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Abstract

In this thesis, a technique called protocol state fuzzing is used to infer
state machines for six SSH servers. We found that all tested SSH servers
implement a secure state machine. However, implemented state machines
differ significantly. These variances allow anyone to effectively fingerprint
the tested servers.

Our results show that opening multiple channels is not properly imple-
mented on CiscoSSH and PowerShell. OpenSSH contains a bug which can
result in connection closure after rekeying in some circumstances. Both
Tectia and OpenSSH implement a liberal message acceptance policy in the
first phase of the protocol. Such a liberal policy is unwise in this error-prone
stage.

The SSH protocol defines three layers: the transport, user authentication
and connection layer. These layers are executed sequentially, although rekey-
ing invokes the transport layer during execution of higher layers. Besides the
mentioned OpenSSH bug, our research has not revealed unwanted interaction
between layers.

If the SSH RFC authors would have sketched a state machine, we would
expect the standards to be less ambiguous and implemented state machines
to have fewer differences. Most RFCs would benefit from added state
information, and we would generally encourage RFC authors to append a
reference state machines to protocol specifications.



Acknowledgements

I would like to thank my supervisor Erik Poll for his help and useful feedback
while writing this thesis. His knowledge of SSH and ideas about inferring
state machines helped to shape this research. Furthermore, I would like to
express my gratitude to everyone who gave feedback when discussing the
learning setup, including Ramon Janssen who offered various very useful
hints.



Contents

1 Introduction

2 Secure shell

2.1 History . . . . .. L
2.2 Architecture . . . . . . ... ..
2.3 Security . . ...
2.4 Protocolrun . ... ... ... ...

3 Preliminaries

3.1 Inferring state machines . . . . . . . .. .. 0oL
3.2 Mealy machines . . . . . . .. .. .. Lo Lo Lo
3.3 L* learning algorithm . . . . ... ... ... ... ......

4 Experimental setup

4.1 Components . . . . . . . . . it
4.2 SUTSs . .o e
4.3 Alphabet . . . . .. ...
4.4 Challenging SUT behaviour . . . . ... .. ... ... ....
4.5 Inferring individual layers . . . . . . ... ... ... ... ..
4.6 State machine visualisation . . . .. .. .. ... ... ...
5 Results
5.1 Transport layer . . . . . . . ... ... L .
5.2 User authentication layer . . . . . . ... ... ... .....
5.3 Connection layer . . . . . .. .. .. o oL
5.4 State machinesand RFCs . . . . . .. ... ... ... ....

6 Conclusions
6.1 Futurework . . . . . . . . .. ...

A Message abbreviations

B State machine formatting

12
12
13
14

15
15
17
18
20
23
25

26
26
36
40
45

47
48

52

54



1 Introduction

The SSH protocol, short for secure shell, is widely used to securely interact
with remote machines. Alongside TLS and IPSec, SSH is amongst the most
frequently used security suites [1]. Due to its significant user base and
sensitive nature, flaws in the protocol or its implementation could have major
impact. It therefore comes as no surprise that SSH has attracted scrutiny
from the security community. This led to the discovery of cryptographic
issues, of which plain text recovery is the most notable [1]. Nonetheless, the
protocol has been able to withstand cryptographic analysis quite well, with
only a handful of serious flaws found since the introduction of the version
that is subject of this thesis: SSHv2. Throughout this thesis, we will use
SSH to refer to the second version of the protocol.

Given the limited number of cryptographic issues that has been discovered,
the specification has proven to be rather solid. An unblemished protocol
specification alone, however, does not suffice. Several studies have looked into
the protocol’s implementations. The approaches used in these studies can be
divided into two categories. White-box approaches, for example used in [2],
rely on accessing and understanding an application’s source code. Black-box
testing approaches, on the other hand, examine an implementation without
any prior knowledge of the internal workings [3].

Fuzzing (also known as fuzz testing) is a black-box testing approach in
which unexpected input data is sent to a system under test (SUT) in the
hope that this triggers anomalies. These abnormalities could expose security
vulnerabilities [3]. Different fuzzing techniques are available, and they serve
different purposes. Providing a system with a longer input than is expected,
for example, is a frequently-used method to detect buffer overflow errors.

In this thesis, we will be fuzzing on the order of otherwise correctly-
formed messages. This technique is known as protocol state fuzzing [4]. We
will infer a state machine by returning the SUT responses to an off-the-shelf
learning algorithm. A proper state machine forms the basis of a solid and
secure protocol implementation. It should allow all transitions as defined
by the grammar of the protocol, and react appropriately to input that is
not within the happy flow of a protocol’s execution. In a thorough fuzzing
exercise, forbidden state machine transitions should be included [5].

Once a state machine has been inferred, security-related logical flaws
are usually easily spotted by an auditor with some knowledge about the
protocol [4]. An example of a logical flaw is exchanging user credentials before
an encrypted connection has been established. Although spotting logical
errors is relatively easy, checking for full compliance with the standards is
much harder, since this requires a reference state machine which is used



to judge every transition. In the case of SSH, the architecture and basic
components are defined in four RFCs [6, 7, 8, 9]. Together with their
numerous extensions, the standards total to several hundreds of pages, and
no reference state machine is provided.

Besides security-related logical flaws, inferred state machines can show
quirks such as superfluous states. Although these might not be directly
exploitable, OpenBSD auditors illustrate why these small bugs should be
resolved: “we are not so much looking for security holes, as we are looking
for basic software bugs, and if years later someone discovers the problem
used to be a security issue, and we fixed it because it was just a bug, well,
all the better”!.

Knowledge of the implemented state machine also allows type and version
fingerprinting. It could be argued, however, that this has limited impact
since the protocol’s first message’s comment string is frequently used to
announce this information. This is the case for all tested implementations.

The goal of this research is to conduct a structured and thorough analysis
of the state machines used in popular SSH implementations. The results
of this structured analysis will provide insight in implementation decisions
and potentially implementation flaws. Furthermore, we will reflect on the
usage of state machines and their relation to RFCs. We will therefore try to
answer the following research question:

Can protocol state fuzzing be used to reveal incompatibilities
or flaws in SSH servers, and in what way should state-related
information be described in the RFCs?

Related work on SSH. Most security-related research has been centred
around the security primitives in the SSH protocol. Formal analysis has been
performed on the key exchange phase, which revealed no serious issues [10].
Problems with information leakage via unencrypted MACs were identified [11],
which led to mandatory rekeying at certain stages in the latest RFCs. A
security analysis showed possibilities for plain text recovery when a block
cipher in cipher block chaining (CBC) mode was used [1]. This led OpenSSH
to prefer counter mode to CBC mode in parameter negotiation. The binary
packet protocol, which provides confidentiality and integrity to all exchanged
messages, has been analysed in [12]. The resulting model would have been
able to correctly identify the CBC-mode issues in SSH. It revealed no further
vulnerabilities.

Effort has also been made to verify the correctness of SSH software
implementations (for example in [2]). Academic researchers, however, have
so far focussed more on the theoretical aspects than on implementations of
the protocol.

"http://www.openbsd.org/security.html
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Related work on protocol state fuzzing. Active learning techniques have
been successfully used to infer state machines of EMV bank cards [13],
electronic passports [14] and hand-held readers for online banking [15]. Fur-
thermore, implementations of TCP [16] and TLS [4] have been subject to
protocol state fuzzing. Results ranged from interesting insights to more
serious implementational flaws. In case of TCP, fingerprinting possibilities
for a remote operating system were found. Performing state fuzzing on TLS
revealed security flaws in three different implementations. The first steps
towards protocol state fuzzing on SSH were taken in [17], from which the
general approach was the starting point for this research. Furthermore, some
non-state based fuzzers for SSH servers are available online?.

Organization. An outline of the SSH protocol will be provided in Chap-
ter 2. Chapter 3 covers background information on Mealy machines, the
learning algorithm and techniques used for inferring state machines. The
experimental setup is discussed in Chapter 4. Chapter 5 contains analysis of
the inferred state machines and provides some observations on their relation
to the RFCs. Our main conclusions are summarized in Chapter 6, as well
recommendations for future research.

2For example, Backfuzz, which is available at https://github.com/localhOt/
backfuzz/.
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2 Secure shell

This chapter covers the SSH protocol in more depth. We will briefly look at
SSH’s history in Section 2.1. A global architecture outline can be found in
Section 2.2, and the security guarantees that the protocol aims to provide
in Section 2.3. In order to familiarize the reader with the messages being
exchanged, a typical protocol run will be described in Section 2.4.

2.1 History

The development of SSHv1 started in 1995 when Finnish researcher Tatu
Yl1onen drafted the first version of the software and its protocol at the
Helsinki University of Technology. It was later standardized by the Internet
Engineering Task Force, but quickly succeeded by SSHv2 because it contained
design flaws that could not be fixed without losing backwards compatibility.
Most notably, it was discovered in 1998 that an attacker could inject malicious
packets into an SSHv1 encrypted stream, which might allow execution of
arbitrary code [18].

Worldwide adaptation of the second version of the protocol was ham-
pered because Ylonen released it with a more restrictive license. However,
its usage quickly took off after the OpenBSD Project released their own
implementation: OpenSSH. With over eighty percent market share in 2008,
OpenSSH has remained the most popular implementation ever since [1].

2.2 Architecture

The architecture of SSH is laid out in RFC 4251 [6]. It follows a client-server
paradigm consisting of three components. These can be seen as the layers of
the protocol, although outer layers do not wrap inner layers. Instead, they
are distinguished by the ranges of their message numbers. RFC 4250 [19]
summarizes the numbers and symbolic names used in the protocol. The
three main components are as follows:

e The transport layer protocol (RFC 4253 [8]) forms the basis for any
communication between a client and a server. It provides confidentiality,
integrity and server authentication as well as optional compression.

e The user authentication protocol (RFC 4252 [7]) is used to authenticate
the client to the server. Strictly speaking, this component is optional
and can be omitted if no user authentication is needed. In practise,
however, user authentication is almost universally required.



e The connection protocol (RFC 4254 [9]) allows the encrypted channel
to be multiplexed in different channels. These channels enable a user
to run multiple processes over a single SSH connection. For example, a
user could request terminal emulation on one channel and a file transfer
on another, with both processes using the same connection.

An overview of the different SSH components is shown in Figure 2.1.
Note that the shown SSH implementation relies on a TCP/IP stack. While
this is the most common scenario, SSH can in theory be run over any reliable
data stream [6, p. 3].

Different layers are identified by their message numbers. Numbers up to
19 are reserved for the transport layer, 50 to 79 for the user authentication
layer and the remainder up to 127 for the connection layer. Numbers from
128 upwards can be used for client protocols and local extensions. This range
does not seem to be commonly used, with OpenSSH not mentioning support
for any of them on their specifications page!.

The message numbers will form the basis of the state fuzzing used in this
thesis, as we will see in Chapter 4. The SSH protocol is especially interesting
because outer layers do not encapsulate inner layers. This means that different
layers can interact. One could argue that this is a less systematic approach,
in which a programmer is more likely to make state machine-related errors.

On the lowest level, data are sent as binary packets over a networking
stack. This format is known as the binary packet protocol and has been
defined in [8]. Every binary packet starts with the sequence number and
length of the packet and padding, followed by the actual payload and padding.
The aforementioned parts can be encrypted. A message authentication code
(MAC) completes the packet, and is based on the entire unencrypted packet.
A schematic packet overview is shown in Figure 2.2.

The disadvantages of the chosen compute-then-encrypt-and-MAC? method
have been extensively discussed in [11]. As a result of this approach, SSH

User authentication Connection
layer layer
Transport layer
TCP/IP stack

Figure 2.1: SSH protocol components running on a TCP/IP stack.

"http://wuw.openssh.com/specs.html
2Note that this is neither a encrypt-then-MAC or a MAC-then-encrypt approach. Note
that only encrypt-then-MAC is good practise.
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Figure 2.2: SSH packet construction with compression, encryption and
message authentication.

does not provide integrity on the cipher text. Furthermore, MACs are prone
to sensitive information leakage. Timely rekeying and refraining from using
block ciphers in CBC mode will prevent information leakage and chosen-
cipher attacks. Using an encrypt-then-MAC approach would have been a
better solution.

2.3 Security

SSH aims to provide various security guarantees [6, section 9]. Confiden-
tiality is provided by means of encryption. Message integrity is ensured
by the MACs, while message numbers ensure the integrity of the sequence
of messages. The end-to-end encryption is based on pseudo-random keys
which are securely negotiated during key exchange and discarded on ses-
sion termination. SSH can use many commonly-used ciphers such as AES,
3DES and Blowfish. Developers are free to choose which ones they support,
although 3DES in CBC mode must be supported by all implementations
to ensure interoperability. A “none”-cipher is provided if no encryption is
needed, although this obviously violates the intended security guarantees.
Some implementations, such as OpenSSH, have opted to not supporting the
“none”-cipher [20]. Because of the chosen compute-then-encrypt-and-MAC
approach, the choice of encryption has no effect on the MAC at all (see
Figure 2.2)



The client and the server will negotiate the used ciphers according to
their preferences. Both client and server can pick their most preferred cipher,
provided that the other party knows how to handle it. Custom ciphers can
also be used, as long as both parties support them.

The extensible and flexible negotiation process is one of the main improve-
ments over SSHv1. The negotiation results in non-symmetric parameters:
the cipher used for packets travelling from the client to the server need not
be the same as the cipher used for messages the other way around. The
same asymmetric approach is taken the negotiation of MAC and compression
algorithms. Messages can therefore, for example, be compressed in one
direction but not in the other.

As we have seen in the packet description, MACs are provided with each
packet to detect integrity violations. Because the session key and sequence
number are part of the MAC, it effectively prevents replay attacks. As with
the cipher suites, a variety of MAC algorithms can be used, with HMAC-
SHAT1 being required by all implementations. Because the 32-bit message
sequence number wraps when it overflows, a sequence number might reoccur
within a session. This would make the MAC prone to sensitive information
leakage because they are based on the unencrypted payload [11]. The RFC
requires rekeying after 228 outgoing packets. This guarantees a fresh and
unpredictable session key before the sequence numbers wrap, which in turn
prevents information leakage by the MAC.

SSH provides server authentication by public key exchange. Diffie-Helman
groupl-shal and groupl4-shal must be supported by all implementations.
If one of these Diffie-Helman key exchanges is used, perfect forward secrecy
is ensured. Unlike TLS, SSH does not provide a certificate chain-approach
to verifying a host’s public key. Although RFC 4255 [21] does provide a
means to retrieve a host’s public key via DNS, in general it is unspecified
how public keys should be checked. Moreover, the protocol does not specify
how they should be stored by the client [20, p. 55]. The lack of specified
public key infrastructure can be seen as a security risk, since users might not
check key validity. However, the Network Working Group believed ease of
use was critical to end-user acceptance, with this solution being preferable
over not having any encryption at all [6, p. 4]. Authentication of the client
can be achieved my multiple means, such as password, host-based or public
key. The server can be configured to require a combination of methods, and
plug-in modules allow for custom authentication methods.

SSH is not designed to prevent every attack one could think of. Password
attacks and attacks based on the underlying network fall outside its scope.
The protocol has not been designed to guarantee the absence of covert chan-
nels to pass information [6, p. 20]. Furthermore, while an outside observer
is unable to decipher traffic, an observer can still analyse network traffic,
resulting in traffic fingerprints [6, p. 21]. Although SSH supports traffic
padding, it has been shown that these fingerprints can in practise be used to



reveal the type of applications that are run over the SSH connection [22].

2.4 Protocol run

We will describe a typical protocol run in this section. By doing so, we hope
to familiarize the reader with the different messages and layers defined by
the RFCs. For each layer, we will include:

e The happy flow. This is the sequence of messages that is expected by
the server and leads to a satisfying result for that layer.

e A wisual representation of this happy flow as a Mealy machine®.

e The security definition that defines what kind of behaviour would result
in a secure state machine.

Appendix A provides a mapping between the (shorter) message names used
in this thesis and the official RFC message names.

2.4.1 Transport layer

All messages follow the binary packet protocol, with the noteworthy exception
of the first message: the exchange of the SSH version and comment string.
Since this message does not use the binary packet protocol, it does not have
a message number. The comment part of the message is generally used to
provide the product name and version. It should be noted that this decision
can be objected to from a security perspective, since it allows for rapid
identification of vulnerable software versions.

After the client and server have exchanged version information, parameter
negotiation begins with the KEXINIT message. For each of the negotiable
parameters, a list is included in which is ordered by the implementation’s
preference. Before the KEXINIT step completes, the “none” options for
encryption, message authentication and compression are used. The KEXINIT
message is therefore never encrypted and can be replayed, but this does not
allow for vulnerabilities. No new messages need to be sent to confirm the
chosen parameters, because both parties assume that the other party will
use the most preferable option that is understood by them both.

Both parties are now set to engage in the actual key exchange using the
negotiated algorithm. Message numbers 30 to 49 are reserved for this purpose,
and these numbers can be reused for different authentication methods [19,
p. 5]. A typical key exchange will require two round-trips (which includes
parameter negotiation), while three are required in the worst-case scenario [8,

p. 3].

3Refer to Section 3.2 for more on Mealy machines.



The key exchange leads to a shared secret and an exchange hash [8, p. 19],
with the latter serving as session identifier. Encryption and authentication
keys are also derived from this hash. The keys are used from the moment
the NEWKEYS command has been issued by both parties. Either the user
authentication or the connection protocol can now be invoked by the client.

Happy flow. We define the happy flow as the sequence that results in a
successfully parameter negotiation, key exchange and authentication protocol
request. The trace KEXINIT; KEX30; NEWKEYS; SR_AUTH typically triggers
this behaviour. A visual representation of the happy flow can be found
in Figure 2.3%. Security definition. We consider an transport layer state
machine secure if there is no path from the initial state to the point where
the authentication service is invoked without exchanging and employing
cryptographic keys.

KEXINIT/ KEX30/ NEWKEYS/ SR_AUTH/

‘ KEXINIT ‘ KEX31 ‘ NEWKEYS ‘ SUCCESS -

Figure 2.3: The happy flow for the transport layer.

2.4.2 User authentication layer

The user authentication layer is centred around the user authentication
request and its response. The RFC define four authentication methods
(password, public-key, host-based and none), which are all sent using the
same message number [7, p. 8]. The authentication request includes a user
name, service name and authentication data.

The service name that is included in the authentication request refers to a
protocol: the authentication protocol provides the authentication service and
the connection protocol provides the connection service. Since the protocol is
already at the user authentication stage, the only sensible service to request
is the connection service.

The provided authentication data includes both the authentication
method as well as the data needed to perform the actual authentication,
such the password or public key.

Happy flow. The happy flow for this layer is defined as the sequence that
results in a successful authentication. The queries UA_PW_OK and UA_PK_OK
achieve this for respectively password or public key authentication®%. A

*More information on the used Mealy machine representation can be found in Sec-
tion 3.2.

5The reason for not implementing host-based authentication can be found in Section 4.3.

SAppendix A provides for a mapping between the used names and the RFC message

10



visual representation of the happy flow can be found in Figure 2.4.

Security definition. We consider a user authentication layer state machine
secure if there is no path from the unauthenticated state to the authenticated
state without providing correct credentials.

UA_PK_OK/UA_SUCCESS

@ UA_PW_OK/UA_SUCCESS =@

Figure 2.4: The happy flow for the user authentication layer.

2.4.3 Connection protocol

The connection protocol provides multiplexing in order to run different
communication channels over the same SSH connection. The connection
protocol’s requests can be either global or channel-related. The only global
request that is defined in the RFC is TCP forwarding [9, p. 16]. Channel-
related requests include opening and closing channels, requesting a process
over that channel and sending data to a requested process. Channel requests
can invoke processes such as terminal emulation, X11 window forwarding
and file transfer.

Happy flow. Because the connection protocol offers a wide range of
functionalities, it is hard to define a single happy flow. Requesting a terminal
is one of the main features of SSH and has therefore been selected as the
happy flow. This behaviour is typically triggered by the trace CH_OPEN;
CH_REQUEST_PTY. A visual representation of the happy flow can be found
in Figure 2.5.

Security definition. Its hard to define which behaviour would result in
a state machine security flaw in this layer. We will therefore take a more
general approach and look at unexpected state machine transitions that can
point towards potential implementation flaws.

CH_OPEN/ CH_REQUEST_PTY/

@ CH_OPEN_SUCCESS @ CH_SUCCESS @

Figure 2.5: The happy flow for the connection layer.

names.

11



3 Preliminaries

This chapter covers background information about techniques, algorithms
and formalisms relevant to this thesis. Different methods of state machine
inference will be discussed in Section 3.1. Inferred state machines are
represented as Mealy machines. The basic properties of Mealy machines are
the subject of Section 3.2. Section 3.3 will cover the L* learning algorithm,
the off-the-self algorithm used for inferring state machines.

3.1 Inferring state machines

There are two fundamentally different ways in which state information can
be derived for a certain protocol. In a passive approach, messages originating
from two or more communicating systems are analysed to derive information.
Since most protocols communicate over a network, these messages usually
originate from network traffic. On the other hand, an active approach injects
or alters messages to reveal protocol information. Both techniques can use
learning algorithms to infer information, but the former has a focus on
statistical methods to categorize messages, while the latter uses fuzzing.

Both techniques have successfully been applied. The passive approach
was used to extract state machines from real-world network traffic by making
use of both package heads and body in [23]. This information was fed to a
clustering algorithm, and its output was used to construct a state machine.
The authors specifically mention that their inferred state machine might
not include all transitions of the actual protocol’s state machine. This is an
observation that is true for any passive technique, since a clustering algorithm
can only learn from traces that occur in the observed network traffic. Transi-
tions that are not part of the collected traces can thus never be predicted.
Another fundamental restriction to passively inferring state machines is the
inability to learn protocols that communicate over an encrypted channel, at
least without having access to the security keys. Encryption will mask the
information needed to infer the state machine.

These restrictions do not apply to active learning systems. Active learning
approaches are less generic than passive learning systems. Since they need
to take part in the protocol communication, some knowledge of the protocol
is a prerequisite and therefore a tailor-made protocol participant has to be
created. Encryption stresses the need for tailor-made systems even more.
Firstly, because encryption prevents any automatic deduction of message
format to use later on. Secondly, because encrypted systems have a natural
protection against fuzzing, since the encryption-handling outer layers of a

12



protocol will discard any message that is damaged or malformed [5].

In general, the more extensive the protocol, the more custom logic needs to
be added to the fuzzer to successfully participate in the protocol’s execution.
In fact, it has been suggested that one of the reasons that the Heartbleed
bug in OpenSSL’s TLS implementation remained undiscovered for so long
is due to the fact that only tailor-made fuzzers could be used [5]. In this
thesis, we will use a tailor-made fuzzer to actively participate in the protocol’s
execution. By fuzzing on the order of otherwise correctly-formed messages we
will deduct a state machine, which will be represented as a Mealy machine.

3.2 Mealy machines

Mealy machines provide a representation for the internal state machine of an
SSH implementation. We will refrain from covering all the available literature
on Mealy machines, and instead discuss the necessary information needed for
understanding the relevant representation restrictions and interpreting this
thesis’ results. For further reading, please refer to [24], in which the relation
between Mealy machines and inferring state machines is more thoroughly
discussed and from which we will adopt terminology.

A Mealy machine can be represented as a tuple M = (I,0,Q, qo, 5, \)
in which I and O represent the input and output symbols, ) is the set
of states, with ¢y being the starting state. The two transition functions
denoted by § and A represent respectively the edges (Q x I — @) and output
(Q x I — O) with respect to a certain state and input. To spot logical
flaws, a graphical representation is usually better-suited. Such a graphical
representation typically depicts states as nodes and state transitions as edges.
A Mealy machine for which A(qo, i) = o' and 6(qo, ") = qo will therefore show
an edge from ¢g to go with label i’ /o', meaning that input ¢’ results in output
o' without changing the state. An example of a graphical representation for
a simple Mealy machine is shown in Figure 3.1.

Figure 3.1: A Mealy machine with three different states.

A Mealy machine is a deterministic finite state transducer, implying it
is both deterministic and finite. The transition functions therefore allow

13



only a single output for a given state and input, and the number of input
symbols and states is finite. Therefore, Mealy machines do not allow effective
representation of infinitely large buffers in a protocol. Consider a state g
in which an input 7’ always results in o/, but as soon as i” is processed the
SUT sends o” once for each i’ that has been processed so far. A Mealy
machine representation of this behaviour would need at least as many states
as the (infinitely large) buffer. We will observe buffer-like behaviour in some
SUTs. The adaptations made to still be able to model these SUTs as Mealy
machines are described in Section 4.4.

3.3 L* learning algorithm

The L* algorithm is used to build a model of the state machines and decide
which queries need to be sent to a SUT. The usage of L* to infer state
machines has first been demonstrated in [25]. In this thesis, we will use L*
as an off-the-self algorithm and thus only briefly cover its properties.

Given a certain input alphabet, L* dictates which input to send to the
SUT. The resulting output is used to infer states and decide which subsequent
input symbols to send. Between the different traces, the SUT is reset to
the initial state. In case of SSH, this is effectively done by terminating the
connection and initiating a new one.

If the SUT’s state machine is deterministic and finite, the algorithm
produces a state machine hypothesis in a finite number of queries. The
number of needed queries depend on the complexity of the state machine
that is to be inferred. Unfortunately, neither the state machine’s complexity
nor its deterministic or finite properties are known beforehand. Running
the algorithm on non-terminating or non-deterministic SUTs might result
in non-termination of the L* implementation. In our testing setup, we
automatically detect such cases (Section 4.4.3).

As soon as a first hypothesis has been formed, it is passed to a testing
oracle. This oracle will search for a counterexample. Since our testing-
approach is black-box, no oracle algorithm can guarantee that existing
counterexamples will be found in finite time. Section 4.1 describes the
considerations for the selection of our oracle algorithm.

If the testing oracle finds a counterexample, the counterexample and
hypothesis are used as a starting point for further learning. This process
repeats until no more counterexamples are found. The final hypothesis is
assumed to correctly define the SUT’s minimal state machine [25, p. 12].

14



4 Experimental setup

This chapter will cover the setup used to infer the state machines. We
provide a general setup outline in Section 4.1. The tested SSH servers are
described in Section 4.2, which were queried with the alphabet described in
Section 4.3. Section 4.4 will cover the challenging SUT behaviour faced when
implementing the mapper, and the adaptations that were made to overcome
these challenges. Section 4.5 will discuss the relation between state machines
for individual layers and the state machine of the complete SSH protocol.
The conventions on visualisation of the inferred state machines are described
in Section 4.6.

Throughout this chapter, an individual SSH message to a SUT is denoted
as a query. A trace is a sequence of multiple queries, starting from a SUT’s
initial state. Message names in this chapter are usually self-explanatory, but
a mapping to the official RFC names is provided in Appendix A.

4.1 Components

Our setup consists of three components: a learner, mapper and SUT. In order
to infer state machines, the leaner needs to query the SUT. We use LearnLib!,
a Java library for automata learning, as a basis for our learner. The L*
algorithm implemented in LearnLib can only handle abstract messages, and
can neither output nor process actual SSH network traffic. The mapper
translates abstract message representations to well-formed SSH messages. A
graphical representation of our setup is shown in Figure 4.1.

Drafting a mapper proved to be non-trivial. Because the mapper needs
to participate in an SSH session, it should be able to engage in processes
such as key exchange and authentication, and has to support features such as

"KEX30" (seq=16, len=358, payload=...)
Learner Mapper SUT
"KEX31" (seq=17, len=214, payload=...)

‘\_/\/

Figure 4.1: The setup consists of a learner, mapper and SUT.

'More information on LearnLib is available at http://learnlib.de/
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encryption and compression. For this thesis, an open source SSH implemen-
tation was used as a starting point for the implementation of the mapper.
We used the Python-written Paramiko package? because its code is relatively
well-structured.

The convenience of using existing code comes at a cost. Since Paramiko
features a state machine of its own, normal execution of the Paramiko code
will result in messages being sent, received, interpreted and rejected without
an explicit order to do so. We therefore altered the package so that it only
sends queries when explicitly told to by the learner, and accepts all response
messages. The message numbers as defined by the RFC [19] are used to
map response messages to an abstract representation that the learner can
interpret.

Although all messages are accepted and returned to the learner, the
mapper still needs a minimal state machine of its own. The mapper state
will only be changed if necessary for participation in the protocol’s execution.
In other words: the mapper only processes and records the contents of a
SUT’s response when strictly needed. For example, when a SUT sends an
DISCON or DEBUG message, the mapper does nothing but return the abstract
representation to the leaner. Keeping the mapper’s message interpretation to
a minimum allows the learner to interpret the SUT’s state machine without
the mapper cluttering the results. Some response message, however, do need
to be interpreted by the mapper in order to participate in the SSH protocol.
These messages can be found in Table 4.1. The mapper’s own state consists
of the information saved upon receiving these messages.

The mapper communicates with the leaner over a socket connection and
implements a simple protocol. It interprets abstract message representations
(for example, “KEXINIT”) as well as a special reset command, which is used
to revert the SUT to the initial state. This is effectively done by terminating
the connection to the SUT and initializing a new one.

Message Influence on mapper state

KEXINIT Saves SUT’s parameter preferences®.

KEXJ31 Saves the exchange hash resulting from key exchange.
NEWKEYS Takes in use new keys for all outgoing messages?.

CH_ACCEPT Saves the channel identifier, used in some queries®.

any Saves the sequence number, used for the UNIMPL query®.

Table 4.1: State-changing responses implemented by the mapper. These
combinedly result in the mapper’s state.

2Paramiko is available at http://www.paramiko.org/
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As soon as the learner builds a state machine hypothesis, it uses the
equivalence oracle to check the hypothesis’ adequateness. We used a random-
walk algorithm, which uses 2000 randomly constructed traces containing ten
to fifteen queries each. Although this does not guarantee model correctness
(no oracle can be absolutely conclusive in a black-box testing setup), it gives
us reasonable confidence that the model is correct. More complex state
machines will need other algorithms” or parameters to find counterexamples,
but we deem these parameters adequate for the state machines found in
Chapter 5.

4.2 SUTs

Six SSH servers have been tested. They can be found in Table 4.2. Unfortu-
nately, no recent figures are available on their market share. There is little
doubt, however, that OpenSSH is the market leader. The OpenSSH project
reported® over 80% market share for their server in 2008 and it has been the
default server on many UNIX-based operating systems for years. DropBear is
an alternative to OpenSSH and was designed to be a drop-in replacement for
low resource systems. It is the server of choice for routers running OpenWRT.
Bitvise and PowerShell are Windows-only clients, with the latter providing
Window’s PowerShell as emulated terminal. The company of SSH’s founding
father Tatu Ylonen markets Tectia, which is available on various platforms.
Cisco’s high-end networking hardware ships with their IOS operating system,
which has a build-in proprietary SSH client.

Name Developer Version  Platform License
OpenSSH  OpenBSD Project  6.9p1-2 UNIX-based BSD
DropBear  Matt Johnston 2014.65-1 UNIX-based MIT

Bitvise Bitvise 6.45 Windows Proprietary
PowerShell N Software 6.0.5732 Windows Proprietary
Tectia SSH Comm. Sec. 6.4.12.353 Various Proprietary
CiscoSSH  Cisco 1.25 Cisco 10S Proprietary

Table 4.2: The SSH implementations tested in this thesis.

3The parameters that must be supported according to the RFCs to ensure interoper-
ability are used if no KEXINIT has been received.

“Silently ignored when key exchange has not yet been completed.

5Zero is used if no CH_.ACCEPT has been received.

6Zero is used if no message has been received.

"An overview of LearnLib’s equivalence oracles can be found on
https://learnlib.github.io/learnlib/maven-site/0.9.1/apidocs/de/learnlib/
eqtests/basic/package-summary.html

8Data are available on http://www.openssh.com/usage/graphs.html
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In our setup, we ran OpenSSH and DropBear on the same operating
system as the mapper. CiscoSSH ran on a Catalyst 3550 switch, and other
SUTs were executed in a virtual machine. Of course, SUTs can run on any
system as long as it accepts incoming connections from the mapper. However,
querying over localhost is preferable because it reduces timing differences.

In their default configuration, all of the SUT's support (only) SSH version 2.
Furthermore, all SUTSs support our alphabet defined in Section 4.3, with the
exception of CiscoSSH, which does not support public key authentication®.

Figure 4.2: The Catalyst 3550 used for testing.

4.3 Alphabet

Learning time tends to grow rapidly as the input alphabet grows. It is
therefore important to focus on messages for which interesting state-changing
behaviour can be expected. As a general principle, we therefore chose not to
query protocol messages that are not intended to be sent from a client to a
server!?,

Applying this “outgoing only” principle to the transport layer results
in the messages of Table 4.3'1. The only message that is out of the or-
dinary is GUESSINIT. This is a special instance of KEXINIT for which
first_kex packet_follows is enabled [8, p. 17]. Our mapper can only
handle correct key guesses, so the wrong-guess procedure as described in [8,
p. 19] was not supported. When needed, SUTs were configured to make
this guess work by altering their cipher preferences. The SSH version and
comment string (described in Section 2.4.1) was not queried because it does
not follow the binary packet protocol.

9108 supports public key authentication since version 15, while the Catalyst switch
runs on I0S 12.2(46)SE.

10 Applying this principle to the RFC’s messages results in not including SERVICE_ACCEPT,
UA_ACCEPT, UA_FAILURE, UA_BANNER, UA_PK_OK, UA_PW_CHANGEREQ, CH_SUCCESS and
CH_FAILURE in our alphabet.

A mapping to the official RFC names is provided in Appendix A.
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Message Description

DISCON Terminates the current connection [8, p. 23]

IGNORE Has no intended effect [8, p. 24]

UNIMPL Intended response to an unimplemented message [8, p. 25]
DEBUG Provides other party with debug information [8, p. 25]
KEXINIT Sends parameter preferences [8, p. 17]

GUESSINIT A KEXINIT after which a guessed KEX30 follows [8, p. 19]
KEX30 Initializes the Diffie-Hellman key exchange [8, p. 21]
NEWKEYS  Requests to take new keys into use [8, p. 21]

SR_AUTH  Requests the authentication protocol [8, p. 23]

SR_-CONN  Requests the connection protocol [8, p. 23]

Table 4.3: Alphabet used to query the transport layer.

For the user authentication layer, applying our “outgoing only” princi-
ple results in just one message: the authentication request [7, p. 4]. Its
parameters contain all information needed for authentication. As stated in
Section 2.4.2, four authentication methods exist: none, password, public key
and host-based. Our mapper supports all methods except the host-based
authentication because various SUTSs lack support for this feature. As shown
in Table 4.4, both the public key as well as the password method have a OK
and NOK variant which provides respectively correct and incorrect credentials.

Message Description

UA_NONE Authenticates with the “none” method [7, p. 7]
UA_PK_OK Provides a valid name/key combination [7, p. 8]
UA_PK_NOK Provides an invalid name/key combination [7, p. 8]
UA_PW_OK  Provides a valid name/password combination [7, p. 10]
UA_PW_NOK Provides an invalid name/password combination [7, p. 10]

Table 4.4: Alphabet used to query the user authentication layer.

The connection protocol allows the client to request different processes
over a single channel. Our mapper only implements requesting terminal
emulation because availability of other processes depends heavily on a SUTs
configuration. Moreover, little security-relevant information is expected to be
gained by thoroughly testing other process requests. Combining this premise
with the aforementioned “outgoing only” principle resulted in the alphabet
of Table 4.5.

19



Message Description

CH_OPEN Opens a new channel [9, p. 5]

CH_CLOSE Closes a channel [9, p. 9]

CH_EOF Indicates that no more data will be sent [9, p. 9]
CH_DATA Sends data over the channel [9, p. 7]

CH_EDATA Sends typed data over the channel [9, p. 8]

CH_WINDOW_ADJUST  Adjusts the window size [9, p. 7]
CH_REQUEST_PTY Requests terminal emulation [9, p. 11]

Table 4.5: Alphabet used to query the connection layer.

4.4 Challenging SUT behaviour

Creating a mapper proved to be difficult, with three types of SUT behaviour
being especially challenging. We will elaborate on how our mapper handles
issues with regard to non-determination, receiving multiple responses and
non-termination.

4.4.1 Non-determinism

The learner expects that the a SUT behaves deterministically. In reality,
however, the SSH protocol and its implementations exhibit non-deterministic
behaviour. Sources of this behaviour can be divided into three categories:

1. SSH’s protocol design is inherently non-deterministic. Firstly, because
underspecification leads to multiple options for developers, from which
one can be selected in a non-deterministic manner. Secondly, because
non-deterministic behaviour directly results from the specifications. An
example of the latter is allowing to insert DEBUG and IGNORE messages
at any given time.

2. Response timing is a source of non-determinism as well. If a SUT does
not reply within a predefined time-out, the mapper assumes that no
response will follow. If the time-out is of similar order of magnitude
as the SUTs response time, timing variances will cause some queries
to result in a response while others do not. In general, we want the
time-out to be significantly higher than the average response time!'2.

3. Other timing-related quirks can cause non-deterministic behaviour as
well. Some SUTs behave unexpectedly when a new query is received

2Note that if the time-out is lower than the response time, the SUT behaves de-
terministically but the resulting model will note adequately describe the SUT’s state
machine.
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shortly after the previous one. For example, a trace in which a valid
user authentication is performed within five milliseconds after an au-
thentication request on DropBear can cause the authentication to
(wrongly) fail.

With regard to the protocol design: although the protocol allows for quite
some non-deterministic constructs in theory, most SUTs seem to behave
deterministically when it comes to what message they send. Tectia and
Bitvise sometimes send seemingly random IGNORE and DEBUG messages, but
these could be easily filtered without influencing the structure of the state
machine.

With regard to the timing: timing issues proved to be difficult to tackle.
To detect non-determinism, the learner has been extended with a SQLite-
based trace and response log. For any (sub)trace, the learner checks if
the SUT’s response matches earlier responses. In case of non-determinism,
an exception is thrown and manual investigation is needed. This manual
investigation typically leads to changing the delays and time-outs. For
debugging purposes, the mapper also accepts complete traces as input. For
example, the command “20 KEXINIT KEX30 NEWKEYS reset” repeats the
key exchange 20 times, so that variances in responses can be easily spotted.
Because responses to some queries (such as authentication requests) need
substantially more time, the mapper allows the time-out to be set based on
the type of query.

4.4.2 Multiple responses

In a Mealy machine, an input from a given state leads to a single output. In
practise, however, a SUT might respond with more than one message. For
example, Tectia sends three messages (IGNORE, UA_BANNER and UA_SUCCESS)
in response to a single successful authentication request. If our mapper
would only read the first message, other messages would appear as if they
are responses to subsequent queries.

The mapper has been altered to successfully deal with multiple response-
behaviour. The abstract representation returned to the learner is the con-
catenation of all responses received within the message time-out period. The
response to the aforementioned authentication query on Tectia will thus be
presented to the learner as IGNORE4+UA_BANNER+UA_SUCCESS. By using
this method, we make sure that there are no subsequent messages in the
socket pipeline when querying for new responses.

Waiting for multiple responses comes at a cost. Whereas a single response-
approach allows to return the message to the learner as soon as a response
is received, our altered mapper has to wait for subsequent messages. The
waiting times quickly accumulate and result in a significantly slower learning
process. To speed up learning, the learner has been altered so that it can
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query the trace and response log mentioned in Section 4.4.1. If a cached
trace is available, the mapper need not be queried. This did not only improve
learning speed, it also provides a way to store learned traces to quickly
resume the learning process later on.

An important observation has to be made with regard to the asynchronous
nature of message exchange in SSH [26]. Neither the client nor the server
needs to wait for a certain timeslot in order to transmit. Moreover, there is
no requirement to receive and process queued messages before transmitting
new ones. This results in a protocol in which, for example, both the server
and the client can have the impression that they sent their version number
before receiving the version number of their counterpart. This is an inherent
property of the SSH protocol, and receiving multiple responses does not
change this behaviour. This did not prove to be a major limitation in our
setup, since this behaviour does not alter the structure of inferred state
machines.

4.4.3 Non-termination

Mealy machines are unable to adequately model buffers in a protocol. Au-
tomata such as register machines are able to effectively model buffers, but
are not supported by L*. Buffers should therefore be removed at the mapper-
level.

We have encountered buffers in two occasions. Firstly, some implemen-
tations buffer certain responses, such as the ACCEPT message, when in key
re-exchange. As soon as rekeying completes, these queued messages are
released all at once. This leads to a NEWKEYS message (indicating rekeying
has completed), directly followed by all buffered messages. Buffer-behaviour
can also be observed when opening and closing channels, since a SUT can
close only as many channels as have previously been opened.

Buffers are hard to detect since LearnLib does not release intermediate
results while building a state machine hypothesis. In other words, an observer
has no way to know whether the learner is expanding on a buffer and will
consequentially never terminate. To detect this behaviour, we let the learner
regularly extract and display the response alphabet size from the trace and
response log.

The multiple responses resulting from buffers are concatenated into one
message as described in Section 4.4.2. An example of such a message is
NEWKEYS+ACCEPT+ACCEPT+ACCEPT. Consequently, the response alpha-
bet will quickly grow. As soon as this happens, the mapper gives a warning
and the learning process can be halted to investigate the buffer.

Generic countermeasures were also added to correct buffering behaviour.
If a response is identical to the one received before within the same message
time-out, an asterisk is appended. Subsequent identical messages are dis-
carded. The NEWKEYS+ACCEPT+ACCEPT+ACCEPT response will thus be
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returned to the learner as NEWKEYS+ACCEPT*. From the learners perspec-
tive, this effectively removes the buffer.

A SUT can only close as many channels as previously have been opened,
which faces the learner with a buffer as well. We therefore restricted the
number of simultaneously open channels to one. The mapper returns a
custom response CH_.MAX for every subsequent CH_OPEN. These CH_.MAX
messages are filtered from the state machine representation.

4.5 Inferring individual layers

Initially, the setup was used to infer a state machine in which all three
layers (transport, user authentication and connection) of the SSH protocol
were combined. There are multiple reasons as to why this has proven to be
infeasible.

Firstly, the number of states tends to grow quickly when combining all
layers. Given the timing restrictions we had to keep in mind to prevent
non-determinism, inferring and validating the combined state machines could
easily end up taking days. This would not have been an insurmountable
problem if the implementations behaved fully Mealy machine-compliant but,
as described in Section 4.4.3, in many cases they do not. Unexpected buffers
in the protocol’s implementation become increasingly difficult to detect and
prevent as different layers start interacting.

The lack of choke points between protocol layers makes SSH an especially
difficult protocol to infer. This means that there is no point after which
it can be safely assumed that previously ran layers will no longer interact.
Rekeying poses the most notable example, in which a sequence of three
transport layer messages could be sent at any given time during execution of
a higher layer.

In one of our earlier attempts to infer a combined state machine, our setup
was able to detect rekeying, but unable to detect that rekeying preserves
the state in the higher layers. A schematic overview of this behaviour is
shown in Figure 4.3. A model in which the state is not preserved after
rekeying is erroneous, since it implies that the server has no information on
authentication and channels any more as soon as rekeying completes.

Although a human observer will easily notice the rekeying pattern
(KEXINIT; KEX30; NEWKEYS), LearnLib’s L* cannot recognize nor anticipate
on the repetition of such patterns. It is trivial to see that this behaviour
results in an exploding number of states as soon as the number of higher-layer
states increases. In order to still make some observations on the security-wise
interesting rekey operation, we add a REKEY to the user authentication and
connection alphabet. This operations implements the messages KEXINIT;
KEX30; NEWKEYS as an atomic operation. By performing an entire rekey
procedure at once, we can deduce when rekeying succeeds and whether this
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correctly preserves state.

REKEY

authed

Figure 4.3: State machines showing state preserving (left) and non-state
preserving (right) rekeying. A adequate model should correctly preserve
state.

One could wonder what the combined state machine for the three different
layers would look like. On secure implementations, the transport and user
authentication layer need to complete before the connection layer starts. It
will thus not be a parallel composition of three layers running independently,
as would be the case when, for example, three different OSI-layers would
be considered. The key re-exchange, however, causes the protocol to not be
entirely sequential either. Without providing an airtight formal definition,
the combined state machine S Mgy, would look something like:

SMssh = SMtrcms§ (SMtrans X SMauth)§ (SMtrans X SMconn)
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4.6 State machine visualisation

As soon as our setup finishes learning, it outputs the state machine as a
GraphViz!3 file. Various alterations are applied to improve readability while
keeping the machines unequivocal. State machines in various stages of this
visualisation process have been attached in Appendix B for the interested
reader.

A slightly altered version of Python’s Pydot'* package is used to merge
labels of edges that span between the same nodes. Subsequently, OTHER
and ANY representations are added in order to merge queries that result in
similar responses. To keep the machine unambiguous, a node can have at
most one outgoing edge with an OTHER label. If no confusion is possible, the
ANY/NO_CONN label will be omitted.

Queries using the IGNORE and DEBUG message are removed from the
representations because they never resulted in a state change. The same
applies to the UNIMPL message on all SUTs except DropBear and Tectia.
Green edges were added to denote each layer’s happy flow!?.

3More information on GraphViz is available at http://www.graphviz.org/
Pydot is available at https://pypi.python.org/pypi/pydot
Y Happy flows are defined in Section 2.4.
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5 Results

This chapter discusses the state machines inferred by our testing setup.
The transport layer, user authentication layer and connection layer will
be discussed in Sections 5.1-5.3. For each layer, we will discuss the state
machines in order of increasing complexity. A few concluding observations
will be made in Section 5.4.

5.1 Transport layer

The transport layer is arguably the most interesting layer from a security
perspective because it involves parameter negotiation and key exchange.
The SUTs were queried with the alphabet described in Table 4.3. The
inferred state machines discussed in this section reveal major implementation
differences. The majority of the observed differences has one of the following
causes:

1. Rekeying during the first execution of the transport layer is either
allowed or not allowed.

2. Responses to authentication service request while in key exchange are
handled differently. The RFC explicitly disallows sending an acceptance
response to any service request while in key re-exchange [8, p. 19]. Some
developers have implemented this requirement by buffering responses:
acceptance responses are kept back until key re-exchange has completed.
Other developers have chosen to simply discard these responses during
rekeying.

3. The presence of unresponsive and superfluous states. SUTs in an
unresponsive state ignore all incoming messages. Superfluous states
are states which serve no real purpose: if they would be removed, the
layer would still be working properly!.

Learning statistics for the transport layer are shown in Table 5.1. Note
that equivalence queries have not been saved to the query log, and are
therefore not included in the statistics tables.

Tt is hard to give a formal definition of a superfluous state, since a reader’s interpreta-
tion is needed to see whether a state serves a useful purpose.
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All inferred state machines in this section are secure with regard to the
security definition given in Section 2.4.1.

sUT Traces Queries Time ([h:]m:s)?
OpenSSH 895 5584 16:57
DropBear 562 2634 8:38
Bitvise 766 3091 16:03
PowerShell 866 5413 19:14
Tectia 1224 8203 1:01:05
CiscoSSH 522 2689 51:41

Table 5.1: Statistics for the transport layer extracted from the query log.

2Time per query differs because of the differences in time-outs. In general, time-outs
for SUTs running on the same machine as the learner could be lower than time-outs for
remote or virtualized servers.
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KEXINIT/KEXINIT
GUESSINIT/KEXINIT
SR_AUTH/KEXINIT

KEX30/KEXINIT
SR_CONN/KEXINIT

KEX30/KEX31+NEWKEYS

DISCONN/KEXINIT
EWKEYS/KEXINIT

DISCONN/NO_CONN

OTHER/DISCONN NEWKEYS/NO_RESP

KEXINIT/UNIMPL
GUESSINIT/UNIMPL
SR_AUTH/ACCEPT

KEX30/UNIMPL

DISCONN/NO_CONN
OTHER/DISCONN

DISCONN/NO_CONN
SR_CONN/DISCONN
NEWKEYS/NO_CONN

Figure 5.1: Inferred state machine of the transport layer for OpenSSH
6.9pl-2.

OpenSSH (Figure 5.1) implements a simple state machine. It does not
allow rekeying in this phase of the protocol, and therefore does not need a
rekeying response buffer. OpenSSH is extremely liberal when it comes to
the parameter negotiation: the KEXINIT message need not to be sent at all.
OpenSSH seems to do a proper job when it comes to guessing all of the used
parameters for the client-to-server connection. OpenSSH’s developers have
been notified of this issue, but have not (yet) shed light on why they chose
to implement such a liberal acceptance policy during parameter negotiation.

The parameter negotiation behaviour in OpenSSH is in line with Postel’s
law, which has been formulated in an early version of the TCP standard [27,
p. 21] and boils down to “be conservative in what you send, be liberal in
what you accept from others”. It has been argued that this approach is
unwise in a security-sensitive context [26]. Interesting enough, OpenSSH
does clearly not follow Postel’s law when it comes to rekeying, since it is one
of the few clients that disallow rekeying at this stage of the protocol.
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XINIT/KEXINIT

KEX30/KEX31+NEWKEYS

OTHER/
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DISCONNECT

NEWKEYS/NO_RESP

OTHER/
DISCONNECT

OTHER/

DISCONNECT SR_AUTH/ACCEPT

OTHER/
DISCONNECT

OTHER/
DISCONNECT

Figure 5.2: Inferred state machine of the transport layer for CiscoSSH 1.25.

CiscoSSH’s state machine (Figure 5.2) resembles OpenSSH’s, although
it does requires a KEXINIT message from the client before starting the key
exchange. In other words, a transition from the “initial” state to the “prekex”
state is not possible without mutually exchanging preferred parameters. The
GUESSINIT is not supported.

Contrary to OpenSSH, the user authentication service can only be re-
quested once, and the connection is closed on subsequent requests. Although
the RFC does not mention limiting the number of SR_AUTH messages, this is
a more restrictive implementation.

Just like OpenSSH’s state machine, CiscoSSH does not allow rekeying in
this stage of the protocol. Cisco’s developers have not responded to inquiries
as to why they chose this behaviour.
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KEXINIT/KEXINIT
GUESSINIT/KEXINIT

X30/KEX31+NEWKEYS

KEXINIT/KEXINIT

OTHER/KEXINIT GUESSINIT/KEXINIT

OTHER/NO_CONN

Figure 5.3: Inferred state machine of the transport layer for Dropbear
2014.65-1.

DropBear’s state machine (Figure 5.3) also resembles OpenSSH’s, but
allows rekeying after the initial key exchange has completed.

Just like OpenSSH and CiscoSSH, DropBear does not buffer ACCEPT
messages. In reply to my inquiry on the reason behind this, DropBear’s
developer Matt Johnston stated that according to him, buffering these
messages is not allowed by the RFCs. Indeed, the description in [8, p. 19] is
ambiguous, and can be interpreted as a requirement to temporary withhold
these messages, or as a requirement to discard them.
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OTHER/DISCON

DISCON/NO_CONN
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SR_AUTH/ACCEPT

SR_AUTH/DEBUG+ACCEPT

Figure 5.4: Inferred state machine of the transport layer for Bitvise 6.45.

Bitvise’s state machine (Figure 5.4) stops responding when a NEWKEYS
directly follows parameter negotiation. We have tested this unresponsive
state for a denial-of-service scenario, but it seems that the “unresp” state
closes connections after one minute. The DEBUG message the SUT sends on
a second authentication request results in a separate state “preauth”.

In response to an inquiry about the unresponsive state, Bitvise developers
started an investigation which led to the conclusion that “the reason for the
unresponsive state is in our asynchronous, component-based, message-passing
architecture; and the way we use this to implement a kex-handler-agnostic
transport layer”. Although Bitvise agrees that an error message would have
been better in this case, they also note that “other mechanisms, such as
various time-outs, should continue to operate in this circumstance, so it
seems an error message would be the only benefit.” They conclude that the
unresponsive state results from an “architectural limitation”, but it does
little harm.
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KEX30/NO_RESP

SR_CONN/DISCONN
OTHER/NO_CONN

SR_AUTH/NO_RESP
SR_CONN/NO_RESP

OTHER/NO_CONN

Figure 5.5: Inferred state machine of the transport layer for PowerShell
6.0.5732.

The state machine of PowerShell (Figure 5.5) is more complex because
of its buffering behaviour and the existence of multiple superfluous states.
The grey superfluous states are caused by PowerShell’s odd interpretation
of the SR_AUTH and SR_CONN messages. As can be seen in Figure 5.5,
these messages can cause state changes but frequently do not result in a
response. The resulting “preclosed”-states do not seem to serve any purpose.
Other SUTs simply close the connection upon unexpectedly receiving these
messages.

Recall that the asterisk in ACCEPT* is used to indicate an arbitrary non-
zero number of identical responses to a single query. These responses originate
from buffered responses to SR_AUTH messages during key re-exchange.

PowerShell’s developers responded to these findings by stating that they
would further investigate the particularities when time allows.
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Tectia’s state machine (Figure 5.6), just like DropBear’s, contains an
unresponsive state when NEWKEYS is sent too early. Whether this is caused
by the same architectural limitation cannot be answered, since Tectia’s
developers have not taken the opportunity to respond to the results.

Tectia accepts the NEWKEYS message before renewed keys have actually
been exchanged. The SUT’s extremely liberal rekey sequence acceptance
policy in combination with buffering behaviour results in a tangled web
of interrelationships. Actual rekeying is performed as soon as a KEXINIT,
KEX30 and a NEWKEYS have been received, regardless of the order. While
this does not directly lead to a vulnerability, this behaviour is neither wise
nor allowed by the RFC, which clearly state that “key exchange ends by
each side sending an NEWKEYS message” [8, p. 21].

Given this behaviour, it is likely that the state machine has been imple-
mented as a combination of variables which combinedly form the machine’s
state. A state machine could also be implemented using a single state variable.
It should be noted that no single method is superior, although the multi-
variable approach can result in an cluttered state machine representation
with many seemingly unnecessary states.

Note that the majority of states in Figure 5.6 have not been marked as
superfluous. Although the state machine implementation would be better
off with fewer states, all of the states (besides the “unresp”) allow recov-
ering to a state like “kexed” or “keyed”. These states are the result of
the aforementioned implementation decisions, but are strictly speaking not
superfluous.
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5.1.1 Concluding remarks on the transport layer

The inferred transport layer state machines differ substantially. While causes
for these changes fall into three major categories described on page 26,
many more subtle variances can be observed in both structure of the state
machine and the used response messages. Differences in implemented response
messages are especially notable when considering unexpected messages: some
SUTs send UNIMPL, others send NO_RESP, DISCON, or simply immediately
close the connection. Querying with the GUESSINIT message did not result
in peculiar behaviour, and all SUTs expect CiscoSSH support it.

All state machines are secure, since none of the state machines show
a path to the authentication service request without a proper exchange of
cryptographic keys>.

From a security perspective, a liberal message acceptance policy in the
key exchange phase is undesirable. OpenSSH has a liberal policy when
it comes to parameter negotiation because it also accepts other messages
than KEXINIT. Tectia allows rekeying in arbitrary message order. This
liberal behaviour could easily lead to an obscure combination of states in
which errors are easily introduced and hard to detect. Other SUTs are more
restrictive what kind of messages they accept.

Both Tectia and PowerShell buffer ACCEPT messages during rekeying, re-
sulting in extra states with ACCEPT™* transitions. Buffering ACCEPT messages
seems to be implied by the specifications, which state that a client or server
“must not send any messages other than” the ones provided on [6, p. 19].
Given that key re-exchange may take place at any given moment, it is likely
that the RFC authors meant holding back other messages -such as ACCEPT-
rather than discarding them. However, the specifications remain ambiguous
and are interpreted differently by different readers. This is directly reflected
by the response from DropBear’s developer, but also observable by looking
at how developers have translated the RFCs to state machines.

It is hard to say which state machine is the “best”. This depends
on one’s interpretation of the RFCs, and on whether the most compliant
implementation is always preferable. We would recommend developers to
not allow rekeying and not buffer ACCEPT messages. Choosing a simple state
machine over a strict implementation of specifications seems sensible in this
error-prone stage of the protocol, since it results in a simpler state machines
which, in turn, allows for fewer state-related bugs. For this reason, we would
argue that CiscoSSH’s state machine (Figure 5.2) is preferable.

3The security definition can be found in Section 2.4.2.
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5.2 User authentication layer

Inferring state machines for the user authentication layer proved to be rela-
tively easy compared to inferring the transport layer because the implemented
state machines were less complex. Although all SUTs implement a secure
user authentication layer with regard to the security definition given in
Section 2.4.2, various differences can be observed.

The used alphabet consists of the REKEY query? and the queries described
in Table 4.4. Throughout this chapter, the KEYOK response message was
used as a shorthand for the sequence of the three expected result messages
(KEXINIT; KEX31; NEWKEYS) in a key re-exchange.

The initial state for this layer is “unauthed”. In order to reach this
state, the sequence KEXINIT; KEX30; NEWKEYS; SR_AUTH has been executed
in between every trace. This performs a key exchange and requests the
user authentication service. Besides the atomic REKEY message, no other
transport layer messages are used in this layer in order to keep learning times
feasible. Resulting learning statistics for the authentication layer can be
found in Table 5.2.

SUT Traces Queries Time (m:s)
OpenSSH 78 618 4:38
DropBear 107 969 9:34
Bitvise 103 993 6:57
PowerShell 87 672 6:39
Tectia 95 728 11:17
CiscoSSH 105 758 3:44

Table 5.2: Statistics for the authentication layer extracted from the query
log.

*More information on the REKEY message is available in Section 4.5.
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Figure 5.7: Inferred state machine of the user authentication layer for
DropBear 2014.65-1, Tectia 6.4.12.353 and PowerShell 6.0.5732 (left) and
Bitvise 6.45 (right).

The structure of the state machines for Bitvise, Tectia, DropBear and
PowerShell (Figure 5.7) are almost identical and arguably as simple as the
authentication layer could theoretically be. Their state machines have two
states, and rekeying is allowed during the entire protocol.

Tectia sends a UA_BANNER [7, p. 7] as soon as the SUT connects, which
can be used to inform connecting clients of relevant (legal) information. This
message has been filtered from the representation in Figure 5.7, because it
would falsely gives the impression that this message is a response to the first
query, while it might have already been sent®.

5Section 4.4.2 provides more information on this behaviour.
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) REKEY/KEYOK
OTHER/UNIMPL
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Figure 5.8: Inferred state machine of the user authentication layer for
OpenSSH 6.9p1-2.

OpenSSH’s state machine (Figure 5.8) does not allow rekeying until
user authentication has been completed. Besides that, the state machine
is identical to Bitvise’s state machine. OpenSSH and Tectia do not allow
requesting authentication with a changed username. In other words: subse-
quent authentication requests have to involve the same user. This behaviour
is not defined by the RFCs, and initially led our mapper to infer incorrect
state machines. OpenSSH’s debug logs revealed this issue, after which our
mapper has been altered to use identical usernames. We do not know the
reason for this implementation decision, and the OpenSSH developers did
not elaborate on it.

As soon as a SUT successfully authenticates, OpenSSH transmits a global
request featuring their own protocol extension (hostkeys-00@openssh.com),
which is used to inform clients of all the server’s protocol host keys®. This is
a OpenSSH-specific extension using the “@” notation as defined in [19, p. 9].

5A complete list of OpenSSH’s deviations and extensions can be found on
https://anongit.mindrot.org/openssh.git/plain/PROTOCOL
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Figure 5.9: Inferred state machine of the user authentication layer for
CiscoSSH 1.25.

Just like OpenSSH, CiscoSSH does not allow rekeying until the user
has been successfully authenticated. As stated in Section 4.2, public key
authentication is not supported in the tested version op CiscoSSH. Just like
Cisco’s state machine in the transport layer, its inferred state machine for the
authentication layer is the most restrictive one: unexpected authentications
requests in the “authed” state result in a closed connection.

5.2.1 Concluding remarks on the user authentication layer

The state machines for the user authentication layer are less complex than
their transport layer counterparts. The state machines differ in two aspects:
whether they allow rekeying in an “unauthed” state and how implementations
deal with authentication attempts in the “authed” state. OpenSSH and
CiscoSSH do not allow rekeying for unauthenticated users. Other SUTs seem
to correctly preserve their state after rekeying. Most implementations send no
response or an UNIMPL message when faced with unexpected authentication
attempts, while CiscoSSH immediately closes the connection. Furthermore,
OpenSSH and Tectia do not allow to switch usernames between subsequent
requests.

All inferred state machines implement a secure state machine: none of
the SUTs allow reaching an authenticated state without providing correct
credentials. Furthermore, none of the SUTs show unresponsive or superfluous
states”. Bitvise’s state machine (Figure 5.7) most closely follows the RFCs.
However, just like in the transport layer, developers might have good reasons
to disable rekeying until user authentication.

"The security definition can be found in Section 2.4.2.
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5.3 Connection layer

The connection layer allows a user to request different processes over a
single SSH connection®. Querying the SUTs with the alphabet described
in Table 4.5 and the REKEY query resulted in the learning statistics shown
in Table 5.3. The initial state for this layer is the “no_channel” state. The
key exchange sequence (KEXINIT; KEX30; NEWKEYS; SR_AUTH) is followed
by successful authentication (UA_PW_OK) in between every trace in order to
reach this state.

SUT Traces Queries Time (m:s)
OpenSSH 540 5115 10:50
DropBear 490 4595 9:55
Bitvise 294 2315 6:43
PowerShell 289 2343 6:39
Tectia 160 1109 6:00
CiscoSSH 264 1810 5:40

Table 5.3: Statistics for the connection layer extracted from the query log.

Looking at the RFC [9], we notice that it gives few clues on how to handle
unexpected messages. Compared with the other layers, the connection layer
RFC focusses more on what is allowed rather than what is disallowed. A
possible explanation could be that this layer is less security critical, since it
does not involve exchanging keys or passwords. We would argue that the
connection layer is, more than the other layers, underspecified. For example,
it does not specify how to deal with requesting a second process over a single
channel (CH_.REQUEST_PTY) or sending data after an end-of-file message
(CH_EOF). We will see that each implementation takes it own approach in
these cases.

8More information on the connection layer is available in Section 2.4.3.
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Figure 5.10: Inferred state machine of the connection layer for Tectia
6.4.12.353 (left), PowerShell 6.0.5732 (middle) and CiscoSSH 1.25 (right).

PowerShell, Tectia and CiscoSSH implement a fairly simple state machine
(Figure 5.10). They support rekeying and requesting a terminal, and do not
respond to other messages at all. The latter is in line with the RFC, which
does not specify a response to CH_DATA, CH_EDATA, CH_WINDOW _ADJUST or
CH_EOF.

PowerShell and Tectia have a rather liberal acceptance policy in two
aspects. Firstly, they accept multiple terminal emulation requests over a
single channel. Secondly, they preserve their state when receiving an end-of-
file message (CH_-EOF). They could also have chosen to take measures (for
example, close the connection) if a client sends data after CH_EOF, but they
did not.

PowerShell and CiscoSSH do not support opening multiple channels?,
and jump to an unresponsive or closed state as soon as a channel has been
closed. This deviation from the RFCs does no justice to the intention of
the connection layer, which is to multiplex multiple channels into a single
connection [9, p. 5]. Developers of PowerShell and CiscoSSH did not
respond to queries about this bug, but it could be a deliberate decision to
implement only part of the specification. After all, both SUTs are marketed
to perform one specific task only: PowerShell’s selling point is providing the
Windows PowerShell terminal, while CiscoSSH provides management access
to networking appliances.

9Technically, our learning setup can only infer that these SUTs do not support closing
and subsequently opening another channel, since our mapper does not support simultane-
ously opened channels.
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Figure 5.11: Inferred state machine of the connection layer for Bitvise 6.45.

The state machine of Bitvise (Figure 5.11) is different from the three
aforementioned because it does not respond to any connection-layer messages
after CH_EOF. Although the RFC does not specify what to do when data
is received after an end-of-file, not responding to this data seems more in
line with the intention of the client sending such a message. After all, if a
server has to anticipate on receiving more data after an end-of-file message,

the message serves no real purpose.
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Figure 5.12: Inferred state machine of the connection layer for Dropbear
2014.65-1.

DropBear’s state machine (Figure 5.12) looks more complex at first sight,
which is caused by two implementation decisions. Firstly, just like Bitvise,
DropBear does not respond on any connection layer messages when an end-of-
file has been issued. Secondly, it allows only one terminal emulation request
per channel. Non-compliance with these two restrictions results in a closed
connection.
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Figure 5.13: Inferred state machine of the connection layer for OpenSSH
6.9p1-2.

OpenSSH (Figure 5.13) also closes the connection on a second terminal
emulation request for the same channel. Furthermore, its state machine
seems to allow multiple channels, but only until as long as no non-service
request query has been received yet. As soon as another query has been
received, it changes to the “has_commands” state, after which the closing
of a channel results in connection termination. The same behaviour can be
observed after a terminal emulation request has been accepted, resulting in
the “has_commands_pty” state. This behaviour is rather strange and cannot
be explained using the RFC or OpenSSH’s debug logs. As a consequence of
this behaviour, OpenSSH fails to close a channel after rekeying, and instead
closes the entire connection. OpenSSH developers have been notified, but
have so far not provided an explanation.

5.3.1 Concluding remarks on the connection layer

From a state machine security perspective, the transport and user authenti-
cation layer are more interesting than the connection layer. The connection
layer could contain security vulnerabilities, but it is unlikely that a vulnera-
bility can be revealed by interpreting a SUT’s state machine.

PowerShell and CiscoSSH do not seem to support multiple channels.
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Rekeying is allowed by all SUTSs, but for OpenSSH seems to result in closing
the entire connection upon receiving a CH_CLOSE. This indicates a state
machine-related bug.

It comes as no surprise that the fewer constructions are explicitly disal-
lowed by the RFCs, the wider the ranger of resulting state machines. The
RFCs for the connection layer almost entirely lack explicit description of
state-related behaviour. Even with the limited number of requests'®. we
employed when inferring state machines for this layer, various ambiguities are
revealed. The CH_EOF is exemplary, since the RFC only specify that it should
be sent “when a party will no longer send more data to a channel” [9, p. 9].
Why this is useful and what the consequence is if data is sent afterwards is
not explained.

Of the wide range of state machines, DropBear’s interpretation of the
RFCs is arguably preferable because it disallows dubious service request and
end-of-file constructions.

5.4 State machines and RFCs

Many differences can be observed when comparing the inferred state ma-
chines. In fact, only in the authentication layer did we observe two identical
state machines. Fingerprinting an unknown SSH server therefore seems to
be a trivial task. One of the major reasons for these observed variances is
underspecification in the RFCs. Underspecification can be the result of delib-
erately allowing multiple options, having ambiguously protocol descriptions,
or not discussing certain possibilities at all.

Underspecification accounts for at least three observed differences amongst
the inferred state machines: the buffering behaviour during key re-exchange,
dealing with multiple services over a single channel and different handling of
CH_EOF messages. Other differences seem to be caused by explicit choices
which are not part of the RFCs, or are simply caused by programming errors.

We strongly believe that if the SSH protocol authors would have sketched
a conceptual state machine while drafting the standards, the resulting RFCs
would have been more clear, and inferred state machines would show fewer
differences. Sketching conceptual state machines forces one to explicitly think
about the impact of a protocol rule on the state machine. This might lead to
omitting certain features (key re-exchange during transport layer would be a
good candidate) or messages (the CH_.EOF message can be omitted without
any consequence).

Adding a reference state machine to the RFCs (ASCII-based or otherwise)
has advantages. It would allow for easier interpretation by developers, and
might result in simpler and more consistent state machine implementations.

OWe restricted ourselves to terminal emulation, as explained in Section 4.3.
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This might, in turn, ensure better compatibility and leave less room for
state-related security vulnerabilities.

Although adding a reference state machine to the SSH protocol architec-
ture would be a significant improvement, appending state machines might
not be suitable for every protocol. It implies that the protocol behaves
(almost) Mealy-machine compliant. While non-deterministic Mealy machines
allow for more flexible constructions (such as the ones made with the “MAY”
keyword), RFCs which allow a wide range of possible state machines might
become hard to interpret. It is, however, our belief that adding a state
machine to current and future RFCs would generally have added value.

Whether a Mealy machine is the best way to depict a state machine is
open for debate. In general, we feel that one of the major advantages of
Mealy machine representation is that it provides an interpretable overview
in the blink of an eye. Other formalisms, such as register automata or
the formalism used in [26] can be harder to interpret but do provide more
expression power (for buffers and order of messages respectively). In the end,
our choice for Mealy machines was based on a rather practical limitation:
these are the only machines L* can infer.

46



6 Conclusions

In this thesis protocol state fuzzing was used to infer state machines for six
SSH servers. Our setup (Chapter 4) uses a mapper to translate abstract
queries from the learner to actual network packets that could be understood
by an SSH server. Message numbers were used to convert response messages
back to abstract representations.

Creating the mapper proved to be non-trivial. Handling non-determinism,
non-termination and multiple responses were challenging (Section 4.4).
The mapper was extended with a trance and response log to detect non-
determinism and improve performance. Delays were added to the mapper,
as well as means to handle multiple responses to a single query and detect
buffers within those responses.

All of the tested SUTs implement secure state machines (Chapter 5).
PowerShell and CiscoSSH do not support multiple channels (Section 5.3).
Besides that, no incompatibilities were found. This does not mean that the
inferred state machines show little difference. On the contrary: unresponsive
and superfluous states, different interpretation of the RFCs, and unexplained
quirks are the rule rather than the exception. In fact, only in the authentica-
tion layer did we find two identical state machines. These variances allow
anyone to fingerprint the tested SUTs.

OpenSSH and Tectia implement a liberal message acceptance policy
(Section 5.1). OpenSSH does not require a KEXINIT message from the client,
and makes a guess on the used parameters. Tectia allows the three rekeying
messages to arrive in arbitrary order. These liberal acceptance policies are
unwise from a security perspective, since which they allow for state machine-
related bugs which are easily introduced and hard to detect. CiscoSSH’s
state machines is the most restrictive, and closes the connection on any
unexpected message.

OpenSSH seems to contain a bug which leads to a terminated connection
when closing a channel if a rekey has been performed earlier. Besides this bug,
our results do not show that different protocol layers interact unexpectedly.

The RFC for the connection layer provides relatively little state-related
information (Section 5.4). Developers used this freedom of interpretation to
implement state-machines which differ significantly. If the SSH RFC authors
would had sketched a state machine, we would expect the standards to be less
ambiguous and implemented state machines with fewer differences. Adding
a reference state machine to the standards would definitely have added value
for SSH. Most RFCs would benefit from added state information, and we
would generally encourage authors to append a reference state machines to
protocol specifications.
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6.1 Future work

We had to make strict decisions on which messages we implemented to keep
the learning times feasible. Although we aimed to pick messages that are
most likely to produce interesting state-changing behaviour!, the alphabet
could be further extended. Testing key exchange algorithms other than
Diffie-Hellman is especially interesting in this regard.

The input alphabet can also be extended by fuzzing on message parame-
ters. Some parameters were included (for example, the GUESSINIT message is
a KEXINIT with slightly altered parameters), but further extending parameter
fuzzing might result in interesting behaviour. Extending the mapper to
implement the wrong-guess procedure? would also provide more information.

We limited the number of SUTSs to six. Other frequently-used servers
could be investigated as well.

Finally, a practical limitation of our setup is that it infers SSH’s protocol
layers individually. As a result, we cannot prove that there is no undetected,
unwanted interaction between different layers. Trying more transport layer
messages in higher layer could reveal unwanted interaction. A combined state
machine for all three layers could also reveal more interesting interaction,
although learning a combined machine would most likely need another
experimental setup®.

! An “outgoing only” message policy was used, as described in Section 4.3.
2Section 4.3 provides more information on the GUESSINIT message.
3The grounds for inferring the layers indivudally are covered in Section 4.5.
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A Message abbreviations

Abbreviation

DISCON
IGNORE
UNIMPL
DEBUG
KEXINIT
GUESSINIT
KEX30
KEX31
NEWKEYS
SR_AUTH
SR_CONN
ACCEPT

RFC-defined name
SSH_MSG_DISCONNECT
SSH_MSG_IGNORE
SSH_MSG_UNIMPLEMENTED
SSH_MSG_DEBUG
SSH_MSG_KEXINIT
SSH_MSG_KEXINIT
SSH_MSG_KEXDH_INIT
SSH_MSG_KEXDH_REPLY
SSH_MSG_NEWKEYS
SSH_MSG_SERVICE_REQUEST
SSH_MSG_SERVICE_REQUEST
SSH_MSG_SERVICE_ACCEPT

Reference
8, p. 23]

4
5

&
!

TP TP T YT

]
]
5]
7]
9]
1]
]
]
]
]
]

2
2
2
1
1
2
2

[\)
=N

[\
w

[\

3
5

0 o0 00 0o 00 00 00 0 o O

[\

Table A.1: Message abbreviations for the transport layer.

Abbreviation

UA_NONE
UA_PK_OK
UA_PK_NOK
UA_PW_OK
UA_PW_NOK
UA_SUCCESS
UA_FAILURE

RFC-defined name
SSH_MSG_USERAUTH_REQUEST
SSH_MSG_USERAUTH_REQUEST
SSH_MSG_USERAUTH_REQUEST
SSH_MSG_USERAUTH_REQUEST
SSH_MSG_USERAUTH_REQUEST
SSH_MSG_USERAUTH_SUCCESS
SSH_MSG_USERAUTH_FAILURE

Reference

Table A.2: Message abbreviations for the user authentication layer.
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Abbreviation RFC-defined name Reference

CH_OPEN SSH_MSG_CHANNEL_OPEN [9, p. 5]
CH_CLOSE SSH_MSG_CHANNEL_CLOSE [9, p. 9]
CH_EOF SSH_MSG_CHANNEL_EOF [9, p. 9]
CH_DATA SSH_MSG_CHANNEL_DATA [9, p. 7]
CH_EDATA SSH_MSG_CHANNEL_EXTENDED_DATA  [9, p. §]
CH_WINDOW_ADJUST  SSH_MSG_CHANNEL_WINDOW_ADJUST [9, p. 7]
CH_REQUEST_PTY SSH_MSG_CHANNEL_REQUEST_PTY [9, p. 11]
CH_SUCCESS SSH_MSG_CHANNEL_SUCCESS [9, p. 4]

Table A.3: Message abbreviations for the connection layer.
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B State machine formatting

This appendix shows the formatting process applied to CiscoSSH’s transport
layer state machine.

TS RIS N HLEMENTED N0 s

Y RS TG T RESS NI AMEATED/ N0 s

Figure B.1: Unformatted state machine.

KEXINIT/KEXINIT
IGNORE/KEXINIT
DEBUG/KEXINIT
UNIMPLEMENTED/KEXINIT

IGNORE/NO_RESP
DEBUG/NO_RESP
'UNIMPLEMENTED/NO_RESP

KEX30/KEX31+NEWKEYS

IGNORE/NO_RESP
DEBUG/NO_RESP
UNIMPLEMENTED/NO_RESP

DISCON/KEXINIT+DISCON
SR_AUTH/KEXINIT+DISCON
KEX30/KEXINIT+DISCON
[SR_CONN/KEXINIT+DISCON
NEWKEYS/KEXINIT+DISCON

NEWKEYS/NO_RESP

DISCON/DISCON

KEXINIT/DISCON
SR_AUTH/DISCON
SR_CONN/DISCON
NEWKEYS/DISCON

IGNORE/NO_RESP
DEBUG/NO_RESP
'UNIMPLEMENTED/NO_RESP

DISCON/DISCON
KEXINIT/DISCON
ISR_AUTH/DISCON
KEX30/DISCON
[SR_CONN/DISCON

SR_AUTH/SERVICE_ACCEPT

DISCON/DISCON
KEXINIT/DISCON
KEX30/DISCON
SR_CONN/DISCON
NEWKEYS/DISCON

IGNORE/NO_RESP
DEBUG/NO_RESP
'UNIMPLEMENTED/NO_RESP

DISCON/DISCON
KEXINIT/DISCON
SR_AUTH/DISCON
KEX30/DISCON
SR_CONN/DISCON
NEWKEYS/DISCON

IGNORE/NO_CONN
DEBUG/NO_CONN
UNIMPLEMENTED/NO_CONN
SR_CONN/NO_CONN
NEWKEYS/NO_CONN

Figure B.2: State machine after merging edges between same nodes.
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KEXINIT/KEXINIT

KEX30/KEX31+NEWKEYS

OTHER/
KEXINIT+

NEWKEYS/NO_RESP
DISCONNECT

OTHER/
DISCONNECT

OTHER/

DISCONNECT SR_AUTH/ACCEPT

OTHER/
DISCONNECT

closed

Figure B.3: State machine after manually applying conventions from Sec-
tion 4.6.
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