E is given by

ξ(s)(e) = L(se).

Proof. Because σS and πE simply formalize inclusions, this ulti-
mately follows just from the definition of tL obtained in Proposi-
tion 2.11:

ξ(s)(e) = (πE ◦ tL ◦ σS)(s)(e) = (πE ◦ tL)(s)(e)

= πE(tL(s))(e) = tL(s)(e) = L(se).

An example of an approximated response for an observation table
approximation is visualized in Table 3.1.

37

a b ba bb
a 0 1 1 0
b 1 0 0 1
bb 0 1 1 0

Table 3.1: Example approximated response for the approximation
T({a, b, bb}, {a, b, ba, bb}) targeting the language of the DA in Fig-
ure 2.2—the language of words over {a, b} containing an odd number
of b’s

We fix an arbitrary approximation (S, P, σ, π). The goal of the
learning algorithms that we consider is to constructM (up to isomor-
phism) from the approximated response ξ by factorizing the latter.
Thus, let us factorize ξ = m ◦ e through an object H in B.

S
e // //

ξ

??H //
m // P

By the definition of ξ and M ,

ξ = π ◦ tL ◦ σ = π ◦ oM ◦ rM ◦ σ,

so the following notion of a complete approximation arises naturally
as a sufficient condition to guarantee a successful factorization of ξ.

Definition 3.3. The approximation reaches M if rM ◦ σ ∈ E ; it
observes M if π ◦ oM ∈M. The approximation is called complete if
it both reaches and observes M .

If the approximation is complete, we immediately obtain the
state space of M up to isomorphism by factorizing ξ. Conceptually,
we can even turn this factorization into an automaton isomorphic to
M , but the proof is not very informative.

38

Proposition 3.4. If the approximation is complete, the approxi-
mated response factorizes through an automaton isomorphic to M .

Proof. As the approximation is complete, there is by the uniqueness
of factorizations an isomorphism φ : M → H in B; denote by ψ its
inverse. Now define an automaton structure on H by the composi-
tions indicated below.

I

initM
��

initH

##

Y

M
φ
// H

outH
;;

ψ
//

δH

33M
δM //

outM

OO

DM
Dφ
// DH

This construction directly gives us the equations φ ◦ initM = initH
and outM ◦ ψ = outH needed to make φ and ψ automaton homo-
morphisms. The remainder—ψ ◦ initH = initM , outH ◦ φ = outM ,
δH ◦ φ = Dφ ◦ δM , and δM ◦ ψ = Dψ ◦ δH—is proven easily by
observing that φ and ψ are inverse to each other.

I
initM

��
initH
��

M
φ
//

id ��

H

ψ
��

M

M

φ
��

id

��

H
ψ
//

outH
��

M

outM��

Y

M

φ
��

id

H
ψ
//

δH

��

M

δM
��

DM
Dφ
��

DH

H
ψ
//

δH

++

M

δM
��

DM
Dφ
��

Did

��

DH
Dψ
��

DM

This shows that they are automaton isomorphisms.

Thus, H is the minimal automaton satisfying tH = tL. However,
its structure is defined in terms of the structure of M ; we wish to
rephrase the construction independent of the unknown M .

39

A crucial observation is that we did not yet exploit any of the
additional properties of the isomorphisms φ and ψ. They are ob-
tained by the uniqueness of factorizations (Proposition 2.16) in B as
the diagonals making the triangles in the diagrams below commute.

S
rM ◦ σ // //

e

��

M

φ

}}

oM��

Ω
π��

H //
m // P

S
e // //

σ ��

H

ψ

}}

m

��

@
rM ��

M //
π ◦ oM // P

Now note what happens if we compose the structure of H with
the monos m and Dm and if we precompose with the epi e:

I

initM��

initH

��

L

��

M
φ
//

oM
��

H��
m
��

Ω
π // P

S

e
����

σ // @

rM
��

L

��

H
ψ
//

outH ((

M
outM

��

Y

S
σ //

e
����

@

rM
��

tL

��

H
ψ
//

δH

""

M
oM //

δM
��

Ω

δΩ
��

DM
Dφ
��

D(oM)
// DΩ

Dπ
��

DH // Dm // DP

Because m is a mono, initH is actually the unique morphism satis-
fying m ◦ initH = π ◦ L, the latter of which is independent of M .
Similarly, outH is unique in satisfying outH ◦ e = L ◦ σ, and δH
uniquely satisfies Dm ◦ δH ◦ e = Dπ ◦ δΩ ◦ tL ◦ σ. Thus, we define
the morphisms

ξI : I → P

ξI = π ◦ L
ξY : S → Y

ξY = L ◦ σ
ξδ : S → DP

ξδ = Dπ ◦ δΩ ◦ tL ◦ σ

to arrive at the following definition.

Definition 3.5 (Hypothesis). The approximation is initialized (re-
sponsive) if there exists a morphism initH (outH), making the dia-
gram below on the left (middle) commute; it is dynamical if there

40

exists a morphism δH making the diagram on the right commute.

I
ξI

initH
��

H //
m // P

S
e // //

ξY

H

outH
��

Y

S

ξδ

??
e // // H

δH // DH // Dm // DP

Whenever the approximation is initialized, responsive, and dynami-
cal, we call H the hypothesis.

The construction does not refer to the structure of M , and in-
terestingly it also does not refer to the isomorphisms φ and ψ. A
complete approximation is thus not required for this to work. Im-
portantly, the automaton created in Proposition 3.4 does coincide
with the hypothesis whenever the approximation is complete.

Concretely, in the base category Sets the hypothesis is obtained
as

H = {ξ(s) | s ∈ S} initH(i) = ξI(i)

δH(ξ(s)) = ξδ(s) outH(ξ(s)) = ξY (s).

Well-definedness of these functions corresponds precisely to the ab-
stract properties in Definition 3.5.

To get some feeling for this definition, we first evaluate ξI , ξY ,
and ξδ for an observation table approximation.

Proposition 3.6. For T(S,E), the functions ξI , ξY , and ξδ are

ξI : 1→ 2E

ξI(∗)(e) = L(e)

ξY : S → 2

ξY (s) = L(s)

ξδ : S → (2E)A

ξδ(s)(a)(e) = L(sae).

Proof. The calculation for ξI and ξY is quite trivial,

ξI(∗)(e) = πE(L(∗))(e) = L(∗)(e) = L(e) and
ξY (s) = L(σS(s)) = L(s),

41

but ξδ needs some more work. Specifically, we need the definitions
of (−)A and δΩ to see that

ξδ(s)(a)(e) = πAE(δΩ(tL(σS(s))))(a)(e) = πAE(δΩ(tL(s)))(a)(e)

= (πE ◦ δΩ(tL(s)))(a)(e) = πE(δΩ(tL(s))(a))(e)

= δΩ(tL(s))(a)(e) = tL(s)(ae) = L(sae).

This allows us to interpret more concretely the properties that
turn H into a suitable automaton.

Proposition 3.7. In the base category Sets, the approximation is
initialized if and only if for each i ∈ I there exists an s ∈ S such
that ξ(s) = ξI(i); it is responsive if and only if for all s1, s2 ∈ S with
ξ(s1) = ξ(s2) we have ξY (s1) = ξY (s2).

Proof. The first result follows from Lemma 2.17 by noting that m
being an inclusion H ↪→ P satisfies im(m) = H = im(ξ). For the
second part, note that e(s1) = e(s2) implies

ξ(s1) = m(e(s1)) = m(e(s2)) = ξ(s2),

and because m is injective we also have that ξ(s1) = ξ(s2) implies
e(s1) = e(s2). That is, ker(e) = ker(ξ). Again, the claim follows
directly from Lemma 2.17.

Proposition 3.8. An approximation T(S,E) is initialized if and
only if there exists an s ∈ S such that L(se) = L(e) for every e ∈ E;
it is responsive if for all s1, s2 ∈ S that satisfy L(s1e) = L(s2e) for
each e ∈ E we have L(s1) = L(s2).

Proof. By Proposition 3.7 T(S,E) is initialized if and only if there
is an s ∈ S such that ξ(s) = ξI(∗). We are done by referring to
the calculations of Proposition 3.2 and Proposition 3.6, which also
directly derive the second claim from Proposition 3.7.

Corollary 3.9. An approximation T(S,E) is initialized if ε ∈ S; it
is responsive if ε ∈ E.

42

Note that in this corollary the conditions are strictly unneces-
sary. For example, the approximation underlying Table 3.1 does not
include the empty word in either S or E, but it is still initialized
because the row labeled by the word a equals the row for the empty
word, if it would have been included in the table; and it is respon-
sive, since the rows a and bb would still be equal if the table would
be extended with a column for the empty word.

Dynamism can be split into two properties, which we name after
properties originally defined by Angluin [7]. A first abstract refor-
mulation of these was given by Jacobs and Silva [46].

Definition 3.10 (Closedness and Consistency). We say that the
approximation is closed (consistent) if there exists a morphism close
(cons) making the bottom left (top right) triangle below commute.

S
e // //

close

��

ξδ

H

cons

��

DH // Dm // DP

Proposition 3.11. The approximation is closed and consistent if
and only if it is dynamical.

Proof. First assume that the approximation is dynamical. Define
close and cons as the compositions below on the left, so that we
have

S
e // //

close

��

H

cons

��

δH

~~

DH // Dm // DP

Dm ◦ close = Dm ◦ δH ◦ e = ξδ and
cons ◦ e = Dm ◦ δH ◦ e = ξδ.

Conversely, assume the approximation is closed and consistent.
We obtain δH below on the left as a diagonal by commutativity of the
square derived in the middle from closedness and consistency, and

43

on the right we conclude that this definition satisfies dynamism.

S
e // //

close

��

H

cons

��

δH

~~

DH // Dm // DP

S
e //

ξδ

close

��

H

cons

��

DH Dm // DP

S

e

��

close

��

ξδ

��

H
δH // DH Dm // DP

Finally, we give concrete interpretations of closedness and con-
sistency.

Proposition 3.12. For the endofunctor D = (−)A on the base
category Sets, the approximation is closed if and only if for all s ∈ S
and a ∈ A we can find an s′ ∈ S that satisfies ξ(s′) = ξδ(s)(a); it is
consistent if and only if for all s1, s2 ∈ S such that ξ(s1) = ξ(s2) we
have ξδ(s1) = ξδ(s2).

Proof. According to Lemma 2.17, T(S,E) is closed precisely if for
each s ∈ S there is a function f : A→ H such that

ξδ(s) = mA(f) = m ◦ f.

Thus, for each a ∈ A, we must have ξδ(s)(a) = m(f(a)). The
first result follows by noting that m ◦ e = ξ and that f(a) is just
e(s′) for some s′ ∈ S because e is surjective. As for the second
part, we have already shown in the proof of Proposition 3.7 that
ker(e) = ker(ξ).

Corollary 3.13. An approximation T(S,E) is closed if and only
if for all s ∈ S and a ∈ A we can find an s′ ∈ S that satisfies
L(s′e) = L(sae) for all e ∈ E; it is consistent if and only if for all
s1, s2 ∈ S such that L(s1e) = L(s2e) for each e ∈ E we also have
L(s1ae) = L(s2ae) for all a ∈ A and e ∈ E.

In summary, to determine if the hypothesis can be constructed
from the approximation and to eventually construct it, we need to
be aware of the following set of morphisms.

44

Definition 3.14 (Observation Structure). The observation struc-
ture associated with the approximation is given by the following
morphisms:

ξ : S → P : π ◦ tL ◦ σ
ξI : I → P : π ◦ L
ξY : S → Y : L ◦ σ
ξδ : S → DP : Dπ ◦ δΩ ◦ tL ◦ σ.

For practical reasons, we assume at this point the sets A and
M to be finite. In active learning of DA, representations of ap-
propriate observation structures are maintained using membership
queries, where one submits a word u ∈ A∗ and receives the value
of L(u). Importantly, this means we can think about extending ap-
proximations to make them initialized, responsive, and dynamical.
Termination of such procedures relies on finiteness of the automaton
M : the size of im(rM ◦σ) can never exceed the size ofM , nor can the
size of im(π ◦oM). Note that these functions are not known to us, so
we cannot see these measures evolve while executing the algorithm.
However, we do know their composition π◦oM ◦rM ◦σ = π◦tL◦σ = ξ.

Remember that the original construction in Proposition 3.4 co-
incides with our more general hypothesis construction in the case of
a complete approximation. Thus, we have the following.

Proposition 3.15. If the approximation is complete, then the hy-
pothesis is isomorphic to M .

An actual proof will be given for the more general Theorem 4.10.
The following result introduces the measure that is usually used to
assess termination of active automata learning algorithms.

Proposition 3.16. In Sets, the approximation is complete if and
only if |H| = |M |.

Proof. If the approximation is complete, then by Proposition 3.15
we have |H| = |M |. Conversely, assume |H| = |M |. Since H is the

45

image of ξ and ξ = π ◦ oM ◦ rM ◦ σ, we have

| im(rM ◦ σ)| ≥ |M | | im(π ◦ oM)| ≥ |M |.

Because M is the codomain of rM ◦ σ and the domain of π ◦ oM , we
must have

| im(rM ◦ σ)| = |M | | im(π ◦ oM)| = |M |.

Therefore, rM ◦ σ is surjective and π ◦ oM is injective—the approxi-
mation is complete.

Note that we always have |H| ≤ |M | because H = im(π ◦ tL ◦ σ)
and M = im(tL). Thus, to ensure termination we have to be able to
increase |H| until |H| = |M |.

3.1.1 Observation Tables

We can now fully explain the observation table as presented by An-
gluin [7]. Recall that the observation structure for such an approxi-
mation is as follows:

ξ : S → 2E ξ(s)(e) = L(se)

ξI : 1→ 2E ξI(∗)(e) = L(e)

ξY : S → 2 ξY (s) = L(s)

ξδ : S → (2E)A ξδ(s)(a)(e) = L(sae).

Angluin manages to represent these in a single table. To achieve
this, she requires S and E to contain the empty word, so that by
Corollary 3.9 her approximation is always initialized and responsive.
She then splits the rows of her table into two parts. The upper part
simply represents ξ, while the rows of the lower part are given by
ξδ(s)(a) for s ∈ S and a ∈ A such that the word sa, which serves
as the row label, is not already among the labels in the upper part.
Note that if sa ∈ S, then ξ(sa) = ξδ(s)(a) so that ξδ is completely
represented in the table. An example can be found in Table 3.2a.

46

ε
ε 0
a 0
b 0
aa 0
ab 1

(a) Example table

ε b
ε 0 0
a 0 1
ab 1 0
b 0 0
aa 0 1
aba 1 0
abb 0 1

(b) Dynamical table

Table 3.2: Observation tables for the
language described in Figure 3.4

ε//

b

��

a
��

a

b
��

a
hh

ab

b

JJ

a
kk

Figure 3.3: Hypothesis
for Table 3.2b

A procedure for extending an observation table approximation
to make it dynamical was already known to Gold [36]. If we do not
have closedness, then there is a row in the lower part of the table
that does not occur in the upper part; Gold takes the label of this
row and adds it to S, thereby increasing the size of H, denoted |H|.
(Note that we talk here about the set H; it is not necessarily an
automaton yet.) If the approximation is not consistent, then there
exist s1, s2 ∈ S satisfying ξ(s1) = ξ(s2), but there are a ∈ A and
e ∈ E such that ξδ(s1)(a)(e) 6= ξδ(s2)(a)(e); Gold now adds ae to E
so that ξ(s1) and ξ(s2) become distinguished, and again |H| becomes
larger. Thus, after iterating these modifications less than |M | times
we must have a dynamical approximation. Note, however, that at
this point we may not yet have |H| = |M |.

Consider for the alphabet {a, b} the language of words that con-
tain an odd number of b’s and at least one a, of which the minimal
DA is shown in Figure 3.4. Table 3.2a represents the observation
structure of T({ε, a}, {ε}), which is neither closed nor consistent:
the row in the lower part labeled by ab does not occur in the upper

47

//

b

a //

b

a
hh

b

JJ

a
//

b

JJ

a
hh

Figure 3.4: Minimal DA accepting words with an odd number of
b’s and at least one a

part, and although the rows labeled by ε and a are equal, this is not
the case for those labeled by b and ab. We fix the closedness defect
by adding ab to S. Note that at this point the consistency defect is
still present; we fix it by adding b to E. The resulting table is shown
in Table 3.2b, and Figure 3.3 shows the corresponding hypothesis.
Here a state labeled by a word s ∈ S actually represents e(s).

3.1.2 Discrimination Trees

So far we have only discussed observation tables as an instance of
an approximation in the context of DA. We now turn to a formalism
that allows for a more concise representation of a partition of the
set of languages.

Fixing a responsiveness or consistency defect in an observation
table consists in adding an experiment to E (i.e., a column to the
table) in order to distinguish two previously equal rows. To fill the
new cells of the resulting tables, a membership query is required
for every row in the lower part of the table. This should not be
necessary, since we just want a finer classification of those specific
equal rows. An alternative for the observation table that allows for
such specific refinements is known as the discrimination tree [47].
Formally, define the set DTL of (binary) discrimination trees with
leaves in a set L by the following grammar:

DTL ::= Leaf(L) | Node(A∗,DT2
L)

48

The function space DT2
L could have been replaced by the binary

product DTL×DTL, but the present definition eases a generalization
that will be discussed in Section 5.

We will consider discrimination tree approximations

DT(S, τ) = (S,PS, σS , πτ)

for discrimination trees τ ∈ DTPS , where S is a finite subset of A∗
and πτ : 2A

∗ → PS is defined by induction on the structure of the
tree τ :

πLeaf(l)(f) = l πNode(u,c)(f) = πc(f(u))(f).

An example of such a tree is visualized in Figure 3.5a. We represent
inner nodes with boxes, and each edge is labeled by the output that
is mapped to its subtree. Concretely, πτ with τ represented visually
classifies a language f ∈ 2A

∗
as follows. We begin at the root of

the depicted tree. If the current node is a leaf, then the result is
the associated label. If the current node is an internal node with
label u ∈ A∗, then we use a membership query to find f(u). If
f(u) = 0, we move to the subtree belonging to the edge with label
0; if f(u) = 1, we move to the subtree of the edge with label 1. The
process is then repeated with this subtree and the same language.
For example, the tree in Figure 3.5b classifies each language that
contains the word b into {aa}. Any language that does not contain
b, but does contain ab obtains the label {ε}. All other languages are
classified into {b}.

Although the tree acts as a classifier for languages, we can in-
terpret it on words as well. Define the function siftτ : A∗ → PS by
siftτ = πτ ◦ tL. Sifting a word u ∈ A∗ through the tree consists in
starting at the root node and while being at an internal node labeled
by v ∈ A∗ observing L(uv) and proceeding with the associated sub-
tree. For instance, sifting the word bb through the tree in Figure 3.5b
yields the label {ε}, since the corresponding target language L does
not contain bbb, but does contain bbab.

With σS being an inclusion, the approximated response can be
determined by sifting the words in S through the tree. In fact, this

49

b

0 1

{ε, b} {aa}

(a) Example tree

b

0 1

ab

0 1

{aa}

{b} {ε}

(b) Consistent tree

Figure 3.5: Discrimination trees for the
language given in Figure 3.4; S = {ε, b, aa}

{ε}//

a

��

b

��

{aa}

a

RR b
// {b}

a

RR

b

UU

Figure 3.6: Hypoth-
esis for Figure 3.5b

operation allows us to comprehensibly expose the entire observation
structure corresponding to DT(S, τ).

Proposition 3.17. For an approximation DT(S, τ), the observation
structure is obtained as

ξ : S → PS ξ(s) = siftτ (s)

ξI : 1→ PS ξI(∗) = siftτ (ε)

ξY : S → 2 ξY (s) = L(s)

ξδ : S → (PS)A ξδ(s)(a) = siftτ (sa).

Proof. The case for ξ is clear, and ξY is as in Proposition 3.6. Re-
calling the definition of the input system @ and the fact that L
turns @ and Ω into automata such that tL : @→ Ω is an automaton
homomorphism, we see that

ξI(∗) = (πτ ◦ L)(∗) = (πτ ◦ tL ◦ init@)(∗) = (πτ ◦ tL)(ε) = siftτ (ε)

50

and, additionally employing the definition and functoriality of (−)A,

ξδ(s)(a) = (πAτ ◦ δΩ ◦ tL ◦ σS)(s)(a) = (πAτ ◦ δΩ ◦ tL)(s)(a)

= (πAτ ◦ tAL ◦ δ@)(s)(a) = ((πτ ◦ tL)A ◦ δ@)(s)(a)

= (πτ ◦ tL)A(δ@(s))(a) = (πτ ◦ tL ◦ δ@(s))(a)

= πτ (tL(δ@(s)(a))) = πτ (tL(sa)) = siftτ (sa).

Let us now interpret the properties needed for hypothesis con-
structability in this setting.

Proposition 3.18. An approximation DT(S, τ) is initialized if and
only if there exists an s ∈ S such that siftτ (s) = siftτ (ε); it is re-
sponsive if and only if for all s1, s2 ∈ S with siftτ (s1) = siftτ (s2) we
have L(s1) = L(s2).

Proof. From Proposition 3.7 we know that DT(S, τ) is initialized
if and only if there exists an s ∈ S such that ξ(s) = ξI(∗), and
Proposition 3.17 gives us ξ(s) = siftτ (s) and ξI(∗) = siftτ (ε) to
complete the proof for the first part.

For the second part, Proposition 3.7 gives us that DT(S, τ) is
consistent if and only if for all s1, s2 ∈ S with ξ(s1) = ξ(s2) we have
ξY (s1) = ξY (s2), so we are done by simply recalling from Proposi-
tion 3.17 that for all s ∈ S, ξ(s) = siftτ (s) and ξY (s) = L(s).

Corollary 3.19. A discrimination tree approximation DT(S, τ) is
initialized if ε ∈ S.

Proposition 3.20. An approximation DT(S, τ) is closed if for all
s ∈ S and a ∈ A there exists an s′ ∈ S such that siftτ (s′) = siftτ (sa);
it is consistent if and only if for all access strings s1, s2 ∈ S satisfying
siftτ (s1) = siftτ (s2) we have siftτ (s1a) = siftτ (s2a) for each a ∈ A.

Proof. This follows just by combining Proposition 3.12 with Propo-
sition 3.17.

The reason for choosing PS as the set of labels is that we want
the leaves of τ to partition the access strings s ∈ S in such a way

51

that the approximated response can be read directly from the tree.
Let us make this restriction formal using terminology from Isberner
[42], who defined a similar restriction.

Definition 3.21 (Valid Discrimination Tree). A discrimination tree
approximation DT(S, τ) is called valid if for all u ∈ A∗ and s ∈ S,
s ∈ siftτ (u) if and only if siftτ (u) = siftτ (s).

In practice this property is rather hard to verify exactly, but
note that it suffices to have all words in S sift into a leaf they are
contained in while ensuring that there is exactly one such leaf. The
tree in Figure 3.5a, for instance, is valid. This stronger condition
will be the case for all the trees that we maintain, and it allows us
to directly read the approximated response from a representation of
the tree. In general we do need to determine the other functions of
the observation structure using external information.

Valid discrimination tree approximations that do not contain an
empty set leaf are always initialized and closed: sifting any word
through the tree gives a set of words from S that sift into the same
leaf.

Proposition 3.22. If DT(S, τ) is valid and for all u ∈ A∗,
siftτ (u) 6= ∅, then DT(S, τ) is initialized and closed.

Proof. We can show more generally that for each u ∈ A∗ there is an
s ∈ S such that siftτ (s) = siftτ (u): since siftτ (u) is not empty, we
pick any s ∈ siftτ (u), which by validity satisfies siftτ (s) = siftτ (u).

Proposition 3.23. If DT(S, τ) is valid and for each u ∈ A∗ we have
|siftτ (u)| ≤ 1, then the approximation is responsive and consistent.

Proof. Suppose there are s1, s2 ∈ S with siftτ (s1) = siftτ (s2). By va-
lidity and the bound on leaf sizes this common leaf is {s1} = {s2}, so
trivially L(s1) = L(s2) and ξδ(s1) = ξδ(s2), giving us responsiveness
by Proposition 3.18 and consistency by Proposition 3.12.

52

The tree in Figure 3.5a is initialized and closed by Proposi-
tion 3.22, and it is responsive because L(ε) = L(b) = 0. However,
it is not consistent: ε and b sift into the same leaf, but this is not
the case with a and ba for which we end up in {aa} and {ε, b}, re-
spectively. To fix this, we can take the experiment that separates
the leaves {aa} and {ε, b}, which is their lowest common ancestor
b, and split Leaf({ε, b}) into Node(ab, f), where f : 2→ DTP{ε,b,aa}
is given by f(0) = Leaf({b}) and f(1) = Leaf({ε}). The result is
shown in Figure 3.5b. This tree must be responsive and consistent
by Proposition 3.23 because all leaves are singletons. Its associated
hypothesis is depicted in Figure 3.6.

Let us briefly describe general procedures to extend a valid dis-
crimination tree approximation to make it initialized, responsive,
and dynamical. If the valid discrimination tree is not initialized,
we simply replace the empty leaf siftτ (ε) by Leaf({ε}) while adding
ε to S. If it is not consistent, there exist s ∈ S and a ∈ A such
that siftτ (sa) is an empty leaf, which we replace by Leaf({sa}) while
adding sa to S. Because these operations add one access string that
sifts into its own leaf they must preserve validity. Moreover, these
leaves did not exist before, and they end up in the new image H of
ξ, which has thus increased.

Regarding the enforcement of responsiveness and consistency, we
define the operation of splitting a leaf. This turns a single leaf into a
tree with one internal node that distinguishes the words in the orig-
inal leaf by a given experiment. We formalize it through a function
split : A∗ × PS → DTPS given by

split(v, U) = Node(v, λy ∈ 2[{s ∈ U | L(sv) = y}]).

Consider in a valid discrimination tree approximation access
strings s1, s2 ∈ S such that siftτ (s1) = siftτ (s2) = U . If these ex-
hibit a responsiveness defect—L(s1) 6= L(s2)—we split that leaf into
split(ε, U). Note that by validity {s1, s2} ⊆ U , so this split yields
two distinct subtrees. If, instead, they exhibit a consistency defect—
siftτ (s1a) 6= siftτ (s2a) for some a ∈ A—we can find an experiment v

53

such that L(s1av) 6= L(s2av) by sifting s1a and s2a simultaneously
until a discrepancy arises. Our trees are in fact maintained so that
v can be described as the label of the lowest common ancestor of the
leaves siftτ (s1a) and siftτ (s2a). The common leaf of s1 and s2 may
now be replaced by split(av, U), and again there are two distinct sub-
trees. Because the split function partitions the access strings s ∈ U
by the value of L(sv) we can easily see that validity is preserved by
this operation. Together with the fact that after the splitting there
are two distinct leaves as subtrees, we also know that the size of H
must increase.

3.2 Learning from Samples
Learning from samples usually refers to passive learning, where a
set of words is given along with their value under L and where no
additional queries may be asked. As mentioned in the introduction
of this section, we do not consider passive learning algorithms. The
samples considered here are of a different nature—they are sets of
words that contain a wealth of information aboutM , which can then
be reconstructed almost directly.

Proposition 3.15 was known in a very specific form to Ho [37] and
further elaborated on by Arbib and Zeiger [14] and Gold [36], the
latter of whom advocates identification in the limit that we discuss
briefly here. Consider ascending chains of languages S1, S2, . . . and
E1, E2, . . . that both in the limit equal A∗. Then for the limit of
a natural number k going to infinity, the approximation T(Sk, Ek)
yields a hypothesis that is isomorphic to M .

In the case that M is finite, we even have that the hypothesis of
T(Sk, Ek) for some k ∈ N is isomorphic to M , since then there must
be a finite set of words that reaches all states of M (e.g. Sk) and
a finite set of words that for every pair of states of M contains an
experiment to distinguish them (e.g. Ek). To turn this into an algo-
rithm we could assume an upper bound n on the number of states
of M and take the complete [36, Theorems 1 and 2] approximation
T(A≤n, A≤n), where A≤n contains all words over A of length up to

54

n. These tables quickly become huge, but it turns out that we can
do better: Gold noted that either one of the conditions in Propo-
sition 3.15 can be dropped if we are willing to do some additional
work.

Proposition 3.24. If the approximation observes M and is initial-
ized and closed, then it is complete.

Proposition 3.25. If the approximation reaches M and is respon-
sive and consistent, then it is complete.

Again, these are instances of the more general Theorem 4.11 and
Theorem 4.12.

As an example of Proposition 3.24, for each pair of states in
the minimal automaton shown in Figure 3.4 there is an experi-
ment in E = {a, b, bb} to distinguishes them. By Proposition 3.24
this means that any approximation T(S,E) that is initialized and
closed is complete. We start with T({ε}, E), visualized in Table 3.7a.
Given ε ∈ S, the approximation is initialized, and thus it remains to
close it, which we have done in Table 3.7b. This approximation is
complete—indeed, the set S = {ε, a, b, ab} reaches every state of the
minimal automaton in Figure 3.4—so H is isomorphic to M . Note
that the approximation was responsive even though no column for
the empty word is present. To construct the automaton we did have
to inspect this column, but only its upper part (which corresponds
to ξY).

We demonstrate the effectiveness of Proposition 3.25 using dis-
crimination trees. An algorithm that (implicitly) uses observation
tables was described by Angluin [6], but the use of discrimination
trees appears to be new. Assume we are given S = {ε, a, b, ab}
that reaches every state in Figure 3.4. Initially, we consider the
approximation DT(S, Leaf(S)). It is consistent, but not responsive:
L(ε) = L(a) = L(b) = 0, but L(ab) = 1. Thus, we split into the
responsive tree shown in Figure 3.8a. This tree is not consistent:
sifting a and aa, we end up in {ε, a, b}, whereas ba yields {ab}.
Hence, we split {ε, a, b} with the experiment aε, where ε is obtained

55

a b ab
ε 0 0 1
a 0 1 1
b 1 0 1

(a) Initial table

a b ab
ε 0 0 1
a 0 1 1
b 1 0 1
ab 1 0 0
aa 0 1 1
ba 1 0 0
bb 0 0 1
aba 1 0 0

(b) Closed table

Table 3.7: Observation tables observing the DA in Figure 3.4

as the lowest common ancestor of the aforementioned subsets. Fig-
ure 3.8b illustrates the result. Again, the tree is not consistent, but
we fix this with another split that produces the tree in Figure 3.8c
for which the associated hypothesis is isomorphic to the automaton
in Figure 3.4.

3.3 The MAT Model
An algorithm that has received much attention and sparked deriva-
tives that are now being used for practical applications was discov-
ered by Angluin [7]. The main idea here is to assume not a known
upper bound on the number of states of M , but a minimally ade-
quate teacher who, in addition to membership queries can answer
equivalence queries, which ask whether a hypothesis is correct, and
if not, what a counterexample would be. Sufficient information is ex-
tracted from these counterexamples to make the resulting algorithm
polynomial in the number of states of M , the size of the alphabet
A, and the length of the counterexamples.

Thus, starting with a trivial approximation (e.g. T(∅, ∅) or

56

ε

0 1

{ε, a, b} {ab}

(a) Responsive tree

ε

0 1

a

0 1

{ab}

{ε, a} {b}

(b) More consistent tree

ε

0 1

a

0 1

{ab}

b

0
1

{b}

{ε} {a}

(c) Final tree

Figure 3.8: Discrimination trees reaching the DA in Figure 3.4

DT(∅, Leaf(∅))), we extend it each time to make it initialized, re-
sponsive, and dynamical so as to produce a hypothesis automaton
H. Subsequently, the teacher is asked whether H is correct, and
unless this is the case we obtain a counterexample.

We explain only the counterexample processing method of Rivest
and Schapire [61], which compared to the original method of Angluin
reduces the worst case complexity of the number of membership
queries that the full algorithm uses. Our discussion at first remains
abstract in line with the preceding theory, but the operations per-
formed on the counterexample later on are rather concrete.

We assume that e : S → H has a right inverse: there exists a
morphism i : H → S making the diagram below commute.

H

i
��

id

S
e // H

In the DA setting, i(q) for a state of q ∈ H is a choice of an access

57

string s ∈ S satisfying e(s) = q. Note that i is in general not unique
with this property. Furthermore, the possibility of this splitting in
the category of sets in general amounts to the axiom of choice, but
remember that in practice S is finite.

Using this right inverse, we define a “distorted version” h : @→ Ω
of the total response as the composition below.

@
r //

h

99H
i // S

σ // @
tL // Ω

In the DA setting, think of h as assigning to each word u ∈ A∗ not
the residual language tL(u) of u, but the residual language tL(s) of
some s ∈ S that represents the state of the hypothesis reached by u
(e(s) = rH(u)).

In our concrete argument for counterexample analysis, we will
be using the following abstract lemmas related to the morphisms i
and h.

Lemma 3.26. ξI = ξ ◦ i ◦ rH ◦ init@.

Proof. Diagram chase using initialization, the definition of ξI , and
the preservation of initial state maps by rH :

I
init //

init

66

ξI ..

@
r // H

i //

id ##

S
e ��

ξ

��

H
m ��

P

Lemma 3.27. LH = outΩ ◦ h.

58

Proof. Diagram chase:

@
r //

LH

��

h

--

H
id

##
i ��

S
e //

ξY

66

σ ��

H
out // Y

@
L

??

tL ��

Ω out

NN

Note that we use responsiveness and the definition of ξY , as well as
homomorphism properties.

Lemma 3.28. ξδ ◦ i ◦ rH = D(ξ ◦ i ◦ rH) ◦ δ@.

Proof. Diagram chase:

@
r //

δ

��

H
i //

id &&

S
e �� ξδ

��

H
δ ��

D@
Dr // DH

Di ��
Did
&&

DS De //

Dξ

??DH Dm // DP

On the right we use dynamism and at the bottom the factorization
of ξ. The region on the left asserts that rH is a dynamorphism.

From now on we restrict our attention to the DA setting. We
assume that the hypothesis can be constructed and that a coun-
terexample has been provided by the teacher. A counterexample is
a word z ∈ A∗ satisfying L(z) 6= LH(z). The idea is to extract from
this counterexample a new experiment that either directly increases

59

the size of H or causes a defect in the initialization or closedness of
the approximation so that using the procedures defined earlier for
specific approximations to fix this defect H will also become larger.

More specifically, consider first initialization as obtained in
Proposition 3.7: there exists an s ∈ S such that ξ(s) = ξI(∗). With
the definitions of ξ and ξI this becomes

(π ◦ tL ◦ σ)(s) = (π ◦ L)(∗).

We are interested in finding an experiment v ∈ A∗ that breaks this
equality as follows:2

(tL ◦ σ)(s)(v) 6= L(∗)(v).

Incorporating such v into π will either distinguish ξ(s) from some
ξ(s′) with s′ ∈ S such that ξ(s′) = ξI(∗), or it will harm the initial-
ization of the approximation, since ξ(s) 6= ξI(∗) after this modifica-
tion. In the end, the size of H must increase.

Incorporating v into π for the approximations that we have seen
works as expected. For an observation table T(S,E) we simply add
v to E, and for a discrimination tree DT(S, τ) we replace siftτ (s) by
split(v, siftτ (s)).

In the proposition below that provides such v we add a condition
that is equivalent to L(z) 6= L(i(rH(ε)) ·z). We will in the end make
a case distinction on this condition to decide whether to apply the
method described above regarding an initialization defect or to aim
for a closedness defect.

Proposition 3.29. If z is a counterexample for the hypothesis H
and L(z) 6= (h ◦ init@)(∗)(z), then there are s ∈ S and v ∈ A∗ such
that ξ(s) = ξI(∗), but (tL ◦ σ)(s)(v) 6= L(∗)(v).

2The word v ∈ A∗ is actually better seen as an evaluation function
evv : 2A

∗ → 2 defined by evv(f) = f(v). The inequality that follows can then
be expressed as (evv ◦ tL ◦ σ)(s) 6= (evv ◦ L)(∗). What is really happening here
is that we are trying to combine two approximations. Note however, that we do
not want the full power of evv ; we only use it to distinguish two specific classes
that are at the moment identified by π.

60

Proof. Define s = (i ◦ rH ◦ init@)(∗) and v = z. Using Lemma 3.26,
we have ξ(s) = (ξ ◦ i ◦ rH ◦ init@)(∗) = ξI(∗). Furthermore, the
inequality comes down to our assumption:

(tL ◦ σ)(s)(z) = (tL ◦ σ ◦ i ◦ rH ◦ init@)(∗)(z) = (h ◦ init@)(∗)(z)
6= L(z) = L(∗)(z).

Now recall from Proposition 3.12 the definition of a witness for
closedness: given s ∈ S and a ∈ A there exists an s′ ∈ S such
that ξ(s′) = ξδ(s)(a). Again, we rewrite this using definitions of the
observation structure as

(π ◦ tL ◦ σ)(s′) = (πA ◦ δΩ ◦ tL ◦ σ)(s)(a),

and this time we seek a word v ∈ A∗ such that

(tL ◦ σ)(s′)(v) 6= (δΩ ◦ tL ◦ σ)(s)(a)(v).

We can then incorporate v into π analogous to the previous case,
and the size of H will increase for similar reasons.

Proposition 3.30. If z is a counterexample for the hypothesis H
and L(z) = (h ◦ init@)(∗)(z), then there are s, s′ ∈ S, a ∈ A, and
v ∈ A∗ such that ξ(s′) = ξδ(s)(a), but

(tL ◦ σ)(s′)(v) 6= (δΩ ◦ tL ◦ σ)(s)(a)(v).

Proof. We prove first that

h(ε)(z) 6= h(z)(ε). (3.1)

Observe that

h(ε)(z) = (h ◦ init@)(∗)(z) (ε = init@(∗))
= L(z) (assumption)
6= LH(z) (counterexample)
= (outΩ ◦ h)(z) (Lemma 3.27)
= h(z)(ε) (definition of outΩ).

61

Imagine gradually transitioning from the left expression in (3.1)
to the right one. This leads us to realize that there must be a
breakpoint—i.e., there are u, v ∈ A∗ and a ∈ A such that

h(ua)(v) 6= h(u)(av),

which may be expressed as a failure of h to be a dynamorphism:

(hA ◦ δ@)(u)(a)(v) 6= (δΩ ◦ h)(u)(a)(v). (3.2)

Define s = (i ◦ rH)(u) and s′ = (i ◦ rH ◦ δ@(u))(a). These give us
the required inequality

(tL ◦ σ)(s′)(v)

= (tL ◦ σ ◦ i ◦ rH ◦ δ@(u))(a)(v) (definition of s′)
= (h ◦ δ@(u))(a)(v) (definition of h)

= (hA ◦ δ@)(u)(a)(v) (definition of (−)A)
6= (δΩ ◦ h)(u)(a)(v) (3.2)
= (δΩ ◦ tL ◦ σ ◦ i ◦ rH)(u)(a)(v) (definition of h)
= (δΩ ◦ tL ◦ σ)(s)(a)(v) (definition of s).

It remains to show that ξ(s′) = ξδ(s)(a). Rewriting these as

ξ(s′) = (ξ ◦ i ◦ rH ◦ δ@(u))(a) = ((ξ ◦ i ◦ rH)A ◦ δ@)(u)(a)

ξδ(s)(a) = (ξδ ◦ i ◦ rH)(u)(a),

we see that we can conclude by applying Lemma 3.28.

Thus, we query L(z) and

(h ◦ init@)(∗)(z)
= (tL ◦ σ ◦ i ◦ rH ◦ init@)(∗)(z) (definition of h)
= (tL ◦ σ ◦ i ◦ rH)(ε)(z) (definition of init@)
= tL((σ ◦ i ◦ rH)(ε))(z)

= L(i(rH(ε)) · z)

62

to decide whether to apply Proposition 3.29 or Proposition 3.30. If
ε ∈ S, we can choose i(rH(ε)) = ε, and then we always go directly
for the latter.

In practice, the breakpoint referred to in the above proof is found
efficiently by means of a binary search (see the exposition of Isberner
and Steffen [43] for alternatives). The learning algorithm then has a
membership query complexity of O(kn2 + n logm), where k = |A|,
n = |M |, and m is the length of the longest counterexample that
was given. This is regardless of whether an observation table [61] or
a discrimination tree [47, 18] approach is used. Because the size of
H will increase after each counterexample, there can never be more
than n equivalence queries.

Recall the hypothesis from Figure 3.3 and note that the labeling
of the states represents a choice for the function i (which in this case
is unique). The hypothesis is not correct, for

LH(ba) = 0 6= 1 = L(ba).

Suppose the teacher provides us with this counterexample ba. Since
i(initH(∗)) = ε, we proceed to applying Proposition 3.30. To cal-
culate h(x)(y) we find the state that H ends up in after reading x,
read its state label s, and query L(sy). Thus,

h(ba)(ε) = L(a) = 0

h(b)(a) = L(a) = 0

h(ε)(ba) = L(ba) = 1,

which means that the experiment a is to be added to Table 3.2b.

3.4 Discussion
Balcázar et al. [18] made a first attempt at unifying the existing
active automata learning algorithms for DA. More recently, an ex-
tensively detailed algorithmic account of active automata learning
has been given by Isberner [42]. We do not at all intend to replace

63

these frameworks; instead, they can be regarded as complementary
to ours. Many of their results are of a practical nature, whereas
we focus on more conceptual results that provide simple insights on
an abstract level. The discussed examples are meant for illustration
and to provide evidence for the expressiveness of our framework.

For similar reasons, our results are compatible with the domain-
specific optimizations of Hungar et al. [41], which are just assump-
tions regarding the language L that allow to reduce the number
of membership queries. Furthermore, we note that the TTT algo-
rithm [44], which is the most efficient known active automata learn-
ing algorithm, in our framework uses an approximation that is just
a discrimination tree. However, because at our abstract level we
do not try to enforce any specific algorithms, its use of additional
administration and optimization subroutines is not prohibited.

In the work of Isberner [42], the function π : 2A
∗ → P of the ap-

proximation is replaced by a black box classifier κ : A∗ → P , which
is called valid if for all u1, u2 ∈ A∗ that satisfy tL(u1) = tL(u2) we
have κ(u1) = κ(u2). Indeed, any of our functions π induces a valid
black box classifier κ = π ◦ tL: if tL(u1) = tL(u2), then certainly
π(tL(u1)) = π(tL(u2)). It is to be expected that this conversion
respects the construction of the hypothesis so that Isberner’s results
apply also to approximations in the setting of DA that may be stud-
ied in our framework. A formal confirmation of this expectation is
left as future work.

We will show in Section 4, where we generalize our concept of an
approximation, that without additional assumptions valid black box
classifiers can also be characterized abstractly. The above relation
already suggests that they are more general than our approxima-
tions, which carries over to the abstract definition. However, the
elegant symmetry and conceptual simplicity of approximations is
sacrificed, which is why the present section does not use black box
classifiers. On the other hand, our discussion of discrimination trees
would have been simplified by such a change: we defined (the valid
black box abstraction) siftτ based on πτ , the latter of which subse-
quently becomes essentially redundant.

64

4 Unifying Learning and Minimization
Active automata learning as we have seen here has been developed
based on automaton minimization theory, but so far we have not
related automata learning algorithms to minimization algorithms. In
order to facilitate this, we generalize the concept of an approximation
by basing it merely on an automaton.

Definition 4.1 (Automaton Wrapper). A wrapper for an automa-
ton Q is a tuple (S, P, α, β) comprising objects S and P with mor-
phisms α : S → Q and β : Q→ P in B.

Automaton wrappers subsume approximations in the follow-
ing manner: an approximation (S, P, σ, π) induces an M -wrapper
(S, P, rM ◦ σ, π ◦ oM) for the minimal realization M of the language
under consideration in learning. We redefine the observation struc-
ture for the new concept.

Definition 4.2 (Observation Structure). The observation structure
associated with a Q-wrapper (S, P, α, β) is given by the following
morphisms:

ξ : S → P : β ◦ α
ξI : I → P : β ◦ initQ
ξY : S → Y : outQ ◦ α
ξδ : S → DP : Dβ ◦ δQ ◦ α.

For approximations, this is equivalent to the old Definition 3.14.
We show this fact slightly more generally: if a Q-wrapper factors
through automaton homomorphisms surrounding Q, then we can
rewrite the observation structure independent of Q, in terms of the
surrounding automata. The practical relevance of this is that these
automata may be known, whereas Q is not. In the learning context
this was the case for @ and Ω, which were extended to automata
using a language.

65

Proposition 4.3. Let Q, U , and V be automata with automaton
homomorphisms u : U → Q and v : Q → V . The observation struc-
ture associated with a Q-wrapper (S, P, u ◦ σ, π ◦ v) for morphisms
σ : S → U and π : V → P in B is obtained as follows:

ξ : S → P : π ◦ v ◦ u ◦ σ
ξI : I → P : π ◦ initV
ξY : S → Y : outU ◦ σ
ξδ : S → DP : Dπ ◦ δV ◦ v ◦ u ◦ σ.

Proof. For ξ this is immediate from its definition. We derive the
other forms from homomorphism properties:

I

init
��

ξI

��

init

��

Q

v
��

V
π // P

S
σ //

ξY

..

U

u
��

out

��

Q

out
��

Y

S
σ �� ξδ

��

U
u
��

Q
δ //

v
��

DQ
Dv ��

V
δ // DV Dπ // DP

As promised in Section 3.4, we show at this point how valid black
box classifiers [42] can be characterized abstractly.

Definition 4.4 (Black Box Classifier). A pair (P, κ) of an object
P and a morphism κ : @ → P in B is called a black box classifier,
which is valid provided that there exists a morphism x : M → P
making the diagram below commute.

@
rM // //

κ $$

M

x
��

P

Proposition 4.5. In the DA setting, a black box classifier (P, κ) is
valid if and only if for all u1, u2 ∈ A∗ that satisfy tL(u1) = tL(u2)
we have κ(u1) = κ(u2).

66

Proof. Because oM is injective and oM ◦ rM = tL it follows that
ker(rM) = ker(tL), so we may conclude with Lemma 2.17.

We thus become interested in M -wrappers (S, P, rM ◦ σ, x) for
morphisms σ : S → @. As might be expected, x is not needed ex-
plicitly in the associated observation structure.

Proposition 4.6. For a valid black box classifier (P, κ) with
x : M → P as in Definition 4.4, the observation structure associated
with an M -wrapper (S, P, rM ◦ σ, x), where σ : S → @, is obtained
as follows:

ξ : S → P : κ ◦ σ
ξI : I → P : κ ◦ init@
ξY : S → Y : L ◦ σ
ξδ : S → DP : Dκ ◦ δ@ ◦ σ.

Proof. The case for ξY can be taken from Proposition 4.3 (recalling
that out@ = L), and regarding ξ and ξI we use some basic equalities
and the fact that rM is an input system homomorphism:

S
σ //

ξ

""

@

r
��

κ

��

M

x
��

P

I
init //

init
!!

ξI

%%

@
r

��

κ

��

M

x
��

P

S
σ //

ξδ

&&

@

r
��

δ

��

M

δ $$

D@
Dr
��

Dκ

��

DM
Dx
��

DP

We should note again that this kind of a wrapper is more general
than our approximation, so in some situations it might be necessary
to use this concept instead.

For most of this section we fix an arbitrary Q-wrapper (S, P, α, β)
for some automaton Q. We simply copy the definitions of initializa-
tion, responsiveness, dynamism, closedness, and consistency as we

67

defined them for approximations to the new setting with wrappers.
These depended only on the observation structure. Note that Propo-
sition 3.11 still holds and that the hypothesis is also still a valid
concept. Furthermore, the following definition is clearly in harmony
with Definition 3.3.

Definition 4.7 (Complete Wrapper). We say that the Q-wrapper
reaches Q if α ∈ E ; it observes Q if β ∈ M. The wrapper is called
complete if it both reaches and observes Q.

A trivial but satisfying example of a complete wrapper is the
H-wrapper (S, P, e,m) whenever the hypothesis can be constructed.

We now set out to prove more abstract versions of the results
mentioned in Section 3.2 that fueled the learning algorithms. If the
wrapper reaches Q, there exists a diagonal φ making the diagram
below on the left commute; if the wrapper observes Q, there exists
a diagonal ψ making the diagram on the right commute.

S
α // //

e
��

Q
φ

||

β
��

H //
m // P

S
e // //

α
��

H
ψ

||

m
��

Q //
β
// P

If the wrapper is complete, φ and ψ are inverse to each other.

Lemma 4.8. A wrapper that reaches Q is initialized and closed; a
wrapper that observes Q is responsive and consistent.

Proof. Assume the wrapper reaches Q, and define initH and close as
the compositions indicated in the diagrams below, which also show
that these give us initialization and closedness.

I
initQ
//

ξI

((

initH !!

Q
β
//

φ
��

P

H

m

<<
S

α
//

close

++

ξδ //

Q
δQ

// DQ
Dφ
//

Dβ
$$

DH
Dm
��

DP

68

Now assume instead that the wrapper observes Q, and define
outH and cons as below, where additionally we indicate responsive-
ness and consistency.

H

ψ
��

outH

""
S

α //

ξY

66

e
==

Q
outQ

// Y

S

e
��

α

""

ξδ

&&

H
ψ
//

cons

33Q
δQ
// DQ

Dβ
// DH

Lemma 4.9. Assume the hypothesis can be constructed. If the wrap-
per reaches Q, then φ is an automaton homomorphism; if the wrap-
per observes Q, then ψ is an automaton homomorphism.

Proof. Assume first that the wrapper reaches Q. We will show that
φ ◦ initQ = initH , outH ◦ φ = outQ and δH ◦ φ = Dφ ◦ δQ by pre-
composing with the epi α and composing with the monos m and
Dm. Note that these proofs use initialization, responsiveness, and
dynamism.

I
initH //

ξI $$
initQ

��

H��
m��

P

Q
φ
//

β ;;

H
OO
m
OO

Q
φ
// H

outH

��

S

α
OOOO

e

;;

ξY

##
α ����

Q
outQ
// Y

Q
δQ ��

S
αoooo α // //

e

%%
ξδ

��

Q
φ
��

DQ
Dφ
��

Dβ
%%

H
δH��

DH //Dm // DP DHooDmoo

Now assume instead that the wrapper observes Q. We show
ψ ◦ initH = initQ, outQ ◦ ψ = outH , and Dψ ◦ δH = δQ ◦ ψ by
precomposing with the epi e and composing with the monos β and

69

Dβ. The proof here is quite similar to the previous one.

I
initQ
//

ξI ##
initH

��

Q
��
β
��

P

H
ψ
//

m
;;

Q
OO
β

OO

H
ψ
// Q

outQ

��

S

e
OOOO

α

;;

ξY

$$
e ����

H
outH
// Y

H
δH ��

S
eoooo e // //

α

%%
ξδ

��

H
ψ
��

DH
Dψ
��

Dm
%%

Q
δQ��

DQ //
Dβ
// DP DQoo

Dβ
oo

Theorem 4.10. If the Q-wrapper is complete, then the hypothesis
is isomorphic to Q.

Proof. We have already seen that the hypothesis can indeed be con-
structed (Lemma 4.8). In addition, both φ and ψ exist and are
inverse to each other, so with Lemma 4.9 we know that these are
actually automaton isomorphisms.

Theorem 4.11. If Q is reachable and the wrapper observes Q and
is initialized and closed, then it is complete.

Proof. Assume Q is reachable and the wrapper observes Q and is
initialized and closed. Lemma 4.8 tells us that the hypothesis can
be constructed, and from Lemma 4.9 we know that ψ is an input
system homomorphism. By initiality of @ thus ψ ◦ rH = rQ, and
then ψ must be an epi by (F3) because rQ is epic. Since ψ is defined
to satisfy α = ψ ◦ e and compositions of morphisms in E are also in
E (F1), the wrapper reaches Q.

Theorem 4.12. If Q is observable and the wrapper reaches Q and
is responsive and consistent, then it is complete.

Proof. Assume Q is observable and the wrapper reaches Q and is
responsive and consistent. Lemma 4.8 shows the hypothesis can be
constructed, and by Lemma 4.9 φ is an output system homomor-
phism. Then from finality of Ω it follows that oH ◦ φ = oQ, which is
a mono, and so φ must be monic by (F3). Using that β = m ◦φ, we
conclude with (F1) that the wrapper observes Q.

70

Let us illustrate the relevance of these last two theorems in a
minimization context by contemplating different ways to minimize
an automaton Q. That is, we seek a factorization of tLQ in Aut. Of
course, conceptually, such a factorization can be obtained directly:

@
rM // //

tLQ

??M //
oM // Ω

However, this does not directly suggest any practical algorithm.
The usual method to minimize an automaton works sequentially:

we first take the reachable part of the automaton and subsequently
make it observable. That is, we factorize rQ to obtain an automaton
R, and then we factorize oR to find M (up to isomorphism):

@
rR // //

rQ

??
R //

hR,Q
// Q R

hR,M
// //

oR

??M //
oM // Ω

Note that by initiality rM = hR,M ◦ rR, which is in E , so that M
here is indeed minimal. We can also express this method in terms
of automaton wrappers.

Proposition 4.13 (Sequential Minimization). If for α : S → R and
β : M → P , WR = (S,Q, α, hR,Q) is an initialized and closed R-
wrapper and WM = (S, P, hR,M ◦α, β) is a responsive and consistent
M -wrapper, then WM is complete.

Proof. Since R is reachable, WR is complete by Theorem 4.11. In
particular, α ∈ E . Then WM reaches M because hR,M ∈ E by
definition and E is closed under composition. As M is observable,
we read from Theorem 4.12 that WM is complete.

We take as an example the automaton from Figure 2.3, which we
call Q. Starting with the initialized wrapper ({ε}, Q, rR ◦σ{ε}, hR,Q)
for R, we obtain in the expected way its closed extension, which is
shown in Figure 4.1a. Instead of taking this to be WR, we con-
struct from it the reachable automaton R shown in Figure 4.1b and

71

ε q0

b q1

ba q2

a q0

bb q0

baa q1

bab q0

(a)

q0
OO

b
++

a

		

q1

a
��

b

kk

q2

a

KK

b

]]

(b)

Figure 4.1: Reachability table for Fig-
ure 2.3 and its reachable hypothesis R

ε

0 1

{q0} {q1, q2}

Figure 4.2: Splitting
tree for R

take WR = (R,Q, idR, hR,Q). Although this is unnecessary work, it
demonstrates the relation to a well-known minimization algorithm
more precisely. We now move to anM -wrapper (R, 2R, hR,M , πτ) for
τ = Leaf(R) ∈ DT2R , which works very much like a normal discrimi-
nation tree, called a splitting tree in a minimization context [49]. It is
not responsive, so we split into the tree shown in Figure 4.2. At this
point we also have consistency, which implies that the corresponding
hypothesis is isomorphic to M and the automaton in Figure 2.2.

Note that the order of this sequential minimization can be re-
versed: we could first identify the observable equivalent O of Q by
factorizing oQ and then factorize rO to obtain M .

Q
hQ,O
// //

oQ

??O //
oO // Ω @

rM // //

rO

??M //
hM,O

// O

Proposition 4.14 (Alternative Sequential Minimization). If for
α : S → M and β : O → P , WO = (Q,P, hQ,O, β) is a responsive
and consistent O-wrapper and WM = (S, P, α, β ◦ hM,O) is an ini-
tialized and closed M -wrapper, then WM is complete.

72

ε b
q0 0 1
q1 1 0
q2 1 0
q3 0 0

(a) Observability table

ε b
ε 0 1
b 1 0
a 0 1
ba 1 0
bb 0 1

(b) Final table

Table 4.3: Tables for the alternative
sequential method applied to Figure 2.3

ε b
ε 0 1
b 1 0
ba 1 0
a 0 1
bb 0 1
baa 1 0
bab 0 1

Table 4.4: Figure 4.1a
composed with Table 4.3a

Proof. Since O is observable, WO is complete by Theorem 4.12.
Then β ∈ M and WM observes M because hM,O ∈ M by defi-
nition and M is closed under composition. As M is reachable, we
read from Theorem 4.11 that WM is complete.

Again we give an example with Q from Figure 2.3, and now we
stick close to Proposition 4.14. In Table 4.3a is shown an observation
table with rows labeled by states instead of access strings. The table
was initialized by creating a row for each state and initially taking
only a column with the empty word. Note that the lower part has
been left out, for we would label for each state q and input symbol
a a row in the lower part by the state δQ(q)(a), which must already
be in the upper part. A cell for a row q and column e is filled by
determining if e is in the language accepted by q. Table 4.3a has
been made consistent in the expected way. If we were to create the
corresponding hypothesis, it would be isomorphic to the observable
DA O. Instead, we move to a new table—this time an ordinary
observation table—by initializing S = {ε} while keeping the column
labels of the old table. Closing this table yields Table 4.3b with an
associated hypothesis isomorphic to M .

A different approach is to factorize both rQ and oQ independently

73

to obtain both R and O. We can then factorize the homomorphism
from R to O to obtain M .

@
rR // //

rQ

??
R //

hR,Q
// Q

hQ,O
// //

oQ

??O //
oO // Ω R

hR,M
// //

hQ,O ◦ hR,Q

??M //
hM,O

// O

Once more, we rephrase the method using wrappers.

Proposition 4.15 (Concurrent Minimization). If for α : S → R
and β : O → P , WR = (S,Q, α, hR,Q) is an initialized and closed
R-wrapper and WO = (Q,P, hQ,O, β) is a responsive and consistent
O-wrapper, then WM = (S, P, hR,M ◦ α, β ◦ hM,O) is a complete M -
wrapper.

Proof. The wrapperWM reachesM for the same reason as in Propo-
sition 4.13, and it observes M for the same reason as in Proposi-
tion 4.14.

Moreover, the approximated response of WM can be obtained
from those of WR and WO simply by composition—superscripting
the target automaton of the relevant wrapper, we have ξM = ξO◦ξR.
Further, ξMI = ξRI , ξ

M
Y = ξOY , and ξ

M
δ = ξOδ ◦ ξR.

Concretely, this means we can essentially compose the partial
results into the final one. In Table 4.4 we have substituted each
row of Figure 4.1a, where the rows are states, by the row from Ta-
ble 4.3a that is labeled by that state. The resulting hypothesis is
again isomorphic to M .

4.1 Conformance Testing
We have shown in this section how the concept of an approximation
can be generalized to study uniformly the data structures used in
both learning and minimization. We now outline briefly how by a
different generalization we can study also the kind of conformance
testing where a known automaton is tested for equivalence with a

74

black box system. The generalization consists in studying the same
approximation under different target languages.

Consider two minimal automataM andN . We wish to determine
whether the known automaton M is equal to the unknown automa-
ton N . In what follows, we fix a single approximation for which
any properties, as well as the observation structure and hypothesis
will be parameterized by the automaton—M or N—for which the
language is considered at that moment. The next result is pivotal
for the correctness of conformance testing methods.

Proposition 4.16. If the approximation is complete for M and
either reaches or observes N , then LM = LN if and only if the
observation structure for M coincides with the one for N .

Proof. If LM = LN , then also tLM = tLN and LM = LN . The
observation structures forM and N therefore coincide by definition.

Conversely, assume that the observation structures coincide.
Since the approximation is complete forM , the hypothesis forM can
be constructed. The observation structures coincide, so the hypoth-
esis for N can also be constructed and in fact these hypotheses are
equal. Together with the fact that the approximation either reaches
or observes N , we find from either Theorem 4.11 or Theorem 4.12
that the approximation is complete for N . By Theorem 4.10 and
Proposition 2.14, the coinciding hypotheses accept the same lan-
guage as both M and N .

The following concrete correspondences between conformance
test suites and observation structures used in learning were origi-
nally found by Berg et al. [19]. Let us first explain the W -method
due to Vasilevskii and Chow [67, 30]. Consider the DA setting with
finite minimal DA M and N and finite sets S,E ⊆ A∗ such that
ε ∈ S and the approximation T(S,E) is complete for M . If the
observation structures for M and N do not coincide, then we may
conclude that M and N are inequivalent. Assume these structures
do coincide. The approximation at this point may neither reach nor
observe N , but note that the image of ξ for N (the hypothesis for

75

N) is of size |M | because the hypotheses for M and N coincide and
are isomorphic to M as the approximation is complete for M . Then
the image of rN ◦σS is of size at least |M |, since ξ = πE ◦oN ◦rN ◦σS .
For each of the states of N that are not reached by this approxima-
tion (i.e., that are not in the image of rN ◦σS) there must be a path
of transitions starting at a state that is reached and ending in that
state that was not reached, in such a way that this path has a length
of at most |N | − |M | transitions.3 Thus, define

X = SA≤(b−|M |) =
{
u · v | u ∈ S, v ∈ A≤(b−|M |)

}
,

where b is any number such that b ≥ |N |, which we assume to
be given. The approximation T(X,E) is still complete for M and
moreover now reaches N . Applying Proposition 4.16, we can test
whether M and N are equivalent by testing whether their observa-
tion structures induced by this approximation coincide. Note that if
the observation structures for T(S,E) did not coincide, then neither
will they coincide for T(X,E). Hence, T(S,E) need not be consid-
ered separately at all. Of course, in practice we would start from
T(S,E) and gradually expand to T(X,E).

The method does not depend on the approximation being an
observation table. This means in particular that we can substitute
T(X,E) for a discrimination tree approximation DT(X, τ), where
τ ∈ DTPS , that observes M . Testing the resulting test suite is an
instance of the method described by Lee and Yannakakis [50], which
improves on the W -method.

Given an upperbound b on the number of states of the target
automaton in learning, we can now realize equivalence queries us-

3Because ε ∈ S and N is reachable, there exists a path without cycles that
starts in a state of N that the approximation reaches and ends in the state that
is not reached by the approximation. We can cut the beginning from this path so
that in the resulting path only the first state is reached by the approximation. If
this path has more than |N | − |M | transitions, then because it has no cycles
it passes through more than |N | − |M | distinct states that are not reached
by the approximation, but there are at most |N | − |M | of those because the
approximation reaches at least |M | states.

76

ing the concepts that are also being used in learning. Concretely,
whenever the hypothesis has been constructed, we can use one of the
minimization algorithms described earlier in this section to find an
approximation that is complete for the minimization of the hypoth-
esis. We then extend the access strings as in the above definition of
the set X and construct observation structures for L and LH simul-
taneously until a discrepancy is found, which is a counterexample
for the learning algorithm.

Ideally, the approximation used in learning should be complete
for its own hypothesis, in which case we can immediately make a
(temporary) extension by substituting X for S. Optimizations to
this integration of learning and testing can then be considered. Much
can be said about sufficient conditions for the approximation to be
complete for its hypothesis and adjustments to the learning algo-
rithm to ensure these, but we defer a comprehensive treatment of
this theory to future work.

77

5 Moore Automata
It has often been observed that Angluin’s learning algorithm and the
discrimination tree variation can directly be generalized to an arbi-
trary output object. The previous sections have carefully presented
all definitions and results in such a way that this generalization is
immediately obvious. For instance, this is why we insist on defining
the final output system as 2A

∗
rather than P(A∗); the leaves of the

discrimination trees, on the other hand, are taken from PS because
these are not to be subjected to this generalization.

If we change the DA setting by switching from the output set 2
to an arbitrary output set Y , the resulting automata are known as
Moore automata [53]. The output set is not required to be finite,
but this has no practical consequences: in a finite Moore automaton
only a finite number of distinct outputs is actually being used.

If more information about the output set is available, it can
be inefficient to use algorithms that have been designed for Moore
automata in general. For instance, consider Mealy automata [52],
which are like Moore automata except that outputs are associated
with transitions rather than states. Jacobs and Silva [46] immedi-
ately derived an algorithm by using that Mealy automata are Moore
automata, but with Y = BA for some set B. However, their obser-
vation table generalization that classifies (BA)A

∗
in the set (BA)E

for a set E ⊆ A∗ is very inefficient: each time a column is added to
the table one needs |S||A|2 membership queries to update it. This
yields a membership query complexity of O(k2n2 + n logm).4

Instead, it would be better to take E ⊆ A+ = A∗ \ {ε} and clas-
sify into BE . From the output system isomorphism (BA)A

∗ ∼= BA
+

,
where BA

+

is structured as expected, one sees that BA
+

is the final
output system. The result is a slight variation on the observation ta-
ble approximation for Moore automata. The only notable change is
the notion of responsiveness—this adapted approximation is respon-

4Recall that k = |A| and n = |M |; m is the length of the longest counterex-
ample.

78

sive if and only if for all s1, s2 ∈ S such that ξ(s1) = ξ(s2) we also
have L(s1a) = L(s2a) for all a ∈ A. Sufficient is that A ⊆ E, but
in this case initializing E = A leads to a worse membership query
complexity: rather than O(kn2 + n logm), the same complexity as
obtained for DA, one ends up with O(kn2 + k2n+ n logm) [64]. In-
stead, one should check for responsiveness every iteration and add
individual violating elements of A to E.

For similar reasons, reusing the Moore discrimination trees for
Mealy automata would not be a good idea; instead, the internal
nodes should draw experiments from A+ and distinguish outputs in
B:

MDTL ::= Leaf(L) | Node(A+,DTBL)

Again, there are no exciting differences.
In practice, one often encounters systems that release an out-

put after each input. This does not actually change the semantics
of our automata; we simply know the output associated with each
prefix of any queried word. Advantage should be taken of this addi-
tional knowledge, which may have additional distinguishing power
and thereby can save queries. This approach was taken for obser-
vation tables by Niese [55] and for discrimination trees by Isberner
[42].

We give an example in the familiar setting of DA. Consider the
language of words over {a, b} that contain an a and end with a
b. A representation of the observation structure of T(S,E), where
S = {ε, a, ab} and E = {ε, a, ba}, is shown in Table 5.1a. The cor-
responding extended observation table is given in Table 5.1b. For-
mally, it represents the observation structure for the approximation
(S, (2∗)E , σS , π̄E ◦ ρ), where

ρ : 2A
∗
→ (2+)A

∗

ρ(f)(ε) = f(ε)

ρ(f)(va) = ρ(f)(v) · f(a)

π̄E : (2+)A
∗
→ (2+)E

π̄E(f)(e) = f(e).

The properties that allow for the construction of the hypothesis are
as expected.

79

ε a ba
ε 0 0 0
a 0 0 0
ab 1 0 0
b 0 0 0
aa 0 0 0
aba 0 0 0
abb 1 0 0

(a) Normal table

ε a ba
ε 0 00 000
a 0 00 010
ab 1 10 110
b 0 00 000
aa 0 00 010
aba 0 00 010
abb 1 10 110

(b) Extended table

Table 5.1: Observation tables for the language of words over {a, b}
that contain an a and end with a b

Clearly, if for some s1, s2 ∈ S we have ξ(s1) = ξ(s2) in the
extended table, then the same equality holds in the normal table.
The converse is not true: in the example we have ξ(ε) = ξ(a) in the
normal table, but not in the extended table. The inequality actually
happens to reveal itself in the normal table as an inconsistency: we
have ξδ(ε)(b) 6= ξδ(a)(b). Conversely, the extended table may have
inconsistencies not present in the normal table. Furthermore, it may
have closedness defects that the normal table does not have: if in
our example we would reduce S to {ε}, then the normal table would
be closed, but this is not the case for the extended table.

80

6 Algebraic Structure
Minimal automata can often be compressed still further after notic-
ing that the state space exhibits certain algebraic structure. For in-
stance, if the language of each state can be described as the union of
languages accepted by some significantly small subset of the states,
it pays off to use the well-known formalism of nondeterministic au-
tomata (NDA). Here one runs the automaton by keeping track of a
set of states, and such a set is accepting if any of its states accepts.
To this end, the automaton model allows for any number of initial
states, and each state may proceed after reading an input symbol to
a set of successor states.5

A more basic structure is observed in partial automata (PA),
which just have an implicit sink state that accepts the empty lan-
guage. A simple example of both kinds of compression is given in
Figure 6.1.

In both of these cases there is an implicit state space, which is
obtained by transforming the original set of states. More precisely,
it can be described by a functor T : Sets → Sets. For NDA this
is the power set functor P; for PA it is the functor (−)] 1 that
assigns to each set X the set {(x, 0) | x ∈ X} ∪ {(∗, 1)}. There are
two important operations associated with these functors. First, the
automata should be at least as expressive as DA, for which we need
a transformation X → TX for each set X. For instance, in the case
of the power set functor we would map each x ∈ X to the singleton
{x}. Second, for NDA we have defined the implicit state space to be
the power set of the set of states, but after reading an input symbol
every current state moves to a set of states. The resulting set of sets
of states needs to be collapsed into a single set of states. In general,
we thus need an additional transformation TTX → TX, which for
the power set takes the union of a set of sets.

These transformations need to be well-behaved and interact ap-
5A popular interpretation is that a single successor is chosen—hence the

“nondeterminism” in the name—but this is detrimental to the semantics that
should be kept in mind.

81

q0

��

a

��

c

��

b

��

q1a
33

b, c ""

q3
aoo b //

c

��

q2 b
kk

a, c
||

q4

a, b, c

UU

(a) DA

q0

��

a

��

b

��

c

��

q3

a

��

b

��

q1

a

UU
q2

b

UU

(b) PA

q0

��

a, c

b, c

��

q1

a

UU
q2

b

UU

(c) NDA

Figure 6.1: Automata accepting the language over the alphabet
{a, b, c} described by the regular expression aa∗ + bb∗ + ca∗ + cb∗.
Regarding the minimal DA on the left, we notice that q3 accepts
the union of the languages accepted by q1 and q2. Furthermore,
q4 accepts the union of the languages accepted by the empty set
of states—it accepts the empty language. The NDA resulting from
the corresponding compression is shown on the right; with a PA, as
shown in the middle, we can only make q4 implicit.

82

propriately: we will require the functor T to be a monad. Towards
a formal definition of this concept, we introduce a key concept in
category theory that describes morphisms between functors.

Definition 6.1 (Natural Transformation). Given two functors
F,G : C → D, a natural transformation υ from F to G, denoted
υ : F ⇒ G, consists of a component υC : FC → GC in D at each
object C in C, in such a way that for all morphisms f : C → D in
C the diagram below commutes.

FC

Ff
��

υC // GC

Gf
��

FD
υD // GD

We may leave out subscripts to improve readability.
For each functor F : C→ D there is an identity natural transfor-

mation IDF : F ⇒ F with components (IDF)C = idFC . If ζ : F ⇒ G
and θ : G ⇒ H are natural transformations, then there is a natural
transformation θ ◦ ζ : F ⇒ H given by (θ ◦ ζ)C = θC ◦ ζC . Thus, we
may employ diagrammatic reasoning with natural transformations
without having to quantify over their components. For this purpose
it is additionally useful to note that given a natural transformation
υ : F ⇒ G between functors F,G : C → D we can define for each
functor J : E → C a natural transformation υJ : FJ ⇒ GJ with
components (υJ)E = υJE ; similarly, given a functor K : D→ E, we
have a natural transformation Kυ : KF ⇒ KG with components
(Kυ)C = K(υC).

Definition 6.2 (Monad). A monad (T, η, µ) in a category C com-
prises an endofunctor T : C→ C and two natural transformations

η : IdC ⇒ T µ : TT ⇒ T

83

subject to commutativity of the following diagrams.

T
ηT +3

IDT

�&
Tη

��

TT

µ

��
TT

µ +3 T

TTT
µT +3

Tµ

��

TT

µ

��
TT

µ +3 T

We often identify a monad (T, η, µ) with the functor T .
The power set monad will be our motivating example throughout

this section. As suggested before, η and µ are for this case defined
by ηU (u) = {u} and µU (X) =

⋃
X, where u ∈ U and X ∈ PPU .

To see that these are natural, note that for all functions f : U → V
and u ∈ U ,

(ηV ◦ f)(u) = {f(u)} = Pf({u}) = (Pf ◦ ηU)(u)

and for each X ∈ PPU ,

(Pf ◦ µU)(X) = Pf
(⋃

X
)

= {f(u) | u ∈
⋃
X}

= {f(u) | u ∈ x ∧ x ∈ X}

=
⋃
{{f(u) | u ∈ x} | x ∈ X}

=
⋃
{Pf(x) | x ∈ X}

=
⋃
PPf(X)

= (µV ◦ PPf)(X).

The monad laws assert that for each X ∈ PU we have⋃
{{x} | x ∈ X} = X =

⋃
{X}

and that taking unions is associative, i.e., for each X ∈ PPPU ,⋃{⋃
V | V ∈ X

}
=
⋃⋃

X.

84

These follow from the set theoretical axiom of union.
At this point, we can already define automata with state spaces

enriched by a monad.

Definition 6.3 (T -automaton). A T -automaton for a monad T is
an object Q in B equipped with morphisms

init†Q : I → TQ out†Q : Q→ Y δ†Q : Q→ DTQ.

Although with some effort these T -automata could be described
as automata in a category as per the general definition from Sec-
tion 2,6 this category does not always have a suitable factorization
system. For instance, there is in general no unique minimal NDA for
a given language. To still obtain the kind of minimization intended
by our motivating examples, we turn to an actually larger category
that is also associated with the monad.

Definition 6.4 (Eilenberg–Moore Category). An algebra for a
monad (T, η, µ), or just a T -algebra7, in a category C is a tuple
(X,x) of an object X and a morphism x : TX → X in C making
the diagrams below commute.

X
η
//

id !!

TX

x
��

X

TTX
Tx //

µ
��

TX

x
��

TX
x // X

A homomorphism from (U, u) to (V, v), both algebras for T , is a
morphism f : U → V in C making the diagram below commute.

TU

u
��

Tf
// TV

v
��

U
f
// V

6The category intended here is the Kleisli category for the monad T . How-
ever, for this to work Definition 6.3 would need two adjustments. First, Y would
have to be of the form TZ for some Z in B. Second, we would have to model
the dynamics algebraically (δ† : DQ→ TQ).

7Here and hereafter we disregard the notion of a T -algebra defined in Sec-
tion 2.1 for the endofunctor T .

85

This yields the Eilenberg–Moore category EM(T) of T -algebras and
their homomorphisms.

An algebra for the power set monad is a tuple (K,κ), where
κ : PK → K satisfies for each k ∈ K, κ({k}) = k; and for all
V ∈ PPK,

κ
(⋃

V
)

= κ({κ(W) |W ∈ V }).

We prefer a less cumbersome notation. Instead of giving a name to
this algebra map κ, we will usually say that K is a P-algebra and
denote for each U ∈ PK the application of its algebra map to U by⊔
U . Thus, the above requirements become⊔

{k} = k
⊔(⋃

V
)

=
⊔{⊔

W |W ∈ V
}
.

The intended use of
⊔

will be clear from the context.
Given P-algebras K and L, f : K → L is a P-algebra homomor-

phism if and only if it satisfies

f
(⊔

U
)

=
⊔
{f(k) | k ∈ U} .

for every U ∈ PK.
The categoryEM(P) is essentially the category of complete semi-

lattices and their homomorphisms. Regarding this, we only note that
each P-algebra K is equipped with a partial order v for which least
upper bounds of arbitrary subsets U ∈ PK are given by

⊔
U : for

all k, k′ ∈ K, k v k′ if and only if
⊔
{k, k′} = k′.

Note that for each object C in C there is a free algebra (TC, µ)
in EM(T): the algebra laws in this case are satisfied by the monad
laws. For instance, for any set X, the set PX has a P-algebra
structure given by taking unions.

Suppose we have instantiated the abstract theory of Section 2 in
some base category B. We fix a monad (T, η, µ) on B and aim to lift
the assumptions to EM(T). That is, EM(T) will now be our base
category; we will refer toB as the original base category. In EM(T),

86

we consider as the initial state object the free algebra (TI, µ), and we
assume that Y and D can be lifted to EM(T). That is, we assume
an algebra (Y, y) for T and a distributive law ρ : TD → DT .

Definition 6.5 (Distributive Law). A distributive law of the monad
T over the endofunctor D is a natural transformation ρ : TD ⇒ DT
rendering the diagrams below commutative.

D
ηD +3

Dη �%

TD
ρ
��
DT

TTD
Tρ +3

µ
��

TDT
ρ +3 DTT

Dµ
��

TD
ρ +3 DT

For the power set monad, there is some variation possible as to
how the algebra map y : P2→ 2 is defined. These variations will be
reflected in the formal semantics that will become associated with
our T -automata. The algebra laws demand only that

⊔
{0} = 0

and
⊔
{1} = 1. If we define

⊔
∅ = 0, then the empty set of states

yields an implicit sink state; if we define
⊔
∅ = 1, then the empty

set implicates a state that accepts everything. If we define
⊔

2 = 0,
then a set of states that contains both accepting and rejecting states
is itself considered to be rejecting; if we define

⊔
2 = 1, then a set

of states that contains both accepting and rejecting states is itself
considered to be accepting. Thus, the definition⊔

∅ = 0
⊔

2 = 1

corresponds to nondeterministic automata; the T -automata that will
correspond to ⊔

∅ = 1
⊔

2 = 0

are known as universal automata.
A distributive law of the power set monad over (−)A is given by

the components

ρX : P(XA)→ (PX)A

ρX(U)(a) = {f(a) | f ∈ U}.

87

The proof is left as an exercise.
In general, the lifted functor associated with a distributive law

ρ is D̂ : EM(T) → EM(T) given by D̂(X,x) = (DX,Dx ◦ ρ) on
algebras and D̂f = Df on algebra homomorphisms. For distributive
law provided for the power set, we obtain for all U ⊆ XA and a ∈ A,(⊔

U
)

(a) =
⊔
{f(a) | f ∈ U}.

We can now present an automaton in EM(T) as a T -algebra
(Q, q) endowed with the following structure:

(TI, µ)
init // (Q, q)

out //

δ
��

(Y, y)

D̂(Q, q)

There are a few basic T -algebra homomorphisms that we assume
known to keep the upcoming proofs concise.

Lemma 6.6. The following are T -algebra homomorphisms:

• Tf : (TU, µ)→ (TV, µ) for any function f : U → V ;
• x : (TX, µ)→ (X,x) for any T -algebra (X,x); and
• ρX : (TDX,µ)→ D̂(TX, µ) for any set X.

Proof. Each of these corresponds to an elementary equation. For the
first, it is naturality of µ; the second depends on the interaction x is
required to have with µ; the last simply asserts the second equation
satisfied by the distributive law ρ.

The following is well known.

Proposition 6.7. Given an object U in C and an algebra (V, v) for
T , there is a bijective correspondence between morphisms

U → V in B

(TU, µ)→ (V, v) in EM(T).

88

Proof. Given f : U → V in B, we define f] = v ◦ Tf ; given
g : (TU, µ) → (V, v) in EM(T), we define g† = g ◦ ηU . This yields
f]† = v ◦ Tf ◦ ηU and g†] = v ◦ T (g ◦ ηU). For bijectivity, we thus
need to show

v ◦ Tf ◦ ηU = f v ◦ T (g ◦ ηU) = g,

which follow quite directly from naturality of η and monad and al-
gebra laws:

U
f
//

η
��

V
id

$$
η
��

TU
Tf
// TV

v // V

TU
Tη
//

id &&

TTU
Tg
//

µ
��

TV

v
��

TU
g
// V

For example, given a function f : W → X, where W and X are
sets and X has a P-algebra structure, we have

f] : PW → X f](U) =
⊔
{f(w) | w ∈ U}.

For a P-algebra homomorphism g : PW → X we have

g† : W → X g†(w) = g({w}).

We are now ready to consider the remaining ingredients of our
framework in this setting. The fact that the initial state object is free
allows us to obtain a free initial input system. A similar approach
was taken by Arbib and Manes [13, Section 6].

Proposition 6.8. The initial input system @ in B yields an initial
input system (T@, µ) in EM(T).

Proof. We define an input system structure on @̃ = (T@, µ) as fol-
lows:

init@̃ : (TI, µ)→ @̃

init@̃ = T init@

δ@̃ : @̃→ D̂@̃

δ@̃ = ρ ◦ Tδ@

89

Consider an arbitrary input system (U, u) in EM(T). We obtain
by initiality of @ in B a reachability map rU : @→ U by considering
U as the input system in B indicated below, where Ũ = (U, u).

I
init@ //

η
&&

@
δ@ //

rU
��

D@
DrU��TI

initŨ
''
U

δŨ // DU

Our candidate reachability map in EM(T) is rŨ = r]U = u ◦ TrU ,
which is shown with the commutative diagram below to be an input
system homomorphism.

TI
T init@ //

Tη

%%

id

&&

T@
Tδ@ //

TrU
��

TD@
ρ
//

TDrU
��

DT@

DTrU
��

TTI
T initŨ //

µ
��

TU
TδŨ //

u
��

TDU
ρ
// DTU

Du
��

TI
initŨ // U

δŨ // DU

Suppose h : (T@, µ) → (U, u) is any input system homomor-
phism. From the commutative diagram below it follows by initiality
of @ in B that h ◦ η = rU ; hence, h = (h ◦ η)] = r]U = rŨ using
Proposition 6.7.

I
init@ //

η
��

@
δ@ //

η
��

D@

Dη
��

η

yy

TI
T init@ //

initŨ
..

T@
Tδ@ //

h
��

TD@
ρ
// DT@

Dh
��

U
δŨ

// DU

As for the final output system, we elaborate on a proof due to
Balan and Kurz [17, (2.6)]. Let us first define for each output system

90

X in B an output system structure on TX:

outTX = TX
ToutX // TY

y
// Y

δTX = TX
TδX // TDX

ρ
// DTX

Lemma 6.9. Given an output system X in B, the morphisms
ηX : X → TX and µX : TTX → TX are output system homomor-
phisms.

Proof. Diagram chase:

X
out

vv

δ //

η

��

DX
η

{{

Dη
��

Y
id
ww

Y TY
y
oo TX

Tout
oo

Tδ
// TDX

ρ
// DTX

TTXTTout
uu

TTδ//

µ

��

TTDX
Tρ
//

µ

��

TDTX
ρ
// DTTX

Dµ

��

TTYTy
vv µ

��
TYy

ww
Y TY

y
oo TX

Toutoo Tδ // TDX
ρ

// DTX

Lemma 6.10. If f : U → V is an output system homomorphism in
B, then so is Tf : TU → TV .

Proof. Diagram chase:

TU
Tout
vv

Tδ //

Tf

��

TDU
ρ
//

TDf
��

DTU

DTf
��

TYy

ww
id��

Y TY
y
oo TV

Tout
oo

Tδ
// TDV

ρ
// DTV

91

Lemma 6.11. If X̃ = (X,x) is an output system in EM(T), then
x : TX → X is an output system homomorphism in B.

Proof. This follows directly from δX̃ and outX̃ being T -algebra ho-
momorphisms.

Proposition 6.12. The final output system Ω in B lifts to a final
output system (Ω, ω) in EM(T).

Proof. Define ω using finality as the unique output system homo-
morphism TΩ→ Ω in B.

TΩToutΩ
ww

TδΩ //

ω

��

TDΩ
ρ
// DTΩ

Dω
��

TYy

xx
Y Ω

outΩoo
δΩ // DΩ

This definition would directly turn outΩ and δΩ into T -algebra ho-
momorphisms, but note that we still need to verify the algebra laws
for ω. The first law dictates ω ◦ ηΩ = idΩ : Ω → Ω. The identity
on Ω and ω are output system homomorphisms, and by Lemma 6.9
the same holds for ηΩ. The equation is thus satisfied by finality.
The second law says ω ◦ µΩ = ω ◦ Tω : TTΩ → Ω. By Lemma 6.9
and Lemma 6.10 we conclude using finality that (Ω, ω) is an output
system in EM(T).

It remains to demonstrate finality in this setting. Any output
system Ũ = (U, u) in EM(T) may be considered as an output system
U in B, so there we obtain an observability map oU : U → Ω. We
are done if we can show that this is a T -algebra homomorphism
(U, u) → (Ω, ω). From Lemma 6.10 and Lemma 6.11 we know that
oU ◦u and ω◦ToU are both output system homomorphisms TU → Ω,
which by finality completes the proof.

Together, we obtain the following situation for an automaton

92

Q̃ = (Q, q) in EM(T).

(T@, µ)
r]Q
//

tL
Q̃

??
Q̃

oQ
// (Ω, ω)

Let us now examine the different language representations in this
setting more closely.

Proposition 6.13. For any language L : (T@, µ) → (Y, y) in
EM(T), the total response is given by tL = t]L† .

Proof. Recall that the total response is the observability map of the
initial input system equipped with a language as its output map (as
shown in the proof of Proposition 2.10). Proposition 6.12 shows that
we actually obtain tL by finality of Ω in B:

T@
L
zz

Tδ@ //

tL
��

TD@
ρ
// DT@

D(tL)
��

Y Ω
outΩoo

δΩ // DΩ

Now note that tL = t]L† if and only if t†L = tL† because the operations
(−)† and (−)] are inverse to each other. We show that by finality
t†L = tL† , or rather, filling in the definition of (−)†, tL ◦ η = tL◦η:

@
δ@ //

η
��

D@

Dη
��

η

ww

T@
L
zz

Tδ@ //

tL
��

TD@
ρ
// DT@

D(tL)
��

Y Ω
outΩoo

δΩ // DΩ

Proposition 6.14. For any language L : (T@, µ) → (Y, y) in
EM(T), the alternative language representation is given by

L : (TI, µ)→ (Ω, ω) L = L†
]
.

93

Proof. Using the initial state map from Proposition 6.8 in the proof
of Proposition 2.10, we read that L = tL ◦ T init@; in B we have
L† = tL† ◦ init@. By Proposition 6.13, tL = t]L† = ω ◦ TtL† , so

L = tL ◦ T init@ = ω ◦ TtL† ◦ T init@ = (tL† ◦ init@)] = L†
]
.

For the case of the power set monad over the DA setting, let us
fix the algebra map on 2 to be the one corresponding to nondeter-
ministic automata: for all U ∈ P2,⊔

U =

{
1 if 1 ∈ U
0 if 1 6∈ U .

This yields the following algebra map on the set of languages: for
U ∈ P(2A

∗
) and v ∈ A∗,(⊔

U
)

(v) =

{
1 if l(v) = 1 for some l ∈ U
0 if l(v) = 0 for all l ∈ U .

A given language in this setting is a P-algebra homomorphism
L : (PA∗, µ) → (2, y). It corresponds by Proposition 6.7 to a func-
tion L† : A∗ → 2, of which we think as the actual target language.
Interpreting the correspondence using the above definition, we have
for each set of words U ∈ PA∗,

L(U) =

{
1 if there is a u ∈ U such that L†(u) = 1

0 if there is no u ∈ U such that L†(u) = 1.

From Proposition 6.13 we furthermore read that for all U ∈ PA∗
and v ∈ A∗,

tL(U)(v) =

{
1 if there is a u ∈ U such that L†(uv) = 1

0 if there is no u ∈ U such that L†(uv) = 1.

Finally, L : P1→ 2A
∗
is given by

L(∅)(v) = 0 L(1)(v) = L†(v)

94

for v ∈ A∗.
The proofs of Proposition 6.8 and Proposition 6.12 further al-

low us to interpret reachability and observability in EM(P). Given
an automaton Q in EM(P) as below on the left (with the algebra
structure left implicit), consider also the DA on the right obtained
by forgetting the algebra structure and applying Proposition 6.7 to
its initial state map.

PI init // Q
out //

δ
��

2

QA

I
init† // Q

out //

δ
��

2

QA

Because observability maps in EM(P) are just observability maps
in Sets, these two automata have the same notion of observability;
reachability, on the other hand, is weaker for the automaton on the
left: the automaton is reachable if for each state q ∈ Q there is a
set of words U ∈ P(A∗) such that

⊔
{r(u) | u ∈ U} = q, where

r : A∗ → Q is the reachability map in Sets of the automaton on the
right (see the proof of Proposition 6.8).

Back in the abstract setting, the definition of D̂ lifts our assump-
tion about D to EM(T) in the following sense: the functor D̂ maps
each T -algebra homomorphism that is monic in B to a T -algebra
homomorphism that is monic in B. We now further assume that
T preserves E , which will give us a factorization system in EM(T).
Moreover, Lemma 2.17 can be lifted directly.

Lemma 6.15. Consider commutative diagrams in B as below.

C
w

f
��

D //
u // E

K
v // //

x

L

g
��

Z

If (C, c), (D, d), and (E, e) are T -algebras such that w and u are
T -algebra homomorphisms, then f is a T -algebra homomorphism;

95

if (K, k), (L, l), and (Z, z) are T -algebras such that x and v are
T -algebra homomorphisms, then g is a T -algebra homomorphism.

Proof. We prove f ◦ c = d◦Tf and g ◦ l = k ◦Tg by composing with
the mono u and precomposing with the epi Tv, respectively:

TC
c //

Tw
&&

Tf ��

C
f
//

w
%%

D��
u��

TD
Tu
//

w //

TE
e
// E

D
OO u
OO

TL l

!!
TK
Tv
OOOO

k //

Tx
&&

Tv ����

K
v //

x
%%

L
g
��

TL
Tg
// TZ

z
// Z

Proposition 6.16. The Eilenberg–Moore category EM(T) has a
factorization system inherited from B. Specifically, it is given by

({e ∈ E | e is a T -algebra homomorphism},
{m ∈M | m is a T -algebra homomorphism}).

Proof. As in the proof of Proposition 2.20, the properties (F1)
through (F3) are inherited directly. For (F4), consider a T -algebra
homomorphism h : (U, u) → (V, v). We factorize h : U → V in B as
h = j◦i through X and define x : TX → X as the diagonal indicated
below on the left, using that T preserves E .

TU
Ti // //

u ��

TX

x

��

Tj��

U
i ��

TV
v��

X //
j
// V

TU
Ti //

Th ''
u ��

TX
Tj��

U
i ��

h

''

TV
v��

X
j
// V

Commutativity of the rectangle on the left is indicated on the right.
By the definition of x, i and j will be T -algebra homomorphisms.
However, it remains to verify the algebra laws for x. We prove both

96

x ◦ ηX = idX and x ◦ µ = x ◦ Tx by composing with the mono j:

X //
j
//

η
��

V
η
��

id

��

TX
Tj
//

x
��

TV

v
��

X //
j
// V

TTX

TTj &&

µ

""

Tx

��

TTV

Tv
��

µ

%%

TX
Tj
�� x

��

TX
Tj
//

x
��

TV
v

%%

TV

v
��

X //
j

// V Xoo
j
oo

Finally, consider for (F5) a commuting square of T -algebra ho-
momorphisms as below on the left,

(U, u)
i // //

f
��

(V, v)

g
��

(W,w) //
j
// (X,x)

U
i // //

f
��

V
d

||
g
��

W //
j
// X

where i ∈ E and j ∈ M. In B this gives us a diagonal d as shown
on the right. By Lemma 6.15, d is a T -algebra homomorphism.

Recall that T -automata implicitly have a state space generated
by applying the monad T . We will see that, conversely, given an
automaton with a freely generated statespace, we can recover a T -
automaton.

Definition 6.17 (Implicit automaton). An implicit automaton in
EM(T) is an automaton with a state object of the form (TQ, µQ)
for some object Q ∈ B.

Thanks to Proposition 6.7, an implicit automaton can be rep-
resented by an object and three morphisms in B. More precisely,
there is a bijective correspondence between implicit automata and

97

T -automata:

(TI, µ)
init // (TQ, µ)

out //

δ��

(Y, y)

D̂(TQ, µ)

I

init†
��

Q
out† //

δ†
����

Y

TQ DTQ

in EM(T) in B

The implicit automaton on the left is implicit given the T -automaton
on the right. Explicitly, we have

init = init†] = µ ◦ T (init†)

out = out†] = y ◦ T (out†)
δ = δ†] = Dµ ◦ ρ ◦ T (δ†).

The semantics of the example T -automata discussed informally
at the beginning of this section were obtained by keeping this con-
version to the implicit automaton in mind.

As mentioned before, a minimal automaton in EM(T) may not
be an implicit automaton. Given an automaton in EM(T), we would
like to find an equivalent implicit automaton that is as small as
reasonably possible. This can be achieved by finding an appropriate
scoop of the original automaton.

Definition 6.18 (Scoop [33, 13]). A scoop for a T -algebra (U, u) is
a tuple (X, i, d) that consists of an object X in B and morphisms
i : X → U and d : U → TX such that i] ◦ d = idU .

U
d //

id ..

TX
Ti // TU

u��

U

For instance, (U, idU , ηU) is always a scoop for (U, u), as u is
required to satisfy u ◦ η = idU . Any scoop for an automaton in
EM(T) gives rise to a language-equivalent implicit automaton [13,
Proposition 9, Section 7].

98

Proposition 6.19. If Q̃ = (Q, q) is an automaton in EM(T) and
(X, i, d) is a scoop for Q̃, then the automaton X̃ = (TX, µ) impli-
cated below accepts the same language as Q̃.

init†
X̃

= d ◦ init†
Q̃

out†
X̃

= outQ̃ ◦ i δ†
X̃

= Dd ◦ δQ̃ ◦ i

Proof. Using Proposition 2.14, the fact that LX̃ = LQ̃ will follow
after observing that i] : X̃ → Q̃ is an automaton homomorphism.
To this end, we need to show

initQ̃ = i] ◦ init†]
X̃

outQ̃ ◦ i
] = out†]

X̃
δQ̃ ◦ i

] = D(i]) ◦ δ†]
X̃
.

Applying (−)† to all equations, these become

init†
Q̃

= i] ◦ init†
X̃

outQ̃ ◦ i = out†
X̃

δQ̃ ◦ i = D(i]) ◦ δ†
X̃
.

The equation for the output maps is directly satisfied by the defini-
tion provided for out†

X̃
; the others follow using the scoop property

i] ◦ d = idU .

This T -automaton induced by a scoop will be called a scoop
automaton. We will now show that for B = Sets there are always
scoop automata of the minimal automaton in EM(T) having at most
as many states as the minimal automaton in Sets. In what follows,
let Ñ = (N,n) be the minimal realization of L : (T@, µ)→ (Y, y) in
EM(T), and let M be the minimal realization of L† : @→ Y in B.

Proposition 6.20. If every epi in B splits, then there exist mor-
phisms i : M → N and d : N → TM in B such that (M, i, d) is a
scoop of (N,n).

Proof. From Proposition 6.13 we know that tL = t]L† , or, equiva-
lently, tL† = t†L = tL ◦ η. Hence, there is a diagonal i below on the

99

left.

@
tL†

��

rM
// //

η

��

M
oM

((
i

��

Ω

T@
tL

KK

rÑ // N
66

oÑ

66

T@

TrM
�� Tη ""

id

!!

TM

Ti
��

TT@

TrÑ||

µ
// T@

rÑ

�� ��

TN
n // N

From commutativity of the diagram on the right we read that the
morphism n ◦ Ti : TM → N is an epi. We define d : N → TM to be
its right inverse; that is, n ◦ Ti ◦ d = idN . This is exactly what is
required for (M, i, d) to be a scoop of (N,n).

6.1 Automaton Wrappers
Given an automaton Q̃ = (Q, q) in EM(T), we consider Q̃-wrappers
of the form W = ((TS, µ), (P, p), α], β), where α : S → Q is a mor-
phism in B and β : Q̃→ (P, p) is a morphism in EM(T).

Proposition 6.21. If the hypothesis for W can be constructed and
e : TS → H has a right inverse i : H → TS in B, then (S, e ◦ η, i) is
a scoop of the hypothesis.

Proof. Let (H,h) be the hypothesis. The result is seen directly from
commutativity of

H
i //

id //

TS
Tη
//

id %%

TTS
Te //

µ
��

TH

h

��

TS
e

%%
H

If the original base category is Sets, we may remove any s ∈ S
from S if there exists a U ∈ T (S \ {s}) with ξ(U) = ξ†(s), for
doing so leaves the image of ξ unharmed. The absence of elements

100

s that can thus be removed was introduced by Angluin et al. [9] as
a minimality property for observation tables in certain more specific
settings. Importantly, if this minimality holds, then the function ξ†
is injective. We will see that ξ† is the approximated response of a
wrapper in Sets for the language L†. Thus, our scoop will have less
“states” than the hypothesis of this wrapper in Sets has states, and
therefore certainly less than the number of states of the minimal
automaton in Sets.

Specifically, let W ′ be the wrapper (S, P, α, β) in B for the au-
tomatonQ obtained by forgetting the algebra structure and applying
(−)† to the initial state map. It turns out that we can conveniently
reuse entire observation structure representations that have been
designed for B.

Lemma 6.22. For all sets U , T -algebras (J, j) and (K, k), and
morphisms f : U → J in B and g : (J, j) → (K, k) in EM(T), we
have g ◦ f] = (g ◦ f)].

Proof. We have g ◦ f] = g ◦ j ◦ Tf and (g ◦ f)] = k ◦ T (g ◦ f). Their
equality follows directly from g being a T -algebra homomorphism:

TU
Tf
// TJ

Tg
//

j ��

TK
k��

J
g
// K

Proposition 6.23. Superscripting the relevant wrapper, the obser-
vation structure of W is given by

ξW : (TS, µ)→ (P, p) ξW = (ξW
′
)]

ξWI : (TI, µ)→ (P, p) ξWI = (ξW
′

I)]

ξWY : (TS, µ)→ (Y, y) ξWY = (ξW
′

Y)]

ξWδ : (TS, µ)→ D̂(P, p) ξWδ = (ξW
′

δ)]

Proof. The only interesting case is for ξWI ; the others follow directly
from Lemma 6.22. Using that lemma, we have

ξW = β ◦ initQ̃ = β ◦ init†]
Q̃

= (β ◦ init†
Q̃

)] = (ξW
′
)].

101

Notice, however, that the wrappers W and W ′ generally come
with different notions of hypothesis constructability.

From the following rather trivial result regarding the correspon-
dence of Proposition 6.7, it follows that the definitions of initializa-
tion and closedness for our wrapper W can be simplified.

Proposition 6.24. For all objects U in B and objects (J, j) and
(K, k) and morphisms f : (TU, µ) → (J, j), g : (TU, µ) → (K, k),
and h : (J, j) → (K, k) in EM(T), the diagram below on the left
commutes if and only if the one on the right commutes.

TU
f ��

g

##
J

h
// K

U
f† ��

g†

""

J
h
// K

Proof. From left to right we simply note that f† = f◦η and g† = g◦η.
Conversely, assume the diagram on the right commutes. We have
f = j ◦ T (f†) and g = k ◦ T (g†). Below we conclude by using that
h is a T -algebra homomorphism.

TU
T (f†)

//

T (g†) %%

TJ
j
//

Th
��

J

h
��

TK
k
// K

Corollary 6.25. The wrapper W is initialized (closed) if and only
if there is a morphism init† (close†) in B making the diagram below
on the left (right) commute.

I
init†
��

ξ†I

""
H //

m
// P

S
close†

��

ξ†δ
$$

DH //
Dm
// DP

As an example, we show that observation tables from the DA
setting can be lifted for the case of the power set monad. This is
essentially what was originally done by Bollig et al. [22].

102

Given finite sets of words S,E ∈ A∗, we define an observation
table approximation for this setting as

T̂(S,E) = ((PS, µ), (P, pE),PσS , πE),

where σS and πE are as before, and the function pE : P2E → 2E is
defined for all U ∈ P2E and e ∈ E by

pE(U)(e) =

{
1 if f(e) = 1 for some f ∈ U
0 if f(e) = 0 for all f ∈ U .

For e ∈ E and each f : E → 2, we have

pE({f})(e) =

{
1 if f(e) = 1

0 if f(e) = 0
= f(e),

and for each V ∈ PP2E ,

pE

(⋃
V
)

(e) =

{
1 if f(e) = 1 for some f ∈ U and U ∈ V
0 if f(e) = 0 for all f ∈ U and U ∈ V

=

{
1 if pE(U)(e) = 1 for some U ∈ V
0 if pE(U)(e) = 0 for all U ∈ V

= pE({pE(U) | U ∈ V })(e).

Thus, (2E , pE) is a P-algebra, and we can readily see that with this
definition of pE , πE is a P-algebra homomorphism: the function pE
is a restricted version of ω, with this very restriction being provided
by πE .

Recall from the proof of Proposition 6.8 that the reachability map
r(N,n) of the minimal automaton (N,n) in EM(T) is r]N , where rN
is the reachability map of N in B (having initial state map init†(N,n)).
Since

r]N ◦ TσS = m ◦ TrN ◦ TσS = m ◦ T (rN ◦ σS) = (rN ◦ σS)],

103

the wrapper ((PS, µ), (P, pE), r]N ◦PσS , πE ◦oN) associated with the
approximation T̂(S,E) is ((PS, µ), (P, pE), (rN ◦ σS)], πE ◦ oN) and
therefore an instance of the wrapper W discussed above. Note that
the associated wrapper W ′ is precisely the wrapper corresponding
to the approximation T(S,E).

From Corollary 6.25 it follows that W is initialized if and only
if there is a set U ∈ PS such that ξ(U) = ξ†I(∗); it is closed if and
only if for all s ∈ S and a ∈ A there is a set U ∈ PS such that
ξ(U) = ξ†δ(s)(a). Bollig et al. [22] use a definition of closedness for
which the obvious verification algorithm is much more efficient than
the one following from the property given here. We validate their
definition for our framework using a generalized proposition.

Proposition 6.26. For a set K, a P-algebra L, a P-algebra homo-
morphism f : PK → L, and an element l ∈ L, there is a set U ∈ PK
such that f(U) = l, if and only if

f({k ∈ K | f†(k) v l}) = l.

Proof. Define X = {k ∈ K | f†(k) v l} and assume that there is a
U ∈ PK such that f(U) = l. For each k ∈ U , we have⊔

{f†(k), l} =
⊔
{f({k}), l} =

⊔
{f({k}), f(U)}

= f({k} ∪ U) = f(U) = l,

so f†(k) v l, and it follows that X ∪ U = X. Then

f(X) = f(X ∪ U)

= f
(⋃

({U} ∪ {{k} ∪ U | k ∈ X})
)

=
⊔

({f(U)} ∪ {f({k} ∪ U) | k ∈ X})
?
=
⊔

({f(U)} ∪ {f(U) | k ∈ X})

=
⊔

({f(U)}) = f(U) = l.

104

The step marked by ? uses that any k ∈ X satisfies f({k}) v l and
thus

f({k} ∪ U) =
⊔
{f({k}), f(U)} =

⊔
{f({k}), l} = l = f(U).

The other part of the proof is trivial.

Responsiveness and consistency do not seem to admit such nice
optimizations. The approximation T̂(S,E) is responsive if and only
if for all U, V ∈ PS such that ξ(U) = ξ(V) we have L(U) = L(V); it
is consistent if and only if for such U and V we have ξδ(U) = ξδ(V).

As an example, consider T̂(S,E) corresponding to Table 6.2.
Since ξ†δ(aaa)(a) = ξ({ε, a}), the approximation is closed. Despite
the fact that the approximation is minimal in the sense of Angluin
et al. [9], we do have consistency defects: ξ({ε, a}) = ξ({aa, aaa}),
but ξδ({ε, a})(a) 6= ξδ({aa, aaa})(a); ξ({aa}) = ξ({a, aa}), but
ξδ({aa})(a) 6= ξδ({a, aa})(a). Note that the situation is quite differ-
ent in B: for this example, T(S,E) is consistent, but not closed.

Consider the language of words over {a} of which the length
is not equal to one. The approximation T̂(S,E) associated with
Table 6.3 is initialized, responsive, and dynamical. In Figure 6.4a
is shown the actual hypothesis (H,h) in EM(P), but without its
algebra structure. We label each state x ∈ H by a set U ∈ PS such
that e(U) = x. The single initial state represents init†(H,h) : 1 → H.
Note that in EM(P) this automaton is reachable: the sink state
is always reached by the empty set of words. The choice of state
labels in fact defines a splitting i : H → PS of e : PS → H in Sets.
Applying Proposition 6.21 yields the scoop automaton depicted in
Figure 6.4b.

6.2 Counterexample Analysis
In order to complete the algorithm for this setting, it remains to han-
dle counterexamples. The method explained in Section 3.3 started

105

ε aa aaaa
ε 1 0 1
a 0 1 0
aa 0 1 1
aaa 1 0 0
aaaa 1 1 1

Table 6.2: Inconsistency
in EM(P)

ε a
ε 1 0
a 0 1
aa 1 1

Table 6.3: A table that is initialized,
responsive, and dynamical in EM(P)

{ε}
��

a // {a}

a
��

∅

a

TT
{ε, a}

a

RR

(a)

ε
��

a
		

a

a

WW

a

II

(b)

Figure 6.4: Hypothesis for Table 6.3
(a) and its scoop automaton (b) based
on the choice of state labels

ε a aa
ε 0 1 1
a 1 1 0
aa 1 0 0
aaa 0 0 0

Table 6.5: Initialized, re-
sponsive, and dynamical ta-
ble with e unsplittable

106

by splitting the function e, which in this case is a P-algebra ho-
momorphism PS → H. Unfortunately, e may not have a right in-
verse in EM(P). For instance, consider the approximation T̂(S,E)
corresponding to Table 6.5, and suppose i : H → P is a right in-
verse of e in EM(P), i.e., a P-algebra homomorphism such that
e ◦ i = idH . There is only one U ∈ PS such that e(U) = e({ε}),
and there is also just one U ∈ PS such that e(U) = e({aa}). There-
fore, we must have i(e({ε})) = {ε} and i(e({aa})) = {aa}. Because
e({a} ∪ {aa}) = e({ε} ∪ {aa}), it follows that

i(e({a} ∪ {aa})) = i(e({ε} ∪ {aa})) = i(e({ε}) t e({aa}))
= i(e({ε})) ∪ i(e({aa})) = {ε, aa}

However, there are exactly two sets U ∈ PS with e(U) = e({a}),
namely {a} and {a, aa}, which means that a ∈ i(e({a})), and since

i(e({a} ∪ {aa})) = i(e({a}) t e({aa})) = i(e({a})) ∪ i(e({aa})),

we reach the contradiction a ∈ i(e({a} ∪ {aa})).
It was remarked in Section 3.3 that our discussion of counterex-

ample analysis is not exactly categorical. We will actually exploit
this in the present setting. It turns out that the algebra structure
is almost entirely irrelevant for the processing of a counterexample,
the only exception being that when the time comes to expand the
approximation, the result must of course be a valid approximation
in EM(T). We will see that the rest of the argument can be carried
out in Sets. That is, we consider the setting where the original base
category B is Sets, and furthermore where I = {∗} and D = (−)A

for some set A. Anticipating Section 7.2, the set A need not be
finite.

We consider an approximation of the form ((TS, µ), (P, p), Tσ, π),
where σ : S → A∗ is a function and π : (Y A

∗
, ω) → (P, π) is a

T -algebra homomorphism. Assuming the hypothesis can be con-
structed, let (H, ζ) be that hypothesis. A counterexample is a word
z ∈ A∗ such that L†H(z) 6= L†(z). Suppose the hypothesis has been

107

constructed and we have obtained a counterexample z. The remain-
der of the argument plays in Sets, although we take the relevant
concepts (input/output systems, approximations and their observa-
tion structures, . . .) from EM(T) by forgetting the algebra struc-
ture. Determine a right inverse i : H → PS of e in Sets, which has
already been done if the hypothesis was replaced by a scoop automa-
ton suggested by Proposition 6.21. We obtain h : T (A∗)→ Ω as the
following composition:

T (A∗)
r //

h

88H
i // S

Tσ // T (A∗)
tL // Ω

Note that i, and therefore also h, is not necessarily a T -algebra
homomorphism.

We are now ready to present the analogues of Proposition 3.29
and Proposition 3.30.

Proposition 6.27. If z is a counterexample for the hypothesis
(H, ζ) and L†(z) 6= (h ◦ T init@)†(∗)(z),8 then there are U ∈ TS

and v ∈ A∗ such that ξ(U) = ξ†I(∗), but (tL ◦ Tσ)(U)(v) 6= L†(∗)(v).

Proof. Define s = (i◦rH ◦T init@)†(∗) and v = z. Using Lemma 3.26,
we have ξ(U) = (ξ ◦ i ◦ rH ◦ T init@)†(∗) = ξ†I(∗). Furthermore, the
inequality comes down to our assumption:

(tL ◦ Tσ)(U)(z) = (tL ◦ Tσ ◦ i ◦ rH ◦ T init@)†(∗)(z)

= (h ◦ T init@)†(∗)(z) 6= L†(z) = L†(∗)(z).

Proposition 6.28. If z is a counterexample for the hypothesis
(H, ζ) and L†(z) = (h ◦ T init@)†(∗)(z), then there are U,U ′ ∈ TS,
a ∈ A, and v ∈ A∗ such that ξ(U) = ξδ(U

′)(a), but

(tL ◦ Tσ)(U)(v) 6= (δΩ ◦ tL ◦ Tσ)†(s)(a)(v).

8The operation (−)† was originally defined on certain T -algebra homomor-
phisms. We use it here just for brevity instead of explicit composition with η,
which works on any function of which the domain is a free algebra.

108

Proof. We prove first that

h†(ε)(z) 6= h†(z)(ε). (6.1)

Observe that

h†(ε)(z) = (h ◦ T init@)†(∗)(z) (η(ε) = init†@(∗))
= L†(z) (assumption)

6= L†H(z) (counterexample)

= (outΩ ◦ h)†(z) (Lemma 3.27)

= h†(z)(ε) (definition of outΩ).

Again, we deduce a breakpoint from (6.1): there are u, v ∈ A∗
and a ∈ A such that

h†(ua)(v) 6= h†(u)(av),

which may be expressed as a failure of h to be a dynamorphism:

(hA ◦ δ@)†(u)(a)(v) 6= (δΩ ◦ h)†(u)(a)(v). (6.2)

Define U = (i ◦ rH)†(u) and U ′ = (i ◦ rH ◦ δ†@(u))(a). These give
us the required inequality

(tL ◦ Tσ)(U ′)(v)

= (tL ◦ Tσ ◦ i ◦ rH ◦ δ†@(u))(a)(v) (definition of U ′)

= (h ◦ δ†@(u))(a)(v) (definition of h)

= (hA ◦ δ@)†(u)(a)(v) (definition of (−)A)

6= (δΩ ◦ h)†(u)(a)(v) (6.2)

= (δΩ ◦ tL ◦ Tσ ◦ i ◦ rH)†(u)(a)(v) (definition of h)

= (δΩ ◦ tL ◦ Tσ)†(U)(a)(v) (definition of U).

109

It remains to show that ξ(U) = ξδ(s)(a). Rewriting these as

ξ(U) = (ξ ◦ i ◦ rH ◦ δ†@(u))(a) = ((ξ ◦ i ◦ rH)A ◦ δ@)†(u)(a)

ξδ(U
′)(a) = (ξδ ◦ i ◦ rH)†(u)(a),

we see that we can conclude by applying Lemma 3.28.

We evaluate the complexity of the resulting algorithm for our
example setting in EM(P) with the lifted observation tables. Let
k = |A| and let n be the size of the minimal DA for the language
L†. Fixing an initialization or a closedness defect increases the im-
age of ξ†. Therefore, we can fix at most n such defects. Fixed
consistency defects and the results of processing counterexamples
have less generous implications. In general we only know that these
have increased the image of ξ. Unfortunately, the image of ξ may
be exponential in n. Thus, when the algorithm terminates we will
have at most n words in S and at most 2n words in E. By using a
binary search, the number of membership queries needed to process
counterexamples is logarithmic in the size m of the longest obtained
counterexample, but determining h†(u)(v) for words u, v ∈ A∗ re-
quires in general a query for each s ∈ S. Altogether, the number of
equivalence queries will be in O(2n) and the number of membership
queries in O(k2n + n2n logm).

6.3 Discussion
The query complexities that follow directly from our algorithm are
rather disappointing, especially considering that we are just learn-
ing regular languages here—the original algorithm that learns a DA
should in general be much faster. Interestingly, Bollig et al. [22]
have come up with an algorithm that is similar to the one developed
here, but that does have polynomial query complexities. Given that
the minimality property of Angluin et al. [9] holds (there are no
s ∈ S and U ∈ P(S \ {s}) such that ξ†(s) = ξ(U)), the hypothesis
they construct is an instance of a scoop automaton for our hypoth-
esis. However, their notion of consistency is weaker. In fact, they

110

can construct their hypothesis in some cases when ours is not well-
defined. It is this weaker notion of consistency, together with a more
intricate argument regarding progress after a counterexample, that
ensures a polynomial complexity. For this reason it would be highly
interesting to relate their construction properly to our framework.

On the negative side, Bollig et al. observed that their algorithm
did not terminate when using the original counterexample process-
ing method due to Angluin [7] (which we do not explain in this
thesis). We conjecture that this would be fixed by using our notion
of consistency.

A different solution to the complexity analysis is given by An-
gluin et al. [9]. They replace the factors 2n by the size of the minimal
DA for the reverse of the language under consideration, which is jus-
tified by the observation that the number of distinct columns in the
table (restricted to its upper part) is bounded by that number. The
argument is valid also in our algorithm (for when two unions of rows
become distinguished there must have been added a column that was
not previously in the table). Note, however, that the minimal DA
for the reverse of the language may still be exponentially larger (but
also smaller) than the minimal DA for the actual language itself.

The worst case complexities known for the algorithms by Bollig
et al. [22] and Angluin et al. [9] are both still worse than the com-
plexities known for the algorithm in the original setting. However,
in both cases better performance in practice is reported when the
target languages are given by randomly generated regular expres-
sions [22] or NDA [9]; Angluin et al. [9] find that the comparable
algorithm that learns a DA performs better when the target lan-
guages are given by randomly generated DA. It would be interesting
to see how our algorithm relates to their algorithms in practice.

The output object 2 for which we have discussed the learning
algorithm can be seen as the free P-algebra P(1). The algorithm
can easily be generalized to any free P-algebra P(X) for a finite set
X. Even more generally, the output object has to be an EM(P)-
algebra. Using our lifting of the functor (−)A, another example is
P(X)A for a finite set X, which allows us to learn nondeterminstic

111

Mealy machines. However, note that in this model each combina-
tion of an origin state and an input symbol determines both the set
of next states and the set of outputs; in a common nondetermin-
istic Mealy machine model the set of outputs depends also on the
next state. This is the case for the automata learned by El-Fakih
et al. [34], Pacharoen et al. [57], and Khalili and Tacchella [48]. Yet
another automaton is learned by Volpato and Tretmans [68]. Al-
though it is not directly clear how these automata would fit in our
framework, the fact that the algorithms record sets of outputs in
their tables suggests that they might benefit from exploiting the al-
gebraic structure of the table analogous to either our definitions or
those by Bollig et al. [22].

112

q0

��

a

��

b

��

c

��

q1b, c
33

a
''

q2

a, c
kk

b

��

q3 a, b
kk

c
ww

q4

a, b, c

UU

Figure 7.1: DA over {a, b, c} display-
ing a symmetry in its language

q0

e
��

a

��

b/(ab)

��

c/(ac)

��

q1 b, c
kk

a
��

q2

a, b, c

UU

Figure 7.2: T -automaton
for Figure 7.1

7 Symmetry
Another compression that may be applied to an automaton is with
respect to a certain symmetry. For instance, a symmetry can be
observed in Figure 7.1. The states q1, q2, and q3 are equivalent up
to a renaming of the alphabet. To describe such relations within
the framework developed in the previous section, we introduce some
basic group theory.

Definition 7.1 (Group). A group is a set G equipped with an asso-
ciative binary operation, denoted by juxtaposition, for which there
is an identity element e and an inverse element g−1 for each g ∈ G.
Thus, for g, h, i ∈ G,

(gh)i = g(hi) eg = g = ge gg−1 = e = g−1g.

Lemma 7.2. In any group G, we have

e−1 = e (g1g2)−1 = g−1
2 g−1

1 .

113

Proof. We just need to realize that inverse elements are unique: if
gh = e, then h = g−1gh = g−1. Thus, the desired results follow from

ee = e g1g2g
−1
2 g−1

1 = g1g
−1
1 = e.

Our main example of a group is the permutation group Perm(V)
on a set V. It is defined as the set of permutations of V (bijections
V → V), with composition as the group operation. We already know
that function composition is associative and that identity functions
act as identity elements with respect to composition. Clearly, the
composition of two permutations is a permutation, and the identity
on V is also a permutation. The inverse of an element of this group
is just the inverse function associated with the bijection.

We fix a group G, which induces a monad (G × (−), η, µ) as
follows:

ηX : X → G×X
ηX(x) = (e, x)

µX : G× (G×X)→ G×X
µX(g1, (g2, x)) = (g1g2, x).

Naturality of these is left as an exercise, and we only mention that
the monad laws correspond precisely to the associativity and identity
equations. Note that if some function f is surjective, then so is
idG × f—the monad thus preserves our class E as defined for Sets.

An algebra (U, u) for the monad G× (−) is precisely a left group
action.

Definition 7.3 (Group Action). A (left) group action for the group
G is a set U with a binary operation G×U → U , denoted by a dot,
that satisfies

e . u = u (g1g2) . u = g1 . (g2 . u).

If such an operation is provided, U is called a G-set.

Any set X can be made into a G-set by equipping it with the
trivial action defined by g . x = x for all g ∈ G and x ∈ X. We
simply have e . x = x and

(g1g2) . x = x = g1 . x = g1 . (g2 . x).

114

The free G-set on a set U is the set G× U with an action given by
applying the group operation: g . (h, u) = (gh, u). The free G-set is
precisely the free (G× (−))-algebra.

Given any two G-sets U and V , an action on U × V is given by
g . (u, v) = (g . u, g . v). For a G-set X, we define an action on P(X)
as follows. For each g ∈ G and W ⊆ X, g .W = {g . w | w ∈ W}.
Note that e .W = W and

g1g2 .W = {g1g2 . w | w ∈W} = {g1 . (g2 . w) | w ∈W}
= g1 . {g2 . w | w ∈W} = g1 . (g2 .W).

For the group Perm(V), the set V is a G-set with an action defined
by application: g . v = g(v). Indeed, e . v = e(v) = idV(v) = v and

(g1g2) . v = (g1 ◦ g2)(v) = g1(g2(v)) = g1 . g2(v) = g1 . (g2 . v).

The algebra homomorphisms for the monad G × (−) are called
equivariant functions. That is, a function f : U → V between G-sets
U and V is equivariant if and only if g . f(u) = f(g . u) for all g ∈ G
and u ∈ U .

Given an equivariant function f : G × U → V for a set U and a
G-set V , the function f† : U → V is given by f†(u) = f(e, v). Given
a function g : U → V , the equivariant function g] : G × U → V is
given by g](g, u) = g . g(u).

In order to lift the functor (−)A to the category of actions for G,
we assume an action defined on the alphabet A. If no such action is
supplied, we can always take it to be the trivial action.

Proposition 7.4. The collection of components

ρX : G×XA → (G×X)A

ρX(g, f)(a) = (g, f(g−1 . a))

defines a distributive law.

115

Proof. To see that ρ is a natural transformation, consider any func-
tion f : U → V . Showing commutativity of

G× UA

id×fA
��

ρ
// (G× U)A

(id×f)A
��

G× V A
ρ
// (G× V)A

amounts to a simple calculation:

((id ◦ f)A ◦ ρ)(g, h)(a)

= ((id ◦ f)A(ρ(g, h)))(a)

= ((id ◦ f)(ρ(g, h)(a)) (definition of (−)A)

= (id ◦ f)(g, h(g−1 . a)) (definition of ρ)

= (g, (f ◦ h)(g−1 . a))

= ρ(g, f ◦ h)(a) (definition of ρ)

= ρ(g, fA(h))(a) (definition of (−)A)

= (ρ ◦ (id× fA))(g, h)(a).

Moving on to revealing that ρ is a distributive law, we have

XA η
//

ηA %%

G×XA

ρ
��

(G×X)A

ηA(f)(a) = η(f(a))

= (e, f(a))

= (e, f(e . a))

= (e, f(e−1 . a))

= ρ(e, f)(a)

= (ρ ◦ η)(f)(a)

and

G× (G×XA)
id×ρ
//

µ
��

G× (G×X)A
ρ
// (G× (G×X))A

µA
��

G×XA ρ
// (G×X)A

116

(µA ◦ ρ ◦ (id× ρ))(g1, (g2, f))(a)

= (µA ◦ ρ)(g1, ρ(g2, f))(a)

= (µ ◦ ρ(g1, ρ(g2, f)))(a) (definition of (−)A)

= µ(g1, ρ(g2, f)(g−1
1 . a)) (definition of ρ)

= µ(g1, (g2, f(g−1
2 . g−1

1 . a))) (definition of ρ)

= (g1g2, f(g−1
2 . g−1

1 . a)) (definition of µ)

= (g1g2, f(g−1
2 g−1

1 . a))

= (g1g2, f((g1g2)−1 . a))

= ρ(g1g2, f)(a) (definition of ρ)
= (ρ ◦ µ)(g1, (g2, f))(a) (definition of µ).

The resulting lifting of (−)A : Sets → Sets to EM(G × (−))
works as follows. Given a G-set U , the set UA becomes a G-set with
the action given by (g . f)(a) = (g . f)(g−1 . a) for all g ∈ G, f ∈ UA,
and a ∈ A.

Let us assume any action on the output object Y . In examples
with Y = 2 we will assume the trivial action.

We recover the following semantics of T -automata in this setting.
Apart from the current state, one keeps track of a group element.
The initial state thus consists of a state and a group element. If
the current group element is g, and an output y is defined for the
current state, the actual output is g . y. On reading an input symbol
a, we find the transition corresponding to the current state and input
symbol g−1 . a, which yields the next state and a group element h.
The next group element then becomes gh.

An example for the group Perm({a, b, c}) is depicted in Fig-
ure 7.2. The initial state arrow is labeled with the initial group
element. An arrow labeled by a/h indicates a transition on input
symbol a with a resulting group element h; if only an input symbol is
given, the intended group element is e. The group element denoted
by (ab) is the permutation that swaps a and b while leaving all other
symbols intact.

117

The action on the alphabet A may be extended to an action on
words in A∗ as follows:

g . ε = ε g . av = (g . a)(g . v).

We can read from the proof of Proposition 6.12 and the definition
of observability maps in Sets that the action ω : G× Y A∗ → Y A

∗
is

given by

ω(g, l)(ε) = g . l(ε) ω(g, l)(av) = ω(g, δΩ(l)(g−1 . a))(v),

which by a simple inductive argument involving the definition of δΩ
can be written as

ω(g, l)(v) = g . l(g−1 . v).

Thus,
(g . l)(v) = g . l(g−1 . v).

A language is now an equivariant function L : G× A∗ → Y . By
Proposition 6.7 it can be seen as a function L† : A∗ → Y .

Proposition 7.5. The total response tL : G × A∗ → Y A
∗
is given

by
tL(g, u)(v) = L(g, u · (g−1 . v)).

Proof. Using Proposition 6.13, we have

tL(g, u)(v) = t]L†(g, u)(v) = (g . tL†(u))(v)

= g . tL†(u)(g−1 . v)

= g .L†(u · (g−1 . v))

= g .L(e, u · (g−1 . v))

= L(g, u · (g−1 . v)).

Proposition 7.6. The alternative language representation is given
by

L : G× 1→ Y A
∗

L(g, ∗)(v) = L(g, g−1 . v).

118

Proof. We read from Proposition 6.14 that

L(g, ∗)(v) = L†
]
(g, ∗)(v) = (g .L†(∗))(v)

= g .L†(∗)(g−1 . v)

= g .L†(g−1 . v)

= g .L(e, g−1 . v)

= L(g, g−1 . v).

7.1 Observation Tables
Observation tables in general do not lift as nicely to this setting
as they did to EM(P). For example, consider A = {a, b, c} and
G = Perm(A), where the action on A is defined by application. The
set 2 is equipped with the trivial action. Suppose there is an action
on 2{a} such that π{a} : 2A

∗ → 2{a} is equivariant. Let l, l′ ∈ 2A
∗
be

the languages {b} and {c}, respectively. Then we must have

π{a}((ab) . l)(a) = 1 6= 0 = π{a}((ab) . l
′)(a),

but by equivariance,

π{a}((ab) . l) = (ab) . π{a}(l) = (ab) . π{a}(l
′) = π{a}((ab) . l

′).

As a workaround, we redefine an observation table approximation
for this setting as follows:

T̂(S,E) = (G× S, Y Ê , idG × σS , πÊ) Ê = {g . e | e ∈ E}.

It remains to show that Y Ê is a G-set in such a way that πÊ is
equivariant. Given l ∈ Y Ê , we define

(g . l)(ê) = g . l(g−1 . ê),

119

which satisfies

(e . l)(ê) = e . l(e−1 . ê) (g1 . (g2 . l))(ê) = g1 . (g2 . l)(g
−1
1 . ê)

= l(e−1 . ê) = g1 . (g2 . l(g
−1
2 . (g−1

1 . ê)))

= l(e . ê) = g1g2 . l(g
−1
2 g−1

1 . ê)

= l(ê) = g1g2 . l((g1g2)−1 . ê)

= (g1g2 . l)(ê).

Furthermore, for l ∈ Y A∗ ,

(g . πÊ(l))(ê) = g . πÊ(l)(g−1 . ê) = g . l(g−1 . ê) = (g . l)(ê)

= πÊ(g . l)(ê).

Proposition 7.7. The observation structure associated with the ob-
servation table approximation T̂(S,E) is given by

ξ : G× S → Y Ê ξ(g, s)(ê) = L(g, s · (g−1 . ê))

ξI : G× 1→ Y Ê ξI(g, ∗)(ê) = L(g, g−1 . ê)

ξY : G× S → Y ξY (g, s) = L(g, s)

ξδ : G× S → Y Ê ξδ(g, s)(a)(ê) = L(g, s · (g−1 . aê)).

Proof. Apply Proposition 6.23. The wrapper in B that shares its
observation structure with T̂(S,E) is the one associated with the
approximation T(S, Ê). The given definitions follow directly after
writing down in each case the definition of (−)] and the relevant
action.

Recall that the potential hypothesis H arises as the factorization
of ξ:

G× S e // //

ξ

??H //
m // Y Ê

120

Proposition 7.8. An approximation T̂(S,E) is initialized if and
only if there exist g ∈ G and s ∈ S such that ξ(g, s) = ξ†I(∗).

Proof. We know through Lemma 2.17 and Lemma 6.15 that T̂(S,E)
is initialized if and only if im(ξI) ⊆ im(m). Since im(m) = im(ξ),
this translates to the property that for all h ∈ G there exist i ∈ G
and s ∈ S such that ξ(i, s) = ξI(h, ∗). Note that if there is a g such
that ξ(g, s) = ξ†I(∗) = ξI(e, ∗), then

ξ(hg, s) = h . ξ(g, s) = h . ξI(e, ∗) = ξI(h, ∗),

and the converse certainly holds.

Proposition 7.9. An approximation T̂(S,E) is responsive if and
only if for all g ∈ G and s1, s2 ∈ S such that ξ(g, s1) = ξ†(s2) we
have L(g, s1) = L†(s2).

Proof. Using Lemma 2.17 and Lemma 6.15, we have that T̂(S,E) is
responsive if and only if ker(e) ⊆ ker(ξY). Note that because m is
injective, we have ker(e) = ker(m ◦ e) = ker(ξ).

We want to prove the following properties equivalent:

1. for all g ∈ G and s1, s2 ∈ S, if ξ(g, s1) = ξ(e, s2), then also
ξY (g, s1) = ξY (e, s2)

2. for all g1, g2 ∈ G and s1, s2 ∈ S, if ξ(g1, s1) = ξ(g2, s2), then also
ξY (g1, s1) = ξY (g2, s2)

Clearly, the second implies the first. Assume the first and consider
g1, g2 ∈ G and s1, s2 ∈ S such that ξ(g1, s1) = ξ(g2, s2). Then
because

ξ(g−1
2 g1, s1) = g−1

2 . ξ(g1, s1) = g−1
2 . ξ(g2, s2) = ξ(e, s2),

we have
ξY (g−1

2 g1, s1) = ξY (e, s2)

and so

ξY (g1, s1) = g2 . ξY (g−1
2 g1, s1) = g2 . ξY (e, s2) = ξY (g2, s2).

121

Proposition 7.10. An approximation T̂(S,E) is closed if and only
if for all s ∈ S and a ∈ A there exist g ∈ G and s′ ∈ S such that
ξ(g, s′) = ξ†δ(s)(a).

Proof. Using Corollary 6.25, the proof is only a slight variation on
the proof of Proposition 3.12. Specifically, the domain of the function
e is here G× S rather than just S.

Proposition 7.11. An approximation T̂(S,E) is consistent if and
only if for all g ∈ G and s1, s2 ∈ S such that ξ(g, s1) = ξ†(s2) we
have ξδ(g, s1)(a) = ξ†δ(s2)(a) for each a ∈ A.

Proof. The proof is completely analogous to the proof of Proposi-
tion 7.9, with ξδ substituted for ξY .

Consider G = Perm({a, b, c}). Table 7.3a shows an observation
table with S = {ε} and E = {ε, a}. (Note that Ê = {ε, a, b, c}.)
This table is not closed: there is no permutation of ξ†(ε) by which
we obtain ξ†δ(ε)(a). Table 7.3b, on the other hand, is closed: we
have ξ†δ(ε)(b) = ξ((ab), a), ξ†δ(ε)(c) = ξ((ac), a), and the other lower
rows are simply included in the upper part.

7.2 Infinite Alphabets
One may contemplate a generalization of Figure 7.2 over an infinite
alphabet, i.e., an automaton accepting all words that begin and end
with the same symbol drawn from an infinite set. It is not hard to
imagine that such an automaton could be described by finite means.
For instance, we note that for all pairs of states in Figure 7.2 the
transitions between those states are in some sense almost symmet-
rical. The transitions from q0 to q1 are all of the form x/(ax) for
x ∈ V ((aa) = e); the transitions from q1 to q1 are mostly of the
form x/e, with the exception of x = a. For the generalization to
an infinite alphabet it is vital that there are only finitely many such
exceptions.

122

ε a b c
ε 0 0 0 0
a 0 1 0 0
b 0 0 1 0
c 0 0 0 1

(a) Example table

ε a b c
ε 0 0 0 0
a 0 1 0 0
aa 1 1 1 1
b 0 0 1 0
c 0 0 0 1
ab 0 1 0 0
ac 0 1 0 0
aaa 1 1 1 1
aab 1 1 1 1
aac 1 1 1 1

(b) Dynamical table

Table 7.3: Observation tables for the language described in Fig-
ure 7.1

Let us now assume that V is an infinite set. To make precise the
assumption that the language to be learned is almost symmetrical,
we need the notion of a support.

Definition 7.12 (Support). An element x in a G-set X is supported
by C ⊆ V if for all g ∈ G such that g . c = c for all c ∈ C we have
g . x = x.

Recall that the action on C is just application of the permutation:
g . c = g(c). Every element x of a G-set is supported by the whole of
V: if g . c = c for each c ∈ V, then g must be the identity e on V, and
this ensures g . x = x. Every v ∈ V is trivially supported by {v}. If
X and W are G-sets, x ∈ X is supported by C ⊆ V, and w ∈ W is
supported by D ⊆ V, then (x,w) is supported by C ∪D. Similarly,
a word over an alphabet is supported by the union of any choice of
supports for the individual symbols in that word. If an element x
in a G-set is supported by a set C ⊆ V, then for each g ∈ G, g . x is

123

supported by g . C.
We assume that each finitely supported element x of a G-set

has a least support, i.e., a set Cx ⊆ V that supports x and that is
included in every subset of V supporting x. This will play a key role
in determining dynamism of observation table approximations.

The abstract theory in this section works for any subgroup G of
Perm(V) (subject to the assumptions that accumulate throughout).
A subgroup G of Perm(V) is a set G ⊆ Perm(V) that forms a group
by inheriting the operation from Perm(V). Our main example is
the case that G = Perm(V), where V is countably infinite. This is
referred to as the equality symmetry. Gabbay and Pitts proved that
the equality symmetry admits least supports [35, Proposition 3.4].

We may now pose the following formal restriction on the language
to be learned: we assume that t†L(ε) has finite support. The set
Ct†L(ε) can be seen as a set of “special values” for which a realization
of the language may have asymmetrical behavior in any state. We
assume that some finite superset of this set is known in advance to
the learner.

A common problem is to determine, given a G-set X and
x, y ∈ X, whether there exists a g ∈ G such that g . x = y. Most
importantly, this problem occurs for rows x and y when determin-
ing whether the approximation is dynamical. When G was finite,
we could simply try all g ∈ G, but at present we need to reduce the
search space drastically.

To find g such that g . x = y for finitely supported x and y, it
turns out to be sufficient to consider only g satisfying g . Cx = Cy.
Equivalently, this result states that the function C(−) : X → PX is
equivariant [60, Proposition 2.11].

Proposition 7.13. Let x and y be finitely supported elements from
the same G-set. If g ∈ G is such that g . x = y, then g . Cx = Cy.

Proof. We first show that y is supported by g . Cx. Suppose h ∈ G
is such that for each c ∈ g . Cx we have h . c = c. It follows that for
each c ∈ Cx we have hg . c = g . c, which gives g−1hg . c = c. Because

124

Cx supports x, this implies g−1hg . x = x, from which we deduce
that

h . y = hg . x = gg−1hg . x = g . x = y.

Thus, Cy ⊆ g . Cx.
To see that g . Cx is the least support of y, note that since

g−1 . y = x, we can use the first part of the proof to find that
Cx ⊆ g−1 . Cy. Then

g . Cx ⊆ g . g−1 . Cy = gg−1 . Cy = e . Cy = Cy,

so we conclude that g . Cx = Cy.

Note that if g, h ∈ G are such that g . c = h . c for all c ∈ Cx, then
h−1g . c = c for all c ∈ Cx. Because Cx supports x this means that
h−1g . x = x, and thus g . x = h . x. The number of group elements
that are to be considered can be bounded by the finite number of
bijections Cx → Cy. Given such a bijection, we assume to be able
to determine whether it extends to a permutation g ∈ G. If for each
of the bijections Cx → Cy the associated g does not satisfy g . x = y,
then there is no g ∈ G such that g . x = y.

For the equality symmetry, the desired extensions can be formed
as follows.

Proposition 7.14. For each bijection f : C → D between finite sets
C,D ⊆ V there exists gf ∈ Perm(V) such that gf (c) = f(c) for all
c ∈ C.

Proof. We prove by induction on n ∈ N that for all bijections
f : C → D for finite sets C with |C| = n there exists gf ∈ Perm(V)
such that gf (c) = f̌(c) for all c ∈ C. If n = 0, then clearly gf = e
suffices regardless of f .

Suppose n = m+ 1 for some m ∈ N. We write

C = {c1, c2, . . . , cn}.

Define f̌ : C \ {cn} → D \ {f(cn)} by f̌(c) = f(c) for c ∈ C \ {cn}.
By the induction hypothesis we can find gf̌ ∈ Perm(V) such that

125

gf̌ (c) = f(c) for all c ∈ C \ {cn}. Define

x = g−1
f̌

(f(cn)) gf = gf̌ ◦ (xcn).

Note that x 6∈ C \ {cn}, for otherwise

f(cn) = gf̌ (x) = f̌(x) ∈ D \ {f(cn)}.

Hence, for each c ∈ C we have either c = cn, which means that
gf (c) = gf̌ (x) = f(cn) = f(c); or gf (c) = gf̌ (c) = f̌(c) = f(c).

To compare rows, it remains to find the least support of a row.
We establish first a finite support for each row, and subsequently
indicate how such a support can be reduced to the least support.
This reduction works if the group G is fungible [21].

Lemma 7.15. For all u ∈ A∗, t†L(u) has finite support. More specif-
ically,

Ct†L(u) ⊆ Ct†L(ε) ∪ Cu.

Proof. We need to show that t†L(u) is supported by Ct†L(ε) ∪ Cu.
Suppose g ∈ G is such that for all c ∈ Ct†L(ε) ∪Cu, g . c = c. Because

u is supported by Cu, we have g . u = u; since t†L(ε) is supported by
Ct†L(ε), we have g . t

†
L(ε) = t†L(ε). Letting g−1 act on both sides of the

latter equation, we observe that t†L(ε) = g−1 . t†L(ε), or, equivalently,
L†(u) = L(g−1, g . u) for all u ∈ A∗. Thus, for all v ∈ A∗,

(g . t†L(u))(v) = tL(g, u)(v)

= L(g, u · (g−1 . v))

= L(e, g . (u · (g−1 . v)))

= L(e, (g . u) · v)

= L(e, uv)

= t†L(u)(v).

126

Lemma 7.16. For each finitely supported l ∈ Y A∗ , CπÊ(l) ⊆ Cl.
Proof. For all g ∈ G such that g . l = l, we have, by equivariance of
πÊ ,

9

g . πÊ(l) = πÊ(g . l) = πÊ(l).

Proposition 7.17. We have

Cξ†I (∗) ⊆ Ct†L(ε).

Furthermore, for each s ∈ S,

Cξ†(s) ⊆ Ct†L(ε) ∪ Cs,

and for every a ∈ A,

Cξ†δ(s)(a) ⊆ Ct†L(ε) ∪ Csa.

Proof. For each ê ∈ Ê, we find

ξ†I(∗)(ê) = L†(ê) = t†L(ε)(ê) = πÊ(t†L(ε))(ê)

ξ†(s)(ê) = L†(sê) = t†L(s)(ê) = πÊ(t†L(s))(ê)

ξ†δ(s)(a)(ê) = L†(saê) = t†L(sa)(ê) = πÊ(t†L(sa))(ê)

The results then follow from Lemma 7.15 and Lemma 7.16.

Proposition 7.18. Given an element x from a G-set, a finite set
C ⊆ V supporting x, and c ∈ C, if g ∈ G is such that g . c /∈ C, and
for each d ∈ C \ {c}, g . d = d, then c ∈ Cx if and only if g . x 6= x.

Proof. Assume first that c ∈ Cx, and suppose that we would have
g . x = x. Applying Proposition 7.13, we obtain g . Cx = Cx, so in
particular g . c ∈ Cx ⊆ C. However, g . c 6∈ C. From this contradic-
tion we conclude that g . x 6= x.

Now assume instead that g . x 6= x, and suppose that we would
have c 6∈ Cx. Since g . d = d holds for all d ∈ C \ {c}, this in
particular holds for all d ∈ Cx. Because Cx supports x, it follows
that g . x = x, contradicting our assumption. Hence, c ∈ Cx.

9The proof of course works for any equivariant function [60, Lemma 2.12].

127

For the equality symmetry, an appropriate g for a given c ∈ C is
easily determined. Since C is finite and V is countably infinite, we
can find v ∈ V \ C. Now (cv) ∈ G has the desired property.

The problem of determining the appropriate similarity of rows
has been solved, but in general we are still stuck with an infinite
number of rows in the lower part of the table, as well as an infinite
number of columns. To remedy this situation, we will place some
restrictions on the alphabet A.

For each G-set X and each element x ∈ X, the orbit of x is
defined as the set

G . x = {g . x | g ∈ G}.

The set
orbits(X) = {G . x | x ∈ X}

partitions X. That is, for each x ∈ X there is precisely one orbit
O ∈ orbits(X) such that x ∈ O. We write x ∼ y if x and y ∈ X
belong to the same orbit. Thus, x ∼ y if and only if there exists
g ∈ G such that g . x = y. This is an equivalence relation.

The G-set X is orbit-finite if the set orbits(X) is finite. For each
such set we fix a set of representatives for its orbits, i.e., a finite
set rep(X) such that for each O ∈ orbits(X) the set O ∩ rep(X) is a
singleton. Hence, for each x ∈ X there is precisely one x′ ∈ rep(X)
such that x ∼ x′.

We will assume that our alphabet A is orbit-finite and nominal.

Definition 7.19 (Nominal Set [21]). A G-set X is nominal if every
x ∈ X has finite support.

Consider for a moment the equality symmetry and define A = V.
For any word ab ∈ S ⊆ A∗ formed from a, b ∈ A with a 6= b, the one-
symbol successors of ab are aba, abb, and abc for each c ∈ V \ {a, b}.
Note that if c, d ∈ V \ {a, b}, then abc ∼ abd. Thus, the finite set
{e, (ab), (ac)} ⊆ G has the property that for each successor ab ·(g . a)
of ab there is h ∈ {e, (ab), (ac)} such that ab · (h . a) ∼ ab · (g . a).
Determining an appropriate subset ofG is essentially an operation on

128

supports: we seek permutations that act differently on the support
of a relative to the support of ab.

In the more general setting, we assume that for all finite sets
C,D ⊆ V there is a finite set RC|D ⊆ G such that for all g ∈ G there
exist h ∈ RC|D and i ∈ G satisfying g . c = ih . c for all c ∈ C and
i . d = d for all d ∈ D. Given finitely supported elements x and y
from two (possibly different) G-sets, we write Rx|y for RCx|Cy . We
further define for any nominal orbit-finite G-set U and every finitely
supported v ∈ V from any G-set V ,

U a v = {h . u | u ∈ rep(U), h ∈ Ru|v}.

It follows that for each u ∈ U there is a u′ ∈ (U a v) such that
(u′, v) ∼ (u, v).

For the above example, we may take Ra|ab = {e, (ab), (ac)}, pro-
vided that c ∈ A \ {a, b}. If rep(A) = {a}, then A a ab = {a, b, c}.

Consider the equality symmetry and finite C,D ⊆ V. We may
define RC|D as follows. Write

C = {c1, c2, . . . , c|C|}

and determine X = {x1, x2, . . . , x|C|} ⊆ V \D with xn 6= xm when-
ever n 6= m, which is possible because V is countably infinite while
C and D are finite. More constructively, without loss of generality
we can assume V = N and define xi = max(D)+i for all 1 ≤ i ≤ |C|.
Define

RC|D = {gf | f : C → D ∪X is injective and
f(ci) ∈ X ⇐⇒ f(ci) = xi for all 1 ≤ i ≤ |C|}.

We use Proposition 7.14 here by regarding injections f : C → D∪X
as bijections C → im(f).

Given g ∈ G, define h = gh and i = gi, where

h : C → D ∪X

h(ci) =

{
g(ci) if g(ci) ∈ D
xi if g(ci) 6∈ D

i : D ∪ h . C → V

i(v) =

{
v if v ∈ D
g(h−1(v)) if v 6∈ D.

129

Because h returns each element of X at most once, it inherits injec-
tivity from g. As a result, h is well-defined and in fact an element
of RC|D.

If v ∈ (h . C)\D, then h−1(v) ∈ C. Now supposing g(h−1(v)) ∈ D
leads to the contradiction that

v = h(h−1(v)) = h(h−1(v)) = g(h−1(v)) ∈ D.

Therefore, g(h−1(v)) ∈ D, which implies that i inherits injectivity
from gh−1 so that i is well-defined. Moreover, for all c ∈ C,

i(h(c)) = i(h(c)) =

{
h(c) if h(c) ∈ D
g(h−1(h(c))) if h(c) 6∈ D

= g(c)

because h(c) = h(c) = g(c) if h(c) ∈ D. Finally, for each d ∈ D we
have i(d) = i(d) = d. This validates the definition of RC|D.

Next, we show that most successor words are redundant for the
representation of an observation table approximation.

Proposition 7.20. For each s ∈ S and every a ∈ A there is a
b ∈ (A a t†L(s)) such that ξ†δ(s)(a) ∼ ξ†δ(s)(b).

Proof. Determine b ∈ (A a t†L(s)) satisfying (b, t†L(s)) ∼ (a, t†L(s)).
That is, there is an i ∈ G such that i . b = a and i . t†L(s) = t†L(s).
Then, for each ê ∈ Ê,

ξ†δ(s)(a)(ê) = t†L(s)(aê)

= (i . t†L(s))(aê)

= i . t†L(s)(i−1 . aê)

= i . ξ†δ(s)(i
−1 . a)(i−1 . ê)

= i . ξ†δ(s)(b)(i
−1 . ê)

= (i . ξ†δ(s)(b))(ê).

Corollary 7.21. An observation table approximation T̂(S,E) is
closed if and only if for all s ∈ S and a ∈ (A a t†L(s)) there is
an s′ ∈ S such that ξ†(s′) ∼ ξ†δ(s)(a).

130

To ensure practical applicability of these results, we can of course
replace A a t†L(s) by A a C for any finite C ⊆ V supporting t†L(s).
As we show next, a similar technique can be used to already simplify
consistency, but it still involves iterating over an infinite number of
group elements. We will come back to this later.

Proposition 7.22. An observation table approximation T̂(S,E) is
consistent if and only if for all s1, s2 ∈ S and g ∈ G such that
g . ξ†(s1) = ξ†(s2) we have for all a ∈ (A a (t†L(s1), t†L(s2))) that
g . ξ†δ(s1)(b) = ξ†δ(s2)(b).

Proof. If the approximation is consistent, the above property cer-
tainly holds, since (A a (t†L(s1), t†L(s2))) ⊆ A.

Conversely, assume that the above property holds and that cer-
tain g ∈ G and s1, s2 ∈ S satisfy ξ(g, s1) = ξ†(s2). Given a ∈ A,
determine b ∈ (A a (t†L(s1), t†L(s2))) ⊆ A and i ∈ G such that
i . b = a, i . t†L(s1) = t†L(s1), and i . t†L(s2) = t†L(s2). Repeat-
ing the calculation from the proof of Proposition 7.20, we obtain
ξ†δ(s1)(a) = i . ξ†δ(s1)(b) and ξ†δ(s2)(a) = i . ξ†δ(s2)(b), but we also
have i . ξ†(s1) = ξ†(s1) and i . ξ†(s2) = ξ†(s2). Letting i−1 act on
both sides, we get ξ†(s2) = i−1 . ξ†(s2). Since

gi . ξ†(s1) = g . ξ†(s1) = ξ†(s2) = i−1 . ξ†(s2),

we have i−1gi . ξ†(s1) = ξ†(s1). From the assumption it then follows
that i−1gi . ξ†δ(s1)(b) = ξ†δ(s2)(b), so we conclude that

g . ξ†δ(s1)(a) = gi . ξ†δ(s1)(b) = i . ξ†δ(s2)(b) = ξ†δ(s2)(a).

Regarding the columns, we show that for each row and every
e ∈ E only the outputs for a finite number of permutations of e
need to be recorded to represent the infinite number of cells. That
is, we can choose rep(Ê) ⊆ E, and then the required permutations
are given by the proposition. It is clear that Ê is nominal—each
word is supported by the union of supports for its symbols.

131

Proposition 7.23. For each f ∈ Y Ê finitely supported by C ⊆ V
and every ê ∈ Ê there is an ê′ ∈ (Ê a C) such that f(ê′) ∼ f(ê).

Proof. Determine ê′ ∈ (Ê a C) and i ∈ G such that i . ê′ = ê and
i . f = f . Then f(ê) = f(i . ê′) = i . f(ê′).

Important is that the above proof is constructive: given ê, we
can actually find ê′ ∈ (Ê a C) and i ∈ G such that i . f(ê′) = f(ê).

Finally, we need to be able to determine equality of rows.

Proposition 7.24. If f ∈ Y Ê is finitely supported by C ⊆ V and
g ∈ Y Ê is finitely supported by D ⊆ V, then f = g if and only if for
each ê ∈ (Ê a C ∪D) we have f(ê) = g(ê).

Proof. Assume that for each ê ∈ (Ê a C ∪D) we have f(ê) = g(ê).
Given ê ∈ Ê, we can find ê′ ∈ (Ê a C ∪ D) and i ∈ G satisfying
i . ê′ = ê, i . f = f , and i . g = g, noting that C ∪D supports both f
and g. Hence,

f(ê) = f(i . ê′) = i . f(ê′) = i . g(ê′) = g(i . ê′) = g(ê).

The converse is trivial.

Using the results of this section, the observation structure corre-
sponding to T̂(S,E) can be represented as follows. As in Section 6.1,
the upper part of our table has a row for each s ∈ S. For the lower
part, however, we use Proposition 7.20 to have a row only for each
sa with s ∈ S and a ∈ (A a t†L(s)). Similarly, for a row f ∈ Y Ê

belonging to a row in the table—which due to Proposition 7.17 is
finitely supported—we do not give the output for each suffix in Ê,
as there would in general be an infinite number of such suffixes; in-
stead, we apply Proposition 7.23 so that only the suffixes in Ê a C
have to be considered, where some finite C ⊆ V supports f . Note
that the suffixes that are to be considered in this way depend on
the specific row. Therefore, we label columns by the elements e ∈ E
and for each specific row f list multiple values in the cell corre-
sponding to e. Specifically, such a cell will contain for each h ∈ Re|C

132

an entry of the form h . e: f(h . e). Note that this means that we
choose rep(Ê) ⊆ E. The entries will be comma-separated and may
be spread over multiple lines.

For example, consider a countably infinite set V = {a, b, c, . . .}
and the alphabet A = V, with an action given by application. Let
the language L† be

{xvvy | x, y ∈ A∗, v ∈ A}.

Note that Ct†L(ε) = ∅: for each g ∈ G, g .L† = L†. This also means
that L : A∗ → 2 is actually an equivariant function (which we do not
require in general). In Table 7.4a is shown a representation of the
observation structure for T̂({ε}, {ε, a}). This approximation is not
closed: ξ(g, ε)(a) = 0 for all g ∈ G, but ξ†δ(ε)(a)(a) = 1. The table
that results from adding a to S is still not closed: ξ†δ(a)(a)(ε) = 1,
but ξ†(ε)(ε) = ξ†(a)(ε) = 0. Adding also aa to S yields Table 7.4b.
This table is closed: we see that ξ†δ(aa)(a) = ξ†δ(aa)(b) = ξ†(aa) and
ξ†δ(a)(b) = ξ((ab), a).

Let us expand on how this last fact could be determined mechani-
cally. Specifically, we want to find out whether ξ†(a) ∼ ξ†δ(a)(b). The
first step is to determine the least supports of ξ†(a) and ξ†δ(a)(b). We
know by Proposition 7.17 that

Cξ†(a) ⊆ Ct†L(ε) ∪ Ca = {a}

Cξ†δ(a)(b) ⊆ Ct†L(ε) ∪ Cab = {a, b}.

Note that this knowledge was already used to determine the rep-
resentation of these rows. We use Proposition 7.18 to prune the
supports as much as possible, until we reach the least supports. Re-
garding ξ†(a), we have a ∈ Cξ†(a) if and only if (ab) . ξ†(a) 6= ξ†(a).
Recall from the generic facts about supports that (ab) . ξ†(a) is
supported by (ab) . {a} = {b}, so by Proposition 7.24 we have
(ab) . ξ†(a) = ξ†(a) if and only if ξ((ab), a)(h . e) = ξ†(a)(h . e) for

133

ε a
ε ε: 0 a: 0
a ε: 0 a: 1,

b: 0

(a) Closedness defect

ε a
ε ε: 0 a: 0
a ε: 0 a: 1, b: 0
aa ε: 1 a: 1, b: 1
ab ε: 0 a: 0, b: 1, c: 0
aaa ε: 1 a: 1, b: 1
aab ε: 1 a: 1, b: 1, c: 1

(b) Closed table

Table 7.4: Tables for the language {xvvy | x, y ∈ A∗, v ∈ A}

each ê ∈ (Ê a {a, b}). Since

Rε|{a,b} = {e} Ra|{a,b} = {e, (ab), (ac)},

we have Ê a {a, b} = {ε, a, b, c} and calculate

ξ((ab), a)(ε) = 0 = ξ†(a)(ε)

ξ((ab), a)(a) = 0 6= 1 = ξ†(a)(a)

ξ((ab), a)(b) = 1 6= 0 = ξ†(a)(b)

ξ((ab), a)(c) = 0 = ξ†(a)(c)

We list all the calculations, but on discovering the first inequality
we could have concluded immediately that Cξ†(a) = {a}. Using the
same procedure on each element of the known support for ξ†δ(a)(b),
we find that Cξ†δ(a)(b) = {b}. To apply Proposition 7.13, we simply
observe that there is a unique bijection Cξ†(a) → Cξ†δ(a)(b), which
by Proposition 7.14 extends to (ab) ∈ G. We apply once more
Proposition 7.24 to find that indeed (ab) . ξ†(a) = ξ†δ(a)(b).

Consider for the same alphabet and output object the language

{x, y} ∪ {ax | a ∈ A \ {x, y}},

134

ε a
ε ε: 0 a: 0,

x: 1,
y: 1

a ε: 0 a: 0,
x: 1,
y: 0

...
...

...

(a) Consistency defect

ε a ax
ε ε: 0 a: 0, ax: 1, ay: 0,

x: 1, ab: 0, xa: 0,
y: 1 xy: 0, ya: 0,

yx: 0
...

...
...

...

(b) Inconsistency resolved

Table 7.5: Tables for the language {x, y} ∪ {ax | a ∈ A \ {x, y}}

with x, y ∈ A fixed and x 6= y. In this case, CtL = {x, y}, which we
assume known in advance. The approximation T̂({ε, a, x, aa}, {ε, a})
reaches the minimal automaton (in EM(G× (−))) for the language
and is thus closed and initialized. It is also responsive and, in-
terestingly, satisfies Cξ†(s) = Ct†L(s) for each s ∈ S. This means
that the supports of the rows cannot increase any further. Still,
there is a consistency defect, which can be seen in the partial
representation in Table 7.5a. We have ξ((xy), ε) = ξ(e, ε), but
ξδ((xy), ε)(a)(x) = 0 6= 1 = ξδ(e, ε)(a)(x). Adding the suffix ax
to E resolves the inconsistency, as can be seen from Table 7.5b: the
equality ξ((xy), ε) = ξ(e, ε) does not hold anymore.

Such consistency defects that do not lead to an increase in the
number of orbits or the size of the support of a certain row can still
be detected automatically. The following result is the key to this.
It allows us to eliminate the last infinite ingredient from Proposi-
tion 7.22.

Proposition 7.25. If x1, x2 ∈ U and y1, y2 ∈ V for G-sets U and
V are finitely supported and g ∈ G is such that g . x1 = x2 and

135

g . y1 6= y2, then there is an h ∈ R(x1,y1)|(x2,y2) such that h . x1 = x2

and h . y1 6= y2.

Proof. We can determine h ∈ R(x1,y1)|(x2,y2) and i ∈ G such that
ih . x1 = g . x1, ih . y1 = g . y1, i . x2 = x2, and i . y2 = y2. We have
ih . x1 = g . x1 = x2, so

h−1 . x2 = h−1i−1 . x2 = x1,

from which h . x1 = x2 follows.
Similarly, we find ih . y1 = g . y1 6= y2, and therefore

h−1 . y2 = h−1i−1 . y2 6= y1.

We conclude that h . y1 6= y2.

Corollary 7.26. An observation table approximation T̂(S,E) is re-
sponsive if and only if for all access strings s1, s2 ∈ S and every
h ∈ R(ξ†(s1),L†(s1))|(ξ†(s2),L†(s2)) such that h . ξ†(s1) = ξ†(s2) we have
h .L†(s1) = L†(s2).

Corollary 7.27. An observation table approximation T̂(S,E) is
consistent if and only if for all s1, s2 ∈ S, a ∈ (A a (t†L(s1), t†L(s2))),
and h ∈ R(ξ†(s1),ξ†δ(s1)(a))|(ξ†(s2),ξ†δ(s2)(a)) with h . ξ†(s1) = ξ†(s2) we

have h . ξ†δ(s1)(a) = ξ†δ(s2)(a).

Now that we know how to extend a table such that the hypothesis
can be constructed, we want to actually construct that hypothesis, or
at least an automaton equivalent to it. A scoop automaton provided
by Proposition 6.21 will have a finite number of states. Since G×S
is now in general infinite, it may not be immediately obvious that
there is a computable right inverse H → G × S of the function
e : G × S → H. However, note that for each h ∈ H there exists an
s ∈ S such that e†(s) ∼ h. Using the procedure outlined earlier, we
can really determine for each s ∈ S whether there is a g ∈ G such
that g . e†(s) = h, and if it exists we can find such a g. The task

136

is thus reduced to finding a right inverse of e† : S → im(e†). This
function has a finite domain.

Although the state space has become finite, there may still be an
infinite number of transitions. We outline now with a variation on
Proposition 6.19 that it is sufficient to represent only a finite number
of them.

Proposition 7.28. If Q is an automaton in EM(G×(−)), (X, i, d)
is a scoop for Q, and C ⊆ V supports every δQ(i(x)) for x ∈ X,
then the automaton X̃ = G ×X implicated below accepts the same
language as Q.

init†
X̃

= d ◦ init†Q out†
X̃

= outQ ◦ i

δ†
X̃

(x)(a) = j . (dA ◦ δQ ◦ i)(x)(b),

where j ∈ G and b ∈ (A a C) are chosen10 such that j . b = a and
j . c = c for all c ∈ C.

Proof. We claim just as in the proof of Proposition 6.19 that i] is
an automaton homomorphism X̃ → Q. Since the initial state and
output maps are the same as in that proposition, we only need to
show that δQ ◦ i = (i])A ◦ δ†

X̃
. For x ∈ X and a ∈ A, let j ∈ G and

b ∈ (A a C) be such that j . b = a and j . c = c for all c ∈ C. Because
10A choice really has to be fixed here, for otherwise δ†

X̃
may not be well-defined,

as dA may not be equivariant.

137

C supports δQ(i(x)), it follows that j . δQ(i(x)) = δQ(i(x)). We have

δQ(i(x))(a) = (j . δQ(i(x)))(a)

= j . (δQ ◦ i)(x)(j−1 . a) (lifting of (−)A)
= j . (δQ ◦ i)(x)(b) (j . b = a)

= j . ((i])A ◦ dA ◦ δQ ◦ i)(x)(b) (scoop property)

= j . i]((dA ◦ δQ ◦ i)(x)(b))

= i](j . (dA ◦ δQ ◦ i)(x)(b)) (equivariance of i])

= i](δ†
X̃

(x)(a)) (definition of δ†
X̃
)

= ((i])A ◦ δ†
X̃

)(x)(a).

Such a modified scoop automaton allows us to restrict the tran-
sition function to δ†

X̃
: X → (G × X)AaC . If X is finite, this

function can be represented by finite means. A further optimiza-
tion could be achieved by switching from a single set C to a func-
tion C : X → Pfin(V) such that C(x) supports δQ(i(x)) for each
x ∈ X—this would allow us to restrict to a family of functions
δ†
X̃

(x) : (A a C(x))→ G×X for x ∈ X.
Consider the hypothesis H and its scoop (S, e†, j) for some right

inverse j of e. We need a finite set C ⊆ V that supports δH(e†(s))
for all s ∈ S. By the definition of δH , this says C supports close†(s)
for all s ∈ S. Because by closedness ξ†δ = mA ◦ close† and mA is just
an inclusion, we need C to support ξ†δ(s) for all s ∈ S. A simple
upper bound follows from the result below. Least supports could
then be found similar to how least supports were found for rows.

Proposition 7.29. For each s ∈ S, ξ†δ(s) is supported by Ct†L(ε)∪Cs.

Proof. Suppose g ∈ G is such that g . c = c for all c ∈ Ct†L(ε) ∪ Cs.

138

Thus, g . t†L(ε) = t†L(ε) and g . s = s.

(g . ξ†δ(s))(a)(ê) = g . t†L(s)(g−1 . aê)

= g . t†L(ε)(s · (g−1 . aê))

= g . t†L(ε)(g−1 . saê)

= (g . t†L(ε))(saê)

= t†L(ε)(saê)

= ξ†δ(s)(a)(ê).

7.3 Termination
We have already seen how the observation structure of T̂ (S,E) can
be represented for finite sets of words S and E. We also know
how to fix defects in the constructability of the hypothesis, and how
to process a counterexample (since we can just apply the method
explained in Section 6.2). It remains to be seen that the total num-
ber of such changes is bounded. At this point we assume that the
minimal automaton M—the factorization of tL : G× A∗ → 2A

∗
—is

orbit-finite.
In fixing a closedness or initialization defect, an orbit is added to

the image of ξ. Therefore, the number of closedness and initialization
fixes is bounded by the number of orbits of M . If a counterexample
is processed, we either create an initialization or closedness defect, or
we distinguish two permutations of rows that were previously equal.
Specifically, in this case there are g ∈ G and s1, s2 ∈ S such that
before adding the column we had g . ξ†(s1) = ξ†(s2), but afterwards
we have g . ξ†(s1) 6= ξ†(s2). Note that this same situation occurs
when fixing a responsiveness or consistency defect.

If after adding the new column there is no j ∈ G at all such
that j . ξ†(s1) = ξ(s2), then we must have found a new orbit—ξ†(s1)
and ξ†(s2) used to be in the same orbit, but this relation has been
broken. Suppose there does exist a j ∈ G such that j . ξ†(s1) = ξ(s2).
Note that this equation holds also in the old situation, as we have

139

only added a column. Then in the old situation

j . ξ†(s1) = ξ(s2) = g . ξ†(s1),

but in the new situation

j . ξ†(s1) = ξ(s2) 6= g . ξ†(s1).

Let us simplify this a little. We now know that there are s ∈ S
and g ∈ G such that before adding the column, g . ξ†(s) = ξ†(s); but
after adding the column, g . ξ†(s) 6= ξ†(s). The following shows that
such a g, if it exists, can be found in a fixed finite set.

Proposition 7.30. For all s ∈ A∗ and g ∈ G, there is an
h ∈ Rt†L(s)|t†L(s) such that for all observation table approximations

T̂ (S,E) with s ∈ S we have

g . ξ†(s) = ξ†(s) ⇐⇒ h . ξ†(s) = ξ†(s).

Proof. Determine h ∈ Rt†L(s)|t†L(s) and i ∈ G such that for all

c ∈ Ct†L(s), ih . c = g . c and i . c = c. Since ξ†(s) = πÊ(t†L(s)),
we know from Lemma 7.16 that ξ†(s) is supported by Ct†L(s). Thus,
ih . ξ†(s) = g . ξ†(s) and i . ξ†(s) = ξ†(s). If g . ξ†(s) = ξ†(s), then

h . ξ†(s) = i−1g . ξ†(s) = i−1 . ξ†(s) = ξ†(s);

if g . ξ†(s) 6= ξ†(s), then

ih . ξ†(s) = g . ξ†(s) 6= ξ†(s),

and therefore h . ξ†(s) 6= i−1 . ξ†(s) = ξ†(s).

We can now see that if g ∈ G is such that in the old situation
g . ξ†(s) = ξ†(s), but in the new situation g . ξ†(s) 6= ξ†(s), then there
is an h ∈ Rt†L(s)|t†L(s) such that in the old situation h . ξ†(s) = ξ†(s)

and in the new situation h . ξ†(s) 6= ξ†(s). Since adding columns
will not make unequal rows equal, this for each s ∈ S happens at
most |Rt†L(s)|t†L(s)| times. We already know that S will not grow
indefinitely, so the algorithm must terminate.

140

7.4 Discussion
The actual hypothesis in EM(G× (−)) is in fact a nominal automa-
ton (the G-set of states is a nominal set), as the rows of the table
are all finitely supported. Furthermore, the assumption that t†L(ε)
is finitely supported is equivalent to the minimal automaton for the
language being nominal. Bojańczyk et al. [21] have developed an
elaborate theory for the representation of nominal automata. Us-
ing their results, we could in the end represent the actual minimal
automaton for the language that has been learned. Note that “min-
imal” does not necessarily imply that this representation is more
succinct than an appropriate scoop automaton. In fact, representing
the minimal automaton involves representing the algebra structure
that we were able to avoid using scoops. One of the advantages
of working with minimal automata is that they can more easily be
compared: we know that two minimal automata accept the same
language if and only if they are isomorphic. A practical description
of the representation of the hypothesis as a nominal automaton is
left as future work.

Learning algorithms for register automata [25] have been devel-
oped for several years now [40, 39, 23, 26]. It is to be expected that
the languages accepted by such automata can also be accepted by
certain orbit-finite nominal automata, as is the case for the related
finite memory automata [21].

The register automaton learning algorithm by Howar et al. [40]
in particular has many similarities with our observation table algo-
rithm outlined in Section 7.2. One of the differences is that they
do not always represent the entire function ξ†δ in the table. For
each newly added row in the upper part there is initially only one
row in the lower part; the hypothesis is constructed with a partial
transition function and additional transitions are learned through
counterexamples. Their custom made canonical register automaton
and specialized counterexample processing method also play a role
here.

We have not provided a query complexity analysis for the algo-

141

rithm discussed in this section for the simple reason that the obvious
upper bounds are rather monstrous. That is, the sets RC|D for finite
C,D ⊆ V are already in the equality symmetry very large, and fill-
ing the lower part of the table involves such sets in two dimensions:
one for the successor words and one for the suffixes. We note that
Howar et al. [40] also struggle with multiple exponential factors in
their membership query complexity. It remains for future research
to find out if this situation can be improved.

142

8 Conclusions
We have provided a unifying framework through which automata
learning, minimization, and equivalence testing can by studied for
various types of automata. Many results are derived on a completely
abstract category theoretical level and thus potentially have appli-
cations that would otherwise not have been identified as instances
of automata learning. On a concrete level, we have fitted into our
framework the known automata learning concepts of observation ta-
bles and discrimination trees. Moreover, we have reviewed the lifting
of many ingredients to categories of algebras for a monad, and we
have given a few examples of learning algorithms in such settings.
Most interestingly, this includes the category of G-sets for a group
G. By allowing certain infinite groups, we have set the first steps
towards a learning algorithm for nominal automata.

Other frameworks have been developed to study different au-
tomata learning algorithms [18, 42]. Especially the work of Isberner
[42] provides a wealth of practical information. However, in both
cases the results are not directly applicable to e.g. settings with ad-
ditional structure such as explored in Section 6.

A preliminary investigation of generalizing concepts in automata
learning using category theory was performed by Jacobs and Silva
[46]. Although our abstract definitions of closedness and consistency
are strongly based on theirs, they did not yet attempt to formulate
anything like our approximations; instead, what we call the approx-
imated response they define very concretely and just for the case of
an observation table, leaving it unclear what should be allowed in
an arbitrary setting.

Many directions for future research are left open. In this thesis
we have avoided altogether the topic of hypothesis minimality. A
side effect of using the counterexample processing method of Rivest
and Schapire [61] is that the hypotheses generated by the algorithm
may not be minimal [64]. In particular, this means that the ap-
proximation is not complete for its own hypothesis. As noted in
Section 4.1, this property would be desired because it may lead to

143

a seamless integration of conformance testing algorithms into the
learning algorithm.

We remarked in Section 6.3 that the algorithm by Bollig et al.
[22] is very similar to the algorithm we derive, except that their no-
tion of consistency is weaker. A first step to understanding this may
be a general investigation of relaxations on the properties used to
construct a hypothesis. For instance, we have used several times a
right inverse i : H → S of e : S → H. Using such a map, one could
bypass consistency and still construct a dynamics for the hypothesis
as close ◦ i. Such a definition will however enjoy less desirable prop-
erties than the solid hypothesis that we have studied in this thesis
(which we expect might help to explain why the algorithm by Bol-
lig et al. would not terminate with the counterexample processing
of Angluin). Similarly, one could cheat on closedness given a left
inverse of Dm : DH → DP .

Despite the negative results for passive learning mentioned in the
introduction of Section 3, passive learning algorithms do exist [20,
56]; they simply do not produce optimal results. Future research
could attempt to place these in our framework as well.

Although our abstract characterizations cover observation tables
and discrimination trees in the classical case, we do not have abstract
definitions of these. As a result, such concepts have to be redefined
in new settings, as we did in EM(G× (−)), or at least lifted, as we
did in EM(P). In both of these cases we considered only observation
tables. Note that observation tables classify into 2E , which is likely
to have a structure similar to that of 2A

∗
. Therefore, generalizations

of observation tables can be expected to be more straightforward
than generalizations of discrimination trees. It would be interesting
to see if anything at all more efficient than observation tables could
be used in these settings. As we have shown in Section 4, such results
would be applicable also to minimization and conformance testing.

144

References
[1] Fides Aarts, Bengt Jonsson, and Johan Uijen. Generating mod-

els of infinite-state communication protocols using regular infer-
ence with abstraction. In Testing Software and Systems, volume
6435 of LNCS, pages 188–204. Springer, 2010.

[2] Fides Aarts, Faranak Heidarian, Harco Kuppens, Petur Olsen,
and Frits Vaandrager. Automata learning through counterex-
ample guided abstraction refinement. In FM 2012: Formal
Methods, volume 7436 of LNCS, pages 10–27. Springer, 2012.

[3] Fides Aarts, Paul Fiterǎu-Broştean, Harco Kuppens, and Frits
Vaandrager. Learning register automata with fresh value gen-
eration. In Theoretical Aspects of Computing-ICTAC 2015, vol-
ume 9399 of LNCS, pages 165–183. Springer, 2015.

[4] Jiří Adámek. Free algebras and automata realizations in the
language of categories. Commentationes Mathematicae Univer-
sitatis Carolinae, 15(4):589–602, 1974.

[5] Jiří Adámek, Horst Herrlich, and George E. Strecker. Abstract
and concrete categories: The joy of cats. 2004.

[6] Dana Angluin. A note on the number of queries needed to
identify regular languages. Information and control, 51(1):76–
87, 1981.

[7] Dana Angluin. Learning regular sets from queries and coun-
terexamples. Information and computation, 75(2):87–106, 1987.

[8] Dana Angluin and Dana Fisman. Learning regular omega lan-
guages. In Algorithmic Learning Theory, volume 8776 of LNCS,
pages 125–139. Springer, 2014.

[9] Dana Angluin, Sarah Eisenstat, and Dana Fisman. Learning
regular languages via alternating automata. In Proceedings

145

of the 24th International Conference on Artificial Intelligence,
pages 3308–3314. AAAI Press, 2015.

[10] Michael A. Arbib and Ernest G. Manes. Machines in a category:
An expository introduction. SIAM review, 16(2):163–192, 1974.

[11] Michael A. Arbib and Ernest G. Manes. Foundations of sys-
tem theory: decomposable systems. Automatica, 10(3):285–302,
1974.

[12] Michael A. Arbib and Ernest G. Manes. Adjoint machines,
state-behavior machines, and duality. Journal of Pure and Ap-
plied Algebra, 6(3):313–344, 1975.

[13] Michael A. Arbib and Ernest G. Manes. Fuzzy machines in a
category. Bulletin of the Australian Mathematical Society, 13
(02):169–210, 1975.

[14] Michael A. Arbib and H. Paul Zeiger. On the relevance of
abstract algebra to control theory. Automatica, 5(5):589–606,
1969.

[15] Steve Awodey. Category theory. Oxford University Press, 2010.

[16] Christel Baier and Joost-Pieter Katoen. Principles of Model
Checking, volume 26202649. MIT press Cambridge, 2008.

[17] Adriana Balan and Alexander Kurz. On coalgebras over alge-
bras. Electronic Notes in Theoretical Computer Science, 264
(2):47–62, 2010.

[18] José L. Balcázar, Josep Díaz, Ricard Gavaldà, and Osamu
Watanabe. Algorithms for learning finite automata from
queries: A unified view. In Advances in Algorithms, Languages,
and Complexity, pages 53–72. Springer, 1997.

[19] Therese Berg, Olga Grinchtein, Bengt Jonsson, Martin Leucker,
Harald Raffelt, and Bernhard Steffen. On the correspondence

146

between conformance testing and regular inference. In Fun-
damental Approaches to Software Engineering, volume 3442 of
LNCS, pages 175–189. Springer, 2005.

[20] Alan W. Biermann and Jerome A. Feldman. On the synthesis
of finite-state machines from samples of their behavior. IEEE
transactions on Computers, (6):592–597, 1972.

[21] Mikołaj Bojańczyk, Bartek Klin, and Sławomir Lasota. Au-
tomata theory in nominal sets. Logical Methods in Computer
Science, 10(3):4, 2014.

[22] Benedikt Bollig, Peter Habermehl, Carsten Kern, and Martin
Leucker. Angluin-style learning of NFA. In IJCAI, volume 9,
pages 1004–1009, 2009.

[23] Benedikt Bollig, Peter Habermehl, Martin Leucker, and Ben-
jamin Monmege. A fresh approach to learning register au-
tomata. In Developments in Language Theory, volume 7907
of LNCS, pages 118–130. Springer, 2013.

[24] Filippo Bonchi, Marcello M. Bonsangue, Helle H. Hansen,
Prakash Panangaden, Jan J.M.M. Rutten, and Alexandra Silva.
Algebra-coalgebra duality in Brzozowski’s minimization algo-
rithm. ACM Transactions on Computational Logic (TOCL),
15(1):3, 2014.

[25] Sofia Cassel, Falk Howar, Bengt Jonsson, Maik Merten, and
Bernhard Steffen. A succinct canonical register automaton
model. Automated Technology for Verification and Analysis,
6996:366–380, 2011.

[26] Sofia Cassel, Falk Howar, Bengt Jonsson, and Bernhard Stef-
fen. Active learning for extended finite state machines. Formal
Aspects of Computing, 28(2):233–263, 2016.

[27] Georg Chalupar, Stefan Peherstorfer, Erik Poll, and Joeri
de Ruiter. Automated reverse engineering using Lego R©. In

147

8th USENIX Workshop on Offensive Technologies (WOOT 14),
2014.

[28] Martin Chapman, Hana Chockler, Pascal Kesseli, Daniel
Kroening, Ofer Strichman, and Michael Tautschnig. Learning
the language of error. In Automated Technology for Verification
and Analysis, volume 9364 of LNCS, pages 114–130. Springer,
2015.

[29] Chia Yuan Cho, Domagoj Babić, Eui Chul Richard Shin, and
Dawn Song. Inference and analysis of formal models of botnet
command and control protocols. In Proceedings of the 17th
ACM conference on Computer and communications security,
pages 426–439. ACM, 2010.

[30] Tsun S. Chow. Testing software design modeled by finite-state
machines. IEEE Trans. Software Eng., 4(3):178–187, 1978.

[31] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled.
Model Checking. MIT press, 1999.

[32] Joeri de Ruiter and Erik Poll. Protocol state fuzzing of TLS im-
plementations. In 24th USENIX Security Symposium (USENIX
Security 15), pages 193–206, 2015.

[33] Hartmut Ehrig, Klaus-Dieter Kiermeier, Hans-Jörg Kreowski,
and Wolfgang Kühnel. Universal theory of automata: a cate-
gorical approach. Vieweg+Teubner, 2013.

[34] Khaled El-Fakih, Roland Groz, Muhammad Naeem Irfan, and
Muzammil Shahbaz. Learning finite state models of observable
nondeterministic systems in a testing context. In ICTSS, pages
97–102, 2010.

[35] Murdoch J. Gabbay and Andrew M. Pitts. A new approach
to abstract syntax with variable binding. Formal Aspects of
Computing, 13(3-5):341–363, 2002.

148

[36] E. Mark Gold. System identification via state characterization.
Automatica, 8(5):621–636, 1972.

[37] Bin-Lun Ho. On effective construction of realizations from
input-output descriptions. PhD thesis, Stanford University,
1966.

[38] Falk Howar, Bernhard Steffen, and Maik Merten. Automata
learning with automated alphabet abstraction refinement. In
Verification, Model Checking, and Abstract Interpretation, vol-
ume 6538 of LNCS, pages 263–277. Springer, 2011.

[39] Falk Howar, Malte Isberner, Bernhard Steffen, Oliver Bauer,
and Bengt Jonsson. Inferring semantic interfaces of data struc-
tures. In Leveraging Applications of Formal Methods, Verifi-
cation and Validation. Technologies for Mastering Change, vol-
ume 7609 of LNCS, pages 554–571. Springer, 2012.

[40] Falk Howar, Bernhard Steffen, Bengt Jonsson, and Sofia Cassel.
Inferring canonical register automata. In Verification, Model
Checking, and Abstract Interpretation, volume 7148 of LNCS,
pages 251–266. Springer, 2012.

[41] Hardi Hungar, Oliver Niese, and Bernhard Steffen. Domain-
specific optimization in automata learning. In Computer Aided
Verification, volume 2725 of LNCS, pages 315–327. Springer,
2003.

[42] Malte Isberner. Foundations of active automata learning: an
algorithmic perspective. PhD thesis, Technical University of
Dortmund, 2015.

[43] Malte Isberner and Bernhard Steffen. An abstract framework
for counterexample analysis in active automata learning. In
ICGI, pages 79–93, 2014.

149

[44] Malte Isberner, Falk Howar, and Bernhard Steffen. The TTT al-
gorithm: A redundancy-free approach to active automata learn-
ing. In Runtime Verification, volume 8734 of LNCS, pages 307–
322. Springer, 2014.

[45] Malte Isberner, Falk Howar, and Bernhard Steffen. The open-
source LearnLib. In Computer Aided Verification, volume 9206
of LNCS, pages 487–495. Springer, 2015.

[46] Bart Jacobs and Alexandra Silva. Automata learning: A cat-
egorical perspective. In Horizons of the Mind. A Tribute to
Prakash Panangaden, volume 8464 of LNCS, pages 384–406.
Springer, 2014.

[47] Michael J. Kearns and Umesh V. Vazirani. An Introduction to
Computational Learning Theory. MIT press, 1994.

[48] Ali Khalili and Armando Tacchella. Learning nondeterministic
Mealy machines. In ICGI, pages 109–123, 2014.

[49] David Lee and Mihalis Yannakakis. Testing finite-state ma-
chines: State identification and verification. IEEE Transactions
on Computers, 43(3):306–320, 1994.

[50] David Lee and Mihalis Yannakakis. Principles and methods of
testing finite state machines-a survey. Proceedings of the IEEE,
84(8):1090–1123, 1996.

[51] Saunders Mac Lane. Categories for the working mathematician,
volume 5. Springer Science & Business Media, 1978.

[52] George H. Mealy. A method for synthesizing sequential circuits.
Bell System Technical Journal, 34(5):1045–1079, 1955.

[53] Edward F. Moore. Gedanken-experiments on sequential ma-
chines. Automata studies, 34:129–153, 1956.

[54] Anil Nerode. Linear automaton transformations. Proceedings
of the American Mathematical Society, 9(4):541–544, 1958.

150

[55] Oliver Niese. An Integrated Approach to Testing Complex Sys-
tems. PhD thesis, University of Dortmund, 2003.

[56] José Oncina and Pedro García. Identifying regular languages in
polynomial time. In Advances in Structural and Syntactic Pat-
tern Recognition, volume 5 of Machine Perception and Artificial
Intelligence, pages 99–108. World Scientific, 1992.

[57] Warawoot Pacharoen, Toshiaki Aoki, Pattarasinee Bhat-
tarakosol, and Athasit Surarerks. Active learning of nondeter-
ministic finite state machines. Mathematical Problems in Engi-
neering, 2013.

[58] Doron Peled, Moshe Y. Vardi, and Mihalis Yannakakis. Black
box checking. Journal of Automata, Languages and Combina-
torics, 7(2):225–246, 2002.

[59] Leonard Pitt and Manfred K. Warmuth. The minimum consis-
tent DFA problem cannot be approximated within any polyno-
mial. Journal of the ACM (JACM), 40(1):95–142, 1993.

[60] Andrew M. Pitts. Nominal Sets: Names and Symmetry in Com-
puter Science, volume 57. Cambridge University Press, 2013.

[61] Ronald L. Rivest and Robert E. Schapire. Inference of finite au-
tomata using homing sequences. Information and Computation,
103(2):299–347, 1993.

[62] Jan J.M.M. Rutten. Universal coalgebra: a theory of systems.
Theoretical Computer Science, 249(1):3–80, 2000.

[63] Mathijs Schuts, Jozef Hooman, and Frits Vaandrager. Refac-
toring of legacy software using model learning and equivalence
checking: an industrial experience report. In Integrated Formal
Methods, volume 9681 of LNCS, pages 311–325. Springer, 2016.

[64] Bernhard Steffen, Falk Howar, and Maik Merten. Introduction
to active automata learning from a practical perspective. In

151

Formal Methods for Eternal Networked Software Systems, vol-
ume 6659 of LNCS, pages 256–296. Springer, 2011.

[65] Gerrit Jan Tretmans. A formal approach to conformance test-
ing. PhD thesis, University of Twente, 1992.

[66] Leslie G. Valiant. A theory of the learnable. Communications
of the ACM, 27(11):1134–1142, 1984.

[67] M.P. Vasilevskii. Failure diagnosis of automata. Cybernetics
and Systems Analysis, 9(4):653–665, 1973.

[68] Michele Volpato and Jan Tretmans. Active learning of nondeter-
ministic systems from an ioco perspective. In Leveraging Appli-
cations of Formal Methods, Verification and Validation. Tech-
nologies for Mastering Change, volume 8802 of LNCS, pages
220–235. Springer, 2014.

152

