
Task-Oriented Programming for
developing non-distributed interruptible

embedded systems

Master’s Thesis

Jasper Piers

Institute for Computing and Information Sciences
Software Science (SwS)

Supervisors:

Dr. Pieter Koopman
Ing. Niek Maarse

Second reader:

Dr. Peter Achten

Final version

Nijmegen, August 2016

Abstract

Task-Oriented Programming (TOP) has proven itself effective for the implementation of interac-
tive, distributed, multi-user applications through the use of the iTasks framework. In this thesis
we show that TOP is also well-suited for developing non-distributed embedded systems whose pro-
cesses can be interrupted by events that can occur at any time. A general-purpose TOP framework
titled µTasks is created for use in a case study. Through this case study we show that a task-
oriented solution results in code with a higher maintainability that is able to more effectively deal
with the aforementioned events compared to a modern-day object-oriented one.

ii Task-Oriented Programming for developing non-distributed interruptible embedded systems

Contents

Contents iii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem statement . 2

1.3 Research method . 2

1.4 Thesis outline . 3

2 Task-Oriented Programming 4

2.1 History . 4

2.2 Principles . 5

2.3 Functional languages as a host language . 6

2.3.1 Purely functional languages . 7

2.3.2 Static type systems . 7

2.3.3 Lazy evaluation . 7

2.3.4 Function currying and higher-order functions 8

2.3.5 Algebraic data types and generics . 8

2.3.6 The state monad . 8

2.4 iTasks . 11

2.4.1 Tasks and task evaluation . 11

2.4.2 Shared data sources . 12

2.4.3 Editors . 12

2.4.4 The step combinator . 14

2.4.5 The parallel combinator . 14

3 µTasks: a general-purpose Task-Oriented Programming framework 16

3.1 Task-related types and definitions . 17

Task-Oriented Programming for developing non-distributed interruptible embedded systems iii

CONTENTS

3.2 Basic task functions . 17

3.2.1 List-based tasks . 19

3.3 The step combinator . 20

3.4 Step combinator instances . 22

3.4.1 Sequential combinators . 22

3.4.2 Repetition combinators . 23

3.4.3 Miscellaneous combinators . 24

3.5 Exception handling . 25

3.6 Parallelization . 27

3.6.1 Timeout . 29

3.6.2 Order maintenance . 30

3.7 Shared data sources . 32

3.8 Atomic tasks . 36

3.9 I/O-related actions . 40

3.10 Miscellaneous components . 41

3.10.1 Tasks as a sequence of steps . 41

3.10.2 Task equivalents of existing functions . 42

3.10.3 Collections of tasks . 43

4 Case study: a task-oriented payment terminal implementation 45

4.1 Background: payment terminals and transactions 45

4.1.1 Transaction simplifications . 51

4.2 System characteristics and candidate solutions . 51

4.2.1 Candidate solution: implicit data relay by use of state 52

4.2.2 Candidate solution: state as a shared resource 52

4.3 Proof of concept . 55

4.3.1 Example: cardholder verification . 56

4.3.2 Discussion . 59

5 Related Work 61

5.1 Payment terminal implementation at CCV . 61

5.1.1 Architectural landscape . 61

5.1.2 Top-level payment application design . 62

5.1.3 Problem areas . 63

iv Task-Oriented Programming for developing non-distributed interruptible embedded systems

CONTENTS

6 Conclusion 70

6.1 Future work . 71

Bibliography 72

Task-Oriented Programming for developing non-distributed interruptible embedded systems v

Chapter 1

Introduction

1.1 Motivation

Embedded systems are everywhere nowadays, being present in devices like cell phones, satellites,
traffic lights and even pacemakers; day-to-day life would be very different without them. Embedded
systems facilitate people’s lives. As such, it is not surprising that the embedded system market has
experienced accelerated growth in the past decades [EJ09] and that market analysts expect this
market to continue growing [Hex14]. The growth of the amount of embedded systems came with
an increase of embedded system software complexity [EJ09]. This increase in complexity poses a
software design challenge, especially for systems that need to be robust [HS06]. Examples of this
are things like payment terminals, where integrity of the account balance needs to be maintained,
and systems used in avionics, where system failure could result in casualties.

Traditionally, programming languages like C or even assembly languages were used for imple-
menting embedded systems due to the limited capabilities of these systems (e.g. a low amount of
memory) [Bar98]. Embedded systems nowadays are much less restricted by hardware, opening up
more possibilities implementation-wise. Some embedded systems are even equipped with an em-
bedded operating system [SGG08]. One of the techniques available for implementing modern-day
embedded systems is Object-Oriented Programming (OOP), which is one of the most prominent
programming paradigms today [Sta16]. Object-oriented programming promises higher modular-
ity and less complexity than procedural languages by providing the ability to refine software into
objects. This is not a language guarantee however.

Task-Oriented Programming (TOP) is a relatively new programming paradigm [PAK07]. When
developing an application using a Task-Oriented Programming language, a programmer is specify-
ing what must be done, and not how. The used Task-Oriented Programming framework translates
this specification into a fully functional application, automatically generating the how -aspects of
the application (e.g. its user interface). This results in code that reads closely like the specification
it is based on. In a task-oriented application, work is represented by tasks. The internals of tasks
are hidden by design: an observer of a task is only able to observe its task value [AKLP13]. This
gives tasks a high level of modularity. With task combinators tasks can be composed into new
tasks. These task combinators represent common programming patterns, ranging from simple
ones like performing two tasks in sequence to more complex ones like performing multiple tasks
in parallel. Because of its facilities for parallelization, Task-Oriented Programming has proven to
be effective for the implementation of distributed multi-user systems [Lij13b].

A subset of embedded systems are those that are non-distributed and that can be interrupted. A
system is distributed when its hardware or software components are located at networked comput-

Task-Oriented Programming for developing non-distributed interruptible embedded systems 1

CHAPTER 1. INTRODUCTION

ers communicating only by passing messages [CDKB11]. With an interruptable system, we mean
a system whose execution is allowed to be interrupted by unexpected events, without resulting
in state corruption of the system or systems connected to it. An example of such a system is a
payment terminal, where an unexpected event like removal of a payment card should maintain
integrity of the card holder’s account balance.

The properties of Task-Oriented Programming suggest that it may be well-suited for the imple-
mentation of this category of embedded systems. The parallel facilities of TOP seem well-suited
for the detection of events that are not expected at any particular time. Additionally, the task
abstraction mechanism of TOP and the way it coordinates tasks through combinators is expected
to result in maintainable code that corresponds closely to the specification it is based on. As
mentioned earlier, Task-Oriented Programming is well-suited for distributed applications. The
only reason for not taking these applications into consideration is for scope limiting reasons.

1.2 Problem statement

The hypothesis of this thesis is that using Task-Oriented Programming for implementing inter-
ruptible, non-distributed embedded systems results in code with a higher maintainability and in an
application that is able to more effectively deal with unexpected events, compared to modern-day
object-oriented approaches.

1.3 Research method

A case study serves as the main method of study. In preparation of this case study, a general-
purpose Task-Oriented Programming framework named µTasks was developed. This is done
because the only existing TOP framework, iTasks, aims to facilitate the development of a different
category of applications, namely “interactive, distributed, multi-user applications” [AKP13]. As
such, the semantics and components of iTasks are closely tied to this problem domain. While
the systems considered in this thesis are interactive, this interactivity involves only other systems;
user interactivity is not one of the properties we wish to facilitate. Additionally, the applications
under consideration are not distributed; they run on a single system.

Despite it targeting a different group of applications, µTasks adheres to the task-oriented principles
and resembles iTasks in aspects like naming for similar task combinators. For the implementation
of µTasks, the purely functional programming language Haskell is used. This means all code
snippets provided in this thesis are written in the Haskell programming language, unless explicitly
stated otherwise. There was no particular reason for choosing this language. Any other pure
functional language, for example Clean [Pla01] which is used for implementing iTasks, could have
been used.

The case study is performed at a company named CCV1. CCV offers a comprehensive range
of payment solutions for both small and large businesses in various markets. These solutions
include everything needed to facilitate and validate payments, including the processing of payments
and other transactions. “CCV systems” is the software development department of CCV, which
consists of several teams tasked with developing and maintaining software for the aforementioned
payment solutions. One of the main activities of these teams is the development of software for
various payment terminals. One line of terminals, named “CCV#”, is implemented using the
Object-Oriented Programming language C# [AA15].

1https://www.ccv.nl/

2 Task-Oriented Programming for developing non-distributed interruptible embedded systems

https://www.ccv.nl/

CHAPTER 1. INTRODUCTION

The goal of the case study is to develop a task-oriented implementation for one of the processes
performed on a payment terminal: performing a financial transaction. The first step performed in
this case study is analyzing what a payment terminal transaction entails. Based on this analysis,
several core characteristics are identified. Because a financial transaction is very complex and
involves many different variables, these characteristics have been identified in the context of inter-
ruptability. All other details are either simplified and omitted. As such, the resulting task-oriented
solution is a proof of concept, not a fully functional application. From the identified characteris-
tics, task-oriented candidate solutions are defined. One of these solutions is determined best-suited
and used for development of the proof of concept using µTasks. The findings of the case study are
compared against the results of an analysis performed on the aforementioned “CCV#” terminals.

1.4 Thesis outline

The remainder of this thesis is organized as follows. Chapter 2 introduces Task-Oriented Pro-
gramming. In this introduction, its history and principles are discussed, as well as the iTasks
framework and functional programming on which it relies. Chapter 3 presents µTasks, a general-
purpose Task-Oriented Programming framework. Next, chapter 4 presents the results of the case
study. Chapter 5, contains an analysis of the software running on CCV# payment terminals.
Finally, chapter 6 concludes this thesis.

Task-Oriented Programming for developing non-distributed interruptible embedded systems 3

Chapter 2

Task-Oriented Programming

This chapter introduces Task-Oriented Programming. When developing an application using a
Task-Oriented Programming language, a programmer is specifying what must be done, and not
how. The used Task-Oriented Programming framework translates this specification into a fully
functional application, automatically generating the how -aspects of the application (e.g. its user
interface). In a task-oriented application, work is represented by tasks. Tasks have a high level
of modularity because observers of a task only observe a value emitted through a typed interface.
With task combinators, tasks can be composed into new tasks. These task combinators represent
common programming patterns, ranging from simple ones like performing two tasks in sequence
to more complex ones like performing multiple tasks in parallel. Task-Oriented Programming
has proven to be an effective method for developing “interactive, distributed, multi-user applica-
tions” [AKP13, Lij13b]

Section 2.1 discusses the historical background of Task-Oriented Programming. Next, section 2.2
enumerates the underlying principles and design philosophy. Section 2.3 briefly discusses some
properties and concepts of functional programming, which lie at the heart of Task-Oriented Pro-
gramming. iTasks, from which the Task-Oriented Programming paradigm originated, is discussed
last in section 2.4.

2.1 History

Task-Oriented Programming, abbreviated as TOP, is a relatively new programming paradigm. It
is the next step up from a toolkit named iData [PAK07], which is short for interactive Data. This
toolkit enabled programmers to program forms in server-side web applications. At the time, forms
were typically viewed at a low level: a collection of primitive elements like input fields, check boxes,
buttons, etc. The goal of the iData toolkit was to take away the necessity of viewing forms on a
low level by allowing programmers to view them only on a high level. On a high level, forms can
be seen as editors of structured values having a certain type [PA05]. The iData toolkit took care of
generating the low level realization from the high level type definitions. This meant that program-
mers were now tasked with creating data types when creating forms instead of having to perform a
lot of low level coding (e.g. HTML). Because forms are interactive, the iData toolkit also had to be
capable of mapping user actions performed on forms back to the type domain. The challenges and
corresponding solutions of this bidirectional mapping problem and other implementation related
topics are discussed in [PA05]. Any language could have been used to develop the toolkit as long
as it had good support for data types and type-driven programming. Functional programming
languages made good candidates because of their strong type systems (section 2.3.2). The Clean
functional programming language [Pla01] was used to develop the iData framework. One way

4 Task-Oriented Programming for developing non-distributed interruptible embedded systems

CHAPTER 2. TASK-ORIENTED PROGRAMMING

Clean supports type-driven programming is through generic programming [Hin00] (section 2.3.5).
This technique is what allows the iData framework to generate forms automatically from the type
of the value of an editor. More information on the programming method used for iData can be
found in [PA06].

The iData framework is capable of creating complex forms that can be used to create and change
values of complex data types, but it does not support the specification of complex control flows
(e.g. the payment process in a web store). This is because every request sent to a server running
an iData web application results in the application being started from scratch; the application is
stateless. The iTasks framework, first introduced in [PAK07], is the result of including control flow
in the iData toolkit. The addition of control flow was inspired by contemporary work flow systems
in which work flow situations were specified that had to be executed by humans and computers.
iTasks is used for the specification of “interactive multi-user web-based work flows” [PAK07]. Be-
cause iTasks is built on top of the iData toolkit, iTasks specifications can be defined with a high
level of abstraction thanks to type driven programming and other features provided by the func-
tional host language Clean: strong typing (section 2.3.2), higher-order functions (section 2.3.4),
lazy evaluation (section 2.3.3), monadic programming (section 2.3.6), etc. iTasks is defined as a
combinator library meaning iTasks applications are written in an iTasks language (technically:
a Domain-Specific Embedded Language, or DSEL [Hud96]). The Task-Oriented Programming
paradigm was born from the principles and philosophy behind iTasks.

2.2 Principles

Task-Oriented Programming aims to facilitate the development of “interactive, distributed, multi-
user applications” [AKP13], as mentioned in section 2.1. Here, “interactive” refers to the interac-
tion between an application and its user(s). A user typically interacts with an application through
a Graphical User Interface (GUI). A system is “distributed” when its hardware or software com-
ponents are located at networked computers communicating only by passing messages [CDKB11].
A distributed system typically involves many different devices (e.g. desktop computers, smart-
phones, embedded systems, etc.). Finally, an application is “multi-user” when used by multiple
users simultaneously. These users typically have a common goal, meaning the application is used
as a tool to collaborate. A great example of this is collaborative editing, used in tools like “Google
Docs”, where the resulting document is composed of individual contributions. The internet is ob-
viously well-suited for Task-Oriented Programming applications, because its architecture closely
relates to the aforementioned properties.

Similar to how programmers can view forms on a higher level of abstraction by thinking only about
the involved data types when using iData, programmers using iTasks are tasked with specifying
what needs to be done rather than how. This is one of the core principles of Task-Oriented
Programming. This how aspect results from the addition of control flow to iData, as discussed in
section 2.1. Programmers using iTasks are essentially specifying what needs to be done and what
the involved data types are.

The how part encompasses different aspects of an application. User interactivity for example
involves the challenge of creating and maintaining a user interface. Extensive knowledge on GUI
toolkits is required to tackle such a challenge. When there is no strict separation between the
what and how parts, the structure of the specifications will influence each other. The GUI toolkit
(dealing with a how part of the application) mentioned earlier for example, will typically enforce
a programmer to structure his or her application in a certain way [Mye03]. This structure may
not always be intuitive for the application logic (i.e. the what part of the application). Another
example on which this principle applies, is network communication. A programmer that creates
a Task-Oriented application does not (want to) have to concern himself with the intricacies of
network communication [Ste93].

Task-Oriented Programming for developing non-distributed interruptible embedded systems 5

CHAPTER 2. TASK-ORIENTED PROGRAMMING

When a programmer develops a task-oriented application, he specifies what needs to be done
by means of “tasks”. A task is a fundamental building block of Task-Oriented Programming,
representing work that needs to be done. Tasks have a typed interface accessible by their observers.
The type of a task reflects the result (or more specifically: the type) of the work it performs. This
means an observer of a task has no notion of what the task is doing internally, which is in line
with the principle of focusing on the what rather than the how. This results in a high level of
modularity: tasks having the same interface can be used interchangeably.

An observer can obtain the current state of a task at any time, through the task value that all
tasks emit while they are being performed. Task values are the only way for observers of a task to
get to know anything about the task. Based on its observations, on observer can decide on how to
proceed. For example, it can decide to continue performing the task, stop it or start a new task.
When a task is finished, a stable task value will be observed. Up until that point, one might either
observe an unstable task result, representing an intermediate result, or no task value at all. While
it is possible to observe an unstable task value after observing no task value and vice versa, it is
not possible to observe either of them after observing a stable task value. This relation between
task values is depicted by figure 2.1.

Figure 2.1: Possible transitions of task values [AKLP13].

A task-oriented application is typically developed through a process of refinement. When work
is sufficiently simple, it can be expressed by a basic task, supplied by the used Task-Oriented
Programming framework. Work that is more complicated is refined into smaller portions of work.
Hence, an important aspect of task-oriented programming is identifying sub-tasks and how they
cooperate. A Task-Oriented Programming framework typically contains common programming
patterns for use in this refinement process.

Task-Oriented Programming was born from the iTasks framework as discussed in section 2.1. This
framework uses a pure functional language as a host language. In section 2.3 we will first discuss
some properties of such languages before proceeding with a brief overview of iTasks in section 2.4.

2.3 Functional languages as a host language

As mentioned in section 2.1, iTasks was developed using the pure functional language Clean [Pla01]
as a host language. This means iTasks utilizes Clean’s language aspects. This section will briefly
discuss some of aspects of pure functional languages like Clean. This section does not aim to be a
complete and formal functional programming specification. The goal of this section is to provide
a basic understanding that will be beneficial when reading the remaining sections of this thesis.

6 Task-Oriented Programming for developing non-distributed interruptible embedded systems

CHAPTER 2. TASK-ORIENTED PROGRAMMING

2.3.1 Purely functional languages

Functional programming languages can be subdivided into pure and impure languages. A formal
definition of purity is proposed in [Sab98]. Intuitively, a functional language is considered pure
when functions are a pure mapping from arguments to results. In other words: functions do
not have any side-effects. Arguably one of the biggest advantages of this property is that writing
applications for parallel computers is easier in these languages than in imperative languages [PJ89,
HM00]. Additionally, this property opens up new ways of thinking about data structures [Oka98].
For a programmer, this property helps with reasoning as functions are isolated in the sense that
they only depends on their parameters. By consequence, it does not matter in what order the
arguments of functions are evaluated, regardless of the used evaluation strategy (section 2.3.3).
This property is also called “referential transparency”.

2.3.2 Static type systems

Static type systems play an important role in typed functional programming languages. The pri-
mary role of a static type system is to prevent a class of errors from happening at run-time [Car96].
The type system determines whether or not a program is well behaved. A well behaved program
can still result in execution errors when run (e.g. when dividing by zero), but a large subset of
possible execution errors cannot occur. In particular, no “untrapped errors” can occur. These
are errors that go unnoticed for a while and later cause arbitrary behavior. Most functional pro-
grams are statically checked, meaning static checks (i.e. compile time) are peformed to ensure the
program is well typed. This prevents errors that occur when doing things like adding two strings
together when addition is only defined for integral types, or applying an integer to a function.

A static type system also has some efficiency benefits because objects do not need to carry their
types around at run-time, because their types have already been established at compile-time. The
removal of type information at compile time is known as “type erasure” [MLS08].

While a language does not need to be typed in order to be functional, a host language of a Task-
Oriented Programming framework requires a typing system because of how important types are in
Task-Oriented Programming (section 2.2). A strong typing system allows a host language to derive
implementation details from type definitions. iTasks for example uses generic programming (sec-
tion 2.3.5) to automatically generate user interfaces from type definitions [AKLP13]. This makes
iTasks applications appear as a high-level specifications, while they are complete implementations.

A type system may also be capable of inferring types. This means that when no type has been
explicitly mentioned, the type system will assign it the most general type. These most general
types may be polymorphic, meaning their operations are applicable to values of more than one
type [CW85].

2.3.3 Lazy evaluation

The way in which expressions are evaluated is determined by an evaluation strategy. Functional
programming languages use either eager (strict) or lazy evaluation (non-strict) [CLW+15, Ses02].
Informally, eager evaluation results in expressions being evaluated as soon as possible, while lazy
evaluation defers this until their results are actually needed. Recall that in purely functional
programming languages the outcome of a calculation is not effected by the order in which sub-
computations are performed (section 2.3.1). This is what allows the deferment of computations.
[Gol96] identifies two advantages of lazy evaluation. The first advantage is that a programmer does
not need to concern himself with structuring things in a manner that results in the desired order of
evaluation, because expressions will be evaluated when needed as mentioned earlier. The second
advantage is that lazy evaluations allows the construction of infinite data structures. This would

Task-Oriented Programming for developing non-distributed interruptible embedded systems 7

CHAPTER 2. TASK-ORIENTED PROGRAMMING

not be possible in a strict language, because using such a structure would result in evaluating it
in its entirety, which obviously never terminates. Non-strict functional programming languages
typically have language constructs to force strict evaluation. Clean for example uses strictness
annotations to achieve eager evaluation [Pla01]. A downside of lazy evaluation is that generally it
is less efficient than eager evaluation.

2.3.4 Function currying and higher-order functions

Currying is the idea that functions having multiple arguments are the result of iterative function
application. [BB00] gives an example in λ-calculus where f(x, y) intuitively depends on x and
y. One can then define a function where x is a free variable, meaning only y is bound: Fx =
λy.f(x, y). A function that binds x can then be defined as F = λx.Fx so that (Fx)y = Fxy =
f(x, y). In a functional programming language this is typically used in the form of partial function
application. The result of partial function application is the function that accepts the remainder of
the arguments. This property is especially powerful in combination with “higher-order functions”.
These are functions that take one or more functions as arguments and/or return a function as
their result [Sta94]. Higher-order functions carry out the idea that functions should be treated
the same as values of basic types like integers and booleans.

2.3.5 Algebraic data types and generics

Strictly speaking, there are two common classes of data types, namely product types and sum
types [HHPJW07]. Tuples and records are examples of product types. Algebraic data types are
sum types. Sum types are defined by specifying multiple alternatives called “products”, or in
other words: a “sum of products”. Every product has zero or more “fields”. A typical example of
an entity that would be defined as an algebraic data type in a functional programming language
is a binary tree. A binary tree consists of two products, one representing a node and the other
representing a leaf. The node product would contain two fields, one for each subtree. A leaf
contains just one field, representing its value. In programming languages, products are generally
referred to as “data constructors”. Functional programming languages like Clean and Haskell
support pattern matching against algebraic data types using their data constructors. Pattern
matching greatly increases the readability of code and simplifies the process of reasoning formally
about functions [BW88].

Generic programming allows a programmer to define functions that apply to all data types. Typical
examples of this are comparison functions, pretty printers and parsers. In his paper [Hin00], Ralf
Hinze presented a universal representation for all data types. This makes generic programming
possible because functions defined for this universal representation can be specialized to arbitrary
types. Generic programming fits well in the philosophy of task-oriented programming (section 2.2)
because a programmer gets functions for his or her types “for free”. He need not concern himself
with specifying an instance for the newly introduced type, which would be more of a how aspect
rather than a what. iTasks for example makes extensive use of generic programming [AP02,
PLM+12]; it is capable of generating complete user interfaces from task- and datatype definitions
(section 2.4).

2.3.6 The state monad

While pure functional languages facilitate some aspects of programming (section 2.3.1), they com-
plicate others. One of the things that is problematic in a functional language is dealing with stateful
algorithms, because side-effects are prohibited. A structure named “monad” from category theory
is a solution for dealing with stateful algorithms and side effects in a pure functional language.

8 Task-Oriented Programming for developing non-distributed interruptible embedded systems

CHAPTER 2. TASK-ORIENTED PROGRAMMING

Eugenio Moggi first described the general use of monads to structure programs in 1989 [Mog89]
and Philip Wadler built upon this, resulting in a practical solution to the aforementioned problem
in 1990 [Wad90].

This section will discuss a specific type of monad named the “state monad”. This monad is used for
dealing with stateful algorithms in a pure manner. The reason for discussing this specific monad
in this section is that it is a cornerstone of the task-oriented framework that will be presented in
chapter 3. The discussion in this section is limited to an informal description by example. Code
fragments of this example are given in the pure functional programming language Haskell. For a
formal description of the state monad, and monads in general, consult [Wad90].

One of the simplest examples of a stateful algorithm is an algorithm for generating fresh integers.
An initial attempt to develop a function that yields a fresh integer may start off with defining the
following seemingly intuitive function signature:

freshInt :: Int

However, when trying to define the implementation one will quickly realize that this will not work.
After all, side effects are not allowed meaning freshInt must always yield the same result when
parametrized in the same way. With this definition there is only one way to parameterize the
function, namely with zero arguments. Hence, an obvious solution would be to add a parameter
to the function that influences the outcome. A counter would a logical candidate for this, as it
is essentially the state of the algorithm representing the next fresh integer. In order to make
subsequent calls possible, an updated version of the counter also has to be part of the result. This
results in the following revised definition:

type Counter = Int

freshInt :: Counter -> (Int, Counter)

freshInt counter = (counter, counter + 1)

With this definition, freshInt can be used to obtain a fresh integer. A function that produces a
triple containing 3 fresh integers is defined next. Here x, y and z are fresh integers produced by
freshInt.

example :: Counter -> ((Int,Int,Int), Counter)

example n = let (x, n’) = freshInt n

(y, n’’) = freshInt n’

(z, n’’’) = freshInt n’’

in ((x,y,z), n’’’)

This exposes an obvious downside: the counter pollutes the code because freshInt requires the
latest version in order to ensure it generates a value that was not yet generated. This is where
the state monad comes into play. This example will be transformed into a solution utilizing a
state monad which removes the downside of having to explicitly pass around the state (i.e. the
counter). First we define the monadic machinery for our state monad:

1. The type for which monadic operations will be defined. freshInt is a stateful algorithm
for which the counter acts as a state. This means the aforementioned type will be a type

Task-Oriented Programming for developing non-distributed interruptible embedded systems 9

CHAPTER 2. TASK-ORIENTED PROGRAMMING

representing functions that operate on this state. For illustration purposes this type will be
named ExampleMonad. Note that ExampleMonad is a type constructor; it is parametrized
with an arbitrary type a. For simplicity of the example, the state is not one of the parameters
(i.e. ExampleMonad s a).

type ExampleMonad a = Counter -> (a, Counter)

2. A unary function named return (also called unit). This function is parametrized with a
value from a plain type (i.e. a) and creates a monadic value from it having the monadic type
(i.e. ExampleMonad a):

return :: a -> ExampleMonad a

return x = \s -> (x,s)

A monadic value representing the integer 42 is now created by writing return 42.

3. A binary function named bind. This is more often than not defined as an infix operator
named (>>=). This function takes a monadic value (typed ExampleMonad a) as its first
argument and a function (typed a -> ExampleMonad b) that can transform this value as its
second argument. Note that this function is parametrized with the plain value (typed a);
the bind function unwraps the plain value embedded in its first argument.

(>>=) :: ExampleMonad a -> (a -> ExampleMonad b) -> ExampleMonad b

(>>=) ma mb = \s -> uncurry mb (ma s)

where

uncurry :: (a -> b -> c) -> (a, b) -> c

uncurry f p = f (fst p) (snd p)

Sometimes the result of the first monadic operation is irrelevant. A bind version (typically
named (>>)) can be defined which does just that. It is a less general version of (>>=):

(>>) :: ExampleMonad a -> ExampleMonad b -> ExampleMonad b

(>>) ma mb = ma >>= const mb

With the bind function it is now possible to compose a sequence of monadic function calls.

4. Functions for getting and setting the state. In literature these are named fetch and assign

respectively. In this definition, () is the void type which has just one data constructor: ().

fetch :: ExampleMonad Counter

fetch = \s -> (s, s)

assign :: Counter -> ExampleMonad ()

assign s’ = \s -> ((), s’)

With the monadic machinery in place, we can now define a monadic version of freshInt:

freshInt :: ExampleMonad Int

freshInt = fetch >>=

\n -> assign (n + 1) >>

return n

10 Task-Oriented Programming for developing non-distributed interruptible embedded systems

CHAPTER 2. TASK-ORIENTED PROGRAMMING

This new version of freshInt results in the following updated definition of example:

example :: ExampleMonad (Int, Int, Int)

example = freshInt >>=

\x -> freshInt >>=

\y -> freshInt >>=

\z -> return (x, y, z)

Note that there is no mention of a counter anywhere in this definition. freshInt appears as
a function that has no arguments and that simply produces an integer, similar to the initial
(impossible) definition. The monadic operations implicitly pass on the state, removing the earlier
problem of having to explicitly pass it around.

In this small toy example it may seem like a disproportional amount of effort is required to set
up the monadic machinery just to hide the state. In general this is not true. In real-world
applications, a state will typically be passed down multiple functions. Not all of these will use
the state. It is in these cases that a state monad provides a major benefit because the state will
not pollute the function definitions. State monads are the de facto way of elegantly dealing with
stateful algorithms in functional programming languages.

2.4 iTasks

As stated in section 2.1, iTasks is not just a framework that adheres to the Task-Oriented Pro-
gramming paradigm (section 2.2), it is the framework from which the Task-Oriented Programming
paradigm originated. Because of this, iTasks and most of its components are not just considered
an instance of Task-Oriented Programming, but are synonymous with it. In this section we will
present some of the major concepts of iTasks. Some of these concepts are expressed by “combina-
tors”, since iTasks is a combinator library. Combinators are named programming patterns that
precisely express how smaller pieces of program can be combined into a bigger program [AKP13].
iTasks is written in the purely functional programming language Clean [Pla01]. All code snippets
presented in this section are written in this language.

2.4.1 Tasks and task evaluation

Tasks in iTasks are state transforming functions that are driven by events [PLM+12]. These
events originate from the user interfaces (i.e. web pages) that are automatically generated by
the framework (section 2.4.3). There are three types of events in iTasks: (1) A refresh event,
indicating that a user wants to refresh a web page, (2) an edit event, containing a new value for
use with an interactive task and (3) an action event, representing the action selected by a user on
the web page (e.g “ok”, “cancel” or a custom action). The last two events address the task that
is to handle the event by an identification number assigned by the framework.

Tasks rewrite to new versions of themselves representing the remaining work to be done and
accumulate responses to users along the way. Every time a task is rewritten, it yields a task
result. A task result is either an exception or a task value (figure 2.1). In case of a task value, the
task result also contains the timestamp of the event that caused the task value’s creation.

On a top-level, there is one main task. This task gets recursively rewritten until either it produces
a stable value or an exception is observed. It is possible that neither occurs, resulting in a task
that never finishes. Because tasks of iTasks are event-driven, every rewrite requires an event.

Task-Oriented Programming for developing non-distributed interruptible embedded systems 11

CHAPTER 2. TASK-ORIENTED PROGRAMMING

iTasks stores these events in a queue. When this queue is empty, rewriting of a task is halted until
an event becomes available. If the rewriting of the task resulted in more work to be done, clients
are sent the accumulated responses before recursively continuing with the remainder of the work.

2.4.2 Shared data sources

Shared data sources, or SDSs, are used by tasks to share information. They are Uniform Data
Sources (UDS) which were proposed in [Mic12] as a solution to the problem of dealing with
different data sources (e.g. databases and files) in a uniform way. In line with the philosophy
of iTasks (section 2.2), uniform data sources separate what a data source is from how it is used.
Shared data sources are abstract typed interfaces used for reading and writing atomically. The
type read from a shared data source may differ from the type written. This makes a form of access
control possible (e.g. read-only and write-only). Shared data source combinators for projection,
used for changing the read or write type, and composition, used for combining shared data sources
into new ones, are proposed in [Mic12]. The resulting type for a shared data source in iTasks is
RWShared r w, where values of type w are written, and values of type r are read. From this type,
less general types are derived, as shown in the iTasks definition:

:: RWShared r w

:: ROShared r :== RWShared r ()

:: WOShared w :== RWShared () w

:: Shared a :== RWShared a a

iTasks makes a distinction between internal and external shared data sources [PLM+12]. The
former are used for communication between tasks while the latter is used for communication
with external objects. Internal SDSs typically have a limited scope, while external SDSs are
accessible throughout the entire application. Internal data sources do not make use of access
control, meaning they are of type Shared a. Examples of data sources provided by iTasks are
data sources for obtaining a list of registered users and the current time:

currentTime :: ROShared Time

currentUsers :: ROShared [User]

For internal shared data sources, shared memory has to be available. This memory is represented
by a list contained in the state that tasks transform 2.4.1. Because the type stored in shared
memory is arbitrary, this memory is represented by a heterogeneous list. Such a list is possible
because of Clean’s Dynamic type, which can represent any type [VP03]. Every internal shared
data source reserves a position of this list.

2.4.3 Editors

In iTasks there are user-interactive tasks that enable a user to modify a value of some type through
a visual representation. These interactive tasks are called editors [PLM+12]. One of the main
selling points of iTasks is that these visual representations can be automatically generated for
any first order type (section 2.3.5). These visual representations are also known as views, and the
value they represent are also known as models. Events originating from views are handled by the
iTasks framework to update the corresponding models.

12 Task-Oriented Programming for developing non-distributed interruptible embedded systems

CHAPTER 2. TASK-ORIENTED PROGRAMMING

iTasks contains one core editor task [PLM+12], but provides several derived editors for better
readability. These derived editors can be divided into three categories: (1) the enter variant, used
to enter information (2) the update variant, used to update information and (3) the view variant,
used for viewing information. There are variants for both shared (section 2.4.2) and non-shared
information. Example of these derived editors are shown below.

enterInformation :: d -> [EnterOpt m] -> Task m | descr d & iTask m

updateInformation :: d -> [UpdateOpt m m] -> m -> Task m | descr d & iTask m

viewInformation :: d -> [ViewOpt m] -> m -> Task m | descr d & iTask m

viewSharedInformation :: d -> [ViewOpt r] -> RWShared r w -> Task r | descr d & iTask r

updateSharedInformation :: d -> [UpdateOpt r w] -> RWShared r w -> Task w | descr d & iTask r

& iTask w

One thing to note is that these editors are provided a description. This description will be shown
in the visual representation. Another thing to note is that editors are provided with a list of
options. These options allow fine-tuning in case the default editor does not provide the desired
view. An example of an editor is one that allows entry of a person. This requires a model of a
person and nothing more, since iTasks generates the interface and handles the communication:

:: MyPerson =

{ name :: String

, gender :: MyGender

, dateOfBirth :: Maybe Date

}

:: MyGender = Male | Female

derive class iTask MyPerson, MyGender

enterPerson :: Task MyPerson

enterPerson = enterInformation "Enter your personal information" []

From this specification, iTasks is capable of generating the user interface shown in figure 2.2
automatically.

Figure 2.2: The visual part of an editor task of iTasks.

A client sends events to the iTasks server (section 2.4.1) which responds with responses. There
are two types of messages in iTasks: editor messages and action messages. The latter will be
discussed in section 2.4.4. An editor event consists of a new value for a model represented by the
editor, and a unique task identification number that makes it possible to relate the view in the
client to a task in the code [PLM+12]. An editor response informs the client of the latest state of

Task-Oriented Programming for developing non-distributed interruptible embedded systems 13

CHAPTER 2. TASK-ORIENTED PROGRAMMING

an editor. This state contains a local value for editing, a shared value for viewing (which can be
done by different tasks), a description and if the editor is viewing or editing.

2.4.4 The step combinator

As discussed in section 2.2, observers of a task are only able to inspect its task value. The step
combinator, one of the core combinators of iTasks, keeps an eye on the task value of a running
task to decide whether or not to step to a different task. Once a new task is started, the old one
is no longer needed; the step combinator is used to perform tasks in sequence.

The iTasks step combinator differentiates between three categories of task steps [PLM+12]: (1)
steps resulting from the user selecting an action (e.g. a “next” button), (2) steps based on the
current task value, (3) steps handling exceptions. The first two are accompanied by a predicate
over the observed task value. A step is only taken if the predicate holds. For actions, this means
the availability is determined by the model (e.g. an action may not be available if mandatory data
is missing). Exceptions are propagated by the step combinator, unless there is a rule of type (3)
that contains a handler for that specific exception.

The step combinator provides the client with an action response. This action response consists of
a list of actions and whether or not they are enabled. A client can respond with an action event,
which informs the server which action is triggered by the user. Steps that do not depends on the
user (i.e. (2) and (3)) are prioritized over steps that do (i.e. (1)). In [PLM+12], steps that do
not depend on the user are referred to as “triggers”. When no step can be taken, the process is
repeated on the rewritten task.

2.4.5 The parallel combinator

Tasks can not only be performed in sequence (section 2.4.4) but also in parallel. Like perform-
ing tasks in sequence, iTasks has a single combinator for performing tasks in parallel, named
“parallel”. Tasks can be performed in parallel when there is no specific order in which they
have to be performed. In iTasks, there is a distinction between tasks that can be performed in
parallel [PLM+12]: detached tasks are distributed to different users, while embedded tasks are
performed by the current user. In case of the former, it is possible to specify a specific user or role
that is to perform the task.

Tasks run in parallel can inspect each other’s progress, because iTasks stores their task values in
a shared task list. The parallel combinator emits a list of values with the timestamp of the event
that resulted in their production. This allows something like the step combinator (section 2.4.4)
to determine the progress of a parallel operation as a whole. This task list is also used to allow
dynamic creation and deletion of tasks running in parallel. More information on this can be found
in [Lij13a]. Initially, the task list filled with the tasks that are run in parallel, with a “no value”
result. The parallel combinator evaluates all tasks of this list, storing their task results and their
rewritten version in the shared task list along the way. Exceptions that may arise during evaluation
are propagated over all tasks that are run in parallel.

14 Task-Oriented Programming for developing non-distributed interruptible embedded systems

CHAPTER 2. TASK-ORIENTED PROGRAMMING

The following type definition for the core parallel combinator is provided in [PLM+12]:

parallel :: d -> [(ParallelTaskType, ParallelTask a)]

-> Task [(TimeStamp, Value a)] | descr d & iTask a

:: ParallelTaskType = Embedded | Detached ManagementMeta

:: ManagementMeta = { worker :: Maybe User

, role :: Maybe Role

, ...

}

:: ParallelTask a :== SharedTaskList a -> Task a

:: SharedTaskList a :== ROShared (TaskList a)

:: TaskList a = { state :: [Value a]

, ...

}

Multiple parallel combinators have been derived from this core parallel combinator, for example
the ones below.

(-||-) infixr 3 :: !(Task a) !(Task a) -> (Task a) | iTask a

(-&&-) infixr 4 :: !(Task a) !(Task b) -> (Task (a,b)) | iTask a & iTask b

(-||-) performs two tasks in parallel, resulting in the first task that produces a stable value.
(-&&-) also performs two tasks in parallel, but results in a task that yields the results of both [Lij13a].
Because an observer of a parallel task can observe the task values obtained so far (and the times-
tamp of the event that caused their production), the definition of the shown derived combinators
is relatively straight-forward.

Task-Oriented Programming for developing non-distributed interruptible embedded systems 15

Chapter 3

µTasks: a general-purpose
Task-Oriented Programming
framework

In chapter 2, the Task-Oriented Programming paradigm and the framework from which it origi-
nated, iTasks (section 2.4), were introduced. iTasks aims to facilitate the development of “interac-
tive, distributed, multi-user applications” [AKP13]. Because iTasks is developed around achieving
this goal, its semantics and components are closely related to this problem domain. An example
of this are editors, discussed in section 2.4.3.

The problem domain considered in this thesis is different. While the systems under consideration
are interactive, this interactivity involves only other systems. User interactivity is not one of the
properties we wish to facilitate, unlike iTasks. Additionally, the developed applications are not
distributed; they run on a single system. Because of this, we introduce µTasks: a general-purpose
Task-Oriented Programming framework. The key aspects in which this framework differs from
iTasks are:

1. iTasks is driven by events originating from one or multiple clients (section 2.4.1). In µTasks
there is no driver; tasks are simply state transformers that calculate a result. The reason
for this is that µTasks applications are not distributed, removing the necessity to coordinate
the work of individual workers through something like events. By consequence there is no
client-server architecture in µTasks.

2. iTasks is capable of automatically generating user interfaces from type definitions through
editors (section 2.4.3). There is no such thing in µTasks, because user interactivity is not
considered part of the problem domain. This means there is no such thing as views, models
and actions in µTasks.

3. In iTasks, performing tasks in parallel allows them to be performed by different users or user
groups spread over multiple clients. Performing tasks in parallel in µTasks means performing
them simultaneously on the same system. Conceptually, all parallel sub-tasks can be seen
as embedded in µTasks (section 2.4.5).

µTasks resembles iTasks in the fact that it uses many of same concepts (albeit with sometimes
different semantics), such as a step combinator, a parallel combinator and shared data sources.
Because it is a Task-Oriented Programming framework, it adheres to the principles of Task-
Oriented Programming (section 2.2).

16 Task-Oriented Programming for developing non-distributed interruptible embedded systems

CHAPTER 3. µTASKS: A GENERAL-PURPOSE TASK-ORIENTED PROGRAMMING
FRAMEWORK

The remainder of this chapter is spend on discussing the components of the µTasks framework.
It is important to emphasize that this framework is built from the bottom up; it has no direct
relation to iTasks. Like iTasks, µTasks is written in a purely functional language. All code snippets
presented in this chapter are written in the Haskell programming language [Lip11]. There was
no particular reason for choosing this language. Any other pure functional language, for example
Clean [Pla01], could have been used.

3.1 Task-related types and definitions

A Task is a building block that computes an observable value of some type a. It does this in
the context of an Environment it can manipulate (e.g. modifying a file on the file system). This
directly translates into the following type definition:

type Task a = Environment -> (TaskResult a, Environment)

Note that this definition bears resemblance to a state monad (section 2.3.6). For now, the exact
definition of Environment is not important. The takeaway message is that a Task produces a
TaskResult in the context of an Environment it possibly updates. As shown in figure 2.1, various
task values can be observed from a Task. If a value is not final (i.e. Stable), the Task also
produces a rewritten version of itself, representing the Task that performs the remaining work
that is to be done. This results in the following TaskResult definition:

data TaskResult a = NoValue (Task a)

| StableValue a

| UnstableValue a (Task a)

3.2 Basic task functions

Using the definitions from section 3.1, several basic task functions can be constructed. One
essential function is the return function which allows lifting a value to the Task domain:

return :: a -> Task a

return value = \env -> (StableValue value, env)

A Task that calculates the value 42 (and therefore has the type Task Int) can now be defined as
follows:

exampleTask :: Task Int

exampleTask = return 42

For combinator definitions (discussed later) it is useful to lift values to any kind of TaskResult,
and even to produce a Task directly from a TaskResult:

Task-Oriented Programming for developing non-distributed interruptible embedded systems 17

CHAPTER 3. µTASKS: A GENERAL-PURPOSE TASK-ORIENTED PROGRAMMING
FRAMEWORK

stable value = fromTaskResult (StableValue value)

unstable value task = fromTaskResult (UnstableValue value task)

noValue task = fromTaskResult (NoValue task)

fromTaskResult :: TaskResult a -> Task a

fromTaskResult result = \env -> (result, env)

In some cases it is also useful to provide a Task that effectively does nothing:

emptyTask :: Task ()

emptyTask = stable ()

Predicates and accessor functions on TaskResults, such as value and isStable, are also defined.
Because their implementation is trivial we will only present their type definitions:

value :: TaskResult a -> a

isStable :: TaskResult a -> Bool

isException :: TaskResult a -> Bool

Another one of these functions is followup, for which it worth mentioning that it requires a default
Task as not all TaskResult options contain a follow-up Task:

followup :: TaskResult a -> Task a -> Task a

followup (NoValue task) _ = task

followup (UnstableValue _ task) _ = task

followup _ def = def

For similar reasons, value is a partial function. Once a Task is defined, one might want to
continuously evaluate it until a Stable value is produced. This is similar to how iTasks rewrites
its top-level task (section 2.4.1). The eval function does just that:

eval :: Task a -> Environment -> (a, Environment)

eval eval_a env =

let (tra, env’) = eval_a env

in case tra of

StableValue v -> (v, env’)

_ -> eval (followup tra eval_a) env’

Finally, several basic tasks are defined. Their implementation is not really relevant to this paper
so only their type signatures are given:

18 Task-Oriented Programming for developing non-distributed interruptible embedded systems

CHAPTER 3. µTASKS: A GENERAL-PURPOSE TASK-ORIENTED PROGRAMMING
FRAMEWORK

printInfo :: ToString a => a -> Task a

printWith :: ToString b => (a -> b) -> a -> Task a

readInfo :: Read a => Task a

sleep :: Integer -> Task ()

readLine :: Task String

hReadLine :: Handle -> Task String

currentTime :: Task UTCTime

Using these functions we can perform basic Tasks, like printing “Hello World!”, or printing a per-
son’s age. Note that in the example below, printPersonAge results in a Task of type Task Person

as opposed to Task Int (as age is of type Int).

helloWorld = Task String

helloWorld = printInfo "Hello World!"

data Person = Person { name :: String

, age :: Int

}

printPersonAge :: Person -> Task Person

printPersonAge person = printWith age person

3.2.1 List-based tasks

Tasks may produce several Unstable values before (possibly) producing a Stable one. In the
end, the Task produced a collection of values. This gave birth to the idea of doing it the other
way around: creating a Task from a collection of values:

fromList :: [a] -> Task a

fromList [] = noValue (fromList [])

fromList [x] = stable x

fromList (x:xs) = unstable x (fromList xs)

If a Task can be created from a list, it consequently becomes possible to create a Task from other
Foldable types as these implement a toList function:

fromFoldable :: Foldable f => f a -> Task a

fromFoldable = fromList . toList

List functions can now easily be translated into their Task equivalent. For example: an iterateTask

function that computes x, f(x), f(f(x)) and so on can be defined as:

iterateTask :: (a -> a) -> a -> Task a

iterateTask f x = fromList (iterate f x)

Task-Oriented Programming for developing non-distributed interruptible embedded systems 19

CHAPTER 3. µTASKS: A GENERAL-PURPOSE TASK-ORIENTED PROGRAMMING
FRAMEWORK

Note that this function will never produce a Stable value. This is no problem due to the lazy
evaluation property (section 2.3.3) of the host language. For example, a Task that calculates all
pairs of successive fibonacci numbers can be defined using iterateTask as follows:

fibPairs :: Task (Int, Int)

fibPairs = iterateTask (\(a,b) -> (b, a + b)) (0,1)

One may observe that if the function f that is provided to iterate produces two subsequent values
that are equal, all following values will be too. For this reason, a different version of iterateTask
is defined that stops the calculation (i.e. yield a stable value) upon observing this pattern:

iterateLimTask :: Eq a => (a -> a) -> a -> Task a

iterateLimTask f x = fromList (limit (iterate f x))

where

limit (x:y:xs)

| x == y = [x]

| otherwise = x : limit (y:xs)

limit xs = xs

3.3 The step combinator

Now that tasks and several basic functions that operate on either Tasks or TaskResults have been
defined, steps towards tasks interaction can be made. Tasks become a lot more interesting when
they can be combined to form new tasks. This allows for a top-down approach when designing
software using the Task-Oriented Programming paradigm.

Like iTasks (section 2.4.4) we will define a step combinator (>>*) as a core combinator for per-
forming tasks in sequence. This step combinator will perform a single step with a task, and
then determines how to proceed based on the observed TaskResult. This relation between a
TaskResult and the Task representing the next step can be expressed by a function we will refer
to as a continuation function from now on. The value produced by the continuation function
(if any) shall be referred to as a continuation. Note that this is essentially different from the
followup function presented in section 3.2. followup extracts the follow-up task contained in a
TaskResult, while a continuation function maps TaskResults to Tasks. A TaskResult has at
most 1 follow-up, but an infinite number of continuation functions can exist that each produce a
different continuation for this TaskResult. The type definition of a continuation function is given
next.

type TaskCont a b = TaskResult a -> Maybe b

There are two things to point out here:

1. The resulting continuation is a Maybe type. This means that a continuation function may
not be able to provide a continuation for the supplied TaskResult.

2. If the continuation function results in a continuation, it is of type b as opposed to the type
Task b one might expect. This more general type is only used to make continuations more
flexible.

20 Task-Oriented Programming for developing non-distributed interruptible embedded systems

CHAPTER 3. µTASKS: A GENERAL-PURPOSE TASK-ORIENTED PROGRAMMING
FRAMEWORK

The step combinator of µTasks is implemented as follows:

type TaskProducer a b = Task a -> Task b

(>>*) :: Task a -> [TaskCont a (TaskProducer a b)] -> Task b

(>>*) eval_a conts = eval

where

eval env = let (tra, env’) = eval_a env

matches = mapMaybe ($ tra) conts

nta = followup tra eval_a

in case matches of

(c:_) -> noValue (c nta) env’

[] -> noValue (nta >>* conts) env’

In this definition, the ($) function is the application operator and mapMaybe is a version of map
that can throw out elements:

($) :: (a -> b) -> a -> b

mapMaybe :: (a -> Maybe b) -> [a] -> [b]

The supplied Task eval_a is evaluated under the Environment env, after which the observed
TaskResult tra is supplied to the list of continuation functions to obtain a list of continuations.
If there is a continuation, it will be used to determine the task to step to. If none of the continuation
functions produce a continuation, the step operation is repeated on eval_a’s follow-up if it has
one, or eval_a otherwise (which should not happen as it produces an infinite loop). There are a
couple of things that are worth pointing out:

1. Instead of a single evaluation function, multiple are given. This allows expressing a more
complex continuation as a collection of relatively simple ones.

2. Regardless of whether or not there was a continuation, the step combinator results in a
NoValue TaskResult containing the task to step to as opposed to directly evaluating this
task. Doing the latter would be counterintuitive as this results in multiple steps within a
single evaluation. It is important to make steps small, especially when in a parallel context
as discussed in section 3.6.

3. The continuation functions produce continuations of type TaskProducer a b instead of
Task b. This is a more general form of a continuation that allows the next step to be
parametrized with the rewritten version of the task supplied to the step combinator. This
is best illustrated by example:

Say we have a Task ta that produces an endless amount of values (for example because it is
defined using iterateTask shown in section 3.2) and a Task tb that is parametrized with
these values. Defining a combinator ⊕ so that ta ⊕ tb rewrites to ta’ ⊕ tb, where ta’ is the
follow-up of ta, is not possible when a continuation is of type Task b. Section 3.4.3 presents
the parametrizes function, which is an implementation of the ⊕ used in this example.

4. The first matching continuation c is selected to continue: the ordering of continuations
determines their precedence.

With a step combinator defined, several functions can be declared that aid in constructing con-
tinuation functions. For example, we can now define an ifStable function that matches when a
stable value is observed:

Task-Oriented Programming for developing non-distributed interruptible embedded systems 21

CHAPTER 3. µTASKS: A GENERAL-PURPOSE TASK-ORIENTED PROGRAMMING
FRAMEWORK

ifStable :: (a -> TaskProducer a b) -> TaskCont a (TaskProducer a b)

ifStable f (StableValue v) = Just (f v)

ifStable _ _ = Nothing

Several similar functions can be defined. Because their implementation is straightforward, the
listing below is restricted to their types only:

hasValue :: (a -> TaskProducer a b) -> TaskCont a (TaskProducer a b)

ifUnstable :: (a -> TaskProducer a b) -> TaskCont a (TaskProducer a b)

ifValue :: (a -> Bool) -> (a -> TaskProducer a b) -> TaskCont a (TaskProducer a b)

onTaskResult :: (TaskResult a -> TaskProducer a b) -> TaskCont a (TaskProducer a b)

always :: TaskProducer a b -> TaskCont a (TaskProducer a b)

Section 3.4 presents several Task combinators that are expressed using these functions and the
step combinator.

3.4 Step combinator instances

A variety of useful combinators can be defined using the step combinator presented in section 3.3.
Combined with the functions to construct continuation functions, this allows for concise combina-
tor definitions. This section categorizes these combinators and discusses them by category.

3.4.1 Sequential combinators

As the name implies, sequential combinators perform one task after the other. When to proceed
with the Task on the right-hand side is determined by the TaskResult observed from the Task

on the left-hand side. Additionally, the result of the Task on the left-hand side can be supplied to
the Task on the right-hand side. Each combination of these choices result in its own combinator,
outlined in table 3.1.

Proceed when / Result Convey Discard
Stable >>> >>|

Stable or Unstable >>! >>-

Table 3.1: Overview of sequential combinators

The combinators that pass on their result are expressed using the step combinator. (>>>) passes
on the value once a stable is observed, while (>>!) passes on the first value that is observed.

(>>>) :: Task a -> (a -> Task b) -> Task b

(>>>) ta tb = ta >>* [ifStable (const . tb)]

(>>!) :: Task a -> (a -> Task b) -> Task b

(>>!) ta tb = ta >>* [hasValue (const . tb)]

The remaining combinators are instances of these more general combinators.

22 Task-Oriented Programming for developing non-distributed interruptible embedded systems

CHAPTER 3. µTASKS: A GENERAL-PURPOSE TASK-ORIENTED PROGRAMMING
FRAMEWORK

(>>|) :: Task a -> Task b -> Task b

(>>|) ta tb = ta >>> const tb

(>>-) :: Task a -> Task b -> Task b

(>>-) ta tb = ta >>! const tb

For example, we can now combine the basic Task functions (section 3.2) printInfo and readLine

using these combinators to create a Task that asks for your name and then greets you:

greetUser :: Task String

greetUser = printInfo "Enter your name: " >>|

readLine >>>

\name -> printInfo ("Welcome, " ++ name ++ "!")

3.4.2 Repetition combinators

Instead of performing a Task once, one may want to repeat it. Or more generally: repeat it while
a given predicate holds. This is exactly what the (<!) combinator is for:

(<!) :: Task a -> (a -> Bool) -> Task a

(<!) ta pred = ta >>* [ifValue (not . pred) (const . stable)

, ifStable (const . const $ ta <! pred)

]

If a value is observed for which the predicate pred does not hold, the value is yielded as a
StableValue. If this is not the case (recall that the continuations are listed in order of precedence)
and a StableValue is observed, the original Task is restarted under the same repetition condition.
Endlessly repeating a Task is now simple, as it is more specific:

forever :: Task a -> Task a

forever ta = ta <! const True

A Task that repeatedly asks for a new password until one meeting the security requirements is
entered can now be defined as follows:

type Password = String

enterValidPassword :: Task Password

enterValidPassword = enterPassword <! not . isValidPassword

where

enterPassword :: Task Password

enterPassword = printInfo "Enter your password: " >>|

readLine

Task-Oriented Programming for developing non-distributed interruptible embedded systems 23

CHAPTER 3. µTASKS: A GENERAL-PURPOSE TASK-ORIENTED PROGRAMMING
FRAMEWORK

-- A password is valid if it contains at

-- least one digit and one alpha symbol.

isValidPassword :: Password -> Bool

isValidPassword password = any isDigit password &&

any isAlpha password

3.4.3 Miscellaneous combinators

Often the context in which a Task is performed requires a specifically typed TaskResult. Because
of this, a transformation combinator is introduced:

(?) :: Task a -> (a -> b) -> Task b

(?) task f = task >>* [onTaskResult (const . fromTaskResult . fmap f)]

fmap is a higher-order function (section 2.3.4) that is part of the Functor type class. Type
constructors (e.g. lists or trees) can be made member of this class, so that functions can be
applied to their elements. For example, a list of integers can be transformed into a list of strings
by applying fmap to it with a toString function. The instance for TaskResult is defined as
follows:

instance Functor TaskResult where

fmap f (StableValue v) = StableValue (f v)

fmap f (UnstableValue v t) = UnstableValue (f v) (t ? f)

fmap f (NoValue t) = NoValue (t ? f)

Another Task pattern that can be captured using a combinator is the repeated parametrization of
a Task tb by the values produced by a Task ta. This combinator corresponds to the ⊕ combinator
discussed in section 3.3 and is named parametrizes:

parametrizes :: Task a -> (a -> Task b) -> Task b

parametrizes ta tb = ta >>* [ifStable (const . tb)

, ifUnstable (newTask . tb)

]

where

newTask tb’ ta’ = tb’ >>> flip unstable (ta’ ‘parametrizes‘ tb)

Note that the (>>>) combinator is used in the newTask definition. This means that tb (and thus
tb’) is expected to produce a Stable value. For example, we can define a Task printUntil that
prints 0 till n using a predefined view:

24 Task-Oriented Programming for developing non-distributed interruptible embedded systems

CHAPTER 3. µTASKS: A GENERAL-PURPOSE TASK-ORIENTED PROGRAMMING
FRAMEWORK

successorList :: (Enum a, Num a) => Task a

successorList = iterateTask succ (fromInteger 0)

-- e.g: "printUntil 2" outputs: "[0] [1] [2]" on separate lines.

printUntil :: Int -> Task Int

printUntil n = successorList ‘parametrizes‘ printWith view <! pred

where

pred = (>) n

view n = "[" ++ show n ++ "] \n "

3.5 Exception handling

Up until now Tasks have been able to produce different types of TaskResults, but none of these
represent anomalous or exceptional conditions. To support this, an exception handling mechanism
is implemented. An exception can be thrown and must be propagated until caught. When a Task

is propagated over it is not evaluated. Several (mostly minor) modifications and additions must
be made to the framework to enable this:

1. Addition of the Exception TaskResult and associated definitions:

data TaskResult a = Exception Dynamic String

| ...

instance Functor TaskResult where

fmap f (Exception e m) = Exception e m

...

isException :: TaskResult a -> Bool

isException (Exception _ _) = True

isException _ = False

The Dynamic type of Haskell represents a monomorphic value dynamically and allows throw-
ing an arbitrary exception type. The String component of an Exception is used to store a
message that is used for display when the Exception is uncaught.

2. Modification of the step combinator so it propagates exceptions when not caught. Recall
the definition presented in section 3.3. It contained the following match statement to deal
with the scenario that there was no matching continuation:

[] -> noValue (nta >>* conts) env’

In order to support exceptions, this is modified to the following:

[] -> case tra of

Exception m e -> fromTaskResult (Exception m e) env’

_ -> noValue (nta >>* conts) env’

Note that this allows defining a continuation based on exceptions (because checking whether
or not there is a matching continuation occurs first) without having to modify existing
continuations because the step combinator itself propagates them.

Task-Oriented Programming for developing non-distributed interruptible embedded systems 25

CHAPTER 3. µTASKS: A GENERAL-PURPOSE TASK-ORIENTED PROGRAMMING
FRAMEWORK

3. Modification of the eval function (section 3.2) so that it produces a run-time error when en-
countering an Exception. More specifically, the following match was added for the observed
TaskResult:

Exception _ m -> error $ "uncaught exception: " ++ m

4. Addition of a continuation function to produce a continuation when observing an Exception:

onException :: Typeable e => (e -> Task a) -> TaskCont a (TaskProducer a a)

onException handler (Exception e _) = fmap (const . handler) (fromDynamic e)

onException _ _ = Nothing

A handler is provided. This handler is parametrized with the data contained in the observed
Exception. The type of this data is simply e as it can be arbitrary: the context determines
the concrete type at runtime.

fromDynamic results in a Maybe type (so the fmap function used here is the one for the
Maybe instance). By consequence, this means that when fromDynamic is unable to convert
the Dynamic e back to a value of type e, onException results in Nothing, indicating that
it cannot provide a continuation. This means that a handler defined for an exception of a
different type than the one thrown will not be produced by this continuation function in the
step combinator.

5. Addition of the throw and try combinators:

throw :: (Typeable e, ToString e) => e -> Task e

throw e = fromTaskResult $ Exception (toDyn e) (toString e)

try :: Typeable e => Task a -> (e -> Task a) -> Task a

try task handler = task >>* [ifStable (const . stable)

, onException handler

]

Note that when throwing an exception a message is not included. The message is currently
obtained by converting the thrown value to a String. This means types that can be thrown
must have a String conversion function. The message is currently not used for custom
messages. The try function is parametrized with a handler which is sometimes called a
“catch block” in other languages. The following example shows how the try and throw

functions can be used to deal with exceptional behavior:

data NumberException = DivideByZeroException

| NumberOverflowException

| NumberUnderflowException

deriving (Show)

divideBy :: Int -> Int -> Task Int

divideBy x 0 = throw DivideByZeroException

divideBy x y = stable (x ‘div‘ y)

26 Task-Oriented Programming for developing non-distributed interruptible embedded systems

CHAPTER 3. µTASKS: A GENERAL-PURPOSE TASK-ORIENTED PROGRAMMING
FRAMEWORK

example :: Task String

example = try division handler

where

division :: Task String

division = 42 ‘divideBy‘ 0 >>> \result -> printInfo "result: " >>|

printInfo result >>|

printInfo ". \n "

handler :: NumberException -> Task String

handler DivideByZeroException = printInfo "A divide by zero occurred"

handler _ = printInfo "Another exception occurred"

3.6 Parallelization

Instead of performing Tasks in sequence, one might also want to perform them in parallel. As
mentioned in the introduction of this chapter, this parallel combinator is different from the one
used in iTasks (section 2.4.5). When performing tasks in parallel in µTasks, we are rewriting
tasks as a group as if it were a single rewrite. Every parallel sub-task gets rewritten at most once
per evaluation of the parallel combinator. This is important when nesting parallel combinators.
For example, consider the following parallel combinator which performs two Tasks in parallel and
results in the first Task that produces a stable value. The implementation of this combinator is
not important at this point and will be given further on in this section.

(-||-) :: Task a -> Task a -> Task a

Say there is a Task tα that infinitely outputs α, one per step. Intuitively, the following should
then endlessly output abc:

ta -||- tb -||- tc -- Equal to: (ta -||- (tb -||- tc))

This is only possible when a single rewrite of a parallel task ends when every parallel sub-task is
rewritten at most once. It is for the same reason that the parallel combinator cannot be expressed
using the step combinator 3.3. If it were, rewriting of a parallel task would be limited to rewriting
a single one of its sub-tasks as the step combinator only performs a single step. In the above
example this would result in ta being rewritten twice as much as tb and tc individually.

Like iTasks, parallel combinators in µTasks are based on a single parallel combinator. This
combinator must be sufficiently flexible to be able to express the various parallel combinators. For
example (||-), which performs two Tasks in parallel and results in the Task on its right-hand
side, even when the Task on the left-hand side produced a stable first. The parallel combinator
used by µTasks is based on an early version of the parallel combinator used in iTasks [Lij13a]
and is parametrized by the following arguments:

Task-Oriented Programming for developing non-distributed interruptible embedded systems 27

CHAPTER 3. µTASKS: A GENERAL-PURPOSE TASK-ORIENTED PROGRAMMING
FRAMEWORK

1. predOK :: [a] -> Bool

A predicate that is evaluated each time a Task is finished (i.e. produced a StableValue).
It is parametrized with a list containing the accumulated results so far.

2. someDone :: ([a],[Task a]) -> b

A function that is used to compute the result of the parallel combinator when it terminated
due to predOK being satisfied. It is parametrized with a tuple containing the results obtained
so far, and a list of Tasks that perform the remaining work of the Tasks that did not yet
finish.

3. allDone :: [a] -> b

Similar to someDone, except that this function is called to compute the result when all
parallel tasks have terminated without predOK ever being satisfied.

4. tasks :: [Task a]

The list of tasks to be performed in parallel.

The combinator rewrites each task in tasks, one by one. If this step results in a StableValue,
the combinator checks whether or not predOK holds for the new set of accumulated Stable values.
If this is the case, the final result is calculated using someDone. If all Tasks produced a Stable

value but predOK was never satisfied, then the resulting value is calculated using allDone.

The function is implemented using a helper function named parallel’ that contains two accumu-
lators in addition to the aforementioned parameters: one containing the results so far and another
containing the follow-up Tasks of Tasks that have already been rewritten this step. The complete
parallel implementation looks as follows:

1 parallel = parallel’ [] []

2

3 parallel’ :: [a] -- stables (accumulator)

4 -> [Task a] -- followups (accumulator)

5 -> ([a] -> Bool) -- predOK

6 -> (([a],[Task a]) -> b) -- someDone

7 -> ([a] -> b) -- allDone

8 -> [Task a] -- tasks

9 -> Task b

10

11 -- All tasks have completed: use allDone to obtain the result.

12 parallel’ stables [] _ _ allDone [] = stable $ allDone stables

13

14 -- All tasks have been stepped this step, but they did not

15 -- yet all finish. Set "followups" as the tasks to be evaluated the

16 -- next step. Reverse the list because the tasks were added at the head.

17 parallel’ stables followups predOK someDone allDone [] =

18 noValue $ parallel’ stables [] predOK someDone allDone (reverse followups)

19

20 -- There is at least one task to step.

21 parallel’ stables followups predOK someDone allDone (x:xs) = \env ->

22 let (tr,env’) = x env -- Perform a step.

23 in case tr of

24

25 -- Case 1: Evaluation led to a stable value.

26 StableValue v ->

27 -- Add the value to the accumulator and

28 -- check whether or not the predicate holds.

29 let stables’ = v : stables

28 Task-Oriented Programming for developing non-distributed interruptible embedded systems

CHAPTER 3. µTASKS: A GENERAL-PURPOSE TASK-ORIENTED PROGRAMMING
FRAMEWORK

30 in if predOK stables’

31 -- The predicate is satisfied.

32 -- Use someDone to obtain the result.

33 then (stable $ someDone (stables’, followups ++ xs)) env’

34

35 -- The predicate did not hold.

36 -- Continue with the rest of the tasks.

37 else parallel’ stables’ followups predOK someDone allDone xs env’

38

39 -- Case 2: The task threw an exception: propagate it.

40 Exception m e -> fromTaskResult (Exception m e :: TaskResult b) env’

41

42 -- Case 3: Evaluation did not result in a stable value (noValue or unstable).

43 -- Add the followup to the corresponding accumulator, and continue

44 -- with the remaining tasks.

45 _ -> let followups’ = followup tr x : followups

46 in parallel’ stables followups’ predOK someDone allDone xs env’

With this parallel, an anyTask combinator can be expressed. This combinator performs a list
of Tasks in parallel, yielding the first Task that produces a stable value:

anyTask :: [Task a] -> Task a

anyTask = parallel (not . null) (head . fst) undefined

The Haskell function undefined is a function that never completes successfully (often referred to
as ”bottom”). When there is an anyTask, it makes sense to also define an allTasks that performs
Tasks in parallel until all of them have terminated:

allTasks :: [Task a] -> Task [a]

allTasks = parallel (const False) undefined id

With these combinators, the implementation of the aforementioned (-||-) combinator is trivial
as shown below. The remaining parallel combinators will be presented in section 3.6.2.

(-||-) :: Task a -> Task a -> Task a

(-||-) ta tb = anyTask [ta,tb]

3.6.1 Timeout

Having a sleep Task (section 3.2) as well as combinators for parallelism, allows defining a timeout
mechanism. The withTimeout function is part of the framework and performs a Task with a
timeout of a given amount of milliseconds. The function results in the result of the Task, but only
if it was obtained before the timeout expired. If this is not the case, an optional given value def

will be yielded.

withTimeout :: Integer -> Task a -> Maybe a -> Task (Maybe a)

withTimeout ms task def = task ? Just -||- sleep ms ? const def

Task-Oriented Programming for developing non-distributed interruptible embedded systems 29

CHAPTER 3. µTASKS: A GENERAL-PURPOSE TASK-ORIENTED PROGRAMMING
FRAMEWORK

3.6.2 Order maintenance

While the parallel combinator presented earlier behaves as desired, there is one devious aspect
related to ordering. The problem is best illustrated by an example. Say we want to implement
a parallel combinator that performs two Tasks in parallel, and results in a tuple containing both
results. Its implementation could look as follows:

(-&&-) :: Task a -> Task b -> Task (a,b)

(-&&-) ta tb = allTasks [ta ? Left, tb ? Right] ? all

where

all [Left a, Right b] = (a,b)

Note that the transformation combinator is used to equalize the types of ta and tb, namely to
Task (Either a b). This allows them to be placed in a (heterogenous) list that can be supplied
to the allTasks function presented earlier. The all function is responsible for transforming back
the result of allTasks and illustrates the problem with parallel. The way all is defined now is
erroneous due to non-exhaustive patterns. tb may finish before ta, meaning the list supplied to
all would be [Right b, Left a] instead.

To allow the implementation above instead of having to define all in a way it is defined for every
possible ordering of its argument, parallel is modified to preserve ordering. The modifications
aim to guarantee the following properties:

1. For any two items in the list of stables (supplied to someDone or allDone) with index i and
j, yielded by Tasks located at index n and m of the initial Task list respectively: i < j if
and only if n < m.

2. For any two items in the list of remaining Tasks (supplied to someDone) with index i and
j, being the follow-up of the Tasks with index n and m in the initial Task list respectively:
i < j if and only if n < m.

To achieve this, every Task supplied to parallel is assigned a (locally) unique integral identifier.
This means parallel’ is no longer parameterized with a list of Tasks (i.e. [Task a]), but with a
mapping from a Task identifier to a Task (i.e. Map Int (Task a)). Several operations are defined
for the Map type in Haskell1 and conveniently, most of these turn out to enforce ordering. The
relevant functions that have this ordering property are given below.

1. elems :: Map k a -> [a]

Return all elements of the map in the ascending order of their keys.

2. elemAt :: Int -> Map k a -> (k, a)

Retrieve an element by its index, i.e. by its zero-based index in the sequence sorted by keys.

3. deleteAt :: Int -> Map k a -> Map k a

Delete the element at index, i.e. by its zero-based index in the sequence sorted by keys.

4. insert :: Ord k => k -> a -> Map k a -> Map k a

Insert a new key and value in the map. If the key is already present in the map, the associated
value is replaced with the supplied value.

1http://hackage.haskell.org/package/containers-0.5.7.1/docs/Data-Map-Strict.html

30 Task-Oriented Programming for developing non-distributed interruptible embedded systems

http://hackage.haskell.org/package/containers-0.5.7.1/docs/Data-Map-Strict.html

CHAPTER 3. µTASKS: A GENERAL-PURPOSE TASK-ORIENTED PROGRAMMING
FRAMEWORK

5. union :: Ord k => Map k a -> Map k a -> Map k a

The expression (union t1 t2) takes the left-biased union of t1 and t2. It prefers t1 when
duplicate keys are encountered.

Using these functions, parallel and parallel’ are modified to the following:

1 parallel tasks = parallel’ empty empty $ fromList (zip [0..] tasks)

2

3 parallel’ :: Map Int a -- stables (accumulator)

4 -> Map Int (Task a) -- followups (accumulator)

5 -> Map Int (Task a) -- tasks

6 -> ([a] -> Bool) -- predOK

7 -> (([a],[Task a]) -> b) -- someDone

8 -> ([a] -> b) -- allDone

9 -> Task b

10 parallel’ stables followups tasks predOK someDone allDone

11

12

13 -- There are no more tasks to evaluate this step.

14 | null tasks =

15 if null followups

16

17 -- There are no more followups for a next step,

18 -- calculate the result using allDone. "elems"

19 -- orders by key.

20 then stable $ allDone (elems stables)

21

22 -- All tasks have been stepped this step, but they did

23 -- not yet all finish, nor did predOK hold. Set "followups"

24 -- as the tasks to be evaluated during the next step.

25 else noValue $ parallel’ stables empty followups predOK someDone allDone

26

27 -- There is at least one task to step.

28 | otherwise = \env ->

29 -- The next task to step is the one in "tasks" with the lowest

30 -- task identifier. Abbrviate the remainder of the map as "xs".

31 -- Once obtained: step it.

32 let (i,x) = elemAt 0 tasks

33 xs = deleteAt 0 tasks

34 (tr, env’) = x env

35

36 in case tr of

37

38 -- Case 1: Evaluation led to a stable value.

39 StableValue v ->

40

41 -- Add the value to the accumulator.

42 let stables’ = insert i v stables

43

44 -- The values obtained so far, ordered by the

45 -- identifiers of the tasks that produced them.

46 results = elems stables’

47

48 -- Test predOK

49 in if predOK results

Task-Oriented Programming for developing non-distributed interruptible embedded systems 31

CHAPTER 3. µTASKS: A GENERAL-PURPOSE TASK-ORIENTED PROGRAMMING
FRAMEWORK

50

51 -- The predicate holds, so we can stop. Use someDone

52 -- to compute the result. The union of "followups" and

53 -- "xs" represent the remaining work. "elems" ensures

54 -- correct ordering.

55 then (stable $ someDone (results, elems (union followups xs))) env’

56

57 -- The predicate did not hold: continue with

58 -- the remaining tasks.

59 else parallel’ stables’ followups xs predOK someDone allDone env’

60

61 -- Case 2: The task threw an exception: propagate it.

62 Exception m e -> fromTaskResult (Exception m e :: TaskResult b) env’

63

64 -- Case 3: Evaluation did not result in a stable value.

65 -- Add the follow-up task to the accumulator.

66 _ -> let followups’ = insert i (followup tr x) followups

67 in parallel’ stables followups’ xs predOK someDone allDone env’

The earlier implementation for (-&&-) works correctly using this parallel implementation. The
implementations for (-||) and (||-) are similar:

(||-) :: Task a -> Task b -> Task b

(||-) ta tb = parallel [ta ? Left, tb ? Right] (not . null) id undefined >>> res

where

res ([Right v], _) = stable v

res (_ , [tb’]) = tb’ ? fromRight

(-||) :: Task a -> Task b -> Task a

(-||) ta tb = parallel [ta ? Left, tb ? Right] (not . null) id undefined >>> res

where

res ([Left v], _) = stable v

res (_ , [ta’]) = ta’ ? fromLeft

3.7 Shared data sources

Using the combinators defined in section 3.6, Tasks are able to run in parallel. Tasks that run in
parallel are not (and need not be) aware that they are being performed in a parallel context; they
are isolated from each other. However, situations exist where Tasks that run in parallel need to
communicate with each other or access a common resource. For this purpose, Shared Data Sources
(or SDS) are introduced. These are similar to the ones used in iTasks [PLM+12] (section 2.4.2).

Shared data sources provide an abstract interface for reading and writing. A timer for example,
might be represented as a shared data source where one can read the elapsed time and write timer
commands such as Start, Stop, Reset, and so on. This example also shows that the type of
values read from a shared data source can differ from the type of the values written to it. Like
iTasks (section 2.4.2) we make a distinction between internal and external shared data sources.
Internal shared data sources are used for sharing data between tasks. All other data sources are
considered external. A shared data source is named ReadWriteShared and is defined as a record:

32 Task-Oriented Programming for developing non-distributed interruptible embedded systems

CHAPTER 3. µTASKS: A GENERAL-PURPOSE TASK-ORIENTED PROGRAMMING
FRAMEWORK

type ShareId = Int

data ReadWriteShared r w = ReadWriteShared

{ shareId :: ShareId

, read :: Environment -> (r, Environment)

, write :: w -> Environment -> Environment

}

The read and write functions represent the abstract interface discussed earlier. shareId is an
identifier used to uniquely identify the shared resource which is needed for internal shared data
sources as we will see later. Of course, this type can be used to create less general types:

type Shared rw = ReadWriteShared rw rw

type ReadOnlyShared r = ReadWriteShared r ()

type WriteOnlyShared w = ReadWriteShared () w

A shared data source has a state. For example, different data may be read from a shared queue
on subsequent calls, depending on the queue’s contents. For internal shared data sources, this
state needs to be stored at a location accessible to all Tasks. There is one obvious candidate for
this: the Environment. Containers are heterogeneous in most if not all functional programming
languages, so in order to store different shared resources in a single collection, they are converted
into a dynamically typed value of type Dynamic:

type SharedStore = Map ShareId Dynamic

data Environment = Environment

{ shares :: SharedStore

, -- Other values omitted.

}

Every internal shared data source reserves a slot in the shared store. The read and write functions
simply read from and write to this store. This is shown in the sharedStore function, used for
creating an internal shared data source:

sharedStore :: Typeable r => ShareId -> r -> (w -> r) -> ReadWriteShared r w

sharedStore sid init conv = ReadWriteShared { read = reader

, write = writer

}

where

reader env = let mem = shares env

in case lookup sid mem of

Just e -> ((fromJust . fromDynamic) e, env)

Nothing -> (init , env)

writer w env = let mem = shares env

w’ = toDyn (conv w)

in env { shares = alter (const (Just w’)) sid mem }

Task-Oriented Programming for developing non-distributed interruptible embedded systems 33

CHAPTER 3. µTASKS: A GENERAL-PURPOSE TASK-ORIENTED PROGRAMMING
FRAMEWORK

A conversion function conv is supplied, which allows writing a value to a share of a type different
than type read from it. The shared data source is also supplied with an inital value. This value will
be read when no value has been written yet. An example of an internal shared data source is given
below. In this example, a share is defined to which an age can be written and the corresponding
age category can be read (if the written age was valid):

type Age = Int

data AgeCategory = Children

| Youth

| Adults

| Seniors

ageCategory :: Age -> Maybe AgeCategory

ageCategory age

| age < 0 = Nothing

| age <= 14 = Just Children

| age <= 24 = Just Youth

| age <= 64 = Just Adults

| otherwise = Just Seniors

ageShare :: ReadWriteShared (Maybe AgeCategory) Age

ageShare = sharedStore 42 Nothing ageCategory

Two essential operations to perform on a shared data source are reading and writing. This is done
using the Task functions get and set respectively.

get :: ReadWriteShared r w -> Task r

get rws = uncurry stable . read rws

set :: w -> ReadWriteShared r w -> Task w

set v rws = stable v . write rws v

A function that parametrizes a set of Tasks with a shared resource and performs them in parallel
using anyTask can now easily be defined:

anyTaskWithShared :: Typeable t => t -> [Shared t -> Task a] -> Task a

anyTaskWithShared init tasks =

freshInt >>>

\sid -> let share = sharedStore sid init id

in anyTask $ map ($ share) tasks

freshInt is a Task that produces a fresh (i.e. unique) integer. To enable this, the Environment

is equipped with a counter named nextI representing the next fresh integer:

data Environment = Environment

{ nextI :: Int

, -- Other values omitted.

}

34 Task-Oriented Programming for developing non-distributed interruptible embedded systems

CHAPTER 3. µTASKS: A GENERAL-PURPOSE TASK-ORIENTED PROGRAMMING
FRAMEWORK

freshInt :: Task Int

freshInt env = let result = nextI env

in stable result env { nextI = succ result }

Note that share identifiers generated by µTasks may overlap with user-defined share identifiers.
No mechanism to prevent this has been defined currently, but one solution would be to extend the
share ID with a marker that informs whether or not a share is anonymous or not. A function that
parametrizes a single Task with an anonymous share is simply an instance of anyTaskWithShared:

withShared :: Typeable t => t -> (Shared t -> Task a) -> Task a

withShared init task = anyTaskWithShared init [task]

An often occurring pattern when using shared data sources, is reading a value and then directly
writing back an updated result. This pattern is captured in two functions. preUpdate yields the
value that is written to the given share while postUpdate yields the value that was read from the
share before the new value was written to it:

preUpdate :: ReadWriteShared r w -> (r -> Task w) -> Task w

preUpdate share f = atomic $ get share >>> f >>> flip set share

postUpdate :: ReadWriteShared r w -> (r -> Task w) -> Task r

postUpdate share f = atomic $ get share >>>

\x -> f x >>>

flip set share >>|

stable x

The atomic combinator used here can be ignored for now. This will be discussed in section 3.8.
Instead of updating the value using a Task, it might sometimes be convenient to use a regular
function. This can be achieved by the following two functions:

preUpdateF :: (Typeable r, Typeable w) => ReadWriteShared r w -> (r -> w) -> Task w

preUpdateF share f = preUpdate share (stable . f)

postUpdateF :: (Typeable r, Typeable w) => ReadWriteShared r w -> (r -> w) -> Task r

postUpdateF share f = postUpdate share (stable . f)

The following example illustrates how an anonymous shared object can be used to store the number
of elapsed seconds, which is just used here by a single Task to continuously show a running timer:

showTimer :: Task ()

showTimer = withShared 0 runClock

where

runClock timer = forever $ postUpdateF timer succ >>>

printClock >>|

sleep 1000

Task-Oriented Programming for developing non-distributed interruptible embedded systems 35

CHAPTER 3. µTASKS: A GENERAL-PURPOSE TASK-ORIENTED PROGRAMMING
FRAMEWORK

printClock seconds = printWith view (h,m,s)

where

h = seconds ‘div‘ 3600 :: Int

m = (seconds ‘mod‘ 3600) ‘div‘ 60 :: Int

s = (seconds ‘mod‘ 60) :: Int

-- Use the carriage return (\r) to move to the beginning of the line.

view (h,m,s) = " \r " ++ conv h ++ ":" ++ conv m ++ ":" ++ conv s

conv n = if n <= 9 then "0" ++ show n

else show n

3.8 Atomic tasks

Similar to multithreading, shared resources between Tasks introduce synchronization issues. The
preUpdate and postUpdate functions discussed earlier are prone to such errors for example because
reading from a share and writing the updated value back happens in multiple steps (because they
use the step combinator). This is best shown by an example:

-- The shared resource: a simple integer.

sharedCounter :: Shared Int

sharedCounter = sharedStore 0 0 id

-- Task t1: updates the shared resource using an update function

-- that consumes some time.

t1 = preUpdate sharedCounter updater

where

updater x = sleep 5000 >>|

stable (x + 1)

-- Task t2: updates the shared resource after some time, using a

-- fast update function.

t2 = sleep 1000 >>| preUpdate sharedCounter updater

where

updater x = stable (x + 10)

-- Task task: performs t1 and t2 in parallel, until both are finished.

task = (t1 -&&- t2)

In this example, a counter is shared between two Tasks that are run in parallel. Task t1 increases
the counter by one, using an update Task which takes a long time to complete. Task t2 first
sleeps for a short time and then updates the counter by 10 using an update function that is very
fast. One may expect that the final value of the counter will be 11 once both Tasks finish. This
is only the case if these update operations are atomic. If this is not the case, the outcome will
be one with the presented update functions, as the update done by t2 is effectively ignored. This
phenomenon occurs because the value read by t1 has become invalid because t2 updated it before
t1 has the chance to. The same argument holds for writing to a share, but this is already an
atomic operation (section 3.7). In this section we will present atomic, a combinator for making a
Task atomic, meaning it will not be interleaved by other Tasks running in parallel.

36 Task-Oriented Programming for developing non-distributed interruptible embedded systems

CHAPTER 3. µTASKS: A GENERAL-PURPOSE TASK-ORIENTED PROGRAMMING
FRAMEWORK

Task parallelism can be represented by a tree structure where each node represents a Task com-
posed of sequential steps (i.e. applications of the step combinator) and edges between nodes depict
children as parallel instances. These trees represent the state of a task oriented application at
a single point in time. For example, consider the following Task definitions:

A = T01 >>| (T02 -||- T03) >>| T04 >>| (B -&&- C)

B = T05 >>| T06 >>| (T07 -|| T08)

C = T09 >>| (D -&&- E)

D = T10 >>| (T11 -||- T12)

E = T13

Figure 3.1 depicts different tree representations for the given code fragment, which are all valid,
depending on the state of the program. While all of these trees are binary, a node can have an
arbitrary amount of children as the framework can run an arbitrary amount of Tasks in parallel
(section 3.6).

A

T02 T03

A

B C

A

B

T07 T08

C

D

T11 T12

E

A

B C

D E

Figure 3.1: Possible tree representations.

In order to achieve atomicity, the parallel combinator will have to know its position in this tree.
A common way of doing this, is by assigning each node a sequence of integers. This sequence is
composed of the sequence of a node’s parent and a node’s own integral identifier. This implies that
(direct) children of a node are never assigned the same identifier. Figure 3.2 shows this hierarchy
annotation for one of the trees presented in figure 3.1.

A[]

B[0]

T07[0,0] T08[0,1]

C[1]

D[1,0]

T11[1,0,0] T12[1,0,1]

E[1,1]

Figure 3.2: Hierarchy annotations for one of the trees presented in figure 3.1.

The next step will be to include and maintain this hierarchy information in the Environment, so

Task-Oriented Programming for developing non-distributed interruptible embedded systems 37

CHAPTER 3. µTASKS: A GENERAL-PURPOSE TASK-ORIENTED PROGRAMMING
FRAMEWORK

that the parallel combinator can obtain it. To do this, we first add a member named parallelId

to the Environment:

type ParallelId = Seq Int

data Environment = Environment

{ parallelId :: ParallelId

, -- Other fields omitted.

}

parallelId is of type Seq Int instead of [Int] one might expect. This is merely for efficiency
reasons: the Seq (sequence) data structure is based on finger trees, which allow for efficient ad-
dition to the back and front2. parallelId is managed by the parallel combinator. Recall
that Tasks are already assigned a locally unique identifier to provide an ordering property (sec-
tion 3.6.2). Conveniently, this identifier is also usable here. A parallelId can either be extended,
or shortened:

-- Add the Task identifier "i" to the parallelId contained in "env".

extendParallelId i env = env { parallelId = parallelId env |> i }

-- Shorten the parallelId contained in "env" by 1 level.

shortenParallelId env = let xs :> _ = viewr $ parallelId env

in env { parallelId = xs }

All that remains to manage the parallel hierarchy information, is to call these function at the
appropriate location(s). While parallel is a relatively big combinator, there is only one point of
Task evaluation (i.e. the environment being applied to a Task): directly after determining that
the tasks parameter is not empty:

let (i,x) = elemAt 0 tasks

xs = deleteAt 0 tasks

(tr, env’) = x env

in ...

By enclosing this with the aforementioned functions, parallelId will be updated correctly:

let (i,x) = elemAt 0 tasks

xs = deleteAt 0 tasks

(tr, env’) = x (extendParallelId i env)

env’’ = shortenParallelId env’

in ... -- The next operation involving the environment now uses env’’ as opposed to env’.

Now that it is possible to query the Environment for the position in the parallel hierarchy tree,
it is time to return to the initial problem: Task atomicity. When a Task is marked as atomic,

2http://hackage.haskell.org/package/containers-0.5.7.1/docs/Data-Sequence.html

38 Task-Oriented Programming for developing non-distributed interruptible embedded systems

http://hackage.haskell.org/package/containers-0.5.7.1/docs/Data-Sequence.html

CHAPTER 3. µTASKS: A GENERAL-PURPOSE TASK-ORIENTED PROGRAMMING
FRAMEWORK

it means only its parent nodes in the parallel hierarchy tree may be evaluated. Storing just the
parallel ID of that Task allows the parallel combinator to determine whether or not it is allowed
to rewrite other Tasks. There is one thing to take into account however: sub-Tasks of a Task

may be marked as atomic as well. This may result in overwriting the parallel ID without a way
to recover it. For this reason, the atomic function recovers the ID of the parent Task:

data Environment = Environment

{ parallelId :: ParallelId

, atomicLevel :: ParallelId

, -- Other fields omitted.

}

atomic :: Task a -> Task a

atomic task = envRead atomicLevel >>>

\old -> envRead parallelId >>>

\pid -> envWrite (setAtomic pid) >>|

task >>>

\res -> envWrite (setAtomic old) >>|

stable res

where

setAtomic pid env = env { atomicLevel = pid }

One thing to take into account here, is that the atomic Task can throw an exception. If not
caught within the Task itself, this will circumvent recovery of the atomic level. For this reason,
the throw function is modified so it clears atomicity (i.e. sets the atomic level to the root node
of the hierarchy tree). All that remains now is modification of the parallel combinator. It will
be required to determine whether or not we are a parent of the atomic Task or not. A helper
function named isParent tells us whether or not one ParallelId is the parent of another:

-- e.g isParent [] [0] = True

-- isParent [0,0] [0,0] = False

-- isParent [0] [0,1,1] = True

-- isParent [0,1] [0,0,1] = False

isParent :: ParallelId -> ParallelId -> Bool

isParent parent child = maybe False (not . null) (stripPrefixSeq parent child)

-- e.g. stripPrefixSeq [0] [0,1,2] == Just [1,2]

-- stripPrefixSeq [1,2] [0,1,2] == Nothing

stripPrefixSeq :: Eq a => Seq a -> Seq a -> Maybe (Seq a)

stripPrefixSeq (viewl -> EmptyL) ys = Just ys

stripPrefixSeq (viewl -> (x :< xs)) (viewl -> (y :< ys))

| x == y = stripPrefixSeq xs ys

stripPrefixSeq _ _ = Nothing

Task-Oriented Programming for developing non-distributed interruptible embedded systems 39

CHAPTER 3. µTASKS: A GENERAL-PURPOSE TASK-ORIENTED PROGRAMMING
FRAMEWORK

The following part of the parallel combinator can now be modified:

-- Case 3: Evaluation did not result in a stable value.

-- Add the follow-up task to the accumulator.

_ -> let followups’ = insert i (followup tr x) followups

in parallel’ stables followups’ xs predOK someDone allDone env’

By checking if the combinator is a parent of a Task that is performing an atomic action, atomicity
is now achieved:

-- Case 3: Evaluation did not result in a stable value (noValue or unstable).

_ -> if isParent (parallelId env’’) (atomicLevel env’’)

then let xs’ = insert i (followup tr x) xs

in parallel’ stables followups xs’ predOK someDone allDone env’’

else let followups’ = insert i (followup tr x) followups

in parallel’ stables followups’ xs predOK someDone allDone env’’

3.9 I/O-related actions

I/O-related actions with regards to the world (e.g. reading from a file on the file system) require
special attention because they are enabled by special mechanisms and/or properties of the typing
system that prevent them from doing “impure” things. Clean for example uses uniqueness typ-
ing [Pla01] and Haskell uses the IO monad for this purpose. This means that if the framework is
to perform I/O, it must abide by the rules imposed by these mechanisms. In our case, it means
we must embrace the IO monad. Recall our Task definition presented in section 3.1:

type Task a = Environment -> (TaskResult a, Environment)

By changing this definition to the following, Tasks can now perform I/O-related actions:

type Task a = Environment -> IO (TaskResult a, Environment)

All types and definitions handled so far did not contain the IO monad to keep things simple. The
modifications required are minimal: they mostly consist of adding return calls and do blocks at
the appropriate places. Some of the functions shown in section 3.2 actually require the IO monad.
For example, the basic Task function hReadLine is defined as follows:

hSetBuffering :: Handle -> BufferMode -> IO ()

hReady :: Handle -> IO Bool

hGetLine :: Handle -> IO String

40 Task-Oriented Programming for developing non-distributed interruptible embedded systems

CHAPTER 3. µTASKS: A GENERAL-PURPOSE TASK-ORIENTED PROGRAMMING
FRAMEWORK

hReadLine :: Handle -> Task String

hReadLine handle = eval

where

eval e = do hSetBuffering handle LineBuffering

isReady <- hReady handle

if isReady

then do line <- hGetLine handle

stable line e

else noValue (hReadLine handle) e

Sometimes, a direct translaton is required from the IO domain to the Task domain. The liftIO

function has been added for this reason.

liftIO :: IO a -> Task a

liftIO action = \env -> action >>= \v -> stable v env

Note that the (>>=) function, is the “bind” function and not a Task combinator. The basic Task

currentTime is an example of an application of liftIO:

currentTime :: Task UTCTime

currentTime = liftIO getCurrentTime

3.10 Miscellaneous components

3.10.1 Tasks as a sequence of steps

Often, a certain (equivalently typed) group of Tasks represent a sequence of steps. This sequence
can be interrupted if one of the steps result in an erroneous value, in which case the result of the
sequence as a whole equals this value. In order to more conventiently express such a sequence, the
Steppable typeclass has been added to the framework:

class Eq a => Steppable a where

stopStep :: a -> Bool

step :: Task a -> Task a -> Task a

step ta tb = ta >>> \x -> if stopStep x then stable x

else tb

instance Steppable Bool where stopStep = id

instance Eq a => Steppable (Maybe a) where stopStep = isNothing

instance Eq a => Steppable [a] where stopStep = null

A steppable type is expected to define a stopStep function. Once this is defined, Tasks resulting
in this type can be specified as a sequence of steps using the step function (not to be confused with
the step combinator (>>*)). The example below forms a sequence of steps from several checks:

Task-Oriented Programming for developing non-distributed interruptible embedded systems 41

CHAPTER 3. µTASKS: A GENERAL-PURPOSE TASK-ORIENTED PROGRAMMING
FRAMEWORK

data RequestData = RequestData { username :: String

, password :: String

, action :: Action

}

data Action = AddUser | DeleteUser | ViewUser

validateUsername :: RequestData -> Task Bool

validatePassword :: RequestData -> Task Bool

isAuthorized :: RequestData -> Task Bool

-- A request is valid, if it contains valid credentials,

-- and the user is authorized for requested action.

validRequest :: RequestData -> Task Bool

validRequest info = validateUsername info ‘step‘

validatePassword info ‘step‘

isAuthorized info

3.10.2 Task equivalents of existing functions

One often occurring problem is requiring a function that is not available in the Task domain. For
that purpose, the lift and taskApply functions have been defined. The taskApply function is a
variant of the (?) combinator discussed in section 3.4.3.

taskApply :: (a -> b) -> Task a -> Task b

taskApply f ta = ta >>> stable . f

taskApply2 :: (a -> b -> c) -> Task a -> Task b -> Task c

taskApply2 f ta tb = ta >>> \x -> taskApply (f x) tb

taskApply3 :: (a -> b -> c -> d) -> Task a -> Task b -> Task c -> Task d

taskApply3 f ta tb tc = ta >>> \x -> taskApply2 (f x) tb tc

lift :: (a -> b -> c -> Task d) -> Task c -> a -> b -> Task d

lift f v x y = v >>> f x y

Some instances of these functions have been included in the framework because they often occur:

taskMaybe :: Task (Maybe a) -> Task d -> (a -> Task d) -> Task d

taskMaybe = lift maybe

taskIf :: Task Bool -> Task d -> Task d -> Task d

taskIf = lift thenElseIf

thenElseIf :: t -> t -> Bool -> t

thenElseIf x y cond = if cond then x else y

taskAnd :: Task Bool -> Task Bool -> Task Bool

taskAnd = taskApply (&&)

42 Task-Oriented Programming for developing non-distributed interruptible embedded systems

CHAPTER 3. µTASKS: A GENERAL-PURPOSE TASK-ORIENTED PROGRAMMING
FRAMEWORK

(+++) :: Task [a] -> Task [a] -> Task [a]

(+++) = taskApply (++)

For optional and boolean values, it often happens that additional actions are to be performed for
just one of its options, propagating its result for the other outcome. These patterns have been
captured by the following functions:

whenJust :: Task (Maybe a) -> (a -> Task (Maybe a)) -> Task (Maybe a)

whenJust prod just = taskMaybe prod (stable Nothing) just

whenNothing :: Task (Maybe a) -> Task (Maybe a) -> Task (Maybe a)

whenNothing prod nothing = taskMaybe prod nothing (stable . Just)

whenFalse :: Task Bool -> Task Bool -> Task Bool

whenFalse prod false = taskIf prod (stable True) false

whenTrue :: Task Bool -> Task Bool -> Task Bool

whenTrue prod true = taskIf prod true (stable False)

Another pattern that often occurs, is that a Task possibly produces a value (i.e. a Maybe type),
and we want to know if a certain predicate holds for this value. No value being produced should
be considered the same as the predicate not holding. The taskMaybePred function does just this:

taskMaybePred :: Task (Maybe a) -> (a -> Bool) -> Task Bool

taskMaybePred m pred = m >>> stable . (==) (Just True) . fmap pred

Instead of obtaining the boolean result, we may also want to branch on it directly. The maybeIf

function provides the result of taskMaybePred directly to taskIf:

maybeIf :: Task (Maybe a) -> (a -> Bool) -> Task b -> Task b -> Task b

maybeIf maybe pred = taskIf (taskMaybePred maybe pred)

3.10.3 Collections of tasks

While similar to the previous section in the sense that the functions discussed here are Task

equivalents of existing functions, they all concern collections:

taskConcat :: [Task [a]] -> Task [a]

taskConcat = foldr (+++) (stable [])

taskConcatMap :: (a -> Task [b]) -> [a] -> Task [b]

taskConcatMap f = taskConcat . map f

foldrMap :: (a -> a -> a) -> (b -> Task a) -> [b] -> Task a

foldrMap ffold fmap = foldr1 (taskApply ffold) . map fmap

Task-Oriented Programming for developing non-distributed interruptible embedded systems 43

CHAPTER 3. µTASKS: A GENERAL-PURPOSE TASK-ORIENTED PROGRAMMING
FRAMEWORK

taskSeq :: [Task a] -> Task [a]

taskSeq [] = stable []

taskSeq (x:xs) = x >>>

\v -> taskSeq xs >>>

\vs -> stable (v:vs)

taskSeq_ :: Foldable t => t (Task a) -> Task ()

taskSeq_ = foldr (>>|) (stable ())

44 Task-Oriented Programming for developing non-distributed interruptible embedded systems

Chapter 4

Case study: a task-oriented
payment terminal implementation

In order to develop a better understanding of the problem domain described in chapter 1, a case
study was performed. This chapter contains the results of this case study. In this case study, a
task-oriented implementation was developed for a payment terminal transaction using the µTasks
framework presented in chapter 3. The first step of this case study involved analyzing what a pay-
ment terminal transaction entails. This analysis is presented in section 4.1. Based on this analysis,
several core characteristics of the process have been identified. From these characteristics, several
task-oriented candidate approaches have been developed that aim to facilitate the development
of systems possessing the aforementioned characteristics. One of these candidate approaches was
selected as best suited for this case study. These characteristics and the resulting task-oriented
approaches are discussed in section 4.2. Lastly, the approach that was determined most suitable
was used for developing a proof of concept which shows that Task-Oriented Programming can be
an elegant alternative for systems like payment terminals. This proof of concept and a qualitative
analysis of it is presented in section 4.3.

4.1 Background: payment terminals and transactions

A payment terminal facilitates financial exchanges between a customer (i.e. the cardholder) and
a merchant. During a transaction, the terminal communicates with an acquirer. An acquirer
is a bank or financial institution that processes credit or debit card payments on behalf of the
merchant for specific brands (e.g. Visa, Mastercard and Maestro).

A payment terminal is initially supplied with, among other things, data on card identifiers, brands,
and acquirer information. A merchant can then configure the terminal to his/her own preference
(e.g. assigning specific acquirers to specific card brands). This is required to enable the payment
terminal to perform card recognition and acquirer selection. Multiple aspects of a transaction are
variable. These include, but are not limited to, the following:

1. A payment terminal itself can either be attended (i.e. under direct merchant control),
unattended (i.e. a self-service environment) or operating by mail/telephone order.

2. Multiple card entry modes exist, each having its own rules and standards: EMV smartcards,
magnetic stripe, contactless cards and manual card number entry.

Task-Oriented Programming for developing non-distributed interruptible embedded systems 45

CHAPTER 4. CASE STUDY: A TASK-ORIENTED PAYMENT TERMINAL
IMPLEMENTATION

3. The terminal operation mode. When in “On-line authorization” mode, the terminal requests
authorization from the acquiring host during a transaction. In “semi-online mode”, the ter-
minal starts locally processing a transaction based on information provided by the acquiring
host at initialization, and on-line authorization is only performed if needed. Finally, there
is also “semi-offline mode” (or “offline mode”), which is similar to “semi-online mode”. The
details are not relevant to this thesis.

4. There are multiple transaction types (also named services). “Payment”, “refund” and “can-
cellation” are all considered transactions for example.

The Common Terminal Acquirer Protocol (C-TAP) specification [Acq12a, Acq12b, Acq12c] ab-
stracts over these things: a terminal supporting C-TAP can communicate with an acquirer sup-
porting C-TAP, regardless of details and specifics. Figure 4.1 depicts the scope of the C-TAP
specification.

Figure 4.1: Scope of the C-TAP specification [Acq12a].

Note that the actual card communication is out of scope of C-TAP. This is defined in the cor-
responding standard for the card entry method (e.g. the EMV specification for an EMV smart
card [EMV11a, EMV11b, EMV11c, EMV11d]). The process named card transaction is described
by C-TAP as follows:

“The aim of the “Card Transaction“ is first to request the acquirer to authorize, and
next to notify the acquirer to record, a given card-based transaction for the card that
the cardholder presents on the terminal of the card acceptor, this transaction relating
to a particular service.” [Acq12b]

The card transaction is realised in two steps thanks to a double exchange protocol. First, the ter-
minal sends an authorization request, to which the acquirer replies with an authorization response.
This first message exchange is called the authorization exchange where the acquirer gives to the
terminal an approval or refusal for the requested service.

46 Task-Oriented Programming for developing non-distributed interruptible embedded systems

CHAPTER 4. CASE STUDY: A TASK-ORIENTED PAYMENT TERMINAL
IMPLEMENTATION

Next, the terminal informs the acquirer of the transaction completion (i.e. the final result) by
sending a completion advice, to which the acquirer responds with a completion acknowledgement.
This second message exchange is called the completion exchange which finalizes the transaction.
This double exchange protocol between the terminal and the acquirer is depicted by figure 4.2.

Figure 4.2: “card transaction” message flow between a terminal and an acquirer [Acq12b].

The messages sent in these two exchanges are all structured equally (i.e. the C-TAP “transaction
message” structure). However, some fields are omitted in one message, but present in another (or
in some cases conditionally present). C-TAP categorizes the activities performed by the terminal
by actions. Figure 4.3 shows these actions and the transitions between them. Note that the
authorization and completion exchange shown in figure 4.2 are included as actions in this model.
A brief description of each action is provided next. These descriptions are not complete and merely
try to convey the general idea.

Preliminary actions: The goal of the preliminary actions is to identify the presented card
(i.e. the card brand) and to obtain the required parameters (i.e.
an acquirer) to accept the card and to process the transaction ac-
cordingly. This includes activities like cardholder verification which,
for services requiring a card, ensures that the person presenting the
card is the person whom the card was issued to.

Authorization exchange: The is the first message exchange with the acquirer. The terminal
has built up an authorization request consisting of all data required
by the acquirer to make a decision on whether or not to authorize the
transaction. Aside from an “approval” or “rejection”, the acquirer
may also respond with an “alterable refusal”. In this case the ter-
minal is to perform certain resubmission actions before re-entering
the authorization exchange.

Resubmission actions: This action is performed when the acquirer responds with an “alter-
able refusal” in the request exchange, indicating that more actions
are required for (potential) approval. Examples of such actions are
re-entering a PIN in case the first one was incorrect and providing
additional authorization data.

Completion actions: The completion actions are performed when the terminal receives
an “approval” response at the authorization exchange. At this stage
the transaction was approved, meaning the goods or service(s) may

Task-Oriented Programming for developing non-distributed interruptible embedded systems 47

CHAPTER 4. CASE STUDY: A TASK-ORIENTED PAYMENT TERMINAL
IMPLEMENTATION

be delivered or rendered, if not done already. The acquirer may still
request additional data even though it approved the transaction.

Completion exchange: The completion exchange is the last message exchange of the card
transaction process. This message exchange intends to notify the
acquirer that the transaction was either completed or cancelled at
the point of service, and to inform of the result of the transaction
that it closes. This exchange finalizes and closes the transaction.
This action may have to be performed multiple times in case of
failure (e.g. the terminal may not be able to connect to the acquirer)

Cancellation actions: The cancellation actions are triggered by the terminal on any of the
cancellation conditions that may occur in other phases of the card
transaction process. The goal of this phase is to store the required
information for the later (negative) completion advise.

Figure 4.3: Online card transaction from a terminal perspective [Acq12b].

48 Task-Oriented Programming for developing non-distributed interruptible embedded systems

CHAPTER 4. CASE STUDY: A TASK-ORIENTED PAYMENT TERMINAL
IMPLEMENTATION

One thing of importance is that from a certain point in the transaction, the terminal is expected
to finalize it by sending a (possibly negative) completion advise. More specifically, this “point
of no return” is reached when the terminal sends its authorization request. The acquirer has no
knowledge of the transaction prior to this, meaning the terminal may locally abandon it up until
this point. In figure 4.3 this is reflected by an “abandon” transition for local abandonment and
a “cancel” transition for on-line finalization using a completion advise. Some acquirers require
a terminal to always send a completion advise, hence the “cancel” transition from “preliminary
actions”.

After having accepted (and therefore identified) a card, the terminal initializes and maintains
registers that reflect the transaction’s progress and results. For transactions performed with an
EMV smartcard, the terminal also obtains the application profile from the card indicating its
capabilities. Card recognition and acceptance are the first steps of the “preliminary actions”
shown in figure 4.3. An overview of the aforementioned registers is presented next.

Application Interchange Profile (AIP): Reflects the capabilities and preferences of the In-
tegrated Circuit Chip (ICC) contained on the card.
Examples of bits that can be set in this register are
“cardholder verification is supported” and “terminal
risk management is to be performed”.

Terminal Verification Results (TVR): Contains information on established results. Exam-
ples of bits that can be set in this register are “ICC
data missing”, “PIN try limit exceeded” and “re-
quested service not allowed for card product”.

Terminal Status Information (TSI): Gives an indication of the transaction progress. Ex-
amples of bits that can be set in this register are
“cardholder verification was performed” and “offline
data authentication was performed”.

As mentioned earlier, communication with the card itself is not defined by C-TAP, but by the
specification of the corresponding card type. For EMV smartcards for example, the EMV spec-
ification prescribes how the terminal can interact with the card (or more specifically, the ICC
contained on it). Figure 4.4 depicts an example flow of a transaction from an EMV smartcard
point of view, taken from the EMV specification.

C-TAP refers to these specifications where needed; C-TAP is complementary as opposed to con-
flicting. For example, the EMV activities up to the “online / offline decision” correspond to the
“preliminary actions” for EMV-based transactions in C-TAP. Likewise, “online processing & issuer
authentication” as specified in the EMV specification corresponds to the “authorization exchange”
in C-TAP. Of course, the EMV specification only takes into account activities involving the card.
Terminal-only actions are only defined in the C-TAP specification.

An initial (negative) completion advise is safely stored in the terminal’s non-volatile memory just
before sending out the completion request. This allows the terminal to repeat its advise even after
a power loss. This is essential, because a terminal can not start a new transaction (with the same
acquirer) before a pending transaction has been finalized.

Task-Oriented Programming for developing non-distributed interruptible embedded systems 49

CHAPTER 4. CASE STUDY: A TASK-ORIENTED PAYMENT TERMINAL
IMPLEMENTATION

Figure 4.4: Example transaction flow from an EMV smartcard point of view [EMV11c]
.

50 Task-Oriented Programming for developing non-distributed interruptible embedded systems

CHAPTER 4. CASE STUDY: A TASK-ORIENTED PAYMENT TERMINAL
IMPLEMENTATION

4.1.1 Transaction simplifications

For the proof of concept code accompanying this thesis, simplifications were applied to the trans-
action process. The goal of applying these simplifications was not to enable a solution that would
otherwise not have been possible, but to focus on the essential characteristics. It is after all a proof
of concept, aiming to give credibility to the possibility of a task-oriented solution. The following
simplifications have been made:

1. The scope is limited to a transaction only. This means it is assumed that the terminal is
initialized accordingly and contains all parameters required to be C-TAP operational.

2. There is no interaction with actual hardware. Hardware will be simulated by stubs. Likewise,
no actual networking driver will be addressed for TCP/IP communication.

3. Transaction message (the structure followed by the messages in both message exchanges)
content has been minimized, and types have been simplified for cases where this does not
result in a change of design.

4. A request is always responded to by a response. Additionally, this response is never mal-
formed or incomplete. This applies to both responses obtained from the ICC and the ac-
quirer.

5. The terminal and the ICC are under specific conditions allowed to perform certain tasks
in parallel in order to be faster. “Terminal risk management” for example is performed in
parallel in figure 4.4. In the proof of concept, such speed optimizations are not taken into
account even though performing tasks in parallel is easy with the dedicated combinators
contained in µTasks (section 3.6).

4.2 System characteristics and candidate solutions

A task specification for the payment terminal must abide by the C-TAP and EMV specifications
discussed in section 4.1. The actions defined by C-TAP depicted in figure 4.3 are typical candidates
to be modelled as tasks. The following system characteristics are identified from analyzing the
aforementioned specifications:

common There is a common set of data that multiple tasks require access to. Examples of
elements contained in this set are the TVR, TSI and AIP registers.

dynamic This set of data is dynamic: it may grow as the transaction task progresses. For
example, prior to the authorization exchange (section 4.1) this set does not include
an authorization response but after, it does.

recoverable The set of data mentioned in common must be recoverable when the task is inter-
rupted. Removal of the card will interrupt a transaction for example. Subsequent
actions taken depend on the progress of the interrupted process, which is reflected
by the aforementioned set of data.

The challenge of this case study is to come up with a task-oriented approach that respects these
characteristics while still maintaining the elegance of Task-Oriented Programming (chapter 2). In
the following subsections, a couple of candidate solutions are presented. Because these characteris-
tics are not specific to the payment terminal domain, the presented approaches will not be specific
to that domain either. The candidate solution discussed in section 4.2.2 is determined best-suited
for this case study, and is used in section 4.3 for the development of the proof of concept. When
discussing the candidate solutions, the characteristics that were just presented will be referred to
by their label (i.e. common, dynamic or recoverable).

Task-Oriented Programming for developing non-distributed interruptible embedded systems 51

CHAPTER 4. CASE STUDY: A TASK-ORIENTED PAYMENT TERMINAL
IMPLEMENTATION

4.2.1 Candidate solution: implicit data relay by use of state

One approach is to encapsulate the data in (a) state(s) hidden by combinators (similar to how the
Environment is hidden when defining Tasks). This results in a new task type Task2 having the
following form where S represents the state:

type Task2 a = S -> Task (a, S)

For recoverable, S should contain all elements that are to be recovered in case of interruption.
This is likely to result in optional values because not all values are obtained at the same time,
as stated in dynamic. Without recoverable, optional values could be avoided by making multiple
task types and state size could be kept minimal by defining a hierarchy of task derivations. For
example, a task type Task3 based on the shown Task2 type would have the following form:

type Task3 a = S2 -> Task2 (a, S2)

To make S accessible from a task at the highest level (that is still interruptible), which is required
for recoverable, this task itself needs to be of type Task2. For this reason, the type definition
for Task2 should be modified into the following, as none of the state members will be present
initially (if they are they should not be part of the state). Alternatively, all state members are
made optional.

type Task2 a = Maybe S -> Task (a, Maybe S)

The main issue with this approach is that existing combinators can no longer be used. After all,
these are defined for values of type Task a and not Task2 a. Framework modifications resulting
in task combinators being applicable to arbitrary (possibly nested) task derivations are possible,
but not trivial. In this case study, there is only one additional state on top of the Environment.
For this reason, the idea of hierarchical tasks is discarded.

Defining a hierarchy of state monads is more of a functional programming approach than a task-
oriented one. The candidate solution discussed in section 4.2.2 is a proper task-oriented solution.
This candidate is better suited for this case study and is used for the proof of concept presented
in section 4.3.

4.2.2 Candidate solution: state as a shared resource

Instead of deriving a new task type as proposed in section 4.2.1, the Environment can be used for
state storage, as every Task has access to this Environment. The most straightforward approach
would be to store data in one or multiple shared data sources (section 3.7) having pre-arranged
share IDs. The downside of this approach is that one needs to explicitly state which share to access.
In this section we will present a class-based alternative which allows share identification by type.
This means a share can be obtained without having to explicitly mention the share ID because
the type system can automatically deduce the type (section 2.3.2). Using a class definition has
the consequence that there can only be one share per type. For this case study this is acceptable,
because there is just one state. An older type can always be wrapped in an algebraic data type
to form a new type. This way multiple shares can be defined for the “same” type.

52 Task-Oriented Programming for developing non-distributed interruptible embedded systems

CHAPTER 4. CASE STUDY: A TASK-ORIENTED PAYMENT TERMINAL
IMPLEMENTATION

The RecoverableState class represents the aforementioned class. Once the shared function is
defined, the other functions of the class can be used to manipulate the state similar to how the
Environment is manipulated.

class Typeable s => RecoverableState s where

-- We write the state, and read the state (if it’s there).

shared :: ReadWriteShared (Maybe s) s

-- Read and write from / to a state.

rsRead :: (s -> a) -> Task a

rsRead f = taskMaybe rsGet

(throw RecoverableStateException)

(stable . f)

rsWrite :: (s -> s) -> Task ()

rsWrite f = preUpdate shared upd ? const ()

where

upd = maybe (throw RecoverableStateException) (stable . f)

-- Get and set the state.

rsSet :: Task s -> Task ()

rsSet ta = ta >>> flip set shared ? const ()

rsGet :: Task (Maybe s)

rsGet = get shared

Note that the type read from the share is Maybe s. This is done for the same reason as S was
changed to Maybe S for in the Task2 type presented in section 4.2.1. As shown, a share ID needs
to be defined explicitly. One could likely generically (section 2.3.5) derive a share identifier from
a type (for example by exploiting the fact that a type name is unique), in which case there would
not longer be a need to specify a share ID. Alternatively, the type of a share ID could be changed,
for example to a string so that the name of the (non-polymorphic) type can be used. This route
has not been pursued any further in this case study.

With RecoverableState, a function to solve the problem of state recovery can be defined. The
idea of this function is that a state builder Task is run in parallel with an interruption Task that
can interrupt it. This interruption occurs when the interruption functions terminates with a value
that satisfies a given predicate. If this predicate does not hold, or the state building function
terminates first, the function simply results in the result of the state builder.

withStateRecovery :: RecoverableState s =>

(b -> Bool) ->

(Maybe s -> Task a) ->

Task a ->

Task b ->

Task a

withStateRecovery pred recoveryFunction stateBuilder interruptionFunction =

parallel [stateBuilder ? Left, interruptionFunction ? Right] (not . null) id undefined >>> res

where

res ([Right x], [stateBuilder’]) = if pred x then rsGet >>> recoveryFunction

else stateBuilder’ ? fromLeft

res ([Left x], _) = stable x

Task-Oriented Programming for developing non-distributed interruptible embedded systems 53

CHAPTER 4. CASE STUDY: A TASK-ORIENTED PAYMENT TERMINAL
IMPLEMENTATION

Detection of card removal happens using a heartbeat function. Metaphorically, the heart keeps
on beating while the card is present. In other words: termination of this function indicates that
the card is no longer present. This means any observed stable result will result in execution of the
interruption function. State recovery using a heartbeat function is simply a less general version of
withStateRecovery:

withStateRecoveryUsingHeartbeat :: RecoverableState s =>

(Maybe s -> Task a) -> Task a -> Task b -> Task a

withStateRecoveryUsingHeartbeat = withStateRecovery (const True)

The following example shows how the discussed mechanism are applied. Here, State contains
three elements that are to be recovered, of which one (z) is not present initially. The task task

assigns the members of State as it progresses.

data State = State { x :: Int

, y :: Int

, z :: Maybe Int

}

instance RecoverableState State where

shared = sharedStore 42 Nothing Just

interruptibleTask = withStateRecoveryUsingHeartbeat handler

task

interrupt

where

task = first >>| second >>| third

handler :: Maybe State -> Task ()

handler s = -- ’task’ was interrupted. All needed information is present in ’s’.

Because x, y and z are contained in the Environment, these do not appear in the definition of
task. In this example, first could set the initial state using the rsSet function, e.g.:

rsSet $ stable State { x = 41

, y = 42

, z = Nothing

}

second can now access x and y and ultimately set z. Similarly, third has access to x, y and z.

second = rsRead x >>>

\x’ -> rsRead y >>>

\y’ -> ... >>|

rsWrite $ set z (Just 43)

54 Task-Oriented Programming for developing non-distributed interruptible embedded systems

CHAPTER 4. CASE STUDY: A TASK-ORIENTED PAYMENT TERMINAL
IMPLEMENTATION

4.3 Proof of concept

With a task-oriented solution available that specifically targets systems with characteristics of a
payment terminal (section 4.2.2), the implementation of one becomes relatively straightforward as
we will see in this section. The transaction process itself is sequential, as shown by figure 4.3. The
presented task-oriented solution allows this sequence to be directly translated to code, because
the actions of which it is composed need not be aware that they can be interrupted (since this is
accounted for by the state recovery function):

transaction amount = preliminaryActions amount >>> evalAction

where

evalAction ApproveTransaction = -- Out of scope.

evalAction DeclineTransaction = -- Abandon locally, no cancellation actions.

evalAction AuthorizeTransactionOnline = authorizeOnline

authorizeOnline = authorizationExchange >>>

\exchangeResult -> case exchangeResult of

Approval -> taskIf completionActions

completionExchange

cancelTransaction

AlterableRefusal actions -> taskIf (resubmission actions)

authorizeOnline

cancelTransaction

DefinitiveRefusal -> cancelTransaction

where

cancelTransaction = cancellationActions >>| completionExchange

Note that the result of the preliminary actions is a decision on whether to approve the transaction,
decline the transaction or authorize it online. The constructor names have been chosen to reflect
this. This is why they are named differently than the transition labels shown in figure 4.3. The
state containing data that must be recoverable looks as follows. This state enables a terminal to
determine its transaction progress and status through fields like the TVR and TSI registers, and
even to resume it as it contains the request message:

data TerminalState = TerminalState

{ _card :: CardBrandIdentifier

, _acquirer :: AcquirerIdentifier

, _aip :: ApplicationInterchangeProfile

, _tsi :: TransactionStatusInformation

, _tvr :: TerminalVerificationResults

, _request :: TransactionMessage

, _response :: Maybe TransactionMessage

, _applicationData :: ApplicationData

, _acquirerConnected :: Bool

}

This shows another reason why implementation of the terminal becomes straightforward using the
task-oriented approach: all data that needs to be recovered in case of interruption that is required
by a task is available in the Environment. Through the RecoverableState class this data is easily

Task-Oriented Programming for developing non-distributed interruptible embedded systems 55

CHAPTER 4. CASE STUDY: A TASK-ORIENTED PAYMENT TERMINAL
IMPLEMENTATION

accessible. This allows implementing the various steps of the transaction process independently.
After assigning a share for this state by defining the shared function of the RecoverableState

class, the transaction task can be interrupted by removal of the card because the interruption
handler is provided with all information necessary to properly act on this event:

transaction :: Int -> Task ()

transaction amount = withStateRecoveryUsingHeartbeat fallbackProcedure

(tryTransaction amount)

cardReaderHeartbeat

where

fallbackProcedure :: Maybe TerminalState -> Task ()

fallbackProcedure Nothing = -- No initial state was made yet.

fallbackProcedure (Just s) = -- Determine the action based on ’s’.

In order to more easily access members in the state, helper functions were defined. For example,
the following functions facilitate access to the TVR register:

getTVR field = rsRead $ view (tvr . field)

setTVR field value = rsWrite $ (over tvr . set field) value

All that remains to do now is to:

1. Implementing the various actions defined by C-TAP (figure 4.3), refining them into the
actions specified by the EMV specification (figure 4.4) where needed. An example of this
is given in section 4.3.1. The remaining modules will not be listed in this paper, but are
available1.

2. Dealing with physical components like the card reader and the safe storage module. Physical
components are typically modeled using shared data sources (section 3.7), because their
limited availability forces them to be shared by Tasks.

4.3.1 Example: cardholder verification

One of the steps of the “preliminary actions” defined by C-TAP is “cardholder verification” which
aims to ensure that the person presenting a card is also the person the card was issued to. This
section shows an example of how this action could be implemented using the discussed approach.
The goal of this example is to show how the discussed approach (section 4.2.2) is applied in
practice; the details are not important at this point.

1 data PINEntryResult = PINEntrySuccessful EncryptedPIN

2 | PINEntryTimeout

3 | PINEntryCancelled

4

5

6

7

1The complete sourcecode is available upon request. Contact by mail: jasper.piers@gmail.com

56 Task-Oriented Programming for developing non-distributed interruptible embedded systems

jasper.piers@gmail.com

CHAPTER 4. CASE STUDY: A TASK-ORIENTED PAYMENT TERMINAL
IMPLEMENTATION

8 -- C-TAP.200 Section 3.3.1.5, EMV Section 10.5

9 cardholderVerification :: Task ()

10 cardholderVerification =

11 -- Check in the AIP if we support at least one CVM.

12 taskIf (getAIP cardholderVerificationIsSupported)

13 performCardholderVerification

14 (stable ())

15

16 performCardholderVerification :: Task ()

17 performCardholderVerification =

18 taskMaybe (searchAppData Tag_CardholderVerificationMethodList)

19 (stable ()) -- No CVM on the ICC

20 (\CVMList { _amountX

21 , _amountY

22 , _cardholderVerificationRules

23 } -> case _cardholderVerificationRules of

24 [] -> stable ()

25 otherwise -> evalRules _amountX _amountY _cardholderVerificationRules >>|

26 setTSI cardholderVerificationWasPerformed True)

27

28 -- This function should not be called with an empty ruleset, because that should not

29 -- set the TVR bit (and ofcourse also not the TSI bit)

30 evalRules :: Int -> Int -> [CardholderVerificationRule] -> Task ()

31 evalRules x y [] =

32 setRequest (emvChipTechnologyGroup . cardholderVerificationMethodResults . cvmResult)

33 (Just False) >>|

34 setTVR cardholderVerificationWasNotSuccessful True

35

36 evalRules x y (cvr@(rule,cond):xs) =

37 -- Check whether or not the rule in the condition is satisfied.

38 taskIf (ruleConditionSatisfied cond)

39 -- Condition satisfied: try to perform the CVM.

40 -- Set this CVM as the last performed CVM in the CVMResults.

41 (setRequest (emvChipTechnologyGroup . cardholderVerificationMethodResults . cvmRule)

42 (Just cvr) >>|

43

44 taskIf (performCVM action)

45 (stable ())

46 -- The CVM was not recognized, not supported, or it failed.

47 -- If the rule was CVMA_Fail, we try no further rules, regardless.

48 (if view failWhenUnsuccessful rule || action == CVMA_Fail

49 -- If failure was critical, set the TVR bit (by calling the base case).

50 -- otherwise continue with trying the remaining rules.

51 then evalRules x y []

52 else evalRules x y xs)

53)

54 -- Condition not satisfied: try the next rule.

55 (evalRules x y xs)

56 where

57 action = view cvmAction rule

58

59

60 terminalSupportsCVM :: CVMAction -> Task Bool

61 terminalSupportsCVM CVMA_Fail = stable False

62 terminalSupportsCVM CVMA_NoCVMRequired = stable True

63

Task-Oriented Programming for developing non-distributed interruptible embedded systems 57

CHAPTER 4. CASE STUDY: A TASK-ORIENTED PAYMENT TERMINAL
IMPLEMENTATION

64 terminalSupportsCVM CVMA_PlaintextPINByICCAndSignature =

65 terminalSupportsCVM CVMA_PlaintextPINByICC ‘taskAnd‘

66 terminalSupportsCVM CVMA_Signature

67

68 terminalSupportsCVM CVMA_EncipheredPINByICCAndSignature =

69 terminalSupportsCVM CVMA_EncipheredPINByICC ‘taskAnd‘

70 terminalSupportsCVM CVMA_Signature

71

72 terminalSupportsCVM action =

73 -- For all other cases, we need to see if both the terminal and the acquirer

74 -- in charge supports the cvm corresponding to the supplied action.

75 getCard >>>

76 \card -> let terminalCVMs = view (managementTerminalGroup . terminalCapabilities

77 . cvmCapabilities) terminalConfig

78 acquirerCVMs = view cardholderVerificationModes (cardBrandTable ! card)

79 in

80 stable $ any (match action) (terminalCVMs ‘intersect‘ acquirerCVMs)

81 where

82 match :: CVMAction -> CardholderVerificationMode -> Bool

83 match CVMA_PlaintextPINByICC PlaintextPIN = True

84 match CVMA_EncipheredPINOnline EncipheredPIN_Online = True

85 match CVMA_EncipheredPINByICC EncipheredPIN_Offline = True

86 match CVMA_Signature Signature = True

87 match _ _ = False

88

89

90 -- Assumption : we recognize all CVMs, so we do not need to check for that.

91 -- Consequence: the "unrecognized CVM" bit in the TVR will never be set.

92 performCVM :: CVMAction -> Task Bool

93 performCVM action =

94 taskIf (terminalSupportsCVM action)

95 -- The CVM is supported, set it in the CVMResult

96 (performAction action)

97

98 -- The Terminal does not support this CVM, if this was a PIN operation,

99 -- set the corresponding TVR bit.

100 (setTVR pinEntryRequiredAndPinpadNotPresentOrNotWorking (isPINCVM action) >>| stable False)

101 where

102 isPINCVM CVMA_PlaintextPINByICC = True

103 isPINCVM CVMA_EncipheredPINOnline = True

104 isPINCVM CVMA_PlaintextPINByICCAndSignature = True

105 isPINCVM CVMA_EncipheredPINByICC = True

106 isPINCVM CVMA_EncipheredPINByICCAndSignature = True

107 isPINCVM _ = False

108

109

110 performAction :: CVMAction -> Task Bool

111 performAction CVMA_Fail = stable False

112 performAction CVMA_NoCVMRequired =

113 -- This is the only case where CVM is successful.

114 -- Other successful actions will be "unknown" (see EVM4 6.3.4.5).

115 setRequest (emvChipTechnologyGroup . cardholderVerificationMethodResults . cvmResult)

116 (Just True) >>|

117 stable True

118

119

58 Task-Oriented Programming for developing non-distributed interruptible embedded systems

CHAPTER 4. CASE STUDY: A TASK-ORIENTED PAYMENT TERMINAL
IMPLEMENTATION

120 performAction CVMA_EncipheredPINOnline =

121 requestPIN >>>

122 \pinResult -> case pinResult of

123 PINEntrySuccessful pin -> setRequest (onlinePINGroup . cardholderEncryptedPIN) (Just pin) >>|

124 stable True

125 _ -> stable False

126 performAction _ = stable False

127

128

129

130 -- PIN entry can be successful, cancelled or timed out.

131 requestPIN :: Task PINEntryResult

132 requestPIN = getCard >>>

133 \card -> enterPIN (view pinLengthType (cardBrandTable ! card))

134

135 -- "Encrypts" a PIN.

136 encryptPIN :: PIN -> Task EncryptedPIN

137 encryptPIN pin = stable (Encrypted pin)

138

139 -- A simple Task for entering the PIN.

140 -- PIN entry has a timeout; hance the maybe type.

141 enterPIN :: PINLengthType -> Task PINEntryResult

142 enterPIN lengthType = taskMaybe (withTimeout 10000 enterPINWithLength)

143 -- PIN entry was cancelled

144 (stable PINEntryCancelled)

145 -- PIN entry was not cancelled

146 (\pin -> if null pin then stable PINEntryTimeout

147 else encryptPIN pin >>>

148 (stable . PINEntrySuccessful))

149 where

150 enterPINWithLength = case lengthType of

151 PINLengthFixed4 -> enterPIN’ 4 4

152 PINLengthVariable4To6 -> enterPIN’ 4 6

153 PINLengthVariable4To12 -> enterPIN’ 4 12

154

155 enterPIN’ lower upper = (printInfo "Enter PIN: " >>| readLine <! invalid) ? map digitToInt

156 where

157 invalid = \input -> let n = length input

158 in n < lower || n > upper || (not $ all isDigit input)

In section 4.3.2 the results of the proof of concept will be discussed. This example will be repre-
sentative for the entire proof of concept.

4.3.2 Discussion

For the proof of concept, implementations were developed for each action defined in C-TAP (fig-
ure 4.3). Focus was placed on the flow of the transaction for a specific instance (i.e. EMV-based
transactions with online authorization) with the possibility of flow interruption through card re-
moval. This means many details were omitted in the proof of concept as discussed in section 4.1.1,
for example the intricacies of things like communication with other systems. The proof of concept
is not an application that will perform an actual transaction. A full implementation would have
to take many more variables into account. The case study, and in particular the proof of concept,
revealed that a task-oriented approach yields several benefits:

Task-Oriented Programming for developing non-distributed interruptible embedded systems 59

CHAPTER 4. CASE STUDY: A TASK-ORIENTED PAYMENT TERMINAL
IMPLEMENTATION

1. The actions of a transaction have a high level of independency. This makes it easy to remove
or add them. The main reason for this high level of modularity is that the data that is
needed by these actions is available through the environment, which is accessible by any
task. The development of the proof of concept is summarized by the following steps:

(a) Defining the set of data (i.e. TerminalState) that is to be recovered when the trans-
action is interrupted.

(b) On the top level, start a transaction task using the state recovery function, and define
a fallback procedure for the defined TerminalState.

(c) Implement the transaction through a process of refinement without having to take
card removal into account. Every sub-task of the transaction task has access to the
TerminalState. Every C-TAP action is defined in its own module, which exports one
task that performs the action.

2. The code is concise and reads much like the specification on which it is based. One of the rea-
sons for this is that task combinators hide details that are irrelevant to the specification, like
the state. Similarly, things like I/O would be abstracted over by shared data sources 2.4.2.
In the proof of concept the latter is only done for communication with the ICC.

3. Because performing tasks in parallel is one of the core features of Task-Oriented Program-
ming (section 2.4.5), dealing with interruptions that can occur at any time (e.g. card removal)
becomes a lot easier than when this would not be the case. Because detection of such events
can occur in parallel as opposed to having to poll for events periodically, the reaction time
of a task-oriented solution to such events is short.

These findings support the hypothesis that a task-oriented solution for these systems is better
maintainable and that it allows for a short reaction time to events that can occur at any time.

60 Task-Oriented Programming for developing non-distributed interruptible embedded systems

Chapter 5

Related Work

5.1 Payment terminal implementation at CCV

CCV develops multiple types of payment terminals, for example the one depicted by figure 5.1.
Before going into the used programming paradigms and techniques, the architectural landscape
of CCV payment terminals will be sketched. This will place the software discussion held later in
the appropriate context. As suggested by the word “sketched”, the goal is only to provide the
appropriate context, not an exact and complete overview.

5.1.1 Architectural landscape

A payment terminal is a device consisting of various components, the most important ones being
the screen, keypad and card reader. The card reader is not always integrated into the payment
terminal itself; some payment terminal models require an external one. Multiple components are
optionally integrated, e.g. printers used for printing receipts.

Figure 5.1: a CCV payment terminal.

A payment terminal is installed at a merchant where it is
part of the merchant’s payment setup. Aside from the pay-
ment terminal, this setup typically contains a cash register
and things like a card reader if these are not part of the
terminal itself.

The payment terminal also communicates with systems
outside of the merchant’s payment setup. Examples of
such systems are the Terminal Management System (TMS)
for configuring and parameterizing the terminal, a logging
server that allows CCV to analyze terminal behavior and
an acquirer for payment processing.

Two software processes are present on the payment termi-
nal: the payment application (i.e. the application consid-
ered in this thesis) and the secure module application (also
referred to as the SCM). The main reason for splitting the
software into 2 processes is that it makes certification eas-
ier. A terminal needs to pass certain certifications (e.g.
PCI PTS 3.0 [Kin10], a security standard for PIN entry
devices) to be usable in the field. By placing functional-

Task-Oriented Programming for developing non-distributed interruptible embedded systems 61

CHAPTER 5. RELATED WORK

Figure 5.2: sketch of the CCV payment terminal landscape.

ity relevant for these certifications in the SCM, the amount of code subject to certification is
minimized. From now on, “payment terminal software” will refer to the payment application.
In short, a payment application on the terminal is not a stand-alone piece of software, but is
interconnected with various other components having their own standards and protocols. This
landscape is depicted by figure 5.2.

Within CCV, the payment terminals are subdivided into two categories: VxTree and CCV#. Pay-
ment terminals that fall under the former category are developed in the procedural programming
language C. C used to be the programming language of choice because payment terminals had
limited capabilities (e.g. a low amount of memory) [Bar98]. Nowadays, payment terminals (and
portable electronic devices in general, e.g. smartphones) are equipped with much better hardware
opening up more possibilities implementation-wise. Object-oriented programming is one of the
most prominent programming paradigms today being followed by popular languages like Java, C#
and C++ [Sta16]. Terminals that fall under the CCV# category are implemented in the object-
oriented programming language C# [AA15]. The secure module (SCM) running on these terminals
is implemented in C++ [Sav14]. In this thesis, focus is placed on the payment applications running
on CCV# terminals.

5.1.2 Top-level payment application design

The software running on a CCV payment terminal is divided into sessions. A session is made up
out of actions. Sessions can be derived from other sessions. For example, one type of session is a
“payment session”, used for processing a payment. Multiple types of sessions can be used where
a payment session is needed: a terminal might perform a “C-TAP session” (section 4.1) when
located at a department store or an “IFSF session” [IFS16] when used in the petrol sector.

The execution of sessions is controlled by a session controller running in its own thread. The
session controller starts sessions one after another. In other words: at most one session is being
executed at any given time. The session controller houses a (thread-safe) list of pending sessions
from which it selects the next session to start once the running session finishes. This selection
procedure is determined by logic built into the session controller (e.g. a maintenance session might
get prioritized over a payment session).

62 Task-Oriented Programming for developing non-distributed interruptible embedded systems

CHAPTER 5. RELATED WORK

Figure 5.3: CCV terminal software architecture.

Events originate from event sources. For each event source, there is a thread for processing its
events. Processing of events means placing them into a (thread-safe) event queue of which there
is only one. Actions can obtain events from this queue and events arriving at the aforementioned
threads will always be placed into the event queue, even when they are irrelevant to the currently
execution action or session. Examples of event sources are the web UI accessed by a service
engineer and the keypad and card reader accessed by the card holder.

Events originating from one of the terminal’s hardware components (e.g. the keypad) go through
the secure module, as shown in 5.2, because these need to be in a single process for certification
reasons. As mentioned before, there is a thread for each event source and this is no different
for events that arrive in the secure module process instead of the payment application process.
In this case, a thread subscribes itself to a particular event type (e.g. keypad events) on the
secure module. The secure module broadcasts the events it receives to its subscribers. The secure
module acts as a server and the thread on the payment process acts as a client where (inter-
process) communication occurs using OS sockets. Some activities, like PIN entry, are completely
taken care of by the SCM because they are subject to strict security requirements. In these cases,
related events will not be placed into the payment application’s event queue.

Some event sources can also provide sessions. The web UI example mentioned earlier is one of
these event sources. A service engineer may select an activity he wishes to perform (e.g. “initialize
C-TAP”) on the web UI. This will place the corresponding session in the session controller’s session
list and serves the requested page to the service engineer. Sections of the page that require session-
related information are not yet loaded. Once the session is started, the UI components related to
the session are loaded. The service engineer interacts with these pages, resulting in events being
placed in the event queue accessible by the started session (or more specifically, the actions it is
composed of). The discussed architecture is depicted by figure 5.3.

5.1.3 Problem areas

The discussed software architecture applies to many payment terminals that have been successfully
operating in the field for years. Nonetheless, there is room for improvement in multiple aspects:

Task-Oriented Programming for developing non-distributed interruptible embedded systems 63

CHAPTER 5. RELATED WORK

(1) The current architecture makes it easy to timely act on events when expecting them, but
difficult when you do not. An example of an activity that involves expected events is PIN
entry. It is clear that events related to PIN entry (i.e. keypad button presses) can be
expected after asking the card holder to enter his or her PIN. No other activities are to be
performed while the PIN is being entered, making it easy to deal with.

An example of an unexpected event is a cancellation request instantiated by the cashier
through the cash register. This event is not expected by the terminal at any particular
moment: it can occur at any time. It can occur for example while the card holder is entering
his or her PIN. This scenario is depicted by figure 5.4. In this figure, the progress of the
payment session on the terminal is informally represented by display messages. Strictly
speaking, the display is under control of the SCM as shown in figure 5.2.

Figure 5.4: Interruption while processing other events.

There are two reasons for delayed event detection in the payment application:

a) Blocking communication with the SCM. The aforementioned PIN entry example falls
under this category. PIN entry is functionality performed completely by the SCM, as
discussed in section 5.1.2. The payment application invokes this functionality through a
custom-made Remote Method Invocation (RMI) [HDH02] module. These RMI calls are
blocking, meaning the terminal simply waits for them to complete. Because events are
processed in separate threads, these will still be placed in the event queue. However,
the terminal is not able to query the event queue until after the RMI call. As a
partial solution, the SCM can throw exceptions. These exceptions can be caught by
the payment terminal application and acted upon accordingly. This allows the terminal
to act without delay on events that go through the SCM (e.g. card removal), but not
on events that originate from sources not regulated by the SCM (e.g. the cash register
or the web UI). This results in a delayed response time for those events, and potentially
work being performed for nothing (e.g. finishing PIN entry while the transaction was
canceled mid-way through by the cash register).

b) There is no real parallelism. Events are processed in separate threads, but the executing
session is single-threaded. In some cases a finite hierarchical state machine [Sam08] is
used to model the interaction between actions. This state machine supports state
entry- and exit actions, transition guards and functions and actions on transitions.
The difference between an action and a function here, is that an action cannot fail; it
returns void. However, actions can throw exceptions. The state machine catches all
exceptions and cancels the transitions they originated from, or in case of state entry
it stops the state machine in a predefined erroneous state. When a transition is not
defined for the executing state machine, the corresponding event is propagated to the

64 Task-Oriented Programming for developing non-distributed interruptible embedded systems

CHAPTER 5. RELATED WORK

parent state machine if there is any. When a parent state machine transits, the child
state machine is stopped, triggering the corresponding parent node exit actions.

In summary, the state machine implementation is fairly straight-forward. The possi-
bility of defining a hierarchy allows for more concise definitions, but event-processing
and action/function execution still happen sequentially. This results in a delayed event
response because event-processing does not occur while executing an action or function
(e.g. a state entry action). Regularly checking for the occurrence of events inside these
actions and functions is possible, but this is obviously not a solution; it only shortens
the delay but will not remove it. This also comes at the price of polluting the code
with event-checking duplicates. The current code does not perform such checks. By
consequence, it will not detect such events until attempting to utilize the components
from which they originate. For example, removal of the card from the card reader is
not detected until invoking card reader functionality (or, in case of a state machine,
when processing events to determine the next transition to take).

(2) The maintainability of the code. Object-oriented programming promises easy maintainabil-
ity compared to procedural programming due to high readability and reusability. This is not
a guarantee however, supported by the fact that there is a lot of research on (automated)
maintainability measurement through metrics, e.g. [LH93] and [DR11]. A typical way to im-
prove the maintainability in object-oriented programs is to add a level of abstraction through
design patterns [GHJV95]. The payment application makes extensive use of design patterns,
the most common ones being:

a) The “factory” patterns “abstract factory” and “factory method”. The abstract factory
pattern allows the creation of objects that are similar, without specifying their concrete
classes. This is achieved by defining an abstract factory class that declares functions for
creating abstract objects representing these similarities. The actual creation of these
objects is done by the concrete factories that implement the interface of the abstract
factory. A client uses the abstract factory to create (abstract) objects. This means a
client has no notion of the concrete instance that is being used, making it more flexible.
This concept is depicted by figure 5.5.

Figure 5.5: The “abstract factory” design pattern [GHJV95].

The factory method pattern is used when a subclass is to determine what concrete
instantiation of a class to use, for example because the (abstract) parent class cannot

Task-Oriented Programming for developing non-distributed interruptible embedded systems 65

CHAPTER 5. RELATED WORK

anticipate this. Literature often refers to the object that is to be created as the “prod-
uct” and the abstract parent class as the “creator”. The creator is given a factory
method so that a subclass can instantiate the right product. Figure 5.6 summarizes
this pattern.

Figure 5.6: The “factory method” design pattern [GHJV95].

b) The “adapter” pattern. This pattern is used to convert one interface (the adaptee) to
another (the target), much like a real-life adapter. Figure 5.7 depicts this pattern. In
the payment application this pattern is used for example in an EMV adapter which
abstracts over the calls to the SCM for EMV-related activities.

Figure 5.7: The “adapter” design pattern [GHJV95].

Another way the payment application aims to improve maintainability is by use of “depen-
dency injection” [Mar04]. Dependency injection makes use of something called “inversion of
control” for resolving dependencies. Conventionally, high-level modules depend on low-level
ones. With dependency injection, the dependencies are supplied to the dependent object,
resulting in independent high-level modules (also referred to as “loose coupling”). This is
an example of inversion of control. The dependencies are interfaces instead of concrete im-
plementations, allowing for greater flexibility (e.g. this allows testing of classes in isolation).

The payment application makes use of the “simple injector” framework [Sim] to achieve
dependency injection. When a class depends on certain interfaces, they are supplied to the
constructor of that class, as mentioned earlier. The website of “simple injector” provides the
following example to illustrate this:

public class UserController : Controller {

private readonly IUserRepository repository;

private readonly ILogger logger;

66 Task-Oriented Programming for developing non-distributed interruptible embedded systems

CHAPTER 5. RELATED WORK

// Use constructor injection for the dependencies

public UserController(IUserRepository repository, ILogger logger) {

this.repository = repository;

this.logger = logger;

}

// implement UserController methods here:

public ActionResult Index() {

this.logger.Log("Index called");

return View(this.repository.GetAll());

}

}

public class SqlUserRepository : IUserRepository {

private readonly ILogger logger;

// Use constructor injection for the dependencies

public SqlUserRepository(ILogger logger) {

this.logger = logger;

}

public User GetById(Guid id) {

this.logger.Log("Getting User " + id);

// retrieve from db.

}

}

The UserController class depends on the interfaces IUserRepository and ILogger. Like-
wise, SqlUserRepository depends on ILogger. Using simple injector, implementations for
these interfaces can be registered. One can register implementations either as “transient”
or “singleton”. In case of the former, a new object is created every time the interface is re-
quested, while in case of the latter only one instance will be created. These registrations are
performed using a container, as illustrated by the following example taken from the simple
injector website:

protected void Application_Start(object sender, EventArgs e) {

// 1. Create a new Simple Injector container

var container = new Container();

// 2. Configure the container (register)

container.Register<IUserRepository, SqlUserRepository>(Lifestyle.Transient);

container.Register<ILogger, MailLogger>(Lifestyle.Singleton);

// 3. Optionally verify the container’s configuration.

container.Verify();

// 4. Register the container as MVC3 IDependencyResolver.

DependencyResolver.SetResolver(new SimpleInjectorDependencyResolver(container));

}

Using this configuration, simple injector can create an object graph for the creation of an
object. When requesting a UserController for example, the following object graph is
created:

Task-Oriented Programming for developing non-distributed interruptible embedded systems 67

CHAPTER 5. RELATED WORK

new UserController(

new SqlUserRepository(

logger),

logger);

This makes constructing objects easy, especially when there are a lot of nested dependencies
(e.g. in the shown example, the dependencies for SqlUserRepository were resolved too) as
the resulting object graphs can become quite large.

While the discussed techniques certainly make the code more maintainable (and objects
more reusable), there is still room for improvement with regards to maintainability:

a) Extensive knowledge about various techniques unrelated to the problem domain is re-
quired in order to work with the code. Examples of this are the techniques discussed
earlier (i.e. design patterns and dependency injection) but also hierarchical finite state
machines and remote method invocation (discussed in (1)). This makes that adding
to the framework (e.g. a new session or action) requires some effort. For example,
a factory needs to produce the action, the action must be registered for dependency
injection, etc.

b) Dependency injection can greatly reduce code complexity but has also been a source of
problems. The main culprit of these problems is the lifestyle (i.e. transient or singleton)
of registered implementations. During development, it has occurred multiple times that
someone decided that an implementation should have a different lifestyle. In a project
of this scale, such a change can result in bugs that are difficult to track down, because
the object is typically used in deep and complex object graphs.

c) The code is quite verbose at some points. One of the typical places where this shows, is
class initialization (either through the constructor or through a separate initialization
function). The following code snippet for example shows the Initialize member func-
tion of the CtapInstance class, which is the top module for the C-TAP payment session:

public void Initialize(IServiceProvider serviceProvider)

{

ctapScheduling = serviceProvider.GetInstance<ICtapScheduling>();

pinpad = serviceProvider.GetInstance<IPinpad>();

selectableAidRecords = serviceProvider.GetInstance<ISelectableAidRecords>();

configStore = serviceProvider.GetInstance<IConfigStore<CtapObjectName>>();

sessionFactory = serviceProvider.GetInstance<ICtapSessionFactory>();

tmsService = serviceProvider.GetInstance<ITmsService>();

transactionInfoRetriever = serviceProvider

.GetInstance<ITransactionInfoRetriever>();

ctapSessionFactory = serviceProvider.GetInstance<ICtapSessionFactory>();

tmsConfig = serviceProvider.GetInstance<ITmsConfig>();

keypadCapabilitiesProvider = serviceProvider

.GetInstance<IKeypadCapabilitiesProvider>();

sredCardRecognition = serviceProvider.GetInstance<ISredCardRecognition>();

adminServiceStatusWatcher = serviceProvider

.GetInstance<IStatusInformationNotification>();

cardDetectionResponse = serviceProvider.GetInstance<ICardDetectionResponse>();

followupTransaction = serviceProvider.GetInstance<IFollowupTransaction>();

68 Task-Oriented Programming for developing non-distributed interruptible embedded systems

CHAPTER 5. RELATED WORK

responseToEcr = serviceProvider.GetInstance<IResponseToEcr>();

dateTime = serviceProvider.GetInstance<IDateTime>();

var config = configStore.GetConfig<CtapConfig>(CtapObjectName.CtapConfig);

var configChanged = false;

if(config == null)

{

configChanged = true;

config = new CtapConfig

{

Tcd = new Tcd(),

AdditionalParameter = new AdditionalParameter(),

Terminal = new TerminalGroup(),

TerminalManager = new TerminalManagerGroup(),

CardBrandLinkTable = new CardBrandLink[0],

SecuritySchemeTable = new SecuritySchemeRecord[0]

};

}

// be safe, don’t reference but copy

configChanged |= CopyArrayIfChanged(pinpad.Config

.TerminalCapabilitiesByEnvironment

,ref config.Terminal.TrmCapa_9F33);

configChanged |= CopyArrayIfChanged(keypadCapabilitiesProvider.GetCapabilities()

,ref config.Terminal.AddTrmCapa_9F40);

configChanged |= config.Terminal.TrmType_9F35

!= (short)pinpad.Config.TerminalTypeByEnvironment;

config.Terminal.TrmType_9F35 = (short)pinpad.Config.TerminalTypeByEnvironment;

if(configChanged)

configStore.SetConfig(CtapObjectName.CtapConfig, (object)config);

Enabled = config.AdditionalParameter.AppEnabled > 0;

if(config.Acquirers == null)

{

config.Acquirers = new AcquirerGroupCollection();

configStore.SetConfig(CtapObjectName.CtapConfig, (object)config);

}

if(Enabled) {

ctapScheduling.ScheduleInitialize(true, false);

} else {

ctapScheduling.RemoveAllScheduledItems();

}

}

As shown, a lot of code is spent on object instantiation (e.g. obtaining the implemen-
tation from the given service provider, which is a module containing the dependency
container). Similar to this example, a lot of code in the project is spent on defin-
ing things like factories and interfaces instead of actual functionality. This produces
code that does not always read like the specification it is supposed to implement which
reduces readability, and with that maintainability.

Task-Oriented Programming for developing non-distributed interruptible embedded systems 69

Chapter 6

Conclusion

This thesis tested the hypothesis that using Task-Oriented Programming for implementing inter-
ruptible, non-distributed embedded systems results in code with a higher maintainability and in an
application that is able to more effectively deal with unexpected events, compared to modern-day
object-oriented approaches.

A case study served as the main method of study. In preparation of this case study, a general-
purpose Task-Oriented Programming framework given the name µTasks was developed, since the
existing TOP framework, iTasks, targets a different category of applications (i.e. user interactive,
distributed, multi-user applications). In the case study we looked at the financial transaction
process performed by payment terminals. After analysing this process, we identified the core
characteristics of the process in the context of interruptibility. Based on these characteristics, it
was determined that defining the state of the process as a shared resource is the most effective
approach for task-oriented implementation, because it allows state recovery after interruption
without having to introduce new task types (and a corresponding set of combinators). The result
of the case study was a proof of concept in which the aforementioned approach was applied using
µTasks to implement a simplified financial transaction. In order to test our hypothesis, a modern-
day object-oriented payment terminal implementation was analysed. A comparison between the
task-oriented proof of concept and the object-oriented implementation yielded evidence supporting
our hypothesis:

1. The task-oriented approach resulted in a higher level of modularity. Reasons for this are
that (1) tasks have a high modularity by design (i.e. the progress of a task is only revealed
through its typed interface) and (2) information required by a task-oriented module is avail-
able through the environment accessible by any task. Addition or removal of a module in
the object-oriented solution proved to be more difficult, because a lot more knowledge is
needed on the software architecture before knowing how to do so (e.g. used design patterns,
dependency injection for obtaining dependencies, used (hierarchical) state machines).

2. In the object-oriented architecture it was easy to effectively deal with events when expecting
them, but difficult when you do not. The primary culprit for this, is that the architecture
does not contain any real parallelism. A threading model was used to remain responsive
to events, but the transaction process itself was essentially single-threaded. The response
time to events in the system was delayed, because their occurrence was only detected when
trying to utilize functionality related to them (e.g. card removal was only detected when
invoking card reader functionality). Another reason event handling was delayed for some
events were blocking Remote Method Invocation (RMI) calls. This was partially solved
through exceptions, but this is not a solution for events originating from a source other than
the other end of the RMI call.

70 Task-Oriented Programming for developing non-distributed interruptible embedded systems

CHAPTER 6. CONCLUSION

Due to the availability for combinators for parallelism, the task-oriented solution was able
to deal more effectively with events that can occur at any time. A task for dealing with
these events can be run in parallel to the main task, avoiding the definition of the latter to
be polluted with code related to event handling. Because the events are handled in parallel,
the reaction time for the task-oriented solution is short.

3. The code of the task-oriented solution reads much more like the specification it is based on
than the object-oriented alternative. One of the reasons for this is that task combinators hide
things like the environment in definitions that do not make use of it. Additionally, details
like card I/O were abstracted behind shared data sources. The object-oriented solution
contained a lot of code that was unrelated to the system’s functionality. Examples of this
are the definition of interfaces, code related to design patterns and object initialization
and instantiation. This resulted in code that was significantly more verbose than the task-
oriented code.

In summary, the case study provided evidence that in comparison to the analysed task-oriented
implementation, the task-oriented alternative is able to more effectively deal with unexpected
events and is better maintainable due to a higher level modularity and code that reads more
closely like the specification.

6.1 Future work

1. By design, Task-Oriented Programming is well-suited for distributed applications. A future
topic of research could be to determine the effectiveness of Task-Oriented Programming for
implementing distributed interruptible systems.

2. The existing iTasks framework strongly evolves around user interactivity. It may be possible
to separate the generation of user interfaces from the core combinators in a way that allows
these combinators to be parametrized with a context. For example, a specification stating
that an integer is to be obtained might result in a user interface being generated to obtain
it from a user in a user interactive context, while an embedded context might obtain it from
a database.

3. In this thesis we compared a task-oriented approach only against a modern-day object-
oriented one. Further research can be done on different system design methods, like proce-
dural languages like C or model-based environments like MATLAB.

Task-Oriented Programming for developing non-distributed interruptible embedded systems 71

Bibliography

[AA15] Joseph Albahari and Ben Albahari. C# 6.0 in a Nutshell: The Definitive
Reference. O’Reilly Media, Inc., 6th edition, 2015.
http://dl.acm.org/citation.cfm?id=2911326. 2, 62

[Acq12a] Acquiris. C-TAP specifications - Document C-TAP.000 - Introduction to C-TAP,
Version 10.0 (Final), March 2012. http://www.acquiris.eu/specifications. 46

[Acq12b] Acquiris. C-TAP specifications - Document C-TAP.200 - Online Terminal
Functionality, Version 10.0 (Final), March 2012.
http://www.acquiris.eu/specifications. 46, 47, 48

[Acq12c] Acquiris. C-TAP specifications - Document C-TAP.220 - Data Dictionary, Version
10.0 (Final), March 2012. http://www.acquiris.eu/specifications. 46

[AKLP13] P. Achten, P. Koopman, B. Lijnse, and R. Plasmeijer. Task-Oriented
Programming, July 2013.
dsl2013.math.ubbcluj.ro/files/Lecture/Plasmeijer.pdf. 1, 6, 7

[AKP13] P. Achten, P. Koopman, and R. Plasmeijer. An Introduction to Task Oriented
Programming. In V. Zsók, Z. Horváth and L. Csató, editor, Central European
Functional Programming School, Revised Selected Papers, volume 8606, pages
187–245. Springer International Publishing, Cluj-Napoca, Romania, July 2013.
http://dx.doi.org/10.1007/978-3-319-15940-9_5. 2, 4, 5, 11, 16

[AP02] Artem Alimarine and Marinus J. Plasmeijer. A generic programming extension for
clean. In Selected Papers from the 13th International Workshop on Implementation
of Functional Languages, IFL ’02, pages 168–185, London, UK, UK, 2002.
Springer-Verlag. http://dl.acm.org/citation.cfm?id=647980.743392. 8

[Bar98] Michael Barr. Programming Embedded Systems in C and C++. O’Reilly &
Associates, Inc., Sebastopol, CA, USA, 1st edition, 1998.
http://dl.acm.org/citation.cfm?id=552624. 1, 62

[BB00] Henk Barendregt and Erik Barendsen. Introduction to lambda calculus, March
2000. http://www.cs.ru.nl/~erikb/onderwijs/sl2/materiaal/lambda.pdf. 8

[BW88] Richard Bird and Philip Wadler. An Introduction to Functional Programming.
Prentice Hall International (UK) Ltd., Hertfordshire, UK, UK, 1988.
http://dl.acm.org/citation.cfm?id=113903. 8

[Car96] Luca Cardelli. Type systems. ACM Comput. Surv., 28(1):263–264, March 1996.
http://doi.acm.org/10.1145/234313.234418. 7

[CDKB11] George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair. Distributed
Systems: Concepts and Design. Addison-Wesley Publishing Company, USA, 5th
edition, 2011. http://dl.acm.org/citation.cfm?id=2029110. 2, 5

72 Task-Oriented Programming for developing non-distributed interruptible embedded systems

http://dl.acm.org/citation.cfm?id=2911326
http://www.acquiris.eu/specifications
http://www.acquiris.eu/specifications
http://www.acquiris.eu/specifications
dsl2013.math.ubbcluj.ro/files/Lecture/Plasmeijer.pdf
http://dx.doi.org/10.1007/978-3-319-15940-9_5
http://dl.acm.org/citation.cfm?id=647980.743392
http://dl.acm.org/citation.cfm?id=552624
http://www.cs.ru.nl/~erikb/onderwijs/sl2/materiaal/lambda.pdf
http://dl.acm.org/citation.cfm?id=113903
http://doi.acm.org/10.1145/234313.234418
http://dl.acm.org/citation.cfm?id=2029110

BIBLIOGRAPHY

[CLW+15] Y. Chen, X. Liu, L. Wang, C. Ji, Q. Sun, Y. Ren, and X. Wang. Systems and
Computer Technology: Proceedings of the 2014 Internaional Symposium on
Systems and Computer technology, (ISSCT 2014), Shanghai, China, 15-17
November 2014. CRC Press, 2015.
https://books.google.nl/books?id=MNGYCgAAQBAJ. 7

[CW85] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and
polymorphism. ACM Comput. Surv., 17(4):471–523, December 1985.
http://doi.acm.org/10.1145/6041.6042. 7

[DR11] Sanjay Kumar Dubey and Ajay Rana. Assessment of maintainability metrics for
object-oriented software system. SIGSOFT Softw. Eng. Notes, 36(5):1–7,
September 2011. http://doi.acm.org/10.1145/2020976.2020983. 65

[EJ09] Christof Ebert and Capers Jones. Embedded software: Facts, figures, and future.
Computer, 42(4):42–52, April 2009. http://dx.doi.org/10.1109/MC.2009.118.
1

[EMV11a] EMVCo. EMV Integrated Circuit Card Specifications for Payment Systems - Book
1: Application Independent ICC to Terminal Interface Requirements, Version 4.3,
November 2011. https://www.emvco.com/specifications.aspx?id=223. 46

[EMV11b] EMVCo. EMV Integrated Circuit Card Specifications for Payment Systems -
Book 2: Security and Key Management, Version 4.3, November 2011.
https://www.emvco.com/specifications.aspx?id=223. 46

[EMV11c] EMVCo. EMV Integrated Circuit Card Specifications for Payment Systems -
Book 3: Application Specification, Version 4.3, November 2011.
https://www.emvco.com/specifications.aspx?id=223. 46, 50

[EMV11d] EMVCo. EMV Integrated Circuit Card Specifications for Payment Systems -
Book 4: Cardholder, Attendant, and Acquirer Interface Requirements, Version 4.3,
November 2011. https://www.emvco.com/specifications.aspx?id=223. 46

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1995.
http://dl.acm.org/citation.cfm?id=186897. 65, 66

[Gol96] Benjamin Goldberg. Functional programming languages. ACM Comput. Surv.,
28(1):249–251, March 1996. http://doi.acm.org/10.1145/234313.234414. 7

[HDH02] Per Brinch Hansen, Edsger W. Dijkstra, and C. A. R. Hoare. The Origins of
Concurrent Programming: From Semaphores to Remote Procedure Calls.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2002.
http://dl.acm.org/citation.cfm?id=548079. 64

[Hex14] Hexa Research. Embedded System Market Analysis By Product (Hardware,
Software), By Application (Automotive, Telecommunication, Healthcare,
Industrial, Consumer Electronics, Military & Aerospace) And Segment Forecasts,
2012 to 2020, May 2014. https:
//www.hexaresearch.com/research-report/embedded-system-industry/. 1

[HHPJW07] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A history of
haskell: Being lazy with class. In Proceedings of the Third ACM SIGPLAN
Conference on History of Programming Languages, HOPL III, pages 12–1–12–55,
New York, NY, USA, 2007. ACM.
http://doi.acm.org/10.1145/1238844.1238856. 8

Task-Oriented Programming for developing non-distributed interruptible embedded systems 73

https://books.google.nl/books?id=MNGYCgAAQBAJ
http://doi.acm.org/10.1145/6041.6042
http://doi.acm.org/10.1145/2020976.2020983
http://dx.doi.org/10.1109/MC.2009.118
https://www.emvco.com/specifications.aspx?id=223
https://www.emvco.com/specifications.aspx?id=223
https://www.emvco.com/specifications.aspx?id=223
https://www.emvco.com/specifications.aspx?id=223
http://dl.acm.org/citation.cfm?id=186897
http://doi.acm.org/10.1145/234313.234414
http://dl.acm.org/citation.cfm?id=548079
https://www.hexaresearch.com/research-report/embedded-system-industry/
https://www.hexaresearch.com/research-report/embedded-system-industry/
http://doi.acm.org/10.1145/1238844.1238856

BIBLIOGRAPHY

[Hin00] Ralf Hinze. A new approach to generic functional programming. In Proceedings of
the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’00, pages 119–132, New York, NY, USA, 2000. ACM.
http://doi.acm.org/10.1145/325694.325709. 5, 8

[HM00] Kevin Hammond and Greg Michelson, editors. Research Directions in Parallel
Functional Programming. Springer-Verlag, London, UK, 2000.
http://dl.acm.org/citation.cfm?id=555854. 7

[HS06] Thomas A. Henzinger and Joseph Sifakis. The embedded systems design
challenge. In Proceedings of the 14th International Symposium on Formal Methods
(FM), Lecture Notes in Computer Science, pages 1–15. Springer, 2006.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.78.7007. 1

[Hud96] Paul Hudak. Building domain-specific embedded languages. ACM Comput. Surv.,
28(4es), December 1996. http://doi.acm.org/10.1145/242224.242477. 5

[IFS16] Internation Forecourt Standards Forum (IFSF), 2016.
https://www.ifsf.org/documents/ifsf-standards. 62

[Kin10] King, Jeremy. Understanding the PTS Security Requirements Version 3.0, May
2010. PCI SSC PTS Working Group, https:
//www.pcisecuritystandards.org/pdfs/webinar_100519pci_pts_3.0.pdf. 61

[LH93] Wei Li and Sallie Henry. Object-oriented software object-oriented metrics that
predict maintainability. Journal of Systems and Software, 23(2):111 – 122, 1993.
http://dx.doi.org/10.1016/0164-1212(93)90077-B. 65

[Lij13a] B. Lijnse. Evolution of a Parallel Task Combinator. In P. Achten and P.
Koopman, editor, The Beauty of Functional Code, volume 8106, pages 193–210.
Springer Berlin Heidelberg, 2013.
http://link.springer.com/chapter/10.1007/978-3-642-40355-2_14. 14, 15,
27

[Lij13b] Lijnse, B. TOP to the rescue: Task-Oriented Programming for incident response
applications. PhD thesis, Institute for Computing and Information Sciences,
Radboud University Nijmegen, The Netherlands, 2013.
http://hdl.handle.net/2066/103931. 1, 4

[Lip11] Miran Lipovaca. Learn You a Haskell for Great Good!: A Beginner’s Guide. No
Starch Press, San Francisco, CA, USA, 1st edition, 2011.
http://dl.acm.org/citation.cfm?id=2018642. 17

[Mar04] Martin Fowler. Inversion of Control Containers and the Dependency Injection
pattern, 2004. Accessed: 2016-08-21,
http://martinfowler.com/articles/injection.html. 66

[Mic12] Michels, Steffen and Plasmeijer, Rinus. Uniform Data Sources in a Functional
Language, July 2012.
http://wiki.clean.cs.ru.nl/images/3/3c/Sharing_Data_Sources.pdf. 12

[MLS08] Nathan Mishra-Linger and Tim Sheard. Erasure and Polymorphism in Pure Type
Systems, pages 350–364. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.
http://dx.doi.org/10.1007/978-3-540-78499-9_25. 7

[Mog89] E. Moggi. Computational lambda-calculus and monads. In Proceedings of the
Fourth Annual Symposium on Logic in Computer Science, pages 14–23,
Piscataway, NJ, USA, 1989. IEEE Press.
http://dl.acm.org/citation.cfm?id=77350.77353. 9

74 Task-Oriented Programming for developing non-distributed interruptible embedded systems

http://doi.acm.org/10.1145/325694.325709
http://dl.acm.org/citation.cfm?id=555854
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.78.7007
http://doi.acm.org/10.1145/242224.242477
https://www.ifsf.org/documents/ifsf-standards
https://www.pcisecuritystandards.org/pdfs/webinar_100519pci_pts_3.0.pdf
https://www.pcisecuritystandards.org/pdfs/webinar_100519pci_pts_3.0.pdf
http://dx.doi.org/10.1016/0164-1212(93)90077-B
http://link.springer.com/chapter/10.1007/978-3-642-40355-2_14
http://hdl.handle.net/2066/103931
http://dl.acm.org/citation.cfm?id=2018642
http://martinfowler.com/articles/injection.html
http://wiki.clean.cs.ru.nl/images/3/3c/Sharing_Data_Sources.pdf
http://dx.doi.org/10.1007/978-3-540-78499-9_25
http://dl.acm.org/citation.cfm?id=77350.77353

BIBLIOGRAPHY

[Mye03] Brad A. Myers. Graphical user interface programming, 2003.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.631. 5

[Oka98] Chris Okasaki. Purely Functional Data Structures. Cambridge University Press,
New York, NY, USA, 1998. http://dl.acm.org/citation.cfm?id=280586. 7

[PA05] Rinus. Plasmeijer and Peter. Achten. The Implementation of iData - A Case Study
in Generic Programming. In Butterfield, A., Grelck, C. and Huch, F., editor,
Proceedings Implementation and Application of Functional Languages - Revised
Selected Papers, 17th International Workshop, pages 106–123. Springer, Dublin,
Ireland, September 19-21 2005. Department of Computer Science, Trinity College,
University of Dublin. http://www.springer.com/us/book/9783540691747. 4

[PA06] Rinus Plasmeijer and Peter Achten. iData for the World Wide Web –
Programming Interconnected Web Forms, pages 242–258. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2006.
http://dx.doi.org/10.1007/11737414_17. 5

[PAK07] Rinus Plasmeijer, Peter Achten, and Pieter Koopman. iTasks: Executable
Specifications of Interactive Work Flow Systems for the Web. In Proceedings of
the 12th ACM SIGPLAN International Conference on Functional Programming
(ICFP 2007), pages 141–152, Freiburg, Germany, Oct 1–3 2007. ACM.
http://dl.acm.org/citation.cfm?id=1291151. 1, 4, 5

[PJ89] S. L. Peyton Jones. Parallel implementations of functional programming
languages. Comput. J., 32(2):175–186, April 1989.
http://dx.doi.org/10.1093/comjnl/32.2.175. 7

[Pla01] Plasmeijer, Rinus and van Eekelen, Marko and van Groningen, John. Clean
Language Report - Version 2.2, December 2001. Accessed: 2016-08-16.
http://clean.cs.ru.nl/download/doc/CleanLangRep.2.2.pdf. 2, 4, 6, 8, 11,
17, 40

[PLM+12] Rinus Plasmeijer, Bas Lijnse, Steffen Michels, Peter Achten, and Pieter Koopman.
Task-oriented programming in a pure functional language. In Proceedings of the
14th Symposium on Principles and Practice of Declarative Programming, PPDP
’12, pages 195–206, New York, NY, USA, 2012. ACM.
http://hdl.handle.net/2066/103802. 8, 11, 12, 13, 14, 15, 32

[Sab98] Amr Sabry. What is a purely functional language? J. Funct. Program., 8(1):1–22,
January 1998. http://dx.doi.org/10.1017/S0956796897002943. 7

[Sam08] Miro Samek. Practical UML Statecharts in C/C++, Second Edition: Event-Driven
Programming for Embedded Systems. Newnes (Elsevier Inc.), Newton, MA, USA,
2 edition, 2008. http://dl.acm.org/citation.cfm?id=1502169. 64

[Sav14] Walter Savitch. Problem Solving with C++. Addison-Wesley Professional, 9th
edition, 2014. http://dl.acm.org/citation.cfm?id=2636552. 62

[Ses02] P. Sestoft. Demonstrating Lambda Calculus Reduction. In Mogensen, Torben Æ.
and Schmidt, David A. and Sudborough, I. Hal, editor, The Essence of
Computation: Complexity, Analysis, Transformation, pages 420–435. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2002.
http://dx.doi.org/10.1007/3-540-36377-7_19. 7

[SGG08] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating System
Concepts. Wiley Publishing, 8th edition, 2008.
http://dl.acm.org/citation.cfm?id=1412284. 1

Task-Oriented Programming for developing non-distributed interruptible embedded systems 75

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.631
http://dl.acm.org/citation.cfm?id=280586
http://www.springer.com/us/book/9783540691747
http://dx.doi.org/10.1007/11737414_17
http://dl.acm.org/citation.cfm?id=1291151
http://dx.doi.org/10.1093/comjnl/32.2.175
http://clean.cs.ru.nl/download/doc/CleanLangRep.2.2.pdf
http://hdl.handle.net/2066/103802
http://dx.doi.org/10.1017/S0956796897002943
http://dl.acm.org/citation.cfm?id=1502169
http://dl.acm.org/citation.cfm?id=2636552
http://dx.doi.org/10.1007/3-540-36377-7_19
http://dl.acm.org/citation.cfm?id=1412284

BIBLIOGRAPHY

[Sim] Simple Injector Contributors. Simple Injector. Accessed: 2016-08-21,
https://simpleinjector.org/. 66

[Sta94] Ian Stark. Names and Higher-Order Functions. PhD thesis, University of
Cambridge, dec 1994. University of Cambridge Computer Laboratory,
http://www.inf.ed.ac.uk/~stark/namhof.pdf. 8

[Sta16] Stack Overflow Developer Survey Results 2016, Most Popular Technologies, 2016.
Accessed: 2016-08-05, http://stackoverflow.com/research/
developer-survey-2016#technology-most-popular-technologies. 1, 62

[Ste93] W. Richard Stevens. TCP/IP Illustrated (Vol. 1): The Protocols. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1993.
http://dl.acm.org/citation.cfm?id=161724. 5

[VP03] Martijn Vervoort and Rinus Plasmeijer. Lazy Dynamic Input/Output in the Lazy
Functional Language Clean, pages 101–117. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-44854-3_7. 12

[Wad90] Philip Wadler. Comprehending monads. In Proceedings of the 1990 ACM
Conference on LISP and Functional Programming, LFP ’90, pages 61–78, New
York, NY, USA, 1990. ACM. http://doi.acm.org/10.1145/91556.91592. 9

76 Task-Oriented Programming for developing non-distributed interruptible embedded systems

https://simpleinjector.org/
http://www.inf.ed.ac.uk/~stark/namhof.pdf
http://stackoverflow.com/research/developer-survey-2016#technology-most-popular-technologies
http://stackoverflow.com/research/developer-survey-2016#technology-most-popular-technologies
http://dl.acm.org/citation.cfm?id=161724
http://dx.doi.org/10.1007/3-540-44854-3_7
http://doi.acm.org/10.1145/91556.91592

	Contents
	Introduction
	Motivation
	Problem statement
	Research method
	Thesis outline

	Task-Oriented Programming
	History
	Principles
	Functional languages as a host language
	Purely functional languages
	Static type systems
	Lazy evaluation
	Function currying and higher-order functions
	Algebraic data types and generics
	The state monad

	iTasks
	Tasks and task evaluation
	Shared data sources
	Editors
	The step combinator
	The parallel combinator

	Tasks: a general-purpose Task-Oriented Programming framework
	Task-related types and definitions
	Basic task functions
	List-based tasks

	The step combinator
	Step combinator instances
	Sequential combinators
	Repetition combinators
	Miscellaneous combinators

	Exception handling
	Parallelization
	Timeout
	Order maintenance

	Shared data sources
	Atomic tasks
	I/O-related actions
	Miscellaneous components
	Tasks as a sequence of steps
	Task equivalents of existing functions
	Collections of tasks

	Case study: a task-oriented payment terminal implementation
	Background: payment terminals and transactions
	Transaction simplifications

	System characteristics and candidate solutions
	Candidate solution: implicit data relay by use of state
	Candidate solution: state as a shared resource

	Proof of concept
	Example: cardholder verification
	Discussion

	Related Work
	Payment terminal implementation at CCV
	Architectural landscape
	Top-level payment application design
	Problem areas

	Conclusion
	Future work

	Bibliography

