
Matching ontologies with distributed word

embeddings

Harmen Prins

July 7, 2016

1

1Credit: Sanna Dinh

Acknowledgements

I would like to thank the following people:

Arjen de Vries, professor at the Radboud University of Nijmegen and my
mentor, for his limitless pool of knowledge and enthusiasm. For getting me out
of the mud when I was stuck and motivating me to push on.

Suzan Verberne, professor at the Radboud University of Nijmegen and
co-reader, for helping me start and finish this thesis.

Jeroen Vuurens, from Delft University of Technology, for helping me figure
out Word2vec.

Xander Wilcke, from the VU Amsterdam, for inspiring me to combine
Machine Learning with the Semantic Web.

Sanna Dinh, my partner, for spending countless late hours making this thesis
readable and designing many of the images, making this thesis understandable.

Marianne, my mother-in-law, for being available on Skype at the most un-
conventional times to advise and proof-read.

Flynn, my pug, for the fresh air during our walks when I needed a minute to
relax.

i

Abstract

McCallum proposed using distributed word embeddings for knowledge
base completion, the problem of finding relations within a knowledge base.
In this study word embeddings were used for ontology matching, the prob-
lem of finding relations between knowledge bases. To test if word embed-
dings also work on ontology matching, multiple algorithms that adapt
these embeddings to ontology graphs were implemented.

The conclusion is that distributed word embeddings can be applied to
ontology matching. The performance is not as good as the state-of-the-art
methods yet. However, word embeddings have potential to improve with
more data as opposed to current methods which are hand-crafted.

ii

Contents

1 Introduction 1
1.1 Motivation . 3
1.2 Justification . 7
1.3 Context . 8
1.4 Problem . 9
1.5 Research question . 10
1.6 Overview . 10

2 Background 11
2.1 The Semantic Web . 11

2.1.1 Progression of the Web 11
2.1.2 Goal . 13
2.1.3 Workings . 14
2.1.4 Current state . 19

2.2 Ontologies . 20
2.2.1 Example . 20
2.2.2 OWL . 22
2.2.3 Uses of ontologies . 22
2.2.4 Aristotle and Plato . 23

2.3 Current alignment strategies . 24
2.3.1 Problems in ontology alignment 25

2.4 Word representation . 26
2.4.1 Skip-gram models . 26
2.4.2 The state of the art . 27
2.4.3 Word order . 28
2.4.4 Multi-sense . 29

2.5 Used technology . 30
2.5.1 Factorie . 30
2.5.2 Jena . 31
2.5.3 AgreementMaker . 32

3 Method 33
3.1 Idea . 33
3.2 Challenges . 34
3.3 Data . 34

3.3.1 Mice and men . 34
3.3.2 Medical . 35

3.4 Algorithms . 35
3.4.1 Pre-trained models . 35
3.4.2 DeepWalk . 35
3.4.3 Node vectorisation . 36
3.4.4 Bidirectional connections 37
3.4.5 Select from senses . 37
3.4.6 Hot start . 37

iii

3.5 System check . 38
3.5.1 The data . 38
3.5.2 The system . 39
3.5.3 Context extraction . 40
3.5.4 The algorithm . 41
3.5.5 Example: DeepWalk sentences 42

3.6 Evaluation . 44
3.6.1 Evaluation methods . 44

4 Results 46
4.1 Precision versus recall . 46

4.1.1 Mice and men data . 46
4.1.2 Medical data . 47

4.2 F-score . 47

5 Conclusion and discussion 48
5.1 Conclusions . 48
5.2 Discussion . 49
5.3 Possible adaptations of the algorithm 49

5.3.1 Combine with neighbours 49
5.3.2 Adding edge labels . 49
5.3.3 Combining edges with nodes 50
5.3.4 Training corpus . 50

6 Lists of figures and tables 50

List of Figures 51

List of Tables 51

7 References 52

8 Appendices I

iv

1 Introduction

It is a Friday afternoon and you realise you want to watch a movie with some
friends this weekend. So, what do you do? To achieve this goal you must take
three steps. These steps are also shown in Figure 1.

Figure 1: To find the best movie, the shown movies need to be filtered by the
ones you like and the showtimes need to be filtered by the times you are available.
All remaining showtimes need to be cross-references with the preferences of your
friends.

Firstly, search for movies that you like that are also playing this weekend.
To do this you must either manually go through the list of movies playing this
weekend and check if any movies on that list match your preferences. In Figure
1, this is called ”Filter based on movies”.

Once you have found one or more movies that you like, you have to select a
time at which you can see the candidate movies, so you check for every movie
every time slot at every cinema near you. The number of time slots is equal
to the number of movies you chose in the previous step, times the number of
cinemas near you times the number of times every movie is shown at one cinema.
You also have to filter the out time slots based on your availability, so you cross-
reference the available movie showtimes with your agenda. This step is called
”Filter based on availability” in Figure 1

Then onto the third and final step, getting friends to go with you. In this
step you do not want to burden your friends too much by having them pick
both the movie and the time, so you will have to decide which movie to watch
or when, even though you do not know if your friends will like this movie or
are available at that time. Once you contact your friends, most of them do not
respond as they are not online at that time or they do not want to fill out an

1

availability poll or movie choices. This is called ”Filter based on friends” in
Figure 1.

Most of the time people will limit themselves to suboptimal options by avoid-
ing these steps, considering only a few movies, cinemas, time slots and friends.
But limitations like this are not necessary. What would happen if the above
process was automated?

The first step, finding movies that match two criteria would be considered
trivial with modern technology. One finds the two lists of movies that are
recommended for you and movies that are playing this weekend and intersect
them. A ranking can be added based on how expensive the tickets are, how
certain it is that you may like the movie, and other factors.

The second step, cross-referencing the list of movies with cinema play times,
would already be harder. Most of the time the cinema play times are written
in a human-readable format, something that is often hard to interpret for a
computer. Either the play times have to be written in or transformed into a
computer-readable format manually or a computer has to interpret the format
and convert it into a computer-readable one. However, errors might occur be-
cause the local cinema labelled a sequel as ”Movie II” whereas the list we have
has it labelled as ”Movie 2”, for example.

Checking an agenda to find an appropriate time would be easy if the times
from the cinemas can be transformed to the same format as your agenda. If we
are automating the process, we may be able to add more features, like changing
standing appointments (of course incurring a penalty to the score of that time
spot) and such.

The last step, contacting friends can be done in one click. Let us call the
program that automated the first three steps a softbot and assume they are uni-
versal, i.e. everyone has one. Rather than bothering your friends with schedul-
ing, your softbot can contact the softbots of your friends and find the movie
and time slot that optimize a cost function, taking into account which friends
you like the most, which movie everybody likes the most and at which time the
fewest dinners with wives need to be moved. Once this best time slot is chosen,
everyone gets an invite to see the movie and once it is known who will go, a car
pooling route is calculated and you can sit back an enjoy your Friday afternoon
with no planning or scheduling required.

The most amazing thing about this story, is that it is already possible with
the current technology. The algorithms to convert for example cinema website
text to a computer-readable format exist. Many open databases already contain
a lot of structured data that can be used to reason about data. And algorithms
to combine these pieces of information to make decisions already exist and work.

Two things are required before this web of computers that communicate and
understand, this Semantic Web, will come into existence. Firstly, the Semantic
Web needs to be adopted by humans. They must see the value of these personal

2

assistants that can schedule things for you, that take into account your personal
context when searching the web, that understand questions and can ask you for
more information that can improve the search. People have to realise that the
current search engines are not good enough, and that having to read through
many papers to find the one nugget of information or the one connection that you
are looking for is not acceptable or necessary. But also, the different knowledge
bases and unstructured texts need to be aligned. Aligning means that softbots
should be able to combine information that is contained in different domains,
documents and databases. This last problem is the one that I will work on in
this thesis. Once this problem has been solved, the Semantic Web is technically
possible and only needs to be socially accepted before it will become the norm[1].

1.1 Motivation

In this section I will explain how the study came into existence.

At the 14th International Semantic Web Conference McCallum presented his
keynote on Representation and Reasoning with Universal Schema embeddings[2].

Figure 2: The Universal Schema. Every row and every column is represented
by an embedding (in purple). Green cells mean a row and column are in the
context of the other. For example, the pair Bill and Microsoft are connected
to chairman. The embeddings are then trained so that the context can be
predicted. That means the embeddings of Bill & Microsoft and chairman will
become more similar.

The Universal Schema uses two steps. Firstly, the system learns embed-

3

dings of entities and relations found in text and knowledge bases[3], see Figure
2. Secondly, these embeddings are then used to predict new relations for the
knowledge bases. The system finds embeddings such that the embeddings of
entities and relations that co-occur are highly similar, see Figure 2.

Figure 3: After the embeddings are learned, rows and columns with similar
embeddings are connected (in light green). For example, the embeddings of
Melinda & Seattle and lives in may have become very similar. In that case, the
system connects the pair with that relation.

If some entities and relations have similar embeddings but are not known
to co-occur, they are flagged as being similar. Similarly, if two entities or two
relations have similar embeddings, they are likely referring to the same or sim-
ilar things, see Figure 3. This can be used to infer even more similarities by
collaborative filtering. The technique had very promising results in knowledge
kase completion tasks.

4

Figure 4: The embedding of a row (in pink) is optimized to be close to its
context embeddings (in purple) but far away from other embeddings (in red).

The embeddings are optimized by a model called the skip-gram word em-
bedding model[4], a neural network model that learns to predict the context of
a word, see Figure 4. McCallum discussed a new extension to the algorithm
that allowed for homonyms and as such can deal with more ambiguous data[2].

5

Figure 5: Similar to how the embeddings are used to predict relations within
an ontology, ontology matching can be done by predicting relations between
two ontologies. For example, since Gates and Bill will have very similar sets of
embeddings (as their contexts are very similar) the system will recognise they
are the same entity.

McCallum plans on using these embeddings to predict new intra-knowledge
base relations. However, from the keynote it is clear that this technique should
work with multiple knowledge bases as the Universal Schema is applied to a
set of knowledge bases including Freebase, knowledge extracted from text and
the TAC knowledge base population track dataset. This means that inter-
knowledge base relations can also be predicted using the word embedding tensor
factorisation technique.

Applying the embedding tensor factorisation to inter-knowledge base relation
finding (i.e. ontology aligning) makes it objective. This is because for ontology
aligning there is a ground truth possible and available. There are also many
projects on ontology aligning so it is possible to compare the results with the
best methods available. This means ontology aligning is a good test for this
algorithm.

An example of an inter-knowledge base relation is shown in Figure 5. If these
relations can be predicted, multiple knowledge bases can be aligned. Testing
if this word embedding algorithm is versatile enough to work in the field of
ontology aligning is the goal of this work.

6

1.2 Justification

This study is important to the future of the World Wide Web. The next goal
of the Web is the Semantic Web, where computers can interact with web pages
as humans do. It is necessary to build the Semantic Web as soon as possible,
as the amount of information on the Web is growing so fast it will be infeasible
for humans to handle[5].

The core of the Semantic Web are knowledge bases with the corresponding
ontologies. Ontology matching is essential for the Semantic Web to work, as the
information contained in the knowledge bases has to be combined. Since the
Semantic Web will have many small knowledge bases, they will be combined at
the moment information from them is required. To combine these knowledge
bases, their ontologies first need to be aligned. This is an act that will happen
very often on the Semantic Web, since every interaction with the Semantic Web
will usually require information from multiple domains. Large domains may be
stored on multiple devices, which can be viewed as different knowledge bases
which also need to be aligned. Therefore, it is save to say that efficient ontology
matching will be very valuable.

The most important goal of this study is to find an ontology matcher that is
able to deal with ambiguous concepts. Since most of the knowledge on the Se-
mantic Web is automatically gathered, it may be unreliable, ambiguous and even
wrong. Therefore, ontology matching that is capable of handling this uncertain
knowledge is required. Word embeddings and especially multi-sense word em-
beddings should be able to handle a high amount of ambiguity, since multi-sense
word embeddings are made to differentiate between different meanings of the
same word.

Normally, the raw text representation of words is used for matching, for ex-
ample to calculate the string distance. However, word embeddings models use a
vector representation, which should be more efficient. Calculating the distance
between vectors can be done very efficiently, therefore ontology matching with
distributed concept representations fits that efficiency criteria.

I believe the algorithms proposed in this study will work on new data without
the need for redesigning. This is because distributed representation algorithms
can be trained unsupervised on new domains, so they can be applied to those
new domains without effort from humans. As opposed to for example the string
edit distance. This is also an improvement for the semantic web.

This study should be done now, as ontology matching is already used in areas
other than the semantic web. It is, for example, used by companies for merging
knowledge from different knowledge bases when merging with other companies.
If the proposed matching algorithm is better than the current algorithms, or

7

at least improves the performance when used in ensemble with the current
algorithms, it will be useful immediately in these situations, not just in the
future, on the Semantic Web.

1.3 Context

This section will enable the reader to put the problem in perspective as well as
understand the reasoning behind the solution to the problem. Everything that
is mentioned in this section will be explained more in-depth further on. Firstly,
I will give a short summary of the context by explaining why the Semantic Web
requires ontology matching. Then I will illustrate the problem of ambiguity.
Lastly, I will describe the algorithm that this study is based on.

On the Semantic Web, ontologies are used to define knowledge[6]. The term
ontology will be properly defined later on, but for now it suffices to know that
an ontology is a set of rules that determine what relations are allowed and
required in a given domain of discourse. As a consequence, if two agents want
to communicate in a given domain, they need to agree on the rules of that
domain, or in other words, share the ontology of that domain.

However, it is unlikely that a conversation only covers one domain. To solve
this, there are two potential solutions. Either you ensure that all possible com-
binations of domains are covered by an ontology, which means one ontology
that covers all domains is required, or, alternatively, ontologies are combined
on-the-fly.

The first option, using one single ontology, is infeasible. This is due to the
fact that inference and search time scales with ontology size[7], and the number
of concepts that are needed on the Semantic Web is enormous. Every single
concept that is present in the billions of terabytes of text, images and sounds
that are on the web needs to be represented, for every professional domain
and science, in every language. And all these concepts are related. Searching
through this ontology just to find one concept would be incredibly costly. And
since every interaction on the Semantic Web requires lookups in an ontology,
these lookups need to be fast.

The second option, the one I address in this thesis, is the problem of combining
ontologies from multiple domains. Combining in this sense means connecting
the related concepts from the different ontologies. Some research has focused on
ontology merging, with promising results. However, recently research has been
slowing to the point where there is little improvement.

One big problem in ontology matching is the fact that in different domains,
words can have different meanings. Common examples are synonyms like au-
thor and writer, homonyms like bank (for money or by a river) and ambiguity.

8

Ambiguity means that similar words mean slightly different things, or a word
might have multiple related meanings.

A recently developed model for word embedding may be used to deal with
ambiguity. It maps words to a vector space that has semantic properties, and
thus can be used to calculate the relatedness of two words. There are a number
of extensions that can deal with homonyms as well as data structured other than
the continuous bag of words representation that the initial model was developed
for. These facts show that it may be possible to make an embedding model for
ontologies and use the word relatedness to combine ontologies[8].

Homonyms are two concepts that share a label, or in other words, a homonym
is one word with multiple distinct meanings. As such, homonyms are inherently
ambiguous, since the meaning is uncertain without context. This ambiguity is
very hard for computers to deal with, as computers are used to dealing with
absolute certainties.

1.4 Problem

We have seen that when information from multiple domains needs to be inte-
grated so that it is possible to reason over them together, the ontologies of those
domains need to be aligned or merged. If we want to merge two ontologies, we
need to find the concepts from the different ontologies that are related by an
’is-same-as’ or other rule. However, since the ontologies are made for different
domains, the same concept can be represented by different labels in the two
ontologies. This problem is called the synonymy problem, as synonyms are two
words that refer to the same concepts.

The opposite problem is called the homonymy problem, in which two con-
cepts are represented by the same label. Since they have the same label, naive
algorithms might align the concepts as being the same, when they are not.

Then there is the problem of ambiguity, which encompasses many other prob-
lems. It encompasses the fact that some concepts are used wrongly by humans,
but also the fact that some concepts are extremely similar, and may occur in
the same context, but are still slightly different.

The problem is:
Matching ontologies and dealing with the ambiguity and homonymy contained
in them.

I will use distributed word representations to answer the above question, as
McCallum suggested in his keynote. Distributed word representations, specif-
ically multi-sense Word2vec, should be used for this problem since multi-sense
Word2vec is specifically designed to combat homonymy while the neural net-
works in distributed word representations use the context to deal with ambiguity.

9

1.5 Research question

The main question that I will answer with this work is the following research
question:

Can distributed representations of concepts be used to find relationships
between concepts in ontologies better than existing matchers?

To answer the research question, I must investigate the following points:

• The algorithm uses distributed representations of concepts.

• The algorithm finds relationships between concepts in ontologies.

• The algorithm performs well.

The answer is positive for distributed representations matching in general if
it is positive for one distributed representation matcher.

1.6 Overview

This report is structured as follows: firstly, I will give all the background infor-
mation required to understand the context and the algorithms I will use. This
includes the history and future of the Semantic Web, the roles of ontologies
in the Semantic Web, ontology aligning and the recent developments in word
embeddings.

Secondly, I will describe the method, which includes the design of the algo-
rithm, the whole system and the evaluation method. Multiple algorithms will
be described that all use word embeddings differently.

Thirdly, the results. These show how the algorithms perform when applied
to ontology aligning. The results will be compared to a baseline and the best
performing system so far.

Lastly, the conclusion and discussion, which interpret the results and give
recommendations for future research.

10

2 Background

In this section I will discuss all concepts that are required to understand the
study. Firstly, the Semantic Web, the key technology that depends very strongly
on ontology matching, will be discussed. Secondly, the concept of the ontology
itself will be addressed. Thirdly, current alignment strategies and their their
problems are discussed. Lastly, other related research and technologies will be
discussed. Later sections will refer back to the concepts discussed in this section.

2.1 The Semantic Web

The first concept I will discuss is the Semantic Web, also called Web 3.0, a
vision of a Web that enhances the user experience in ways that the current Web
can not provide.

2.1.1 Progression of the Web

The original Web connected authors to readers. It allowed authors to create
content, mostly static websites. Readers, however, could not change anything,
merely read the sites and click on links. In this iteration of the Web there was
no interaction[9]. See Figure 6.

Figure 6: The first iteration of the Web consisted of static content, written by
authors and read by readers.

Web 2.0, the current Web, models the internet as hubs (or sites) with a
specific purpose and interaction between users, who can also add content, as
in Figure 7. However, there is only limited interconnectivity between those
hubs2[10]. It is possible to link to content from other hubs using URLs, but this
moves the user to another hub, rather than connecting the content present in
the hubs.

2For example, Facebook is a hub for sharing content with people you consider friends, but
if you want to share that content with more people you will have to go to another hub, like
Imgur or Pinterest.

11

Figure 7: In the second iteration of the Web, readers have become users that
can alter and add to the content found on the interactive hubs. This also allows
users to interact with each other.

We are currently progressing towards Web 3.0, where not only users interact,
but also virtual agents, see Figure 8. The so-called Semantic Web contains
sources of information which can be combined whenever the user needs it. If
someone wants to find information on a certain topic, the virtual agent can
collect all documents that are relevant to that topic, summarize each document
in a way that is relevant to the search request and provide sources for every fact
it finds. It would even be possible to have a question answering session on that
specific topic, where the agent finds the answer to every question posed in the
material that is linked to the topic.

Figure 8: On the third iteration of the Web, virtual agents are also able to read
and write content and interact with humans (through question answering as an
example). Virtual agents may also work together.

Another possibility on the Semantic Web is the scenario from the introduc-
tion (Section 1), where a user wanted to see a movie, and ordered his softbot,
to find him a suitable time and movie to see. This was shown to reduce a

12

lot of planning and allow for much more favourable decisions since many more
variables can be taken into account.

All of this is possible if the softbots can access all of the information reliably.
In the current Web, this is not possible, as all information is written in an
ambiguous, unstructured format called natural language. To allow softbots
to access the same information that we can, the Semantic Web proposes to
add a layer to the internet where all information is saved in a unified format
that is unambiguous, robot-interpretable and can be used to store any type of
knowledge.

The Semantic Web also improves user interactivity by connecting sources of
information. To stick with the social media example, a person can create a piece
of content, say a picture of a tree, and share it with his friends. One of his friends
then can share this piece of content with a group of people that likes nature
pictures. However, everyone can access all references someone makes. So if a
person from the nature group notices the tree is ill and comments on this, the
original poster can see this comment and act accordingly. On the current web
the friend who shared the picture with the group has to be contacted directly
by the commenter and then has to relay the message manually.

2.1.2 Goal

The goal of the Semantic Web is very pragmatic: help people in everyday activ-
ities by leveraging all information available on the internet. The fact that it is
pragmatic goes a long way of making it a reality: if even one application comes
into existence that uses online information in a structured way and thus makes
everyday tasks a little easier, the goal is accomplished. Of course, then the goal
is stretched and we should make more applications leveraging more information
for more tasks.

Ultimately, the goal is to leverage all information that is available to an entity
on the internet to improve the lives of humans. This information is not limited to
the information that is online now, but can include sensor data from the Internet
of Things, data from robots, facts deduced or statistically inferred from existing
data and so on. All this information can be used to accommodate the wants
and needs of humans, when asked for it and before the users are aware of their
needs. The personal agent should be able to predict the users need and provide
the tools that can satisfy the need.

To provide these tools to the user, an agent uses many different sources. For
example, if the need of a researcher is knowledge on a certain topic, the agent
must chart relevant topics, map relations between different domains and connect
these new ideas to topics that the researcher is already familiar with. In fact,
the largest part of the job an agent has to carry out on the Semantic Web is

13

finding relationships between pieces of information on the Web. Based on this
observation, we can state that ontology and knowledge base alignment is the
cornerstone of the Semantic Web, since without this vital system the Web is
merely a collection of separate pieces of information. Only when those pieces
are aligned can we talk of knowledge, of semantics.

To summarize, the goal of the Semantic Web is to connect all online infor-
mation to help humans. Only when all information can be connected will it be
possible to aid humans in their needs. But humans will only accept the Seman-
tic Web if it is useful to them, so the Semantic Web must show its applications
and usefulness before it will be used in daily life.

2.1.3 Workings

Figure 9: An example of the Semantic Web represented as a graph of entities
(in black) and relationships (in red). It contains many different kinds of entities,
including countries and people.

14

The Semantic Web is one big graph of entities and relationships between those
entities, containing information about, amongst others, people and countries as
in Figure 9.

Figure 10: New information to be added to the Semantic Web.

If new information is added to the Semantic Web, a new concept or con-
nection is added to this graph. In Figure 10 a whole set of related entities and
their connections are shown. These entities are also connected to the rest of the
Semantic Web graph so that it stays one connected web, as in Figure 11.

15

Figure 11: The new information is connected to the rest of the Semantic Web
by connecting the new entities with entities in the Semantic Web.

This big graph covers many different domains, and every domain is covered
by a part of the graph, a sub-graph. For example, all people are in the same
sub-graph, as are countries and the recently added foods. Every such sub-graph
is one knowledge base that covers that specific domain. See Figure 12 for the
knowledge bases in the example.

16

Figure 12: The different sub-graphs in the Semantic Web graph. They are
contained in different knowledge bases and connected by URIs.

To ensure that the Semantic Web is one big connected Web, the knowledge
bases are connected by inter-knowledge base relations. The relations are made
by referring to the URI of that entity. The URI consists of a link to the knowl-
edge base and then the identifier of the entity. For example, the people are
connected to their country of origin, so in the people knowledge base there is a
reference from Obama to countries#USA.

In this paragraph I will explain the use of ontologies on the Semantic Web.
Ontologies describe the rules by which the knowledge bases must play. For
example, every food must have a country of origin, and those countries of origin
need to be of the Country Class. This rule enables search algorithms to limit
search to the countries knowledge base, as it is the only knowledge base that
contains countries[11]. This is just one example of a constraint that improves
the work of one system. There are many more reasons, for example adding the
rule ”all mothers are parents” allows inference systems to reason about richer
information without having to explicitly write down every relationship.

17

Figure 13: The question posed in a) is converted to a query pattern b). Ontology
information is added in c). The result is found after pattern matching in d) and
then converted to a natural language answer in e).

There are many ways of interacting with the Semantic Web, but they all
interact with the graph in some way. For example, a user can ask a question
”What is Obama’s favorite food?” Firstly, this question is converted into a for-
mat that can be used by a search system. Then, information from the ontologies
is added so that the search can be performed more efficiently. Then the pattern
is matched in the Semantic Web graph, listing all results. The results are then
combined or filtered such that one answer pattern remains, and that pattern is
converted to natural text. This process is depicted in Figure 13.

Figure 14: Similarly to a question with a single answer, the question in a) is
converted to the pattern in b). The answers that match b) are combined in c)
and converted to natural language in d).

More complex question can be posed, although they do not need to be longer.
If the question can be mapped to more parts of the Semantic Web, the answer

18

will be longer. In this case all knowledge of Barack Obama is extracted, com-
bined and converted into an answer.

2.1.4 Current state

Currently, people are not aware of the Semantic Web. Either websites and
applications do not use any semantic information, or it is used on the back-end,
hidden with other complex programs that users will not understand. So what
is the Semantic Web used for nowadays, if at all? In this section, I will list a
number of general ways people use Semantic Web technologies as well as specific
applications. Note that these are Semantic Web technologies, i.e. technologies
that came into existence through Semantic Web research and can eventually be
used in the Semantic Web, but currently are not used for the Semantic Web
since it does not exist yet.

The main languages W3C endorses are RDF, OWL and SKOS[12, 13, 14].
They are important for the Semantic Web and are already in use. Most of this
use, however, is for hand-crafted knowledge bases, created by experts, containing
only facts that are accurate, verified and relevant[15]. This method of creating
a knowledge base does not scale very well and usually consists of fewer than
ten thousand facts. Because of this, the knowledge bases are restricted to small
domains, including some parts of medicine and cultural heritage[16, 17]. As
such it does not help regular uses of the Web but only people who are willing
to become adept with the tools used in the knowledge bases.

The Linked Open Data project, on the other hand, is building the foundation
of the Semantic Web mostly automated. These automated methods work fast,
parsing thousands of websites a minute, but are inclined to make mistakes.
Often, these methods use crowd-sourcing to improve accuracy, using experts or
the general public to suggest or check facts[18].

The largest knowledge base of the LOD project, Freebase, boasts almost
two billion triples. The three hundred combined Large Open Data databases
contain over thirty billion[19, 20]. The LOD is simply a single alignment over
many different knowledge bases.

Applications include improved web searching, question answering, product
comparison, context merging, data integration, decision support, translation,
all the way up to the intelligent softbot mentioned earlier[21, 22].

An example: since the Hummingbird update, when someone Googles ”How
old is Barack Obama” they will find a part of the Knowledge Graph, see Figure
15. This system improves web searching by finding answers rather than pages.

The many uses of ontology matching and its role in the Semantic Web show
that it is important to research all avenues that might improve ontology match-
ing, as it will have a direct result in many fields.

19

Figure 15: A google search after the Hummingbird update returns a triple from
Google’s knowledge base, the Knowledge Graph.

2.2 Ontologies

Earlier, ontologies were referred to as ‘a set of rules that determine what rela-
tions are allowed and required.’ Now, the term will be defined more extensively,
the standard format will be described and the uses of ontologies will be dis-
cussed.

An ontology describes concepts as their relationships to other concepts. The
concepts that are described determine the domain the ontology covers, and the
relationships determine the rules the ontology imposes on the domain. For
example, a hierarchy is an ontology that describes concepts that are subclasses
of other concepts. Therefore the relationships are ’is-a’ relationships: a bird is
an animal. Concepts can be instantiated, which is done in a knowledge base
(KB). KBs and ontologies are often confused, and are indeed very similar in
structure. The knowledge base in our example can contain actually existing
birds or fictional birds, and refers to the ontology concept of bird to embed the
instantiations with meaning[23].

2.2.1 Example

In this section I will give an example of a pair of anatomical ontologies with
their alignment, which will be used throughout this work.

20

A mouse consists of the
following body parts:

• Head

• Torso

• Whiskers

• Tail

• Front paws

• Hind paws
Figure 16: The different body parts of the mouse
are connected as in this image.

Humans consist of:

• Head

• Torso

• Moustache

• Arms

• Legs

Figure 17: The different body parts of the man are con-
nected as in this image.

21

Figure 18: Humans and mice are connected as shown in this image.

2.2.2 OWL

OWL is a family of languages and syntaxes that can be used to create an on-
tology. The different languages are designed around requirements of possible
relationships and concept definitions, and thus may differ a lot between them.
The W3C has defined three variants which are the bases for all other adapta-
tions. The variants trade off levels of expressiveness versus computability.

A relationship in OWL is written as follows:

<ow l :C la s s rd f : about=” ht t p : //mouse . owl#Whiskers ”>
<rd f s : connectedTo r d f : r e s o u r c e=” h t tp : //mouse . owl#Head”/>

</ owl :C la s s>

2.2.3 Uses of ontologies

There are four main reasons ontologies are used. Firstly, it allows querying
languages to optimize the search process. Secondly, it allows expansion of in-
formation on a node. Thirdly, it allows for consistency checking a knowledge
base. Lastly, it allows merging of knowledge bases.

Search can be optimized by taking into account constraints the ontology pro-
vides. For example, no professor is a student, therefore no professor can be
connected to a course with ’follows’ predicate. This allows a search algorithm
to skip all professors when looking for people that might follow a certain course.

22

Expanding the available information of a certain node can be done by taking
into account positive constraints of a concept. For example, since all birds have
beaks, it would be inefficient to store this fact for every instance of bird in the
knowledge base. However, if this is a constraint given in the ontology, it can
be accessed for all instantiations of the bird concept with less space required.
Superclassing enables ontologies to store these types of information even more
efficiently, allowing for enormous amounts of information to be extracted for
every node without the need to store it all explicitly for that node.

One important aspect of data bases is consistency. Manipulations on a data
base such as a knowledge base must not result in a knowledge base that does
not adhere to the data base constraints. In a knowledge base, these constraints
are defined in the ontology.

When two knowledge bases need to be merged, aligned or matched, instan-
tiations that refer to the same thing need to be merged. For example, if two
person databases both contain references to the same person, all information
on that person needs to be linked to the same object, such that information
of that person from both knowledge bases can be combined. Merging the on-
tologies of the two knowledge bases vastly improves the alignment between the
two knowledge bases. However, ontology and knowledge base merging is not a
trivial problem and actually the problem that this thesis addresses. Therefore
it will be explained more in-depth later on[24].

2.2.4 Aristotle and Plato

All ontologies lie on a spectrum of formality. On the one end of the spectrum
are the Platonic ontologies, which should only contain concepts that are per-
fectly defined and constraints which are completely binding. The name refers
to the Platonic philosophy that all concepts are existing entities and can thus
be perfectly captured in a definition.

On the other end of the spectrum are the Aristotelian ontologies, which do not
necessarily contain perfectly defined concepts, but rather concepts as we observe
them. Aristotle disagreed with Plato’s theory that concepts are existing things,
and thus these ontologies are named after him[25].

Aristotelian ontologies have the advantage of being easier to create. One
can use statistical methods given a sample of all possible observations or crowd
sourcing to create concepts and constraints. This enables enormous ontologies
and knowledge bases, especially with the big amount of data currently available
and cheap mental labour with services like Amazon’s Mechanical Turk.

The advantage of a Platonic ontology would be the fact that every query would
result in a fact, since the ontology itself is perfect. The disadvantage is that

23

creating such an ontology is much more costly than an Aristotelian ontology,
since every concept and constraint needs to be correct in all cases.

These ontologies are often used in areas where precision is important, like
medicine, where lives depend on the information contained in the ontology and
its knowledge base. Aristotelian ontologies are more common on the Semantic
Web, where massive amounts of data need to be represented and queried.

Currently, alignment strategies are focussed more on Platonic ontologies. In
the Ontology Alignment Evaluation Challenge the datasets are relatively small
Platonic ontologies. Since most of the ontology matching systems are produced
to compete in the OAEI, almost all techniques focus on small, perfect knowledge,
perfect ground truth ontologies.

The proposed method should scale to much larger datasets without effort,
allowing for ontology matching that is suitable for the Semantic Web, rather
than just for individual small knowledge bases.

2.3 Current alignment strategies

In this section I will give a more in-depth description of the ontology matchers
that compete in the OAEI.

Many different ontology matchers have already been developed. All matchers
can be divided into two groups: those that require just the labels of the concepts
and those that require an initial correspondence set and the structure of the
ontologies. The first group is always used first to generate the correspondence
set of the second group. The first step is called a terminological matcher since
it only uses the terms of the concepts. If it uses a vector space model it is also
called an extensional matcher.

The second step is referred to as structural matching. If the matcher uses
logic, it is also called an inference matcher[22].

Popular terminological strategies are WordNet comparison and edit distance.
The former uses the popular WordNet hierarchy as a distance measure between
two concepts, e.g. the number of edges between the concepts and their least
general common superconcept[26]. For example, the distance between mous-
tache and whiskers is 3, since their least general common superconcept is hair
the distance between moustache and hair is 2 (with facial hair between them)
and the distance between whisker and hair is 1. Edit distance is a purely string-
based similarity measure. The similarity is a (weighted) count of edits required
to transform one word into another, where common edits are insertion, dele-
tion and replacement. Similar methods include substring matching and n-gram
matching, which compare parts of the strings to find similarities[27, 28]. For
example, arm and front paw have an edit distance of 8, since they have 1 char-
acter in sequence in common (either the a or the r) and thus 8 characters that
are different, see Figure 19.

24

Figure 19: The edit distance between arm and front paw.

An example of a structural matcher is the children matcher. It matches all
children of a pair in the correspondence set with some low confidence. When
two nodes are matched more often, their confidence is combined until it reaches
some threshold. Then it is added to the correspondence set.

2.3.1 Problems in ontology alignment

How should the wildly differing demands the applications place on the ontology
matching systems be satisfied by a single or just a few systems? When merging
ontologies on one end of the Aristotle-Plato spectrum, often a completely dif-
ferent approach is required than an ontology on the other side. Sometimes the
matching needs to be very fast, for example when the ontologies are used in a
search query which the user expects to be done in milliseconds.

Based on the previous point, it would also be useful to have different bench-
marks to test those different types of challenges and matching systems. This
would allow for better comparison of methods and better tracking of the im-
provements in the field.

Since the Linked Open Data keeps growing, it, and other resources, should
be used in matching. This is already done to some degree, as discussed in
the WordNet matching strategy section 2.3. The challenge is to all available
ontologies and other sources rather than just WordNet.

Word embeddings should be good at using other ontologies, since they can
very quickly learn embeddings for all concepts in those ontologies. These em-
beddings can then be used during matching as an a priori believe of the locations
of the word embeddings in semantic space.

When these and other problems are solved, ontology matching has matured
enough to be used in Semantic Web applications. Then it is merely the challenge
to have the public adopt these technologies.

25

2.4 Word representation

An important area of research in Natural Language Processing is the represen-
tation of words. The most obvious representation is the collection of characters
humans are used to. However, this is not useful for computers as these characters
do not say anything about the meaning of the words, nor is it a representation
that computers can quickly do calculations on.

Many different representations have been proposed. The main purpose of
word representations in NLP is to represent the meaning of the word. One
way to represent a word is the term frequency. This representation counts the
number of occurrences of a word per document in a set of documents. The
resulting vector of occurrence counts is then used to represent the words. Since
the documents have a subject, there is some meaning embedded in the vector
representation. However, the representation is very sparse and the semantics or
meaning of the word are not captured very well. Also, the method requires many
discrete documents to train on, which are not available in ontology matching.

The rest of this subsection will describe the latest word representation model
which has very interesting results in NLP. It will cover the history and the most
recent advances that are relevant to this study.

2.4.1 Skip-gram models

Skip-gram models have been in use for some time. Like the document frequency
representation, it represents words as vectors. However, the vectors are much
more dense and can be trained on sentences rather than documents. The vector
distance of skip-gram models has been shown to be related to the semantic
similarity between words. This semantic similarity property is very useful for
ontology alignment, as parts of one ontology have to be aligned with parts of
another ontology depending on their semantic relation.

26

Figure 20: The embedding of a word (in pink) is optimized to be close to its
context embeddings (in purple) but far away from other embeddings (in red).

Skip-gram models work by teaching a 3-layer neural network to predict the
context of a word. In NLP the context is a number of words before and after
the word. Firstly, all words a represented by 1-hot encoding, which is a vector
with all zeroes and a single one on the index of the word. This vector has
length V equal to the number of words in the corpus. This vector represents
the first layer, the input layer of the neural network. The second layer, the
hidden layer is obtained by multiplying the first weight matrix with the first
layer. Since the first layer is one-hot encoded, this is equal to the row of the
matrix corresponding to the index of the word. This representation will later
be used as the representation of the word.

Then the representation is multiplied with another matrix to create the third
layer, the output layer. The word representations and second matrix are opti-
mized in such a way that the output layer is as close as possible to the one-hot
encodings of the context.

As a consequence words that occur in similar contexts will be represented
similarly. This again causes contexts that contain similarly represented words
to also become more similar. This positive feedback loop causes co-occurring
words to be represented more and more similarly. On convergence, words with
similar meanings are represented similarly.

2.4.2 The state of the art

Recently, an effective and efficient skip-gram model has been developed, called
Word2vec, which uses a number of extensions over previous methods that enable
it to efficiently learn an effective representation[4]. One example of such an

27

extension is negative sampling, which is a step that teaches the network that
randomly selected words should have non-similar representations.

These extensions enable Word2vec to be trained on large corpora and repre-
sent words in a way that is very useful in NLP. It is used as a language model
in part-of-speech tagging and machine translation.

Interestingly, the representations have been shown to contain semantic in-
formation too. A common example is the following formula: vec(”queen”) =
vec(”king”)−vec(”man”)+vec(”woman”). This means that gender is encoded
in the vectors and other types of meaning may also be encoded.

After the authors showed the usefulness of Word2vec, many researchers de-
veloped new uses for the algorithm. Some extensions that are relevant to this
study will be discussed. Firstly, I will describe a model that represents syntax
as opposed to semantics. Secondly, I will describe a model that is capable of
representing multiple meanings per words.

2.4.3 Word order

Word2vec has been expanded in a number of different ways. For example,
word order can be preserved, leading to a similarity measure that is closer to
syntax, as syntax defines positional properties of words within a sentence[29]. To
enable this alternative representation, the model had to be changed structurally.
Rather than a single output layer generated by a single matrix, one layer per
word in the context was used. As such, the model learns to predict the context
words based on their position relative to the source word. More important
than the fact that these models can be used for syntax is the fact that the
research shows that the input does not have to be a continuous bag-of-words
representation. This sparked the idea that it may also be possible to have a
graph as the input to the network. This assumption is the basis of this study
and will be tested thoroughly.

28

Figure 21: Rather than ranking the output of the network with respect to the
whole context, one output per item in the context is computed and ranked.

2.4.4 Multi-sense

Another interesting development is the multi-sense Word2vec, which allows for
multiple vector representations per word, depending on the number of differ-
ent definitions a word has. For example, the word bank represents both the
monetary institute and the riverside, which would both have a different repre-
sentation in this extension. It can differentiate between two different meanings
based on the context. The importance of allowing for multiple meanings is that
between multiple ontologies, the same word can have different meanings and as
such should not be matched. On the other hand, a concept in a single ontology
can have multiple meanings and should therefore be matched with more than
one concept from another ontology[8]. This idea sparked the second reason why
I started investigating semantic word representations for ontology matching,
since current methods do not allow for disambiguation.

29

Figure 22: The context is first used to find the right sense, which is then opti-
mized to match the context.

String matchers only look at the phrases representing the concepts, and as
such do not care about semantics. Structural matchers use the context, but
do not use the meaning of the concept since they only look at the location of
the concept within the graph. Lastly, lexical matchers do use synonyms and
antonyms to see which different words could refer to the same concept, but
if two concepts can be represented by one word. As such, initially the multi-
sense representation seemed like a very strong candidate for improving matching
results.

2.5 Used technology

2.5.1 Factorie

Factorie is a toolkit that contains a number of tools which includes word-
embedding models [30, 4].

Factorie provides a number of utilities for writing an algorithm in the shape
of abstract classes with existing functionality, namely IO, parallelisation, quick
parsing and command line argument parsing. It also provides example imple-
mentations and programs. Factorie is written in scala, a language that has been
gaining popularity recently and interfaces with java. See [31].

30

The automated IO allows for quick reading in of the data set and secure
saving of the trained model. The file reading is quicker than a naive CSV parser
would allow for, and thus enabled quicker training of the models. This meant
less time is used and more time can be used for experimenting and improving
the algorithm. Saving the different models allows for model comparison after
all models have been trained, which means new investigations can be performed
after conclusions have been drawn from earlier investigations, without having
to retrain all models. This also allows multiple models to be trained during
a period where the experimenter is absent, after which he can still manually
investigate the models.

Parallelisation can massively improve training speed. It allows an algorithm to
update its model for multiple learning instances at the same time, thus reducing
the time needed by the number of instances it can process simultaneously. The
number of parallel processes differs per device but modern personal computers
already boast 8 parallel processors.

Since I investigate many different implementations of the same algorithm, it
should be easy to switch between these implementations at run-time without
much effort. Command line parsing allows for this to happen, and thus improves
experimentation ease.

2.5.2 Jena

Jena is the most used library for storing, manipulating, querying and reasoning
on ontologies[32]. It has an interface that allows for easy access to an ontology.
For example, if one would like to obtain a list of all neighbours of a certain node,
one can simply use the following Jena command:

onto logy . l i s t S t a t e m e n t s (givenNode , null , null)

It automatically gives all statements that have the given node as subject.
In terms of graphs this is equal to obtaining all edges that go out of the given
node.

In Jena it is possible to obtain the label of any node, if it has it, by calling:

label = node . i sBlank () ?
node . getBlankNodeLabel () :
node . g e t L i t e r a l ()

The ternary is to distinguish between blank and non-blank nodes. Blank
nodes are a feature of ontologies and thus need to be taken into account. Blank
nodes can be used to represent concepts with multiple representations, for ex-
ample a label, a description and a known synonym. More advanced algorithms
can take into account all these representations. Another use of a blank node is

31

representing a complex relationship that cannot be represented by an object-
predicate-subject triple. For example, if the relationship has a certain confidence
or more than two concepts are involved.

2.5.3 AgreementMaker

AgreementMaker is an ontology matching system that obtained the highest F-
measure in 6 of the 7 ontology matching tracks of OAEI 2015 [33]. The system
has also been updated the most recent at the time of writing[34].

The system will be used as a benchmark to compare the results of this study.
It uses many matchers in ensemble and therefore it is more realistic to compare
my single matcher with a single matcher from the system, so I will do that too.

Ideally it would be possible to extend the Agreementmaker system with the
matcher developed in this study. However, their claim that the system is easily
extendible does not ring true, as it was too hard for the scope of this project to
accomplish. See Appendix 8.

32

3 Method

This section contains the description of the matching system and experimental
setup. It consists of four parts. Firstly, it describes the idea and challenges
of implementing the system. Secondly, it describes the data used to test the
system. The third part describes the whole system, including all different im-
plementations of the algorithm and a system check to ensure valid results. The
fourth and last part describes the evaluation criteria.

3.1 Idea

The goal of any ontology matcher is to find an alignment between two ontologies
that is as similar as possible to the true alignment. Such an alignment consists
of node pairs where the two nodes in each pair come from the two different
ontologies. Sometimes a label is added to each pair, indicating the relationship
the two nodes have. For example, ’part-of’, ’similar-to’, and such. However, we
only consider equality relationships and thus the label can be omitted.

Then the question becomes: how do we measure similarity of concepts between
ontologies? As shown in 2.3, attempts have been made to model similarity of
nodes as the string similarity of their labels. Also, WordNet is used to find
similar nodes. The string similarity assumes that similar labels refer to similar
concepts. While this is true to a certain degree, homonyms, synonyms, and
other phenomena make this assumption very weak. WordNet-based similarity
measures are better since WordNet links concepts semantically, and thus similar
concepts will be close in WordNet. The major problem with WordNet is that it
is constructed by hand, and thus does not scale very well to new domains.

The idea behind the algorithm introduced in this study is to find an alternative
to WordNet that is at least as good in modelling semantic distance but scales
to new domains. It should be trainable on this new domain through existing
ontologies and texts in an unsupervised way so that it does not require the
interference of experts. This will allow it to overcome the weakness of WordNet.
This is only relevant, though, if the performance is equal to WordNet-based
matchers.

Word2vec is an unsupervised method that implicitly maps words to a vector
space that has been shown to contain semantic properties. Explicitly, it predicts
words from the context of that word[4]. It can be trained on large corpora
quickly and the resulting vectors can easily be used to measure the distance
between words. All these properties make it an excellent candidate for a concept
distance measure to use for ontology matching. As an added benefit, it can also
take into account the context of a concept, which may be able to improve its
performance over a matcher that only uses the label of a concept.

33

3.2 Challenges

The semantic representation will be used for finding nodes in the two ontology
graphs that are similar, i.e. close in the vector space. This step is relatively
straightforward if proper vector representations are found. However, this may
be hard due to a number of problems which I have listed below.

• The problem I am trying to solve is the problem of differently labelled
nodes referring to the same concept. For example writer and author will
not be matched by a string matcher, but should be matched. The two
concepts may also have different labels in their context even though their
contexts refer to the same concepts.

• The size of the training corpus should be large enough for proper repre-
sentation to be learned for every concept. This is a problem since the
ontologies may be relatively small.

• The representations should also be relevant to the labels that are in the
ontologies. For example, a model pre-trained on text will likely have very
different embeddings than trained on an ontology, and may as such not
be very useful.

• Some labels may be ambiguous, for example homonyms, which are con-
cepts that have the same label but represent a different context.

To solve these problems I will adapt Word2vec to graphs to create an al-
gorithm that converts nodes to vectors, in other words Node2vec. It can be
extended with multi-sense embeddings, different ways of considering the neigh-
bourhood and hot-starting.

3.3 Data

The data used comes from a list of data sets that the OAEI provides[35]. Al-
though the data is not as big as the dataset McCallum will use, there are a few
reasons to use these data sets.

Firstly, it allows comparison to the state-of-the-art matchers as they all
competed in the OAEI. Secondly, DeepWalk, an alternative way to transform
graphs into vector representations, works on small graphs. Consequently, it is
likely that other embedding models should work on small graphs as well.

Every data set contains two ontologies that need to be aligned and a ground
truth alignment. The goal is straightforward: find the alignment given only the
ontologies and whichever outside resources are needed.

3.3.1 Mice and men

The first data set considered consists of two anatomical ontologies. The first
ontology describes the anatomy of mice and the second ontology the anatomy of

34

men. Since they are similar creatures, there are many correspondences between
the anatomy. The ontologies contain 1838 and 3298 nodes, and 1807 and 3761
edges, respectively. There are 1516 correspondences between the two ontologies.

The ontology is structured as a hierarchical tree with the only label being
subClassOf. This poses a few problems for some of the implementations as
they take into account the edge labels. Since there are no edge labels, these
implementations will not be different from their edge-less counterparts.

3.3.2 Medical

The second data set is larger, boasting 23692 and 16923 medical concepts with
31289 and 18932 relations. There are 18476 correspondences between the two
ontologies.

3.4 Algorithms

In this section, I will discuss the different implementations that were made of
the algorithm. All implementations use the same basic algorithm in different
ways by taking into account the context in different ways. All of these im-
plementations were tested and the results can be found in Section 4. Some
implementations extend others, but all implementations are covered to ensure
completeness. This way, all improvements are recorded precisely. All algorithms
use word embeddings, though the way they use word embeddings is different.
The explanations refer back to the example in Section 2.2.1.

3.4.1 Pre-trained models

The simplest way to use node embeddings for ontology matching is to obtain a
model already trained on normal text. This model should already have learned
some semantic context, although neighbourhood in text is different from that
in an ontology. Also, since the words it is trained on might not match the
labels from the ontology, two things need to be done. Firstly, if a word is not
in the model, it is ignored. Secondly, the labels are split up into separate words
and the resulting vectors are averaged. This model was chosen because of its
ease of implementation and to see if the graph-based context improves ontology
matching over the text-based context.

3.4.2 DeepWalk

DeepWalk generates sentences by randomly walking through the ontology and
processes those sentences using a normal word embedding model. This means
it is possible to have a wide neighbourhood, as the neighbours of neighbours
are also used as context, or even further neighbours depending on the scope of
the algorithm. It also allows for weighting of edges to change the sampling rate
of the random walk, which can be used to prioritize important nodes or high-
light informative neighbours. One adaptation over normal Deepwalk that was

35

Figure 23: Two graphs with a few corresponding nodes are embedded into vector
space. Because of the known correspondences the latent correspondences are
also mapped close to each other.

considered is switching between ontologies when on a concept from the corre-
spondence set. For example, if both ontologies contain eye, when the algorithm
lands on the corresponding node, it will have a chance to switch to the other
ontology. As such the sentence will contain concepts from both ontologies and
they will move closer together. See Section 3.5.5 for an example of the sentences
generated by DeepWalk. See Figure 23 for an example of two ontology graphs
being mapped to the same space.

3.4.3 Node vectorisation

The most basic Node2vec model converts a node to a vector purely based on
its own label. This method has one advantage over simple string matching:
if no node is found in the other ontology that matches exactly, we can still
find a node that is similar since it is close in the vector space. Therefore, this
method should already be an improvement over the most basic string matching
algorithms. It may even be competitive with more advanced string matchers
(that look at substrings of labels). See Figure 24.

An example, whisker and moustache may be matched by a substring matcher,
but are also semantically similar since they will often be mentioned in the same
context. This method was chosen because it is the foundation of all other mod-
els that use the graph-context. It is required to see if the extensions improve
results.

36

Figure 24: The ontologies represented as a tensor. The connections (in green)
are only within the ontologies, not between. The embeddings are used to predict
new connections between the ontologies (in light green)

3.4.4 Bidirectional connections

More connections means bigger context. For neural networks more data is al-
ways a good things. Therefore it is likely that this will improve results some-
what.

3.4.5 Select from senses

One way to take into account the influence of neighbouring nodes is to train a
multi-sense node embedding model as described in Section 2.4.4, and selecting
from the different node senses based on which is closest to the context average.

3.4.6 Hot start

It is hard to classify the proposed algorithm in terms of the conventional ontol-
ogy alignment method classes. It is not purely string matching, since it takes
into account information from the context. However, it is also not structural,
as it can work without a seed alignment and uses information other than the
structure as well. It is not semantic (or logical) since it does not use inference.
Nor is it terminological, which looks at dictionaries or other ontologies to find
matches. However, it can use dictionaries and other ontologies to improve per-
formance. The algorithm can find matches based purely on the given node and
edge labels. However the algorithm might benefit from a hot start. Such a seed
alignment might allow the algorithm to train with certain words that are known
synonyms as if they were the same word, thus increasing the number of training

37

samples per word (on known relevant words) and decreasing sparsity. This may
help the model, improving performance. However, since some information from
other algorithms is now used, it would not be fair to compare the results to
the cold start algorithm results. For example, it may just add the results from
the generic string matcher to its own results, improving performance, without
learning any new relationships. A new testing method had to be designed for
this algorithm. This method would have to compare it to the string matchers,
to see if it improved over their results, rather than compare it to the cold start
algorithm. However, if we compare the cold and hot algorithms with the generic
string matchers, we may be able to compare them indirectly. An example of a
hot start is that mouse torso is already matched with human torso. Then it
is likely that their neighbours are also related. Since the front paws and arms
are next to the torso, they are more likely to be matched now. In the case of
Node2vec they are more likely to be matched, since their neighbourhoods are
the same (the only neighbour of both arms and paws is connectedTo torso).

3.5 System check

To ensure the results are valid, I ran a system check. The check is designed to
detect the following conditions.

1. The data breaks the considered algorithms.

2. There are bugs in the developed system unrelated to the algorithms.

3. The considered context extraction does not work.

I will investigate all three to ensure they cannot be the cause of bad results
and as a sanity check to prevent confirmation bias. If potential cause one is
the case, the study is invalid and should be repeated on one or more different
data sets. If either potential cause two or three is the actual cause, the study is
invalid and the results should not be published until the system is fixed and the
results do not change. If it is the case that none of these three potential causes
is the possible, the results are valid, the results reflect the performance of the
algorithm and valid conclusions can be drawn from this study.

3.5.1 The data

If the data set is broken, switching to another data set will substantially change
performance. Of course, different data sets are inherently unequal in their dif-
ficulty. Therefore I will check the performance relative to the baseline and the
best known algorithm. If it performs similarly relative to those references, it
can be concluded that the data works as intended.

Possible reasons for the data causing bad results include the data set being
too small, labels that are not useful or the data set having a structure that does
not work with the algorithm. For example, the pre-trained Word2vec model is
expected to work better on a data set that has commonly used words as labels.

38

The algorithm has been run on multiple data sets which are different. Despite
that there is no significant difference in performance. For example, compare the
F-measures for the medical dataset and the anatomy dataset. From Section
4 we can see that both F-measures improve over the baselines, therefore the
datasets used do not seem to influence the algorithm by much.

3.5.2 The system

Since the system parts are connected in sequence, if any of the steps in the
software system contains an error, the whole system fails. This could cause
all algorithms to learn badly or the results to be misinterpreted. The system
consists of a data loader, preprocessor, context extractor, the algorithm, the
matcher and multiple visualizers. If all of these systems work properly, the
system is not the reason for the underperformance. I will analyse every part
except for the context extractor, which will be analysed in the next section.

Figure 25: The program is structured in sequence, except the visualisers which
are structured in parallel.

Preprocessing The preprocessing transforms the OWL graph into a graph
with just the nodes and edges. Since OWL uses blank nodes to structure the
ontology and connects everything to Thing and Nothing, two OWL concepts,
those need to be resolved and removed, respectively.

We can conclude that this works if the context extraction works. Please
refer to Section 3.5.3 for those results.

Matcher The matcher gets as input the embeddings generated obtained by
the algorithm. It uses these to calculate the distance between nodes and output
the most likely alignments. As such it completes the system so that it produces
a set of alignments from the two ontologies.

39

The matcher is a simple KD-tree that finds the nearest neighbours of every
node in the opposing ontology. The KD-tree has been tested by its creator and
as such does not contain errors.

Data loading Since the preprocessing and context extraction works, we can
conclude that the data is also loaded properly.

Statistics and visualisation Since the visualizers work in parallel, errors in
them would not cascade to the others, so they are all faulty or none of them
are.

Since every part works, the system is not faulty.
Secondly, as an extra measure, the following steps have been replicated by

another piece of software: the data loader, preprocessor, context extractor and
the algorithm. The results of that system are titled ”alternative DeepWalk” in
the results Section. As this system has been used in other projects and is written
by someone else, if the results match the ones from this study, the system from
this study works.

3.5.3 Context extraction

There are different context extractors for some of the different algorithms. I
will research every one: the sentence generator of DeepWalk, the context ex-
tractor for the graph-based models and the context extractor for the pre-trained
model. If all three work well, the context extractors are not the cause of the
underperformance.

The context extractor for DeepWalk works as generates sentences as described
in Section 3.5.5. Since the sentences are generated properly and DeepWalk only
requires sentences, the context extraction for DeepWalk works.

For the Node2vec algorithms, the context extraction is more advanced. All
edges are extracted from the ontology using Jena. Then, for every node the
context is decided as every node it has an edge with. In the case of the bidi-
rectional algorithm, both outgoing and ingoing edges count as being connected,
whereas in the monodirectional algorithm only outgoing edges count as the con-
nectedness. For the algorithms that also use the edge labels for context, double
the context size is expected.

The context extraction of the pre-trained Word2vec consists of splitting up
every label into multiple words which can be looked up. For example ”Adrenal
vein” can be split up into ”Adrenal” and ”vein”. The pre-trained model does
not use any other form of context integration.

40

First, I obtained the number of edges from VOWLview[36], an ontology graph-
ing program, represented in Figure 26. This was necessary since the creators of
the data did not share how many edges were in the database. With the actual
number of edges, obtained, it is possible to compare them with the number of
edges found. If these match, the context extraction works.

Figure 26: The mice dataset visualized in VOWLview. It shows the hierarchical
nature of the data, as subclasses circle their superclass. It also shows that many
individual classes are not connected, and as such structure cannot be used in
the matching process.

Table 1: The number of edges compared to show that edge parsing was success-
ful.

#edges mice #edges humans
Algorithm expected actual expected actual
Truth* 1810 3780
Monodirectional 1810 1807 3780 3761
Bidirectional 3620 3614 7560 7522

Since the expected number of edges and actual number of edges are very
similar, we can conclude that the context extraction works. The difference can
be explained by oddities in the VOWLview representation, as it contains edges
that are not relevant to the ontology such as in Figure 27.

3.5.4 The algorithm

At the beginning of this section, I reasoned that there are three possible causes
of system failure, namely, bad data, bad code and bad context extraction. I
have shown that all three are unlikely to cause problems. Since those three
possibilities have been excluded, it is certain that the results of this study are
actual results.

41

Figure 27: An example of two edges that VOWLview renders that are not
relevant to ontology matching.

3.5.5 Example: DeepWalk sentences

Sentence lengths vary from 1 to about a hundred. The lower limit is due to the
fact that some nodes do not have neighbours and as such the sentence is cut
short. The upper limit not precise since the sentence end is random.

Below are some examples of sentences.

1) incus auditory bone incus auditory ossicle ear part cymba conchae
2) brain nucleus brainstem nucleus red nucleus brainstem nucleus

raphe pallidus nucleus brainstem nucleus trochlear iv nucleus brain-
stem nucleus nucleus of trapezoid body

3) hip joint hindlimb joint ankle joint joint by site cricoarytenoid joint

Figure 28: Example of a sentences that run over both ontologies. The words
are color coded according to which ontology they occur in. Red is the mice
ontology, blue the human ontology and purple words occur in both ontologies.
Underlined words indicate a point at which the walker switches between the
ontologies.

The first and third sentence both contain words that are in both ontolo-
gies. However, in the first sentence the switch does not occur immediately.
The second sentence contains words from just one ontology. This will improve
the embeddings for that ontology, but will not teach the algorithm about the
mapping from one ontology to the other.

42

thyroid gland left lobe

Figure 29: Some sentences contain only one word. Often these words refer to
nodes with no neighbours.

43

3.6 Evaluation

The goal of this study is to see if the developed ontology matching algorithm
performs better than the best existing matchers. In this section I will define
better.

3.6.1 Evaluation methods

Since for the used data the ground truth is available, comparison is straight-
forward. Namely, the algorithm that finds the most items that are also in the
ground truth in the lowest number of attempts. This definition, however, has
two parts: the number of correct attempts and the total number of attempts.
This makes it hard to compare two algorithms, as one may be better with few
attempts allowed whereas the other may be better with more attempts allowed.

Precision represents the number of attempts: it is the ratio of the correct
attempts divided by the total number of attempts. However, if you make only
one attempt and it is correct, you cannot improve your precision by making
more attempts. This solution is to balance precision with recall. Recall is the
ratio of the correct attempts divided by the number of items in the ground
truth. Often a higher recall results in lower precision as items from the ground
truth become increasingly harder to recognise. For example, concepts with the
same label are easy to link, but synonyms are much harder to link.

To balance precision and recall we use the F -measure. It uses a balance
factor to favour either precision or recall. The F1-measure is the harmonic mean
of the two. The F1-measure is used in this study. This is in correspondence to
studies in the same area of research and thus allows for good comparison.

However there is still one problem remaining. The algorithm outputs a confi-
dence measure for every possible alignment. This means that the F -measure de-
pends on the confidence threshold to select which alignments become attempts.
The optimal threshold can be decided by using a validation set to check the
most likely thresholds.

We want to compare to a baseline to ensure proper interpretation of the
results. For example, it is possible that a very simple baseline algorithm is
already able to obtain a good score. In that case the results of the algorithm
should be corrected. A higher score is still better, but an improvement from 0.1
to 0.2 is not as impactful as an improvement from 0.8 to 0.9.

To test the hypothesis it is also required to compare the results to the best
scoring algorithm on the same data set. However, as the best scoring ontology
alignment system uses many algorithms in an ensemble, it would be an unfair
comparison. There are two solutions.

Firstly, if the ensemble is extended with the algorithm of this study, it is
possible to see if the algorithm improves the ensemble and thus can find align-
ments the other algorithms cannot find. However, as the it is not possible to
change the ensemble used in the best alignment system, this is not possible.

The second option is to compare the algorithm to every single algorithm
in the ensemble. This is possible as the whole system is available and single

44

algorithm can be separately used. This method was used in this study.

45

4 Results

In this section I will show the objective results of the study. Firstly, I will show
the precision-recall trade-off curve of all algorithms. Then I will go into detail
of the results of the most promising algorithm.

4.1 Precision versus recall

4.1.1 Mice and men data

Figure 30: Precision-recall trade-off curve for the results of bidirectional
Node2vec. Red indicates the maximum F1-score.

(a) Pretrained Word2vec
algorithm.

(b) Random for compari-
son.

(c) Alternative DeepWalk
algorithm.

Figure 31: Precision-recall trade-off curve for the results of three more algo-
rithms.

46

(a) Pre-trained (b) Bidirectional

Figure 32: Precision-recall trade-off curve for the results of two algorithms on
the medical dataset.

4.1.2 Medical data

4.2 F-score

Table 2: The F1-scores for the different matchers for the mice and medical
datasets compared to the result of AML at OAEI 2015 [33]

.

Matcher
F1-score

Anatomy Medical
Label Match 0.6926 0.4905
Random 0.6926 0.4905
Pre-trained 0.6926 0.4905
Bidirectional 0.8432 0.4946
Multi-sense 0.6926 0.4905
Deepwalk 0.6926 0.4906
Alternative DeepWalk 0.6926 0.4905
AML ensemble 0.94 0.81
AM base matcher 0.769 ∗

AM advanced matcher 0.552 ∗

∗AgreementMaker was unable to load the dataset and thus no scores could be computed.

47

5 Conclusion and discussion

In this section I will draw conclusions from the results, answer the research
question and give a verdict on the hypothesis. In the second part of this section
I will discuss these conclusions. In the third and last part of the section, I will
describe a few avenues that might be interesting to explore further, including a
number of implementations I did not consider and why.

5.1 Conclusions

The goal of this study was to answer the research question from Section 1.5:

Can distributed representations of concepts be used to find relationships
between concepts in ontologies?

To answer this question I have examined the following points from Section
1.5 for every algorithm (Pre-trained Word2vec, DeepWalk, Node2vec):

The algorithm uses distributed representations of concepts From Sec-
tion 3.4 it is clear that every single algorithm uses distributed representations.
To summarize:

pre-trained Word2vec Uses existing distributed representations on every word
in a label.

Node2vec All implementations of the Node2vec algorithms, monodirection,
bidirectional and multi-sense, convert nodes into vectors.

DeepWalk Trains a normal distributed representation model on labels with
the context generated from a random walk.

The algorithm finds relationships between concepts in ontologies This
is correct as the inputs are always two ontologies and the output is always a set
relationships between the ontologies.

The algorithm performs well One of the algorithms, the bidirectional
Node2vec algorithm, finds new relations. Therefore we can conclude that the al-
gorithm can be used for ontology matching. It also outperforms two algorithms
used in the best performing system, and thus can be called competitive.

All algorithms, however, perform worse than the full AML ensemble. As de-
tailed further in Section 5.2, there is still potential for embedding methods. The
bidirectional Node2vec algorithm outperforms both the AgreementMaker Base
Matcher and AgreementMaker Advanced Matcher, showing that it performs
well enough to be used in an ensemble, even with little data.

48

5.2 Discussion

This study shows that the algorithm of McCallum et al as shown in [2] does
not help improve the results of ontology alignment more than the best current
method does.

One assumption that was made by the developers of the Universal Schema
seems to be incorrect, namely the assumption that when combining knowledge
bases matching labels refer to the same entity and vice versa. For example,
the assumption that Bill Gates is called Bill Gates in FreeBase as well as in all
unstructured text does not hold up. In reality, there may be multiple entities
named Bill Gates and the same entity may be labelled differently.

This assumption become even weaker as an increasingly growing part of the
Semantic Web is automatically generated and as such different labels can be
assigned to the same entity. One of the goals of ontology matching is to link
those differently labelled entities.

In the following sections I will describe a number of extensions that might
improve the algorithm further such that it may one day rival hand-crafted meth-
ods in their domain and be unparalleled in the big data domain.

5.3 Possible adaptations of the algorithm

5.3.1 Combine with neighbours

To improve the model, context information from the neighbours of a node can
be added. The most basic context adaptation would be to create a vector as
the average of the context vectors. The resulting vector should be combined
with the node vector of the node that is being investigated. This can be done
by averaging or weighted averaging where the context is weighed more if there
are more neighbours, though not necessarily linearly. For example, since the
front paws and arms are both attached to the torso, their context vectors will
be similar as well.

5.3.2 Adding edge labels

To add more information to the model, edge labels can also be added to the
context of a node. This method effectively doubles the training data and context
size when creating the context average. This should make the model more
robust, although edge labels may be duplicate (one has many unique family
members) and less informative in general, so a lower weight may be appropriate.
A different possible problem with this method is that the relation between a
neighbour node and its corresponding edge may be lost, since they are just
treated as independent contexts. In the case of the mouse ontology, the head is
above the torso so isAbove will be added to the context of head. The same goes
for the human head, which will make them more similar.

49

5.3.3 Combining edges with nodes

As can be read in Section 2.4.3, it is possible to drop the bag-of-words assump-
tion that the context is sequence invariant. This means we can for example
have the context be (previous word, next word) and those words will be treated
differently. Similarly we can separate the edge and node labels and treat them
differently. This ensures that the model will find any relationship between the
edge and the node if it exists and will take this into account. For example,
isBelow and torso will combine into a vector that is similar to tail whereas
isAbove and torso combine into a vector that is similar to head since the edge
and node labels are combined in the model, rather than considered separately.
As the datasets used in this study did not provide any edge labels, the method
could not be studied.

5.3.4 Training corpus

Word embedding models need to be trained on a large corpus. These corpora
need to cover the concepts that are contained in the ontology, but also need to
be large enough to build good embeddings. Since the ontologies themselves do
not necessarily contain enough examples to embed the concepts properly, other
ontologies that contain the same concepts can be useful. In the case of the mice
and men ontologies, anatomical or medical ontologies may be used, since they
may list more anatomical relationships or common relationships (for example
whisker and moustache are related to hair). Since no such ontologies exist for
the OAEI datasets, this extension could not be investigated.

6 Lists of figures and tables

50

List of Figures

1 Movie selection process . 1
2 Universal Schema . 3
3 Universal Schema predictions . 4
4 Skip-Gram model . 5
5 Ontology matching graph example 6
6 Web 1.0 . 11
7 Web 2.0 . 12
8 Web 3.0 . 12
9 Semantic Web graph . 14
10 Knowledge base graph . 15
11 Linking the knowledge base . 16
12 Semantic Web knowledge base view 17
13 Graph question example . 18
14 Graph biography example . 18
15 Hummingbird search . 20
16 Mouse ontology . 21
17 Human ontology . 21
18 Aligned ontologies . 22
19 Edit distance example . 25
20 Skip-Gram model . 27
21 Syntax Skip-gram . 29
22 Multi-sense Skip-gram . 30
23 Two graphs embedded . 36
24 Tensor with multiple ontologies 37
25 Program diagram . 39
26 VOWLview of mice dataset . 41
27 Addition edges example . 42
28 Sentence that runs over both ontologies 42
29 Sentence with single word . 43
30 Precision-recall curve trained mice model 46
31 Three more precision-recall curves 46
32 Medical precision-recall curves 47

List of Tables

1 Edge comparison . 41
2 F1 . 47

51

7 References

[1] Rohit Khare and Tantek Çelik. Microformats: a pragmatic path to the
semantic web. In Proceedings of the 15th international conference on World
Wide Web, pages 865–866. ACM, 2006.

[2] Andrew McCallum. Representation and reasoning with univer-
sal schema embeddings presentation. http://videolectures.net/

iswc2015_mccallum_universal_schema/, 2016.

[3] Sebastian Riedel, Limin Yao, Andrew McCallum, and Benjamin M Marlin.
Relation extraction with matrix factorization and universal schemas. 2013.

[4] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their compositional-
ity. In Advances in neural information processing systems, pages 3111–3119,
2013.

[5] Sibangiso Ngwenya and Khesani Richard Chilumani. A semantic web so-
lution for information overload, 2011.

[6] Dieter Fensel. Ontologies. In Ontologies, pages 11–18. Springer, 2001.

[7] Venkat Chandrasekaran, Nathan Srebro, and Prahladh Harsha. Complexity
of inference in graphical models.

[8] Arvind Neelakantan, Jeevan Shankar, Alexandre Passos, and Andrew Mc-
Callum. Efficient non-parametric estimation of multiple embeddings per
word in vector space.

[9] Graham Cormode and Balachander Krishnamurthy. Key differences be-
tween web 1.0 and web 2.0. First Monday, 13(6), 2008.

[10] Tim O’reilly. What is web 2.0: Design patterns and business models for the
next generation of software. Communications & strategies, (1):17, 2007.

[11] Mario Schlosser, Michael Sintek, Stefan Decker, and Wolfgang Nejdl. Hy-
percup—hypercubes, ontologies, and efficient search on peer-to-peer net-
works. In International Workshop on Agents and P2P Computing, pages
112–124. Springer, 2002.

[12] Frank Manola, Eric Miller, Brian McBride, et al. Rdf primer. W3C recom-
mendation, 10(1-107):6, 2004.

[13] Deborah L McGuinness, Frank Van Harmelen, et al. Owl web ontology
language overview. W3C recommendation, 10(10):2004, 2004.

[14] Alistair Miles and Sean Bechhofer. Skos simple knowledge organization
system reference. W3C recommendation, 18:W3C, 2009.

52

[15] Peter Mika. On schema. org and why it matters for the web. IEEE Internet
Computing, 19(4):52–55, 2015.

[16] Kate Byrne. Populating the semantic web: combining text and relational
databases as rdf graphs. 2009.

[17] Sophie Le Moigno, Jean Charlet, Didier Bourigault, Patrice Degoulet, and
Marie-Christine Jaulent. Terminology extraction from text to build an
ontology in surgical intensive care. In Proceedings of the AMIA Symposium,
page 430. American Medical Informatics Association, 2002.

[18] Lina Zhou. Ontology learning: state of the art and open issues. Information
Technology and Management, 8(3):241–252, 2007.

[19] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kon-
tokostas, Pablo N Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick
van Kleef, Sören Auer, et al. Dbpedia–a large-scale, multilingual knowledge
base extracted from wikipedia. Semantic Web, 6(2):167–195, 2015.

[20] Chris Bizer, Anja Jentzsch, and Richard Cyganiak. State of the lod cloud.
Version 0.3 (September 2011), 1803, 2011.

[21] A Amin, MFJ van Assem, V de Boer, L Hardman, M Hildebrand, L Hollink,
Z Huang, J van Kersen, M de Niet, B Omelayenko, et al. Multimedian e-
culture demonstrator. 2006.

[22] Pavel Shvaiko and Jérôme Euzenat. Ontology matching: state of the art and
future challenges. Knowledge and Data Engineering, IEEE Transactions
on, 25(1):158–176, 2013.

[23] Thomas R Gruber. A translation approach to portable ontology specifica-
tions. Knowledge acquisition, 5(2):199–220, 1993.

[24] Nicola Guarino, Daniel Oberle, and Steffen Staab. What is an ontology?
In Handbook on ontologies, pages 1–17. Springer, 2009.

[25] Alexander Maedche. Ontology learning for the semantic web, volume 665.
Springer Science & Business Media, 2012.

[26] Feiyu Lin and Kurt Sandkuhl. A survey of exploiting wordnet in ontology
matching. In Artificial Intelligence in Theory and Practice II, pages 341–
350. Springer, 2008.

[27] Vikram Singh, Pradeep Joshi, and Shakti Mandhan. Concept integration
using edit distance and n-gram match. International Journal of Database
Management Systems, 6(6):1, 2014.

[28] Vladimir I Levenshtein. Binary codes capable of correcting deletions, inser-
tions, and reversals. In Soviet physics doklady, volume 10, pages 707–710,
1966.

53

[29] Wang Ling, Chris Dyer, Alan Black, and Isabel Trancoso. Two/too simple
adaptations of word2vec for syntax problems. In Proceedings of the 2015
Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, pages 1299–1304,
2015.

[30] Andrew McCallum et al. Factorie github page, 2009.

[31] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebas-
tian Maneth, Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik
Stenman, and Matthias Zenger. An overview of the scala programming
language. Technical report, 2004.

[32] Jeremy J Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy
Seaborne, and Kevin Wilkinson. Jena: implementing the semantic web
recommendations. In Proceedings of the 13th international World Wide
Web conference on Alternate track papers & posters, pages 74–83. ACM,
2004.

[33] Michelle Cheatham, Zlatan Dragisic, Jérôme Euzenat, Daniel Faria, Al-
fio Ferrara, Giorgos Flouris, Irini Fundulaki, Roger Granada, Valentina
Ivanova, Ernesto Jiménez-Ruiz, et al. Results of the ontology alignment
evaluation initiative 2015. In 10th ISWC workshop on ontology matching
(OM), pages 60–115. No commercial editor., 2015.

[34] Isabel F Cruz, Flavio Palandri Antonelli, and Cosmin Stroe. Agreement-
maker: efficient matching for large real-world schemas and ontologies. Pro-
ceedings of the VLDB Endowment, 2(2):1586–1589, 2009.

[35] Jérôme Euzenat, Maria-Elena Roşoiu, and Cássia Trojahn. Ontology
matching benchmarks: generation, stability, and discriminability. Web Se-
mantics: Science, Services and Agents on the World Wide Web, 21:30–48,
2013.

[36] Steffen Lohmann, Stefan Negru, Florian Haag, and Thomas Ertl. Vowl
2: user-oriented visualization of ontologies. In International Conference
on Knowledge Engineering and Knowledge Management, pages 266–281.
Springer, 2014.

54

8 Appendices

Appendix: AgreementMaker feedback

In this appendix I would like to take some time to investigate the claim the
creators of AgreementMaker make about the adaptability of their system.

The claim is the following:
[AgreementMaker has] an extensible architecture to incorpo- rate new meth-

ods easily and to tune their performance;

I have worked with AgreementMaker for some time during this thesis and
come to the conclusion that this claim is false. The system is available online
and code can be added to it to change its functionality. However, adding to the
system like this has been made nearly impossible. This is due to the fact that
to add a new matcher many steps need to be taken. At least a GUI, parameter
class and matcher need to be written. These need to be registered in Xerces
and also in a number of unspecified places in the code.

Every part of the system is undocumented and as such all these steps have
to be figured out by reading the code and trial-and-error. For a system that has
over 3000 commits over many different files this is a daunting task.

The repository also has 11 different branches. The main branch is unable
to load data, an essential part of such a system. This means that alternative
branches have to be used that only support compiling and execution through
maven. This process is not only slower than in-IDE compilation and execution,
it also disables debugging, meaning that it is impossible to find the origin of
bugs, visualise the flow of the program to find where the new matcher should
be integrated.

Others have tried to use the system. The only person that has used the
system other than the designers told me he only used parts of the system, the
evaluator and data loading for example, to build his own system. This shows
that, while a useful tool containing many good parts, the overall system is
impossible to penetrate as an outsider and as such does not help contribute to
the field of ontology matching in a practical way.

Another claim made is efficiency:
improved [...] efficiency (execution time) for the automatic methods

It also does not hold up as the system was unable to load a medium-sized
ontology on a personal computer. The ontology itself was only a few dozen
megabyte in size, but the system needed more than half an hour of 2 MHz
computing power to build the first of the two ontologies. The second one froze
the computer.

I

