
Master Thesis

Secure updates in automotive systems

Author:

Remy Spaan - s4156889

remy.spaan@sogeti.com

Second reader:

Lejla Batina

lejla@cs.ru.nl

Internal supervisor:

Peter Schwabe

peter@cryptojedi.org

External supervisor:

Sjoerd Verheijden

sjoerd.verheijden@sogeti.com

May 30, 2016

2

Abstract

Modern cars are increasingly connected to the Internet, providing a variety of new features

that are beneficial towards both drivers and car manufacturers. With all these new features

comes more leisure, although it also introduces an entire new set of security issues. It is

generally known among car manufacturers and security researchers that the current state

of car security is weak. There are no real standards regarding car security on a physical or

wireless level. In the recent years, several studies have been conducted on modern vehicles,

with a security perspective in mind. This master thesis identifies the current shortcomings

regarding automotive security by taking a closer look at these studies. Additionally, this

thesis provides a model and a proof-of-concept implementation to secure a part of the update

system of a widely used electronic control unit (ECU) in car systems. This proof-of-concept

system provides aspects like confidentiality, authenticity and integrity of a supplied update,

while preventing common security pitfalls. It uses implementations of cryptographic primi-

tives designed for high speed and takes into account the constraints the ECUs are bound to.

While this thesis does not cover all aspects of the update process, it takes a step towards

the direction of making over-the-air firmware updates for car systems more secure.

Keywords. Car security, Over-the-air updates, automotive security, firmware updates, ECUs

i

ii

Acknowledgements

With this thesis, an end of an era nears for me personally. The era of education. Elementary

school, high school, college, and after a little break, university. That does not mean that I will

stop learning about new things, hopefully. One is never too old to learn.

First and foremost I want to thank my father Jan for giving me the opportunity to entirely

focus on my study the last few years. Without having to worry about a lot of things I could

throw myself into this Master’s education and without his support it would have been a very

tough challenge.

I would also like to thank my university’s supervisors Peter Schwabe and Lejla Batina for

being my all-knowing oracles and giving me advice throughout the entire process from idea up

to the result, this thesis.

Additionally, I want to thank everyone at Sogeti for giving me the opportunity to do my

research at this company and keeping up with my awful word play jokes. My thanks go out to

Sjoerd Verheijden, who kept me on track and kept me thinking of the bigger picture, without let-

ting me drown in details. Also my thanks go to Koen ten Holter for providing me with the initial

idea of this thesis and proofreading my thesis several times. Furthermore I would like to thank

Rikkert ten Klooster for being my partner in crime (a bad choice of words with hacking in mind).

Furthermore, I would like to give my thanks to Liis Jaks whose thesis was an inspiration to me

and a cornerstone for this thesis. During my time at Sogeti, she was very knowledgeable and

helpful on the subject and always had or made time to look at my thesis and discuss the outcome.

– Remy Spaan, May 2016.

iii

iv

Contents

Page

1 Introduction 1

1.1 Background . 3

2 Related Work 5

2.1 Practical attacks . 5

2.1.1 Ford Escape and Toyota Prius . 8

2.2 Flaws in Telematics Control Units . 8

2.2.1 Chrysler and Uconnect . 9

2.2.2 General Motors’ OnStar . 10

2.2.3 Tesla’s Model S . 11

2.2.4 BMW’s ConnectedDrive . 12

2.2.5 Aftermarket Telematics Control Units . 13

2.3 Proposed Solutions . 16

2.4 Initiatives towards better car security . 17

2.4.1 Automotive Open System Architecture (AUTOSAR) 17

2.4.2 E-Safety Vehicle Intrusion Protected Applications (EVITA) 18

2.4.3 Herstellerinitiative Software (HIS) . 19

3 Attacker model 21

3.1 Car Owners . 21

3.2 Engine Tuners . 22

3.3 Security Researchers . 22

3.4 Black Hat Hackers . 23

3.5 Ethical Hackers . 23

3.6 Car Thieves . 23

3.7 Competing Car Companies . 24

3.8 Terrorists . 24

3.9 Summary . 24

4 Required Security Properties 25

4.1 Confidentiality . 25

4.2 Integrity . 25

4.3 Availability . 26

4.4 Authenticity . 26

4.5 Forward Secrecy . 27

4.6 Private Key Protection . 27

4.7 TOCTTOU attack protection . 28

v

4.8 Randomness . 28

4.9 Summary . 29

5 Target Platform and Cryptography 31

5.1 CPU . 31

5.2 Storage . 31

5.3 Delivery . 32

5.4 Retry Timeout . 32

5.5 Key sizes . 32

5.6 Protocols . 33

5.6.1 Symmetric vs Asymmetric cryptography 33

5.6.2 SHA-2 . 33

5.6.3 Elliptic curve Diffie-Hellman . 34

5.6.4 Curve25519 . 34

5.6.5 Salsa20 . 35

5.6.6 Poly1305 . 36

5.6.7 Ed25519 . 36

6 Models 39

6.1 Key storage . 39

6.2 Host to portal . 39

6.3 Portal to host . 41

7 Definitions and Functions 43

7.1 Definitions . 43

7.1.1 Keys . 43

7.1.2 Variables . 43

7.2 Functions . 44

7.2.1 keyExchange(x,y) . 44

7.2.2 pack(m) . 46

7.2.3 unpack(en) . 46

7.2.4 askUpdate() . 47

7.2.5 askVersion() . 47

7.2.6 respondVersion() . 48

7.2.7 respondUpdate() . 48

7.2.8 askFirmware() . 49

7.2.9 sendFirmware(x, y) . 50

7.2.10 confirmFirmware() . 50

vi

8 Implementation 53

8.1 Proof of Concept . 53

8.2 Memory allocation . 54

8.3 Function and program constants . 55

8.4 Key generation and exchange . 56

8.5 crypto secretbox . 56

8.6 crypto scalarmult . 58

8.7 crypto sign . 58

8.8 Options and optimizations . 58

9 Conclusions and future work 61

Appendices 69

A Testbed 69

B Sogeti Netherlands Organogram 71

vii

viii

List of Figures

1 Car networking . 2

2 Jeep Cherokee 2014 architecture diagram . 10

3 A screenshot of the Tesla iPhone application . 12

4 The flawed remote update procedure of a TCU 14

5 Remote exploitation via a malicious update . 15

6 EVITA scheme: Full, Medium and Light . 19

7 MPC5566 block diagram . 31

8 The Elliptic-curve Diffie-Hellman Curve25519 function 35

9 Initiated communication by host . 40

10 Initiated communication by portal . 41

11 MPC Compiler Optimizations . 59

12 MPC5566EVB and USB Qorivva Multilink Interface 69

13 CodeWarrior IDE building to internal FLASH . 70

14 Sogeti Netherlands Organogram . 71

ix

x

List of Tables

1 Attack surface capabilities . 6

2 Summary of possible adversaries . 24

3 Summary of required security properties . 29

4 NIST-recommended key sizes of cryptographic algorithms 33

xi

xii

List of abbreviations

ABS Anti-lock Breaking System

AES Advanced Encryption Standard

CAN Controller Area Network

CRC Cyclic Redundancy Check

DDoS Distributed Denial of Service

DoS Denial-of-Service

ECC Elliptic Curve Cryptography

ECDLP Elliptic Curve Discrete Logarithm Problem

ECU Electronic Control Unit

EEPROM Electrically Erasable Programmable Read Only Memory

FPGA Field-Programmable Gate Array

GPS Global Positioning System

HSM Hardware Security Module

IoT Internet of Things

LIN Local Interconnected Network

MAC Message Authentication Code

MITM Man In The Middle

MMU Memory Management Unit

MOST Media Oriented Systems Transport

NAT Network Address Translation

OBD On-Board Diagnostics

OEM Original Equipment Manufacturer

OTA Over-the-air

PCM Powertrain Control Module

PKI Public Key Infrastructure

xiii

PRNG Pseudorandom Number Generator

RCDLR Remote Control Door Lock Receiver

ROM Read-Only Memory

RSA Rivest Shamir Adleman

SCP Secure Copy Protocol

SHA Secure Hash Algorithm

SIM Subscriber Identity Module

SoC System on a Chip

SPE Signal Processing Extensions

SSH Secure Shell

SSL Secure Sockets Layer

TCU Telematics Control Unit

TLS Transport Layer Security

TRNG True Random Number Generator

VIN Vehicle Identification Number

xiv

1 Introduction

Automobiles are becoming increasingly computerized. Until recently, cars were controlled purely

by mechanical means but now, thanks to digitalization, more cars have embedded computer sys-

tems to arrange control flows. While some of these flows are trivial, for instance door locking

mechanisms, these same systems also control critical systems like brake pressure, engine power

and airbags. Automobiles are controlled by multiple computers which are interconnected through

wired and wireless systems. These Electronic Control Units (or ECUs) perform a great deal of

actions that would normally not be possible, for instance the Anti-lock Breaking System (ABS)

and remote car locking and unlocking. Without 70 to 100 of these embedded ECUs, modern cars

would not be able to leave the driveway, because they contain firmware consisting of up to 100

million lines of code [1].

Due to the increasing amount of technology in car systems, these systems are becoming more

vulnerable to attacks. Figure 1 illustrates the standard physical and wireless features of modern

cars and their associated networks. Most of these features are supported by one or more ECUs.

Regarding wireless security, the telematics component is the most relevant aspect. The Telem-

atics Control Unit (TCU) of a car handles all incoming and outgoing data that is sent over the

air. Think of a data connection for Internet access, GPS data, voice calls or connections to other

systems by other means.

Recently, Tesla introduced over-the-air (OTA) firmware updates for its cars [2]. These

firmware updates are distributed through the mobile network, as all of Tesla’s car models have

a Subscriber Identity Module (SIM) card included. It is estimated that by 2018, 36 million cars

will have a SIM card embedded [3]. At first this embedded SIM card was only used for emer-

gencies, like automatically dialing the emergency number if sensors detected a crash, but now

companies are realizing that there are more possibilities. One of these possibilites is supplying

car owners with over-the-air updates. This removes the need for customers to visit the garage

to receive an update and enables manufacturers to update car systems on a more frequent basis.

An over-the-air update could also unburden the manufacturer in case of a forced car recall due

to an error or security flaw in the firmware.

Together with the introduction of all these new systems including the OTA update, a variety

of potential attack vectors have surfaced. During an over-the-air update, the binary firmware

passes through untrusted communication channels. First, a wireless channel is used to send the

firmware to the car such as the cellular network, WiFi or Bluetooth. Then, physical channels

inside the car, for instance a Controller Area Network (CAN) or Ethernet connection, distribute

the firmware from the TCU to the correct ECU. Data passing these channels can be eavesdropped

by an attacker and therefore, the firmware can be obtained or modified with potentially devas-

1

Figure 1: Car Networking. The different color nodes shows how the car features are usually

grouped. HVAC stands for heating, ventilation and air conditioning, TPMS stands for tire-

pressure monitoring system, OBD stands for on-board diagnostics. Source: [4].

tating effects. Hence, this update process should be protected from being tampered with or read

by possibly malicious individuals or organizations such as car tuners, competing manufacturers

or hackers.

At the moment there are no standards available regarding the required security of automo-

biles. There is an ISO 11898 standard [5] that specifies the physical and datalink layers of the

CAN, which is one of the available transport mechanisms of data in a car, but this standard

does not include any security aspects. Most implemented security features are proprietary and

security has not been considered necessary for a long time. Security plays an increasingly bigger

role in modern life so adequate security of systems we use inherently becomes more important.

More devices are connected to the internet, and with the Internet of Things (IoT) taking a more

prominent place in our daily lives, the security of these devices needs be to addressed too.

This thesis gives an insight into the current research towards the current state of physical and

wireless security of a car. Additionally, it provides an update model independent of the wireless

channel that is used and a proof-of-concept implementation of an ECU handling, authenticating

and verifying a new firmware version. The proof of concept uses proven secure cryptographic

primitives for encryption, authentication and verification of the firmware and is implemented on

2

a widely used microprocessor used in ECUs, the MPC5566.

This thesis is structured as follows: The next Section will describe some of the work and

research that has been done on this subject in the past and which initiatives to improve car

security are currently ongoing. Section 3 and 4 describe the attacker model and required security

properties for our proof-of-concept implementation. Section 5 mentions the target platform and

the to-be-used cryptography, an elaboration on the choice of the used primitives, which results

in the used models in Section 6. Section 7 defines the variables, keys and functions that are used

in our model while Section 8 focuses on the implementation itself. Ultimately, Section 9 contains

the results and future work that might be interesting to investigate with the results of this thesis

in mind.

1.1 Background

Sogeti (Société Pour la Gestion de l’Entreprise et Traitement de l’Information), an originally

French IT company, founded in 1967 by Serge Kampf, is a part of the Capgemini group. Sogeti

Netherlands is well known for its testing method TMap (Test Management approach) it has

developed, this method has been apopted globally as a standard. Sogeti operates in a model where

every expertise is divided in a business line, which currently totals in 16 different business lines.

Figure 14 in Appendix B shows the distinct divisions and business lines of Sogeti Netherlands.

This thesis was conducted at the Security business line. Sogeti’s main services are the deployment

of skilled employees in other companies as well as providing project based solutions with a fixed

outcome. The Sogeti group currently has 20.000 employees, of which 2.500 are based in The

Netherlands. Next to being deployed to a large number of client sites, Sogeti has a presence in

15 countries and over 100 locations worldwide.

3

4

2 Related Work

In recent years, there has been an increasing amount of literature on the topic of automotive

security. Numerous studies focused on uncovering vulnerabilities in car systems, while others

proposed solutions to prevent or detect these attacks. Some studies picked up where others left

off, executing practical attacks on modern vehicles with the theoretical knowledge provided by

other studies. In the following sections we will discuss some of the researchers’ findings to give

an idea of the current state of automotive security: Section 2.1 lists a number of theoretical and

practical attacks executed by various research groups, Section 2.2 shows targeted attacks on the

telematics units of various car manufacturers such as BMW, General Motors and Tesla, while

Section 2.3 lists solutions discussed in various research papers. Finally, Section 2.4 provides an

overview of some of the dependent and independent organisations currently working on the issue

of security in automotive systems.

2.1 Practical attacks

There are a lot of shortcomings regarding the physical and wireless security of automobiles. Ear-

lier research has shown that once an attacker gains physical access to a car, its security can easily

be compromised [6].

In 2010, Koscher et al. [7] conducted an experimental security analysis of an unnamed mod-

ern automobile, uncovering and executing both physical and wireless attacks. The paper showed

that, in contrast to what the researchers expected, the tested automotive systems were tremen-

dously fragile. The typical car contains multiple communication channels like the CAN bus and

groups different components together. For instance, powertrain components that generate real-

time telemetry and other time-critical systems are interconnected in one CAN bus while another

CAN bus controls less critical components like door locks and lights. From a security perspective

it seems a good idea to physically separate these buses from each other, but in practice they

are bridged to support subtle interaction requirements. Access escalation due to abusing this

case of interconnected communication channels was explained and demonstrated in this paper.

Furthermore, a simple fuzzing infrastructure which floods random packets onto the CAN bus, the

standard communication channel for ECUs in a car, could easily execute a denial-of-service (DoS)

attack leaving the CAN bus overloaded, thus useless. Since the CAN bus can be eavesdropped

simply by connecting a reading device to the On-Board Diagnostics (OBD-II) port, executing a

DoS attack is easy because the OBD-II also allows sending packets.

Moreover, the basic access controls implemented in the ECUs were frequently unused. For

example, the firmware on an ECU controls all of its critical functionality and thus the investi-

gated car’s CAN protocol described methods for ECUs to protect against unauthorized firmware

updates. The researchers demonstrated that they were able to load firmware onto some key

5

Vulnerability

Class
Channel

Implemented

Capability

Visible

to user
Scale

Full

Control

Direct physical
OBD-II

Port

Plug attack hardware directly into

car OBD-II port
Yes Small Yes

Indirect physical CD CD-based firmware update Yes Small Yes

CD Special song (WMA) Yes Medium Yes

PassThru
WiFi or wired control connection to

advertised PassThru devices
No Small Yes

PassThru WiFi or wired shell injection No Viral Yes

Short-range

wireless
Bluetooth

Buffer overflow with paired Android

phone and Trojan app
No Large Yes

Bluetooth
Sniff MAC address, brute force PIN,

buffer overflow
No Small Yes

Long-range

wireless
Cellular

Call car. authentication exploit, buffer

overflow (using laptop)
No Large Yes

Cellular

Call car. authentication exploit, buffer

overflow (using iPod with exploit au-

dio file, carphones, and a telephone)

No Large Yes

Table 1: Attack surface capabilities [8]. The mentioned PassThru channel uses tools like Ford’s

Vehicle Communication Module (VCM) which is a diagnostic device that works together with

diagnostic tools for Windows to connect to cars through the OBD-II port [9].

ECUs, like the telematics unit - a critical ECU - and the Remote Control Door Lock Receiver

(RCDLR), without any form of authentication. Similarly, the diagnostic protocol used by the

OBD-II port should also make an attempt to restrict access to certain DeviceControl diagnostic

capabilities. The research group was therefore also surprised to find that critical ECUs in the

tested car would respond to DeviceControl packets without authentication first.

Finally, the researchers found that, in addition to being able to load custom code onto an

ECU via the CAN network, it was very straightforward to design this code in a way to completely

erase any evidence of itself after executing an attack. Thus, without such a forensic trail, it may

be impossible to determine if a particular crash is caused by an attack or not. This was deemed to

be a very dangerous capability too, as it minimizes the possibility of any law enforcement action

that might deter individuals from using such attacks. Summarized, this experimental analysis

showed so many design and implementation flaws it concluded that security of cars is virtually

non-existent.

The follow-up research paper by Checkoway et al. progressed deeper into the unnamed car’s

systems and the comprehensive security analysis explained extended wireless attack vectors next

to physical attack vectors [8]. Figure 1 shows the different channels the researchers used to gain

complete control over a car. The figure illustrates the capabilities of a well-organized and well-

funded group with decent knowledge of car systems in general and includes short- and long-range

6

wireless attacks next to the physical attacks introduced in the earlier paper. The researchers used

the attack on the OBD-II port to be able to bridge into every communication channel in the car

and to gain access to all ECUs. Next, the researchers extracted the firmware of all the ECUs

of the car (around 30 ECUs for the researched model) and disassembled the firmware. Static

analysis of the firmware code was performed and several vulnerabilities were found.

Another physical interface of the car, the entertainment system, was analyzed by the re-

searchers. Where every modern car provides a user with a CD player able to interpret a mixture

of audio formats, modern cars generally also provide the user with a USB interface to allow users

to control their car’s media system with their own device. This opens up new attack vectors for

an adversary as it possibly allows to attack the media system of the car, for example by social

engineering the target to play a malformed song or connect his personal media device to the car.

Where taking over the CD player of a car alone might not do any harm, the researchers found

that thanks to the interconnectivity of all systems that the CD player is a good attack vector for

eventually attacking other automotive components through this interface. The researchers were

able to create a WMA audio file such that, when burned onto a CD, it plays fine on a PC but

sends random CAN packets when played by the CD player in the car.

Next to the vulnerabilities found through the physical interfaces of the car, the short-range

wireless interfaces like RFID car keys, WiFi and Bluetooth posed to be attack vectors easily

exploited by the researchers. The Bluetooth interface allows users’ cellphones to connect to the

car, for instance to call hands-free. Through reverse-engineering the researchers gained access to

the operating system of the telematics ECU. They found that the telematics ECU uses a vul-

nerable implementation of the Bluetooth protocol stack. More specifically, this implementation

made several calls to a strcpy function which is deemed unsafe due to its vulnerability regarding

buffer overflows. The researchers wrote an exploit, gaining a shell on the telematics unit and

consequently downloading more complex code through the 3G-connection of the car.

Finally, the long-range wireless channels also provided targets for the researchers to exploit.

The telematics unit of the tested car has an implemented cell phone interface, supporting voice,

SMS and 3G data. The critical telematics functions, like automatically dialing the emergency

number when a crash is detected, are done over voice dialing as it provides connectivity over the

widest area, whereas 3G coverage is not available everywhere. The researchers demonstrated an

attack where a flaw in the aqLink software 1 of the telematics unit was exploited to authenticate

a custom-made modem to the telematics unit, let it download an additional payload and execute

it to gain control over the car remotely.

1Airbiquity’s aqLink software allows data to be sent over voice channels instead of the common digital data

channels: http://www.airbiquity.com/news/press-releases/airbiquity-releases-aqlink-5-band-modem/

7

http://www.airbiquity.com/news/press-releases/airbiquity-releases-aqlink-5-band-modem/

2.1.1 Ford Escape and Toyota Prius

In an extended paper by Miller et al [10] the security of two modern popular vehicles, particularly

the Ford Escape and Toyota Prius, were thoroughly investigated. Pointing at the previous re-

search done, the researchers expanded on the ideas of what an attacker could do to influence the

behaviour of a vehicle after a succesful attack. These attacks would allow arbitrary remote code

execution on the ECU through one of the compromised channels mentioned in the earlier sections.

In particular, the researchers demonstrated how they were able to control some of the steer-

ing, braking, acceleration and display functions on the two tested vehicles. The researchers went

into great detail explaining the attacks, the relevant messages over the CAN bus and all technical

information needed to reproduce and understand the issues involved including source code and

a description of necessary hardware to execute these attacks.

Although the researchers gained full access to all ECUs easily, understanding, observing, and

reverse engineering the code and the messages sent over the CAN buses was far from easy. For

example, in the Ford Escape, a certain CAN packet was observed including a byte to indicate how

much the accelerator was depressed. However, this packet was being sent from the PCM (which

reads the accelerator sensor) to the ABS, presumably to help it figure out if there was a traction

control event in progress. It did not have anything to do with whether the car should speed up

or not. There were countless examples like this including, for example, packets that indicate how

much the brake is depressed but when replayed would not engage the brake. Understanding the

actual meaning of all messages would take more research. Giving the assumption that a modern

car runs on millions of lines of code [1], this was expected to be the case.

Another problem is that the receiving ECUs might have some safety features built into it

that makes it ignore the packets the researchers were sending. For example, on the Toyota Prius,

the packets used for turning the wheel in Intelligent Park Assist would only work if the car is in

reverse. Likewise, packets for the Lane Keep Assist feature are ignored if they tell the steering

wheel to turn more than 5%. It may be possible to circumvent these restrictions by tricking the

ECU, but some extra work would be required, making these attacks a bit harder to execute.

2.2 Flaws in Telematics Control Units

Next to flaws in the physical channels of an automotive system, the different types of Telematics

Control Unit (TCU) used in cars show enough flaws to exploit one of the vulnerabilities associated

with these devices.

8

2.2.1 Chrysler and Uconnect

Very recently, Chrysler recalled 1.4 million vehicles after two security researchers revealed a soft-

ware bug [11]. The paper by Miller et al., the same researchers who investigated the Ford Escape

and the Toyota Prius mentioned in an earlier section, demonstrated several attacks that compro-

mized the safety of a Jeep Cherokee thus the safety of a driver, using remote exploits [12]. This

time the researchers used the Jeep Cherokee 2014 as a target. Figure 2 illustrates the archirec-

tural diagram of the car. It stands out that also in this car, the radio system of the car including

phone, Bluetooth and WiFi channels is interconnected to both CAN buses. Compromizing the

radio would mean access to all the ECUs that control the physical attributes of the vehicle.

The 2014 Jeep Cherokee uses the Uconnect radio manufactured by Harman Kardon as the

source for infotainment, Wi-Fi, GPS, apps, and cellular communication2. This system is widely

available for different types of vehicles and includes a system on a chip (SoC) to provide its func-

tionality. The Uconnect system also contains a chip to communicate with the two CAN buses:

The CAN-IHS (Controller Area Network - Interior High Speed) and CAN-C (Controller Area

Network - Control) buses. The researchers found several flaws in this Uconnect system. When

looking at the WiFi interface, which is used to let users connect to a WiFi hotspot in the car,

they they were able to reverse engineer the WiFi.E:generateRandomAsciiKey() algorithm that

generates a password for the WPA2 protected WiFi communication channel. This algorithm uses

time as an input for password generation and by estimating the time the amount of passwords

to test was narrowed down to around 15 million. However, if no valid time was fetched before

starting the WPA2 password generation algorithm, the date 1 January 2013 00:00 was used as

an input. From there, researchers were able to narrow down the password to only a few options,

making it trivial to find the correct WPA2 password.

This hack worked only when in close proximity of a car, so the researchers looked to find a

way into the cellular communication channel. The ability to interconnect any device using the

cellular network of Sprint 3 made it possible to connect a laptop tethered to the Sprint network

to connect to an open port available on the Jeep. The researchers also found the range of IP

addresses used in the Sprint network by the Jeep, and with a basic scan they found 2700 devices.

They eventually opened a shell to the operating system of the TCU, and could send commands to

the CAN bus remotely. By sending some commands the researchers were able to kill the brakes

and the engine remotely. A few days after the paper was published, the Sprint network blocked

the communication on the vulnerable port and Chrysler patched the issue. After that, Chrysler

voluntarily recalled 1.4 million vehicles to patch the vulnerabilities.

2http://www.driveuconnect.com/features/entertainment/
3http://newsroom.sprint.com/news-releases/sprint-velocity-offers-automakers-customizable-approach-to-enhancing-new-and-existing-telematics-and-in-vehicle-communications-systems.

htm

9

http://www.driveuconnect.com/features/entertainment/
http://newsroom.sprint.com/news-releases/sprint-velocity-offers-automakers-customizable-approach-to-enhancing-new-and-existing-telematics-and-in-vehicle-communications-systems.htm
http://newsroom.sprint.com/news-releases/sprint-velocity-offers-automakers-customizable-approach-to-enhancing-new-and-existing-telematics-and-in-vehicle-communications-systems.htm

Figure 2: Jeep Cherokee 2014 architecture diagram [12].

2.2.2 General Motors’ OnStar

Just after the Chrysler hack, a researcher exposed a vulnerability in General Motors’ (GM) vehi-

cles equipped with its telematics system OnStar [13]. After eavesdropping on the communication

between the mobile application RemoteLink - which lets a driver control some features of their

car, like locking doors and turning on lights - and the car, the researcher built a device called

OwnStar that captured the communication between the application and the car. More specifi-

cally, the researcher jammed the frequency range of the car receiving the open door instruction

but saving the information as well. With the car unable to read the signal due to the jamming,

the user would again try to open the car with the application. The OwnStar device would then

save the second signal and replay the first signal to the car so the user would get into the car.

With this information of the second signal, the researcher was able to act as if he owned the car,

finding its the exact location, unlocking the doors and even starting the engine [14].

While Chrysler voluntarily recalled 1.4 million vehicles after only a few days and patched a

fix before the research was even published, General Motors had received a similar research paper

in 2010, stating that the telematics OnStar used by GM was vulnerable to attack. GM took five

years to actually address this issue and create a patch. The difference between these two cases

10

was the fact that the researchers did not publicly name the brand and mark of car they investi-

gated. The unnamed car mentioned in [7,8], the two experimental analysis that were mentioned

earlier in this section, was GM’s 2009 Chevrolet Impala. The result is that GM took nearly

five years to protect its vehicles from this hack, leaving millions of GM cars vulnerable to that

attack that was privately announced to GM. This attack was a remote exploit that targeted the

OnStar dashboard computer and was capable of everything from tracking vehicles to engaging

their brakes at high speed to disabling brakes altogether [15].

Note that in this case, the weakness was not in the vehicle or TCU itself but in the applica-

tion provided. The application communicated through SSL with the servers from GM, but the

certificate of the server was not checked for validity. Spoofing the GM server and intercepting the

communication uncovered that apart from the SSL connection, the data itself was not encrypted.

In this way, the researcher used the information credentials for further access to the application

and from there on, the car was compromised.

2.2.3 Tesla’s Model S

Tesla’s Model S is a state-of-the-art electric vehicle with lots of electronic components, including

a 17” touch screen display which lets the user control a variety of functions of the car like control

media, access navigation, enable the autopilot or adjust the height of the vehicle 4. Users have

to register for a Tesla account on the website of Tesla. With this account, for instance users can

log in to the Tesla iPhone application to control functions of their vehicle with a mobile phone.

Figure 3 shows a screenshot of the Tesla iPhone application. Locking and unlocking the car,

locating it and controlling the roof are features of this application are amongst the functions of

the iPhone application.

An article by Dhanjani in 2014 [16, 17] showed that the Tesla account can pose potential

security issues due to a few aspects. First of all, the requirements for the password for a user

account were six characters with at least one number and one letter. Combined with the fact

that authentication by the user is single-factor and the website of Tesla did not seem to have

any account lockout policy after a certain amount of incorrect login attempts, this requirement

was vulnerable to a brute-force attack. After the article was published, Tesla bumped up the

minimum password length to eight characters. Secondly, the Tesla REST API alows third party

applications to use the credentials entered by the user to invoke the REST API on behalf of

the user. This leads to the risk of malicious third-party applications being able to collect and

abuse credentials of Tesla accounts. Until Tesla releases a SDK for third-party applications it

was advised to Tesla owners not to use these applications. Finally, the WiFi connection used

by the Model S showed services with open ports, like SSH, HTTP, NFS and telnet. However

the researcher did not follow up on finding out more about these services, these services could

4Tesla Model S: http://www.teslamotors.com/models

11

http://www.teslamotors.com/models

Figure 3: A screenshot of the Tesla iPhone application.

potentially be vulnerable to attack.

2.2.4 BMW’s ConnectedDrive

BMW’s ConnectedDrive technology offers features like remote services, personal assistance and

real time traffic information 5. The technology is embedded in a control unit, also called a Com-

box, and has been included in various BMW models since 2010. The Combox is responsible for

playing music files from a USB stick, pairing with a Bluetooth device and includes a modem for

GSM/GPRS/EDGE capabilities.

A researcher, asked by the German motorist’s club ADAC to look at the privacy aspects of

this device, published an article about the security vulnerabilities found in this control unit [18].

At first this device appeared to be well-secure, but after thorough investigation flaws were found.

First of all, the emergency services offered by the device were encrypted using algorithms that

are considered broken, like DES for example. Furthermore, after dumping and inspecting the

firmware of the modem in the device, the researcher found that BMW used the same symmetric

cryptography keys to communicate with the back-end server for all cars and that the private

keys were easily extracted from the firmware. Also, some services of BMW’s ConnectedDrive do

not encrypt messages in transit between the car and the back-end server. Finally, the messages

5BMW ConnectedDrive: http://www.bmw.nl/nl/content/meer-bmw/bmw-connecteddrive/overzicht/

connecteddrive-uitgelegd.html

12

http://www.bmw.nl/nl/content/meer-bmw/bmw-connecteddrive/overzicht/connecteddrive-uitgelegd.html
http://www.bmw.nl/nl/content/meer-bmw/bmw-connecteddrive/overzicht/connecteddrive-uitgelegd.html

sent are not salted so the messages are not protected against replay attacks.

According to BMW, the found vulnerabilities were confirmed and patched. Although users

can not turn off ConnectedDrive technology themselves as it is integrated into the car system,

a formal written request together with a visit to a garage is sufficient to disable it. Around 2.2

million cars worldwide were affected by these vulnerabilities [18].

2.2.5 Aftermarket Telematics Control Units

In a security analysis of a popular aftermarket Telematics Control Unit (TCU), Foster et al.

found that besides security flaws in TCUs produced by the original equipment manufacturers,

these TCUs also have vulnerabilities [19]. The automotive aftermarket is a big market in the

USA and includes replacement parts and accessories for cars. The TCU is an accessory designed

for add-on after the original sale of a car. This device looks like a dongle and is usually attached

to a car’s OBD-II port. It typically uses some form of low-power ARM core and incorporates

accelerometers, a GPS chip, a cellular and/or Bluetooth modem, and a CAN transceiver chip.

The paper focused on analyzing one specific aftermarket TCU. The researchers were able

to demonstrate both local and remote vulnerabilities and exploits using these vulnerabilities.

In particular, the vulnerability of the TCU’s SMS-based remote update procedure eventually

provided the researchers arbitrary shell access, enabling them to compromize the entire car

system. The bad design of the update protocol is illustrated in Figure 4. After examining logs

created from initiating an update via SMS, the researchers could determine the entire procedure

of the update:

1. The SMS command rupd,USER,HOST,PORT,DIR is sent to the TCU, which responds with

update,started.

2. The TCU uses SCP to remote into the HOST on port PORT as user USER and retrieves

UpdateFile.txt from DIR.

3. UpdateFile.txt is examined and files which have incorrect hashes or do not exist on the

local system are then retrieved via SCP from the update server to a temporary directory

on the TCU.

4. If the hashes of the new files match those found in UpdateFile.txt, the new files are moved

to their target directories, otherwise the update process is restarted.

5. If UpdateFile.txt contains any of the following console commands, they are executed

performing the appropriate action: clear, identify, status, reset.

The system uses the Secure Copy Protocol (SCP) to copy the files from the update server

to the TCU. The researchers found quite a few weaknesses in the update procedure. First of

13

Figure 4: The flawed remote update procedure of a TCU. Source: [19].

all, the updates are not cryptographically signed in any way so it is easy to change the integrity

of the update. Secondly, the TCU does not authenticate the server whereas the server does

authenticate the device. Unfortunately, like in previous examples, all devices seem to share the

same public/private keypair used for the update process. Finally, the update mechanism allows

an arbitrary update server to be chosen, opening up more possibilities for the researchers to

exploit. The researchers created a rogue update server that serves an update which immediately

spawns a reverse shell and SSH tunnel to the victim TCU. The attack is illustrated in Figure 5

and goes as follows:

1. A remote update is initiated using the rogue server via telnet, web, or SMS.

2. The TCU downloads UpdateFile.txt containing console.bak (the original console bi-

nary), console (a shell script created which contains the attack), and the command clear.

3. After the TCU downloads all the files and replaces the system console command with the

console script it calls console clear to clear the logs.

4. The console script starts and replaces itself with the original console.bak, starts a re-

verse shell and SSH tunnel, sends a SMS to the researchers informing that the attack was

successful, and then calls the original console with the clear command.

5. Once the researchers receive the SMS from our script, or get a notification from the update

server that the reverse shell is ready, they can SSH or tunnel into the device to get a root

shell and access to the telnet and web interfaces.

14

Figure 5: Remote exploitation via a malicious update [19].

To exploit the remote vulnerabilities on a larger scale the researchers needed to determine the

addresses of the TCUs; either its IP address or the phone number associated with the SIM card.

Some providers have Network Address Translation (NAT) to hide their client’s IP addresses from

the outside world. When this is not the case, the provided built-in web server of the TCU is

accessible from the Internet and can be indexed by search engines. The researchers found that

an Internet (Shodan) search for a particular string of words revealed several likely TCUs. Since

all the TCUs from the same manufacturer use the same SSH server key, the server fingerprint

search returned a considerable amount of devices. To scan for the associated phone number of the

TCU, the researchers used the given fact that these SIM cards usually have a range of associated

telephone numbers. Moreover, sending an SMS registration command to a suspected range of

telephone numbers such as status would confirm a TCUs identity, making the creation of a a

war dialer for enumerating these devices relatively straightforward.

15

2.3 Proposed Solutions

The uncovered security vulnerabilities listed in the previous subsections are just a small selection

of vulnerabilities in automotive systems. Next to criticism, there was also room for construc-

tivism. Consequently, most researchers did not only come up with vulnerabilities in the published

articles but provided possible solutions to address, detect or prevent these very same vulnerabili-

ties. The solutions range from basic, for instance two-factor authentication or not using outdated

encryption methods, to more advanced solutions like using a protected REST API or using mo-

bile NAT to hide public services from IP addresses of cars. However most proposed solutions

are aimed at specific parts of the automotive system, none of them really propose details on how

things should be fixed. From a car manufacturer’s point of view, a forced recall is a method

of last resort to address vulnerabilities and update firmware of a car, because it damages the

reputation. (quote needed) (informal)

On a more specific note, there currently is little research available on how wireless com-

munication should be secured, how it should be handled by internal systems and for instance,

how OTA updates should be distributed safely and securely. Most research about this topic is

high-level and does not describe the security-relevant details needed to successfully implement

a secure system. Recent research showed different frameworks and mechanisms for over-the-air

updates. In 2008, Nilsson et al. designed a way of securely updating firmware over the air called

secure firmware updates over the air or SFOTA [20]. Though this protocol suits a great deal

of the distribution of firmware updates, its assumptions include that the portal distributing the

updates is well-protected and not considered a target for intrusion or denial-of-service attacks.

Furthermore, the research does not cover sufficiently strong cryptographic primitives and does

only include the over-the-air part, not the internal part of the securing the vehicle.

Later in 2008, Nilsson et al. [21] proposed a framework for self-verification of firmware updates

over the air in vehicle ECUs. This framework provides verification of the firmware on an ECU

after flashing it. It provides a method to battle the time of check to time of use attack explained

in Section 4.7. It uses a hardware visualization technique called SPUMONE [22]. This framework

has potential in cases where the target ECU has enough power, frequency and memory available

-the target CPU used in the paper is the SH7780 with a SH-4A architecture- but most of the

ECUs in a modern car are much more resource constrained, so this solution is not viable for our

case.

In 2011, Idrees et al. provided a protocol for over-the-air firmware updates [23]. In this

paper, a dedicated hardware security module (HSM), which can be a smartcard for instance, was

introduced to handle the cryptographic requirements during an update. However, there it seems

to be unpractical to equip all ECUs with a dedicated HSM. Next to unpractical, this solution

would also be costly to implement as an increasing amount of ECUs are embedded into cars.

16

The protocol uses ideas and recommendations from two automotive security initiatives: EVITA

and HIS, which will be elaborated later in this section.

In 2013, Studnia et al. analyzed multiple of the common security flaws and presented the se-

curity solutions currently being devised to address these problems [24]. Together with addressing

the lack of suitable and strong enough cryptographic protocols for encryption, the paper focused

on anomaly detection in the most used physical communication channel in a car: the CAN bus.

The proposed system is simple but uses a lot of available resources. On every CAN bus, each

frame identifier is associated to only one ECU. In other words, these frames can only be sent by

one particular ECU and therefore cannot legitimately be sent by the others. Then, whenever a

message is broadcasted on the bus, each ECU checks if the frame identifier is one of its own. If it

is the case and if the ECU itself is not the actual sender of the frame currently being broadcasted,

it immediately emits a high-priority alert frame to override the illicit broadcast.

In summary, various researchers proposed theoretical and practical solutions to prevent these

basic attacks from happening. These preventive and detective measures should be known to any

security-minded individual and it is again frightening to see the lack of basic security measures

implemented in car systems by either Original Equipment Manufacturers (OEMs) or aftermarket

companies, like including randomness into their security seystems or not using the same keypair

for every car.

2.4 Initiatives towards better car security

Next to proposed solutions by individuals or research groups, there are some organizations that

are or have been committed to address global security issues with automotive systems and look

for means to improve the security. In this subsection, some of these initiatives are presented.

2.4.1 Automotive Open System Architecture (AUTOSAR)

AUTOSAR (AUTomotive Open System ARchitecture) is a worldwide development partnership

of vehicle manufacturers, suppliers and other companies from the electronics, semiconductor and

software industry. Since 2003, AUTOSAR has paved the way for innovative electronic systems

that improve performance, safety and environmental friendliness. AUTOSAR has been pushing

for standards in the industry and is aiming to be prepared for the upcoming technologies and

to improve cost-efficiency without making any compromise with respect to quality. It also facil-

itates the exchange and update of software and hardware over the life of a vehicle. Next to the

BMW Group, Bosch GmbH, Ford, General Motors, Toyota and the Volkswagen Group, more

than 180 partners play an important role in the partnership. Only companies which have joined

the AUTOSAR Development Partnership can use the designed AUTOSAR specifications free of

charge.

17

To date, AUTOSAR has released multiple specifications and recommendations regarding

performance, safety and environmental friendliness of automotive systems, though none of these

relate to securing firmware updates. Besides, the AUTOSAR stack implementation requires

a lot of extra resources that causes issues with more resource constrained ECUs. Since the

automotive industry is highly cost-driven, companies usually settle for less quality. Futhermore,

with the specifications being open to interpretation, most partners have their own proprietary

implementations of these specifications, the opposite of the intention of this partnership.

2.4.2 E-Safety Vehicle Intrusion Protected Applications (EVITA)

The E-Safety Vehicle Intrusion Protected Applications or EVITA project had the objective to de-

sign, verify and prototype an architecture for automotive on-board networks where the security-

relevant components are protected against tampering and sensitive data is protected against

compromise when transferred inside a vehicle. The project was run by a partnership of compa-

nies such as Robert Bosch GmbH, BMW Research and Infineon [25]. The project ran from July

2008 until December 2011.

When the team started the project, several security requirements for automotive on-board

networks were specified by looking at several defined use cases for automotive networks. After

that, the goal was to design, verify and prototype an architecture for the on-board automotive

network. The security functions of EVITA are split between software and hardware and the root

of trust is placed in hardware security modules (HSMs) instead of on ECUs itself. For proto-

typing, Field-programmable gate arrays (FPGAs) were used to extend the standard ECUs with

the functionality of cryptographic coprocessors. In order to ensure that the identified require-

ments are satisfied, selected parts of the secure on-board architecture and the communications

protocols have been modelled using UML and verified using model-based verification tools. The

resulting architecture and protocols were published as open specifications [26, 27]. Some of the

specifications rely on custom-made AUTOSAR specifications.

As shown in Figure 6, there are three classes of EVITA: Full, Medium and Light. EVITA

Full provides security for very critical applications requiring powerful security, for instance the

headunit handling the communication from the car to the outside world. EVITA Full includes

support for cryptographic primitives such as AES-128, Whirlpool, and ECC-256. For less critical

automotive applications like communication between ECUs, EVITA Medium can be used. The

Medium HSM is identical to EVITA Full except for stripping the ECC-256 and the WHIRLPOOL

cryptographic primitives to suit less powerful ECUs. EVITA Light is more typical for sensors

and actuators and only supports AES-128 symmetric encryption. The necessary shared secret

can be established in various manners, for instance, by pre-configuration during manufacturing,

by self-initialization or by running a key establishment protocol in software at the attached ap-

plication processor.

18

Figure 6: EVITA scheme: Full, Medium and Light [26].

2.4.3 Herstellerinitiative Software (HIS)

Herstellerinitiative Software (HIS) which translates to ’OEM software initiative’ from German,

is a consortium consisting of the car manufacturers Audi, BMW, Daimler AG, Porsche and

Volkswagen. The initiative aims to standardize various aspects of software in ECUs. Among

the works performed by the different groups in the consortium are software modules, software

tests, software tools and bootloaders. With regard to flash programming, work has been done

on reducing the time to flash a device and increasing the robustness of the flashing process [28].

The specification describes the protocols required to create a firmware flasher. Although HIS

does not focus on security specifically, ideas and specifications of HIS are usable in this thesis.

19

20

3 Attacker model

Using the various examples mentioned in the earlier sections we can create our attacker model.

In our attacker model, the attacker has physical and wireless access to the car. So the attacker

can eavesdrop on internal communication, intercept communication, replay, change or inject

messages into the untrusted channel to try and recover the communication. This model is an

adaptation of the Dolev-Yao attacker model [29]. With these possibilities, an attacker could

compromise the security of a car. It is important to realize that there is a difference between

safety issues and security issues with a car. Where safety issues happen at random, computer

security incidents happen due to malicious behavior. This makes car security different from

car safety. Compromizing the security of a car usually leads to compromizing the safety of

the car, whereas compromizing the safety of a car does not have to mean the security of a car

is compromized. We will now take a look at the various adversaries that would benefit from

obtaining, modifying or disrupting the firmware inside a car in any way.

3.1 Car Owners

Car owners are the biggest group of adversaries interested in modifying firmware. Despite being

the biggest group, they are limited in both knowledge and resources. The majority of car owners

do not possess the knowledge to mount an advance attack on a car system for own benefit. Then

again, usually people are only interested in increasing the power output of their engine and they

will look at possibilities to get extra content or performance for their vehicle without having to

spend too much time or resources on it.

It is not very unrealistic that in the future, several new car features can be unlocked by paying

extra for it. With current (mobile) payment options it is fairly straightforward to buy additional

features for cars. Newer car models already offer extra features on a subscription base, like voice

dialing, navigation, and remote diagnostics. Examples of these subscription-based services are

General Motor’s OnStar, Chevrolet’s MyLink and BMW’s Assist. Improved steering, better en-

gine performance and sophisticated braking could be features that would be accessed by payment

or a subscription in the future. A firmware update to several ECUs could unlock these features,

for instance.

We have seen several methods of identification of a user to a backend portal. Some examples of

identification and authentication are the Vehicle Identification Number (VIN), a user account, the

mobile phone number associated with the car, a public/private keypair or a combination of any

of these methods. When a car owner wants extra content or features for his car without wanting

to pay for it, he will possibly try to circumvent measures of authentication or identification. For

instance, sharing the same user account with additional privileges in multiple cars.

21

3.2 Engine Tuners

Car tuning is modification of the performance or appearance of a vehicle. Where most vehicles

leave the factory set up for an average driver’s expectations and conditions, car tuning has be-

come a way to personalize the characteristics of a vehicle to the owner’s preference. Cars may

be altered to provide better fuel economy, produce more power, or to provide better handling.

Since ECUs are embedded into cars, engine tuning exists.

There are two ways to increase the performance of a vehicle by (ab)using ECUs. One is

chip tuning, where performance chips are placed between engines and actuators, altering the

data that ECUs receive and hereby changing the performance of the engine. ECU remapping

is an adjustment of the firmware of the engine, either by writing own firmware or changing the

firmware of the manufacturer. Both options are performed to yield optimal performance, to in-

crease the engine’s power output, economy, or durability. These goals may be mutually exclusive,

and increased performance may decrease the engine life due to more stress on engine components.

Since the introduction of the obligatory OBD-II port in 1986, ECU remapping has become more

popular in contrast to chip tuning. Since ECUs have been embedded into cars, engine tuning

has turned out to be a benefitial industry.

ECU remapping is available for almost all modern cars. Usually a chip is desoldered and

the firmware is extracted, disassembled and analyzed. After that, parameters of the firmware

are tested to optimize the performance of a car. Next, the new firmware is flashed to the ECU

through the OBD-II port. Once a performance or tuning pack is available for a car type, it can

be used for all cars of the same type. Being the first to create a flash pack for a new type of

car can earn a lot of prestige next to income, so the incentive of car tuners is more than just money.

Being able to tune modern ECUs is becoming increasingly challenging due to the waging

arms race between the car manufacturers and engine tuners [30]. Attacks are becoming more

advanced due to so-called anti-tuning protection included in modern ECUs. Engine tuners need

to have extensive knowledge of cars, the communication buses of cars and ECUs to successfully

extract, modify and re-insert firmware. Groups of engine tuners therefore will have to invest a

lot of time and resources to be able to create a tuning pack.

3.3 Security Researchers

Security researchers have other intentions when trying to obtain, modify or disrupt firmware.

Security researchers or research groups are usually well-funded, resourceful and independent, i.e.

have no bias towards any other entity. Their research is valuable to the affected community and

companies often are disclosed useful information from security research about their products.

For instance, the research group testing the unnamed sedan notified General Motors before

22

publishing their research, which showed a lot of flaws in the firmware used by GM in their cars.

Security researchers are driven by their eagerness to learn new things and to test hypothesis. In

the end, from a manufacturer’s point of view, they offer a great service by uncovering potential

vulnerabilities and exploits, usually for free. However due to several clashes with the disclosure

of vulnerabilities, security researchers also sell their findings on the zero-day market [31].

3.4 Black Hat Hackers

A black hat hacker is a hacker who violates computer security for little reason beyond malicious-

ness or for personal gain [32]. Black hat hackers keep the awareness of the vulnerabilities to

themselves and do not notify the general public or the manufacturer for patches to be applied.

When driven by personal gain, black hat hackers would be interested in obtaining firmware for

cars for reselling it to government agencies, terrorists or competing car companies, or for exploit

creation or other malicious activities. Selling these vulnerabilities as zero-days can be quite lu-

crative [31]. Once black hat hackers have gained control over a system, they may apply patches

or backdoors to car systems only to keep their reigning control.

3.5 Ethical Hackers

Ethical hackers act within the same principles of security researchers, but can apply more means

to compromize a system, like social engineering. Ethical hackers can try and test security unan-

nounced and disclose the found vulnerabilities using responsible disclosure, for instance. In

contrast to black hat hackers, ethical hackers do not violate computer security for personal gain

but to make the world a safer place. When acting on behalf of a contract, ethical hackers could

have a lot of resources and time at their disposal. Their knowledge or eagerness to learn new

things drives them to try and find vulnerabilities. In this case, ethical hackers can try to obtain

car firmware to reverse engineer and test the firmware for vulnerabilities, or test if the firmware

can be extracted in the first place.

3.6 Car Thieves

Car thieves are driven by personal gain and usually do not have any knowledge or resources

available to steal a car, for instance. However, professional crime syndicates often have quite a

lot of resources available. These syndicates will generally use exploits created or sold by black hat

hackers. With these resources, they would be able to equip car thieves with devices to remotely

unlock cars or disabling the alarm or GPS by plugging in a device to the open OBD-II port of a

car. An example would be a car thief that works at a valet parking, targets expensive vehicles,

parks them, modifies the firmware by plugging in a device to the OBD-II port so the car can be

tracked and remotely unlocked at a later time.

23

3.7 Competing Car Companies

Car companies have entire research departments dedicated to optimizing their cars’ behavior. The

resources and knowledge at their disposal is sufficient to mount attacks like desoldering chips or

man-in-the-middle attacks to obtain the firmware of a car of a competing company. This firmware

can give the company insights on how aspects like fuel distribution, engine optimization and brake

pedal sensing are handled by the firmware. Of course, legal issues prevent car companies from

officially employing such strategies. Though, with the recent scandals in the automotive industry,

it would not be surprising if these tactics were already employed unofficially.

3.8 Terrorists

Terrorists could be able to use exploits gained by black hat hackers or disclosed by researchers

to create chaos or fear, for example mass disabling one type or brand of car in a city to cause

a traffic breakdown or mass accidents. Terrorists can be state-sponsored actors, making the

resources and know-how at their disposal virtually unlimited. This would enable terrorists to

mount brute-force attacks against the wireless vehicle infrastructure for example, and hereby

possibly causing various incidents.

3.9 Summary

Adversary Resources Knowledge Time

Car owners * * *

Engine tuners ** *** **

Security researchers ** *** **

Blackhats * *** **

Car thieves */*** * *

Ethical hackers */** *** **

Terrorists *** */*** ***

Competing car companies *** *** ***

Table 2: Summary of possible adversaries

Table 2 shows the various adversaries and their available resources, knowledge and time to

mount attacks to “get what they want“. Competing car companies, terrorists and car thieves

backed by crime syndicates usually have the most resources at their disposal. When it comes to

knowledge, car owners, car thieves and terrorists work with what they are supplied with. Since

terrorists and competing car companies have the most resources available they likely have more

time to work on attacks as well.

24

4 Required Security Properties

With the available research, the recent car hacks and the adversaries willing to put resources

into attacking the car to obtain, modify or disrupt the firmware of a car, we can now define the

required security properties that need to be addressed to secure a firmware update. Next to the

standard requirements regarding information security, the CIA triad (Confidentiality, Integrity,

Availability), we need several other security properties to secure our update model.

4.1 Confidentiality

Our first required security property is confidentiality, which stands for preventing data from

disclosure to unauthorized parties: keeping this data confidential. In information security, data

encryption is a common method of ensuring confidentiality. Encryption is very widespread in

today’s environment and can be found in almost every major protocol in use. A very prominent

example is SSL/TLS, the security protocol for communication over the Internet. This protocol is

used to ensure confidentiality but also integrity, for instance. Another measure of keeping data

confidential is the use of access control methods to restrict access to the data only to people that

are authorized. Usually, sensitive data is categorized into classes. The more sensitive the data,

the higher the class and the stronger the used encryption methods and authorization methods

to keep the data confidential.

For our model we need confidentiality to prevent attackers from reading the data that is

communicated over an insecure channel.

4.2 Integrity

In information security, data integrity stands for maintaining and assuring the accuracy and

completeness of data over its entire life-cycle. This means that data should not be modified in an

unauthorized or undetected way, as data that has been tampered with could be useless or even

malicious. In addition to message confidentiality, information security systems typically provide

message integrity. There are various ways of assuring integrity of a message, for instance during

transport over an insecure or unstable communication channel. Often, a hash function is used

to create a hash value for a certain block of data. The hash value over the data is calculated on

both the sender and the receiver’s side. If both resulting hash values match, the integrity can

be guaranteed in a high probability, meaning that the chance the data was altered is negligible.

However, a hash function does not guarantee integrity. Moreover, securely sending the hash value

for a message over a untrusted channel is another challenge. Most recent hash functions provide

pre-image resistance, second pre-image resistance and collision resistance so that it becomes in-

feasible to break the system. When transfering data from one system to another using a serial

communication channel like the CAN bus, other means of assuring integrity to a certain extent

25

is provided, for instance by using a cyclic redundancy check (CRC). However, the CRC was

originally designed to detect accidental changes in the data. To really provide message integrity,

we need something stronger. A message authentication code (MAC) provides a message with

integrity next to authentication.

For our model we need integrity to assure that the data that is transfered from the sender

from the receiver is not modified (by an attacker) in any way.

4.3 Availability

For our model we need availability to allow authorized users to be able to access data when

needed. Nowadays, denying access to data has become a very common attack. Usually, a dis-

tributed denial-of-service (DDoS) attack is the cause of data being unavailable. Such downtime

can be very costly. Next to that, general DoS attacks are perceived to be very annoying. Other

factors that could lead to unavailability of important data may include power outages or natural

disasters such as floods and fires. Redundancy is a way to ensure availability, but only up to a

certain level. Regularly doing off-site backups can limit the damage to (digital) infrastructure by

natural disasters or power outages. For data services that are highly critical regarding uptime,

multiple copies usually exist and are being kept synchronized. Sometimes, availability cannot be

guaranteed. For instance, if a car is in an underground parking lot without reception to the mo-

bile network, updates cannot be applied. On the CAN bus, the most used communication channel

inside a modern car, availability is an issue as well. A device sending a certain packet with a dom-

inant bit forces the bus in a dominant state. Consequently, every time another device wants to

send, the bus arbitration algorithm tells it to back off, resulting in no message getting on the bus.

For our model we need availability to assure the updates can be transfered over the air and

to assure the updates are applied from the telematics unit to the corresponding ECU.

4.4 Authenticity

Authenticity is the assurance that a message, transaction, or other exchange of information is

from the source it claims to be. Authenticity involves the proof of identity and can be assured

through authentication. The process of authentication usually involves more than one proof of

identity. This proof might be something a user knows or possesses, like a password or a de-

vice like a keycard. Modern systems can also let a user provide proof based on something he

is. Biometric authentication methods for instance, include aspects like fingerprint or retinal scans.

For user interaction with systems, programs, and each other, authentication is deemed criti-

cal. A user ID and a password input is the most used method of authentication. However, this

method of authentication introduces a variety of problems as well. Passwords can be simply

26

brute-forced if the passwords are not long enough or not complex enough. Also, remembering

dozens of passwords for as many applications can be frustrating for users. Furthermore, when a

user ID and password combination is compromised, adversaries can claim to be someone they are

not. Hence, two-factor or multi-factor authentication is more common for enterprise and critical

applications and systems. Multi-factor authentication systems can use key cards, USB tokens,

mobile devices or biometric data. For system to system authentication, Public Key Infrastructure

(PKI) Authentication is a commonly used method. For instance, SSL connections to websites

do not only provide encryption but also verification that the web site is authentically the site it

claims to be.

For our model we need authenticity to prove that the systems we use are in fact the systems

they claim to be. We need authentication both ways, so-called mutual authentication, to ensure

that the correct sender is communicating with the correct receiver. It prevents so-called man-in-

the-middle (MITM) attacks, where an attacker intercepts and/or relays communication between

the sender and receiver and controls the entire conversation.

4.5 Forward Secrecy

Forward secrecy (FS; also known as perfect forward secrecy, or PFS) is a property of key-

agreement protocols like Diffie-Hellman to ensure that a session key derived from a set of long-

term keys cannot be compromised if one of the long-term keys is compromised in the future. The

key used to protect transmission of data must not be used to derive any additional keys, and if

the key used to protect transmission of data is derived from some other keying material, then

that material must not be used to derive any more keys. In this way, the compromise of a single

key permits access only to data protected by that single key. The Diffie-Hellman key exchange

protocol can use ephemeral keys to ensure forward secrecy.

For our model we need forward secrecy to prevent an attacker from intercepting data from a

used untrusted channel and later decrypt it using a compromised long-term key.

4.6 Private Key Protection

When using a public-key cryptosystem, a compromized private key can have disastrous effects.

Obviously, all cryptosystems rely on this private key to remain private. We have seen some cases

where all private keys on the client side were the same [30]. If such a key gets compromised,

the entire system of encryption collapses like a house of cards. When storing a private key on

a microprocessor, there is one main risk: an attacker attempting to compromise the ROM and

extracting the key. This can be done in various ways. One way is an attacker attempting to

compromise the ROM location where the keys are stored with a bit flip. Another way is attempt-

ing to extract the key from the ROM location without leaving a trace of device tampering. A

27

redundant copy of the private key can be placed in the ROM at manufacturing time to prevent

this type of attack [33].

For our model we need private key protection because our entire system will depend on its

privacy. If an attacker manages to obtain the private key of a TCU, ECU, or even the portal, he

can obtain the firmware as well.

4.7 TOCTTOU attack protection

A TOCTTOU (time of check to time of use) is a race-condition attack that exploits the time

between a race condition being checked and the result of this check being used to perform an ac-

tion. An examplary attack is described in [34], where a UNIX symlink (symbolic link) is changed

between validating this symlink and using it to read or write data, assuming the outcome of the

check is still valid. Operating systems have schedulers that designate processes time to execute.

While the first process does the check, a second process may interfere and use this very same

symlink whereas the original process assumes that it is using the resource exclusively.

In the case of a firmware update, this timing attack can take place between checking the

validity of the update on the microprocessor and flashing the update to the microprocessor,

replacing the old version.

4.8 Randomness

In information security, randomness is a very important variable that needs to be included in

encryption mechanics. Kerckhoff’s principle mentions that we cannot rely on the secrecy of al-

gorithms, only on the secrecy of keys [35]. The safety of keys also relies on the quality of random

numbers. Without properly generated randomness or initialization vectors (IVs), every message

with the same content will look the same. Not only to the sender or the receiver but also to an

attacker eavesdropping on the communication. Two ciphertexts with the same message should

be indistinguishable, and an adversary should not be able to derive information about a message

when only having access to the ciphertext and public key. A pseudorandom number generator

(PRNG) or true random number generator (TRNG) is used to generate sequences of numbers

whose properties approximate the properties of sequences of random numbers [36]. If the output

of a PRNG is even remotely predictable, it reduces the security of the entire encryption scheme.

In Section 2 we have seen that besides randomness in encryption, randomness in phone num-

bers of SIM cards in TCUs is useful, to mitigate scanning and wardialing attacks on IP ranges

or phone number ranges. Furthermore, the randomization of private keys during manufacturing,

chassis numbers (VIM numbers) for a range of vehicles should harden the attacker’s ability to

obtain any information at all if these keys or numbers are used for identification of a vehicle.

28

For our model we need randomness in every message that we send to prevent an attacker from

obtaining information about the plaintext without knowing the private key. Such a plaintext

attack, either a chosen-plaintext attack (CPA) or known-plaintext attack (KPA) is aimed at

reducing the security of the encryption scheme.

4.9 Summary

Required property Prevents attack Achieved by

Confidentiality Eavesdropping Encryption

Integrity Firmware tampering Hashing, CRC

Availability DoS attacks Anomaly detection, backups, timeouts

Authenticity MITM attacks, spoofing Mutual Authentication, certificates

Private key protection Key extraction Key redundancy, ROM protection

Timing attack protection TOCTTOU Atomicity, constant time algorithms

Randomness Plaintext attacks PRNG, TRNG, ciphertext indistinguishability

Table 3: Summary of required security properties for our model

To summarize, our model needs to assure various aspects regarding information security. Ta-

ble 3 shows the required properties to create a model that is robust against the attacks listed

in the second column. Finally, the third column shows the possible means to achieve the corre-

sponding security properties or prevent the attacks mentioned in the second column.

29

30

5 Target Platform and Cryptography

Our proposed solution uses an ECU that is constrained by size, power, speed and even temper-

ature requirements [37]. Also, the required security properties discussed in the previous section

need to be taken into account when selecting the most suitable primitives. Modern cryptography

offers lots of variety in primitives to pick from. The choices made for various aspects of our model

are explained in this Section.

5.1 CPU

The microprocessor for this thesis is of the MPC5500 family and uses a FreeScale MPC5566MVR132

32-bit microcontroller as a specific processor. It offers a single core processor with speeds up to

132 MHz, 128KB of SRAM, 32KB data cache and 3MB of flash memory. These microprocessors

are used in automotive applications such as engine control and transmission control systems. For

instance, Bosch GmbH uses this family of microprocessors in the EDC-16 series of fuel injection

controllers. The MPC5566 uses the PowerPC architecture, more specifically a e200z6 core. This

e200z6 has a branch prediction unit, a 32-entry MMU, signal processing extensions (SPE) and

32 KB L1 data cache. It can use the complete 32-bit PowerPC instruction set [38].

Figure 7: MPC5566 Block Diagram. The MPC includes 3MB flash memory and 128KB of SRAM.

5.2 Storage

Although the specific CPU has some memory available for storage, the storage is not nearly

enough to run an operating system with hardware virtualization on top of it. There is enough

31

storage to put quite a large binary application in the memory, and there is even space for a

backup. When flashing occurs, there are two versions of the firmware in the flash memory: the

old version and the new version. For ECUs with smaller applications there even is space enough

to do a factory reset when necessary. In this case, during a firmware upgrade, the amount

of firmware versions on an ECU would be three: the factory version, the old version and the

new version. When an integrity check fails on the old or new firmware, the firmware should be

replaced with the factory firmware.

5.3 Delivery

There are various methods to communicate with a vehicle from the outside world, for instance

through the mobile network (GSM/LTE), through a Bluetooth connection, or through a wireless

network router. The available communication channels depend on the TCU that is included in

the car. Inside the car, there are several communication systems available to deliver the firmware

to the correct ECU. Apart from the CAN protocol, which is extremely vulnerable to denial-

of-service attacks, the Local Interconnected Network (LIN), FlexRay, Media Oriented Systems

Transport (MOST) and even Ethernet [39] are alternatives for transportation of the firmware.

However, since the method of delivery is not a factor in our model, we refrain from any specifics

regarding the delivery methods.

5.4 Retry Timeout

We propose the implementation of a timeout for a retry of communication when an integrity

check or authenticity check fails. Also, when a key exchange fails, there will be a timeout before

a device can retry to authenticate itself. Since there are legitimate cases where a check or key

exchange fails, like a temporary glitch in the wireless communication due to limited coverage, the

timeout period should increase as the number of failed attempts grows. To prevent brute-force

attacks like the one described in [40] where a 2-byte authentication seed was used in combination

with no brute-force protection, these timeouts should definitely be implemented.

5.5 Key sizes

NIST, the National Institute of Standards and Technology recommends the use of certain key

sizes for various symmetric and asymmetric (public- and private keypair) algorithms. These

recommendations are shown in Table 4. The first column of this table represents the minimum

strength in bits that the corresponding algorithms in the other columns provide. 2TDEA is the

2-key triple-DES algorithm (TDEA stands for Triple Data Encryption Algorithm), and 3TDEA

is the 3-key triple-DES algorithm. The third and fourth column show the the corresponding key

sizes of asymmetric or public-key algorithms Rivest Shamir Adleman (RSA) and Elliptic Curve

Cryptography (ECC) to achieve the minimum strength in bits in column one. NIST guidelines

state that ECC keys should be twice the length of equivalent strength symmetric key algorithms.

32

Of course, these estimates assume that no major breakthroughs in solving the underlying math-

ematical problems that ECC or RSA are based on will be found. If we look solely at key size,

symmetric cryptographic algorithms would be the right choice because they offer the best pro-

tection while using the smallest keys.

Minimum Strength Symmetric Algorithms RSA ECC

(bits) (bits) (bits)

80 2TDEA 1024 160

112 3TDEA 2048 224

128 AES-128 3072 256

192 AES-192 7680 384

256 AES-256 15360 512

Table 4: NIST-recommended key sizes of cryptographic algorithms [41]

5.6 Protocols

To add the various parts of information security to our model, we need to implement some

cryptographic protocols to assure confidentiality, integrity, and authenticity.

5.6.1 Symmetric vs Asymmetric cryptography

There has been written much about the use of symmetric and asymmetric key ciphers. Secret

communication using asymmetric encryption is possible even if the sender’s and receiver’s key are

public, as long as the sender’s and receiver’s private keys are kept private. On the contrary, sym-

metric ciphers are less resource-consuming because asymmetric ciphers need more mathematical

operations to offer the same security. Both approaches have its advantages and disadvantages.

Often, a combination of symmetric and asymmetric cryptography is used for security solutions.

For instance, two parties may agree on a shared secret resulting of a Diffie-Hellman key exchange.

This shared key can be directly used as a key or used to derive another key which can then be

used to encrypt further communications using a symmetric key cipher, for instance AES. In our

model we will use this combination to provide confidentiality, forward secrecy, authenticity and

integrity. More specifically, for asymmetric cryptography, we will use ECC, as it has a smaller

keysize and outperforms RSA, especially on embedded devices [42].

5.6.2 SHA-2

Often, cryptographic hash functions are used to assure the integrity of messages by providing

a checksum of the message. Hash functions are functions that map data of variable size —

for instance a message— to data that has a fixed —and usually smaller— size. For example,

33

computing the hash value of a message and comparing the result with a published hash result

can show if a message has been tampered with or not. There is a variety of hash functions

available. Some hash functions are more secure than others, for instance MD5 and SHA-1

are considered to be broken [43, 44]. The Secure Hash Algorithm 2 (SHA-2) is a family of

cryptographic hash functions and provides functions in hashes of 224, 256, 384 or 512 bits: SHA-

224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256. The SHA-2 hash function is

implemented in security applications and protocols such TLS and SSL, PGP and SSH. Although

there are some attacks known for some rounds of the hash function, there are no known attacks

against full-round SHA-2. So the security of SHA-2 is deemed sufficient for now and is included

in the National Institute of Standards and Technology (NIST) Federal Information Processing

Standards Publication (FIPS) [45]. Several implementations of the algorithm have been validated

by the Cryptographic Module Validation Program (CMVP) [46].

5.6.3 Elliptic curve Diffie-Hellman

Elliptic-curve Diffie-Hellman (ECDH) is an anonymous key agreement protocol that allows two

parties, each having an elliptic-curve key pair, to establish a shared secret, for instance for Alice

and Bob, over an untrusted channel. It is a variant of the Diffie-Hellman protocol using elliptic

curve cryptography (ECC), which is an approach to public-key cryptography and uses elliptic

curves over finite fields. The elliptic curve is a curve with the corresponding equation 𝑦2 =

𝑥3 + 𝑎𝑥 + 𝑏 along with a point at infinity ∞. Its domain parameters are (𝑎, 𝑏, 𝑝,𝐺, 𝑛, ℎ), where

𝑎 and 𝑏 are the curve parameters modulo 𝑝. 𝐺 is a point of order 𝑛 and by definition 𝑛𝐺 =

∞. The integer ℎ is the cofactor of 𝑛 (the ratio between the number of points on the curve

and the number 𝑛). The entire security of ECC depends on the ability to compute a point

multiplication and the inability to compute the multiplicand given the original and product

points, the discrete-logarithm problem or DLP. An attacker who can solve the elliptic-curve

discrete-logarithm problem (ECDLP) can figure out Alice’s secret key from Alice’s public key,

and can then compute the shared secret the same way Alice does. Alternatively, an attacker can

figure out Bob’s secret key from Bob’s public key, and can then compute the shared secret the

same way Bob does.

5.6.4 Curve25519

Curve25519 is a Diffie-Hellman function suitable for a wide variety of applications. Assume

that we have Alice and Bob that want to use the Curve25519 function to communicate. Given

Alice’s 32-byte secret key ska, Curve25519 computes Alice’s 32-byte public key pka. Given Bob’s

32-byte secret key skb, Curve25519 computes Bob’s 32-byte public key pkb. With the Alice’s

32-byte secret key and Bob’s 32-byte public key, Curve25519 computes a 32-byte secret ss for

Alice. This secret key is shared by the two users, and can then be used to authenticate and

encrypt messages between Alice and Bob. Curve25519 is constructed in a way that it avoids

many potential implementation pitfalls. For instance, it avoids any problems with poor random

34

number generators [47]. This selected curve is also listed as being a safe curve on the SafeCurves

page [48]. Curve25519 offers 128-bit security, which confirms the factor of two used earlier in

Table 4.

Bob

Generate skb

pkb = Curve25519(skb, 9)

Alice

Generate ska

pka = Curve25519(ska, 9)
send pka

send pkb

ss = Curve25519(ska,pkb)

ss = Curve25519(skb,pka)

Figure 8: A view of the Elliptic-curve Diffie-Hellman (ECDH) Curve25519 function

Figure 8 shows the data flow between two parties from a point of each party possessing a

secret key to both parties possessing the shared secret using the Curve25519 function.

5.6.5 Salsa20

Salsa20 is a stream cipher, which was designed in 2005 by Daniel J. Bernstein and submitted

to eSTREAM [49]. As of September 2011, Salsa20 is included in the eSTREAM portfolio. The

Salsa20 encryption function is a long chain of three simple operations on sixteen 32-bit words [50]:

∙ 32-bit Addition, producing the sum 𝑎 + 𝑏 mod 232 of two 32-bit words 𝑎, 𝑏.

∙ 32-bit Exclusive-or, producing the xor 𝑎 ⊕ 𝑏 of two 32-bit words 𝑎, 𝑏.

∙ 32-bit Rotation, producing the rotation 𝑎≪ 𝑏 of a 32-bit word 𝑎 by 𝑏 bits to the left, where

𝑏 is constant.

Salsa20 expands a 256-bit key, a 64-bit nonce and a 64-bit stream position into a 512-bit

stream. Salsa20 uses 20 rounds on the 32-bit words to acquire this stream. The cipher encrypts

a 𝑏-byte plaintext by xor’ing the plaintext with the first 𝑏 bytes of the stream and discarding the

rest of the stream. It decrypts a 𝑏-byte ciphertext by xor’ing the ciphertext with the first 𝑏 bytes

of the stream. There is no feedback from the plaintext or ciphertext into the stream. This gives

Salsa20 the advantage to seek to any position in the output stream in constant time and that

blocks can be computed in parallel. In comparison to AES —which is a block cipher but also

includes modes to stream—, Salsa20 is fast in software implementations as there is little time

needed for key setup and it has one of the lowest cycles-per-byte count for encryption [51]. Just

like AES, Salsa20 can be used together with an authenticator for authenticated encryption. It

is often used with the Poly1305 authenticator, which will be explained in the next subsection.

35

Next to the 20-round version of Salsa20, there are 8-round and 12-round variants of Salsa20 with

even faster speeds available, though they offer less security.

5.6.6 Poly1305

Poly1305 computes a 16-byte authenticator of a variable-length message 𝑚, using a 32-byte one-

time key. It produces a tag that authenticates the message such that an attacker has a negligible

chance of producing a valid tag for a inauthentic message. The message 𝑚 is broken into 16-

byte chunks which become coefficients of a polynomial in 𝑟, evaluated modulo the prime number

2130 − 5, which explains the origin of the name of the authenticator [52].

The 32-byte one-time key is partitioned into two 16-byte chunks and represented as a pair

(𝑟, 𝑠). The first 16 bytes of the one-time key form an integer, 𝑟, as follows: the first four bits of

the bytes at indexes 3, 7, 11 and 15 are cleared, the bottom 2 bits of the bytes at indexes 4, 8 and

12 are cleared and the 16 bytes are taken as a little-endian value. An accumulator is set to zero

and, for each chunk of 16 bytes from the input message, a byte with value 1 is appended and the

17 bytes are treated as a little-endian number. If the last chunk has less than 16 bytes then zero

bytes are appended after the 1 until there are 17 bytes. The value is added to the accumulator

and then the accumulator is multiplied by 𝑟, all mod 2130 − 5. Finally, the last 16 bytes of the

one-time key 𝑠, are treated as a little-endian number and added to the accumulator, mod 2128

to keep the result at 16 bytes. This result is serialised as a little-endian number, producing the

16-byte tag [53].

The 32-byte one-time key which is used as input, can be the result of any arbitrary keyed

function, like AES or Salsa20. Its security also relies on the keyed function that is used for

generation of the 32-byte one-time key. The pair (𝑟, 𝑠) should be unique, and must be unpre-

dictable for each invocation of the function. The 𝑠 should be unpredictable, but it is perfectly

acceptable to generate both 𝑟 and 𝑠 uniquely each time. Because each of them is 128 bits, using

a PRNG to generate hem is also acceptable. Recently, Poly1305 has been selected together with

the ChaCha20 symmetric cipher (a variant of Salsa20) for use with TLS/SSL and this combina-

tion has been added to OpenSSH too [54]. Poly1305 can be computed at high speed in various

CPUs and has optimized implementations for Athlon, Pentium, PowerPC, and UltraSPARC pro-

cessors [55].

5.6.7 Ed25519

Ed25519 is a specific implementation of EdDSA, the Edwards-curve Digital Signature Algorithm,

and was designed by Daniel Bernstein et al [56]. This algorithm is a variant of the Schnorr sig-

nature algorithm and uses elliptic-curve cryptography. More specifically, Ed25519 uses a twisted

Edwards curve birationally equivalent to the curve Curve25519, the Montgomery curve over the

36

prime field defined by the prime number 2255 − 19. A digital signature is used to provide au-

thenticity and integrity of a message. A valid digital signature provides the receiver of a message

assurance that the message was created by the sender of the message and that the message was

not altered in transit.

A Ed25519 keypair consists of a 64-byte private key and a 32-byte public key. At key gen-

eration, a 32-byte random seed, for instance the output of SHA256 on some random input, is

generated. This seed is then hashed using SHA512, which expands the 32-byte seed to 64 bytes.

This key is then split into a left half and a right half, both being 32 bytes long. The left half is

the input for the Curve25519 function after a few operations on the first and last bytes of the left

half. The resulting 32-byte secret scalar 𝑎 and the 32-byte right half is the private key. The public

key is generated by multiplying this secret scalar 𝑎 by a generator 𝐵 (the point (𝑥, 4/5)), which

results in a 32-byte group element 𝐴. Signature generation goes as follows: First of all, variable 𝑟

is computed by hashing the message 𝑀 and the right half of the private key using SHA512. Then,

𝑅 is computed by multiplying 𝑟 with the generator 𝐵, or: 𝑅 = 𝑟𝐵. Next, 𝑆 = (𝑟+𝐻(𝑅,𝐴,𝑀)𝑎)

mod ℓ where 𝑅 and 𝐴 are compressed points. The signature for a message 𝑀 consists of 𝑅 and

𝑆. Verification goes as follows: The verifier knows 𝐴, 𝑅, 𝑆 and 𝑀 . It first parses 𝐴, then it

calculates H(R, A, M). Then it checks the group equation 8𝑆𝐵 = 8𝑅 + 8𝐻(𝑅,𝐴,𝑀)𝐴. If the

parsing and check succeeds, the signature is verified. There are various implementations written

in a variety of languages of the Ed25519 algorithm and some differ a bit regarding representation

of the keypair and calculation of the signature [57]. Apart from standalone libraries, Ed25519 is

being used in several protocols, operating systems and networks [58].

37

38

6 Models

We assume that the communication channels between the manufacturer’s portal 𝑝 and host ℎ,

and between host ℎ and target 𝑡 are untrusted. For various reasons, we have to consider the

possibility that the communication can be eavesdropped or modified in some form. Next to that,

since it has been shown that internal communication of a car can easily be compromised if one

has gained physical access to it, so we have to take adequate measures to keep the transferred

firmware from being read by others.

The communication between the portal and the host is done over an untrusted channel. The

portal is a backend server of the manufacturer, the host is the TCU inside the vehicle to be

updated, the target is the ECU to be updated. Distinct messages between the same sender

and receiver set are required to have distinct nonces. For example, the lexicographically smaller

public key can use odd increasing nonces, while the lexicographically larger public key uses

even increasing nonces. The used nonces are long enough that randomly generated nonces have

negligible risk of collision.

6.1 Key storage

Now we have outlined the protocols we will use for our model, we also need to store the pub-

lic/private keys used for encryption. First of all, we need a public/private keypair for our portal,

host and targets. These keys need to be stored safely on the devices that are used. At manu-

facturing time, each device should get its own keypair, with a redundant copy of the private key

being placed in the ROM at the same time to prevent the key integrity attacks mentioned earlier

in this thesis. Furthermore, the portal should have knowledge of all public keys of the host. Also,

all hosts should have knowledge of the public key of the portal. Moreover, every target should

have knowledge of the public key of the host and the host should have a list of the public keys

of every distinct target in the vehicle.

6.2 Host to portal

There are two different options. One option is that the host ℎ asks the portal 𝑝 if there are any

updates available for the ECUs of the car. The model is shown below in Figure 9. First, an

authenticated ECDH key echange is executed between the host h and the portal p, initiated by

the host. If this key exchange succeeds, the protocol will move on to the next step. There, the

host asks the portal if there are any updates available for the ECUs it maintains. Therefore it

needs a list of ECUs and their versions, which is being stored by the host. Formally, the portal

asks the host for a version list and the host replies with the version list. The host encrypts the

ECU version list with the secret key it shares with the portal and sends it. The portal then

checks if it has any updates available and replies to the host with an encrypted response. Then,

39

Target tHost hPortal p

keyExchange(h, p)

askUpdate()

respondUpdate()

askFirmware()

sendFirmware(p, h) keyExchange(h, t)

sendFirmware(h, t)

confirmFirmware()

Figure 9: Model - Initiated communication by host h to the portal p. The firmware update is

sent to target t. The used functions are explained in Section 7

if there are any updates, the host asks the portal for each of the corresponding updates. The

portal encrypts and sends the firmware to the host. The host initiates an authenticated ECDH

key exchange with the target ECU and sends the firmware to the ECUs. Finally, if the firmware

update succeeds, the target confirms the new firmware version to the host.

40

6.3 Portal to host

Target tHost hPortal p

keyExchange(p, h)

askVersion()

respondVersion()

respondUpdate()

askFirmware()

sendFirmware(p, h)

keyExchange(h, t)

sendFirmware(h, t)

confirmFirmware()

Figure 10: Model - Initiated communication by portal p to the host h. The firmware update is

sent to target t. The used functions are explained in Section 7

The other option is that the portal asks the host to return the current versions of the ECUs

and checks whether any ECU should receive a firmware update. This model is shown in Figure

10. First, an authenticated ECDH key echange is executed between the host and the portal,

initiated by the portal. If this key exchange succeeds, the protocol will move on to the next step.

There, the portal asks the host to send all the versions of the firmware of all ECUs in the system.

The host encrypts the ECU version list with the shared secret key and sends it. The portal then

checks if it has any updates available and replies to the host with an encrypted response. Then,

if there are any updates, the host asks the portal for each of the corresponding updates. The

portal encrypts and sends the firmware to the host. The host initiates an authenticated ECDH

key exchange with the target ECU and sends the firmware to the target. Next, if the firmware

update succeeds, the target confirms the new firmware versions to the host.

41

42

7 Definitions and Functions

The two proposed models that have been drafted in the previous section are defined on a high

level. To define them on a lower level, we will need to specify more. First, we will list the different

definitions and variables we are going to use for our functions. Then, we will specify the different

functions that are used by the models.

7.1 Definitions

7.1.1 Keys

𝑝𝑘𝑥. The public long-term key of party x, generated during manufacturing time.

𝑠𝑘𝑥. The secret long-term key of party x, generated during manufacturing time.

𝑝𝑘𝑦. The public long-term key of party y, generated during manufacturing time.

𝑠𝑘𝑦. The secret long-term key of party y, generated during manufacturing time.

𝑒𝑐𝑝𝑘𝑥. The ephemeral elliptic-curve public key of party x.

𝑒𝑐𝑠𝑘𝑥. The ephemeral elliptic-curve secret key of party x.

𝑒𝑐𝑝𝑘𝑦. The ephemeral elliptic-curve public key of party y.

𝑒𝑐𝑠𝑘𝑦. The ephemeral elliptic-curve secret key of party y.

7.1.2 Variables

𝑐. The ciphertext or encrypted message.

𝑒. The encrypted payload.

𝑘. The key 𝑘.

𝑛. A string of random bytes used as a nonce.

𝑚. The plaintext or message.

𝑟. A string of random bytes.

𝑠. The signature of a message using Ed25519.

𝑠𝑠. The shared secret generated from Curve25519 and shared between two parties.

𝑠𝑖𝑔𝑛(𝑥, 𝑦) = signs the message 𝑦 with private key 𝑥 using Ed25519.

𝑣𝑒𝑟𝑖𝑓𝑦(𝑥, 𝑦) = verifies the message 𝑦 with public key 𝑥 using Ed25519.

𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑥, 𝑦, 𝑧). Encrypts and authenticates a message 𝑥 with a nonce 𝑦 using key 𝑧.

𝑎𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑒(𝑥, 𝑦, 𝑧). Authenticates and decrypts a message 𝑥 with a nonce 𝑦 using key 𝑧.

𝑝𝑎𝑖𝑟(𝑥, 𝑦) = (𝑥, 𝑦). Pairs two variables.

𝑠𝑝𝑙𝑖𝑡(𝑥, 𝑦) = 𝑥, 𝑦. Split two variables.

𝑠𝑒𝑛𝑑(𝑥, 𝑦) Sends data 𝑥 to target 𝑦.

𝑟𝑒𝑐𝑒𝑖𝑣𝑒(𝑥, 𝑦) Receive data 𝑥 from target 𝑦.

43

7.2 Functions

7.2.1 keyExchange(x,y)

The key exchange keyExchange(𝑥,𝑦) is an authenticated ECDH key exchange between initiator

𝑥 and responder 𝑦. The initiator generates an elliptic-curve private key 𝑒𝑐𝑠𝑘𝑥 for this specific

session and calculates a public key 𝑒𝑐𝑝𝑘𝑥 from the secret key using Curve25519. It uses its own

private key 𝑠𝑘𝑥 to sign the public key 𝑒𝑐𝑝𝑘𝑥 using Ed25519 resulting in 𝑠 to be sent to responder

𝑦 (Algorithm 1).

Now, the responder 𝑦 verifies the signature of the public key. If verification of the public

key succeeds, it generates an own elliptic-curve private key 𝑒𝑐𝑝𝑘𝑦 for this specific session and

calculates a public key 𝑒𝑐𝑝𝑘𝑦 from the secret key using Curve25519. It can now generate the

shared secret 𝑠𝑠 by using its own private key 𝑒𝑐𝑠𝑘𝑦 and the received public key 𝑒𝑐𝑝𝑘𝑥. Then it

uses its own private key 𝑠𝑘𝑦 to sign the public key 𝑒𝑐𝑝𝑘𝑦 using Ed25519 resulting in 𝑠, which is

sent to the initiator (Algorithm 2).

Then, the initiator 𝑥 verifies the signature of the public key. It can now generate the shared

secret 𝑠𝑠 by using its own private key 𝑒𝑐𝑠𝑘𝑥 and the received public key 𝑒𝑐𝑝𝑘𝑦 (Algorithm 3).

The key exchange is now established. More formally, the following actions are taken:

Algorithm 1 ECDH Key Exchange algorithm (initiator 𝑥)

𝑒𝑐𝑠𝑘𝑥← 𝑟

𝑒𝑐𝑝𝑘𝑥← 𝐶𝑢𝑟𝑣𝑒25519(𝑒𝑐𝑠𝑘𝑥, 9)

if 𝑒𝑐𝑝𝑘𝑥 == ⊥ then

𝑠← 𝑠𝑖𝑔𝑛(𝑠𝑘𝑥, 𝑒𝑐𝑝𝑘𝑥)

if 𝑠 == ⊥ then

𝑠𝑒𝑛𝑑(𝑠, 𝑦)

end if

end if

If everything went as planned, both parties now share the same secret key 𝑠𝑠. If not, the function

returns an error and the process stops. Note that for readability purposes, we did not include

any memory allocation operations in the listed algorithms. Also note that the functions we are

going to use originally include the variable the resulting value will be put into when calling the

function. Officially, these functions return 0 on success or -1 if an error occured. For readability

purposes, in the provided algorithms we check for ⊥ if a function succeeds, otherwise it has failed.

Now that the keyExchange(x,y) has succeeded, we will define a set of functions that is used

within all other functions. We define it once to not having to repeat ourselves and keeping things

well-ordered.

44

Algorithm 2 ECDH Key Exchange algorithm (responder 𝑦)

𝑧 ← 𝑣𝑒𝑟𝑖𝑓𝑦(𝑠, 𝑒𝑐𝑝𝑘𝑥, 𝑝𝑘𝑥)

if 𝑧 == 1 then

𝑒𝑐𝑠𝑘𝑦 ← 𝑟

𝑒𝑐𝑝𝑘𝑦 ← 𝐶𝑢𝑟𝑣𝑒25519(𝑒𝑐𝑠𝑘𝑦, 9)

if 𝑒𝑐𝑝𝑘𝑦 == ⊥ then

𝑠𝑠← 𝐶𝑢𝑟𝑣𝑒25519(𝑒𝑐𝑠𝑘𝑦, 𝑒𝑐𝑝𝑘𝑥)

if 𝑠𝑠 == ⊥ then

𝑠← 𝑠𝑖𝑔𝑛(𝑠𝑘𝑦, 𝑒𝑐𝑝𝑘𝑦)

if 𝑠 == ⊥ then

𝑐← 𝑝𝑎𝑖𝑟(𝑠, 𝑒𝑐𝑝𝑘𝑦)

𝑠𝑒𝑛𝑑(𝑐, 𝑥)

end if

end if

end if

end if

Algorithm 3 ECDH Key Exchange algorithm (initiator 𝑥 (cont.))

𝑧 ← 𝑣𝑒𝑟𝑖𝑓𝑦(𝑠, 𝑒𝑐𝑝𝑘𝑥, 𝑝𝑘𝑦)

if 𝑧 == ⊥ then

𝑠𝑠← 𝐶𝑢𝑟𝑣𝑒25519(𝑒𝑐𝑠𝑘𝑥, 𝑒𝑐𝑝𝑘𝑦)

end if

45

7.2.2 pack(m)

The pack function encrypts, authenticates and packs the message 𝑚 with a nonce 𝑛 and a key

𝑘 resulting in an authenticated ciphertext 𝑒. More specifically, it performs the following actions:

First, it generates a nonce 𝑛 from the string of random bytes 𝑟. It then uses the message 𝑚, the

nonce 𝑛 and the shared secret 𝑠𝑠 to create an authenticated ciphertext 𝑒. This function is shown

in Algorithm 4. The Poly1305-XSalsa20 cipher suite is used for encryption and authentication.

Algorithm 4 Pack function

𝑛← 𝑟

𝑒← 𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑚,𝑛, 𝑠𝑠)

if 𝑒 == ⊥ then

𝑒𝑛← 𝑝𝑎𝑖𝑟(𝑒, 𝑛)

end if

7.2.3 unpack(en)

The unpack function unpacks, decrypts and validates 𝑒𝑛. This 𝑒𝑛 consists of the pair (𝑒,𝑛). The

pair is split into authenticated ciphertext 𝑒 and nonce 𝑛. Next, it uses the shared secret 𝑠𝑠, the

nonce 𝑛 and the authenticated ciphertext 𝑒 to authenticate and decrypt the ciphertext 𝑒 using

Poly1305-XSalsa20, resulting in message 𝑚. More formally:

Algorithm 5 Unpack function

𝑒, 𝑛← 𝑠𝑝𝑙𝑖𝑡(𝑒, 𝑛)

𝑚← 𝑎𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑒(𝑒, 𝑛, 𝑠𝑠)

46

7.2.4 askUpdate()

The host ℎ asks the portal 𝑝 if there are any updates with askUpdate(). It will create a message

𝑚 that asks the portal for an update. It will then pack message 𝑚 and send the resulting payload

𝑒𝑚 to the portal. The portal will unpack 𝑒𝑚, resulting in the original message 𝑚 being recovered.

Now, the portal can process message 𝑚. Message 𝑚 will be a simple byte representation of the

askUpdate() function, notated as {request}:

Algorithm 6 askUpdate() function (host)

1: 𝑚← {𝑟𝑒𝑞𝑢𝑒𝑠𝑡}
2: 𝑒𝑚← 𝑝𝑎𝑐𝑘(𝑚)

3: if 𝑒𝑚 == ⊥ then

4: 𝑠𝑒𝑛𝑑(𝑒𝑚, 𝑝)

5: end if

Algorithm 7 askUpdate() function (portal)

1: 𝑟𝑒𝑐𝑒𝑖𝑣𝑒(𝑒𝑚, ℎ)

2: 𝑚← 𝑢𝑛𝑝𝑎𝑐𝑘(𝑒𝑚)

3: if 𝑚 == ⊥ then

4: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑚)

5: end if

7.2.5 askVersion()

The portal asks the host which versions of firmware the ECUs currently have with askVersion().

It will create a message 𝑚 that asks the host for the current firmware versions. It will then pack

message 𝑚 and send the resulting payload 𝑒𝑚 to the host. The host will unpack 𝑒𝑚, resulting

in the original message 𝑚 being recovered. Now, the host can process message 𝑚. Message 𝑚

will be a simple byte representation of the askVersion() function, notated as {request}.

Algorithm 8 askVersion() function (portal)

1: 𝑚← {𝑟𝑒𝑞𝑢𝑒𝑠𝑡}
2: 𝑒𝑚← 𝑝𝑎𝑐𝑘(𝑚)

3: if 𝑒𝑚 == ⊥ then

4: 𝑠𝑒𝑛𝑑(𝑒𝑚, ℎ)

5: end if

47

Algorithm 9 askVersion() function (host)

1: 𝑟𝑒𝑐𝑒𝑖𝑣𝑒(𝑒𝑚, 𝑝)

2: 𝑚← 𝑢𝑛𝑝𝑎𝑐𝑘(𝑒𝑚)

3: if 𝑚 == ⊥ then

4: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑚)

5: end if

7.2.6 respondVersion()

The host will respond to the portal with the versions of firmware the ECUs currently have

respondVersion(). It will create a message 𝑚 that asks the portal for an update. It will then

pack message 𝑚 and send the resulting payload 𝑒𝑚 to the portal. The portal will unpack 𝑒𝑚,

resulting in the original message 𝑚 being recovered. Now, the portal can process message 𝑚.

Message 𝑚 will be a byte array representation of {targetID, version}. The targetID field

will be four bytes long, the version field will be four bytes long. For instance, 𝑚 will look like

{{0x46,0x5B},{0x03,0x8A}}. This will allow for 2562 different ECUs to be indexed with 2562

different versions.

Algorithm 10 respondVersion() function (host)

1: 𝑚← {𝑡𝑎𝑟𝑔𝑒𝑡𝐼𝐷, 𝑣𝑒𝑟𝑠𝑖𝑜𝑛}
2: 𝑒𝑚← 𝑝𝑎𝑐𝑘(𝑚)

3: if 𝑒𝑚 == ⊥ then

4: 𝑠𝑒𝑛𝑑(𝑒𝑚, 𝑝)

5: end if

Algorithm 11 respondVersion() function (portal)

1: 𝑟𝑒𝑐𝑒𝑖𝑣𝑒(𝑒𝑚, ℎ)

2: 𝑚← 𝑢𝑛𝑝𝑎𝑐𝑘(𝑒𝑚)

3: if 𝑚 == ⊥ then

4: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑚)

5: end if

7.2.7 respondUpdate()

The portal replies the host with the firmware updates that it has available for the host’s ECUs

respondUpdate(). It will create a message 𝑚 with the reply. It will then pack message 𝑚

and send the resulting payload 𝑒𝑚 to the host. The host will unpack 𝑒𝑚, resulting in the

original message 𝑚 being recovered. Now, the host can process message 𝑚. Message 𝑚 will be

a byte array representation of the ECUs that have an available update on the portal, looking

48

like {targetID}.The targetID field will be four bytes long. For instance, 𝑚 will look like

{0x46,0x5B}.

Algorithm 12 respondUpdate() function (portal)

1: 𝑚← {𝑡𝑎𝑟𝑔𝑒𝑡𝐼𝐷}
2: 𝑒𝑚← 𝑝𝑎𝑐𝑘(𝑚)

3: if 𝑒𝑚 == ⊥ then

4: 𝑠𝑒𝑛𝑑(𝑒𝑚, 𝑝)

5: end if

Algorithm 13 respondUpdate() function (host)

1: 𝑟𝑒𝑐𝑒𝑖𝑣𝑒(𝑒𝑚, ℎ)

2: 𝑚← 𝑢𝑛𝑝𝑎𝑐𝑘(𝑒𝑚)

3: if 𝑚 == ⊥ then

4: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑚)

5: end if

7.2.8 askFirmware()

Now that the host knows which targets can receive a firmware update, it will create a message

𝑚 that asks the portal for these specific firmware binaries askFirmware() for every firmware

version. It will pack message 𝑚 and send the resulting 𝑒𝑚 to the portal. The portal will unpack

𝑒𝑚, resulting in the original message 𝑚 being recovered. Now, the portal can process message

𝑚. Message 𝑚 will be a byte array representation of {targetID, version}. The targetID field

will be four bytes long, the version field will be four bytes long. For instance, 𝑚 will look like

{{0x46,0x5B},{0x03,0x8A}}.

Algorithm 14 askFirmware() function (host)

1: 𝑚← {𝑡𝑎𝑟𝑔𝑒𝑡𝐼𝐷, 𝑣𝑒𝑟𝑠𝑖𝑜𝑛}
2: 𝑒𝑚← 𝑝𝑎𝑐𝑘(𝑚)

3: if 𝑒𝑚 == ⊥ then

4: 𝑠𝑒𝑛𝑑(𝑒𝑚, 𝑝)

5: end if

49

Algorithm 15 askFirmware() function (portal)

1: 𝑟𝑒𝑐𝑒𝑖𝑣𝑒(𝑒𝑚, ℎ)

2: 𝑚← 𝑢𝑛𝑝𝑎𝑐𝑘(𝑒𝑚)

3: if 𝑚 == ⊥ then

4: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑚)

5: end if

7.2.9 sendFirmware(x, y)

The initiator 𝑥 sends the firmware update to the responder 𝑦 by calling the sendFirmware(x,

y) function. It will create a message 𝑚 with the reply. It will then pack message 𝑚 and send the

resulting payload 𝑒𝑚 to the responder. The responder will unpack 𝑒𝑚, resulting in the original

message 𝑚 being recovered. Now, the responder can process message 𝑚. Message 𝑚 will be a

byte array representation of the ECUs that have an available update on the portal, looking like

{targetID, message, mlen}.The targetID field will be four bytes long. The message field will

be the container of the binary firmware, it can be of any arbitrary size ≥ 1. The length of the

message field is saved in the mlen field.

Algorithm 16 sendFirmware(x,y) function (initiator)

1: 𝑚← {𝑡𝑎𝑟𝑔𝑒𝑡𝐼𝐷,𝑚𝑒𝑠𝑠𝑎𝑔𝑒,𝑚𝑙𝑒𝑛}
2: 𝑒𝑚← 𝑝𝑎𝑐𝑘(𝑚)

3: if 𝑒𝑚 == ⊥ then

4: 𝑠𝑒𝑛𝑑(𝑒𝑚, 𝑦)

5: end if

Algorithm 17 sendFirmware(x,y) function (responder)

1: 𝑟𝑒𝑐𝑒𝑖𝑣𝑒(𝑒𝑚, 𝑥)

2: 𝑚← 𝑢𝑛𝑝𝑎𝑐𝑘(𝑒𝑚)

3: if 𝑚 == ⊥ then

4: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑚)

5: end if

7.2.10 confirmFirmware()

After the firmware update process was succesful, the target ECU will confirm to the host that

the update was succesful confirmFirmware(). It will pack message 𝑚 and send the resulting 𝑒

to the host. The host will unpack 𝑒, resulting in the original message 𝑚 being recovered. Now,

the host can process message 𝑚. Message 𝑚 will be a byte array representation of {targetID,

version}. The targetID field will be four bytes long, the version field will be four bytes long.

50

For instance, 𝑚 will look like {{0x46,0x5B},{0x03,0x8A}}. The host updates its internal list

of firmware versions and either calls another askFirmware() function, or if there are no updates

left, does nothing.

Algorithm 18 confirmFirmware() function (target)

1: 𝑚← {𝑡𝑎𝑟𝑔𝑒𝑡𝐼𝐷, 𝑣𝑒𝑟𝑠𝑖𝑜𝑛}
2: 𝑒𝑚← 𝑝𝑎𝑐𝑘(𝑚)

3: if 𝑒𝑚 == ⊥ then

4: 𝑠𝑒𝑛𝑑(𝑒𝑚, ℎ)

5: end if

Algorithm 19 confirmFirmware() function (host)

1: 𝑟𝑒𝑐𝑒𝑖𝑣𝑒(𝑒𝑚, 𝑡)

2: 𝑚← 𝑢𝑛𝑝𝑎𝑐𝑘(𝑒𝑚)

3: if 𝑚 == ⊥ then

4: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑚)

5: end if

51

52

8 Implementation

Our implementation on the ECU uses a modified version of the Networking and Cryptography

library NaCl (pronounced as: salt) implementation by Bernstein, Lange and Schwabe [59, 60].

This cryptographic library offers various cryptographic primitives. More specifically, our im-

plementation relies mostly on the AVR 8-bit implementation of NaCl, written by Schwabe and

Hutter [61, 62] and it is optimized for microprocessors with 8-bit registers. Since the micropro-

cessor we use is a 32-bit microprocessor with 32-bit registers, the code can be optimized for this

specific processor. The NaCl library takes advantage of higher-level language features to simplify

the APIs for those languages. For example:

∙ A message is represented in C NaCl as two variables: an array variable m and an integer

variable mlen. Higher-level APIs (like the C++ one) use a single string variable m that

knows its own length.

∙ The C NaCl functions return error codes to indicate errors. Programmers are still expected

to check for these error codes and respond accordingly.

∙ The C NaCl functions write output strings via pointers. Higher-level APIs (like C++)

return the strings as function values.

The implementation is written in the ANSI C language for portability, but also supports the

C++ language. Usually, cryptographic libraries leave the choice of primitives to the programmer.

Often programmers pass the choice along to users, which is generally a bad idea. NaCl encourages

users to simply say “sign this message“ or “encrypt this message“. NaCl has a mechanism

through which a cryptographer can easily specify the choice of signature system, without the

programmer or user having to worry about it. NaCl avoids all data flow from secret information

to the instruction pointer and the branch predictor. There are no conditional branches like If

statements with conditions based on secret information and the code runs in constant time. This

prevents certain timing attacks described in earlier sections, while preserving the claimed high

speeds.

8.1 Proof of Concept

The proof of concept that has been implemented on the MPC5566 microprocessor uses other

functions of the NaCl library. For our proof of concept, ANSI C is used, not the included C++

APIs. Not all features that come with NaCl are used in this implementation. More specifically,

these three sets of functions are used:

∙ The Curve25519 ECDH key exchange uses the crypto scalarmult function.

∙ The signing of the ECDH public keys is done with the crypto sign function.

53

∙ The encryption of the communication is done through the crypto secretbox function.

To provide the proof of concept with a working example, we have also included the following

constants in the program:

∙ Keypairs for the ECU, TCU and portal,

∙ The update to be applied to an ECU,

∙ An ECU list with corresponding versions,

∙ A list of ECUs to be updated.

Since the proof of concept focuses on the secure communication process instead of the actual

flashing of an ECU, we refrain from the following specific actions:

∙ The actual ECU flashing process (demo reflashes memory every time),

∙ A key exchange with multiple ECUs for different update versions (one is enough for demon-

stration),

∙ The processing of the messages sent and the order of the messages (only comparison of 2

bytes).

The proof of concept focuses on the simulation the process of the model shown in Figure 9.

The implementation can be found on https://github.com/remyspaan/ecu-update. Appendix

A explains how to test the proof of concept on a MPC5566 Evaluation Board, the MPC5566EVB,

which was used to test the code on. In this proof of concept, all three entities in the update

process (portal, host, target) are combined. There are also specific implementations for only the

portal, host and target as not every part needs all the code. For instance, the target will only need

to know how to handle the keyExchange(x,y), sendFirmware(x,y) and confirmFirmware()

functions.

Since the MPC5566 does not include any Electrically Erasable Programmable Read Only

Memory (EEPROM), the randomization of the numbers used as nonce is done from a static

seed instead of a seed that is updated every time on the FLASH. Since our build will reflash

the memory before runtime anyways, implementing proper randomization would be impossible

anyways. The benefit of having static random numbers improves the readability when debugging

anyways. A PRNG would definitely be a required feature in a final version of the implementation.

We will go through all of the aspects of the proof of concept now.

8.2 Memory allocation

The NaCl library claims that it does not use dynamic memory allocation for its cryptographic

computations but it still should be usable in environments like our MPC, with limited storage

54

https://github.com/remyspaan/ecu-update

available [59]. However, we still need to allocate memory to make sure that the memory we want

to fill with data can actually hold as much data as we want it to, before we want to use it. For

that purpose, we use the calloc function, which zero-initializes the memory for an array of 𝑥

elements. For instance, if we want to allocate memory for a message m with length mlen and fill

it with the message message:

int i;

unsigned char *m;

unsigned char message[16] = {
0x7f,0xc4,0xbd,0xfe,0x2c,0xc3,0x83,0x9e,0x2b,0x27,0x85,0x85,0xf3,0xef,0xe1,0x5e

};
mlen = sizeof(message);

m = (unsigned char*)calloc(mlen,1);

if(!m)

fail("allocation of memory for m failed");

for (i=0;i<16;i++)

m[i] = message[i];

The return value of the calloc function is a void * so we have to cast it to an unsigned

char *. If the memory allocation fails, a null-pointer is returned. We can use this result to

check whether the calloc succeeded. If not, we can at least fail safely. After using the memory

we use the free command to free the allocated memory. In the tests that come with the NaCl

implementation, 32 extra bytes are callocated for each allocated variable of the type unsigned

char*. Next, the pointer’s location is increased by 16 places so that the variable has 16 bytes of

zero’s before and after the actual value. If we want to use the free function to free up the used

memory, we have to make sure that the pointer points to the start of the actual memory location

again, so we do not free space that was not part of the pointer anyways.

8.3 Function and program constants

Next to the constants that are defined by NaCl, we have defined a few constants that are used

as a message and checked for when a function is executed by the program. We chose for two

bytes to have enough space available for a variety of functions, and to have space for different

responses in the same function. To avoid confusion with the memory locations that should be

zero-allocated, we have chosen to use hexidecimal representations above 0x00:

const unsigned char FUNC KEY EXCHANGE[] = {0x01, 0x01};
const unsigned char FUNC KEY EXCHANGE CONT[] = {0x01, 0x02};
const unsigned char FUNC ASK UPDATE[] = {0x02, 0x01};
const unsigned char FUNC ASK VERSION[] = {0x03, 0x01};

55

const unsigned char FUNC RESPOND VERSION[] = {0x04, 0x01};
const unsigned char FUNC RESPOND UPDATE[] = {0x05, 0x01};
const unsigned char FUNC ASK FIRMWARE[] = {0x06, 0x01};
const unsigned char FUNC SEND FIRMWARE[] = {0x07, 0x01};
const unsigned char FUNC CONFIRM FIRMWARE[] = {0x08, 0x01};

8.4 Key generation and exchange

The portal and every ECU and TCU have a long-term public/private keypair. This keypair is

generated during manufacturing time. Since this key will be used for the mutual authentication

process between two parties, all TCUs have knowledge of the public key of the portal and all

ECUs have knowledge of the public key of its TCU. Likewise, the portal has knowledge of the

public key of all TCUs and the TCU has knowledge of the public key of all its ECUs.

Since we will be using Ed25519 for signing the public keys in the Curve25519 key exchange,

the long-term keys stored on the devices will be Ed25519 keys. We have seen that a Ed25519

keypair can be deduced from a 32-byte seed so only storing the 32-byte seed is an option. How-

ever, for both computational and practical issues, we first chose to store both the private seed

(32-byte) and the public (32-byte) key on the devices and the portal. In this way we do not need

to calculate the keypair every time it is needed for computation.

It has been mentioned that some of the Ed25519 implementations, including the one that

comes with NaCl, differ from the algorithm description in the original paper [56]. The website of

NaCl even mentions that the current version of Ed25519 is still a prototype and will be replaced

in a future release [63]. The crypto sign function does not require the public key during the

calculation of the hash. So insteaed of 𝐻(𝑅,𝐴,𝑀), 𝐻(𝑅,𝑀) is calculated. The public key is only

used for verifying a signature and this means that a device or the portal does not need to store

its own public key as it never uses it. So we end up only storing the private seed (32-byte) on the

device and the portal. A public key will still be deduced from the private key at manufacturing

time, only to store it on the devices that need knowledge of this public key.

8.5 crypto secretbox

Our implementation relies on the crypto secretbox function that comes with the NaCl library.

This function ensures secret-key authenticated encryption and is designed to meet the standard

notions of privacy and authenticity for secret-key authenticated-encryption using nonces [64].

The secret key that is used in this function is the shared secret key that the two parties have

agreed upon during the initial key exchange. The crypto secretbox function is really a call

to the crypto secretbox xsalsa20poly1305 function. The used cryptographic primitives are

56

XSalsa20 (which is a variant of Salsa20 using a 192-bit nonce instead of a 64-bit nonce) and

Poly1305 [65]. These primitives have been described in Section 5.6. This function basically takes

care of all the encryption and authentication needed for our model, except the initial key ex-

change. A call to the crypto secretbox function in C requires the following parameters:

const unsigned char k[crypto secretbox KEYBYTES];

const unsigned char n[crypto secretbox NONCEBYTES];

const unsigned char m[...];

unsigned long long mlen;

unsigned char c[...];

unsigned long long clen;

And is called as follows:

crypto secretbox(c,m,mlen,n,k);

The crypto secretbox function encrypts and authenticates a message m[0], m[1], ...,

m[mlen-1] using a secret key k[0], ..., k[crypto secretbox KEYBYTES-1] and a nonce n[0],

n[1], ..., n[crypto secretbox NONCEBYTES-1]. The crypto secretbox function puts the

ciphertext into c[0], c[1], ..., c[mlen-1] and the length of the cipthertext in clen. It then

returns 0. If there is any error during execution of the crypto secretbox function, it returns -1.

Decrypting a message goes as follows:

crypto secretbox open(m,c,clen,n,k);

The crypto secretbox open function verifies and decrypts a ciphertext c[0], c[1], ...,

c[clen-1] using a secret key k[0], k[1], ..., k[crypto secretbox KEYBYTES-1] and a nonce

n[0], ..., n[crypto secretbox NONCEBYTES-1]. The crypto secretbox open function puts

the plaintext into m[0], m[1], ..., m[clen-1]. It then returns 0. If the ciphertext fails veri-

fication at any point, the crypto secretbox open instead returns -1 [66].

The crypto secretbox function has another important requirement. According to the doc-

umentation, the first crypto secretbox ZEROBYTES (in case of encryption) or the first

crypto secretbox BOXZEROBYTES (in case of decryption) should be all 0. In our case, the

crypto secretbox xsalsa20poly1305 function requires the first 16 bytes of the message m and

the first 32 bytes of the ciphertext c to be 0. Both crypto secretbox and crypto secretbox open

ensure that the first 16 or 32 bytes of m and c are 0. To do that we have to just initialise the

variables with 16 or 32 extra bytes and skip these bytes before we start inserting data.

57

8.6 crypto scalarmult

The crypto scalarmult function does scalar multiplication and is used in the Curve25519 func-

tion. This is because the selected primitive for this function is the crypto scalarmult curve25519

function [66]. It also is the only available primitive for this function for now in the NaCl implemen-

tation. There are two main functions: crypto scalarmult(q,n,p) and crypto scalarmult base(q,n).

The first function uses n and p as input and puts the result in q. The second function uses n and

9 as a base (see Figure 8) and puts the resulting scalar into q.

8.7 crypto sign

The crypto sign or crypto sign edwards25519sha512batch or more specifically, the Ed25519

signature function signs any message m using a private key sk. A signed message sm can be verified

by using the crypto sign open function, together with a public key pk that corresponds with the

earlier used secret key. The maximum possible length smlen is mlen+crypto sign BYTES. The

caller must allocate at least mlen+crypto sign BYTES (a constant value that should be defined

for the corresponding primitive) for sm.

8.8 Options and optimizations

To prevent optimizations by the compiler, all optimizations have been turned off for the specific

project and target. There are generally two options to prevent the compiler from eliminating

code it does not deem necessary, like memory deallocations and checks if pointers are set. The

first option is to disable all optimizations. Another option is to define pointers to secret data as

volatile [67]. As shown in Figure 11, the compiler can optimize the code for speed or size. We

tried several combinations of optimizations for our proof of concept, though none of them worked

correctly after recompiling with options enabled.

To speed up the actual program when debugging, we found some code that cuts in time

the speed of the program considerably. Therefore, before the crypto code (main.cpp) is ran,

the HW init() function is called. The HW init() function initializes the hardware by setting

the highest possible clock speed available for the MPC5566. This is because the JTAG debugger

only lets us select speeds up to 100Mhz, while the MPC5566 supports 132Mhz. Additionally, this

function disables the watchdog on the e200z6 core, though disabling the watchdog also disables

the ability of the MPC to recover from errors or unexpected events [68].

58

Figure 11: MPC Compiler Optimizations all turned off for this project and target.

59

60

9 Conclusions and future work

The purpose of this thesis was to identify the current shortcomings regarding automotive security.

Additionally, this thesis provides a proof of concept for a system to secure a part of the update

system of electronic control units in car systems. This proof-of-concept system ensures aspects

like confidentiality, authenticity and integrity of a supplied update, while preventing common

security pitfalls like man-in-the-middle attacks, timing attacks and replay attacks. The solution

uses cryptographic primitives that are proven to be secure against all but quantum computer

attacks and still is fast and small enough to be used in the field of car systems that are con-

strained by area, speed and temperature. This thesis focuses on specifying the protocols that

are used where other studies on over-the-air updates assume that these protocols are secure and

implemented correctly.

This study has taken a step towards the direction of making over-the-air updates for car sys-

tems more secure. Although this solution does not implement the entirety of creating, distribut-

ing, installing and using firmware updates for ECUs, using the resulting model does implement

this specific part of security of an update. Where the security of a system always depends on

the weakest link, efforts should be made to secure the other parts of the update system equally

using other studies and proven secure methods. The implementation of this update system is for

one specific but widely used ECU only, although the implementation is portable to other ECUs

and TCUs while preserving required security properties and taking into account the different

computational constraints.

Vehicle-to-vehicle (V2V) communication is not covered in this study, as the thesis’ subject

is applicable rather to communication between a car and a backend system than between cars

itself. An interesting thing to investigate would be over-the-air distribution of firmware updates

from vehicles to equivalent brands and types of vehicles in the vicinity. However, this addition

will broaden the attack surface even more. Likewise, adding and implementing non-repudiation

to the required security properties and the resulting solution should be considered for reading

crash data (like a black box in a plane) or to prove that the latest ECU firmware versions were

present in case of legal issues. Furthermore, private-key protection for this family of ECUs has

not been proven thus it remains unclear whether an essential part of this implementation, the

safety of the private key, can be guaranteed. A thorough side-channel analysis of this ECU should

be executed before claiming the security of the private key.

61

62

References

[1] R. N. Charette, “This Car Runs on Code.” www.spectrum.ieee.org/feb09/7649, 2009.

[Online; accessed 27-September-2015]. 1, 8

[2] A. Brisbourne, “Teslas Over-the-Air Fix: Best Example Yet

of the Internet of Things?.” http://www.wired.com/2014/02/

teslas-air-fix-best-example-yet-internet-things/, 2014. [Online; accessed

11-May-2015]. 1

[3] C. Thomas, “The race to go online in your car.” http://www.telegraph.co.uk/motoring/

news/11028324/The-race-to-go-online-in-your-car.html, 2014. [Online; accessed 11-

May-2015]. 1

[4] GlobalCarsBrands, “Top 10 Newest Car Technologies That Have Rev-

olutionized the Auto Industry.” http://www.globalcarsbrands.com/

top-10-newest-car-technologies-that-have-revolutionized-the-auto-industry/,

2015. [Online; accessed 6-May-2015]. 2

[5] International Organization for Standardization, “ISO 11898-1:2003 - Road vehicles – Con-

troller area network (CAN).” http://www.iso.org/iso/iso_catalogue/catalogue_tc/

catalogue_detail.htm?csnumber=33422, 2009. [Online; accessed 11-May-2015]. 2

[6] U. E. Larson and D. K. Nilsson, “Securing vehicles against cyber attacks,” in Proceedings of

the 4th annual workshop on Cyber security and information intelligence research: developing

strategies to meet the cyber security and information intelligence challenges ahead, p. 30,

ACM, 2008. 5

[7] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy, B. Kantor,

D. Anderson, H. Shacham, et al., “Experimental security analysis of a modern automobile,”

in Security and Privacy (SP), 2010 IEEE Symposium on, pp. 447–462, IEEE, 2010. 5, 11

[8] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K. Koscher,

A. Czeskis, F. Roesner, T. Kohno, et al., “Comprehensive experimental analyses of automo-

tive attack surfaces.,” in USENIX Security Symposium, San Francisco, 2011. 6, 11

[9] Bosch Automotive Service Solutions Inc., “Ford VCM II.” http://www.boschdiagnostics.

com/pro/products/ford-vcm-ii, 2015. [Online; accessed 26-November-2015]. 6

[10] C. Miller and C. Valasek, “Adventures in Automotive Networks and Control Units.”

http://www.ioactive.com/pdfs/IOActive_Adventures_in_Automotive_Networks_

and_Control_Units.pdf, 2014. [Online; accessed 09-September-2015]. 8

63

www.spectrum.ieee.org/feb09/7649
http://www.wired.com/2014/02/teslas-air-fix-best-example-yet-internet-things/
http://www.wired.com/2014/02/teslas-air-fix-best-example-yet-internet-things/
http://www.telegraph.co.uk/motoring/news/11028324/The-race-to-go-online-in-your-car.html
http://www.telegraph.co.uk/motoring/news/11028324/The-race-to-go-online-in-your-car.html
http://www.globalcarsbrands.com/top-10-newest-car-technologies-that-have-revolutionized-the-auto-industry/
http://www.globalcarsbrands.com/top-10-newest-car-technologies-that-have-revolutionized-the-auto-industry/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=33422
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=33422
http://www.boschdiagnostics.com/pro/products/ford-vcm-ii
http://www.boschdiagnostics.com/pro/products/ford-vcm-ii
http://www.ioactive.com/pdfs/IOActive_Adventures_in_Automotive_Networks_and_Control_Units.pdf
http://www.ioactive.com/pdfs/IOActive_Adventures_in_Automotive_Networks_and_Control_Units.pdf

[11] J. Pagliery, “Chrysler recalls 1.4 million hackable cars - Jul. 24, 2015.” http://money.

cnn.com/2015/07/24/technology/chrysler-hack-recall/, 2015. [Online; accessed 15-

September-2015]. 9

[12] C. Miller and C. Valasek, “Remote Exploitation of an Unaltered Passenger Vehicle.” http:

//www.ioactive.com/pdfs/IOActive_Remote_Car_Hacking.pdf, 2015. [Online; accessed

05-June-2015]. 9, 10

[13] T. Stevens, “GM issues fix for OnStar hack.” http://www.cnet.com/news/

ownstar-onstar-hack/, 2015. [Online; accessed 03-September-2015]. 10

[14] S. Kamkar, “OwnStar: Drive It Like You Hacked It.” http://samy.pl/defcon2015/

2015-defcon.pdf, 2015. [Online; accessed 27-October-2015]. 10

[15] A. Greenberg, “GM Took 5 Years to Fix a Full-Takeover Hack

in Millions of OnStar Cars.” http://www.wired.com/2015/09/

gm-took-5-years-fix-full-takeover-hack-millions-onstar-cars/, 2015. [On-

line; accessed 26-October-2015]. 11

[16] N. Dhanjani, “Cursory Evaluation of the Tesla Model S: We Cant́ Protect Our Cars

Like We Protect Our Workstations.” http://www.dhanjani.com/blog/2014/03/

curosry-evaluation-of-the-tesla-model-s-we-cant-protect-our-cars-like-we-protect-our-workstations.

html, 2014. [Online; accessed 05-June-2015]. 11

[17] S. Anthony, “Tesla’s Model S can be located, unlocked, and bur-

glarized with a simple hack.” http://www.extremetech.com/extreme/

179556-teslas-model-s-can-be-located-unlocked-and-burglarized-with-a-simple-hack,

2014. [Online; accessed 05-June-2015]. 11

[18] D. Spaar, “Beemer, Open Thyself! Security vulnerabili-

ties in BMW’s ConnectedDrive.” http://www.heise.de/ct/artikel/

Beemer-Open-Thyself-Security-vulnerabilities-in-BMW-s-ConnectedDrive-2540957.

html, 2015. [Online; accessed 11-June-2015]. 12, 13

[19] I. Foster, A. Prudhomme, K. Koscher, and S. Savage, “Fast and vulnerable: a story of

telematic failures,” in Proceedings of the 9th USENIX Conference on Offensive Technologies,

pp. 15–15, USENIX Association, 2015. 13, 14, 15

[20] D. K. Nilsson and U. E. Larson, “Secure firmware updates over the air in intelligent vehicles,”

in Communications Workshops, 2008. ICC Workshops’ 08. IEEE International Conference

on, pp. 380–384, IEEE, 2008. 16

[21] D. K. Nilsson, L. Sun, and T. Nakajima, “A framework for self-verification of firmware

updates over the air in vehicle ECUs,” in GLOBECOM Workshops, 2008 IEEE, pp. 1–5,

IEEE, 2008. 16

64

http://money.cnn.com/2015/07/24/technology/chrysler-hack-recall/
http://money.cnn.com/2015/07/24/technology/chrysler-hack-recall/
http://www.ioactive.com/pdfs/IOActive_Remote_Car_Hacking.pdf
http://www.ioactive.com/pdfs/IOActive_Remote_Car_Hacking.pdf
http://www.cnet.com/news/ownstar-onstar-hack/
http://www.cnet.com/news/ownstar-onstar-hack/
http://samy.pl/defcon2015/2015-defcon.pdf
http://samy.pl/defcon2015/2015-defcon.pdf
http://www.wired.com/2015/09/gm-took-5-years-fix-full-takeover-hack-millions-onstar-cars/
http://www.wired.com/2015/09/gm-took-5-years-fix-full-takeover-hack-millions-onstar-cars/
http://www.dhanjani.com/blog/2014/03/curosry-evaluation-of-the-tesla-model-s-we-cant-protect-our-cars-like-we-protect-our-workstations.html
http://www.dhanjani.com/blog/2014/03/curosry-evaluation-of-the-tesla-model-s-we-cant-protect-our-cars-like-we-protect-our-workstations.html
http://www.dhanjani.com/blog/2014/03/curosry-evaluation-of-the-tesla-model-s-we-cant-protect-our-cars-like-we-protect-our-workstations.html
http://www.extremetech.com/extreme/179556-teslas-model-s-can-be-located-unlocked-and-burglarized-with-a-simple-hack
http://www.extremetech.com/extreme/179556-teslas-model-s-can-be-located-unlocked-and-burglarized-with-a-simple-hack
http://www.heise.de/ct/artikel/Beemer-Open-Thyself-Security-vulnerabilities-in-BMW-s-ConnectedDrive-2540957.html
http://www.heise.de/ct/artikel/Beemer-Open-Thyself-Security-vulnerabilities-in-BMW-s-ConnectedDrive-2540957.html
http://www.heise.de/ct/artikel/Beemer-Open-Thyself-Security-vulnerabilities-in-BMW-s-ConnectedDrive-2540957.html

[22] W. Kanda, Y. Yumura, Y. Kinebuchi, K. Makijima, and T. Nakajima, “Spumone:

Lightweight cpu virtualization layer for embedded systems,” in Embedded and Ubiquitous

Computing, 2008. EUC’08. IEEE/IFIP International Conference on, vol. 1, pp. 144–151,

IEEE, 2008. 16

[23] M. S. Idrees, H. Schweppe, Y. Roudier, M. Wolf, D. Scheuermann, and O. Henniger, “Secure

automotive on-board protocols: a case of over-the-air firmware updates,” in Communication

Technologies for Vehicles, pp. 224–238, Springer, 2011. 16

[24] I. Studnia, V. Nicomette, E. Alata, Y. Deswarte, M. Kaâniche, and Y. Laarouchi, “Survey on

security threats and protection mechanisms in embedded automotive networks,” in Depend-

able Systems and Networks Workshop (DSN-W), 2013 43rd Annual IEEE/IFIP Conference

on, pp. 1–12, IEEE, 2013. 17

[25] EVITA, “EVITA Factsheet.” http://evita-project.org/EVITA_factsheet.pdf, 2011.

[Online; accessed 29-November-2015]. 18

[26] B. Weyl, M. Wolf, F. Zweers, T. Gendrullis, M. S. Idrees, Y. Roudier, H. Schweppe, H. Platz-

dasch, R. El Khayari, O. Henniger, D. Scheuermann, A. Fuchs, L. Apvrille, G. Pedroza,

H. Seudie, J. Shokrollahi, and A. Keil, “EVITA Deliverable D3.2, Secure On-Board Archi-

tecture Specification - Version 1.3.” http://evita-project.org/Deliverables/EVITAD3.

2.pdf, 2011. [Online; accessed 28-October-2015]. 18, 19

[27] H. Schweppe, S. Idrees, Y. Roudier, B. Weyl, R. El Khayari, O. Henniger, D. Scheuermann,

G. Pedroza, L. Apvrille, H. Seudie, H. Platzdasch, M. Sall, A. Keil, and M. Wolf, “EVITA

Deliverable D3.3, Secure Secure On-Board Protocols Specification - Version 1.4.” http://

evita-project.org/Deliverables/EVITAD3.3.pdf, 2011. [Online; accessed 28-October-

2015]. 18

[28] HIS, “HIS AK Security Version 1.8.2.” http://portal.automotive-his.de/images/pdf/

FlashProgramming/lh_his_freischaltung_ver1_8_2.pdf, 2010. [Online; accessed 15-

October-2015]. 19

[29] D. Dolev and A. C. Yao, “On the security of public key protocols,” Information Theory,

IEEE Transactions on, vol. 29, no. 2, pp. 198–208, 1983. 21

[30] BimmerBoost, “Real BMW S55, N63, N63TU, S63TU tuning coming - F-Series

Infineon TriCore ECU’s cracked.” http://www.bimmerboost.com/content.php?

5514-Real-BMW-S55-N63-N63TU-S63TU-tuning-coming-F-Series-Infineon-TriCore-ECU-s-crackedf,

2014. [Online; accessed 28-October-2015]. 22, 27

[31] Anthony, Sebastian, “The first rule of zero-days is no one talks about

zero-days (so well explain).” http://arstechnica.com/security/2015/10/

the-rise-of-the-zero-day-market/, 2015. [Online; accessed 30-November-2015].

23

65

http://evita-project.org/EVITA_factsheet.pdf
http://evita-project.org/Deliverables/EVITAD3.2.pdf
http://evita-project.org/Deliverables/EVITAD3.2.pdf
http://evita-project.org/Deliverables/EVITAD3.3.pdf
http://evita-project.org/Deliverables/EVITAD3.3.pdf
http://portal.automotive-his.de/images/pdf/FlashProgramming/lh_his_freischaltung_ver1_8_2.pdf
http://portal.automotive-his.de/images/pdf/FlashProgramming/lh_his_freischaltung_ver1_8_2.pdf
http://www.bimmerboost.com/content.php?5514-Real-BMW-S55-N63-N63TU-S63TU-tuning-coming-F-Series-Infineon-TriCore-ECU-s-crackedf
http://www.bimmerboost.com/content.php?5514-Real-BMW-S55-N63-N63TU-S63TU-tuning-coming-F-Series-Infineon-TriCore-ECU-s-crackedf
http://arstechnica.com/security/2015/10/the-rise-of-the-zero-day-market/
http://arstechnica.com/security/2015/10/the-rise-of-the-zero-day-market/

[32] R. Moore, Cybercrime: Investigating high-technology computer crime. Routledge, 2010. 23

[33] A. I. Awad, A. E. Hassanien, and K. Baba, “Advances in security of information and com-

munication networks,” p. 211, 2013. 28

[34] M. Bishop, M. Dilger, et al., “Checking for race conditions in file accesses,” Computing

systems, vol. 2, no. 2, pp. 131–152, 1996. 28

[35] J. J. Savard, “The Ideal Cipher.” http://www.quadibloc.com/crypto/mi0611.htm, 1999.

[Online; accessed 04-November-2015]. 28

[36] E. Uner, “Generating random numbers — Embedded.” http://www.embedded.com/

design/configurable-systems/4024972/Generating-random-numbers, 2004. [Online;

accessed 9-November-2015]. 28

[37] S. Buntz, T. Hogenmuller, S. Korzin, K. Matheus, M. Mehnert, N. Morand, T. Stre-

ichert, M. Tazebay, J. Wuelfing, and H. Zinner, “Tutorial for Lifetime Requirements

and Physical Testing of Automotive Electronic Control Units (ECUs).” http://grouper.

ieee.org/groups/802/3/RTPGE/public/july12/hoganmuller_01a_0712.pdf, 2012. [On-

line; accessed 11-November-2015]. 31

[38] Freescale Semiconductor, “MPC5566: 32-bit MCU for Automo-

tive Powertrain Applications.” http://www.freescale.com/products/

power-architecture-processors/mpc5xxx-5xxx-32-bit-mcus/mpc55xx-mcus/

32-bit-mcu-for-automotive-powertrain-applications:MPC5566, 2014. [Online;

accessed 26-November-2015]. 31

[39] L. Mearian, “Ethernet is coming to cars.” http://www.computerworld.com/article/

2836400/ethernet-is-coming-to-cars.html, 2014. [Online; accessed 10-November-

2015]. 32

[40] L. Jaks, “Security Evaluation of the Electronic Control Unit Software Update Process.”

https://drive.google.com/file/d/0B3qdCc__t5EybWxyVk5JTklhTVE/, 2014. 32

[41] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, “Recommendation for Key Man-

agement Part 1: General (Revision 3).” http://csrc.nist.gov/publications/nistpubs/

800-57/sp800-57_part1_rev3_general, 2012. [Online; accessed 21-September-2015]. 33

[42] K. Maletsky, “RSA vs ECC Comparison for Embedded Systems.” http://www.atmel.com/

Images/Atmel-8951-CryptoAuth-RSA-ECC-Comparison-Embedded-Systems-WhitePaper.

pdf, 2015. [Online; accessed 10-September-2015]. 33

[43] X. Wang and H. Yu, “How to break MD5 and other hash functions,” in Advances in

Cryptology–EUROCRYPT 2005, pp. 19–35, Springer, 2005. 34

66

http://www.quadibloc.com/crypto/mi0611.htm
http://www.embedded.com/design/configurable-systems/4024972/Generating-random-numbers
http://www.embedded.com/design/configurable-systems/4024972/Generating-random-numbers
http://grouper.ieee.org/groups/802/3/RTPGE/public/july12/hoganmuller_01a_0712.pdf
http://grouper.ieee.org/groups/802/3/RTPGE/public/july12/hoganmuller_01a_0712.pdf
http://www.freescale.com/products/power-architecture-processors/mpc5xxx-5xxx-32-bit-mcus/mpc55xx-mcus/32-bit-mcu-for-automotive-powertrain-applications:MPC5566
http://www.freescale.com/products/power-architecture-processors/mpc5xxx-5xxx-32-bit-mcus/mpc55xx-mcus/32-bit-mcu-for-automotive-powertrain-applications:MPC5566
http://www.freescale.com/products/power-architecture-processors/mpc5xxx-5xxx-32-bit-mcus/mpc55xx-mcus/32-bit-mcu-for-automotive-powertrain-applications:MPC5566
http://www.computerworld.com/article/2836400/ethernet-is-coming-to-cars.html
http://www.computerworld.com/article/2836400/ethernet-is-coming-to-cars.html
https://drive.google.com/file/d/0B3qdCc__t5EybWxyVk5JTklhTVE/
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general
http://www.atmel.com/Images/Atmel-8951-CryptoAuth-RSA-ECC-Comparison-Embedded-Systems-WhitePaper.pdf
http://www.atmel.com/Images/Atmel-8951-CryptoAuth-RSA-ECC-Comparison-Embedded-Systems-WhitePaper.pdf
http://www.atmel.com/Images/Atmel-8951-CryptoAuth-RSA-ECC-Comparison-Embedded-Systems-WhitePaper.pdf

[44] V. Rijmen and E. Oswald, “Update on SHA-1.” Cryptology ePrint Archive, Report

2005/010, 2005. 34

[45] NIST, “Federal Information Processing Standards Publication 180-4.” http://csrc.

nist.gov/publications/fips/fips180-4/fips-180-4.pdf, 2015. [Online; accessed 13-

November-2015]. 34

[46] NIST, “SHS Validation List.” http://csrc.nist.gov/groups/STM/cavp/documents/shs/

shaval.htm, 2015. [Online; accessed 19-November-2015]. 34

[47] D. J. Bernstein, “Curve25519: new Diffie-Hellman speed records,” in Public Key

Cryptography-PKC 2006, pp. 207–228, Springer, 2006. 35

[48] D. J. Bernstein and T. Lange, “SafeCurves: choosing safe curves for elliptic-curve cryptog-

raphy.” http://safecurves.cr.yp.to, 2014. [Online; accessed 14-October-2015]. 35

[49] Bernstein, Daniel J., “eSTREAM: the ECRYPT Stream Cipher Project.” https://

competitions.cr.yp.to/estream.html, 2014. [Online; accessed 16-January-2016]. 35

[50] D. J. Bernstein, “The Salsa20 family of stream ciphers,” in New stream cipher designs,

pp. 84–97, Springer, 2008. 35

[51] Bernstein, Daniel J., “Stream-cipher timings.” http://cr.yp.to/streamciphers/

timings.html, 2005. [Online; accessed 27-November-2015]. 35

[52] D. J. Bernstein, “The poly1305-aes message-authentication code,” in Fast Software Encryp-

tion, pp. 32–49, Springer, 2005. 36

[53] Y. Nir and A. Langley, “ChaCha20 and Poly1305 for IETF Protocols.” https://tools.

ietf.org/html/rfc7539, 2015. [Online; accessed 20-November-2015]. 36

[54] Bernstein, Daniel J., “ChaCha20 and Poly1305 in OpenSSH.” http://blog.djm.net.au/

2013/11/chacha20-and-poly1305-in-openssh.html, 2013. [Online; accessed 16-January-

2016]. 36

[55] D. J. Bernstein, “Poly-1305 AES - A state-of-the-art message-authentication code.” http:

//cr.yp.to/mac.html, 2005. [Online; accessed 19-November-2015]. 36

[56] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-speed high-security

signatures,” Journal of Cryptographic Engineering, vol. 2, no. 2, pp. 77–89, 2012. 36, 56

[57] Warner, Brian, “Ed25519 Keys.” https://blog.mozilla.org/warner/2011/11/29/

ed25519-keys/, 2015. [Online; accessed 16-December-2015]. 37

[58] IANIX, “Things that use Ed25519.” http://ianix.com/pub/ed25519-deployment.html,

2016. [Online; accessed 5-January-2016]. 37

67

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.htm
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.htm
http://safecurves.cr.yp.to
https://competitions.cr.yp.to/estream.html
https://competitions.cr.yp.to/estream.html
http://cr.yp.to/streamciphers/timings.html
http://cr.yp.to/streamciphers/timings.html
https://tools.ietf.org/html/rfc7539
https://tools.ietf.org/html/rfc7539
http://blog.djm.net.au/2013/11/chacha20-and-poly1305-in-openssh.html
http://blog.djm.net.au/2013/11/chacha20-and-poly1305-in-openssh.html
http://cr.yp.to/mac.html
http://cr.yp.to/mac.html
https://blog.mozilla.org/warner/2011/11/29/ed25519-keys/
https://blog.mozilla.org/warner/2011/11/29/ed25519-keys/
http://ianix.com/pub/ed25519-deployment.html

[59] D. J. Bernstein, T. Lange, and P. Schwabe, “NaCl: Networking and Cryptography library.”

http://nacl.cr.yp.to/index.html, 2013. [Online; accessed 5-August-2015]. 53, 55

[60] D. J. Bernstein, T. Lange, and P. Schwabe, “The security impact of a new cryptographic

library,” in Progress in Cryptology–LATINCRYPT 2012, pp. 159–176, Springer, 2012. 53

[61] M. Hutter and P. Schwabe, “𝜇NaCl The Networking and Cryptography library for mi-

crocontrollers.” http://munacl.cryptojedi.org/index.shtml, 2013. [Online; accessed

11-August-2015]. 53

[62] M. Hutter and P. Schwabe, “NaCl on 8-Bit AVR Microcontrollers.,” in AFRICACRYPT,

pp. 156–172, Springer, 2013. 53

[63] Bernstein, Daniel J., “Signatures: crypto sign.” http://nacl.cr.yp.to/sign.html, 2012.

[Online; accessed 5-January-2016]. 56

[64] J. H. An, “Authenticated encryption in the public-key setting: Security notions and analy-

ses.” Cryptology ePrint Archive, Report 2001/079, 2001. http://eprint.iacr.org/. 56

[65] Bernstein, Daniel J., “Extending the Salsa20 nonce.” https://cr.yp.to/snuffle/

xsalsa-20081128.pdf, 2011. [Online; accessed 25-May-2016]. 57

[66] D. J. Bernstein, “Cryptography in NaCl,” Networking and Cryptography library, 2009. 57,

58

[67] Various Authors, “Coding rules - Cryptography Coding Standards.” https://

cryptocoding.net/index.php/Coding_rules, 2014. [Online; accessed 28-April-2016]. 58

[68] Terry, Bill, “MPC5500 Watchdog Timer - Configuration and Operation.” http://cache.

freescale.com/files/32bit/doc/app_note/AN2817.pdf, 2005. [Online; accessed 28-

April-2016]. 58

[69] Sogeti Netherlands, “Organisatiestructuur Sogeti Nederland B.V. — juli 2015.”

https://www.sogeti.nl/sites/default/files/media/Organogram%20Sogeti%20juli%

202015.pdf, 2015. [Online; accessed 29-November-2015]. 71

68

http://nacl.cr.yp.to/index.html
http://munacl.cryptojedi.org/index.shtml
http://nacl.cr.yp.to/sign.html
http://eprint.iacr.org/
https://cr.yp.to/snuffle/xsalsa-20081128.pdf
https://cr.yp.to/snuffle/xsalsa-20081128.pdf
https://cryptocoding.net/index.php/Coding_rules
https://cryptocoding.net/index.php/Coding_rules
http://cache.freescale.com/files/32bit/doc/app_note/AN2817.pdf
http://cache.freescale.com/files/32bit/doc/app_note/AN2817.pdf
https://www.sogeti.nl/sites/default/files/media/Organogram%20Sogeti%20juli%202015.pdf
https://www.sogeti.nl/sites/default/files/media/Organogram%20Sogeti%20juli%202015.pdf

Appendices

A Testbed

To test the proof-of-concept implementation, one should have the two devices shown in Figure

12.

Figure 12: The two devices used for testing, the MPC5566EVB on the left and the USB Qorivva

Multilink Interface on the right.

The proof-of-concept implementation can be tested by following these steps listed:

1. Download the MPC crypto code from the GitHub repository at https://github.com/

remyspaan/ecu-update.

2. Download and install the latest CodeWarrior Development Studio for MPC55xx/MPC56xx

from http://www.nxp.com.

3. Download the latest drivers for the USB Qorivva Multilink interface from http://www.

pemicro.com/products/product_viewDetails.cfm?product_id=15320021.

4. Start the CodeWarrior IDE. At the startup dialog click Load Previous Project and load

crypto.mcp into the IDE.

5. Set the target to internal FLASH as shown in Figure 13.

6. Compile and build the code.

7. Select debug, select the appropriate connection port, interface type and target CPU.

8. Start the program with Connect (Reset).

9. The program will now erase and rewrite the flash.

69

https://github.com/remyspaan/ecu-update
https://github.com/remyspaan/ecu-update
http://www.nxp.com
http://www.pemicro.com/products/product_viewDetails.cfm?product_id=15320021
http://www.pemicro.com/products/product_viewDetails.cfm?product_id=15320021

10. When the program is started, enter gotil main in the status window of the debugger and

press return. You will end up at the first line of the main of the program.

11. Debug through the code using the step icons in the tool bar or the shortcuts.

12. Set a breakpoint on the last command in the main.cpp file, the variable should return 0

after a successful attempt.

Figure 13: CodeWarrior IDE building to internal FLASH.

70

B Sogeti Netherlands Organogram

Figure 14: Sogeti Netherlands Organogram July 2015. Source: [69]

71

	Introduction
	Background

	Related Work
	Practical attacks
	Ford Escape and Toyota Prius

	Flaws in Telematics Control Units
	Chrysler and Uconnect
	General Motors' OnStar
	Tesla's Model S
	BMW's ConnectedDrive
	Aftermarket Telematics Control Units

	Proposed Solutions
	Initiatives towards better car security
	Automotive Open System Architecture (AUTOSAR)
	E-Safety Vehicle Intrusion Protected Applications (EVITA)
	Herstellerinitiative Software (HIS)

	Attacker model
	Car Owners
	Engine Tuners
	Security Researchers
	Black Hat Hackers
	Ethical Hackers
	Car Thieves
	Competing Car Companies
	Terrorists
	Summary

	Required Security Properties
	Confidentiality
	Integrity
	Availability
	Authenticity
	Forward Secrecy
	Private Key Protection
	TOCTTOU attack protection
	Randomness
	Summary

	Target Platform and Cryptography
	CPU
	Storage
	Delivery
	Retry Timeout
	Key sizes
	Protocols
	Symmetric vs Asymmetric cryptography
	SHA-2
	Elliptic curve Diffie-Hellman
	Curve25519
	Salsa20
	Poly1305
	Ed25519

	Models
	Key storage
	Host to portal
	Portal to host

	Definitions and Functions
	Definitions
	Keys
	Variables

	Functions
	keyExchange(x,y)
	pack(m)
	unpack(en)
	askUpdate()
	askVersion()
	respondVersion()
	respondUpdate()
	askFirmware()
	sendFirmware(x, y)
	confirmFirmware()

	Implementation
	Proof of Concept
	Memory allocation
	Function and program constants
	Key generation and exchange
	crypto_secretbox
	crypto_scalarmult
	crypto_sign
	Options and optimizations

	Conclusions and future work
	Appendices
	Testbed
	Sogeti Netherlands Organogram

