
Master Thesis Computing Science

Polymorphic Pseudonymization in

Educational Identity Federations

Hans Harmannij - hans@harmannij.nl

Supervised by:

prof. dr. E.R. Verheul
(Radboud University)

drs. J. van Dijk
(SURFnet)

22nd June 2016

Abstract

This work investigates the use of polymorphic pseudonyms in educational iden-
tity federations. Polymorphic pseudonyms can provide privacy enhancements
in federated identity management (FIM) systems. An important property is
that it limits linkability of users across different parties in a federation, moreso
than conventional targeted pseudonyms. Furthermore, it limits the ability for
intermediaries, such as a hub in a so called hub-and-spoke federation to ag-
gregate information about users. This is especially the case when polymorphic
pseudonyms are combined with polymorphic attributes.

A proof-of-concept implementation for polymorphic pseudonyms has been
created, with accompanying plugins for SimpleSAMLphp, Shibboleth IdP and
SP, and Microsoft AD FS. This shows that this technology can be used in
standard software used in identity federations, without changes to the software
itself.

We look at two variations of the use of polymorphic pseudonyms. These
variations differ in the role of a hub in a hub-and-spoke federation, and of iden-
tity providers. Both variations have advantages and disadvantages. The vari-
ation with less responsibility for the hub cannot be implemented in all software
products, without changes to those products.

We look at the use of polymorphic pseudonyms in two use cases, but much
of the work can be applied to identity federations in general. The first use case
is SURFconext, the hub-and-spoke identity federation provided by SURFnet to
Dutch higher education and research institutes. The second use case is that
of Kennisnet, which provides ICT infrastructure to Dutch primary, secondary
and vocational education, for the system in which publishers and distributors of
electronic learning materials and schools have to communicate about the pupils
using these learning materials.

Contents

1 Introduction 3
1.1 SURFnet Use Case . 3
1.2 Kennisnet Use Case . 4
1.3 Research Questions . 4
1.4 Research Methods . 4
1.5 Scope . 5
1.6 Outline . 5

2 Requirements for Online Authentication 6
2.1 Trust . 6
2.2 Privacy . 6
2.3 Usability . 7
2.4 Monitoring . 7
2.5 Authentication and Trusted Third Parties 8

3 Federated Identity Management 9
3.1 SAML . 11
3.2 Properties of Federated Identity Management 16

4 Current Situation 22
4.1 SURFconext . 22
4.2 Kennisnet . 23
4.3 Other developments in the Netherlands 25

5 Related work 28
5.1 Privacy Enhanced Federated Identity Managment 28
5.2 IRMA . 29

6 Polymorphic Pseudonyms 31
6.1 Basic Model . 31
6.2 Properties . 33
6.3 Use Cases . 34

7 Cryptography of Polymorphic Pseudonyms 37
7.1 ElGamal . 37
7.2 Other cryptographic primitives 38
7.3 System Setup . 38
7.4 Pseudonym Generation . 39
7.5 Specialization . 39

1

7.6 Decryption . 40
7.7 Randomization . 40
7.8 Key Compromise . 41

8 Design Considerations 43
8.1 Dropping the database . 43
8.2 Configuration of connected parties 43
8.3 Software maintenance . 43
8.4 Independent facilities . 44
8.5 Consent . 44

9 Implementation 45
9.1 Primitive Choices . 45
9.2 SimpleSAMLphp . 46
9.3 Shibboleth SP . 46
9.4 Shibboleth IdP . 48
9.5 Microsoft AD FS . 49

10 Polymorphic Attributes 51
10.1 Opacity at the Hub . 51
10.2 Attribute Provider . 51
10.3 Cryptography of Polymorphic Attributes 52
10.4 Signatures . 53

11 Security and privacy of polymorphic pseudonyms 55
11.1 Cryptographic properties . 55
11.2 Trust . 55
11.3 Usability . 56
11.4 Privacy . 57

12 Using conventional cryptography 60
12.1 Prevent the unauthorized aggregation of attributes by central

intermediaries such as gateways, brokers, etc. (AR3) 60
12.2 Limited linkability (AR2) . 60
12.3 Uniqueness of identification (AR8) 61
12.4 Constrained linking (AR4) . 61
12.5 Putting it together . 61
12.6 Comparison with polymorphic pseudonyms 64

13 Conclusion 65
13.1 Future Work . 65
13.2 Conclusion . 65

Acronyms 68

References 70

2

Chapter 1

Introduction

With federated identity management (FIM) users can authenticate to their or-
ganisation, which acts as an identity provider (IdP), and can subsequently access
service providers (SPs) in that federation. In a so called hub-and-spoke federa-
tion IdPs are connected to a central hub, which is in turn connected to the SPs
in the federation. In a full mesh federation IdPs and SPs are connected directly.
FIM is explained in more detail in Chapter 3.

1.1 SURFnet Use Case

SURFnet provides FIM to organisations in Dutch higher education and research,
through SURFconext, which is a hub-and-spoke federation.

When an IdP authenticates a user to SURFconext, a NameID is passed
that identifies the user. SURFconext passes a NameID for the user to the SP
the user wants to use. This NameID is different from the NameID from the
IdP and unique for each SP. This protects the privacy of the users. Unique
NameIDs prevent different SPs from linking the data they have about a user,
and thus creating a more detailed profile than they need to have. SURFconext
must maintain links between the NameIDs from the IdPs and the corresponding
NameID for the SPs. Currently this is solved by storing all these links in a
database.

Storing the links between NameIDs from IdPs and SPs in a database has
downsides. If the database leaks, all NameIDs for different SPs can be linked,
which we wanted to prevent. Furthermore, when the database is unavailable,
authentication cannot take place. Finally, there is also the cost of maintaining
the database.

Polymorphic pseudonyms are described in [54] and slightly differently in
[46]. Polymorphic pseudonyms provide a way to create unique pseudonyms
for different SPs. A polymorphic pseudonym is passed to the SP in encrypted
form, and the SP can then decrypt it to get its unique pseudonym. Polymorphic
pseudonyms may therefore be able to replace the database solution.

The hub in the hub-and-spoke federation handles a lot of privacy sensitive
information which it passes on between IdPs and SPs. Polymorphic pseudonyms
may be able to solve this, because the hub only sees encrypted pseudonyms
which it cannot link together.

3

1.2 Kennisnet Use Case

Kennisnet has a similar use case. Schools order learning materials for their
pupils from a distributor, including electronic learning materials from certain
publishers. The pupil must get online access to these electronic learning mater-
ials at the publisher. The publisher must know whether the pupil should get
access, depending on what the pupil ordered from the distributor. The publisher
must be able to communicate test results back to the school.

Currently, personally identifying information such as the full name of the
pupils is used to communicate about pupils [22]. The Dutch schools received
a Big Brother Award for this [21], which is an award given out to privacy in-
fringers. A privacy friendly solution is needed, where publishers and distributors
do not get more information about the pupil than necessary, and information
from different publishers and distributors cannot be linked, unless allowed by
the school. Polymorphic pseudonyms can also provide a solution here.

1.3 Research Questions

In this thesis the following questions will be answered:

1. What pros and cons are there when using polymorphic pseudonyms in a
hub-and-spoke federation?

2. There are variations available of the polymorphic pseudonym system.
What are pros and cons of different variations?

3. Does the use of polymorphic pseudonyms fit in a standard SAML envir-
onment? How much extra processing is needed?

4. What is the impact on existing identity federations, such as Kennisnet
and SURFconext, for IdPs, SPs as well as for the hub?

5. Which variation is the best fit for the SURFconext and Kennisnet use
cases?

1.4 Research Methods

We give an overview of privacy, trust and usability requirements for authen-
tication systems, and especially federated identity management. We can then
evaluate whether polymorphic pseudonyms help us to meet these requirements,
or prevent us from meeting them. This gives us a partial answer to questions 1
and 2. Another part of the answer to these questions is given by implementing
polymorphic pseudonyms in existing software for FIM. This will tell us what the
problems are when we want to use polymorphic pseudonyms in practice. This
implementation, and therefore seeing what is necessary for this implementation,
also gives an answer to question 3 and 4.

We give a description of the current situation and plans in the SURFconext
and Kennisnet use cases, and what the considerations are that have to be made
when changes are made. By comparing the pros and cons from question 2 to
the current situation and the design considerations we can answer question 5.

4

1.5 Scope

Many parts of this thesis apply to the use of polymorphic pseudonyms in identity
federations in general. The main focus is, however, SURFconext, and the hub-
and-spoke model they use. We will also make some remarks on the Kennisnet
use case.

Some of the advantages of polymorphic pseudonyms cannot be achieved in
many set-ups with polymorphic pseudonyms alone. We will therefore also de-
scribe polymorphic attributes, which can help reaching all of the potential poly-
morphic pseudonyms have. The main focus of this thesis will however remain
polymorphic pseudonyms.

1.6 Outline

We will start by looking at requirements for authentication systems in Chapter 2.
This will then be further elaborated for federated identity management in Chap-
ter 3. In this chapter we will also give a summary of the Security Assertion
Markup Language (SAML) specification that is often used for FIM. In Chapter 4
we will look at the current situation in the Netherlands. We will describe the
situation for the Kennisnet and SURFconext use cases, but also look at iDIN
and Idensys, two other developments in the Netherlands. There has been earlier
work on privacy in identity federations. We will look at some of this related
work in Chapter 5. Chapter 6 describes how polymorphic pseudonyms work,
and how they can be used in different models. The underlying cryptography is
explained in Chapter 7. When we want to change the current situation, there
are some considerations that have to be made. These are decribed in Chapter 8.
The implementation work that was done is described in Chapter 9. An extension
to polymorphic pseudonyms are polymorphic attributes. Those are described
in Chapter 10. We have described requirements for authentication systems.
In Chapter 11 we will look at how polymorphic pseudonyms and attributes
perform against those requirements. In Chapter 12 we will see how some of the
requirements can be met with conventional cryptographic techniques, but also
where this falls short. We will come to our conclusion in Chapter 13.

5

Chapter 2

Requirements for Online
Authentication

2.1 Trust

Authentication deals with verifying the truth of a claim which is made by some
entity. In most cases the term authentication is used for identity authentication:
if a user claims to have a certain identity, usually we also want authentication
to ensure that the identity claimed by the user is indeed his identity. To accom-
plish this, it is necessary that there is trust. Without trust in an authentication
system, we would still not be sure that the user we have identified is the ac-
tual user using the system. The European Commision has adopted the eIDAS
regulation [49]. Article 8 of this regulation specifies three assurance levels: low,
substantial and high. This is further implemented in a commission implement-
ing regulation [12]. Authentication with only a password has assurance level
low. Stricter requirements have to be met for assurance levels substantial and
high. One of the requirements for level substantial is that at least two authentic-
ation factors are used. The high assurance level requires that an authentication
means has further protection against duplication and tampering. Assurance
levels are based on the quality and reliability of these elements:

• Enrolment. This includes verifying and proofing the identity of the user,
and binding of electronic identification means of natural and legal persons.

• Electronic identification means management. This includes the design
and characteristics, issuance, suspension, revocation and reactivation, and
renewal and replacement of identification means.

• Authentication. This states requirements about the authentication mech-
anism.

• Management and organisation

2.2 Privacy

When information about users is processed, privacy starts to become an issue.
This is also the case for authentication systems. A tension between privacy and

6

authentication is described by [40]: authentication often involves disclosure or
confirmation of personal data. This does not mean they are polar opposites,
but shows that privacy is an important issue in authentication.

Another way that authentication systems influence privacy is when a user
authenticates to multiple services in such a way that these services can link
these interactions. This is for example the case when an e-mail address is used
during authentication. Services can easily link the information they have about
the user with a certain e-mail address.

When authentication for multiple services is handled by one party, as is the
case in FIM, this party may be able to know the pseudonym by which the user
is known to these services, and know which services you use and when you use
those. FIM is explained in more detail in Chapter 3.

2.3 Usability

Another important aspect of authentication systems is usability. If a system is
not user friendly, users are less likely to use it, and more likely to circumvent
it [1]. Some of the recommendations for identity management systems, which
are related to usability, given by [16] are:

• Make the “path of least resistance” the secure path. Integrate
identity management into the browsers, operating systems, and
applications people already use, and make it easy for them to
configure and operate systems correctly.

• Reduce cognitive burden. Don’t replace one burden with others,
and evaluate how your system will be used in the larger context
of other systems.

• Reduce the number of trust decisions users have to make. Don’t
try to achieve consent by overwhelming users with more warn-
ings, dialogs, and indicators.

In line with the first recommendation is also to allow users to use cards,
devices or other authentication tokens they already have to authenticate to new
services. FIM (Chapter 3) allows users to use credentials they already have for
multiple services.

Users having to remember many passwords causes problems. There is a large
cognitive burden associated with this, and users tend to use insecure password
practices because of this [1].

2.4 Monitoring

Another requirement can be the possibility to perform monitoring. This can
help solving problems in the system, but also aid in detecting fraudulent user
behaviour. For law enforcement purposes, it may be necessary to trace actions
back to the person who performed those actions. For the use cases which we
are looking at, this is not a requirement, however. We will therefore not look
further into this.

7

2.5 Authentication and Trusted Third Parties

In authentication systems, a trusted third party (TTP) can play a role. It can
play a role in both management of authentication tokens, and in the use of the
token.

2.5.1 No TTP

Simple username/password authentication, where a user registers at the service
provider itself does not use a TTP. Another example of authentication without
a TTP are the UAF [38] and U2F [51] specifications from the FIDO Alliance.
In these specifications, the users have a FIDO enabled device. Before first use
of a service, the device generates a public key pair. The public key is given to
the SP, and ownership of the corresponding private key is proven by signing a
challenge from the SP. In this way the public key of the user gets associated with
his account at the SP. When authenticating to the service, a challenge-response
protocol is again used to prove ownership of the private key. All interactions
are between the SP and the user’s device. The user does need to trust the issuer
of the device, but neither when authentication tokens are issued to the device,
nor when the user authenticates to a service, a TTP is used.

With this approach, there is no trusted source for attributes. Users have to
convince each SP of the validity of the attributes they are giving, such as their
name, age or social security number.

2.5.2 TTP only for Token Issuance

An example of an authentication system where a TTP is only used for token
issuance is the Belgian eID card [53]. Cards are issued by the Belgian govern-
ment, and they hold private keys that can be used for signatures. No TTP is
needed for this. Each card holds a key for authenticating the citizen, and one for
non-repudiation signatures. For these two keys the card holds a certificate that
contains the name and national registration number (NRN) of the cardholder.
The NRN is the unique nation-wide identification number that is assigned to
Belgian citizens. The certificate is shared when the card is used, which means
also the name and NRN are shared. A certificate chain with a trusted certificate
at the root makes sure that the signatures that are generated by the card can
be verified without the need for a TTP.

2.5.3 TTP for Token Issuance and Use

In a federated authentication system, a TTP is used during the registration
phase, in which an authentication token will be issued, and also every time the
user logs in using his authentication token. We will look further into federated
identity management in Chapter 3. Examples are SURFconext, Kennisnet’s
Entree federation, Idensys and iDIN. These are described in more detail in
Chapter 4.

8

Chapter 3

Federated Identity
Management

Figure 3.1: Simple setup of federated identity management (FIM)

Many online services require the user to log in. The user often needs to create
an account at all the services he uses. It is however also possible to use feder-
ated identity management (FIM). Then the user has an account at an identity
provider (IdP). When the user wants to use a service provider (SP) (also called
relying party (RP)), he logs in with his account at the IdP, which then gives
authentication statements to the SP, so it knows that the user is authenticated.
This is depicted in Figure 3.1. The IdP may also pass attribute statements to
the SP, to give information about the user. We are mainly interested in the
interaction between IdPs and SPs. Therefore the interaction between IdP and
user is not shown in the following figures. An identity federation is a collection
of IdPs and SPs. Some federations are a hub-and-spoke federation, where both
the IdPs and the SPs are connected to a central hub, and all authentications
go through that hub (Fig. 3.2). In a full mesh federation (Fig. 3.3), IdPs are
directly connected to the SPs [2].

One aspect of FIM is single sign on (SSO): the user logs in once and can
then use multiple services without having to log in again each time. This is
meant to improve usability, but there are security implications. When a user
has logged in to use one service, he may also get logged in to another service
without him noticing or wanting this to happen. This means that SSO conflicts
with protection against duplication, as required for eIDAS assurance level ‘high’
(Section 2.1).

9

Figure 3.2: A hub-and-spoke federation, where a user wants to use SP2 and
authenticates to it using IdP1

Figure 3.3: A full mesh federation, where a user wants to use SP2 and authen-
ticates to it using IdP1

10

3.1 SAML

A widely used standard for FIM is the XML based Security Assertion Markup
Language (SAML), standardised by OASIS [42]. The standard defines asser-
tions, protocols, bindings and profiles. Assertions are statements about a user
that the asserting party claims to be true. For example: an IdP claims that
a user has successfully authenticated, or that he has certain attributes. Pro-
tocols describe how parties can make SAML requests and return appropriate
responses. Assertions are transfered through these protocols. A binding de-
scribes how lower level protocols, like HTTP and SOAP, are used to transport
SAML protocol messages. A profile describes how the SAML assertions, proto-
cols and bindings can be used in a standard way for certain use cases.

3.1.1 Example

We will look at a web shop for students as an example of how SAML can be
used for FIM. Bobby Tables is a student at the University of Harderwijk. He
wants to buy a book on Unishop.com. Before he can order anything, Bobby
has to log in. Unishop.com shows him a list of all universities from which stu-
dents are allowed to log in, and Bobby chooses the University of Harderwijk.
Unishop.com creates a protocol message to request authentication. This mes-
sage is transported to the University of Harderwijk through the HTTP Redirect
binding. This binding includes a redirect to the web site of the University of
Harderwijk. At the university’s website, Bobby is asked to log in. When he
has done so, the University of Harderwijk creates a protocol message to re-
spond to Unishop.com. This response contains an assertion stating that the
user with identifier a88c602021780133b9fee5f2fc8aba87cbf9982246 has suc-
cessfully authenticated, and stating that he has these attributes:

name Bobby Tables
email b.tables@universityofharderwijk.com
address Grotestraat 12, Harderwijk
affiliation Student

Unishop.com can now see that Bobby is a student, and knows where to send
the book. A confirmation of the sale can be sent to the specified e-mail address.

3.1.2 Web Browser SSO

What we described is an example of the Web Browser SSO profile[43]. This is
the most important one for us. This profile describes how SAML messages can
be sent via the browser of the user, to allow the user to authenticate to an IdP
and consequently give him access to SPs.

SSO can be IdP-initiated, where a user first authenticates to his IdP, which
then redirects him to an SP. For example: the University of Harderwijk shows
a link to buy the book that is necessary for a course, and when a student clicks
that link, he will be automatically authenticated to Unishop.com where he can
buy the book. The earlier example is SP-initiated SSO, which is the more
common variant. In this scenario, the user first tries to access an SP. The SP
will let the user choose which IdP to use. The SP then sends an authentication
request to the chosen IdP. The IdP will ask the user to authenticate, and upon

11

success send a response back to the SP, containing an authentication statement,
and possibly some attribute statements.

3.1.3 Bindings

The bindings that can be used in Web Browser SSO are the HTTP Redirect
binding, HTTP POST binding and HTTP Artifact binding. These bindings can
be composed, such that different messages can be sent in one protocol exchange
using two different bindings. Authentication requests can be sent using all these
bindings. Authentication responses are often too long to be sent with the HTTP
Redirect binding, and are therefore mostly sent with the HTTP POST or HTTP
Artifact binding.

HTTP Redirect Binding

With the HTTP Redirect binding, SAML protocol messages can be sent within
URL parameters. It can be used if the communicating parties need the user
agent as intermediary, either because no direct channel is available, or because
interaction with the user agent is necessary. An example of this is when the
user needs to authenticate to an IdP.

The SAML message is encoded, and placed in a query variable called SAML-

Request or SAMLResponse of the URL of the targeted endpoint at the receiving
party. The user is redirected to that URL, containing the SAML message in the
query string.

The SAML message is URL encoded. By default, also DEFLATE [15] en-
coding is used to compress the message. If another encoding is used, this can
be specified with the SAMLEncoding query string.

Theoretically, URL length is unlimited. In practice there are limits, so even
though DEFLATE encoding is used, SAML messages sent with this binding
cannot be too long. The HTTP POST or Artifact bindings can be used to send
longer messages.

HTTP POST Binding

With the HTTP Post binding, SAML protocol messages can be sent as the
base64 encoded content of an HTML form control. Like the HTTP Redirect
binding, it can be used if the communicating parties need the user agent as
intermediary, either because no direct channel is available, or because interaction
with the user agent is necessary.

The SAML message is base64 encoded, and placed in a hidden form control
with the name SAMLRequest or SAMLResponse, inside an XHTML document.
The form uses POST as method, and the URL of the endpoint at the receiving
party as action.

Typically there is some JavaScript that will automatically submit the form.
If there is no script, or the script is not executed by the user agent, user interac-
tion is necessary to submit the form. This way the receiving party will receive
the message in a POST request from the user’s browser.

12

HTTP Artifact Binding

With the HTTP Artifact binding, a reference to the actual message is sent,
either with a SAMLArt query string variable, similar to the HTTP Redirect
binding, or with a SAMLArt form element, similar to the HTTP POST binding.
The artifact, which is the actual message, is sent via a direct channel, such as
SOAP, between requester and responder. It can be used if the user agent is
needed as intermediary, but the intermediary poses limitations to sending the
entire message. This can be because of technical reasons, but also if the message
should not be exposed to the user, and encryption is not practical.

3.1.4 Authentication Request

In the Web Browser SSO profile, the SP creates a SAML message, containing
an AuthnRequest element. This element typically contains, among others, an
Issuer element, which contains the EntityId of the SP.

The authentication request is typically sent to the SSO service of the IdP
with the HTTP Redirect binding. This allows the IdP to interact with the user
to let the user authenticate.

3.1.5 Response

The IdP sends a Response element. This element contains a Status ele-
ment. Upon success, this element contains a StatusCode with value urn:

oasis:names:tc:SAML:2.0:status:Success. When an error occurred, the
StatusCode will contain a different value describing the error, and the Status

may contain more information about the error.
In case of success, the Response contains one or more Assertions. These

can contain, among others, the Subject of the Assertion and zero or more
AuthnStatements and AttributeStatements

Subject

The Subject element tells which user the Assertion is about. To this end it can
contain a NameID. This is an identifier that identifies the user. The NameID has
a format, some of which are defined by the SAML specification. It can however
also be a different format. The formats defined in the SAML specification are:

• urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified: The for-
mat is unspecified, and the SP must decide for itself how to interpret the
NameID.

• urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress : The
NameID is an e-mail address.

• urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName: The
NameID is an X509SubjectName as specified in [6]

• urn:oasis:names:tc:SAML:1.1:nameid-format:WindowsDomainQuali-

fiedName: The NameID is a Windows domain qualified name

• urn:oasis:names:tc:SAML:2.0:nameid-format:kerberos: The Name-
ID is in the form of a Kerboros principal name

13

• urn:oasis:names:tc:SAML:2.0:nameid-format:entity: The NameID
is the EntityID of an entity that provides SAML services

• urn:oasis:names:tc:SAML:2.0:nameid-format:persistent: The Name-
ID is a persistent identifier, specific for the SP. It is intended as a privacy
protecting identifier, and must therefore follow some rules. The identi-
fier must not be relatable to identifying information about the user. The
identifier should not be shared with other providers unless they have estab-
lished a shared identifier. It must not be logged without proper protection.
The identifier should be unique for a user at a specific SP.

• urn:oasis:names:tc:SAML:2.0:nameid-format:transient: The Name-
ID is a temporary identifier, which changes for different sessions of the
same user.

Authentication Statement

An AuthenticationStatement tells that the Subject of the Assertion was
authenticated in some way at a certain time.

Attribute Statement

An AttributeStatement tells that the Subject of the Assertion has some at-
tributes associated with it. These attributes can come in the form of Attribute
elements, of which the AttributeStatement contains one or more.

An Attribute has a name, and can have zero or more AttributeValues.
The AttributeValues can contain any valid XML content. This ranges from
simple types like strings and integers to complex XML types.

Sending the Response

The AuthnRequest is typically sent to the assertion consumer service of the SP
with the HTTP POST binding. This way the user will be redirected back to
the SP.

3.1.6 Hub-and-Spoke

In a hub-and-spoke federation, the hub acts as an IdP towards the SP. The SP
will therefore send an AuthnRequest to the hub. The hub then acts as an SP
towards the IdP of the user, and sends an AuthnRequest to the IdP. The IdP
will respond to the hub with a Response as described above. The hub will then
send a Response to the SP, containing the Assertions from the Response it
received from the IdP.

There are also other settings in which an intermediary is used. For example
when a so called proxy is used to connect multiple SPs from one organization
to a federation through a single connection. This works the same way as for the
hub.

Scoping

To pass information about what lies behind the hub, Scoping can be used. It
can be used in the AuthnRequest from the SP to the hub to tell the hub which

14

IdP or IdPs may be used. For this purpose an IDPList element can be used,
containing one or more IDPEntry elements, which hold the EntityID’s of the
IdPs that may be used.

In the AuthnRequest the hub sends to the IdP, the Issuer element will
contain the EntityID of the hub, and not the SP the request originated from.
The Scoping element can therefore contain a RequesterID element. This
RequesterID element contains the EntityID of the original SP. If there is
more than one proxy, there can be multiple RequesterIDs, each containing
the EntityID of one of the entities that are behind the proxy that issued the
AuthnRequest.

3.1.7 Security

SAML specificies mechanisms for both signatures and encryption [42, 44].
Without signatures a requester cannot rely on the validity of the assertions

it receives. For example, for the HTTP Redirect and POST bindings, protocol
message are sent via the user’s browser. This allows the user to change these
messages. With signatures it can be verified that messages come from the correct
party. Also, if a hub or proxy leaves the signatures intact, the receiving party
can verify that the signed data comes from the original provider of that data.
XML Signatures [6] are used for this, and can be used on assertions, and on
request and response messages.

XML Encryption [26] can also be used. This prevents, for example, the
user to see the contents of encrypted parts, when the HTTP Redirect or POST
binding is used. If an IdP encrypts data with the public key of the SP, in-
termediaries like hubs and proxies cannot see the contents of the encrypted
elements. Assertion elements can be replaced by EncryptedAssertion ele-
ments, NameIDs by EncryptedIDs and Attributes by EncryptedAttributes.
The Encrypted* elements contain the encrypted original elements.

In SURFconext only signatures, and no XML encryption is used. Requests
and responses are sent via HTTPS, making sure outside observers cannot see
the contents of these messages. The user is able to see his own attributes. In
SURFconext, IdPs do not need to worry about the SP that is accessed, but only
about the connection with SURFconext. This makes end-to-end encryption with
XML encryption impossible, since the IdPs do not know which public key to
use. So even in the case that encryption is used, this would be IdP-to-hub and
hub-to-SP encryption, and the SURFconext hub still has access to the content
of exchanged messages.

SURFconext also does not leave signatures intact, but signs the attributes
it receives from the IdP with its own private key. This allows SPs to only care
about SURFconext as IdP, and only verify whether signed data comes from
SURFconext.

This means SURFconext is a man-in-the-middle, and is able to see and alter
the contents of all messages.

3.1.8 Cookies

SAML requires state to be kept in the user environment, but does not specify
how this should be kept. Cookies can be used for this purpose [33] by both IdPs
and SPs. IdPs use cookies for SSO: a cookie is placed in order to remember the

15

user that logged in. This cookie typically contains a session ID. When a new
authentication request is received, the user does not have to authenticate again,
but an authentication response is sent immediately. SPs can also use a cookie
to keep the session of the user for the duration that he remains logged in to the
service.

3.2 Properties of Federated Identity Manage-
ment

3.2.1 Trust

Trust is important in FIM. When an SP receives an authentication statement,
authenticating a certain user, he must be able to trust that the user that is
accessing the SP has indeed authenticated to the IdP, and that the user au-
thenticated by the authentication statement is the same user as the one trying
to access the SP. The SP must also be able to trust that the values in attribute
statements are correct.

In a full mesh federation, this means that SPs must trust the IdPs they are
connected to. In a hub-and-spoke federation, SPs must trust the hub, but also
the IdPs the hub establishes a relationship with. If the IdPs sign their assertions,
and the hub leaves the signatures untouched, it is possible to have a situation in
which SPs only trust assertions signed by certain IdPs, and therefore don’t have
to trust all IdPs but only those IdPs. They still need to trust that the hub does
not switch sessions, by switching assertions it receives for different users. If the
hub uses its own signatures instead of the signatures from the IdP, and the hub
tells the SP from which IdP the assertions originated, the SP must trust that
the hub has checked the signatures from the IdP. In that case the SP can still
decide to only trust assertions from certain IdPs.

Users must trust that their IdP does not initiate an authentication to an SP
on their behalf without their explicit consent. They must also trust that the
IdP does not share their information without their consent.

Man-in-the-browser

If the computer of the user is infected with malware, there can be the problem
of a man-in-the-browser. If only a username and password are used, the man-
in-the-browser can steal these. If external authentication tokens are used, there
can still be problems. An attacker who wants to authenticate as the infected
user to SP A, can wait for the user to visit another SP B, and use a man-in-
the-browser to repace the authentication request from B with one from A. The
user thinks he authenticates to B, but is in fact authenticating to A. The man-
in-the-browser can steal the response and send it to the attacker so that he can
use it to authenticate as the user to A.

When SSO is used, when a user has authenticated to SP B, at a later time
the man-in-the-browser lets the user authenticate to A. Since SSO is used, and
the user already authenticated to the IdP, the IdP will authenticate the user
to A without user interaction. The man-in-the-browser can then access the
account of the user at SP A.

16

To prevent this, the IdP can ask the user for confirmation that he really
wants to authenticate to the SP he is authenticating to. To prevent the man-
in-the-browser from changing or interacting with the confirmation process, this
confirmation should happen using an external channel. This can for example
be an SMS that says which SP the user is authenticating to, with a code that
should be entered to confirm the authentication.

A man-in-the-browser can also tamper with other interactions between the
user and the SP. For example, when the SP is a bank, and the user wants
to transfer AC10.00 to a friend. A man-in-the-browser can change this into a
transfer of AC10,000.00 to a bank account he can get the money from. The man-
in-the-browser will make sure the web page still displays a transfer of AC10.00 to
the friend.

This can be prevented by not only confirming the authentication of a user via
an external channel, but also confirming actions of the user through an external
channel. In the bank example, the confirmation should show the amount and
recipient of the transfer. Since this is shown through an external channel, the
man-in-the-browser cannot tamper with it, and the user will see that he is in
fact about to transfer AC10,000.00 to the wrong account.

For eIDAS assurance level ‘high’, it is required that there is protection
against tampering. This means that measures such as those we described are
taken to prevent man-in-the-browser attacks.

3.2.2 Privacy

In identity federations, there are some privacy concerns that may be relevant.
First of all, there is the possibility of collusion: if different service providers
receive different attributes about a user, and they are able to link the attributes
to the same user, the service providers can create a more extensive profile of
the user by combining their knowledge. Also, the IdP often knows who the
user is. In full mesh federations, and sometimes in hub-and-spoke federations,
it can see which SPs the user uses. In the case of a hub-and-spoke federation,
all authentication and attribute statements go through the hub. If these are not
end-to-end encrypted, this makes the hub a privacy hot spot.

An SP may need to recognize a user as being the same when he uses the
service multiple times. To achieve this, authentication statements can contain a
persistent identifier, as described in Section 3.1.5. This is a pseudonym that is
unrelatable to identifying information of the user, which is the same for a user,
each time he logs onto an SP. To prevent linking of user data between SPs, this
persistent identifier is different for different SPs. If the SP does not need to
know whether the same user uses a service, transient identifiers can be used,
which are different every time, but can be used to communicate with the IdP
about the current session, for example when the user logs out.

The European Parliament has approved the General Data Protection Reg-
ulation (GDPR) [48]. Art. 5.1 of this regulation describes principles relating to
the processing of personal data. One of these principles is ‘data minimisation’,
which states that personal data shall be “adequate, relevant and limited to what
is necessary in relation to the purposes for which they are processed” (Art. 5.1
(c)).

The GDPR will supersede the Data Protection Directive (DPD) [17], wich
was used in [23]. Principles from data protection legislation and privacy guidelines

17

were applied to FIM, and architectural requirements were formulated that fol-
lowed from that. Those requirements are, directly quoted from [23]:

AR1 Limited observability. No entity shall be able to aggregate
data about the usage of multiple services by users, which will
keep it from being able to deduce personal interests or behavior.

AR2 Limited linkability. Relying parties (RPs) shall not be able
to aggregate personal data used in different privacy domains.
Only if it is necessary for a legitimate purpose shall two RPs
processing data of a principal be able to link those data sets.
Aside from unique identifiers, this concerns attributes that are
identifying with high probability as well.

An important measure is the use of pseudonyms. If the full
pseudonymization of user attributes is not feasible, then at least
those attributes that identify a user (almost) uniquely shall be
pseudonymized. This applies, e.g., to the ubiquitous e-mail ad-
dress.

AR3 Prevent the unauthorized aggregation of attributes by
central intermediaries such as gateways, brokers, etc.
No actor shall be able to collect attributes beyond the specified
purpose of a service and deduce personal information and be-
havior.

AR4 Constrained linking. Unidirectional links between instances
of a principal in different privacy domains shall be possible
either directly or mediated under control of the user or a third
party.

AR5 Consent handling. The flow of releasing attributes should
regard the processing of user consent, where explicit consent is
appropriate.

AR6 No supreme instance. Actors managing trust roots must not
have access to either attributes or transaction data.

AR7 Minimize the release of attributes. The identity provider,
in its role as data controller of a principal’s identity informa-
tion, must be assured that only those attributes deemed neces-
sary for the purpose of the service are released to the RP.

AR8 Uniqueness of identification. If the RP requires access con-
trol, e.g., to protect personal data, then the unambiguous iden-
tification of the principal is necessary, even if the user remains
pseudonymous. Therefore, identifiers need to be immutable and
non-reassignable in those cases.

AR2 speaks of “attributes that are identifying with high probability”. Not
sharing any of such attributes is not feasible. For some attributes, such as e-
mail addresses, it is possible to use proxy addresses as described in [24], which
we look into in more detail in Section 5.1. However, it is extremely unlikely
that there are no two SPs that process data that allow linking users with some
probability. This makes AR2 an impractical requirement that can never be

18

met. Therefore, for AR2 we will only consider the linkability of pseudonyms,
and not of all attributes.

AR6 entails that organizational roles should be seperated.

3.2.3 Usability

We have seen in Section 2.3 that the large number of passwords a user has to
remember is a problem. FIM can improve the situation in this regard. Users
only need one password to access multiple services. If a user wants to use a new
service in a federation in which he already is registered with an IdP, he does
not have to remember yet another password, but can use his existing account
at the IdP.

There are however also some usability issues that may occur in FIM [4]:

• Users should be able to access SPs not only using the identity management
system at home, but also from other locations. Academic publishers,
for example, often verify whether someone should get access by checking
whether the IP address of the user is of a subscribed organization. This
system cannot be used from other locations, except when technologies like
VPN are used.

• A user can have several identities, even within a single scope. Users should
be able to manage their different roles. Furthermore, if a user wants
to access a different service in a federation, SSO may cause him to be
automaticcally logged in. This can also happen if he accesses the service
in a different role, and would want to use a different identity than he used
earlier. For example: a university employs students. This means a student
can have a student account and an employee account. For his job related
activities he may need to use the employee account, and for study related
activities he may need to use his student account.

• Some information about the user may be stored at the IdP, other inform-
ation at different SPs. This makes it difficult for users to manage their
profile.

In the case of users managing their profile, FIM also provides opportunities.
Instead of having to enter his details at every service he uses, they are shared
by the IdP. Attributes may be shared that are necessary for the operation of a
service, but more may be shared to allow more features and improve usability
of the service. The profile of the user can be stored in one place: at the IdP,
making the management of the profile easier. However, when SPs start creating
their own profile for users or do not process updates from a user to their profile
at the IdP we will get the privacy problems described above.

Some of the architectural requirements from Section 3.2.2 also have usability
aspects. AR4 can make it easier for users to use different services together. For
AR5 user interaction is necessary. To make this more user friendly, the party
that asks for consent may display not only the names of attributes that will be
shared with an SP, but also their contents. This helps the user in understanding
what exactly they will be sharing. Usability can also be improved by allowing
consent to be remembered. Then the user does not have to give his consent
every time he accesses a service, but only on first use or periodically.

19

3.2.4 Conflicting goals

Some of the trust, usability and privacy goals are conflicting. This means a
compromise has to be found between certain usability and privacy aspects.

AR7 asks for only releasing necessary attributes, but releasing more attrib-
utes can improve usability of the service.

Because of AR7, different sets of attributes are released to different parties.
The specific set of attributes that will be released gives information about which
service is used. To ask for consent to share a certain set of attributes, a party
must know which set of attributes will be released. We should therefore assume
that the party that asks for consent knows which service will be used. To achieve
AR1 this party should not know which user is giving consent. In a setup where
the IdP knows who the user is, this means it cannot be the IdP that asks for
consent. For AR3 to be met, the party that asks consent must not know the
content of the attributes that will be shared. This means it is not possible to
show the content of the attributes by the party that asks for consent, if we also
want AR1, AR3 and AR7. The contents of attributes often identify the user,
so even when we drop AR3, we still run into AR1.

However, the party asking for consent does not have to be the party that
shows the content of the attributes. The consent page can include iframes for
each attribute value it wants to show. These iframes load a URL from the IdP.
This URL is specific for the attribute value that should be loaded. The user
has authenticated to the IdP, and using the SSO mechanism, the IdP knows
for which user it should return the attribute value. The response from the IdP
should just be the value of the attribute, so it can be displayed as part of a
consent page.

In case we want AR1, we do not want the specific set of attributes to give
information to the IdP about which SP is used. This can be accomplished by
including iframes for all attributes. The iframes for attributes that will not be
released can be made invisible with CSS or a height of 0.

It should be noted that since the web page that asks for consent is under
control of the party that asks for consent. This means he is able to include
JavaScript that sends the attributes that are loaded from the IdP to the consent
asking party.

To fully meet AR1, we do not want parties that know which services are
used, to be able to link different sessions of the same user, even if those parties
do not know who the user is. If we want to remember that a user has given
consent, we need to be able to link different sessions. We have already seen
that we should assume that the party that asks for consent knows which service
is used. Therefore he should not be able to link different sessions, making it
impossible to remember consent. If we do allow linking of sessions of the same
user, visiting the same SP, but not sessions of the same user with different SPs,
it can be possible to remember consent.

The IdP can be the most trusted party by the user. It may therefore not
be desirable to move consent handling and decisions about which attributes are
released to SPs to different parties. But if the IdP has these responsibilities, it
will need to know which SPs are used by a user, and if the IdP knows who the
user is, he will be violating AR1.

20

If we want to prevent the damage from a man-in-the-browser by letting the
users confirm their authentication to a specific SP, as described in Section 3.2.1,
the IdP must know which SP a user is authenticating to, and we cannot have
AR1. In cases where an authenticated user mainly gets access to information,
for which it is privacy sensitive that he wants to have this information, AR1
is a useful requirement. When the SP actually lets the user perform actions,
it becomes important that we can trust that it really is the user performing
those actions. In those cases prevention of man-in-the-browser attacks is more
important, and AR1 is too strict. The IdP should know which SP the user is
authenticating to.

21

Chapter 4

Current Situation

4.1 SURFconext

SURFconext requires IdPs to release the attributes urn:mace:dir:attribute-
-def:uid (in short uid) and urn:mace:terena.org:attribute-def:schac-

HomeOrganization (schacHomeOrganization) for its users. These attributes
uniquely identify the user. For the services that require persistent nameID’s, the
first time the user accesses the SP, SURFnet randomly generates an identifier.
The combination of uid, schacHomeOrganization, SP and identifier is stored
in a database, so the identifier can be looked up when the user accesses the SP
again.

SURFconext performs attribute filtering. This means that IdPs often release
more attributes than necessary for the SP the user wants to access. SURFconext
only sends those attributes to the SP that are actually needed. In some cases,
SURFconext also looks at the value of the attributes to see whether they should
be passed on.

In SURFconext it is possible to create teams of users of different IdPs. SPs
can request team membership information by passing the persistent nameID to
the teams API.

4.1.1 Privacy

We will compare SURFconext to the architectural requirements from [23], as
described in Section 3.2.2. 3 denotes an architectual requirement being met, 7
denotes a requirement that is not met.

AR1 Limited observability. Both IdPs and the hub are able to aggregate
data about the usage of multiple services by users 7

AR2 Limited linkability. Persistent identifiers are used to limit linkability 3

AR3 Prevent the unauthorized aggregation of attributes by central
intermediaries such as gateways, brokers, etc. The hub is able to
aggregate attributes 7

AR4 Constrained linking. If SPs do need to cooperate, SURFconext can
give them the same persistent identifier for a user, allowing them to com-
municate about the user 3

22

AR5 Consent handling. Either SURFconext asks user consent before sharing
attributes with an SP, or user consent is handled by the IdP 3

AR6 No supreme instance. The hub is a supreme instance 7

AR7 Minimize the release of attributes. SURFconext only shares those
attributes with SPs that are necessary for the purpose of the service of
the SPs 3

AR8 Uniqueness of identification. Assuming IdPs use unique and constant
user identifiers, the persistent identifiers assigned by SURFconext are im-
mutable and non-reassignable 3

4.2 Kennisnet

In Dutch education there is a collaboration between schools, distributors and
publishers. Schools purchase learning materials for their pupils from distribut-
ors. These materials are created by publishers. If the school purchases elec-
tronic learning materials, pupils need to get access to this at the publisher.
The distributor has to communicate to the publisher that the pupil has a li-
cence for the product. The publisher has to communicate to the school about
progress and results of the pupil. These communications are standardised by
Edustandaard [18].

Kennisnet provides ICT infrastructure to Dutch primary, secondary and vo-
cational education [32]. This includes an identity federation, called Entree [31],
which is a hub-and-spoke federation. The virtual learning environment of the
schools provide the IdP functionality. There are also privately developed fed-
erated systems, like Basispoort and Edu-iX. The different parties, like schools,
distributors and publishers have several ways to communicate with each other.
Sometimes the Entree federation is used, sometimes communication goes via
the mentioned private systems, and sometimes communication goes directly.

The parties need some way to identify which pupil they are communicating
about. This is called the matching problem. Currently, personal information
about the pupil is used to perform the matching of a user at different parties
to the same person. A privacy impact assessment (PIA) has been performed of
the plans to improve the situation in Dutch education [22]. This PIA also lists
some problems with the current situation:

• directly identifying data is spread through the education chain.

• distributors and publishers have a relatively independent position, which
may allow them to perform data processing outside of the view of the
schools, or which the schools are not fully aware about.

• distributors and publishers can use the data they receive in the context
of their role in the education chain for their own business and use it to
approach pupils or their parents for commercial purposes.

• there is strict regulation of the use of numbers that are assigned by law
to persons in order to identify them.

23

4.2.1 Current plans

The mentioned PIA [22] was performed to assess the plans to improve on the
described situation. These plans are also detailed in the PIA, and the following
description of the plans is based on the description in the PIA. There are two
solutions that together should solve the described problems. The first is a
numbering facility with pseudonyms, and the second is a privacy covenant.

Numbering facility with pseudonyms

The numbering facility was in the first place devised to solve the matching
problem. Instead of exchanging datasets to identify pupils, a so called chain
pseudonym (‘ketenpseudoniem’) is used, which uniquely and unambiguously
identifies pupils. A result of this is that less personal information is exchanged,
and distributors and publishers obtain less personally identifying information.
A consequence thereof is that distributors and publishers have fewer options to
use the information they receive in the context of their role in the education
chain for their own business and use it to approach pupils or their parents for
commercial purposes.

Chain pseudonyms are created by the so called numbering facility. Schools
request a chain pseudonym for their pupils once, and store that in their admin-
istration system. When a school requests a chain pseudonym, it sends a hash
of the PGN (persoonsgebonden nummer), which for most pupils is their social
security number. The numbering facility bases the pseudonym on three attrib-
utes: the hashed PGN, the education sector(primary, secondary or vocational
education) and an identifier of the chain. The described system of schools, dis-
tributors and publishers is seen as one chain, but the design of the numbering
facility allows differentiation within this system. The design also allows the
numbering facility to be used for other uses. The pseudonym will then be dif-
ferent for the same pupil. Although the design allows differentiation of chains,
currently everything is considered to be the same chain. The chain pseudonym
is not based on the school of the pupil, so if a pupil moves to a different school
in the same sector, the pseudonym will stay the same.

Privacy Covenant

The privacy covenant deals with the independent position of the distributors
and publishers. The covenant is not meant to reduce the amount of personal
data that is shared, but to give schools more control on how the data are used.
The distributors and publishers are no longer responsible parties of the personal
data, but processors, while the school is the responsible party.

4.2.2 Privacy

For the Kennisnet use case, we will compare the current plans to the architec-
tural requirements from [23]. 3 denotes an architectual requirement being met,
7 denotes a requirement that is not met. 7/3 denotes a requirement that is not
met, but for which it is not a problem.

AR1 Limited observability. Both IdPs and the gateways of the Entree and
private federations are able to aggregate data about the usage of multiple

24

services by users. These SPs are distributors and publishers, and their
usage is not very privacy sensitive. So there is not a real problem here 7/3

AR2 Limited linkability. The same pseudonym is used for a pupil across the
entire sector (primary, secondary or vocational education) 7

AR3 Prevent the unauthorized aggregation of attributes by central
intermediaries such as gateways, brokers, etc. The gateways of the
Entree and private federations are able to aggregate attributes 7

AR4 Constrained linking. Since every party in a sector gets the same pseud-
onym for a pupil, linking is easy 3

AR5 Consent handling. IdPs are required to handle user consent 3

AR6 No supreme instance. The hub is a supreme instance 7

AR7 Minimize the release of attributes. Kennisnet does not state clearly
that attribute release is minimized 7

AR8 Uniqueness of identification. Pseudonyms assigned by the numbering
facility are immutable and non-reassignable 3

Moreover, since the same pseudonym is used for a user across the entire
sector, parties can combine data. The data minimisation principle as stipulated
in Article 5 ofthe GDPR [48] is not followed.

4.3 Other developments in the Netherlands

We consider two other systems for identity federation that are being developed
in the Netherlands: Idensys, a collaboration between Dutch government and
private companies, and iDIN, which is developed by Dutch banks.

4.3.1 Idensys

Idensys pursues enabling the online identity and authorization of a person to be
determined in an optimal way, such that people can trust online services from
both government and business [34]. One standard is being developed for au-
thentication and authorization for public and private organizations. Consumers,
citizens and entrepreneurs can choose the token with which they authenticate
to organizations, and organizations get more assurance about the identity of the
user [47].

The interface specifications [25] of Idensys describes several roles. Their
relation can be seen in Fig. 4.1. These roles are:

dienstverlener (DV) (service provider) A party that provides a service for
which authentication is needed.

herkenningsmakelaar (HM) (broker) A single point of contact through which
DVs use authentication services. It is the same as the hub in a hub-and-
spoke federation. It acts as a router for all participating parties.

25

Figure 4.1: The roles and their relation in Idensys [25]

ondertekendienst (OD) (signature service) A party that facilitates the legal
binding of volitions. It inextricably links a document to assertions about
the identity of users, forming a digital signature.

koppelregister (KR) (linking register) A party that links an identifying at-
tribute to a pseudonym used by a person. An example of this is the BSN
koppelregister, which links BSNs to pseudonyms.

authenticatiedienst (AD) (identity provider) Authenticates natural persons
based on the authentication token used by that person.

machtigingenregister (MR) (authorization information provider) Party that
is responsible for registering, managing and checking authorizations, and
make statements about these authorizations.

4.3.2 iDIN

Dutch banks have developed iDIN, an identity federation in which consumers
can authenticate to merchants through their banks, and share attributes [13].
It is based on iDEAL, which allows consumers to make online payments to
webshops using their own bank [14]. The bank of the consumer (issuer) acts as
IdP. The merchant is the SP, but also has a bank (acquirer) which has a role in
the iDIN protocols. A merchant may choose to outsource the handling of iDIN
activities to a digital identity service provider (DISP). A schematic overview of
these parties and their relations can be seen in Fig. 4.2.

• All iDIN transactions are initiated by a consumer on the website of a
merchant.

• Consumers will be identified with a bank identification number (BIN).
This is a persistent identifier that is unique for a consumer-merchant com-
bination, and generated by the issuer.

• Information about a consumer will be end-to-end encrypted, so the ac-
quirer cannot see the contents.

• Consumers have one identity per issuer, independent of the number of
credentials.

26

• iDIN uses the iDx protocols, which uses SAML messages.

Figure 4.2: The four corner model of iDIN [13]

27

Chapter 5

Related work

5.1 Privacy Enhanced Federated Identity Man-
agment

The privacy enhanced federated identity management (PE-FIM) model de-
scribed by [24] is a way to improve privacy in identity federations. The high
level architecture is shown in Fig. 5.1. It specifically solves AR1. A blind
proxy, called the service broker, is used, which sets up a pseudonymous chan-
nel between IdP and SP. This channel is end-to-end encrypted, so the service
broker cannot see the contents of exchanged messages. The IdP must be able
to encrypt messages, while not knowing which SP will receive the messages and
not being able to link different sessions with the same SP. Therefore for each
session the SP generates a one-time key, which is signed by a certificate author-
ity (CA). The certificate generated by the CA does not contain the name of the
SP, so the IdP can use the key from this certificate to encrypt his messages,
without knowing the SP for which he is encrypting them. The SP does know
from which IdP a user comes, so he can use the public key from the IdP to
encrypt his messages.

SPs with similar transaction volume, requested attributes and bindings are

Figure 5.1: Schematic of the PE-FIM model [24]

28

grouped, and the IdP does learn the group the SP belongs to. Without grouping
them, the IdP could still infer which SP is used by these properties.

In order to meet AR1, in PE-FIM consent is managed and stored by the
service broker.

Targeted identifiers are used to avoid linkability between SPs. For identify-
ing attributes like e-mail addresses, payment information and physical addresses,
proxy services can be made available, in order to replace these idenitifying attrib-
utes with proxy addresses. In cases where SPs do need to communicate about a
user, the service broker can provide identifiers for a user that are shared between
these SPs.

We will compare this model to the architectural requirements from [23], as
described in Section 3.2.2. 3 denotes an architectual requirement being met, 7
denotes a requirement that is not met.

AR1 Limited observability. The IdP does not learn which SPs are used by
its users, by using a pseudonymous channel, as described. Other parties
also do not learn anything about SP usage by certain users 3

AR2 Limited linkability. Targeted identifiers and proxy addresses are used
to avoid linkability 3

AR3 Prevent the unauthorized aggregation of attributes by central
intermediaries such as gateways, brokers, etc. Intermediaries can-
not access attributes because they are end-to-end encrypted 3

AR4 Constrained linking. PE-FIM describes shared identifiers in order to
allow constrained linking, controlled by the service broker 3

AR5 Consent handling. Consent is handled at the service broker. This does
mean the consent UI cannot display identifying data 3

AR6 No supreme instance. The CA should be organizationally seperated
from other parties, such that it cannot become a supreme instance 3

AR7 Minimize the release of attributes. Attribute release can be based
on SP groups. It can be further limited by the service broker 3

AR8 Uniqueness of identification. Targeted identifiers ensure uniqueness
of identification 3

We have seen in Section 3.2.4 that AR1 conflicts with other properties we
may want. In many cases it is desirable that the IdP shows to the user which SP
he is authenticating to, to prevent attackers from letting the user authenticate
to an SP he does not want to use. This is however not possible if we have AR1.

5.2 IRMA

A different approach to identity management is taken by the IRMA project [28].
IRMA, short for I Reveal My Attributes uses attribute based credentials (ABC) [3,
5], and is an implementation of the Idemix system [9]. The project originally fo-
cussed on implementing ABC efficiently on smart cards, but a phone application
was later also developed [27].

29

ABC leave out the IdP. The user only discloses those attributes to an SP that
it needs, without any extra identifying information. Instead of authenticating
the identity of the user, only the attributes are authenticated, by the issuer of
the attributes. This makes sure that a user does not need to identify himself,
but the SP can still trust the attributes.

IRMA is an example of authentication with a TTP only for token issuance,
as described in Section 2.5.2. A TTP gives out attributes to users, and the
users can then use these attributes with SPs without a TTP. There are multiple
parties that can issue attributes.

Release of identifying information can be reduced by using the right attrib-
utes. For example: an attribute stating that the user is at least 18 years old may
be enough, and no date of birth is necessary. An attribute that states that the
user has a subscription to a certain service may be enough and no membership
number is necessary.

We will compare this model to the architectural requirements from [23], as
described in Section 3.2.2. 3 denotes an architectual requirement being met, 7
denotes a requirement that is not met.

AR1 Limited observability. There is no IdP that can observe SP usage.
Attributes are issued independent from their usage at SPs. Attribute
issuers can therefore also not observe SP usage 3

AR2 Limited linkability. When identifying attributes are released to an SP,
these can be used to link users across SPs. Using the right attributes
limits the use of identifying attributes 3

AR3 Prevent the unauthorized aggregation of attributes by central
intermediaries such as gateways, brokers, etc. There are no inter-
mediaries 3

AR4 Constrained linking. Giving services access to the same attribute can
accomodate linking 3

AR5 Consent handling. A PIN can be used to require user consent before
attributes are released. This does not ensure that the user knows which
attributes will be released. It is up to the SPs to show this information.
Users can check afterwards whether indeed the right attributes were re-
leased by checking a log of their IRMA card 3

AR6 No supreme instance. The scheme manager must be an independent
organization 3

AR7 Minimize the release of attributes. SPs should ask for only those
attributes they need. The user can decide whether he wants to share the
requested attributes 3

AR8 Uniqueness of identification. It is possible to store identifiers as attrib-
utes. Uniqueness of these idenitifiers is the responsibility of the issuer 3

30

Chapter 6

Polymorphic Pseudonyms

Polymorphic pseudonyms [54] provide a different approach to user identifiers.
We will first introduce three forms of pseudonyms that will be used. We will
then describe the basic model to show how these pseudonym forms are used.

polymorphic pseudonym (PP) The IdP can create this form of pseudonym
for every user. It must be transformed into an EP in order to be used to
access a service.

encrypted pseudonym (EP) A polymorphic pseudonym (PP) can be spe-
cialized for use with a specific SP. The resulting encrypted pseudonym
(EP) is an encrypted, targeted ID that can only be used for that SP.

final pseudonym (FP) An SP can decrypt an EP to get the final pseudonym
(FP). This pseudonym is the same for a user each time he uses a specific
service, but is different for the same user at different SPs. It is similar to
a persistent NameID in SAML, but it is only known to the SP.

6.1 Basic Model

The basic model of polymorphic pseudonyms works in a full mesh federation,
so IdPs and SPs communicate directly, without intervention by a central hub.
We need two additional parties:

pseudonym facility (PF) PPs are specialized into EPs by the pseudonym
facility (PF).

key management authority (KMA) Each party needs certain keys. These
parties include the PF, IdPs, and SPs. These keys are generated and
distributed by the key management authority (KMA). It is not active
during normal operation, only at the start, and when a new IdP or SP is
connected to the system.

Fig. 6.1 gives a schematic overview of this model. The IdP generates a PP
for its users. When a user (e.g. User11) wants to use a service (e.g. SP2), these
steps are taken:

1. The user logs into his IdP (IdP1).

31

Figure 6.1: The basic polymorphic pseudonym model

32

2. The IdP generates the PP for the user (PP11), or looks up a previously
generated one.

3. The IdP contacts the PF, passing the PP for the user, and the name of
the SP the user wants to use (EntityID2).

4. The PF will transform the PP into the EP for the user, for the specified
SP (EP11→2), and return this to the IdP.

5. The IdP places this EP in the authentication statement it sends to the
SP.

6. The SP decrypts the EP, and gets the FP for the user at that SP.

6.2 Properties

The different types of pseudonyms have some interesting properties:

• PP and EP look different each time they are generated. This means that
no information can be retrieved from only a PP or an EP. It is not possible
to see from the PP or EP that different sessions are for the same user.

• PP and EP can be randomized. This means that a previously generated
PP or EP can be changed, such that it looks different and is unlinkable to
the first version of the PP or EP. No keys or extra information are needed
to perform randomization. Both PP and EP can therefore be stored, and
reused, without making the reuse linkable to earlier usages, as long as they
are randomized before reuse.

• The FP is the same every time for the same user at the same service
provider.

• The FP is different for different users.

• The FP is different for different service providers.

• Only the SP for which an EP was created can decrypt it into the correct
FP.

• To create the PP, a globally unique user ID is needed. This can be some-
thing like username@example.com, for IdP example.com.

• If a user ID is used that does not depend on the IdP, like a social security
number, the user can use different IdPs and still be identified as the same
user by SPs.

• All three pseudonym forms do not reveal information about the user ID
that is used. This means that if social security numbers are used, only the
IdP is processing the social security number.

33

Figure 6.2: Polymorphic pseudonyms in a hub-and-spoke federation

6.3 Use Cases

6.3.1 Full mesh

We have already seen how polymorphic pseudonyms can be used in a full mesh
federation (Fig. 6.1).

6.3.2 Hub-and-spoke

In a hub-and-spoke federation we can use polymorphic pseudonyms in almost
the same way as in full mesh federations. The hub then just passes on what it
receives, as shown in Fig. 6.2.

It is also possible to let the hub perform the task of the PF (Fig. 6.3). In
this case, the IdP sends the PP to the hub, and the hub specializes it into an
EP for the SP the user wants to use. The IdP does not need to worry about
which SP is used, and does not even have to know about this. The hub only
sees PPs and EPs. This does not tell him anything about the user, protecting
the privacy of the user. An important requirement for this to work is that the
hub may not be a service provider itself. If it is, the hub can specialize the PPs
it receives for himself, decrypt the resulting EP into the FP which will always

34

Figure 6.3: Hub-and-spoke federation with the pseudonym facility at the hub

35

be the same for the same user. The hub can then see which sessions are from
the same user.

This way, polymorphic pseudonyms provide a different approach to achieve
AR1 than [24], which we have described in Section 5.1. With polymorphic
pseudonyms we do not need a CA to give out one-time certificates for each
session. We do need a KMA, but it is only used when new parties are connected
to the federation. The hub does need to perform more work than in [24], since
it must specialize the PPs.

36

Chapter 7

Cryptography of
Polymorphic Pseudonyms

7.1 ElGamal

Polymorphic pseudonyms are based on the ElGamal public key cryptosystem [19].
ElGamal encryptions are performed over a multiplicative group G, of prime or-
der q, with generator g. The Decision Diffie-Hellman (DDH) problem must be
hard in G. This means that there is no efficient algorithm for distinguishing
(ga, gb, gab) from (ga, gb, gc) for random a, b, c ∈ G [7].

The DDH assumption is stronger than the Computational Diffie-Hellman
(CDH) assumption, which states that the Diffie-Helman function DHg(ga, gb) =
gab is hard to compute. Indeed, if we have some (ga, gb, gc), and we can compute
DHg(ga, gb), than we can easily check whether gc = DHg(ga, gb), and thus
whether (ga, gb, gc) = (ga, gb, gab).

The CDH assumption in turn is stronger than the Discrete Logarithm (DL)
assumption, which states that it is hard to compute a for a given ga. We can
easily see this is the case, since if we were able to compute (a, b) for given
(ga, gb), we can compute gab = DHg(ga, gb).

In this document we let G = 〈g〉 be a multiplicative group of prime order q
generated by a generator element g. By GF (q) we denote the Galois field of the
integers modulo q. For practical implementations one can use a group of points
G on an elliptic curve. There are standard curves that can be used, such as the
Brainpool curves [37] and the NIST curves [41].

An ElGamal key pair consists of a random x ∈ GF (q), and y = gx ∈ G,
where x is the private key, and y the public key. To encrypt a message m,
with public key y, one takes a random k ∈ GF (q), and calculates the tuple
(gk, yk ·m).

For polymorphic pseudonyms, we will not use these tuples, but triples which
also include the public key that was used. An ElGamal encryption of message
m, with public key y, and random k is then:

EG(m, y, k) = (gk, yk ·m, y) (7.1)

ElGamal is a partially homomorphic encryption scheme. This means that we

37

can perform certain operations on encrypted data, without having to decrypt
it, or having to use the decryption key in any way. If we have an ElGamal
encryption EG(m, y, k) = (A,B,C), we can perform these operations [54]:

(Az, Bz, C) = EG(mz, y, k · z) (7.2)

(Az, B,C(z−1)) = EG(m, y(z
−1), k · z) (7.3)

(A · gz, B · Cz, C) = EG(m, y, k + z) (7.4)

Equation 7.2 allows us to change the encrypted message. Equation 7.3 allows
us to change the public key a message is encrypted with. Finally, equation 7.4
allows us to randomize an encrypted message: a different random value is used,
so it looks different from the outside, but the decryption will stay the same.

7.2 Other cryptographic primitives

For polymorphic pseudonyms, we need a few more primitives. When encrypting
data using ElGamal, the data should be represented as an element of G. For
elliptic curve ElGamal, that means it should be represented as a point on the
curve. For polymorphic pseudonyms we do not need to get the original data
back, so a one way function mapping data to elements of G is sufficient. So a
hash function I : {0, 1}∗ → G is needed, that maps bit arrays into the multi-
plicative group G used for the ElGamal encryptions. Secondly, a key derivation
functionM : {0, 1}n×{0, 1}∗ → GF (q) is needed, which maps an n bit key and
a bit array to GF (q). This function is used to derive private keys and secret
exponents from the name of an SP. The key that is used by this function makes
sure that the derived values will be unkown to other parties.

7.3 System Setup

The involved parties first have to agree on the choices for the primitives that are
used in the system. They need to agree on a multiplicative group G, a generator
g of this group, a secure hash function I and a key derivation function M.

Then, several keys have to be generated, at the KMA. A public key pair
is generated, with private key xK ∈R GF (q) and public key yK = gxK . Here
x ∈R S denotes an element x that is taken randomly from set S. The KMA
furthermore chooses a key derivation function (KDF) key DK at random. We
call this key DK the ElGamal master key.

All registered parties, so all SPs and IdPs need to be associated securely
with a unique name N . The KMA generates a private key for these parties,
derived from the system private key xK . The key DK ensures that the derived
private keys remain secret to other parties.

xN =
xK

M(DK ,N)
(7.5)

This means that for the public key the following will hold:

yN = y
(M(DK ,N)−1)
K (7.6)

38

Each registered party chooses a random pseudonymization closing key cN ∈
GF (q). This key is generated by the party itself, and is therefore out of the
control of the KMA. The closing key ensures that the pseudonym facility cannot
generate FPs for known user IDs, and compare them to FPs it learned in some
way. Furthermore, it ensures that the pseudonym facility cannot transform FPs
in FPs for different SPs.

The pseudonym facility (PF) chooses a KDF key DP at random. This key
is called the pseudonymization master key. Parties that do not have DP cannot
generate FPs or EPs by themselves. Parties can therefore not compare FPs
they know to FPs they generated themselves for known user IDs.

The system public key yK is reliably provided to the IdPs. The private key
xN for all parties is securely distributed to the party it belongs to. The parties
already have the closing key cN . The ElGamal master key DK is securely
distributed to the PF. The PF already has pseudonymization master key DP .

7.4 Pseudonym Generation

To generate a polymorphic pseudonym (PP) for a user, a unique user ID u is
needed. The PP for a user is then an ElGamal encryption of the hashed user
ID with the system public key yK :

PP = EG(I(u), yK , k) = (gk, ykK · I(u), yK) (7.7)

for some k ∈R GF (q)

7.5 Specialization

The PF can specialize the PP to form an EP. This is done in three steps. In the
first step the content of the encrypted message is changed, using equation 7.2.
Let the PP be: PP = EG(I(u), yK , k) = (A1, A2, A3). We then calculate:

(B1, B2, B3) = (A
M(DP ,N)
1 , A

M(DP ,N)
2 , A3) (7.8)

Then we have, with k′ = k · M(DP ,N):

(B1, B2, B3) = EG(I(u)M(DP ,N), yK , k′) (7.9)

In the second step, we change the public key of the encryption to that of the
party the EP is for (equation 7.3):

(C1, C2, C3) = (B
M(DK ,N)
1 , B2, B

(M(DP ,N)−1)
3) (7.10)

Because of how the private keys for the parties are derived, we now have, by
equation 7.6, with k′′ = k′ · M(DK ,N):

(C1, C2, C3) = EG(I(u)M(DP ,N), y
(M(DK ,N)−1)
K , k′′)

= EG(I(u)M(DP ,N), yN , k
′′)

(7.11)

The final step is a randomization, using equation 7.4, with l ∈R GF (q):

(D1, D2, D3) = (C1 · gl, C2 · Cl
3, C3) (7.12)

39

We now have

(D1, D2, D3) = EG(I(u)M(DP ,N), yN , k
′′ + l) (7.13)

This is the EP.

7.6 Decryption

The receiving party first performs a normal ElGamal decryption. If the received
EP is (D1, D2, D3) = EG(I(u)M(DP ,N), yN , k), for some k, the party calculates:

E = D2/D
xN
1 (7.14)

We now have:
E = I(u)M(DP ,N) (7.15)

The party uses his pseudonimization closing key cN :

F = EcN (7.16)

To get the final pseudonym this is hashed with a secure hash function H:

FP = H(F) (7.17)

We now have:
FP = H(I(u)M(DP ,N)·cN) (7.18)

If we only had I(u)M(DP ,N) as the FP, the pseudonym facility (PF) would
be able to calculate the following:

FP−M(DP ,N) = I(u) (7.19)

This can be used to relate FPs to known user IDs. The pseudonym facility could
also perform this step:

I(u)M(DP ,N ′) (7.20)

This means the pseudonym facility would be able to transform FPs from one
SP into FPs from another SP.

This manipulation by the pseudonym facility is prevented by using a hash
function. But if only a hash function would be used, the pseudonym facility
would still be able to calculate FPs for known user IDs, and thus learn how a
user is identified at an SP. The closing key prevents this.

7.7 Randomization

Based on equation 7.4, we can randomize PPs and EPs:

(B1, B2, B3) = (A1 · gl, A2 ·Al
3, A3) (7.21)

where l ∈R GF (q).
We have already seen this in the final step of specialization in equation 7.12.

This operation can, however, be applied in the same way to PPs and previously
specialized and randomized EPs.

40

7.8 Key Compromise

There are five different types of keys that must remain secret. For different
keys, the consequences are different when they do become compromised.

7.8.1 KMA

Keys: xK , DK

PPs are ElGamal encryptions with the public key belonging to private key
xK . When xK is compromised, an attacker can therefore decrypt PPs. This
will give him I(u). This allows him to link sessions of the same user, or to check
whether they belong to a user with known user ID u.

Private keys xN for SPs are derived from xK . Replacing xK therefore entails
also replacing all private keys for SPs. FPs do not change, since they do not
depend on the public key pairs that were used, as can be seen in Equation 7.18.

When DK is compromised, an attacker can perform the step from Equa-
tion 7.10. This means that he can change the encryption of PPs into one with
the public key of a chosen SP. If that is an SP he controls himself, this means
he can effectively decrypt PPs, giving him I(u), just as for a compromise of xK .

Private keys xN for SPs are also derived from DK . Replacing DK therefore
entails also replacing all private keys for SPs. FPs do not change, since they do
not depend on DK , as can be seen in Equation 7.18. When DK is replaced, it
should also be transported to the PF.

A compromise of the KMA may leak both xK and DK . An attacker having
both keys can derive private keys for any SP, using Equation 7.5. He can use
this to decrypt EPs. This allows him to link different randomizations of an EP
for the same user. It does not give hime the FP, since this also depends on the
closing key cN .

7.8.2 PF

Keys: DP , DK

When an SP decrypts an EP it receives, it has I(u)M(DP ,N) (Equation 7.15).
When DP is compromised, and is known to an SP, it can get I(u). This allows
him to link a pseudonym to a user with a known u. If u is a social security
number all possible values for u can be checked.

When DP is replaced, no other keys need to be replaced. However, since the
FP depends on it (Equation 7.18), all FPs will change, and SPs cannot link the
new pseudonyms of users with the old ones.

We have seen in the previous section what the consequences are for leaking
DK . When both DP and DK are compromised, an attacker can specialize PPs
for any SP.

7.8.3 SP

Keys: cN , xN
When the closing key from an SP is known to the pseudonym facility, the

pseudonym facility can create FPs for any user with known u for the SP, and
see whether leaked FPs belong to users with known u.

41

When an SP wants to renew cN , this will change the FPs. The SP can use
the deprecated cN next to the new one for a period of time, to relate old FPs
with new FPs.

When xN is compromised, an attacker can decrypt EPs that were targeted
at the SP. This gives the attacker I(u)M(DP ,N).

xN is derived from xK , DK and N . To be able to replace xN we can append
a version number to N . The PF must know which version to use. When a new
xN is needed, the KMA can generate a new key with the new version appended
to N . The pseudonym facility must start to use the new version number from
then on. The FPs will not change.

7.8.4 IdP

The IdP only uses public key yK , so there is no risk of key compromise here.

42

Chapter 8

Design Considerations

When deciding whether polymorphic pseudonyms are a good solution, and how
exactly they are to be used, there are some considerations that come into play.
These considerations are different for SURFconext and Kennisnet.

8.1 Dropping the database

This consideration is only applicable to SURFconext. Right now, SURFconext
has a database that maps users from the connected organizations to pseudonyms
for the SPs. They are interested in a solution where they do not need such a
database.

8.2 Configuration of connected parties

For polymorphic pseudonyms to work, some changes have to be made to the
IdPs and SPs. The software that is used by these parties should allow these
changes. Furthermore, it should not take too much effort to make the required
changes. In the Kennisnet use case, plans are already made to introduce a
numbering facility, which requires changes for the connected parties. Since
changes already need to be made, it is less of a problem to also make changes
related to polymorphic pseudonyms. For SURFnet it is more difficult to get
connected parties on board, and therefore the configuration should be as easy
as possible.

8.3 Software maintenance

The products that are currently used by the IdPs and SPs are mostly not de-
veloped and maintained by SURFnet and Kennisnet. If polymorphic pseud-
onyms are to be used, it is not to be expected that these products will start to
support this, and therefore software may need to be developed by SURFnet and
Kennisnet. This also brings the extra burden of maintaining this software. This
has to be taken into consideration when decisions about the use of polymorphic
pseudonyms are made.

43

8.4 Independent facilities

For polymorphic pseudonyms a pseudonym facility (PF) is needed, as wel as a
key management authority (KMA). These should at least be logically seperated
from the operations performed by SURFconext and Kennisnet. Organizational
separation provides more guarantees about the privacy and security of the sys-
tem. It has to be decided whether this is feasible. For the Kennisnet use case a
numbering facility is already being set up as an independent facility. The func-
tionality of the numbering facility can be adapted to the use of polymorphic
pseudonyms.

8.5 Consent

In the current situation, both in the Entree federation and in SURFconext,
the hub can ask the user for consent to share certain attributes with an SP.
Consent can be remembered, such that the user does not have to give consent
every time he visits the same SP. This functionality should still be possible when
polymorphic pseudonyms are used.

44

Chapter 9

Implementation

An implementation of polymorphic pseudonyms was created. There are several
roles which had to be implemented: PF, KMA, hub, IdP and SP. In a federation,
there are several IdPs and SPs, that are not all using the same software. We
want to know how difficult it is for IdPs and SPs to start using polymorphic
pseudonyms. Therefore plugins were created for several often used systems:

• SimpleSAMLphp, which works both as IdP and SP, written in PHP.

• Shibboleth SP, which is SP software written in C++.

• Shibboleth IdP, which is the IdP counterpart of Shibboleth SP, written in
Java.

• Microsoft AD FS, a closed source product, which can act as IdP. Plugins
are written using .NET.

Since we need to be able to use polymorphic pseudonyms in different languages,
different libraries were created for those different languages. A Java library was
created using the standard Bouncy Castle crypto library [36]. A .NET library
was written in C#, which uses the .NET version of BouncyCastle. This library
only implements IdP functionality, since that is all we need for the AD FS plugin.
A C library is written based on the standard OpenSSL crypto library [45]. This
can be used from C++. Also an extension for PHP was written based on this
C library. All source code is available online1.

9.1 Primitive Choices

For this implementation we used Elliptic Curve ElGamal. The used curve is
brainpoolP320r1 [37]. The hash function is SHA-256 [52]. These hashes are
embedded in a point on the curve by taking the standard numerical encoding
of the hash, and using that as the x-value for the point. An according y is
calculated, if it exists. In that case we have a point on the curve. If not, we
append a byte to the hash and try again. We keep incrementing this byte until
a point on the curve is found. As key derivation function we use the HMAC [35]
based on SHA-256.

1https://github.com/polymorphic-pseudonyms

45

https://github.com/polymorphic-pseudonyms

9.2 SimpleSAMLphp

In SimpleSAMLphp it is possible to create authentication processing filters [50].
For the IdP side, the documentation describes this as follows:

“Authentication processing filters postprocess authentication inform-
ation received from authentication sources. It is possible to use this
for additional authentication checks, requesting the user’s consent
before delivering attributes about the user, modifying the user’s at-
tributes, and other things which should be performed before returning
the user to the service provider he came from.” [50]

These filters can also be used at the SP side. We can use authentication pro-
cessing filter to perform the necessary pre- and post-processing for polymorphic
pseudonyms. Four filters were created:

PseudonymEncrypt To be used in an IdP. This filter creates a polymorphic
pseudonym from an input attribute, which is specified in the plugin con-
figuration.

PseudonymSpecializeRemote To be used in an IdP or hub. This filter con-
tacts a PF to perform the specialization. If a RequesterID is present
(Section 3.1.6), which is the case if the actual SP that should receive the
EP is behind a hub, that ID is used to specialize the PP.

PseudonymSpecializeLocal To be used in the hub that also acts as PF. This
filter specializes a PP into an EP for the SP SimpleSAMLphp received an
authentication request from. It uses the RequesterID if present, just like
PseudonymSpecializeRemote.

PseudonymDecrypt To be used in an SP. This filter decrypts an EP that is
in an attribute specfied by the plugin configuration, and stores the FP in
a specified attribute.

These filters were used in different set-ups. Figure 9.1a shows how the filters
can be used in a full mesh federation. Both generation of the PP and requesting
an EP from the PF are performed by the IdP. We can also do this when there
is a hub, as shown in Figure 9.1b. Now the RequesterID is used, since the IdP
sees the hub as being the SP.

If we want the pseudonym specialization to be performed at the hub, we have
two options. We can have the PF perform the actual specialization, as seen in
Figure 9.1c, or the hub performs the specialization itself, which is depicted in
Figure 9.1d.

In these described set-ups, the IdP, the hub and the SP were all instances
of SimpleSAMLphp. They were also used in combination with the products
described below. As long as the same types of pseudonym are used at the same
places, this works without problem.

9.3 Shibboleth SP

Shibboleth SP provides plugin functionality as is demonstrated in a skeleton
plugin project [10]. In this plugin we can extend the AttributeResolver class, to

46

(a) A full mesh federation

(b) The hub passes on the EP it receives

(c) Pseudonym specialization at the hub, performed by the PF

(d) Pseudonym specialization is performed by the hub

Figure 9.1: Set-ups for Authentication Processing Filters in SimpleSAMLphp

47

Figure 9.2: Polymorphic pseudonyms in Shibboleth SP

create our own attribute resolver. An attribute resolver can be used to obtain
attributes from different locations than what is in the received SAML response,
or to perform transformations on received attributes [11]. We want to do the
latter: the EP we receive should be transformed into an FP.

A plugin was created that does exactly this. The attribute resolver can be
configured with a source attribute containing the EP, a destination attribute in
which the FP should be placed, and the private key and closing key of the SP.
The C library described above is used to perform the decryption of the EP.

Figure 9.2 shows how this is used. In Shibboleth SP we have attribute ex-
tractors to place the NameID or attributes from the SAML response into attrib-
utes that can be further used by the SP. These extractors are part of Shibboleth
SP, and not of our plugin. An attribute extractor is configured to place the EP,
which can be the NameID or the value of a normal attribute, in an internal at-
tribute we also call EP. The plugin provides a PolyPseudAttributeResolver,
which is configured to use the EP internal attribute as input, and places the FP
in an other internal attribute.

9.4 Shibboleth IdP

Little documentation is available about creating a plugin for Shibboleth IdP.
An example is given by [20] of how we can extend certain classes from Shib-
boleth IdP in a plugin. This way, we can extend the net.shibboleth.idp.

attribute.resolver.AbstractDataConnector class, to create our own data
connector [55]. A data connector can produce IdPAttribute objects, which the
IdP administrator can configure to be sent to the SP.

Shibboleth IdP has some built in data connectors. One of those is the
RelationalDatabaseConnector, which can load data from a relational data-
base, using a specified SQL query.

We can make use of this built in data connector, if we use a different approach
than for the SimpleSAMLphp plugin. This is depicted in Figure 9.2. We now
assume that the IdP knows beforehand which SPs can be used by the users, and
a database is prepopulated with PPs and EPs for all users for those SPs. The
EP loader fills the database. For each user and for each SP it checks whether
there is already a PP in the database. If not, it is generated and stored. Then
an EP is requested for the user and SP. This is then stored in the database.

In Shibboleth IdP, the EP for the user, for the SP he wants to use, is loaded

48

Figure 9.3: Polymorphic pseudonyms in Shibboleth IdP

from the database using a RelationalDatabaseConnector. The PolyPseud-

DataConnector, which is part of our plugin, randomizes the EP.
In the model where PPs are specialized at the hub, it is also possible to only

store PPs in the database, and use these as input for our plugin.
It is possible to move more functionality into the plugin, so no prepopulated

database is needed.
In Shibboleth IdP it is unfortunately not possible to get access to a Reques-

terID of an authentication request (Section 3.1.6). This means that if a hub
or proxy is present, we cannot send EPs for the SP behind the proxy, since
in our software we have no way of knowing which SP that is. This means we
must either have a full mesh federation (similar to Figure 9.1a), or specialization
should be performed at the hub (similar to Figure 9.1c or 9.1d).

9.5 Microsoft AD FS

An often used system is Microsoft Active Directory Federation Services (AD
FS), both by SPs and IdPs. This is a closed source product, so it is not evident
that the necessary pre- and post-processing can be added. However, it is very
well possible. AD FS passes attributes through a claims engine. This engine uses
Attribute Stores. A common attribute store is Active Directory, in which the
users and their attributes are stored. It is possible to write a custom attribute
store, by implementing the IAttributeStore interface in a .NET class [39].
In this custom attribute store we can perform our operations. The system
administrator can define claim rules. A claim rule can be used to tell the claims
engine to use our custom attribute store. Our set-up can be seen in Figure 9.4.

An attribute store was created which can create a PP for a user, and request
an EP for a PP and a specific SP from a PF. PPs and EPs are stored in a
database, so they are only generated or requested when no PP can be found in
the database for the user, or no EP can be found for the combination of user
and SP.

49

Figure 9.4: Polymorphic pseudonyms in AD FS

The current version of AD FS does not support the scoping element in
authentication requests. It responds with an error when the scoping element is
present, so when a request is send to an AD FS IdP, the scoping element cannot
even be present. The upcoming version has some support for scoping, but it is
not yet clear whether it will be possible to get access to the RequesterID inside
a custom attribute store. As with Shibboleth IdP, this means that we must
have a full mesh federation (Figure 9.1a), or perform the specialization at the
hub (Figure 9.1c or 9.1d). The upcoming version may allow specialization at
the IdP in a hub-and-spoke federation (Figure 9.1b).

50

Chapter 10

Polymorphic Attributes

We have been looking at pseudonyms as a way to improve privacy, but all that
is negated if there are also attributes being sent that are personally identifiable
or contain otherwise personal information. In a similar way to polymorphic
pseudonyms, we can also create polymorphic attributes. This way some of the
privacy problems of sending attributes can be solved.

The contents of an attribute can be put in a polymorphic attribute. Without
a key the original contents cannot be inferred from this polymorphic attribute.
The polymorphic attribute can be specialized into an encrypted attribute for a
specific SP. Only that SP can decrypt the encrypted attribute with its private
key. He will get the original attribute value back. This is different from poly-
morphic pseudonyms where not the original user ID, but a pseudonym for the
user at that specific SP is retreived.

10.1 Opacity at the Hub

We have seen two ways to use polymorphic pseudonyms in a hub-and-spoke
federation. In the first variation the hub receives encrypted pseudonyms, which
it can just pass on to the SP. In the same way it can also receive encrypted
attributes which it just passes on. The hub cannot infer the content of the
attributes.

The second way is that the hub receives polymorphic pseudonyms which it
specializes for the SP the user wants to access. This can also be done with
polymorphic attributes. The hub receives polymorphic attributes. It cannot
infer the content of the attributes. It can perform filtering based on attribute
names, so it only sends those attributes to the SP that are needed by the SP.
It specializes the polymorphic attributes it wants to pass on into encrypted
attributes, which can be decrypted by the receiving SP, and only by that SP.

10.2 Attribute Provider

With polymorphic attributes, it is possible to create an attribute provider that
can provide attributes without being able to see the content of those attributes.
Some party with information about a user can create a polymorphic attribute

51

containing that information. This polymorphic attribute is stored at the at-
tribute provider. When an SP makes a request for the attribute, the attribute
provider must decide whether the SP is allowed to receive the attribute. If that
is the case, he specializes the polymorphic attribute into an encrypted attribute
for that SP, and sends this encrypted attribute to the SP.

10.3 Cryptography of Polymorphic Attributes

The cryptography of polymorphic attributes is very similar to that of poly-
morphic pseudonyms, as described in Chapter 7. We need a new primitive:
instead of the secure hashing function I, we need a function E : {0, 1}∗ → G
that embeds bit arrays into the multiplicative group G which has an inverse
E−1 : G→ {0, 1}∗, so we can get the original value back. Other than that, cre-
ating polymorphic attributes is the same as creating polymorphic pseudonyms.
A polymorphic attribute PA for value v is an ElGamal encryption with the
system public key yK , using random k:

PA = EG(E(v), yK , k) = (gk, ykK · E(u), yK) (10.1)

We have seen that polymorphic pseudonym specialization consists of three
steps:

1. The content of the encrypted message is changed

2. We change the public key of the encryption to that of the party the EP is
for

3. The EP is randomized

For attributes, we do not want the final value to be different for each SP. It
should be the same value everywhere: the original content of the attribute.
Therefore we skip the first step for polymorphic attributes.

Let the polymorphic attribute be: PA = EG(I(u), yK , k) = (A1, A2, A3).
We calculate (by equation 7.3):

(B1, B2, B3) = (A
M(DK ,N)
1 , A2, A

(M(DP ,N)−1)
3) (10.2)

We now have, by equation 7.6: (B1, B2, B3) = EG(E(v), y
(M(DK ,N)−1)
K , k) =

EG(E(v), yN , k
′), with k′ = k · M(DP ,N)

Then we perform randomization, using equation 7.4:

(C1, C2, C3) = (B1 · gl, B2 ·Bl
3, B3) (10.3)

We now have (C1, C2, C3) = EG(E(v), yN , k
′+l). This is the encrypted attribute.

Decryption is done by performing a standard ElGamal decryption:

D = C2/C
xN
1 (10.4)

We now have D = E(v).
The final step is to get the original value back from it’s embedded version:

E = E−1(D) (10.5)

We now have E = E−1(E(v)) = v
Similar to polymorphic pseudonyms, with polymorphic attributes the ran-

domization step from equation 10.3 can also be performed on polymorphic at-
tributes, and on previously specialized and randomized encrypted attributes.

52

10.3.1 Multiple Keypairs

The public key pair (xK , yK) used for polymorphic attributes should not be
the same as the one used for polymorphic pseudonyms. If they are the same,
someone may be able to let the PF specialize a PP as if it were a polymorphic
attribute. When the recipient decrypts the resulting encrypted attribute, he
would get I(u) instead of a pseudonym for the user, which deanonimizes the
user.

It is also possible to not only use different key pairs for pseudonyms and
attributes, but also for different attribute groups. Examples of attribute groups
are contact information, physical address, and payment details. Another way to
group attributes is in levels of privacy sensitivity. By using different key pairs
for different attribute groups, we can generate key pairs for SPs only for certain
attribute groups, controlling what types of information SPs can get access to.

10.3.2 Hybrid encryption

For longer values it may not be possible to embed them into the multiplicative
group that is used in a reversible way. It is common to use hybrid encryption,
in which the value itself is encrypted symmetrically, and only the key for this
symmetric encryption is encrypted asymetrically [30, Section 10.3]. We would
like to be able to do that as well with polymorphic attributes.

The first way to do this, is that we generate a random symmetric key, which
we use to encrypt the attribute value. This symmetric key is then encrypted
with polymorphic encryption, as we have described above. In this case we can
only randomize the encrypted key. The symmetrically encrypted attribute value
will stay the same. This is enough to achieve opacity at the hub. If the attributes
are encrypted with a new random symmetric key for each session, the sessions
can not be linked to each other. We can link what is sent from the IdP to the
hub, to what is sent from the hub to the SP for one session. This does however
not reveal much information about the users.

The attribute provider we described only stores encrypted values, and can
therefore not perform encryption with a different symmetric key each time an
attribute is requested. Different requests for attributes of the same user can
then be linked to each other. If we want to randomize the encrypted values,
we generate a new random symmetric key, and use that to encrypt the already
encrypted value again. If we are randomizing an already specialized encrypted
attribute, we can ElGamal encrypt the new symmetric key with the public
key of the receiving party. If a polymorphic attribute is randomized, we use
polymorphic encryption as described above. This encrypted symmetric key will
have to be sent to the receiving party, as well as all the previously used keys.
So each randomization adds an extra encrypted key that has to be sent.

10.4 Signatures

In order for the SP to trust the attributes it receives, SAML specifies the use of
signatures, as we have seen in Section 3.1.7. When we sign polymorphic attrib-
utes, or assertions or messages that include polymorphic attributes, signatures
will no longer be correct after attributes are specialized or randomized. This

53

means that one still has to think about how to use signatures when polymorphic
attributes are used.

54

Chapter 11

Security and privacy of
polymorphic pseudonyms

11.1 Cryptographic properties

Some cryptographic properties of polymorphic pseudonyms are given by [54] for
the education sector use case. When generalized to identity federations, we get
the proposition below.

Proposition 11.1. When the group G has the required cryptographic properties,
the KMA, PF and IdPs do not deviate from the described protocols, and parties
always use fresh copies of PPs and EPs, then we have the following cryptographic
properties:

CP1 SPs are not able to link pseudonyms to the user ID that was used to gen-
erate the pseudonym.

CP2 Cooperating SPs are not able to link their user’s pseudonyms.

CP3 IdPs are not able to calculate pseudonyms of users at other parties, link
those pseudonyms to user ID’s, or link pseudonyms at different parties.

CP4 The PF does not get information about the activities of users, and is not
able to link user pseudonyms with user ID’s, or link pseudonyms at dif-
ferent parties.

CP5 The KMA does not get information about the activities of users, and is
not able to link user pseudonyms with user ID’s, or link pseudonyms at
different parties.

CP6 Eavesdroppers are not able to link user information exchanges based on
polymorphic or encrypted pseudonyms.

11.2 Trust

The use of polymorphic pseudonyms and encryption does not change anything
about the issues in Section 3.2.1. The party that performs specialization of PPs,

55

either by itself or by requesting EPs from the PF should be a trusted party. It
needs to be trusted to not specialize them for a different receiver.

11.3 Usability

Polymorphic pseudonyms and attributes work at a technical level which is not
visible to the user. The use specifically of polymorphic pseudonyms and attrib-
utes to reach certain privacy objectives does therefore not influence usability.
The privacy objectives that can be reached, however, make certain usability
features harder to implement, especially around consent.

As we have seen in Section 3.2.3, when we encrypt data in such a way that the
hub cannot access it, and we want the hub to ask for consent, it is not possible
to let the hub show the content of the attributes that are to be released. Using
iframes or JavaScript, however, it is possible to let the user agent load attribute
values from the IdP. The hub decides which attributes are actually shown on
the consent form.

In Section 8.5 we stated that we want to be able to remember consent.
We have also seen in Section 3.2.3 that not being able to link sessions makes it
impossible to remember consent. The randomization of PPs and EPs makes sure
that sessions are unlinkable, and therefore we cannot easily remember consent.

11.3.1 Consent Remembering Service

We also stated that if we do allow linking sessions of the same user and the same
SP, that it can be possible to remember consent. It is possible to do this with
a consent remembering service, and a special version of the EP. In Section 7.5
we described three steps to specialize a PP:

1. Changing the contents

2. Changing the encryption into one with a different public key

3. Randomizing

For the special EP we change the contents in the first step using the name of
the targeted SP. A different pseudonymization master key DP should be used,
to make sure the consent remembering service will receive a different FP from
the one received by the SP. In the second step we change the encryption using
the name of the consent remembering service, so it will be an encryption with
its public key.

Since the special EP is an encryption with the public key of the consent
remembering service, it can decrypt it to get a special FP. This FP will be
different for each SP the user wants to access, so the consent remembering
service cannot link sessions for different SPs. It will be the same each time for
the same SP, so the service can link those sessions. Because a different DP is
used, the special FP will be different from the FP at the SP.

The hub can now do the following when deciding whether to ask consent or
not:

1. Request a special EP from the pseudonym facility for the PP it received
and the SP the user wants to access

56

Figure 11.1: Working of the consent remembering service

2. Ask the consent remembering service whether consent was remembered
for that special EP

(a) The consent remembering service decrypts the special EP

(b) The consent remembering service checks in a database whether con-
sent should be remembered for the special FP

3. If not: continue with the following steps. Otherwise: go to step 8

4. Ask the user for consent

5. If not given: stop. Otherwise continue with these steps

6. Ask if consent should be remembered (this can be combined with step 4)

7. If not: go to step 8. Otherwise: tell the consent remembering service to
store consent for the special EP

(a) The consent remembering service decrypts the special EP

(b) The consent remembering service stores in a database that consent
should be remembered for the special FP

8. release attributes

This is displayed in Figure 11.1.

11.4 Privacy

In Section 3.2.2 we introduced architectural requirements from [23] for privacy
by design. In Chapter 4 we saw that not all of these requirements were met in
the SURFconext and Kennisnet use cases. We will now see how polymorphic

57

pseudonyms and polymorphic attributes can help meeting the architectural re-
quirements. 3 denotes an architectual requirement that can be met using poly-
morphic pseudonyms, 7 denotes a requirement that is not met.

AR1 Limited observability. We have seen that this requirement is at odds
with prevention of man-in-the-browser attacks (Section 3.2.1). If desired
however, it can be accomplished by using polymorphic pseudonyms with
a hub. The hub must not pass a RequesterID or other information about
which SP is used to the IdP, otherwise, if the IdP knows who the user is,
he can learn which services are used by a user. The IdP sends the PP to
the hub, without knowing for which SP it is going to be used. The hub
cannot know from this PP which user is accessing a certain service, but
he can specialize it and pass the EP to the SP.

With polymorphic pseudonyms it is also possible to have a solution in
which the IdP does not know who the user is, which we will see in Sec-
tion 11.4.1 3

AR2 Limited linkability. FPs are different and unlinkable for different SPs.
No party except the SP knows the FP for a user. So the IdP, hub or SPs
with which constrained linking is allowed all do not know this FP. Limited
linkability can therefore be implemented with polymorphic pseudonyms 3

AR3 Prevent the unauthorized aggregation of attributes by central
intermediaries such as gateways, brokers, etc. With end-to-end
encryption, attribute contents can be shielded from intermediaries. We
can use polymorphic attributes to do this, which will have to be specialized
by a hub. That way we can use end-to-end encryption while retaining
AR1 3

AR4 Constrained linking. By passing the EP of a user at one SP to another
SP, the second SP can communicate to the first one about the user. This
way constrained linking can be achieved 3

AR5 Consent handling. If user consent is handled at the IdP nothing changes.
When consent is handled at the hub, and we use polymorphic encryption,
the hub cannot show the contents of the attributes that will be shared,
only their names. With a consent remembering service, we can still re-
member consent 3

AR6 No supreme instance. The KMA must be a separate entity, without
access to attributes and transaction data 3

AR7 Minimize the release of attributes. If polymorphic attributes are
used, the IdP can send all attributes it wants to a hub, without knowing
or caring about the SP they will be sent to, for example to accomplish
AR1. The hub can filter attributes based on their name, so the release
of attributes to the SP is still minimized. At the same time, no attributes
are released to the hub, since they are encrypted 3

AR8 Uniqueness of identification. If the user ID that is used as input for the
generation of the PP is the same each time, the FP will also be the same
for an SP. Furthermore, if the group G that is used for the cryptographic

58

operations is large enough, the FP can be assumed to be unique for a
user 3

11.4.1 Polymorphic Pseudonym Card Application

We have seen that there are security problems when we want the IdP to comply
with AR1. It cannot ask for consent, and use this to prevent man-in-the-
browser attacks. We do not have those problems if the IdP does not know who
the user is. Then the IdP can do all those things without violating AR1. A
polymorphic pseudonym card application (PPCA), as described by [46], allows
an IdP to store the user’s PP on a smartcard. The card can randomize the
PP. The IdP can first issue a PP to the card. The user can at a later time use
this with the same IdP, but since the PP is randomized, the IdP cannot link
this usage to earlier uses or to the issuance of the PP. This allows the user to
authenticate while the IdP does not know who the user is. Using techniques
similar to those used by the German eID card [8], the IdP can check whether
the card is valid, e.g. it is not revoked.

59

Chapter 12

Using conventional
cryptography

Some of the objectives of polymorphic pseudonyms can also be reached with
conventional cryptographic techniques. We will take a look at these objectives
and how they can be solved with conventional methods. We will also see where
they fall short.

12.1 Prevent the unauthorized aggregation of
attributes by central intermediaries such as
gateways, brokers, etc. (AR3)

End-to-end encryption can make sure intermediaries cannot access attribute
values. The IdP encrypts the user data with the public key of the SP. A hub or
other intermediary can only pass on the data it receives.

12.2 Limited linkability (AR2)

Targeted identifiers are a well known technique to limit linkability. They can be
randomly generated and stored in a database, or we can use a HMAC of the user
ID and the unique name of the service provider, with a key only known to the
party creating the pseudonym. This can be the IdP or a seperate PF. We need a
key instead of just a hash, otherwise any party with access to pseudonyms would
be able to generate pseudonyms for user IDs, and see whether they are the same
as the pseudonyms it knows. With this approach, the party that creates the
pseudonyms knows the pseudonym of a user at an SP.

We also may not want any intermediary to be able to link different sessions
of the same user, even if he cannot see the user or the contents of attributes. If
encryption is used, we can include a random nonce or random padding like RSA-
OAEP[29]. This makes sure that the encryptions, and therefore the sessions,
cannot be linked. It is not possible to randomize already encrypted data this
way.

60

12.3 Uniqueness of identification (AR8)

The HMAC solution already ensures non-reassignability of identifiers, since if a
secure HMAC is used, it will be different for different input, and therefore also
for different users. We do not have immutability, since we will have different
pseudonyms when one user uses different IdPs. This is caused by the different
keys the IdPs use for the HMAC. We can set up a central facility that generates
all pseudonyms. That pseudonym facility will know for which user-SP com-
binations pseudonyms are requested, which means it can see which services a
user uses. Furthermore, the PF will have access to all pseudonyms for all users,
allowing it to deanonimize all users. It does not have access to the sessions
between users and SPs, so it still does not know what a user does at the SPs it
visits.

12.4 Constrained linking (AR4)

If party A wants to communicate something about a user to party B, with
polymorphic pseudonyms we can send the encrypted pseudonym of the user for
B to A, so A can include this encrypted pseudonym in his communication with
B. We can do something similar with existing techniques. The IdP sends the
pseudonym of the user at B with the public key of B, and sends that to A. A
can then again include this encrypted pseudonym in his communication with B,
so B knows about which user they are communicating.

12.5 Putting it together

We will see how this works together in an example. We have a hub-and-spoke
federation. In this federation we have SpaceDrive, a cloud storage service. Ad-
ditional storage space at SpaceDrive can be purchased via Unishop.com. Bobby
Tables, student at the University of Harderwijk, authenticates with the Uni-
versity of Harderwijk as his IdP to Unishop.com, and purchases extra storage
space for SpaceDrive. Unishop.com now has to communicate to SpaceDrive that
Bobby has purchased additional storage space. There is, however, no need for
Unishop.com or SpaceDrive to know that the user is Bobby, so pseudonyms are
used. There is also no need for Unishop.com to know Bobby’s pseudonym at
SpaceDrive, or vice versa. Combining the methods described above, this works
as follows:

1. The University of Harderwijk sends a request to the PF for
(b.tables@universityofharderwijk.com, Unidrive.com)

and one for
(b.tables@universityofharderwijk.com, SpaceDrive.com).

2. The PF calculates

Punishop.com = HMAC(DP , b.tables@universityofharderwijk.com

|Unishop.com)

61

and

Pspacedrive = HMAC(DP , b.tables@universityofharderwijk.com

|SpaceDrive.com)

and sends these back to the University of Harderwijk.

3. The university stores the pseudonyms in a database.

4. Bobby Tables wants to log in to Unishop.com to purchase additional stor-
age. Unishop.com sends an authentication request to the hub, which in
turn sends an authentication request to the University of Harderwijk.

5. Bobby Tables authenticates to his university.

6. The University of Harderwijk looks up the attributes of Bobby Tables
that are needed for Unishop.com, and his pseudonyms Punishop.com and
Pspacedrive.

7. The attributes are encrypted with the public key of Unishop.com:
{attr1}Kunishop.com

, . . . , {attrn}Kunishop.com

Punishop.com is also encrypted with the public key of Unishop.com, and
Pspacedrive is encrypted with the public key of SpaceDrive:
{Punishop.com}Kunishop.com

, {Pspacedrive}Kspacedrive

8. These encrypted attributes and both encrypted pseudonyms are sent in
the response to the hub, which passes them on to Unishop.com.

9. Bobby makes the purchase at Unishop.com. Unishop.com sends a mes-
sage to SpaceDrive that additional storage was purchased, and includes
{Pspacedrive}Kspacedrive

in this message.

10. SpaceDrive decrypts {Pspacedrive}Kspacedrive
and knows that the user with

pseudonym Pspacedrive has purchased additional storage.

The general set-up for this process is depicted in Figure 12.1. Unishop.com
is SP1, and SpaceDrive is SP2. We use {m}KA

as the notation for an encryption
of message m, with the public key of A, concatenation of x and y is denoted
as x|y, and HMAC(K,m) denotes the HMAC of message m, with key K. We
assume encryptions are using random nonces or random padding. We only show
the system for one user, and one IdP. Each IdP can do the same for all its users.

• The hub does not see the contents of attributes, nor pseudonyms of users,
since end-to-end encryption is used.

• If a user uses a different IdP, the PF will still generate the same pseudonym
for the same user, as long as the same user ID is used. Bobby Tables can
keep using his additional storage if he logs in via a different IdP.

• Using a cryptographically secure HMAC function ensures unlinkability of
pseudonyms to different pseudonyms for the same user, or to the user ID.
The key DP makes sure that only the PF can generate pseudonyms, and
no other party can compare pseudonyms to self-generated pseudonyms for
user ID’s he knows.

62

Figure 12.1: A set-up with conventional cryptographic techniques

63

• The IdP can allow linkability of a user between SPs by including an en-
crypted pseudonym, in the way we described above.

• Encryption of the pseudonym that is used for linkability ensures that
cooperating SPs do not learn the pseudonym of a user at other SPs.

12.6 Comparison with polymorphic pseudonyms

The advantage of using the solutions described in this chapter is that it can
be used with standard SAML without much trouble. SAML already supports
encryption, as described in Section 3.1.7, and by using conventional encryption
we can use this existing part of the specification. Polymorphic pseudonyms and
attributes require a more specific use of encryption which is not part of the
SAML standard. SAML does give us enough freedom, however, to send our
encrypted pseudonyms and attributes. This will just not be in a standardized
way.

There are some limitations to the described solutions First of all AR1 is still
violated, although this can be solved with a more complex solution such as [24],
which we described in Section 5.1. Not only for privacy reasons, but also because
of limitations in the software and to reduce complexity for IdP administrators
it can be valuable for the IdP to not have to worry about the SP that is used.
Even in the solution from [24] the IdP has to know the one-time public key of
the SP, so the IdP does need to know something about the SP. We have seen
in Chapter 9 that not all software gives plugins access to this information in a
hub-and-spoke scenario. With polymorphic pseudonyms the IdP does not have
to know anything about the SP that is used. This makes it possible to create
a plugin for existing software, and it makes it easy to configure the connection
with the federation.

ElGamal encrypted data, and therefore polymorphic pseudonyms and at-
tributes, can be randomized. With other solutions, randomization can only be
done before encryption.

The PF knows which SPs are used by a user, and it knows the pseudonym
the user gets. With polymorphic pseudonyms the PF does not know for which
user it is specializing a PP, and it does not know the FP of the user at the SP.

Another property of polymorphic pseudonyms is that the FP for a user at
an SP is only known to that SP. FP, IdP, hub and collaborating SPs all do
not know this FP. In the solution described here, if no restrictions are put in
place on the users for which an IdP can request pseudonyms, any IdP can learn
the pseudonyms for any user. So linkability is more limited when polymorphic
pseudonyms are used, than when conventional cryptography is used.

64

Chapter 13

Conclusion

13.1 Future Work

We have analysed the security of polymorphic pseudonyms in Chapter 11. How-
ever, since cryptography is very hard to get right, further review of the system
is necessary to make sure no mistakes were made. This is also the case for the
implementations.

An analysis was made on the use of polymorphic pseudonyms and attributes
in SURFconext and Kennisnet. Both SURFnet and Kennisnet must do further
evaluation about what the consequences are of introduction of these techniques,
and what needs to be changed to the current setup. Based on that, and on the
findings in this thesis, a decision has to be made whether and how to use these
techniques in these use cases.

13.2 Conclusion

What pros and cons are there when using polymorphic pseudonyms
in a hub-and-spoke federation? The use of polymorphic pseudonyms can
greatly improve the privacy of the users, especially when combined with poly-
morphic attributes. We can use it to ensure that the hub is not able to gather
information about the users and their usage of services. The hub can no longer
see the contents of attributes, and also cannot see which user a session belongs
to. The hub can therefore not link usage of specific services to users.

A problem in hub-and-spoke federations is that in multiple software products
for IdPs it is not possible to know the actual SP when there is a hub between
the IdP and the SP. This is a problem in general, since the IdP cannot show to
the user which SP he is authenticating to, but also limits us in the possibilities
to use polymorphic pseudonyms. We cannot let the IdP request EPs, since it
needs to know the SP for which it needs an EP. However, the hub can request
EPs.

Polymorphic pseudonyms, in combination with polymorphic attributes, how-
ever, also give new solutions to problems that are caused by the fact that the
IdP does not know the actual SP. If we want end-to-end encryption, with con-
ventional encryption the IdP needs to know the SP for which it should encrypt
attributes and pseudonyms. The IdP can however send polymorphic pseud-

65

onyms and attributes to the hub without knowing the SP. The hub can then
specialize these into encrypted pseudonyms and attributes for the SP.

There are variations available of the polymorphic pseudonym system.
What are pros and cons of different variations? The location of pseud-
onym specialization can vary. It can be performed by a PF, upon request of the
IdP, or at the hub. In this last variation we can still have a separate PF from
which the hub requests EPs, or we can make the PF part of the hub and let it
specialize PPs by itself. If we want to allow multiple hubs, it is advantageous to
have the PF as a seperate entity, such that not all hubs need to have the keys
that are necessary for the specialization. Furthermore, for organizational and
network security reasons it can be desirable to have the PF as a seperate entity.
For the further discussion there are no differences between these possibilities,
and we will therefore not treat them as separate variations.

A problem with specialization at the hub is that if the hub operator also op-
erates any SPs, it can specialize the PPs and polymorphic attributes it receives
not only for the intended recipient, but also for an SP operated by itself. This
means he can see the contents of attributes, and can link sessions of a user to
the FP of the user at its own SP. When EPs are requested by the IdP we do
not have this problem.

A problem with requesting EPs by the IdP is that the IdP must know which
SP is used. This is desirable anyway, in order to let the IdP ask for consent
to release attributes to that specific SP, and prevent damage from man-in-
the-browser attacks, but for privacy reasons one may want the IdP to remain
unknowing of this information. There is also the problem that most IdP software
does not properly handle this information, and has no access to the name of the
actual SP, and only sees the hub as being the SP. When PPs and polymorphic
attributes are specialized at the hub, the IdP does not have to know the actual
SP, and we do not have these problems.

When PPs are specialized at the hub, it is still possible to give the IdP the
name of the SP. If the software supports it, it is therefore still possible to let
the IdP use this information, for example to ask consent.

When EPs are requested by the IdP, we do not need a hub, so this can also
work in a full mesh federation. In this case the IdP does know which SP is used,
and we do not have the problems related to the IdP not knowing this.

Using PPCA we can have properties of both set-ups. The IdP is then allowed
to know the SP that is used, and is therefore able to ask the user for consent to
authenticate to that specific SP. This also means no hub is necessary. However,
the IdP does not know which user is authenticating, and therefore cannot link
users to the usage of SPs.

Does the use of polymorphic pseudonyms fit in a standard SAML
environment? How much extra processing is needed? SAML allows
us to use the ‘unspecified’ format for the NameID. This does mean that no
information is given on how to interpret it. We can also define a custom format.
Existing software, however, will still not know what this means and does not
know how to interpret the NameID. Another option is to use the ‘transient’
NameID format, which means the NameID will be different and unlinkable every
time, and include the PP or EP in an attribute.

66

The IdP has to generate PPs for its users. They only have to be generated
once and can be stored and reused. Depending on the used variation, the IdP
also needs to request EPs for each user, for each SP he is using. These can also
be stored and reused. When stored PPs or EPs are reused, they need to be
randomized. SPs have to decrypt EPs they receive.

For standard SAML software, plugins were created that perform the required
processing. In most IdP software, however, it is not possible to let an IdP in a
hub-and-spoke federation request EPs. For SPs there were no such problems.

What is the impact on existing identity federations, such as Kennisnet
and SURFconext, for IdPs, SPs as well as for the hub? On IdPs and
SPs a plugin must be installed and configured. Once a plugin is finished for
the software used by the IdPs or SPs, no extra implementation work has to be
done by the IdPs and SPs. The plugin will have to be maintained, but this can
be the responsibility of one party, and not of all connected parties. Some extra
computation power and storage is necessary to generate, randomize, decrypt
and store pseudonyms.

If EPs are requested by the IdP, the hub only has to pass on the EPs it
receives, and no extra processing is necessary. In the other case, the hub has
to perform the specialization. In both cases, if polymorphic attributes are also
used, the hub and its operators are not able to see the contents of attributes.
This will make it more difficult to solve problems.

Which variation is the best fit for the SURFconext and Kennisnet
use cases? The model where PPs and polymorphic attributes are sent to the
hub, where they are specialized before sending them to SPs seems to be the
best fit for SURFconext. Currently, SURFconext does not require the IdPs to
worry about which SP is used. The software that is used by many IdPs does
not support the IdP to know which SP is used in a hub-and-spoke federation.
This means requesting EPs by the IdP is not possible. IdPs that do support
using the name of the actual SP can still be given this information.

In the Kennisnet use case we do not have a single hub-and-spoke federation,
but communication about pupils can go through different channels. There-
fore, the model where specialization is done at the hub is not feasible. EPs and
encrypted attributes should be requested by the IdP. This does pose some prob-
lems with used software, since the software needs to know the targeted SP, and
not all software supports this for hub-and-spoke federation. A hybrid solution is
possible, where the IdP requests EPs for those SPs with which it communicates
directly, and PPs are sent to the hubs from the different federations. The hubs
can then request EPs from the PF.

67

Acronyms

ABC attribute based credential.

AD authenticatiedienst.

AD FS Microsoft Active Directory Federation Services.

BIN bank identification number.

CA certificate authority.

CDH Computational Diffie-Hellman.

DDH Decision Diffie-Hellman.

DISP digital identity service provider.

DL Discrete Logarithm.

DPD Data Protection Directive.

DV dienstverlener.

EP encrypted pseudonym.

FIM federated identity management.

FP final pseudonym.

GDPR General Data Protection Regulation.

HM herkenningsmakelaar.

IdP identity provider.

IRMA I Reveal My Attributes.

KDF key derivation function.

KMA key management authority.

KR koppelregister.

68

MR machtigingenregister.

NRN national registration number.

OD ondertekendienst.

PE-FIM privacy enhanced federated identity management.

PF pseudonym facility.

PGN persoonsgebonden nummer.

PIA privacy impact assessment.

PP polymorphic pseudonym.

PPCA polymorphic pseudonym card application.

RP relying party.

SAML Security Assertion Markup Language.

SP service provider.

SSO single sign on.

TTP trusted third party.

VPN Virtual Private Network.

69

References

[1] Anne Adams and Martina Angela Sasse. ‘Users Are Not the Enemy’. In:
Commun. ACM 42.12 (Dec. 1999), pp. 40–46. issn: 0001-0782. doi: 10.
1145/322796.322806. url: http://doi.acm.org.ru.idm.oclc.org/
10.1145/322796.322806.

[2] Cloud Security Alliance. Security guidance for critical areas of focus in
cloud computing v3.0. 2011. url: https://cloudsecurityalliance.

org/download/security-guidance-for-critical-areas-of-focus-

in-cloud-computing-v3/.

[3] Gergely Alpár and Jaap-Henk Hoepman. ‘A Secure Channel for Attribute-
based Credentials: [Short Paper]’. In: Proceedings of the 2013 ACM Work-
shop on Digital Identity Management. DIM ’13. Berlin, Germany: ACM,
2013, pp. 13–18. isbn: 978-1-4503-2493-9. doi: 10.1145/2517881.2517884.
url: http://doi.acm.org/10.1145/2517881.2517884.

[4] Gergely Alpár, Jaap-Henk Hoepman and Johanneke Siljee. ‘The Identity
Crisis. Security, Privacy and Usability Issues in Identity Management’. In:
CoRR abs/1101.0427 (2011). url: http://arxiv.org/abs/1101.0427.

[5] Gergely Alpár and Bart Jacobs. ‘Credential design in attribute-based iden-
tity management’. In: Bridging distances in technology and regulation, 3rd
TILTing Perspectives Conference. 2013, pp. 189–204.

[6] Mark Bartel et al. XML Signature Syntax and Processing (Second Edi-
tion). W3C Recommendation. June 2008. url: http://www.w3.org/TR/
2008/REC-xmldsig-core-20080610/.

[7] Dan Boneh. ‘Algorithmic Number Theory: Third International Symposiun,
ANTS-III Portland, Oregon, USA, June 21–25, 1998 Proceedings’. In: ed.
by Joe P. Buhler. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998.
Chap. The Decision Diffie-Hellman problem, pp. 48–63. isbn: 978-3-540-
69113-6. doi: 10.1007/BFb0054851. url: http://dx.doi.org/10.1007/
BFb0054851.

[8] Bundesamt für Sicherheit in der Informationstechnik. Advanced Security
Mechanisms for Machine Readable Travel Documents and eIDAS Token
– Part 3 – Common Specifications Version 2.20. Technical Guideline TR-
03110-3. Feb. 2015. url: https://www.bsi.bund.de/SharedDocs/

Downloads/EN/BSI/Publications/TechGuidelines/TR03110/BSI_TR-

03110_Part-3-V2_2.pdf.

70

http://dx.doi.org/10.1145/322796.322806
http://dx.doi.org/10.1145/322796.322806
http://doi.acm.org.ru.idm.oclc.org/10.1145/322796.322806
http://doi.acm.org.ru.idm.oclc.org/10.1145/322796.322806
https://cloudsecurityalliance.org/download/security-guidance-for-critical-areas-of-focus-in-cloud-computing-v3/
https://cloudsecurityalliance.org/download/security-guidance-for-critical-areas-of-focus-in-cloud-computing-v3/
https://cloudsecurityalliance.org/download/security-guidance-for-critical-areas-of-focus-in-cloud-computing-v3/
http://dx.doi.org/10.1145/2517881.2517884
http://doi.acm.org/10.1145/2517881.2517884
http://arxiv.org/abs/1101.0427
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/
http://dx.doi.org/10.1007/BFb0054851
http://dx.doi.org/10.1007/BFb0054851
http://dx.doi.org/10.1007/BFb0054851
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03110/BSI_TR-03110_Part-3-V2_2.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03110/BSI_TR-03110_Part-3-V2_2.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03110/BSI_TR-03110_Part-3-V2_2.pdf

[9] Jan Camenisch and Els Van Herreweghen. ‘Design and Implementation
of the Idemix Anonymous Credential System’. In: Proceedings of the 9th
ACM Conference on Computer and Communications Security. CCS ’02.
Washington, DC, USA: ACM, 2002, pp. 21–30. isbn: 1-58113-612-9. doi:
10.1145/586110.586114. url: http://doi.acm.org.ru.idm.oclc.
org/10.1145/586110.586114.

[10] Scott Cantor. cpp-sp-ext. Git repository, revision 48a907140e04788a3e68f4-
efcdff34ce6ae0b334. Nov. 2011. url: https://git.shibboleth.net/

view/?p=cpp-sp-ext.git.

[11] Scott Cantor et al. NativeSPAttributeResolver. Version 24. Apr. 2014.
url: https://wiki.shibboleth.net/confluence/display/SHIB2/
NativeSPAttributeResolver.

[12] COMMISSION IMPLEMENTING REGULATION (EU) 2015/1502. on
setting out minimum technical specifications and procedures for assurance
levels for electronic identification means pursuant to Article 8(3) of Regu-
lation (EU) No 910/2014 of the European Parliament and of the Council
on electronic identification and trust services for electronic transactions
in the internal market. OJ L 235, 9.9.2015, p. 7—20. Sept. 2015. url:
http://data.europa.eu/eli/reg_impl/2015/1502/oj.

[13] Currence. iDIN Merchant Implementation Guidelines. Version 1.041. Jan.
2016. url: http://www.betaalvereniging.nl/giraal-en-online-
betalen/idin/documentatie-aanvragen/.

[14] Currence. Welkom bij iDEAL. Retreived 26th April 2016. url: https:
//www.ideal.nl/.

[15] P. Deutsch. DEFLATE Compressed Data Format Specification version
1.3. RFC 2104. May 1996. url: http://www.rfc-editor.org/info/
rfc2104.

[16] R. Dhamija and L. Dusseault. ‘The Seven Flaws of Identity Management:
Usability and Security Challenges’. In: IEEE Security Privacy 6.2 (Mar.
2008), pp. 24–29. issn: 1540-7993. doi: 10.1109/MSP.2008.49.

[17] DIRECTIVE 95/46/EC OF THE EUROPEAN PARLIAMENT AND OF
THE COUNCIL. on the protection of individuals with regard to the pro-
cessing of personal data and on the free movement of such data. OJ L 281,
23.11.1995, p. 31 – 50. Oct. 1995. url: http://data.europa.eu/eli/
dir/1995/46/oj.

[18] Edustandaard. ECK Distributie en toegang. Version 2.0. Feb. 2016. url:
https://www.edustandaard.nl/standaarden/afspraken/afspraak/

eck-dt/2.0/.

[19] Taher ElGamal. ‘A public key cryptosystem and a signature scheme based
on discrete logarithms’. In: Advances in cryptology. Springer. 1985, pp. 10–
18.

[20] Jim Fox. webservice dataconnector for shib idp 3.2.1. GitHub repository,
revision ea4a75b662ee5b853eea1a405241ff0dc34ba722. Feb. 2016. url: https:
//github.com/UWIT-IAM/uw-idp-rws-connector.

[21] Bits of Freedom. De winnaars: Opstelten en de Nederlandse Scholen. Dec.
2014. url: https://bba2014.bof.nl/de-winnaars-opstelten-en-de-
nederlandse-scholen/.

71

http://dx.doi.org/10.1145/586110.586114
http://doi.acm.org.ru.idm.oclc.org/10.1145/586110.586114
http://doi.acm.org.ru.idm.oclc.org/10.1145/586110.586114
https://git.shibboleth.net/view/?p=cpp-sp-ext.git
https://git.shibboleth.net/view/?p=cpp-sp-ext.git
https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPAttributeResolver
https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPAttributeResolver
http://data.europa.eu/eli/reg_impl/2015/1502/oj
http://www.betaalvereniging.nl/giraal-en-online-betalen/idin/documentatie-aanvragen/
http://www.betaalvereniging.nl/giraal-en-online-betalen/idin/documentatie-aanvragen/
https://www.ideal.nl/
https://www.ideal.nl/
http://www.rfc-editor.org/info/rfc2104
http://www.rfc-editor.org/info/rfc2104
http://dx.doi.org/10.1109/MSP.2008.49
http://data.europa.eu/eli/dir/1995/46/oj
http://data.europa.eu/eli/dir/1995/46/oj
https://www.edustandaard.nl/standaarden/afspraken/afspraak/eck-dt/2.0/
https://www.edustandaard.nl/standaarden/afspraken/afspraak/eck-dt/2.0/
https://github.com/UWIT-IAM/uw-idp-rws-connector
https://github.com/UWIT-IAM/uw-idp-rws-connector
https://bba2014.bof.nl/de-winnaars-opstelten-en-de-nederlandse-scholen/
https://bba2014.bof.nl/de-winnaars-opstelten-en-de-nederlandse-scholen/

[22] PBLEQ HEC. Privacy Impact Assessment Nummervoorziening in de Leer-
middelenketen, version 1.0. May 2015. url: https://www.rijksoverheid.
nl/documenten/rapporten/2015/05/27/privacy-impact-assessment-

nummervoorziening-in-de-leermiddelenketen.

[23] R. Hörbe and W. Hötzendorfer. ‘Privacy by Design in Federated Identity
Management’. In: Security and Privacy Workshops (SPW), 2015 IEEE.
May 2015, pp. 167–174. doi: 10.1109/SPW.2015.24.

[24] Rainer Hörbe. ‘A Model for Privacy-enhanced Federated Identity Man-
agement’. In: CoRR abs/1401.4726 (2014). url: http://arxiv.org/

abs/1401.4726.

[25] Idensys. Interface specifications. Mar. 2016. url: https://afsprakenstelsel.
etoegang.nl/display/as/Interface+specifications.

[26] Takeshi Imamura, Blair Dillaway and Ed Simon. XML Encryption Syntax
and Processing. W3C Recommendation. Dec. 2002. url: http://www.
w3.org/TR/2002/REC-xmlenc-core-20021210/.

[27] IRMA app. url: https://www.irmacard.org/irmaphone/.

[28] IRMA – I Reveal My Attributes. url: http://irmacard.org/.

[29] J. Jonsson and B. Kaliski. Public-Key Cryptography Standards (PKCS)
#1: RSA Cryptography Specifications Version 2.1. RFC 3447. Feb. 2003.
url: http://www.rfc-editor.org/info/rfc3447.

[30] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography.
CRC Press, 2007.

[31] Kennisnet. Entree Federatie. url: https://www.kennisnet.nl/entree-
federatie/.

[32] Kennisnet. Wie wij zijn. url: https://www.kennisnet.nl/wie-wij-
zijn/.

[33] Charles Knouse. SAML Implementation Guidelines. Working Draft 01.
Aug. 2004. url: https://www.oasis-open.org/committees/download.
php/8958/sstc-saml-implementation-guidelines-draft-01.pdf.

[34] Carlo Koch and Gerrit Jan van ’t Eind, eds. Masterplan eID. Sept. 2014.
url: https : / / www . idensys . nl / fileadmin / bestanden / idensys /

documenten/basisdocumentatie/Masterplan_eID_vs1_00_def.pdf.

[35] H. Krawczyk, M. Bellare and R. Canetti. HMAC: Keyed-Hashing for Mes-
sage Authentication. RFC 2104. Feb. 1997. url: http : / / www . rfc -

editor.org/info/rfc2104.

[36] Legion of the Bouncy Castle Inc. Bouncy Castle Crypto APIs. 2015. url:
http://www.bouncycastle.org/.

[37] Manfred Lochter and Johannes Merkle. Elliptic curve cryptography (ECC)
brainpool standard curves and curve generation. RFC 1654. Mar. 2010.
url: http://www.rfc-editor.org/info/rfc5639.

[38] Salah Machani et al., eds. FIDO UAF Architectural Overview. Dec. 2014.
url: https : / / fidoalliance . org / specs / fido - uaf - v1 . 0 - ps -

20141208/fido-uaf-overview-v1.0-ps-20141208.html.

72

https://www.rijksoverheid.nl/documenten/rapporten/2015/05/27/privacy-impact-assessment-nummervoorziening-in-de-leermiddelenketen
https://www.rijksoverheid.nl/documenten/rapporten/2015/05/27/privacy-impact-assessment-nummervoorziening-in-de-leermiddelenketen
https://www.rijksoverheid.nl/documenten/rapporten/2015/05/27/privacy-impact-assessment-nummervoorziening-in-de-leermiddelenketen
http://dx.doi.org/10.1109/SPW.2015.24
http://arxiv.org/abs/1401.4726
http://arxiv.org/abs/1401.4726
https://afsprakenstelsel.etoegang.nl/display/as/Interface+specifications
https://afsprakenstelsel.etoegang.nl/display/as/Interface+specifications
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/
https://www.irmacard.org/irmaphone/
http://irmacard.org/
http://www.rfc-editor.org/info/rfc3447
https://www.kennisnet.nl/entree-federatie/
https://www.kennisnet.nl/entree-federatie/
https://www.kennisnet.nl/wie-wij-zijn/
https://www.kennisnet.nl/wie-wij-zijn/
https://www.oasis-open.org/committees/download.php/8958/sstc-saml-implementation-guidelines-draft-01.pdf
https://www.oasis-open.org/committees/download.php/8958/sstc-saml-implementation-guidelines-draft-01.pdf
https://www.idensys.nl/fileadmin/bestanden/idensys/documenten/basisdocumentatie/Masterplan_eID_vs1_00_def.pdf
https://www.idensys.nl/fileadmin/bestanden/idensys/documenten/basisdocumentatie/Masterplan_eID_vs1_00_def.pdf
http://www.rfc-editor.org/info/rfc2104
http://www.rfc-editor.org/info/rfc2104
http://www.bouncycastle.org/
http://www.rfc-editor.org/info/rfc5639
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-overview-v1.0-ps-20141208.html
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-overview-v1.0-ps-20141208.html

[39] Microsoft. IAttributeStore Interface. url: https://msdn.microsoft.

com / en - us / library / microsoft . identityserver . claimspolicy .

engine.attributestore.iattributestore.aspx.

[40] L. I. Millett and S. H. Holden. ‘Authentication and its privacy effects’. In:
IEEE Internet Computing 7.6 (Nov. 2003), pp. 54–58. issn: 1089-7801.
doi: 10.1109/MIC.2003.1250584.

[41] National Institute of Standards and Technology. Digital Signature Stand-
ard (DSS). FIPS PUB 186–4. July 2013. doi: 10.6028/NIST.FIPS.186-
4. url: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-
4.pdf.

[42] OASIS. Assertions and protocols for the OASIS security assertion markup
language (SAML) v2.0. Mar. 2005. url: http://docs.oasis-open.org/
security/saml/v2.0/saml-core-2.0-os.pdf.

[43] OASIS. Profiles for the OASIS security assertion markup language (SAML)
v2.0. Mar. 2005. url: http://docs.oasis-open.org/security/saml/
v2.0/saml-profiles-2.0-os.pdf.

[44] OASIS. Security and Privacy Considerations for the OASIS Security As-
sertion Markup Language (SAML) V2.0. Mar. 2005. url: http://docs.
oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf.

[45] OpenSSL Cryptography and SSL/TLS Toolkit. url: https://openssl.
org/.

[46] programma eID. Polymorphic Pseudonymization. July 2014. url: https:
/ / www . idensys . nl / fileadmin / bestanden / idensys / documenten /

basisdocumentatie/documentatieset/PP_Scheme_091.pdf.

[47] Programmabureau eID. Jaarplan 2015 Programma eID. Mar. 2015. url:
https://www.idensys.nl/fileadmin/bestanden/idensys/documenten/

basisdocumentatie/Jaarplan_eID-programma__2015.pdf.

[48] REGULATION (EU) 2016/... OF THE EUROPEAN PARLIAMENT
AND OF THE COUNCIL. on the protection of natural persons with re-
gard to the processing of personal data and on the free movement of such
data, and repealing Directive 95/46/EC (General Data Protection Regu-
lation). ST 5419 2016 REV 1 - 2012/011. Apr. 2016. url: http://eur-
lex.europa.eu/legal-content/EN/NOT/?uri=consil:ST_5419_2016_

REV_1.

[49] REGULATION (EU) No 910/2014 OF THE EUROPEAN PARLIAMENT
AND OF THE COUNCIL. on electronic identification and trust services
for electronic transactions in the internal market and repealing Direct-
ive 1999/93/EC. OJ L 257, 28.8.2014, p. 73–114. July 2014. url: http:
//eur-lex.europa.eu/eli/reg/2014/910/oj.

[50] SimpleSAMLphp. Authentication Processing Filters in SimpleSAMLphp.
url: https : / / simplesamlphp . org / docs / stable / simplesamlphp -

authproc.

[51] Sampath Srinivas et al., eds. Universal 2nd Factor (U2F) Overview. May
2014. url: https : / / fidoalliance . org / specs / fido - undefined -

undefined - ps - 20150514 / fido - u2f - overview - v1 . 0 - undefined -

ps-20150514.html.

73

https://msdn.microsoft.com/en-us/library/microsoft.identityserver.claimspolicy.engine.attributestore.iattributestore.aspx
https://msdn.microsoft.com/en-us/library/microsoft.identityserver.claimspolicy.engine.attributestore.iattributestore.aspx
https://msdn.microsoft.com/en-us/library/microsoft.identityserver.claimspolicy.engine.attributestore.iattributestore.aspx
http://dx.doi.org/10.1109/MIC.2003.1250584
http://dx.doi.org/10.6028/NIST.FIPS.186-4
http://dx.doi.org/10.6028/NIST.FIPS.186-4
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
https://openssl.org/
https://openssl.org/
https://www.idensys.nl/fileadmin/bestanden/idensys/documenten/basisdocumentatie/documentatieset/PP_Scheme_091.pdf
https://www.idensys.nl/fileadmin/bestanden/idensys/documenten/basisdocumentatie/documentatieset/PP_Scheme_091.pdf
https://www.idensys.nl/fileadmin/bestanden/idensys/documenten/basisdocumentatie/documentatieset/PP_Scheme_091.pdf
https://www.idensys.nl/fileadmin/bestanden/idensys/documenten/basisdocumentatie/Jaarplan_eID-programma__2015.pdf
https://www.idensys.nl/fileadmin/bestanden/idensys/documenten/basisdocumentatie/Jaarplan_eID-programma__2015.pdf
http://eur-lex.europa.eu/legal-content/EN/NOT/?uri=consil:ST_5419_2016_REV_1
http://eur-lex.europa.eu/legal-content/EN/NOT/?uri=consil:ST_5419_2016_REV_1
http://eur-lex.europa.eu/legal-content/EN/NOT/?uri=consil:ST_5419_2016_REV_1
http://eur-lex.europa.eu/eli/reg/2014/910/oj
http://eur-lex.europa.eu/eli/reg/2014/910/oj
https://simplesamlphp.org/docs/stable/simplesamlphp-authproc
https://simplesamlphp.org/docs/stable/simplesamlphp-authproc
https://fidoalliance.org/specs/fido-undefined-undefined-ps-20150514/fido-u2f-overview-v1.0-undefined-ps-20150514.html
https://fidoalliance.org/specs/fido-undefined-undefined-ps-20150514/fido-u2f-overview-v1.0-undefined-ps-20150514.html
https://fidoalliance.org/specs/fido-undefined-undefined-ps-20150514/fido-u2f-overview-v1.0-undefined-ps-20150514.html

[52] National Institute of Standards and Technology. Secure Hash Standard
(SHS). FIPS PUB 180-4. Aug. 2015. url: http://nvlpubs.nist.gov/
nistpubs/FIPS/NIST.FIPS.180-4.pdf.

[53] Pieter Verhaeghe et al. ‘Emerging Challenges for Security, Privacy and
Trust: 24th IFIP TC 11 International Information Security Conference,
SEC 2009, Pafos, Cyprus, May 18–20, 2009. Proceedings’. In: ed. by
Dimitris Gritzalis and Javier Lopez. Berlin, Heidelberg: Springer Ber-
lin Heidelberg, 2009. Chap. Security and Privacy Improvements for the
Belgian eID Technology, pp. 237–247. isbn: 978-3-642-01244-0. doi: 10.
1007/978-3-642-01244-0_21. url: http://dx.doi.org/10.1007/978-
3-642-01244-0_21.

[54] Eric R. Verheul. Privacy protection in electronic education based on poly-
morphic pseudonymization. Cryptology ePrint Archive, Report 2015/1228.
http://eprint.iacr.org/2015/1228. 2015.

[55] Rod Widdowson, Scott Cantor and Alex Stuart. DataConnectorConfig-
uration. Version 25. Jan. 2016. url: https://wiki.shibboleth.net/
confluence/display/IDP30/DataConnectorConfiguration.

74

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://dx.doi.org/10.1007/978-3-642-01244-0_21
http://dx.doi.org/10.1007/978-3-642-01244-0_21
http://dx.doi.org/10.1007/978-3-642-01244-0_21
http://dx.doi.org/10.1007/978-3-642-01244-0_21
http://eprint.iacr.org/2015/1228
https://wiki.shibboleth.net/confluence/display/IDP30/DataConnectorConfiguration
https://wiki.shibboleth.net/confluence/display/IDP30/DataConnectorConfiguration

	Introduction
	SURFnet Use Case
	Kennisnet Use Case
	Research Questions
	Research Methods
	Scope
	Outline

	Requirements for Online Authentication
	Trust
	Privacy
	Usability
	Monitoring
	Authentication and Trusted Third Parties

	Federated Identity Management
	SAML
	Properties of Federated Identity Management

	Current Situation
	SURFconext
	Kennisnet
	Other developments in the Netherlands

	Related work
	Privacy Enhanced Federated Identity Managment
	IRMA

	Polymorphic Pseudonyms
	Basic Model
	Properties
	Use Cases

	Cryptography of Polymorphic Pseudonyms
	ElGamal
	Other cryptographic primitives
	System Setup
	Pseudonym Generation
	Specialization
	Decryption
	Randomization
	Key Compromise

	Design Considerations
	Dropping the database
	Configuration of connected parties
	Software maintenance
	Independent facilities
	Consent

	Implementation
	Primitive Choices
	SimpleSAMLphp
	Shibboleth SP
	Shibboleth IdP
	Microsoft AD FS

	Polymorphic Attributes
	Opacity at the Hub
	Attribute Provider
	Cryptography of Polymorphic Attributes
	Signatures

	Security and privacy of polymorphic pseudonyms
	Cryptographic properties
	Trust
	Usability
	Privacy

	Using conventional cryptography
	Prevent the unauthorized aggregation of attributes by central intermediaries such as gateways, brokers, etc. (AR3)
	Limited linkability (AR2)
	Uniqueness of identification (AR8)
	Constrained linking (AR4)
	Putting it together
	Comparison with polymorphic pseudonyms

	Conclusion
	Future Work
	Conclusion

	Acronyms
	References

