
R
ad
bo
ud
U
n
iv
er
si
ty
N
ijm
eg
en

Security analysis of the
Paylevenmobile point-of-sale

platform

by

Safet Acifovic

in partial fulfillment of the requirements for the degree of

Master of Science
in Computing Science

at the Radboud University,
to be defended publicly on February 19, 2016 at 11:00.

Supervisor: dr. ir. E. Poll Radboud University Nijmegen
Supervisor: Prof. dr. E. Verheul Radboud University Nijmegen
Supervisor: V. de Vries Fox-IT

An electronic version of this thesis is available at
http://ru.nl/icis/education/master-thesis/theses-archive/.

http://ru.nl/icis/education/master-thesis/theses-archive/

Preface

This thesis is submitted for the degree of Master of Science in Computing Sci-
ence at the Radboud University Nijmegen. The research was conducted under
supervision of dr. ir. E. Poll and Prof. dr. E. Verheul in the department of the
Digital Security group, Radboud University Nijmegen, between February 2015 and
February 2016.

I would like to thank my supervisors, dr. ir. E. Poll and Prof. dr. E. Verheul for
their assistance, ideas, knowledge and time. Also, I would like to thank Fox-IT
and V. de Vries for the provision of their facilities, devices and equipment.

Safet Acifovic
Nijmegen, February 2016

iii

Abstract

This thesis experimentally evaluates the security of the Payleven smartphone-
based point-of-sale (POS) system which consists of a mobile app accompanied by
a small Bluetooth-based Chip & PIN card reader. The wireless and smartphone-
based nature of the Payleven platform prompts the question on how secure it
is. The fact that the payment platform relies on the security of smartphones is a
cause of concern, especially when financial transactions are involved.
The initial part of the research was aimed at understanding the internal work-

ings of the payment platform. The entire data flow of the platform was set out
by intercepting all Internet traffic and all Bluetooth traffic. This way it was pos-
sible to map the data exchange process between the several components of the
payment system and get an insight into its strengths and weaknesses.
Ultimately, the research led to a good understanding of the system. It can

be stated that no major security flaws could be identified nor could an attack
be demonstrated on the system. However, there is room for improvement in
terms of security. One of the findings that stood out was the involvement of
an another party within the system. The actual processing of the payments was
not done by Payleven, but by the payment service provider Adyen. It was even
found that the whole system was developed by Adyen. But the fact that strikes
the most and introduces the real issue is the lack of connection and cooperation
between these two parties. The link between Payleven and Adyen is non-existent
throughout the payment platform; that is to say, it is theoretically possible to
alter Adyen related account information without affecting the Payleven instances
in such way that monetary transactions might be diverted to an adversary. All
this without Payleven or Adyen noticing the discrepancy.
The other issues identified were due to improper security implementations;

for example, the platform lacks proper session expiration management and anti
brute-force mechanisms. Since Payleven is listed as a payment institution, the
lack of extended validated SSL certificates is a serious matter as it makes phishing
attacks easier. Moreover, it was possible to extract the reader’s firmware and gain
knowledge regarding its logic. The firmware also exposed several access codes for
the card reader’s admin menu.

v

Contents

Abstract x

1 Introduction 1

1.1 Motivation. 2

1.2 Research goal . 2

1.3 Background & Relatedwork . 3

1.4 Scope . 4

1.5 Outline . 4

2 Payleven 5

2.1 The Payleven payment platform 5

2.1.1 How does it work? . 6

2.1.2 Business model. 6

2.1.3 Adyen: the payment service provider 7

2.1.4 Schematic overview of the payment platform 8

2.1.5 Certification. 9

2.2 The components of the platform 10

2.2.1 Card reader specifications 10

2.2.2 Personal dashboard . 11

2.2.3 Payleven payment app . 13

2.3 Use cases . 13

2.3.1 Registrationwith Payleven 14

2.3.2 App login and initialization 15

2.3.3 Bluetooth pairing process 16

2.3.4 Accepting Payments . 18

2.3.5 Refunds. 21

2.4 High-level message sequence charts of the various use cases . . 22

2.4.1 MSC: app login & initialization. 22

2.4.2 MSC: Bluetooth pairing process 22

2.4.3 MSC: transaction process 23

2.4.4 MSC: refund process . 24

3 Methodology 25

3.1 Research Approach . 25

3.2 Materials & Setup . 26

3.3 Methods & Tools. 27

3.3.1 Intercepting the Bluetooth traffic 28

3.3.2 Analyzing the network traffic 29

3.3.3 Reverse engineering the Payleven app 31

vii

viii Contents

3.3.4 Analyzing the card reader 33

3.4 ThreatModel . 34

3.4.1 Security Requirements . 34

3.4.2 Assumptions . 34

3.4.3 Attack Points . 34

3.4.4 Attack Vectors . 35

3.4.5 Assets . 37

3.4.6 Attacker Type . 38

3.4.7 Threat Categorization & Attacker Goal 39

3.4.8 Data FlowDiagram . 41

3.4.9 Potential Threats . 42

3.4.10 Potential Attack Scenarios 45

4 Internet Network Analysis 51

4.1 Global overview of the network traffic 51

4.2 Network traffic during app login 55

4.2.1 Web request P1a . 56

4.2.2 Web request P2a . 57

4.2.3 Web request P2b . 58

4.2.4 Logs 1 . 58

4.3 Network traffic during app initialization 59

4.3.1 Web request A1a . 59

4.3.2 Log 2 . 61

4.4 Network traffic during Bluetooth pairing process 62

4.4.1 Web request P3a . 62

4.4.2 Web request A2a . 63

4.4.3 Web request A2b . 65

4.4.4 Log 3 . 67

4.4.5 Web request A2c . 68

4.5 Network traffic during the transaction process 69

4.5.1 Web request P4a . 69

4.5.2 Log 4 . 71

4.5.3 Web request A3a & A4a (Encrypted) 72

4.5.4 Web request P5a . 72

4.5.5 Log 5 . 75

4.5.6 Web request A4b (Encrypted) 76

4.6 Network traffic during the refund process 76

4.6.1 Web request A5a . 76

5 Bluetooth Traffic Analysis 79

5.1 Bluetooth traffic during the pairing process 79

5.1.1 BluetoothMessage 1 . 80

5.1.2 BluetoothMessage 2 . 81

5.1.3 BluetoothMessage 3 . 82

5.1.4 BluetoothMessage 4 . 82

5.1.5 BluetoothMessage 5 . 83

Contents ix

5.1.6 BluetoothMessage 6 . 83

5.1.7 BluetoothMessage 7 . 84

5.2 Bluetooth traffic during the transaction 85

5.2.1 BluetoothMessage 8 . 86

5.2.2 BluetoothMessage 9 . 86

5.2.3 BluetoothMessage 10. 87

5.2.4 BluetoothMessages 11 to 14 87

5.2.5 BluetoothMessage 15 . 88

5.2.6 Encrypted Data Exchange (1) 89

5.2.7 BluetoothMessage 16. 89

5.2.8 BluetoothMessage 17 & 18 89

5.2.9 BluetoothMessage 19, 20, 21 & 22 91

5.2.10 Encrypted Data Exchange (2) 92

5.2.11 BluetoothMessage 23. 92

5.2.12 BluetoothMessage 24, 25 & Encrypted Data Exchange (3) . 95

5.2.13 BluetoothMessage 26, 27 & Encrypted Data Exchange (4,

5) . 96

6 Software & Hardware Analysis 97

6.1 Analyzing the app’s source code 97

6.1.1 Program understanding 98

6.1.2 Client-side encryption key 99

6.2 Analyzing the Chip & PIN card reader 100

6.2.1 Dissembling the card reader 100

6.2.2 Extracting the file system 102

6.2.3 Comments regarding the firmware 104

6.2.4 Accessing the hidden adminmenu 105

7 Results 109

7.1 Scenario 1: altering the Adyenmerchant account. 109

7.1.1 The issue concerning the Adyenmerchant account 109

7.1.2 Attack scenario: diverting transactions 111

7.1.3 Traceability of the attack 112

7.1.4 Feasibility of the attack 113

7.1.5 The ideal approach . 115

7.1.6 Examination of the attack 115

7.2 Scenario 2: altering transaction information. 116

7.2.1 Altering the transaction amount 116

7.2.2 Refunding altered transactions. 116

7.2.3 Faking transactions towards Payleven. 117

7.2.4 Cash backs with fake payment receipts 117

7.2.5 Bypassing location restrictions 118

x Contents

7.3 Scenario 3: triggering illegitimate refunds 119

7.3.1 Brute-forcing the refund authorization PIN 119

7.3.2 Improper session expirationmanagement. 120

7.3.3 Retrieving the login credentials 121

7.3.4 The lack of Extended Validated SSL certificates 121

8 Conclusion 123

8.1 Main findings . 123

8.2 Concluding remarks & recommendations 125

8.3 Future work . 126

Bibliography 127

1
Introduction

The last several years have seen a growing trend towards the use of smartphones as
a platform replacing dedicated hardware. Smartphones are, for example, steadily
supplanting dedicated handheld barcode scanners in retail and logistics. In com-
bination with other hardware, smartphones can even replace specialized tools
such as light and wind meters.1 The versatility and ubiquity of smartphones
has led to a shift in focus from expensive dedicated hardware devices to cheaper
smartphone-based solutions.
However, this trend has implications in terms of security, privacy and relia-

bility. The overall security of smartphone-based applications is highly dependent
on the security of smartphones. In contrast to dedicated hardware, smartphones
form an accessible and widespread platform which makes them a popular target
for malicious attackers. Specifically security sensitive smartphone-based point-
of-sale (POS) systems are of great interest for attackers. A POS terminal is an
electronic device responsible for the processing of card payments in order to fa-
cilitate the selling of goods and services to consumers.
In 2012, researchers of the University of Wisconsin-Madison performed a se-

curity audit on a collection of smartphone-based POS systems [1]. The POS sys-
tems consisted of an inexpensive magnetic stripe reader plugged into the audio-
jack of the smartphone and an accompanying payment application installed on
the smartphone. The smartphone acted as a POS terminal. Their research ex-
posed several software vulnerabilities in the firmware that could be exploited by
malicious mobile applications.
This research sets out to evaluate the security of a comparable but more so-

phisticated smartphone-based POS system: the Payleven payment platform.2 The
difference lies in the form factor and approach. Instead of a audio-jack dongle, the
Payleven payment platform includes a small wireless mobile PIN terminal with a

1Light meter: http://lumu.eu & wind meter: http://vaavud.com
2https://payleven.co.uk

1

http://lumu.eu
http://vaavud.com
https://payleven.co.uk

2 1. Introduction

smart card reader, number pad and small OLED screen. The most prominent fea-
ture is the fact that the mobile terminal uses Bluetooth to communicate with the
associated payment app on the smartphone. The smartphone fulfills primarily an
intermediary function between the mobile terminal and the Payleven back-end,
whereas the dedicated mobile terminal processes the actual card payments.
The wireless nature of the terminal brings up questions about the security and

reliability of the Payleven platform. Wireless communication introduces new at-
tack vectors. Moreover, the fact that the smartphone serves as a relay for confi-
dential information is a cause for concern. Such an approach demands additional
security requirements, especially when financial transactions are involved.

1.1.Motivation

It is of particular interest to determine whether appropriate security measures are
taken to ensure the security and reliability of the Payleven payment platform. In-
secure payment systems can cause financial damage. Additionally, smartphone-
based payment systems attract due to their characteristics, even more the atten-
tion of both security experts and computer criminals.
In the long run, the development of mobile payment systems will rise with

the shift to a more smartphone-centric world. Because alternative form factors
will emerge and introduce new attack vectors, mobile payment vendors need to be
prepared and well-informed as regards the security risks that smartphone-based
solutions entail. Therefore, an extensive security assessment is necessary to bring
forward new insights into the security of such payment systems. Moreover, up to
now, far too little attention has been paid to academic security research of mobile
payment systems.

1.2. Research goal

This research evaluates the security of the Payleven payment platform. In order
to facilitate the security evaluation, several aspects of the platform will be high-
lighted in this research. Both the Bluetooth and wireless network connection
will be inspected. The data flow on these connections will be set out and exam-
ined. Furthermore, the Payleven app and the card reader will also be subjected
to research. Finally, the internal workings of the Payleven payment platform will
become clear and with this a better picture of the system’s security will be reached.
Therefore, the goal of this research is to answer the following research ques-

tions:

Q1: How does the Payleven payment platform works in terms of data
flow and (inter)dependencies between the different components
of the system, and more importantly, in terms of security?

Q2: Based on the insights on the internal workings of the Payleven
payment platform (i.e., first research question), to what extent is

1.3. Background & Relatedwork 3

the payment platform susceptible for malicious attacks targeting
the merchant, the customer or Payleven itself with the aim of
causing monetary or reputation damage, information disclosure
or denial-of-service to the platform?

1.3. Background & Relatedwork

In [1] the researcher performed a security analysis on several smartphone mobile
POS systems. The systems consisted of a audio-jack magnetic stripe reader that
communicates with the associated mobile app. Their main finding is that an
arbitrary application running on the smartphone can permanently disable the
magnetic stripe reader and extract secret cryptographic keys. It was even possible
to gain privileged access needed to upload new firmware. These systems are similar
to the mobile POS system designed by Payleven, but less sophisticated.
At the Black Hat 2014 information security conference in Las Vegas two re-

searchers from MWR Labs demonstrated an attack on a mobile card reader [2]
[3]. They were able to upload Flappy Bird on the reader by inserting an infected
smartcard. The affected card reader is a Miura Shuttle manufactured by Miura
Systems3; the same device used by the Payleven payment platform. However,
since the attack dates back to mid 2014, the possibility exists that the vulnerabil-
ity is already fixed through a firmware update - assuming that a weakness in the
firmware was responsible. Unfortunately, little is known about the attack. MWR
Labs did not provide any details about the attack.

The Payleven payment platform makes use of EMV. EMV is a global technical
standard for payment cards based on chip technology and is developed by Europay,
Mastercard and Visa (or: EMV). EMV transactions are often referred to with the
marketing term ‘Chip & PIN’ since a PIN entry is required to verify whether the
customer is also the card holder. EMV also supports other card holder verification
methods (CVM) such as ‘Signature’ or ‘No CVM required’. In addition, the PIN
may also be verified online (i.e., ‘Online PIN’) by the bank or verified offline (i.e.,
‘Offline enciphered PIN’ or ‘Offline plaintext’ PIN) by the chip on the banking
card. For more information regarding EMV please consult the latest specifications
[4]. This research will not address EMV except for the CVM as it says something
about the internal workings of the payment platform.
In [5] an attack on EMV is described. The attack exploits the fact that some

EMV implementations lack secure counters, timestamps or other algorithms to
supply the unique number used to ensure the freshness of each transaction. Dur-
ing this attack Bond et al. also exposed a flaw in the EMV protocol; the random
number generated by the card reader can easily be replaced by one the attacker
used before when capturing an authentication code from the smartcard.

3http://www.miurasystems.com

http://www.miurasystems.com

4 1. Introduction

1.4. Scope

Although the Payleven payment platform primarily processes EMV transactions
and EMV has shown in the past to be vulnerable [5][6][7][8], this thesis will not
research the specific EMV implementation in the Payleven payment platform.
Further, the aim of this research is not to break the Bluetooth encryption or

the wireless network connection. However, it will be tried intercept Bluetooth
traffic as the wireless Bluetooth connection forms an interesting attack point.

1.5.Outline

Chapter 2 describes the Payleven payment platform; the several functionalities
and components are addressed, and both the registration process and the vari-
ous use cases are elaborated. Further, with each use case a high-level message
sequence chart is given.
Chapter 3 consists of two parts. First, the methodology is given; the methods

used to conduct the research and analyze the results are listed in Section 3.1. The
second part focuses on the threat landscape of the Payleven payment platform.
It discusses the platform’s attack points and potential threats. The chapter is
completed with several potential attack scenarios.
Chapter 4 sets out the Internet network traffic of the Payleven payment plat-

form during the various use cases. The following chapter, Chapter 5, focuses on
the data exchanged back and forth on the Bluetooth connection.
Chapter 6 briefly elaborates on the findings of the analysis on the Payleven

app and the card reader’s firmware. It also examines the hardware of the card
reader.
Chapter 7 highlights a number of issues and shortcomings that have been

identified in the Payleven payment platform. Possible attack scenarios based on
these issues are outlined.
Finally, Chapter 8 concludes the research by restating the most important

findings. It also gives recommendations on future research.

2
Payleven

This chapter introduces the reader to the Payleven payment
platform. Section 2.1 describes the functionalities of the
Payleven payment platform and gives a schematic overview
of the different components of the platform and their in-
teraction. Section 2.2 further examines these components
and Section 2.3 elaborates on the different use cases of
the Payleven payment platform. Lastly, Section 2.4 visu-
alizes through Message Sequence Charts (MSCs) the in-
teraction among the different components and actors of
the Payleven platform during the different use cases.

2.1. The Payleven payment platform

The Payleven payment platform is a mobile card payment system that consists of:

• a smartphone payment app;

• a merchant service area (personal dashboard);

• and a wireless Chip & PIN (EMV) card reader.

The Chip & PIN card reader is a separate mobile device that connects to the smart-
phone via Bluetooth technology and is managed through the Payleven payment
app. The Payleven payment app is available for free for Android and iOS and
works on both smartphone and tablet devices.
The Payleven dashboard can be accessed via the Payleven service website.1 The

dashboard allows merchants to view their revenue and transaction history, pro-
cess refunds and manage sub-accounts.

1service.payleven.com

5

service.payleven.com

6 2. Payleven

2.1.1.Howdoes it work?

The Payleven payment platform is easy to use. In order to use the payment plat-
form, the merchant first needs to register with Payleven. During the registration
process, an account is created with which the merchant can log into Payleven app
and access the personal dashboard. The registration process is discussed in more
detail in Section 2.3.1.
The next phase on the road to accepting payments applies to setting up the

Bluetooth connection between Payleven app and the Chip & PIN card reader. The
merchant first needs log into and initialize the Payleven app to accept payments
before the card reader can be paired to the smartphone2. Once the card reader
is paired to the smartphone through Bluetooth, it is possible to initiate payment
transactions provided that the smartphone has a stable Internet connection via
the cellular network (3G/4G) or WiFi and has location services enabled. The
Bluetooth pairing process is elaborated in more detail in Section 2.3.3.
The merchant can start a payment transaction by entering the transaction

amount into the Payleven app. The transaction request is then communicated
to the card reader via the Bluetooth connection. The customer then enters his
or her banking card and corresponding personal identification number (PIN) to
authorize the transaction request. The transaction process is described in more
detail in 2.3.4. The merchants is also capable of processing refunds of certain
payment transactions.
Overall, the Payleven payment platform can be split into the following use

cases (or, phases of use):

1. Registration process - registering with Payleven;

2. App login process - login into Payleven app;

3. App initialization process - registering the Payleven app for Chip & PIN
(EMV) payments;

4. Bluetooth pairing process - pairing the card reader to the smartphone
that runs the Payleven app;

5. Transaction process - conducting a payment transaction on the Payleven
payment app;

6. Refund process - processing the refund of a payment transaction.

2.1.2. Business model

Payleven charges fees for the processing of payment transactions. The fee rate
is dependent on the merchant’s monthly revenue. The rate starts at 2.75% for
revenues till €2,000 and drops to 1.5% for revenues from €12,000. The flexi-
ble fee applies to all major payment methods such as Mastercard, Maestro, Visa

2The term smartphone also encompasses tablets and other smart devices running Android or iOS

2.1. The Payleven payment platform 7

and V Pay. American Express (AMEX) is excluded from the flexiblee fee; AMEX
payments are always charges 2.75%.
Further, no additional monthly fees are charged. There are no fixed costs

except for the purchase of the Chip & PIN card reader (€80). Merchants only
pay for the service provided by the Payleven payment platform.
The 2.75% fee is applied by default on every transaction. If a lower fee is

applicable due to higher revenues, the difference will be paid out by Payleven at
the beginning of the next month.
The minimum transaction amount accepted by the Payleven payment plat-

form is €1. The maximum amount is €750 for individuals (i.e., merchant ac-
counts using a private bank account) and €10,000 for business accounts (i.e.,
accounts coupled to a corporate bank account).

2.1.3.Adyen: the payment service provider

The payment transactions carried out on the Payleven payment platform are pro-
cessed by Adyen.3 Adyen is a payment service provider (PSP), headquartered in
Amsterdam, The Netherlands. The role of a PSP is to enable (online) shops to
accept electronic payments by a variety of payment methods such as credit cards,
bank transfers and local online payment methods (e.g., iDeal in the Netherlands)
via a single payment gateway. A PSP connectsmerchants tomultiple payment net-
works and financial institutions via one simple payment platform, making them
free of setting up the payment infrastructure themselves and less dependent on
the acquiring banks and card associations (i.e., Mastercard, VISA). Adyen sup-
ports 124 payment methods and is active in 64 countries across several conti-
nents.4

Adyen is an important actor of the Payleven payment platform. However,
from the viewpoint of the merchant, the interference of Adyen within the plat-
form is not directly evident. The presence of Adyen only becomes clear on the
merchant’s bank statement; that is, the merchant is paid out by Adyen as will be-
come apparent in Section 2.3.4. Payleven does not mention Adyen’s involvement
anywhere on their product website or on the personal dashboard. Payleven does,
however, mention the existence of a third party or ‘Acquirer’ in their terms and
conditions5.
The research in thesis makes a few things clear with regard to the involvement

of Adyen within the Payleven payment platform:

• the Payleven app directly communicates with Adyen during the transaction
phase. Transaction data is directly transmitted to Adyen.

• Adyen is responsible for the registration of the Payleven app and the Chip &
PIN card reader during the app initialization and Bluetooth pairing process;

3https://www.adyen.com/nl
4https://www.about-payments.com/knowledge-base/provider/adyen
5https://payleven.co.uk/terms/

https://www.adyen.com/nl
https://www.about-payments.com/knowledge-base/provider/adyen
https://payleven.co.uk/terms/

8 2. Payleven

• Adyen is responsible for the functioning of the card reader; e.g., Adyen pro-
vides the card reader with the necessary firmware updates;

• some essential parts of the Payleven payment app are developed by Adyen;

• the framework for the Bluetooth message exchange is provided by Adyen.

All in all, the actual payment infrastructure of the Payleven payment platform,
the card reader and the core part of the payment app are all fully provided and
maintained by Adyen, whereas Payleven is responsible for the personal dashboard,
customer support and app support (i.e., the issuing of updates).

2.1.4. Schematic overview of the payment platform

Figure 2.1 shows a schematic overview of the Payleven payment platform. The
overview depicts the various components and actors of the system and their con-
nections. The components and actors are numbered, whereas the connections
are labeled with letters.
The Payleven app and the smartphone are considered as two separate compo-

nents, despite the fact that the two are strongly interwoven. This separation is
necessary when describing certain functionalities; e.g., the card reader connects
to the smartphone and not to the app. More importantly, this separation becomes
useful when identifying the threat landscape for the Payleven payment platform.

Figure 2.1: Simple schematic overview of the Payleven payment platform; (1) Customer, (2) Chip &
PIN card reader, (3) the smartphone, (4) Payleven app, (5) merchant, (6) Payleven back-end, (7)
Adyen (PSP).

The components and actors of the Payleven payment platform as shown in
the schematic overview are:

1. the customer;

2. the Payleven Chip & PIN card reader;

3. the smartphone (Android or iOS device);

2.1. The Payleven payment platform 9

4. the Payleven app;

5. the merchant;

6. the Payleven back-end (including the personal dashboard);

7. the PSP (Adyen)

In the overview, each connection denotes a relationship or interaction between
two components or actors. These connection are described as follows:

a) the customer interacts with the card reader by entering his or her banking
card and confirming the payment transaction with the corresponding PIN;

b) the card reader and the Payleven app/smartphone exchange transaction
messages via Bluetooth technology - the Bluetooth connection;

c) the merchant enters a transaction amount on the Payleven app and starts a
payment transaction;

d) the smartphone connects via the cellular network (3G) or WiFi to the In-
ternet - the wireless network connection;

e) the merchant consults the transaction overview on the personal dashboard
via the Payleven service website.

f) the Payleven app communicates with the Payleven back-end;

g) the Payleven app exchanges transaction data with the back-end of the PSP;

h) Adyen and Payleven must share a communication channel with one an-
other. This communication channel is not visible for the outside observer,
therefore it is unknown what data is exactly exchanged between the two en-
tities. However, the existence of such a communication channel is evident;
for example, a refund request is sent to Payleven, but processed by Adyen.

2.1.5. Certification

The Payleven payment platform complies with the following Chip & PIN (secu-
rity) standards: EMV Level 2 and PCI PTS 3.1.6 The EMV Level 2 Type Approval
certification concerns the card reader resident application software.7 It tests the
compliance with card application requirements according to the EMV specifica-
tions. PCI PIN Transaction Security (PTS) standard applies to Point of Interaction
(POI) devices; i.e., the card reader. The standard sets out several security require-
ment against which card readers must comply to in order to obtain the PCI PTS
certification such as: tamper-resistance, use of strong encryption, side-channel
resistance etc [9].

6https://payleven.co.uk/security/
7https://www.emvco.com/approvals.aspx?id=39

https://payleven.co.uk/security/
https://www.emvco.com/approvals.aspx?id=39

10 2. Payleven

Furthermore, according the Payleven product website, all data is encrypted
using SSL/TLS. Sensitive data is never stored on smartphones or the card reader.
Bluetooth traffic is end-to-end encrypted.
Additionally, Payleven is certified with PCI-DSS Level 1. The PCI-DSS standard

provides a baseline of technical and operational security requirements with the
goal to enhance cardholder data security [10].

2.2. The components of the platform

This section elaborates on the three main components of the Payleven payment
platform, that is: (1) the Chip & PIN card reader, (2) the Payleven personal
dashboard and (3) the Payleven payment app.

2.2.1. Card reader specifications

The Chip & PIN card reader used by Payleven is a Miura Shuttle, designed and
manufactured by Miura Systems (UK). The card reader operates on a 32-bit ARM
9 processor in combination with 64MB of RAM and 256MB FLASH memory and
runs on a Linux-based operating system: MSCLE™[11]. The card reader can be
recharged through the micro USB-B connection port or the cradle charging point.
A Li-ion cell is integrated within the card reader. Text output is displayed on a
OLED graphics display with a resolution of 128 x 64 pixels. The key pad is similar
to other PIN entry devices; it consists of 10 numeric keys (0-9), a green enter
key, a red cancel key and a yellow single clear key. The card reader also features
a restore point next to the powerbutton. Pressing the restore point initializes a
factory reset (i.e., user data is wiped). Furthermore, the smart card reader module
complies to ISO 7816 T=0 & T=1. The card reader also supports magnetic swipe
(triple track).
The following figures show the appearance of the Payleven Chip & PIN card

reader.

(a) The front of the
Chip & PIN card
reader showcasing
the OLED graphics
display and the key-
pad.

(b) The bottom side
of the card reader
demonstrating the
card slot.

(c) The powerbut-
ton and the restore
points are located
on the left side of
the card reader.

(d) The USB-B port
is lcoated on the
right side. The cra-
dle charging points
are located on both
sides.

Figure 2.2: The Payleven Chip & PIN reader.

2.2. The components of the platform 11

2.2.2. Personal dashboard

The Payleven personal dashboard can be accessed via the Payleven service website
(service.payleven.com). The dashboard can also be approached via the ‘Lo-
gin’ button on the Payleven product website (payleven.co.uk). Once logged
in, the merchant can perform several actions on the Payleven dashboard, for ex-
ample:

• view the revenue over a certain period;

• sort the revenue per payment method (i.e., credit card, debit card, cash);

• consult the transaction overview;

• look into transaction details (i.e., date and time, transaction ID, payment
ID);

• print and (re)send transaction receipts;

• process refunds;

• manage employees;

• and, register card readers.

Figure 2.3 shows the starting page of the Payleven dashboard. The starting page
showcases the revenues of a certain period. The length of the period can be ad-
justed in the filter menu, as well as the payment method and the transaction
status.

Figure 2.3: The starting page of the Payleven personal dashboard displaying the revenues of the current
month. The Payleven username (right top corner) is redacted for privacy reason.

service.payleven.com
payleven.co.uk

12 2. Payleven

The menu of the Payleven dashboard is located on the left side of the . From
there it is possible to access the transaction overview (transactieoverzicht). Figure
2.4 displays the transaction overview. The transactions are sorted fromnew to old;
the most recent transaction is listed on top. Each transaction entry lists the time
of the transaction, the transaction ID, the name of the employee that accepted
the payment transaction, the payment method, the status of the transaction, and
the transaction amount.
More transaction details can be retrieved by selecting a transaction entry in

the overview. Figure 2.5 displays the transaction details of a payment transaction.
The payment ID (Betalings ID) is now also listed at the bottom of the page. On
the right top corner are four action buttons located (from left to right): (1) print
receipt, (2) send receipt, (3) add receipt as PDF to Dropbox, and (4) start refund
process.

Figure 2.4: The transaction overview on the Payleven dashboard.

Each payment transaction can be provided with a short description in the
Payleven app when it is initiated. This description is then listed on the transaction
details page. Except that for the example in Figure 2.5, the description field was
left empty (stated by ‘Geen beschrijving’).
Furthermore, it is possible to create and add co-operator sub-accounts under

the main account via the employee portal (see ‘Medewerkers’ in menu). Each
sub-account must be provided with a fore- and surname and email address. An
invitation is then sent to the entered email address after which the new employee
can activate the sub-account. The access privileges of the sub-accounts are also
managed via the employee portal. Sub-accounts can be set with the following
access privileges: (1) only access to own transaction list and (2) access to the
whole transaction list and the right to conduct refunds.
The registration of the Chip & PIN card reader is an important part of the

2.3. Use cases 13

Figure 2.5: Transaction details.

registration with Payleven. This step is completed by entering the serial number of
the card reader in the device portal (see ‘Apparaten’) on the personal dashboard.
The card reader is then coupled to the Payleven account. Multiple card readers
can be registered under the same Payleven account. The registration of the card
reader is also covered in Section 2.3.1.

2.2.3. Payleven payment app

The Payleven payment app is available for Android and iOS and works on both
smartphone and tablet devices. The app can be downloaded for free fromGoogle’s
Play Store or Apple’s App Store. The Payleven app offers practically the same
functionalities as the personal dashboard: it offers the possibility to view the
transaction list, (re)send receipts and start refunds. However, it does not offer
the possibility to manage sub-accounts or register card readers (i.e., link to the
Payleven account) . Ultimately, the function of the Payleven app is to initiate and
accept payments.
For security reasons, the Payleven payment platform can only be used in the

country the merchant has registered in.8 Hence, the Payleven app can only be
used with location services enabled.

2.3.Use cases

This section elaborates on the various use cases of the payment platform as listed
in Section 2.1.1 in more detail. The Payleven payment platform covers the fol-
lowing use cases in the following order:

8http://help.payleven.co.uk/why-does-app-need-my-location

http://help.payleven.co.uk/why-does-app-need-my-location

14 2. Payleven

1. First, themerchant registers with Payleven during the registration process.
This process includes (1) filling in company information, (2) setting up the
Payleven merchant account, (3) providing a copy of ID and a recent bank
statement, (4) verification of the bank account and merchant identity, and
(5) linking the card reader to the merchant account;

2. The next use case concerns the app login process. After downloading
the Payleven app from the smartphone’s app store, the merchant logs into
the Payleven app with the Payleven merchant account credentials (specified
during the previous use case);

3. Once logged in, the app needs to be initialized for first use. This action is
performed in the app initialization process;

4. During the Bluetooth pairing process, the Chip & PIN card reader is
paired to the smartphone that runs the Payleven app;

5. In the end, the merchant can start payment transactions (transaction pro-
cess) or process refunds on previous transactions (refund process).

It should be noted that the registration with Payleven is a one-time event. The
same can be stated for the initialization of the Payleven app (although, initializa-
tion of the app is necessary for every fresh installation of the app). The Bluetooth
pairing process needs to be repeated once in a while after a long period of not
being used.
Moreover, these use cases are interdependent; that is to say, in order to process

a transaction, use cases (1), (2), (3) and (4) must be performed first. On the
other hand, in order to process a refund only use cases (1) and (2) are required; it
is not necessary to pair the card reader. Use case (3) only occurs during initial use.
After the app has been initialized, this step is not repeated. However, reinstalling
the app or deleting its memory or cache undoes the initialization. Consequently,
use case (3) needs to be repeated.

2.3.1. Registrationwith Payleven

Themerchant is required to register with Payleven in order to use the Payleven pay-
ment platform. The registration is conducted online via a form on the Payleven
website.9 It is not necessary to already be in possession of the Payleven Chip &
PIN card reader during the registration process, however a card reader is required
to complete the application. The hardware can be ordered afterwards via the
Payleven product website, personal dashboard or purchased at any participating
store.
The account details such as email address and password are specified at the

beginning of the registration process. These details form the login credentials
for the Payleven account. It is not possible to change the email address after
registration.

9https://payleven.nl/registration/?login=email@address.com

https://payleven.nl/registration/?login=email@address.com

2.3. Use cases 15

The Payleven payment platform can only be used by business owners; pri-
vate individuals cannot participate. Hence, business details need to be specified
such as business type (Ltd, partnership, self-employed sole trader/freelancer)10,
registered company name, company number11, trading company name, business
category and the corresponding business registered (trading) address. Business
owners are also requested to specify personal details such as full name, date of
birth and personal address and provide a copy of ID Card for verification.
The last part of the application involves the specification of the bank details

such as account holder name, bank name, IBAN and BIC. The type of the bank
account depends on the business type specified previously. Freelancers may use
their personal bank account. Other business types require a business bank ac-
count, or a bank account shared by all partners.
A Payleven account is created after all information is provided. From that

point, it is possible to access the merchant service area; a personal dashboard that
is accessible through the Payleven service website. The registration with Payleven
is however not completed. What remains is the registration of the Chip & PIN
card reader. During this registration, the card reader is permanently linked to the
merchant’s Payleven account. It is now not possible to use the card reader with
an another Payleven account. Extra card readers may be linked to one Payleven
account, provided that the readers are not already linked to an another Payleven
account. The registration of the Chip & PIN card reader can be completed by
entering the serial number of the reader in the Payleven dashboard. The serial
number of the card reader is located on the back of the device by means of sticker.
Once the card reader is registered, Payleven will start with the verification of

the details specified earlier during the registration process. The bank details are
verified via a bank transfer from Payleven. Figure 2.6 shows the bank entry on the
merchant’s personal bank statement. The entry consists of a unique verification
code in the description field (‘Omschrijving’) and an arbitrary monetary amount.
The verification code (‘PLYN6VPXW9’) and the transfer amount (‘1.32’) must
then be entered on the Payleven dashboard in order to complete the verification
process. In addition, a recent bank statement from the concerning bank account
is requested by Payleven to validate the validity of the bank account; name, date
and the IBAN need to be visible on the statement. The account holder name needs
to match the name of the business owner (i.e., the merchant).

2.3.2.App login and initialization

The merchant can start accepting payments once the registration step is fully
completed; that is, the identity of the merchant is verified, the specified bank
account is verified, and at least one card reader is registered under the Payleven
account. The merchant then only needs to download the Payleven app and log
into the app with the account details specified during the registration process.

10In the Netherlands other business forms exist: eenmanszaak, V.O.F., B.V., N.V., vereniging,
stichtng, maatschap

11Dutch: KVK nummer

16 2. Payleven

Figure 2.6: Bank transfer from Payleven listed on the merchant’s bank statement. The unique veri-
fication code (PLYN6VPXW9) and the transfer amount (‘1.32’) listed within the bank entry must be
entered on the Payleven dashboard to verify the bank account.

The pairing of the card reader and the smartphone is handled via the Payleven
app. However, during the first start up of the Payleven app it is not possible to
initiate a pairing process. This is because the option to start the pairing process is
missing in the account menu. The Payleven app first needs to be ‘initialized’ by
selecting the Chip & PIN payment method in the ‘Payment methods’ option in
the account menu (see Figure 2.7). After selecting and confirming ‘Chip & PIN’,
the Payleven app is activated and ready to accept payments. As as result, a menu
option to to manage card readers appears in the account menu (‘Manage termi-
nals’, see Figure 2.7c). It is now possible to start the Bluetooth pairing process
between the card reader and the smartphone. Note that the app refers to the card
reader as terminal.

2.3.3. Bluetooth pairing process

The Bluetooth pairing process between the card reader and the Payleven app pro-
ceeds as follows:

1. activate Bluetooth on the smartphone;

2. in the Payleven app, select ‘Manage terminals’ in ‘Payment > Account’ (Fig-
ure 2.8a);

3. press the ‘0’ key on the card reader for 5 seconds to activate Bluetooth. The
message ‘Accept new device’ will appear on the card reader;

4. the Payleven app will display the message that a card reader has been found:
‘Terminal found’;

5. a Bluetooth pairing request will appear on both devices. Figure 2.8b shows
the pairing request on the smartphone. Numeric comparison is used as the
pairing method. Both the card reader and the smartphone will display a 6-
digit numerical passkey. The devices are paired by confirming that the two
passkeys are the same on both devices;

2.3. Use cases 17

(a) The account menu of
the Payleven app prior to
the app initialization. A
menu option to pair the
Chip & PIN card reader is
missing.

(b) The app is activated
after selecting the Chip &
PIN payment method.

(c) The account menu af-
ter the Chip & PIN pay-
ment method was selected.
An option to manage the
card readers is now listed
in the menu (i.e., ‘Manage
terminals’).

Figure 2.7: ‘Initialization’ of the Payleven app by selecting the Chip & PIN payment method.

6. the card reader is then being registered. This process takes some time (Figure
2.8c);

7. the card reader is then ready to use.

It should be noted that the above-mentioned steps only cover the Android
version of the Payleven app. The Bluetooth pairing process is slightly different
on iOS. Also worth mentioning, the Bluetooth pairing process covers a standard
pairing procedure and is not specific for the Payleven Chip & PIN card reader or
the Payleven app.
The Bluetooth pairing process can also take place outside of the Payleven app.

That is to say, the process can be initiated via the Bluetooth settings menu in An-
droid provided that the initial pairing process has been conducted via the Payleven
app. The above-mentioned steps cover the pairing process via the app.
Normally, the Bluetooth pairing request must be confirmed on both devices

by pressing the ‘Pair’ button on the smartphone and the green enter key on the
card reader. However, interestingly, when the pairing process is initiated in the
Payleven app, pressing only the green enter key on the card reader is sufficient
to confirm and complete the pairing request. When initiated via the Android
settings menu, the pairing request must be confirmed on both devices.

18 2. Payleven

(a) The Payleven app is
searching for a Chip &
PIN card reader (termi-
nal). Bluetooth on the
card reader is activated by
pressing the ‘0’ key for 5
seconds.

(b) Bluetooth pairing re-
quest listing the passkey.
The same key is also dis-
played on the card reader.
The merchant must then
confirm whether the two
passkeys are the same.

(c) The Chip & PIN card
reader is then being reg-
istered after the pairing
request has been con-
firmed. The registration
process may take a few
moments.

Figure 2.8: The Bluetooth pairing process.

2.3.4.Accepting Payments

Payments can be carried out once the Bluetooth pairing process has been com-
pleted. Figure 2.10a shows the payment start screen of the Payleven app. The
numeric keypad consists of 12 keys and is used to enter a monetary amount. It
is furthermore possible to add an image and description to the payment. The
Payleven app also provides the possibility to scan barcodes.

The ‘Continue’ button is enabled once an amount is entered, as can be seen in
Figure 2.10b. The minimum transaction amount is €1. The payment transaction
is started at the moment the ‘Continue’ button is pressed. The merchant can
then choose whether to conduct the payment process via the Chip & PIN card
reader or in cash. Payments done in cash can also be consulted in the Payleven
dashboard. The Payleven platform then primarily serves as an administrative tool.
By selecting the Chip & PIN card reader, the payment request is generated and
sent to the card reader. The Payleven app will then enter the transaction stage
as shown in Figure 2.10c, 2.10d and 2.10e. On the other end, the customer is
prompted to insert a bank card into the card reader and confirm the payment
transaction as demonstrated in Figure 2.9a and 2.9b.

2.3. Use cases 19

(a) The display of the card
reader shows the trans-
action amount with the
message ‘Pas invoeren’.
(English: ‘Insert card’).

(b) The card reader asks for
the PIN when the payment
card is inserted. The pay-
ment type card is also dis-
played; i.e., Maestro. (En-
glish: ‘Enter PIN’)

(c) The card readers shows
the message that the pay-
ments has been success-
fully completed. (English:
‘You have paid. Remove
card’.)

Figure 2.9: The Chip & PIN card reader during the transaction stage.

Figure 2.9 showcases the different stages of the Chip & PIN card reader during
the transaction. The card reader will prompt the customer to insert a payment
card and enter the corresponding PIN in order to authorize the payment trans-
action. After the correct PIN has been entered, the card reader will process and
authorize the payment and the transaction amount will be debited from the cus-
tomer’s bank account. Figure 2.10f and 2.9c demonstrate a successful transaction
on respectively the Payleven app and the card reader. From there, the merchant
can choose to send the receipt to the customer by entering the customer’s email
address or to skip the receipt and to initiate a new payment.
Figure 2.11 shows the bank entry of the debited transaction amount on the

customer’s bank statement. The description of the bank entry states the mer-
chant’s company name and its location preceded by the three letter code ‘PLV’.
The letter code is an abbreviation for Payleven and indicates that the transaction
was conducted on the Payleven payment platform.

Figure 2.11: The debited transaction amount as seen on the customer’s bank statement.

Figure 2.12 shows the bank entry of the credited transaction amount on the
merchant’s bank statement. The credited amount is €0.97; the remaining €0.03
form the commission fee of the Payleven payment platform (2,75% rounded up).

20 2. Payleven

(a) The payment start
screen in the Payleven
payment app.

(b) A payment transaction
of €1 is initiated.

(c) The Payleven app
searching for the card
reader.

(d) The payment request is
sent to the card reader. The
customer is asked to insert
the banking card.

(e) The customer is asked
to enter his or her PIN on
the card reader.

(f) The screen following a
successful payment trans-
action.

Figure 2.10: Payment transaction in the Payleven app.

It should be noted that the transaction is not directly credited on the merchant’s
bank account. It takes approximately 1 to 3 days for the transaction to be pro-
cessed and paid out. According to Payleven, payouts are performed on Tuesdays,
Thursdays and Fridays.

As can be seen in Figure 2.12, the transaction is paid out by STG ADYEN.
The entry does further not list the customer’s bank account number or bank card
number.

2.3. Use cases 21

Figure 2.12: The credited transaction amount as seen on the merchant’s bank statement.

2.3.5. Refunds

The Payleven payment platform offers the possibility to refund payments. Refunds
can be processed both via the personal dashboard and the Payleven app. Initially,
the refund option is disabled. To activate the possibility to process refunds, a
numeric 4-digit refund authorization PIN needs to be set up first for security
purposes. This PIN can be created via the personal dashboard or the Payleven
app. When a refund action is initiated, the merchant is prompted to enter the
PIN to authorize the refund. It is furthermore possible to change the refund
authorization PIN or disable the refund option at any time. The current PIN is
then asked for confirmation.
Figure 2.13 shows the refund of a transaction in the transaction overview on

the personal dashboard. The refunded transaction is grayed out and the transac-
tion status holds a yellow circle under the ‘Status’ column.

Figure 2.13: The refund of a transaction in the transaction overview.

As can be seen in Figure 2.14, the refund entry is also added in the payment
history in the transaction details portal of the refunded transaction. Note that
the refund transaction holds a different payment ID. Also, refunds can only be
performed on transactions that are not paid out (i.e., credited on the merchant’s
bank account). Transactions that are already successfully paid out cannot be
refunded via the Payleven platform.

Figure 2.14: The refund (‘Terugbetaling’) as shown in the payment history (‘Betalingsgeschiedenis’)
in the transaction details portal.

22 2. Payleven

2.4.High-levelmessagesequencechartsofthevarious

use cases

This section visualizes the interaction among the different components of the
Payleven payment platform during the various use cases on the basis of Message
Sequence Charts (MSCs). These charts also give a rough outline of the observed
communication with Payleven and Adyen; the MSC’s do not set out the exact
contents of the message exchange, but rather indicate when a particular commu-
nication channel with Payleven or Adyen was established. A more detailed view
on the network traffic is given in the network analysis in Chapter .

2.4.1.MSC: app login & initialization

Figure 2.15 shows theMSC of the app login and app initialization process. The ar-
rows P1 and P2 represent the message exchange with Payleven respectively before
and after a successful login. A1 states the message exchange with Adyen.

Figure 2.15: High-level message sequence chart of the app login and app initialization process.

• P1 and P2 are elaborated in more detail in Section 4.2;

• A1 is examined in Section 4.3.

2.4.2.MSC: Bluetooth pairing process

Figure 2.16 visualizes the MSC of the Bluetooth pairing process. The messages are
numbered according to the steps listed in Section 2.3.3. The Bluetooth connection
between the Payleven app and the Chip & PIN card reader is denoted by a gray
area. The Bluetooth message exchange is discussed in Chapter 5.

2.4. High-level message sequence charts of the various use cases 23

P3 and A2 represent the network traffic during the Bluetooth pairing process.
This network communication takes place during the registration of the Chip &
PIN card reader after a successful pairing request (see Figure 2.8c).

• P3 is discussed in more detail in Section 4.4;

• A2 is also highlighted in Section 4.4.

Figure 2.16: High-level message sequence chart of the Bluetooth pairing process.

2.4.3.MSC: transaction process

Figure 2.17 presents the MSC of the transaction process. The chart also covers
the interaction among the customer and the Chip & PIN card reader. The gray
area represents the Bluetooth message exchange between the smartphone and the
card reader. A detailed description of the Bluetooth traffic is given in Chapter 5.
The network traffic during the transaction phase can be divided into four parts:

• P4 represents the communication with Payleven at the start of the transac-
tion;

• A3 includes the message exchange with Adyen after the banking card has
been inserted by the customer;

• A4 states the message exchange with Adyen after the PIN has been entered
by the customer;

• P5 represents the communication with Payleven at the end of the transac-
tion.

A detailed description of the network traffic during the transaction process is
given in Section 4.5.

24 2. Payleven

Figure 2.17: High-level message sequence chart of the transaction process.

2.4.4.MSC: refund process

Figure 2.18 shows the interaction among the merchant, the Payleven app and
the Payleven back-end. What is interesting in this chart is the absence of Adyen.
During the refund process, the Payleven app provides the Payleven back-end with
the refund details and the refund authorization PIN.

Figure 2.18: High-level message sequence chart of the refund process.

Overall, this observation indicates that Payleven maintains an internal con-
nection with Adyen. The Payleven back-end probably forwards the refund request
to Adyen after validating the refund authorization PIN. The network traffic dur-
ing the refund process is elaborated in Section 4.6 in more detail. Unfortunately,
it is not possible to monitor the internal traffic between Payeven and Adyen.

3
Methodology

This chapter comprises two parts. The first part describes
the research approach, the used materials and the applied
researchmethods. The second part outlines the threat land-
scape of the Payleven payment platform including the sev-
eral attack points and attack vectors.

3.1. Research Approach

This research evaluated the information security of the Payleven payment plat-
form. The security evaluation was not determined by a general roadmap, but was
mainly based on a flexible ad hoc approach. That is to say, the research direc-
tion was continuously subject to change due to shifting factors as the research
unfolded and new findings were uncovered.
This chapter describes the methodology, methods and tools employed to eval-

uate the information security of the Payleven payment platform. The security
evaluation was aimed at:

1. providing useful insights about the workings of the payment platform - a
system evaluation;

2. and, evaluating the payment platform based on these insights against a set
of security requirements and from the point of view of a malicious attacker.

The first objective automatically contributes to the feasibility of the second objec-
tive; a thorough understanding of the underlying system is required in order to
perform a useful security evaluation.
Correspondingly, the system evaluation was split intomultiple research stages:

1. analysis of the Bluetooth traffic;

2. analysis of the network traffic;

25

26 3. Methodology

3. analysis of the Payleven smarthphone app;

4. analysis of the card reader hardware;

5. and, analysis of the card reader firmware.

Each separate research stage contributed to a better understanding of the Payleven
payment platform. The analysis covered the information flow and the underlying
(infra)structure of the platform, and was performed with information security in
mind. Section 3.3 describes the methods and tools that were used to apply the
analysis on the above-mentioned sub-systems.
Furthermore, a proper security evaluation requires the mindset of an attacker.

Therefore, section 3.4 lays out the threat landscape of the Payleven payment plat-
form. This includes the identification of:

• possible entry points (What should be attacked?);

• attack vectors (How could the system be attacked?);

• assets (What should be protected?);

• attacker types (Who could attack the system?);

• and, attack goals (Why should the system be attacked?).

The section also provides a list of possible threats relevant for the Payleven pay-
ment platform.
In the end, the security evaluation consisted of (1) scrutinizing the Payleven

payment platform and (2) identifying the relevant threat model, and (3) com-
bining the knowledge obtained in the last two points to draw a conclusion with
respect to the information security of the Payleven payment platform.

3.2.Materials & Setup

In terms of material selection and research setup, the global setting was mostly
already predefined by the Payleven payment platform. The materials consisted of:

• two Payleven Chip & PIN card readers;

• one rooted Galaxy Nexus (Samsung GT-I9250) with Android 4.3;

• the Payleven payment app (version 2.23, May 2015);

• one laptop running OSX and Santoku Linux (VM);

• and, one ING Maestro debit card.

In order to inspect the insights of the card reader, it has been taken apart.
This rendered the card reader unusable. Therefore, an extra reader was purchased.
Moreover, the two card readers had the same model number: M006-PROD03-
V2-6. Both devices were purchased in a physical store in the Netherlands. The

3.3. Methods & Tools 27

firmware and OS version of the tested card readers were respectively ‘adyen-pl-
v1_32p7’ and ‘M000-OS-V7-1’. This information was not accessible via the card
reader, but required the read-out of network traffic.

The smartphone used in the setup was a Galaxy Nexus (Samsung GT-I9250)
running Android 4.3. Further information on the smartphone is listed in Table
3.1.

Baseband version I9250XXLJ1
Kernel version 3.0.72-gfb3c9ac
Build number JWR66Y

Table 3.1: Information on the Samsung Galaxy Nexus

The laptop served several purposes: first, it was used to access the smartphone
to read log files, enter the file system and (un)install applications; second, it was
used to perform analyses on the smartphone and the Payleven app; and last, it
was used as a network proxy for the Payleven payment platform.

As regards the banking cards, the use of multiple brands of cards (e.g., Mas-
tercard, VISA) from different Dutch banks (e.g., ING, ABN AMRO, SNS) did not
affect the use and behavior of the Payleven payment platform. Therefore, all tests
were conducted with one Maestro card from ING.

The final research setup for Payleven payment platform is shown in Figure 3.1.

Figure 3.1: The test setup: (from left to right) the ING Maestro banking card, the Payleven Chip &
PIN card reader and the Galaxy Nexus with the Payleven app.

3.3.Methods & Tools

This section describes the applied methods and the tools used to conduct the
research.

28 3. Methodology

3.3.1. Intercepting the Bluetooth traffic

The wireless Bluetooth communication channel between the Chip & PIN card
reader and the smartphone is themost prominent feature of the Payleven payment
platform. It serves for the exchange of security-sensitive transaction data, while
on the same time the wireless nature of the communication channel introduces
new attack vectors. It is therefore not difficult to imagine why an attacker would
target the Bluetooth connection. The impact of such an attack in analyzed in 3.4
However, monitoring the Bluetooth communication channel is not an easy

task. Features such as frequency hopping and data whitening add to the diffi-
culty of eavesdropping. Furthermore, the use of SSP (i.e., number comparison)
indicates end-to-end encryption.
This research aimed at investigating the feasibility of passively eavesdropping

the Bluetooth connection between the Chip & PIN card reader and the smart-
phone. To do so, a setup comprising a Ubertooth One had been designed. Uber-
tooth One is an open-source Bluetooth hardware platform directed at testing and
monitoring Bluetooth traffic [12]. It is the first affordable Bluetooth monitoring
platform: the price of a Ubertooth One is ranged around $1201. Other commer-
cial tools cost the tenfold. Figure 3.2 demonstrates the Ubertooth One hardware.
More information regarding the Ubertooth One hardware and the corresponding
software can be found at the Github page of the Ubertooth project [13].

Figure 3.2: Ubertooth One

Unfortunately, the Ubertooth One setup was not very successful as it soon
became apparent. The setup was capable of capturing some Bluetooth packets
exchanged between the card reader and the smartphone; however, these packets
only had a length of 14 bytes and contained no application data, while it was
certain that the card reader and the smartphone exchanged data. The packets only
listed the last part of the source address as can be seen in Figure 3.3. Wireshark
was used to read-out the captured Bluetooth traffic [14].

Figure 3.3: Bluetooth packets captured with the Ubertooth One setup listed in Wireshark.

As it turned out later, these nondescript packets could be explained by the
fact that the Ubertooth One does not support Bluetooth EDR [15][16]. Both the

1http://hakshop.myshopify.com/products/ubertooth-one

3.3. Methods & Tools 29

card reader and the smartphone could already have agreed on an EDR connec-
tion. Ubertooth is then only capable of monitoring the low speed headers for the
packets sent over EDR; it cannot switch mode to capture EDR data.
It could be concluded that eavesdropping an already established Bluetooth

connection is practically impossible to due to lack of capable hardware equipment.
Furthermore, even if Ubertooth was capable of capturing all packets exchanged
between the card reader and the smartphone, the experiment would soon come
up against encrypted application data.
Therefore, the setup of the experiment had been slightly adjusted. In order to

understand the underlying structure of the Payleven payment platform, it was of
great importance to figure out what data is exactly exchanged between the card
reader and the Android smartphone. In effect, the focus of the setup had been
shifted from eavesdropping the in-air Bluetooth connection to monitoring the
Bluetooth traffic on the connection points (i.e., the Android device itself).
Fortunately, Android offers the possibility to log the Bluetooth traffic on the

device. This option is available in the Developers option menu as of Android
version 4.4 under ‘Enable Bluetooth HCI snoop’. When enabled, Android will
capture the Bluetooth traffic on the Host Controller Interface (HCI) of the device
in question. HCI is a standardized communication channel between the host
(i.e., Android) and the Bluetooth integrated circuit. The advantage of capturing
traffic on the HCI is that the Bluetooth-encryption has not been applied yet, thus
any data captured on the HCI is displayed in plaintext. This makes it possible to
read-out any information sent over Bluetooth between the card reader and the
smartphone.
The Galaxy Nexus used in this setup was provided with Android 4.3, which

means that the HCI snoop option was missing in the Developers option menu.
Luckily there is an Android app available that offers exactly the same functionality:
Bluetooth HCI Logger [17]. The only downside of the HCI Logger app is that it
requires root access, whereas the native HCI snoop option in the Developers menu
does not. Moreover, the app does not work on every Android smartphone - it did,
however, work properly on the Galaxy Nexus.
HCI Logger writes the Bluetooth traffic in a CAP (Network Packet Capture)

file. Every time the HCI Logger or Bluetooth is enabled/disabled on the Android
smartphone, a new CAP-file was created. These files were located in the file system
(that is sdcard/rsap) of the Android operating system. After extracting the
CAP-files from the Android device, it was possible to read out the Bluetooth data
traffic in Wireshark.

3.3.2.Analyzing the network traffic

In order to get a glimpse of the data flow of the Payleven payment platform, a
simple setup to monitor the network traffic of the platform had been designed.
The experimental setup made use of the Wireshark packet analyzer software (ver-
sion 1.12.6) and a laptop. The laptop running Wireshark was connected to the
same WiFi network as the Payleven payment platform with the intention to cap-

30 3. Methodology

ture the network traffic of the platform. The experiment provided information
on what web addresses the Payleven app connected to. However, as expected, the
contents of the captured network packets were inaccessible due to the use of a
secure channel (TLS).
Therefore, the setup had been modified to get around this protection. A pos-

sible way to do so, is by deploying a man-in-the-middle (MITM) attack on the
network connection between the Payleven app and the Payleven back-end. This
can be achieved using a proxy. The proxy used in this setup was Burp Proxy [18].
Figure 3.4 demonstrates the experimental MITM setup. The idea behind the

MITM setup is as follows:

• the proxy machine presents a self-generated certificate to the Payleven app
pretending to be the genuine Payleven back-end;

• the Payleven app falls into the trap and establishes a secure channel with
the proxy machine while thinking that the connection is established with
the Payleven back-end;

• the Payleven app sends data over the secure channel to the proxy machine;

• the proxy machine has access to this data as the self-generated certificate
was used to establish the secure channel;

• the proxy machine establishes a secure channel with the Payleven back-end
using the original certificate and forwards the data over the secure channel;

• responses from the Payleven back-end are forwarded to the Payleven app;

• both the Payleven app and the Payleven-back-end do not notice that a third
party is engaged in the communication.

Figure 3.4: MITM setup

The self-generated certificate is similar to the original Payleven certificate; both
hold the same name (i.e., ∗.Payleven.com). However, the self-generated certifi-
cate is signed by Burp Proxy, while the original certificate is signed and issued by a
known certificate authority (Comodo). In order to ensure that the self-generated

3.3. Methods & Tools 31

certificate is trusted by the Payleven app, the Burp Proxy root certificate needs to
be added to the smartphone (i.e., Android’s trust-store). This way, the Payleven
app has no reason to reject the certificate provided by the proxy machine; after all,
the smartphone considers Burp Proxy now as a trustworthy certificate authority.
Unfortunately, this experimental setup did not lead to the desired results. The

certificate provided by the proxy machine was rejected. The Payleven app refused
to establish a connection using the self-generated proxy certificate. A plausible
explanation for this would be the use of certificate pinning. Typically, certificates
are validated by checking the signature hierarchy; however, it is also possible to
only accept a specific set of certificates. With certificate pinning, the received
certificate is matched against a set of expected certificates. The certificate is then
accepted if it complies with the expectations. It should be clear that the Payleven
app utilizes this technique. The Payleven app knowns in advance to which hosts
it will talk to, therefore it can apply certificate pinning to enhance the security.
Luckily, it is possible to disable certificate pinning on a rooted Android de-

vice by installing Cydia Substrate2 and Android-SSL-Trustkiller.3 Android-SSL-
Trustkiller applies various hook methods in order to bypass certificate pinning by
accepting any certificates. Following the installation of these two apps on the
Android device, the Payleven app started accepting the self-generated proxy cer-
tificate. TheMITM setup described in Figure 3.4 ended up being effective and pro-
vided insights into the contents of the messages exchanged between the Payleven
app and the Payleven back-end.

3.3.3. Reverse engineering the Payleven app

The Payleven payment app is an essential part of the Payleven payment plat-
form. It enables the communication between the Chip & PIN card reader and
the Payleven back-end and it transforms the Android smartphone into a hatch for
confidential information. Hence, this research also focused on the Payleven app
and the Android OS. The research consisted of two parts: in the first part, the app
was reverse-engineered and the source code was manually evaluated, and in the
second part, static-analysis tools were applied on the Payleven app. Furthermore,
the possibilities of Android hooking and app manipulation were investigated.
Android applications are distributed in the APK package file format. The APK

is an archive file built on the ZIP file format and contains all the application’s
code, files, resources, assets and certificates (similar to the JAR file format). The
core of the application is contained in classes.dex. The DEX file contains
all the classes of the application compiled into the DEX file format, a format
understandable by the Dalvik virtual machine.
Figure 3.5 demonstrates the toolchain used for reverse engineering the Payleven

payment app. Firstly, the APK of the Payleven app was extracted from the Android
device. There are several ways to get an APK file; for example, it is possible to

2https://play.google.com/store/apps/details?id=com.saurik.substrate&hl=en
3https://github.com/iSECPartners/Android-SSL-TrustKiller

32 3. Methodology

download the APK from the Playstore using the ‘APK Downloader’ plug-in4 for
Google Chrome or extract the APK from the SD-card of the device using the ‘APK
Extractor’ Android app5. It is also possible to use the Android Debug Bridge (adb)
command line tool to pull the APK from the Android device.

Figure 3.5: Android toolchain for reverse engineering the Payleven payment app.

Secondly, the APK file was unpacked using Apktool6. Apktool is a tool for re-
verse engineering Android binaries. It decodes resources to nearly original form
and makes it possible to view smali source code. Baksmali/smali is the disassem-
bler/assembler for the DEX format and supports the full functionality of the DEX
format7. It transforms DEX machine code into a more readable assembly format.
Lastly, the DEX file (i.e., classes.dex) was decompiled into a JAR file con-

taining Java class files. The tool used for this was dex2jar.8 JAD was used for
decompiling the class files into java source code.9

Android Hooking

This research also aimed at investigating the possibilities of Android Hooking and
its implications on the Payleven app. With Android Hooking, it is possible to
hook certain method calls in runtime and replace them with custom methods.
This way, the behavior of the Android app can be altered in a malicious way.
Xposed is a framework that enables Android Hooking.10 Initially, Xposed is

a base-system focused on the use of third-party modules (add-ons) which can
change the behavior of the Android system and apps.

4https://chrome.google.com/webstore/detail/apk-downloader/cgihflhdpokeobcfimliamffejfnmfii
5https://play.google.com/store/apps/details?id=com.ext.ui&hl=nl
6https://ibotpeaches.github.io/Apktool/
7https://github.com/JesusFreke/smali
8https://github.com/pxb1988/dex2jar
9http://www.javadecompilers.com/jad
10http://repo.xposed.info

3.3. Methods & Tools 33

3.3.4.Analyzing the card reader

The analysis of the card reader consisted of two parts: firstly, the hardware of
the card reader was investigated; and secondly, the firmware was subjected to
examination. As regards the hardware, the card reader was torn apart and its
insides were investigated. The firmware, on the other hand, needed first to be
extracted from the card reader before any research could be done. However, this
caused some struggles because plugging in the card reader on a USB port on a
computer did not immediately reveal its file system. The reader was not recognized
as a USB device. It was just charging. What then seemed to help was to restart
the card reader while being plugged-in. During startup, the card reader appeared
in a pop-up on the screen asking permissions to be mount (only Linux, did not
work on OSX). Unfortunately, mounting the device still did not give any access
to its file system and the firmware. Two tools needed to be applied:

• dd - is a command-line utility tool to copy and convert files [19];

• Binwalk - is a tool for analyzing and extracting firmware images [20].

The dd tool was used to copy the file system located on the card reader into an
ISO-file. Binwalk was then used to analyze the data contained within the ISO-file.
This way it was possible to identify and extract the firmware of the card reader.

34 3. Methodology

3.4. ThreatModel

This section describes the threat landscape for the Payleven payment platform.

3.4.1. Security Requirements

Before the threat landscape can be defined, it is first useful tomake a list of general
security requirement relevant to the Payleven payment platform. The following
requirements are of importance to the payment platform:

• integrity of data11, the card reader and the Payleven app;

• confidentiality of data;

• authenticity of data;

• availability of data, the card reader and the Payleven app;

• and, non-repudiation of transactions.

A violation of one of these requirements may cause damage to the Payleven pay-
ment platform and all involved parties.

3.4.2.Assumptions

The following assumptions were taken into account when defining the threat
landscape.

• The attacker has full access to the (wireless) communication;

• The attacker has access to the card reader (slot);

• The attacker has access to the Payleven app;

• The attacker has access to the smartphone;

• The attacker has no access to the Payleven back-end, the database(s) and
the internal connection with Adyen and other financial situation. The back-
end is a black box. The attacker has however access to the Payleven personal
dashboard.

3.4.3.Attack Points

Attack points define the interface through which potential attackers can interact
with the application or supply it with malicious data. Several potential attack
points can be identified in the Payleven application overview shown in Figure
3.6. These attack points are listed in Table 3.2.

11all data processed by the Payleven payment platform

3.4. ThreatModel 35

Figure 3.6: Application overview of the Payleven payment platform.

Attack Point

1
• Smart card slot
• Communication channel between the smart card and card reader

2
• Card reader hardware
• Card reader firmware

3
• The Bluetooth connection
• The Bluetooth pairing process

4
• Smartphone hardware
•Mobile operating system
• Payleven payment app

5
•WiFi connection
• Cellular network connection

6
• Payleven back-end servers and databases
• Adyen service provider servers

Table 3.2: Potential attack points for the Payleven payment platform.

3.4.4.Attack Vectors

Multiple potential attack vectors can be devised based on the attack points listed
in Table 3.2. An attack vector is a path or method that an attacker could use to
attack the target.

Malicious Hardware

Potential attackers could add malicious hardware skimmers to individual Chip
& PIN card reader in order to gather PIN data or alter transaction information.
The smartphone itself could also be modified - although this is not very com-
mon. Hardware skimmers could be inserted whenever the card reader is left
unattended. This can even take place before the hardware actually reaches the
merchant. However, the form factor of the hardware could form a obstacle to at-
tackers. It increases the difficulty of developing and installing unobtrusive hard-
ware skimmers.

36 3. Methodology

Attackers could target the communication channel between the smart banking
card and the card reader. As a result, confidential card details and PIN could be
disclosed.12

Attackers could also add probes into the electronic circuit to capture keystrokes
or display incorrect data on the OLED graphics display. TheWhat You See IsWhat
You Sign principle is then violated; the display shows an different amount than
the amount being debited by the merchant.
Because of the relative low price of the Payleven Chip & PIN card reader (ca.

€80), attackers may choose to perform replacement attacks, in which the legit-
imate card reader is replaced with a malicious one. Although it is very easy to
replace the card reader - it is after all completely wireless and mobile - the effec-
tiveness and feasibility of such attack is uncertain given that the Payleven Chip &
PIN card reader is linked to a specific Payleven user account during the registra-
tion with Payleven.

Malicious Firmware

The firmware is essential for the functionality and security of the Chip & PIN
card reader. The exploitation of a vulnerability by an attacker could fully comprise
the card reader and could cause significant damage to all involved parties. The
firmware can be attacked through the four entry points of the card reader: (1)
via the USB-B port, (2) via the Bluetooth component (e.g., via a malicious app),
(3) via the smart card slot (e.g., with an infected smart card), and (4) via the
keypad. The card reader may also be attacked through the JTAG interface - at
least if present on the device - that allows full debugging control of the card reader.
JTAG is a standardized hardware access point for testing purposes [21].

Smartphone Software

Various attack vectors can described in the context of smartphone software. At-
tackers may develop malicious mobile applications that alter the behavior of the
Payleven app. These malicious apps could, for example, pass on sensitive infor-
mation (e.g., read from local storage), modify transaction information or spoof
transactions. The possibilities are comprehensive. The only obstacle is getting
the malware on the users’ mobile device. However, mobile users are often easily
tricked into installing (fake) malicious mobile applications.
Attackers may also develop a fake Payleven app (so called rogue app) that

phishes login credentials or rewires the money from fake transactions to a mali-
cious destination account. In order to be able to take advantage of faults in the
Payleven payment platform, attackers first need to obtain knowledge of the logics
behind the payment app. This can be achieved in three ways: (1) decompiling
the corresponding installation file and analyzing the source code, (2) testing sev-
eral usage scenario in order to induce faults and find inconsistencies, and (3)
fuzz-testing the mobile app. Once a vulnerability is found, it can be exploited.
These exploits can be then used to alter the behavior of the app. Additionally,
attackers may also apply hooking (catch and manipulate method calls) or abuse

12The PIN can only be intercepted when Static Data Authentication is used.

3.4. ThreatModel 37

vulnerabilities in the mobile operating system to alter the behavior of the Payleven
app.

Network

The wireless nature of the Payleven payment platform makes it susceptible to
remote attacks. The smartphone and the card reader could be externally manip-
ulated to disrupt the correct behavior of the Payleven payment platform. Fur-
thermore, an attacker could eavesdrop the wireless communication channel and
intercept sensitive information (i.e., passive attack). The attackermay also choose
to actively alter messages containing transaction data (i.e., active attack).

3.4.5.Assets

Assets are the reason that threats exist. Attacks always target the assets of an
information systems. In order to get a better view on the threat landscape, it is
important to first identify the assets of the Payleven payment platform. The assets
are listed in Figure 3.3.

Assets Description

A1 User Login Credentials The credentials that a user will use to log into
the Payleven app or dashboard.

A2 Merchant Data Personal information of themerchant account,
such as name and bank account information.

A3 Customer Data Personal information of the customer.

A4 Card Data Information stored on or related to the bank-
ing card, such as bank account number, card
holder name, expiration data etc.

A5 PIN Data Information exchanged between card and ter-
minal, and card and bank server, such as the
PIN and the EMV cryptograms.

A6 Money Money involved in transactions conducted by
the Payleven payment platform.

A7 Availability The availability of the Payleven payment plat-
form. The platform should be available 24
hours a day and should always be accessible by
all Payleven users.

A8 Login Session The login session of a legitimate Payleven user
to the Payleven app or dashboard.

A9 Pairing Session The session of a Bluetooth connection between
the card reader and the smartphone.

Table 3.3: Assets of the Payleven payment platform.

The assets are divided into three categories: (1) information related assets

38 3. Methodology

(A1 until A5), (2) monetary related assets (A6), and (3) information availability
related assets (A7 until A9). Money is, obviously, the most valuable asset of the
Payleven payment platform. It forms the main motivation of any attack on the
payment platform. The remaining assets are related to the information processed
by the payment platform, and the system availability.
Other key assets are card and PIN data, since these may lead to monetary gain.

The login credentials may also be of some certain significance for an attacker,
however this depends fully on the capabilities of the login credentials (i.e., to
what do they give access to).
The availability of the payment platform is also listed as an asset, since any

disruption of it will cause financial damage, both for themerchant as for Payleven.
Additionally, disrupting the login and pairing sessions will also lead to the absence
of availability. Moreover, session hijacking may indirectly lead to monetary gain
or information gathering.

3.4.6.Attacker Type

Two types of attackers can be defined: active and passive. An active attacker aims
to alter data on the information system or data en route to the information sys-
tem, whereas a passive attacker attempts to gather information on the system
without affecting it. A passive attacker may also monitor the system for vulner-
abilities. An attacker can have physical access to the system resources (e.g., card
reader, smartphone, mobile application) or operate from a distance. Passive at-
tackers often operate from a distance in order not to be noticed. In practice, an
attacker can exhibit characteristics of both types; for example, an attacker may
first scan the information system from a distance in order to discover vulnerabil-
ities which then can be exploited to alter the behavior of the system.
Attacks can also be differentiated based on their origin. An authorized and

trusted entity can initiate an inside attack and affect all components of the sys-
tem. The inside attacker has legitimate access to the system resources and can
easily alter system behavior in their advantage. An attacker from the outside, on
the other hand, has no authorized access and gains access by breaking into the
system. The definition of an inside attack can be redefined more specifically or
differently in the context of the Payleven payment platform: an inside attacker is
an attacker that sets up its own payment setup with the objective of conducting
attacks. In other words, the merchant is the attacker. Correspondingly, an attack
performed on a legitimate Payleven payment setup is considered to be initiated by
an outside attacker. This can be the customer, but the attack can also be initiated
by a third party. Note that the definition for an inside and outside attack differs
slightly from the conventional definitions. According to the conventional defini-
tion [22], a customer could also be considered as a inside attacker since (1) it is
part of the protocol and (2) it has authorized and legitimate access to the system
resources (i.e., the card reader).
In the end, an attacker can play three roles namely merchant, customer and

third party. Figure 3.4 sorts these three roles based on their capabilities and attack

3.4. ThreatModel 39

power. The merchant is the most powerful attacker.

1
Merchant Has legitimate access to the card reader, Payleven, dash-

board and probably the network.

2
Customer Has legitimate access to the card reader and the smart card.

3
Third party Has no legitimate access.

Table 3.4: Role of attacker in the payment platform sorted on capabilities and attack power where the
merchant is the most powerful attacker.

3.4.7. Threat Categorization & Attacker Goal

Threats can be categorized according to the STRIDE methodology [23]:

1. Spoofing. Masquerading as a legitimate user and falsifying data.

2. Tampering. Modification of persistent data or alteration of data en route.

3. Repudiation. Action that aims to perform illegal operations without leav-
ing traces due to the system’s defects.

4. Information Disclosure. Read data that one was not granted access to, or
read data en route.

5. Denial of Service. Action aimed to disrupt the availability of the system.

6. Elevation of Privilege. Gaining unauthorized access to information or
compromise the system.

The above-mentioned set of threat categories is very useful in the classification of
the intentions or goals of an attacker. However, these categories only give a basic
lower-level view on the goals of an attacker. In the end, the ultimate goal differs
from system to system; and may embody multiple STRIDE threat categories. That
is to say, each STRIDE threat category represents a mean or a set of means for
achieving this ultimate goal.
In this research, the intentions of an attacker are redefined in the context of

the Payleven payment platform. The intentions of an attacker can be classified
into three groups:

1. disruption;

2. monetary gain;

3. and, information gathering.

Disruption can be induced through various methods; the most well-know is
denial-of-service, as already listed as one of the threat categories. DoS attacks are
performed to prevent legitimate use of a system of service. This can be achieved

40 3. Methodology

by saturating the system resources, jamming the (wireless) connection or just
by preventing a specific entity to access a system. Services can also be disrupted
through data corruption or deletion.

Monetary gain is the most obvious goal of an attacker. It is important to real-
ize that the purpose of information gathering in the long term is often monetary-
related; sensitive user data can be (re)sold to criminal organizations or gathered
to construct a user profile for future attacks. The intentions of an attacker are
not clearly distinguishable and may be interdependent. For example, DoS attacks
may indirectly have a monetary-related goal or contribute to the process of infor-
mation gathering.

However, in the end, an attacker seeking monetary gain will focus on direct
ways to steal money, be it by altering transaction exchange messages (tamper-
ing) or by faking transactions (spoofing), whereas an attacker with the aim of
gathering information will focus on account and transaction data gathering (in-
formation disclosure).

As mentioned earlier, the final intention of an attacker may cover multiple
STRIDE threat categories. Monetary gain, for example, can be achieved through
altering the transaction amount or by repudiating a transaction. The Venn dia-
gram in Figure 3.7 shows the attacker goals in the context of the Payleven pay-
ment platform and the means by which these goals can be achieved categorized
in accordance with STRIDE.

Disruption

Monetary Gain

Information Gathering

Denial-of-service Information Disclosure

SpoofingTampering

Repudiation

Escalation

Figure 3.7: Venn diagram showing the attacker goals and the corresponding threats categories.

3.4. ThreatModel 41

3.4.8.Data FlowDiagram

The data flow diagram in Figure 3.8 shows how data moves within the Payleven
payment platform. The visual representation of the application’s data flow will
help make the threat landscape more evident.

Figure 3.8: Data flow diagram demonstrating an outline on how data moves through the Payleven
payment platform.

42 3. Methodology

The diagram covers the most common use cases of the Payleven payment plat-
form as described in Chapter 2; that is, the app login process, the transaction
process and the refund process.
The merchant can interact with the Payleven payment platform in three ways:

(1) by logging into the Payleven app, (2) by starting a transaction or (3) by con-
ducting a refund. These three use cases are represented in Figure 3.8 respectively
by the data flow processes ‘Enter Credentials’, ‘Start Transaction’ and ‘Start Re-
fund’.
Each process handles a specific set of data:

• the app login process handles the Payleven login credentials;

• the transaction process handles the transaction amount;

• and, the refund process handles the merchant’s refund authorization PIN.

This data is then allocated by the Payleven app to the remaining two compo-
nents of the payment platform; the Payleven back-end including the PSP (Adyen)
and the Chip & PIN card reader. The transaction amount is then used by the
Payleven app to initiate a transaction request and the associated transaction data
is transfered to the card reader. The data related to the refund and login processes
does not require the involvement or presence of the card reader and is sent via
the Payleven app directly to the Payleven back-end to be processed.
The Payleven back-end comprises the following three data flow processes: (1)

‘Validate Credentials’, (2) ‘Process Refund’ and (3) ‘Process Transaction’. The
first process validates the login credentials entered by the merchant in the process
‘Enter Credentials’ and grants the merchant access to the Payleven payment plat-
form. The second data flow process concerns the handling of the refund request.
For this, the process requires the refund authorization PIN entered by the mer-
chant in the process ‘Start Refund’ and the transaction ID (TXID) of the trans-
action which is to be refunded. The transaction ID is provided by the Payleven
app. The Payleven back-end is, together with the card reader responsible for the
processing of the transaction data. The card reader and the Payleven back-end
keep exchanging data via the Payleven app during the course of the transaction.
In Figure 3.8, this is pointed out by the process ‘Process Transaction’ which ap-
pears twice in the diagram; between the app and the card reader, and between the
app and the Payleven back-end.
The customer only has to interact with the card reader. The interaction con-

sists of two parts: first, the customer inserts the banking card (‘Process Card
Data’) into the card slot of the card reader, and lastly, enters the corresponding
PIN (‘Authorize Transaction’) on the keypad of the card reader. The data that is
processed here comprises the PIN code and card data.

3.4.9. Potential Threats

This section gives an overview of the threats relevant for the Payleven payment
platform. The threats can be identified based on:

3.4. ThreatModel 43

• the attack points in Section 3.4.3;

• the attack vectors in Section 3.4.4;

• the assets listed in Table 3.3;

• the attacker goals described in Section 3.4.7;

• and, the data flow diagram shown in Figure 3.8.

Table 3.5 summarizes these threats for a clearer overview.

Threat

T01 Disclosure of sensitive information
T02 Tampering transaction data
T03 Faking transactions
T04 Relaying or replaying transactions related requests
T05 Repudiation of transactions
T06 Denial-of-service

Table 3.5: Threats relevant to the Payleven payment platform.

Threat T01 concerns the disclosure of transaction data, card data, the refund
authorization PIN, but also refer to disclosure of login credentials, session tokens,
and personal information on the merchant and customer. These data may be
intercepted en route and in-air, or logged and captured (unintentionally) by the
card reader and smartphone. The disclosure of sensitive information may harm
the reputation of Payleven or the merchant, and could indirectly lead to financial
damage.
Threat T01 can be applied to several aspects of the payment platform:

• Wireless Bluetooth connection - As described in Section 3.3.1, monitor-
ing a Bluetooth connection is practically impossible without professional
hardware. Also, the fact that the Bluetooth connection is encrypted makes
eavesdropping on the Bluetooth connection even more unlikely.

• Wireless network channel - Eavesdropping the wireless network communi-
cation channel is more likely - however also hardly feasible. Firstly, theWiFi
(WPA2) and cellular data connection both provide security in form of en-
cryption. In order to monitor the wireless communication, the attacker has
to break this layer of encryption first, which is very unlikely. The best option
then is to conduct an MITM-attack on the network channel. Section 3.3.2
described the methodology for such an attack as has been applied in this
research. However, the feasibility of such an attack in a real-life situation
is very arguable.

• Smartphone and card reader - Sensitive information could be extracted di-
rectly from the smartphone; for example, via smartphone malware or a
rogue app. As regards the Chip & PIN card reader, information could be
extracted from the reader via the method described in Section 3.3.4.

44 3. Methodology

The question to be answered then is how serious this threat is. Information dis-
closure is attainable; however is the information disclosed of high value?

Threat T02 covers the dangers of tampered data within the payment plat-
form. The modification of the transaction data or bank information may lead to
financial loss or result indirectly in other types of damage. These modifications
could be applied on the wireless channels or introduced on the devices self.

Threat T03 relates to the spoofing of transactions towards the (payment)
back-end or the merchant by falsely signaling a successful transaction. For ex-
ample, the smartphone may be misled into believing that the card reader has
authorized a payment transaction. Also, the merchant or customer may also be
tricked into believing that the transaction is successfully processed. This can be
achieved by altering the transaction status message displayed on the card reader
and smartphone. Spoofing can be executed, for example, on the smartphone by
altering the behavior of the Payleven app or on the wireless communication chan-
nels (e.g., changing a NOK message to OK), or by faking web requests towards
the back-end.

Threat T04 concerns the relay and replay of transaction related request. This
threat is highly dependent on attacks based on protocol or design specific vulner-
abilities. Its impact is high as it may lead (indirectly) to financial loss. Relay or
replay attacks can be initiated by intercepting messages exchanged on the wire-
less channels (Bluetooth and WiFi/cellurar) and resending them at a later stage
to the Payleven and Adyen back-end. This threat does not cover EMV messages
or cryptograms.

Threat T05 is about the repudiation of transactions. An actor of the Payleven
payment platformmay deny that a transaction actually has been conducted, which
results in financial loss. It is also a threat if an actor cannot prove that a certain
transaction has not occurred; that is, denying a fake transaction.

Threat T06 covers threats on the availability of the Payleven payment plat-
form. Denial-of-service can be achieved by saturating the communication chan-
nels or rendering the devices unusable.

3.4. ThreatModel 45

3.4.10. Potential Attack Scenarios

A proper security analysis requires the point of view of an attacker. This section
therefore specifies several potential attack scenarios based on the threat landscape
of the Payleven payment platform.

Attack scenario 1: modifying the transaction amount

Figure 3.9: Attack scenario 1: modifying the transaction amount on the Payleven app.

Figure 3.9 gives a schematic overview of a attack scenario. The attacker takes
the role of a malicious customer. The goal of the attacker is to buy products via
the Payleven payment platform for the minimum transaction amount. The mer-
chants initiates the payment transaction by entering the transaction amount in
the Payleven app. The app then generates a transaction request and sends the re-
quest including the transaction amount to the Chip & PIN card reader. However,
the smartphone is infected with a mobile malware that hijacks the Payleven app
and changes the transaction amount to the minimum transaction amount of €1
before it is transmitted to the card reader. The card readers starts processing the
payment transaction of €1.
This attack scenario is based on threat T02. The vulnerable point is the smart-

phone and/or Payleven app. This scenario assumes that the payment platforms
allows the modification of the transaction amount. Or in other words, it is ex-
pected that no detection mechanism is built into the Payleven payment platform
- including the card reader and the back-end.

Attack scenario 2: modifying destination bank account

The second attack scenario involves an outside attacker. The goal of the out-
side attack is monetary gain. The attack scenario in Figure 3.10 describes an
attack in which all the money associated with the transactions conducted on the

46 3. Methodology

Payleven payment platform is diverted to the attacker. This can be achieved by
changing the original destination bank account into the attacker’s account prior
being forwarded to the Chip & PIN card reader. It should be noted that the card
reader needs to be fed with the malicious bank account details in an early stage.
Changing the bank account at a later stage will not work as will become appar-
ent in Chapter 4.5: the card reader exchanges transaction data via an encrypted
channel. However, the authentication that precedes the encrypted channel may
be a weak spot.

The destination bank account can be changed at two points in the platform:
(1) before being sent to the Payleven app - after all, the Payleven does not have
this information during first use; (2) on the smartphone via malware or a rogue
variant of Payleven app; (3) on the Bluetooth channel. The latter is not feasible
as pointed out in Section 3.3.1. The other two options belong to the possibilities.
The attack scenario shown below visualizes an attack in which the smartphone is
targeted with malware. In the end, money meant for the merchant is diverted to
the attacker.

Although not pointed out above, the personal dashboard may also be an attack
point for the destination bank account. The dashboard also lists the merchant’s
bank account. Unfortunately, changing the bank account via the personal dash-
board triggers only more paperwork. The merchant is then expected to submit
transcripts from the newly changed bank account stating the merchant’s (com-
pany) name. Clearly, this will not work if an attacker does this.

Figure 3.10: Attack scenario 2: the attacker modifies the original destination bank account by infect-
ing the smartphone. Money is then diverted to the attacker.

3.4. ThreatModel 47

This attack scenario is based on threat T02. The vulnerable point is the smart-
phone and/or Payleven app. Moreover, with the attack scenario it is assumed that
the implementation of the Payleven payment platformwill allow themodification
of the destination bank account. However, it should be expected that undesirable
changes will be detected by the payment system.

Attack scenario 3: unauthorized refund requests

Figure 3.11 visualizes attack scenario 3. This scenario is aimed at the refund
process. In this attack, a malicious customer triggers unauthorized refund re-
quests. In order to accomplish the attack, an attacker would need to be in pos-
session of the refund authorization PIN and valid Payleven login credentials. The
attacker is already in possession of the transaction ID (TXID); it is already noted
on the invoice. As regards the refund authorization PIN, the attacker could inter-
cept or extract the PIN from the payment platform. Moreover, since it is only 4
digits, brute-forcing is also among the possibilities. The login credentials can be
stolen via an MITM-attack, phishing or mobile malware.

Figure 3.11: Attack scenario 3: the attacker triggers an illegitimate refund request.

This attack scenario is based on threat T01. Threat T04 could also be ap-
plied as it would be possible to intercept a random refund request and re-use it
at at later stage; only the TXID needs to be changed, assuming that the session
is still valid. Moreover, this scenario depends on several vulnerabilities; e.g., how
well protected are the refund authorization PIN code and the corresponding login
credentials? What about session expiration management?

Attack scenario 4: fake successful transaction message

Figure 3.12 describes an attack scenario in which a failed transaction is falsely
signaled as successful. The transaction is canceled by the attacker and is never
processed by the card reader. However, malware or a rogue variant of the Payleven
app could cause the smartphone to display a success message. The merchant is

48 3. Methodology

then tricked into believing that the transaction was processed successful. The
attacker then gets away with a free product.
This attack scenario covers threat T02.

Figure 3.12: Attack scenario 4: the infected smartphone is forced to signal failed or canceled trans-
actions as successful. As a result, the merchant is tricked into believing that failed transactions were
processed successfully.

Attack scenario 5: malicious card reader

Figure 3.13: Attack scenario 5: the malicious merchant infects the card reader and steals money from
customer.

Figure 3.13 shows a somewhat different attack approach. Whereas the previ-
ous attack scenarios had the merchant as victim, this scenario has not. In this

3.4. ThreatModel 49

scenario the merchant is the malicious attacker. The attacker sets up an own pay-
ment platform and acts as a legitimate merchant. Moreover, instead of focusing
on the Payleven app and the smartphone, the attacker targets the Payleven Chip
& PIN card reader.
The card reader has been modified in such way, be it via hardware or soft-

ware modifications, that the transaction amount displayed on the card reader
and shown to the customer differs from the actual amount processed by the card
reader and sent to the Adyen back-end. This way the malicious merchant can
steal money from the customer by and processing payments with a substantial
higher transaction amount while the customer
This attack implies threat T02. Furthermore, the attack is highly dependent on

the accessibility of the card reader. The reader must cover serious vulnerabilities.

4
Internet Network Analysis

This chapter analyzes the Internet network traffic of the
Payleven payment platform. First, Section 4.1 provides the
reader with a global overview of the network traffic dur-
ing the five use cases of the payment platform. Sections
4.2 till 4.6 then give detailed descriptions of the individ-
ual web requests per use case. Chapter 5 complements the
impression of the data flow of the payment platform by
examining the Bluetooth traffic.

4.1.Global overview of the network traffic

This section gives the global findings based on a first view analysis of the network
traffic and presents an overview of the network connections made by the Payleven
payment platform. The network analysis covers the traffic under the following
five use cases:

1. app login;

2. app initialization;

3. Bluetooth pairing process;

4. transaction;

5. and, refund.

The network traffic during the registration with Payleven (i.e., use case 1 in Sec-
tion 2.1.1) was not investigated, since it does not form an essential part of the
use cycle of the payment platform. Furthermore, it does not involve the Payleven
app.
During the overall use of the payment platform, the Payleven app connected

to the following four web domains:

51

52 4. Internet Network Analysis

• apiproxy.payleven.de, 62.138.111.121, Germany;

• fapi.payleven.de, 62.138.111.121, Germany;

• ca-live.adyen.com, 82.199.90.174, Netherlands;

• pal-live.adyen.com, 82.199.90.182 and 91.212.42.182, Netherlands.

Figure 4.1 gives a basic overview of the communication channels of the Payleven
payment platform. The network connections to Payleven and Adyen are both TLS-
protected. Furthermore, within the TLS-protected connection with Adyen lurks
an additional security layer. Application data sent to Adyen is subjected to ad-
ditional encryption on the application-layer. The same encrypted data is also
observed in the Bluetooth connection between the smartphone and the Payleven
Chip & PIN card reader. In conclusion, the application-level encryption is used to
establish a secure tunnel between the Adyen payment servers and the card reader.
The smartphone and the Payleven probably do not have access to the encrypted
data. The smartphone primarily acts as a hatch for the encrypted data. Payleven,
on the other hand, only relies on the TLS and the Bluetooth encryption; i.e., data
intended for Payleven is not subjected to additional encryption.

Figure 4.1: Basic overview of the network connections of the Payleven payment platform.

4.1. Global overview of the network traffic 53

It should also be noted that not all application data sent to Adyen is subjected
to application-level encryption, as will become clear in the remainder of this chap-
ter. The encrypted data is mainly observed during the transaction phase. Since
it is also observed on the Bluetooth channel, the encrypted data probably holds
sensitive transaction and card information generated on the card reader and the
banking card. Given these points, the card reader must therefore also be respon-
sible for the application-level encryption and hold the corresponding encryption
materials (i.e., encryption keys and certificates).
A first view analysis of the network traffic resulted in the outline shown in

Figure 4.2. The outline summarizes the information exchange of the Payleven
payment platform per web domain.

Figure 4.2: Overview of the information exchange between the Payleven app and the four web do-
mains.

From the outline in Figure 4.2 it can be seen that each web domain serves a
different purpose.

• apiproxy.payleven.de (apiproxy) is responsible for the authentication of
the merchant during the app login. The apiproxy web server provides the
Payleven app with a session token for the authentication of further messages
within that same session. Also, further information on payment transac-
tions such as transaction amount, payment method and transaction ID are
communicated to Payleven via the apiproxy web server.

• fapi.payleven.de (fapi) is primarily used for the logging of data and app
events. The fapi web server also provides the Payleven app with an up-to-
date list of previous transactions and current products (product shelf).

• ca-live.adyen.com (ca-live) is responsible for the registration of the Payleven
Chip & PIN card and the Payleven app with Adyen.

54 4. Internet Network Analysis

• pal-live.adyen.com (pal-live) is responsible for the processing of payment
transactions. This is based on the observation that a large portion of net-
work traffic with the pal-live web servers is obfuscated. In other words, the
transaction data is being protected. Furthermore, communication to the
pal-live server is primarily observed during (the establishment of) transac-
tions.

Table 4.1 shows per use cases the web domains that are requested by the
Payleven app. As can be seen from the table, no requests are sent towards Adyen
during the app login and refund use cases.

Use case Requested web domains

1 App login •apiproxy.payleven
•fapi.payleven

2 App initialization •ca-live.adyen
•fapi.payleven

3 Bluetooth pairing process •apiproxy.payleven
•ca-live.adyen
•pal-live.adyen
•fapi.payleven

4 Transaction •apiproxy.payleven
•ca-live.adyen
•pal-live.adyen
•fapi.payleven

5 Refund •apiproxy.payleven
•fapi.payleven

Table 4.1: The requested web domains per use case.

Sections 4.2 to 4.6 give an analysis of the network traffic per use case. The net-
work analysis delves deeper into the message sequence charts described in Section
2.4 and gives a more detailed view on the network traffic by outlining each indi-
vidual web request.

4.2. Network traffic during app login 55

4.2.Network traffic during app login

The login phase consists of two simple activities: (1) the merchant enters his or
her Payleven login credentials into the Payleven app and (2) presses the ‘Sign in’
button. Once the ‘Sign in’ button is pressed in, the Payleven app connects to the
following four web addresses in the following order.

P1a
URL apiproxy.payleven.de/api/user/login
Method POST

P2a
URL fapi.payleven.de/fapi/v1/shelf/merchantID?lastUpdate

=9999-MM-DDTUU:MM:SS
Method GET

P2b
URL fapi.payleven.de/fapi/v3/transaction/list?pageSize=100

&page=0
Method GET

P2c
URL fapi.payleven.de/fapi/v1/logs
Method POST

Table 4.2: Web requests during the app login.

Table 4.3 lists all web requests initiated by the Payleven app during the app
login. Figure 4.3 processes these web requests into a low-level message sequence
chart (MSC).

Figure 4.3: Low-level message sequence chart of the Internet network traffic during the app login.

56 4. Internet Network Analysis

In contrast to the high-level MSC 2.15 described in Section 2.4.1, MSC 4.3
focuses only on the network part. Furthermore,t he message exchange arrows P1
and P2 from the high-level MSC 2.15 recur in this MSC; P1 and P2 are set out
here in more detail.

4.2.1.Web request P1a

The first web request contains a POST multipart/form-data that holds the email
address used for the Payleven account, the corresponding password, and the boolean
parameter create_token, which is set to 1 (i.e., true). The header of the re-
quest contains information on the used device, the Payleven app version and the
location coordinates. Part of the HTTP header is listed in Listing 4.1.

3 [...]
4 X-App-Version: 2.28.0
5 X-Api-Version: 89
6 Accept-Language: en
7 X-Device: samsung/Galaxy Nexus
8 X-Device-Os: Android
9 X-Device-Model: samsung/Galaxy Nexus
10 X-Resolution: 360.0x592.0
11 Accept: application/json
12 X-Coordinates: 52.10774505045265, 5.088596334680915
13 Content-Length: 585
14 Content-Type: multipart/form-data; boundary=GaBIMA_4EBs0_kOMpMx4EB-

JupjjMASrNVb0c
15 [...]

Listing 4.1: Part of HTTP header of the POST request to
apiproxy.payleven.de/api/user/login.

The location coordinates are sent to Payleven to enforce the location-restriction
requirements. The platform can only be used in the country the account is regis-
tered in.

The response to the login request contains JSON-formatted data. The JSON
is listed in the message body and is sent in plaintext; i.e., no encoding scheme is
used.

The JSON data set consists of three parent JSON objects: meta, response
and status. The meta object listed the requested session token. The session
token is shown in Listing 4.2.

4 ”session_token”: {
5 ”content”: ”LLO3wXCRtG2EDr5PAJDUGZIEVLNSMcz_3lPg_nW4WT1PJUzJ”
6 }

Listing 4.2: The requested session token.

The response object included primarily some trivial information on: the com-
pany, such as proprietor name, merchant name, address, account and contact
details; the registered and linked card readers; and several other rule sets con-
cerning the Payleven payment platform.

4.2. Network traffic during app login 57

The most interesting part of the response from Payleven concerned the pay-
ment service provider (PSP). Listing 4.3 shows the contents of the object adyen
within the JSON response.

4

5 ”adyen”: {
6 ”adyen_account”: ”653Klu*******”,
7 ”adyen_company”: ”Company.PaylevenNL”,
8 ”adyen_devices”: [
9 ”Shuttle-016303651”
10],
11 ”adyen_passwd”: ”************”,
12 ”adyen_user”: ”928***”,
13 ”devices”: {
14 ”Shuttle-016303651”: {
15 [...]

Listing 4.3: Adyen account information in the POST response from
apiproxy.payleven.de/api/user/login

The adyen object listed the Adyen merchant account (‘653Klu*****’, 11 dig-
its), the corresponding Adyen password (12 digits), the Adyen user code (‘928***’,
6-digit numerical code) and the card reader(s) registered under that specific Adyen
account. This information regarding the Adyen account is redacted due to pri-
vacy reasons. The adyen_company object refers to the company for which Adyen
provides their services - that is, in this case Payleven.
These account details are probably generated by Adyen and communicated to

Payleven during the registration phase. The Adyen merchant account, the Adyen
user code and the corresponding password are used later on by the Payleven app
to authenticate to the Adyen web servers (ca-live and pal-live).
It should also be noted that these authentication credentials are communi-

cated to the Payleven app at each and every login request. This is serious matter
as these credentials are highly confidential. After all, they authenticate the mer-
chant towards the Adyen back-end. Moreover, as will become clear later on during
the analysis of the Bluetooth traffic, the merchant account is the only reference
to the merchant that is communicated to the card reader. In other words, the
merchant account probably determines the destination bank account.

4.2.2.Web request P2a

The next web request concerns a GET request destined for fapi.payleven.de.
The path name suggest that the goal of the GET request is to retrieve the latest
product shelf for the merchant with ID ‘merchantID’. The merchant ID is a 6
digit numerical code and is provided by Payleven in the response to web request 1.
The merchant ID is probably related to the Adyen merchant account since both
start with ‘653’. Please note that the merchant ID (6-digit numerical code) is not
the same as the Adyen merchant account.
As can be seen in Listing 4.4, the HTTP header of the GET request included

the session token to authenticate to the Payleven server.

58 4. Internet Network Analysis

12 Authorization: Payleven LLO3wXCRtG2EDr5PAJDUGZIEVLNSMcz_3lPg_nW4WT1PJUzJ

Listing 4.4: Authorization header containing the session token.

The response to the GET request contains an empty product list, since no
products were configured in the Payleven account.

4.2.3.Web request P2b

The next GET request is aimed at fetching the latest transaction list from the
Payleven web servers. The response contains information on every transaction
conducted before with the specific Payleven account and was therefore fairly large.

4.2.4. Logs 1

The last web request of the app login phase sent JSON-formatted log data to the
Payleven web servers. The log data is shown in Listing 4.5.

17 ”events”: [
18 {
19 ”data”: {
20 ”method”: ”GET”,
21 ”network_type”: ”WIFI”,
22 ”request_url”: ”https://fapi.payleven.de//fapi/v3/transaction

/list”,
23 ”time_interval”: ”0.96200”
24 },
25 ”event”: ”TurnAroundTime”,
26 ”merchantId”: ”653***”,
27 ”paymentCountry”: ”NL”,
28 ”timestamp”: ”2015-08-07T07:38:32.032”
29 }
30]

Listing 4.5: JSON-formatted log data.

The log data contained information on the turn around time of web request P2b.
Interestingly, these log requests always come in twofold since the first request

attempts always fail. The access was denied by the Payleven web server.

9 {
10 ”code”: 401,
11 ”message”: ”Access is denied”,
12 ”status”: ”NOK”
13 }

Listing 4.6: Response to the failed log request.

The second request attempt is more successful as can be seen in Listing 4.7.

10 {
11 ”code”: 0,
12 ”status”: ”OK”
13 }

Listing 4.7: Response to the second request attempt. Access has been granted.

4.3. Network traffic during app initialization 59

A comparison of the two attempts reveals that the second request includes an
authorization line in the header containing authentication credentials in Base64,
whereas the first request lacked these credentials, which thus explains why the
first attempt failed. The authorization header indicates the use of the basic access
authentication method and according to this method, the authorization header
line contains the Base64 encoding of ‘[username]:[passoword]’. Part of the au-
thorization header line is shown in Listing 4.11. Please note that the password is
redacted.

16 Authorization: Basic bG9nZnJvbnRlbmQ6****************************

Listing 4.8: Authorization header line containing authentication credentials in Base64. The Base64
encoded password is redacted.

Decoding the Base64 string reveals the authentication credentials for the Payleven
log server. These credentials (username: password) are listed in Listing 4.9.

0 logfrontend:************************

Listing 4.9: Authentication credentials for fapi.payleven.de. The password is redacted.

Why the first attempt failed is not clear as the Payleven app was already in the
possession of these authentication credentials.

4.3.Network traffic during app initialization

This section describes the network traffic during the Payleven app initialization
(i.e., registration for first use). This process is described in Section 2.3.2. The
Payleven app requests the following web addresses in the following order:

A1a
URL https://ca-live.adyen.com/ca/servlet/soap /PosRegis-

tration/v3
Method POST

Log 2
URL https://fapi.payleven.de/fapi/v1/logs
Method POST

Table 4.3: The web requests during the app initialization.

Figure 4.4 presents the MSC of the network traffic during app initialization.

4.3.1.Web request A1a

The first web request during the app initialization phase is a POST request to Adyen
and contains the SOAP message registerApp, which lists the app ID and the
Adyen merchant account. SOAP is a protocol specification for the exchange of
structured information. It uses the XML information set for the message format.
Web request A1a is the first web request destined for Adyen. The web request

authenticates with the following authorization header:

60 4. Internet Network Analysis

Figure 4.4: Low-level message sequence chart of the network traffic during app initialization.

2 authorization: Basic OTI4QENvbXBhbnkuTWVyY2hhbnRBY2NvdW50LjY1Mzo=

Listing 4.10: Authorization header line containing authentication credentials in Base64. Please note
that the header line has been modified such that the password and other sensitive information is not
revealed.

Decoding the authorization header line results in the following:

2 928***@Company.MerchantAccount.653Klu*******:************

Listing 4.11: The Base64 decoded authorization header line.

A further look at the authorization header reveals some interesting informa-
tion regarding the composition of the header line. The authorization line is con-
structed of the Adyen user code (‘928***’) and the Adyen merchant account
(‘653********’). These details are provided by Payleven in the response to web
request P1a (i.e., the login request). The merchant account is redacted due to
privacy reasons. The same applies for the corresponding Adyen password, which
follows after the ‘:’.
The contents of the SOAP message registerApp hold the Adyen merchant

account and the app ID. The app ID is the identifier of the Payleven app and is
freshly generated with any new installation of the app. Clearing the app’s data
via the smartphone settings menu results in the generation of a new app ID. The
Payleven app needs to be initialized again after clearing the app’s data.

13 <n0:Body>
14 <n1:registerApp xmlns:n1=”http://posregistration.services.adyen.com”>
15 <n1:request>
16 <n1:merchantAccount>653Klu*****</n1:merchantAccount>
17 <n1:appId>658d85ff-3ee2-4b49-89d1-117ace6746f3</n1:appId>
18 </n1:request>
19 </n1:registerApp>
20 </n0:Body>

Listing 4.12: The SOAP message in web request A1a.

4.3. Network traffic during app initialization 61

Subsequently, the response to the registerApp SOAP message listed:

• the associated Adyen merchant account;

• a public client side encryption key consisting of the exponent and the mod-
ulo (4096 bit);

• a list of supported currencies (only EUR) and payment methods (e.g., VISA,
Mastercard etc.);

• the registerApp status code which is set to ‘Registered’;

• and a token.

As regards the client side encryption key, this is an interesting discovery. How-
ever, as will be pointed out in Section 6.1.2 this key is never used in the Payleven
payment platform. It is used for the processing of Mail Order/Telephone Order
(MOTO) transactions. The Payleven payment platform does not cover MOTO
payment.
The other interesting finding is the token which is included at the end of the

response message. The token is used by the Payleven app to authenticate to the
Adyen back-end together with the authorization header line as encountered in
this web request. The composition of the token is discussed in more detail in web
request A2a in Section 4.4.2.

4.3.2. Log 2

The next web requests concerns log request of two events. These two log events
in Log 2 were cover the app registration. The events are listed in Table 4.4.

Log Event
1 RegisterAppWithAdyenLib
2 AdyenRegisterApp

Table 4.4: Log events from Log request 2.

62 4. Internet Network Analysis

4.4.NetworktrafficduringBluetoothpairingprocess

This section describes the network traffic during the Bluetooth pairing process.
During the pairing process, the Payleven app sends the following web requests:

P3a
URL apiproxy.payleven.de/api/transaction/register
Method POST

A2a
URL ca-live.adyen.com/ca/servlet/soap/PosRegistration/v3
Method POST

A2b
URL pal-live.adyen.com/pal/servlet/soap/PosRegistration

Sync/v4
Method POST

Log 3
URL (2x)fapi.payleven.de/fapi/v1/logs
Method POST

A2c
URL pal-live.adyen.com/pal/adapter/batchsync.proto
Method POST

Table 4.5: Web requests during the Bluetooth pairing process.

Figure 4.5 processes the above listed web requests in an MSC. The sequence
chart zooms in into the P3 and A2 message exchange arrows from the high-level
MSC 2.16.

Figure 4.5: Low-level message sequence chart of the network traffic during the Bluetooth pairing
process.

4.4.1.Web request P3a

The first web request in the Bluetooth pairing process is directed to apiproxy web

4.4. Network traffic during Bluetooth pairing process 63

server and contains a POST form that lists the payment service provider (‘Adyen’)
and the card reader (terminal) ID (‘Shuttle-016303651’).
The response from Payleven contains JSON-formatted data and is structured

in the same manner as previous JSON-messages. The message is composed of
three parent JSON-objects: meta, response and status. The meta object holds
the Payleven session token. The contents of object response are shown in Listing
4.13.

17 ”response”:
18 {
19 ”creation_date”: ”2015-08-07 14:50:20”,
20 ”creation_date_utc”: ”2015-08-07T12:50:20+00:00”,
21 ”id_intpay_transaction”: ”52698677”,
22 ”refundable”: false,
23 ”transaction_stub”: ”8308b9bf71d57726a0a1”
24 },

Listing 4.13: The contents of the response object.

JSON Object Value
id_intpay_transaction 52698677

transaction_stub 8308b9bf71d57726a0a1

Table 4.6: The ‘intpay’ transaction ID and the transaction stub.

The apiproxy web server provides the Payleven app with a transaction stub (20
bytes) and a 8-digit numerical transaction intpay ID.

4.4.2.Web request A2a

The next request is destined for Adyen. The first web request attempt to ca-
live.adyen.com fails however due to missing authentication credentials. This
has been observed earlier during the log requests. Listing 4.14 and 4.15 respec-
tively show the header of the first request attempt and its response from ca-
live.adyen.com. The POST request clearly misses an authorization header
field. As a result, the response gives an HTTP 401 status code.

1 POST /ca/servlet/soap/PosRegistration/v3 HTTP/1.1
2 User-Agent: Dalvik/1.6.0 (Linux; U; Android 4.3; Galaxy Nexus Build/JWR66Y

)
3 Host: ca-live.adyen.com
4 Connection: Keep-Alive
5 Accept-Encoding: gzip
6 Content-Type: application/x-www-form-urlencoded
7 Content-Length: 0

Listing 4.14: First web request attempt to ca-live.adyen.com.

1 HTTP/1.1 401 Unauthorized
2 Date: Fri, 07 Aug 2015 12:50:21 GMT
3 [...]

Listing 4.15: Response from Adyen to first web request attempt.

64 4. Internet Network Analysis

The second attempt does contain an authorization header field as can be seen
in Listing 4.16 . Additionally, the header also lists an authentication token (jaas-
token). This token has been transmitted to the Payleven app in the response to
web request A1a.

1 POST /ca/servlet/soap/PosRegistration/v3 HTTP/1.1
2 authorization: Basic OTI4QENvbXBhbnkuTWVyY2hhbnRBY2NvdW50LjY1Mzo=
3 M0tsdU1lZG9QT1M6
4 jaastoken:

NjU4ZDg1ZmYtM2VlMi00YjQ5LTg5ZDEtMTE3YWNlNjc0NmYzXk1xcUd1aFQ5bmFNcDQ2UW1j

5 d1aFQ5bmFNcDQ2Qmc=
6 SOAPAction: https://ca-live.adyen.com/ca/servlet/soap/PosRegistration/v3
7 content-type: text/xml
8 [...]

Listing 4.16: Header of request to ca-live.adyen.com including an authorization header field.

A further analysis of the jaastoken reveals that it is Base64 encoded and that
it is constructed of the app ID and a 17-digit alphanumeric code. The jaastoken
and thus the code are generated and provided by Adyen in the app initialization
phase after the app ID has been forwarded by the Payleven app in web request A1a.
Furthermore, the jaastoken is different for each new app initialization. After all,
the app ID is different for each app initialization.

1 NjU4ZDg1ZmYtM2VlMi00YjQ5LTg5ZDEtMTE3YWNlNjc0NmYzXk1xcUd1aFQ5bmFNcDQ2UW1j
2 \/
3 Base64 decoding
4 \/
5 658d85ff-3ee2-4b49-89d1-117ace6746f3^MqqGuhT9naMp46Qmc

Listing 4.17: Base64 decoding of the jaastoken

In view of the fact that the jaastoken is generated based on the app ID and
probably the merchant account and/or merchant code, it may be possible to reg-
ister the app ID under a different merchant account. However, it is unknown
what kind of impact this would have as it was not possible to test this without a
second merchant account.
The content type header field also differentiates from the one listed in Listing

4.14: it states ‘text/xml’ instead of ‘application/x-www-form-urlencoded’. The
second request namely contains data formatted according to the SOAP protocol.

1 <?xml version=’1.0’ encoding=’UTF-8’ standalone=’yes’ ?>
2 <n0:Envelope xmlns:n0=”http://schemas.xmlsoap.org/soap/envelope/” xmlns:

xsd=”http://www.w3.org/2001/XMLSchema” xmlns:xsi=”http://www.w3.org
/2001/XMLSchema-instance”>

3 <n0:Body>
4 <n1:registerDevice xmlns:n1=”http://posregistration.services.adyen.com”>
5 <n1:request>
6 <n1:appId>658d85ff-3ee2-4b49-89d1-117ace6746f3</n1:appId>
7 <n1:merchantAccount>653Klu******</n1:merchantAccount>
8 <n1:terminalId>Shuttle-016303651</n1:terminalId>
9 <n1:terminalSerialNumber>016-303651</n1:terminalSerialNumber>
10 <n1:terminalType>Shuttle</n1:terminalType>
11 <n1:terminalApiVersion>adyen-pl-v1_32p7</n1:terminalApiVersion>

4.4. Network traffic during Bluetooth pairing process 65

12 </n1:request>
13 </n1:registerDevice>
14 </n0:Body>
15 </n0:Envelope>

Listing 4.18: Contents of web request A2a to ca-live.adyen.com. The contents cover a SOAP
message.

Listing 4.18 shows the SOAP message directed to ca-live.adyen.com. The
body of the message is comprised by the Body tags. The next tag after the Body
tags describes goal of the SOAP message. That is, in this case, registerDevice.
Furthermore, the SOAP message can represent a request or a response. This is
indicated by the next tag after registerDevice. Since this SOAP message is
part of a POST request, it will include request tags. These tags then comprise
the actual information of the message. The information is composed from a
set of items: (1) appId, (2) merchantAccount, (3) terminalId, (4) ter-
minalSerialNumber, (5) terminalType, and (6) terminalApiVersion.
Please note that card reader and terminal are used interchangeably throughout
this research.
In the end, the SOAP request provides information regarding the Payleven

app, the card reader (terminal) and the merchant account. Please note that the
merchant account is the same as listed in Listing 4.3 under adyen_account.
The terminal ID ‘Shuttle-016303651’ is built up from the reader type and the
reader’s serial number.
The SOAP response to the above-mentioned request is listed below. The enve-

lope and body tags are omitted.

1 <n1:registerDeviceResponse>
2 <n1:response>
3 <n1:fleetCode>653********POS-ALL</n1:fleetCode>
4 <n1:registerDeviceStatus>AlreadyRegistered
5 </n1:registerDeviceStatus>
6 </n1:response>
7 </n1:registerDeviceResponse>

Listing 4.19: Contents of the SOAP response from ca-live.adyen.com.

The response to registerDevice states that the terminal is already regis-
tered at Adyen. That is to say, Adyen probably verifies whether the card reader is
registered under or linked to the merchant account stated in web request A2a.

4.4.3.Web request A2b

The next web request is directed to pal-live.adyen.com. The contents of this
POST request are also constructed in a SOAP message.

1 <n1:syncAction xmlns:n1=”http://posregistersync.services.adyen.com”>
2 <n1:request>
3 <n1:posRegisterId>Shuttle-016303651</n1:posRegisterId>
4 <n1:terminalId>Shuttle-016303651</n1:terminalId>
5 <n1:includeGenericConfig>ALL</n1:includeGenericConfig>
6 <n1:existingConfigItems>

66 4. Internet Network Analysis

7 <n1:ExistingGenericConfigItem>
8 <n1:brandModel>MiuraShuttle</n1:brandModel>
9 <n1:version>adyen-pl-v1_32p7</n1:version>
10 </n1:ExistingGenericConfigItem>
11 </n1:existingConfigItems>
12 </n1:request>
13 </n1:syncAction>

Listing 4.20: Web request 7 directed to pal-live.adyen.com.

The SOAP request provides information on the Chip & PIN card reader such as
terminal ID and terminal API version. The same information was also presented
to ca-live.adyen.com in Listing 4.18, but enclosed by other tags
The syncAction tag suggests a synchronization request. What exactly the

synchronization request is requesting is not directly clear from the information
provided in the SOAP message. However, the SOAP response to this web request
listed in Listing 4.21 provides some clarity.

1 <n1:syncActionResponse>
2 <n1:response>
3 <n1:pspReference>4414389518301817</n1:pspReference>
4 <n1:updateList>
5 <n1:TerminalUpdateItem>
6 <n1:syncToTerminalData>
7 ChA0NDE0Mzg5NTE4MzAxODE3EhFTaHV0dGxlLTAxNjMwMzY1MRqCA
8 gABQKLFzIpLt21GpuxhC4JO+4HCckCopH5eIDKvIT0a+wRwaQ11DC
9 bb/4LezBfzPaliZPVcpXALsapxr30vp0pVUiKyAk64YWWMb3uZZ/7
10 9YRXvlPr3VOlG50x+0oIw1RxCIT9GaiQiihfZW/O8DvSyrufoHLfb
11 2fVC89vUgcLqwyJqtOqgAxEdJ/v/4hTMJrjm+F+14rd67cO6Aw9vR
12 [...]
13 Xs81pwYD6JevJ35PkXLMjKFAQgJEoABYc+ksKF/xhjNjGmD8GmsaV
14 wXBgqNncLFZfA73kIFCTctJbTvZHR6VuL2DQyfIdpVMGDeETrU+dv
15 CSoiCoolV9x3SPASZMqaMYdEgIm1iKXO3W1OTjYkq76MBs3dHsK1a
16 QEmU7QXXW1NT32zb7ChDCxecdal/qEZkaTaWQOF25dY6GTIwMTUtM
17 DgtMDdUMTQ6NTA6MzArMDI6MDA=
18 </n1:syncToTerminalData>

Listing 4.21: Response to the syncAction SOAP request.

The synchronization request involves a card reader firmware update as indi-
cated by the TerminalUpdateItem tag. The update data is included within the
syncToTerminalData tags and appears to be encoded according to Base64 (i.e.,
the string ends with ‘=’). The decoding of the first line of the update data is shown
below.

1 ChA0NDE0Mzg5NTE4MzAxODE3EhFTaHV0dGxlLTAxNjMwMzY1MRqC
2 \/
3 Base64 decoding
4 \/
5 4414389518301817 Shuttle-016303651

Listing 4.22: Base64 decoding of the first line of the update data.

The rest of the decoded update data comprises random unprintable characters
and a part of it is shown in Figure 4.6.The numerical code ‘4414389518301817’
represents the PSP reference code as has already been listed in the same SOAP

4.4. Network traffic during Bluetooth pairing process 67

message under the tag pspReference. The reference code is followed by the
card reader (terminal) ID.

Figure 4.6: Base64 decoding of a part of the firmware update data.

The random looking data suggests that the firmware update is encrypted.

4.4.4. Log 3

The synchronization request is then followed by two POST request directed to
fapi. payleven.de. These requests send JSON-formatted log data to the
Payleven servers. The first request holds trivial information on the previous web
request to apiproxy. payleven.de such as time stamp, merchant ID and used
network type. The second request is listed in Listing 4.23.

19 ”events”: [
20 {
21 ”data”: {
22 ”adyenMethod”: ”lib.addDevice”,
23 ”adyenResponseTime”: ”15.88500”,
24 ”adyenTerminalOSVer”: ”M000-OS-V7-1”,
25 ”adyen_lib_version”: ”v1.9p22”,
26 ”message”: ”Completed successfully”,
27 ”network_type”: ”WIFI”,
28 ”shuttleId”: ”Shuttle-016303651”,
29 ”shuttleName”: ”Shuttle-016303651”,
30 ”shuttleVersion”: ”adyen-pl-v1_32p7”,
31 ”shuttle_version_upgrade”: ””,
32 ”status”: ”OK”
33 },
34 ”event”: ”AdyenBoardDevice”,
35 ”merchantId”: ”653***”,
36 ”paymentCountry”: ”NL”,
37 ”timestamp”: ”2015-08-07T12:50:36.036”
38 },
39 {
40 [...]
41 ”event”: ”AdyenDeviceAdded”,
42 ”merchantId”: ”653***”,
43 ”paymentCountry”: ”NL”,
44 ”timestamp”: ”2015-08-07T12:50:37.037”
45 }
46]

Listing 4.23: First POST request to fapi.payleven.de.

68 4. Internet Network Analysis

4.4.5.Web request A2c

The last POST request in the Bluetooth pairing phase is destined for pal-live.
adyen.com /pal/adapter/batchsync.proto. The .proto extensions sug-
gests the use of Google’s protocol buffers. Protocol buffers (or protobuf) is a
language- and platform-neutral mechanism for serializing structured data. It is
comparable to XML. The contents of the POST request are shown in Figure 4.7.

Figure 4.7: Header and contents of POST request to pal-
live.adyen.com/pal/adapter/batchsync.proto.

As can be seen from the above figure, the contents of the requests are not
human-readable. The data is with high probability represented in a binary wire
format intended for the protobuf protocol. Protocol data can be decoded using
the corresponding .proto-file. This file specifies how the information is struc-
tured. However, without the corresponding .proto-file decoding the protobuf
data becomes more complicated since the protobuf format is ambiguous. The
protobuf compiler offers the possibility to decode these raw binary data. The raw
binary can be decoded with the following protobuf command:

1 $ protoc decode_raw < batchsync.bin

Unfortunately, protobuf fails parsing the binary data, thus suggesting a incorrect
protobuf format. This may have several reasons:

• the data is not serialized according to protobuf; e.g., the content-type header
line does not indicate the use of protobuf. However, it is very likely that pro-
tobuf is indeed used. The firmware of the card reader includes the protobuf
API.

• the data is serialized according to protobuf, but is encrypted on top of that.

The response to web request A2c also holds unreadable data. It is assumed that
the serialized application data exchanged with Adyen (especially the pal-live
web server) is subjected to application-level encryption. That is to say, the card
reader and the Adyen back-end communicate over an application-level encrypted
channel.

4.5. Network traffic during the transaction process 69

4.5.Network traffic during the transaction process

The Payleven app exchanges information with the following web addresses during
the transaction phase:

P4a
URL apiproxy.payleven.de/api/transaction/register-

confirm
Method POST

Log 4
URL fapi.payleven.de/fapi/v1/logs
Method POST

A3a
URL pal-live.adyen.com/pal/adapter/posmessage.proto
Method POST

A4a
URL pal-live.adyen.com/pal/adapter/posmessage.proto
Method POST

P5a
URL apiproxy.payleven.de/api/transaction/update
Method POST

Log 5
URL fapi.payleven.de/fapi/v1/logs
Method POST

A4b
URL pal-live.adyen.com/pal/adapter/batchsync.proto
Method POST

Table 4.7: Approached web addresses during the transaction phase.

Figure 4.8 summarizes the above listed web requests in an MSC. The sequence
chart sets out the message exchange arrows P4, P5, A3, A4 from the high-level
MSC 2.17 into individual web request. Please recall that ‘A’ stands for the com-
munication with Adyen and ‘P’ stands for the communication with Payleven.
Moreover, A3 covers the data traffic after the banking card has been entered in
the card reader. A4 covers the data traffic after the PIN has been entered.

4.5.1.Web request P4a

The first web request in the transaction phase is directed to Payleven’s apiproxy
web server. The request body consists of multi-part form data and lists 6 parame-
ters that hold information on the transaction amount, terminal version and ID,
type, the payment provider and the currency. These parameters and its values are
listed in Table 4.8.
The parameter values ‘1.00’ and ‘EUR’ indicate a transaction value of €1. It is

unknown what the parameter type and the value ‘UN’ refer to. The parameter
type probably refers to the terminal type.
The response to the POST request holds a JSON-message and has a content

length of 1066. Some interesting object names and values from the JSON-message
are listed in Table 4.9.
The response body also lists the URL to the corresponding transaction receipt.

70 4. Internet Network Analysis

Figure 4.8: The network traffic during the transaction phase. A3 represents the data exchange after
the banking card has been entered in the card reader. A4 represents the data exchange after the PIN
has been entered.

Parameter Value
1 amount 1.00
2 terminal_version adyen-pl-v1_32p7
3 terminal_id Shuttle-016303651
4 type UN
5 psp Adyen
6 currency EUR

Table 4.8: Multi-part form data parameters of web request 10.

The generic URL to a receipt is listed in Listing 4.24.

1 https://service.payleven.com/nl/receipt?payment_stub=**************&hash
=********************

Listing 4.24: Generic URL to an online transaction receipt

The query of the URL is constructed from the payment stub (see Table 4.9) and
a 40 digit hash value. Note that the above listed URL links to the receipt prior
to the actual transaction. The receipt indicates that the transaction has not been
completed yet (Dutch: transactie nog niet voltooid) and lists themerchant ID and
the value of the key id_intpay_transaction (Dutch: betalingsbewijs ID). The
receipt is updated after the transaction has been completed.
As can be seen in Table 4.9, the response provides the Payleven app with the

merchant ID, a transaction ID and transaction stub, and a transaction payment
ID and payment stub. The merchant ID has already been mentioned in the re-

4.5. Network traffic during the transaction process 71

JSON Object Value
fk_marketplace_merchant 653***

id_intpay_transaction 52792027
transaction_stub d1f61a6ff3426e6df851

id_intpay_transaction_payment 47168944
payment_stub 04fda3a8dc638424b17e

Table 4.9: Some significant JSON objects and values from the response to web request 10.

sponse to web request P1a. The transaction ID and transaction stub have already
been listed in the response to web request A1a. This is interesting since no transac-
tion has been initiated during web request A1a. This also means that the transac-
tion ID and transaction stub are not directly attached to a particular transaction.
However, the transaction payment ID and payment stub are first mentioned here
in the response to web request P4a. The object payment_stub holds a 20 digit
hexadecimal code. The name of the object suggests that it denotes some kind of
receipt or record - payment stub is a different denomination for payment check.
The payment stub thus probably forms the link between the transaction and the
corresponding receipt. This fact is also reflected in the URL of the receipt; the
payment stub is used in the query.

4.5.2. Log 4

Log request 4 lists JSON-formatted information on several events in the applica-
tion prior to the transaction. These log events are listed in Table 4.10. The pay-
ment and transaction stubs are also included in the logs under the event Adyen-
TransactionStarted. The payment and transaction stubs are listed respec-
tively as paymentID and transactionID in the logs, as can be seen in Listing
4.25. The merchant ID is also listed in the logs.

1 PurchaseAttempt
2 PaymentMethodSelected
3 ConnectingToBluetoothDevice
4 SetDefaultDevice
5 TurnAroundTime
6 AdyenTransactionStarted

Table 4.10: Log events from Log request 4.

92 ”amount”: 100,
93 ”currency”: ”EUR”,
94 ”data”: {
95 ”adyenTerminalOSVer”: ”M000-OS-V7-1”,
96 ”adyen_lib_version”: ”v1.9p22”,
97 ”completed_status”: ”DEFAULT”,
98 ”cvm”: ”UNINITIALIZED”,
99 ”network_type”: ”WIFI”,

72 4. Internet Network Analysis

100 ”psp”: ”Adyen”,
101 ”shuttleId”: ”20:14:09:08:2F:01”,
102 ”shuttleName”: ”payleven016-303651”,
103 ”shuttleVersion”: ”adyen-pl-v1_32p7”
104 },
105 ”event”: ”AdyenTransactionStarted”,
106 ”merchantId”: ”653***”,
107 ”paymentCountry”: ”NL”,
108 ”paymentId”: ”04fda3a8dc638424b17e”,
109 ”timestamp”: ”2015-08-08T08:04:12.012”,
110 ”transactionId”: ”d1f61a6ff3426e6df851”

Listing 4.25: Part of the logs showing information on the event AdyenTransactionStarted.

4.5.3.Web request A3a & A4a (Encrypted)

During the transaction process, that is, inserting the bank card and entering the
PIN code, the card reader exchanges transaction information with Adyen. This
sensitive information is with high probability included in the A3a and A4a POST
requests transmitted to adyen.com/pal/adapter/ posmessage.proto dur-
ing the transaction process.
The header of the POST request is equal to the header of web request A2c

(adyen.com/pal/adapter/batchsync.proto). It includes the authoriza-
tion header line, the jaastoken and the card reader (terminal) ID. The contents
of web request A3a and A4a are also encrypted.
Please recall the high-level MSC 2.17. Web request A3a occurs after the bank-

ing card has been inserted into the Chip & PIN card reader. Web request A4a
occurs after the PIN has been entered on the card reader.

4.5.4.Web request P5a

The next POST request is directed to apiproxy.payleven.de and contains 19
multi-part/form data parameters. These parameters are set out in Table 4.11.
The first parameter is the payment stub which was first included in the re-

sponse to web request P4a. The next parameter (psp_payment_id), on the other
hand, does not appear in the previous messages. It seems that the ID is generated
by the payment service provider or card reader, and sent to the Payleven app af-
ter the transaction. The app then forwards the PSP payment ID to the Payleven
back-end.
The next parameters describe the method and application used to process the

transaction. The payment method is Chip & PIN (or EMV) according to the pa-
rameter method. The AID is an acronym for Application Identifier: the code
‘A0000000043060’ refers to Maestro (Debit). This is also reflected in the param-
eters application_label and application_preferred_name.
The parameter iin holds the issuer identification number (IIN). Information

on the issuer can be retrieved based on the IIN. The issuer information listed in
4.12 corresponds to the IIN ‘673703’.

4.5. Network traffic during the transaction process 73

Parameter Value
1 payment_stub 04fda3a8dc638424b17e
2 psp_payment_id 4814390210829861
3 method chippin
4 aid A0000000043060
5 application_label MAESTRO
6 application_preferred_name MAESTRO
7 iin 673703
8 expiry 1902
9 issue_date 1402
10 icc ICC
11 card_scheme mastercard_maestro
12 pay_code DD.CP
13 pi_hash C133084544881715
14 terminal_id Shuttle-016303651
15 terminal_version adyen-pl-v1_32p7
16 auth_code 85I2P1
17 method chippin
18 total_amount 1.00
19 desc empty

Table 4.11: Multi-part/form data parameters of web request 14 (apiproxy.payleven.de).

Parameters 8 to 11 provide information on the card, such as the expiration
date and date of issue. The parameter icc stands for integrated circuit card (ICC)
and is also set to ‘ICC’. This parameter indicates that the bank card is in possession
of a chip.

Card Brand Maestro
Issuing Bank ING Bank N.V.
Card Type Debit
Card Level Standard
Iso Country Name Netherlands
Iso Country A2 NL
Iso Country A3 NLD
Iso Country Number 528

Table 4.12: Information on issuer based on the IIN 673703.

The parameter pay_code holds the value ‘DD.CP’. It is not clear what the
code directly means; however some information can be obtained from the source
code of the Payleven app. The string ‘pay_code’ is found in the JAVA-file De-
faultCommand.java.

389 if (carddata.isDebit())
390 {
391 return ”DD”;

74 4. Internet Network Analysis

392 } else
393 {
394 return ”CC”;
395 }

Listing 4.26: DefaultCommand.java

The code snippet in Listing 4.26 shows that the first half of the pay code stands
for the card type: debit card (DD) or credit card (CC). Also, it appears that the
last half of the pay code (‘CP’) is only appended to ’DD’ upon approved payment.
‘CP’ is presumably an acronym for ‘Completed Payment’. However, the pay code
for a canceled transaction also ends with ‘CP’. The pay code for an unauthorized
payment can also be retrieved from DefaultCommand.java; that is ‘UN.DC’.
From the remaining parameters, only pi_hash and auth_code are notewor-

thy. The parameter pi_hash contains a 16 digit string value which represents a
card token.

265 if (purchase.getCardToken().isPresent())
266 {
267 addEntityPart(”pi_hash”, (String)purchase.getCardToken().get());
268 }

Listing 4.27: The parameter pi_hash in DefaultCommand.java

The parameter auth_code contains a 6 digit alphanumeric code and repre-
sents a certain authorization code. The code is different for each transaction. The
amount of the transaction is covered in the parameter total_amount.
The response to web request P5a contains the same values as listed in Table

4.11. The only extra information included in the response concerns two numer-
ical codes:

Parameter Value
1 fk_intpay_transaction 52234204
2 fk_intpay_transaction_payment_tracking 45040574

Table 4.13: Part of the response to web request P5a.

4.5. Network traffic during the transaction process 75

4.5.5. Log 5

Log request 5 lists JSON-formatted information on several events in the applica-
tion after the transaction. These log events are listed in Table 4.14.

1 AdyenTransactionSuccess
2 ApiCallRequest
3 ReceiptViewViewed
4 ReceiptSkipped
5 ShownPaymentStatusFinalView
6 NewPayment

Table 4.14: Log events from log request 5.

92 {
93 ”amount”: 100,
94 ”currency”: ”EUR”,
95 ”data”: {
96 ”adyenTerminalOSVer”: ”M000-OS-V7-1”,
97 ”adyen_appinfo_model”: ”Galaxy Nexus”,
98 ”adyen_appinfo_name”: ”Payleven”,
99 ”adyen_appinfo_os”: ”4.3”,
100 ”adyen_code”: ”0”,
101 ”adyen_lib_version”: ”1.9p22”,
102 ”adyen_message”: ”Transaction approved”,
103 ”completed_status”: ”APPROVED”,
104 ”cvm”: ”PIN_OFFLINE_ENCIPHERED”,
105 ”entry_mode”: ”ICC”,
106 ”network_type”: ”WIFI”,
107 ”psp”: ”Adyen”,
108 ”shuttleId”: ”20:14:09:08:2F:01”,
109 ”shuttleName”: ”payleven016-303651”,
110 ”shuttleVersion”: ”adyen-pl-v1_32p7”,
111 ”status”: ”APPROVED”
112 },
113 ”event”: ”AdyenTransactionSuccess”,
114 ”merchantId”: ”653***”,
115 ”paymentCountry”: ”NL”,
116 ”paymentId”: ”04fda3a8dc638424b17e”,
117 ”timestamp”: ”2015-08-08T08:04:49.049”,
118 ”transactionId”: ”d1f61a6ff3426e6df851”
119 },

Listing 4.28: Information contained in the log event AdyenTransactionStarted.

From this log file it becomes clear that ‘PIN_OFFLINE_ENCIPHERED’ (i.e.,
offline PIN) is used as the cardholder verification method (CVM) for this trans-
action. This implies that the PIN is transmitted enciphered to the card and is
then verified by the card.

76 4. Internet Network Analysis

4.5.6.Web request A4b (Encrypted)

The last request in the transaction phase concerns the batchsync.proto web re-
quest. This request has been observed previously in web request A2c. It should be
noted that this sync-request is not observed during each transaction. The URL-
path of the web request suggest that the message exchange with Adyen is aimed
at some sort of batch synchronization. The fact that the request is not always ob-
served strengthens this belief. The batch probably holds a set of data from current
and possibly previous transactions which need to be communicated to Adyen at
one time. Unfortunately, it is not possible to determine what specific informa-
tion is exchanged in the batch since the batch is subjected to application-level
encryption.
Moreover, the fact that ‘PIN_OFFLINE_ENCIPHERED’ is used fits into this

definition as a all transactions verified with an offline PIN need in the end to be
verified by Adyen and the bank. Hence, these batches may contain such transac-
tion data and may be synced with the back-end after a certain period of time.

4.6.Network traffic during the refund process

The refund process consists of only one web request. A5 refers to the message
exchange arrow in the high-level MSC 2.18.

A5a
URL https://apiproxy.payleven.de/fapi/v3/transaction/ re-

fund
Method POST

Table 4.15: The web requests during the refund process.

Figure 4.9: The network traffic during the refund process.

4.6.1.Web request A5a

Section 2.3.5 describes the refund process. Please recall that in order to initiate

4.6. Network traffic during the refund process 77

a refund process, the merchant has to authorize the refund with the self-set 4-
digit refund authorization PIN code. This PIN is therefore transmitted together
with the associated transaction ID to the Payleven back-end. Listing 4.29 lists the
whole contents of the refund request.

92 POST /fapi/v3/transaction/refund HTTP/1.1
93 User-Agent: Payleven 2.23.0, samsung/Galaxy Nexus, Android 4.3, US
94 Accept-Language: en
95 X-Device: samsung/Galaxy Nexus
96 X-Device-Os: Android
97 X-Device-Model: samsung/Galaxy Nexus
98 X-App-Version: 2.23.0
99 X-Api-Version: 89
100 Accept: application/json
101 Authorization: Payleven yiQH8hnp9pwD3pCNwcP9Ts8walyVHmRgjpwOeEBO-ffulBQG
102 X-Coordinates: 52.107904851436615, 5.088488711044192
103 Content-Type: application/json; charset=UTF-8
104 Content-Length: 53
105 Host: fapi.payleven.de
106 Connection: Keep-Alive
107 Accept-Encoding: gzip
108

109 {”pin”:”1337”,”transactionId”:”d1f61a6ff3426e6df851”}

Listing 4.29: The contents of web request A5a; i.e., the refund request. The refund PIN and the
transaction ID are located in the body of the request.

The Payleven back-end thus approves the refunds request if and only if the re-
fund PIN corresponding to that Payleven account is correct. The Payleven account
is linked to the session token included in the authorization header line.

5
Bluetooth Traffic Analysis

This chapter sets out the data traffic sent over the Bluetooth
channel. Section 5.1 describes the data traffic during the
Bluetooth pairing process and Section 5.2 focuses on the
data traffic during the transaction phase.

5.1. Bluetooth traffic during the pairing process

Figure 5.1 shows the Bluetoothmessage sequence chart (MSC) between the smart-
phone (or more precisely the Payleven app) and the Payleven Chip & PIN card
reader during the Bluetooth pairing process. The charts in this chapter only cover
the RFCOMMmessages1 since these hold application data. Other Bluetooth pro-
tocols are out of scope. For example, the actual establishment of the Bluetooth
connection between the smartphone hardware and the card reader is carried out
on a different Bluetooth protocol. This protocol follows strict Bluetooth standards
and does not include any application data, and therefore, it is not included in this
study. The focus of this chapter primarily lies on the application data exchanged
over the Bluetooth connection.
Each message in the MSCs included in this chapter is labeled with a number.

The label numbers also indicate the transmission order of the messages. However,
please note that some messages are retransmitted during the protocol run.
Message 1 to 7 in MSC 5.1 cover the message exchange during the card reader

registration process. This process starts once the card reader is successfully paired
with the smartphone hardware (i.e., step 6 and Figure 2.8c from Section 2.3.3).
During this stage of the protocol run, the card reader and the Payleven app ex-
change basic information.

1https://developer.bluetooth.org/TechnologyOverview/Pages/RFCOMM.aspx

79

https://developer.bluetooth.org/TechnologyOverview/Pages/RFCOMM.aspx

80 5. Bluetooth Traffic Analysis

Figure 5.1: Message sequence chart of the Bluetooth traffic during the card reader registration phase.

5.1.1. BluetoothMessage 1

The first message originates from the Payleven app and contains a URL. The URL
is listed below:

1 ur l=http :// bluetoothዅremote/ po s r e g i s t e r / s e r v i c e s / PosReg i s t e r /v10&#c l =583

Listing 5.1: Contents of message 1.

The URL is constructed in RunSoapRequest.java. The JAVA-file is part of the
Payleven app source code.

57 private static final String BLUETOOTH_REMOTE_URL = ”http://bluetooth-
remote/posregister/services/PosRegister/%s”;

58 public static final String DEFAULT_SOAP_VERSION = ”v10”;

419 if (Text.isEmptyOrNull(s3))
420 {
421 s3 = ”v10”;
422 }
423 if (deviceinfo.getConnectionType() == 2)
424 {
425 devicepreferences.setMacAddress(deviceinfo.getDeviceId());

5.1. Bluetooth traffic during the pairing process 81

426 s3 = String.format(”http://bluetooth-remote/posregister/services/
PosRegister/%s”, new Object[] {

427 s3
428 });

The string ‘v10’ in the path name of the URL refers to the SOAP version and is
concatenated at the end of the URL in line 426. The fragment cl=583 denotes
the content-length of the upcoming message(s).

It is not clear how the card reader handles the URL sent inmessage 1. However,
it can be assumed that the URL triggers the set-up for the card reader registration
process. What exactly happens next in the card reader is unknown.

5.1.2. BluetoothMessage 2

The second message also originates from the Payleven app and contains a SOAP
request according to the SOAP protocol specification. SOAP is also used by the
Payleven app to exchange information with the Adyen back-end.

1 <?xml version=’1.0’ encoding=’UTF-8’ standalone=’yes’ ?>
2 <n0:Envelope xmlns:n0=”http://schemas.xmlsoap.org/soap/envelope/” xmlns:

xsd=”http://www.w3.org/2001/XMLSchema” xmlns:xsi=”http://www.w3.org
/2001/XMLSchema-instance”>

3 <n0:Body>
4 <n1:identifyPaymentDevice xmlns:n1=”http://posregister.services.adyen.

com”>
5 <n1:request>
6 <n1:merchantAccount>653Klu*******</n1:merchantAccount>
7 <n1:posRegisterMacAddress>20:14:09:08:2F:01</n1:posRegisterMacAddress>
8 <n1:posRegisterConfiguredName>Shuttle-016303651</n1:

posRegisterConfiguredName>
9 </n1:request>
10 </n1:identifyPaymentDevice>
11 </n0:Body>
12 </n0:Envelope>

Listing 5.2: Contents of message 2

The body of the SOAP request holds the following three elements:

• merchantAccount - the Adyenmerchant account coupled to the logged-in
Payleven account;

• posRegisterMacAddress - the Bluetooth MAC address of the Chip &
PIN card reader registered to the merchant account. POS stands for point-
of-sale and is another term to refer to the card reader;

• and posRegisterConfiguredName - the card reader type and serial num-
ber.

The SOAP request is constructed in IdentifyPaymentDeviceRequest.java.
The aim of a SOAP request is often stated in the first tag after the body-tag; in
this case, the aim is to identify the used payment device.

82 5. Bluetooth Traffic Analysis

5.1.3. BluetoothMessage 3

Message 3 holds the response to the previous SOAP request. The SOAP response
comprises 13 SOAP elements. Additionally, the first element, additionalData,
includes the following 7 entries: DeviceLocale, SupportedCurrencies, De-
viceAllowedMerchantAccounts, SoapVersion, hasDUKPT, Supported-
PaymentMethods and UnconfirmedBatches. The key DeviceAllowedMer-
chantAccounts suggests that one single card reader can be used with multiple
accounts. This is true to a certain extent. It is possible to create multiple sub-
accounts (with their own e-mail address and password) under the main account.
Each sub account is then permitted to pair with the concerning card reader. In
message 3, DeviceAllowedMerchantAccounts is set to the main account.
Another interesting entry is hasDUKPT, which is set to ‘true’. This entry indi-

cates the use of the DUKPT (Derived Unique Key Per Transaction) key manage-
ment scheme. It can be stated with certainty that the card reader is in possession
of a secret master key that is used to derive unique transaction keys. The pay-
load of the HTTP requests to pal-live.adyen.com already designated the use
of application-level encryption. This presumption is only strengthened in this
chapter: the information exchange between the Payleven Chip & PIN card reader
and the Payleven app is obfuscated at certain stages in the protocol run. For ex-
ample, message 4 contains a firmware update that is obfuscated.
The remaining SOAP elements provide information regarding the card reader,

such as brand and type, hardware version, serial number et cetera.
The next message after message 3 is identical to message 1; only the last frag-

ment of the URL (cl=2789) differs. This suggest that the upcoming message has
a content-length of 2789 bytes. According to Wireshark, the data sent in mes-
sage 4 has a length of 2807 bytes. The cl fragment gives a good indication on
the content-length of the upcoming message, but it is unclear what part of the
message the cl fragment actually covers.

5.1.4. BluetoothMessage 4

Message 4 is in comparison to the other Bluetooth messages fairly large. This
can be explained by the contents of the SOAP request. The body consists of three
elements: merchantAccount, terminalId and syncToTerminal2, where the
latter holds 2250 bytes of random-looking data (see Listing 5.3).

1 <n1:syncToTerminal>
2 ChA0NDE0Mzg5NTE4MzAxODE3EhFTaHV0dGxlLTAxNjMwMzY1MRqCA
3 gABQKLFzIpLt21GpuxhC4JO+4HCckCopH5eIDKvIT0a+wRwaQ11DC
4 bb/4LezBfzPaliZPVcpXALsapxr30vp0pVUiKyAk64YWWMb3uZZ/7
5 9YRXvlPr3VOlG50x+0oIw1RxCIT9GaiQiihfZW/O8DvSyrufoHLfb
6 2fVC89vUgcLqwyJqtOqgAxEdJ/v/4hTMJrjm+F+14rd67cO6Aw9vR
7 [...]
8 Xs81pwYD6JevJ35PkXLMjKFAQgJEoABYc+ksKF/xhjNjGmD8GmsaV
9 wXBgqNncLFZfA73kIFCTctJbTvZHR6VuL2DQyfIdpVMGDeETrU+dv
10 CSoiCoolV9x3SPASZMqaMYdEgIm1iKXO3W1OTjYkq76MBs3dHsK1a
11 QEmU7QXXW1NT32zb7ChDCxecdal/qEZkaTaWQOF25dY6GTIwMTUtM

2The term ‘terminal’ is used here to refer to the Chip & PIN card reader.

5.1. Bluetooth traffic during the pairing process 83

12 DgtMDdUMTQ6NTA6MzArMDI6MDA=

Listing 5.3: Contents of the syncToTerminal entry

The syncToTerminal tag has been detected previously in the network analy-
sis in Section 4.4.3. The SOAP response from Adyen to web request A2b contains
the syncToTerminalData entry (see Listing 4.21) which holds the exact same
data as the syncToTerminal entry found in Bluetooth message 4. As already
stated in Section 4.4.3, the contents of the syncToTerminalData entry con-
cern a firmware update. Therefore, it can be concluded that Bluetooth message 4
pushes the firmware update to the card reader via the Bluetooth connection.
The update data in the syncToTerminal tag is encoded according to the

Base64 encoding scheme. The decoding of the syncToTerminal data in UTF-8
characters is shown in Figure 5.2. Only a part of first line is human-readable. The
card reader ID (‘Shuttle-016303651’) is listed together with a 16 digit numerical
code (‘1314374629683409’). The numerical code represents the PSP reference
code (also listed in Listing 4.21) . The rest of the decoded data is encrypted.

Figure 5.2: Base64 decoding of the syncToTermina data

Message 4 is probably the most interesting among the Bluetooth messages.
The reason for this is that any modifications of the update data made on the net-
work part are directly reflected in the contents of the syncToTerminal entry.
This opens interesting possibilities for malicious attackers. This allows attackers
to inject tampered data into the card reader where it was otherwise nearly impos-
sible. That is to say, an attacker may manipulate the update data in such way that
the card reader crashes or is rendered unusable. The attacker may also execute
malicious code on the card reader by injecting the code first via the update item.

5.1.5. BluetoothMessage 5

Subsequently, the card reader replies to message 4 with the status of the synchro-
nization request and a requestReference. In this case, the update has been
received successfully by the card reader, hence that the status element contains
the string ‘Successful’. The requestReference elements holds an 18-digit al-
phanumeric code: ‘16PK71437462956063’.

5.1.6. BluetoothMessage 6

Listing 5.4 shows the contents of message 6. The message contains a URL that is
similar to the one sent in message 1. The only difference is that an authentication
token (jaastoken) is inserted to the message.

84 5. Bluetooth Traffic Analysis

1 ur l=http :// bluetoothዅremote/ po s r e g i s t e r / s e r v i c e s / PosReg i s t e r /v10&jaastoken
=
NjU4ZDg1ZmYtM2VlMi00YjQ5LTg5ZDEtMTE3YWNlNjc0NmYzXk1xcUd1aFQ5bmFNcDQ2UW1j
=&#c l =583

Listing 5.4: Contents of Bluetooth message 6

Decoding the jaastoken according to Base64 results in:

1 658d85ff-3ee2-4b49-89d1-117ace6746f3^MqqGuhT9naMp46Qmc

Listing 5.5: Base64 decoding of the jaastoken

The jaastoken appears for the first time in the SOAP response to web request
A1a and is generated by Adyen during app initialization phase (see Section 4.3).
As can be seen in Listing 5.5, the jaastoken is constructed from two parts: the
app ID (‘658d85ff-3ee2-4b49-89d1-117ace6746f3’), which is generated by the
Payleven app and sent to Adyen in web request A1a; and, a 17-digit alphanumer-
ical code (‘MqqGuhT9naMp46Qmc’) generated by Adyen. These two parts form
an authentication token for web requests destined for Adyen.

5.1.7. BluetoothMessage 7

The Payleven app then retransmits message 2 (identifyPaymentDevice) and
the card reader then replies withmessage 3 (identifyPaymentDeviceResponse).
Message 7 is identical to message 6. The URL is now preceded by an authorization
header and authorization code. The header indicates the use of the basic access
authentication method. According to this method, the authorization code is the
Base64 encoding of ‘[username]:[password]’.

1 @authorization=Bas ic
OTI4KioqKkBDb21wYW55Lk1lcmNoYW50QWNjb3VudC42NTNLbHUqKioqKioqOg==&#ur l=
http :// bluetoothዅremote/ po s r e g i s t e r / s e r v i c e s / PosReg i s t e r /v10&jaastoken
=
NjU4ZDg1ZmYtM2VlMi00YjQ5LTg5ZDEtMTE3YWNlNjc0NmYzXk1xcUd1aFQ5bmFNcDQ2UW1j
=&#c l =583G

Listing 5.6: Contents of message 7

However, decoding the authorization code results only in a username.

1 OTI4KioqKkBDb21wYW55Lk1lcmNoYW50QWNjb3VudC42NTNLbHUqKioqKioqOg==
2 \/
3 Base64 decoding
4 \/
5 928****@Company.MerchantAccount.653Klu*******:

Listing 5.7: Base64 decoding of the authorization code from message 7

As can be seen in Listing 5.7, the authorization code is built up from the Adyen
merchant account (’653********’) and the Adyen username (‘928***’). Both
the merchant account and the Adyen user code are communicated to the Payleven
app during the app login phase (namely, in the response to web request P1a).
The messages 2, 3 and 7 are retransmitted as long as the Bluetooth connection

is active. The retransmission is ceased when a monetary transaction is started in
the Payleven app.

5.2. Bluetooth traffic during the transaction 85

5.2. Bluetooth traffic during the transaction

Figure 5.3 presents the MSC of the Bluetooth communication between the smart-
phone and the card reader during the transaction phase. The transaction phase
is split up over three separate MSC diagrams; MSC 5.3 is the first of three.

Figure 5.3: Message sequence chart of the Bluetooth traffic during the transaction phase. Part 1 of 3.

86 5. Bluetooth Traffic Analysis

5.2.1. BluetoothMessage 8

Message 8 indicates the start of the transaction phase. The Payleven app sends
message 8 (createTender) to the Chip & PIN card reader, requesting the ter-
minal to create a tender (a tender is an offer to buy an asset at a stated fixed prices
- synonyms are: bid, offer, quote). The SOAP request in message 8 includes stan-
dard information regarding the merchant and the card reader, and also provides
the reader with the transaction amount (see line 7 in Listing 5.8: 100 represents
€1.00). The reference tag holds the payment stub (see Section 4.5.1).

1 <n1:merchantAccount>653Klu*******</n1:merchantAccount>
2 <n1:terminalId>Shuttle-016303651</n1:terminalId>
3 <n1:reference>04fda3a8dc638424b17e</n1:reference>
4 <n1:transactionType>GOODS_SERVICES</n1:transactionType>
5 <n1:amount>
6 <n2:currency xmlns:n2=”http://common.services.adyen.com”>EUR</n2:currency

>
7 <n3:value xmlns:n3=”http://common.services.adyen.com”>100</n3:value></n1:

amount>
8 <n1:options>
9 (* Tender Options *)

Listing 5.8: First part of the SOAP request in message 8 (createTender)

Furthermore, the SOAP request provides the card reader with several tender op-
tions: ResetCurrentTender, AttendantActionHandler, GetAddition-
alData and ReceiptHandler. The additionalData element in message 8
consists of 10 entries, such as the time stamp, longitude and latitude, and in-
formation on the Android device and application. The following information is
extracted from the application:

• appinfo.posregisterconfiguredname - 453009d98289fdd

• appinfo.lib - 1.9p22

• appinfo.appid - 658d85ff-3ee2-4b49-89d1-117ace6746f30

• appinfo.os - 4.3

• appinfo.model - Galaxy Nexus

• appinfo.appname - Payleven

The appid is used to construct the jaastoken from Listing 5.4 and 5.5 (see Section
4.4.2).

5.2.2. BluetoothMessage 9

Message 9 (createTenderResponse) contains the SOAP response of the card
reader to message 8. The response is shown in Listing 5.9.

1 [...]
2 <n1:response>
3 <n1:createStatus>Created</n1:createStatus>
4 <n1:nextTenderStatusPollSeconds>0</n1:nextTenderStatusPollSeconds>

5.2. Bluetooth traffic during the transaction 87

5 <n1:tenderReference>16PK71437462986069</n1:tenderReference>
6 </n1:response>
7 [...]

Listing 5.9: SOAP response in message 9 (createTenderResponse)

The response includes information on the status of the createTender request
and provides the Payleven app with a reference code. The nextTenderPollSec-
onds element is set to 0.

5.2.3. BluetoothMessage 10

Hereafter, message 7 is retransmitted. The content-length fragment cl of the
URL is set to 524, which indicates the length of message 10 (statusTender).
The contents of message 10 are shown in Listing 5.10. The SOAP request in
message 10 provides the card reader with information on the merchant and the
corresponding card reader (terminal ID) accompanied with the tender reference.
This reference is the same as the one sent by the card reader in message 9 (Listing
5.9).

1 [...]
2 <n1:request>
3 <n1:merchantAccount>653Klu*******</n1:merchantAccount>
4 <n1:terminalId>Shuttle-016303651</n1:terminalId>
5 <n1:tenderReference>16PK71437462986069</n1:tenderReference>
6 </n1:request>
7 [...]

Listing 5.10: Contents of message 10 (statusTender)

Message 7 (cl=524) and message 10 (statusTender) are retransmitted mul-
tiple times during the rest of the protocol run. These two messages are bundled
together into ‘Status Tender Message’ (see MSC 5.3). The card reader then replies
with a statusTenderResponse in the messages 11, 12, 13, 14, 16, 19, 20, 21,
22, 24 and 25.

5.2.4. BluetoothMessages 11 to 14

The first four statusTenderResponse messages (11 to 14) have the same
structure. The messages contain information on the state of the tender; in the
case of message 11, the state is set to TENDER_CREATED (see Listing 5.11). In
addition to the tender reference, the SOAP response also provides the Payleven
app with a request reference. The nextTenderStatusPollSeconds element is
now set to 1.

1 [...]
2 <n1:response>
3 <n1:nextTenderStatusPollSeconds>1</n1:nextTenderStatusPollSeconds>
4 <n1:requestReference>16PK71437462993070</n1:requestReference>
5 <n1:state>TENDER_CREATED</n1:state>
6 <n1:tenderReference>16PK71437462986069</n1:tenderReference>
7 </n1:response>

Listing 5.11: Contents of message 11 (statusTenderResponse)

88 5. Bluetooth Traffic Analysis

Table 5.1 shows the contents of the the elements state and requestRefer-
ence for messages 11, 12, 13 and 14. The contents of the remaining elements
did not change. The states clearly outline the progress of the transaction process.
In message 12, the card reader notifies the Payleven app that a card has been
inserted. Then, depending on the payment card, the corresponding payment ap-
plication (e.g., Maestro) is selected. The card reader keeps the Payleven app up
to date regarding the selection of the payment application with messages 13 and
14.

The request reference number varies for each message and serves probably as
a sequence number. The last digit is increased in each subsequent statusTen-
derResponse message. The 15th digit of the reference number is in a few cases
also incremented (see underlined digit in Table 5.1).

Message 11
state TENDER_CREATED
requestReference 16PK71437462993070

Message 12
state CARD_INSERTED
requestReference 16PK71437462994071

Message 13
state WAIT_FOR_APP_SELECTION
requestReference 16PK71437462997072

Message 14
state APPLICATION_SELECTED
requestReference 16PK71437462997073

Table 5.1: The contents of elements state and requestReference for messages 11, 12, 13 and
14.

5.2.5. BluetoothMessage 15

Message 15 does not contain a response to the statusTender request. Its con-
tent is similar to the contents of message 7. The message is composed of the same
jaastoken and authentication code as listed respectively in Listing 5.5 and Listing
5.7. Furthermore, the message contains the terminal ID of the card reader and
provides the Payleven app with the URL: ‘https://pal-live.adyen.com/
/pal/adapter/posmessage.proto’. This URL has been observed earlier dur-
ing the Internet network analysis in Section 4.5.3. What stood out about the
‘posmessage.proto’ URL is that all that sent to it was encrypted. And indeed, the
message(s) that follow(s) message 15 contain encrypted data.

Also noteworthy is the fact that the content-length fragment cl is set to −1.
This suggest an upcoming message of length −1, which is an unrealistic attribute.

1 jaasToken=
NjU4ZDg1ZmYtM2VlMi00YjQ5LTg5ZDEtMTE3YWNlNjc0NmYzXk1xcUd1aFQ5bmFNcDQ2UW1j
=&terminal Id=Shutt le ዅ016303651&Author izat ion=Bas ic
OTI4KioqKkBDb21wYW55Lk1lcmNoYW50QWNjb3VudC42NTNLbHUqKioqKioqOg&#c l
=ዅ1&#ur l=ht tps : // palዅ l i v e . adyen .com/pal / adapter /posmessage . proto

Listing 5.12: Contents of message 15

5.2. Bluetooth traffic during the transaction 89

5.2.6. Encrypted Data Exchange (1)

After message 15 follow two messages that contain application-level encrypted
data. This data is partially listed in Listing 5.13. This encrypted message exchange
only covers two messages: the card reader sends a message with 1222 bytes of
encrypted application data and the smartphone then replies with 101 bytes of
encrypted data.
The encrypted data sent here to the Payleven app is ultimately forwarded to

the Adyen back-end in web request A3a (see Section 4.5).

1 02 0c 20 e7 03 e3 03 43 00 09 ef bc 07 05 6c 82C......l.
2 10 00 00 01 01 00 26 0a 15 d8 6f 40 08 aa 79 81&...o@..y.
3 0e 6e bf cc ea c6 ec 8f e2 1b d4 ac 75 4f 77 e4 .n..........uOw.
4 17 f7 9f f7 9c 66 77 74 73 db 58 c8 a4 32 7b 88fwts.X..2{.
5 10 0e dd a5 bc 41 cd cd c8 53 f7 4a ee 10 b2 27A...S.J...’
6 27 da 7a 63 eb e5 62 15 08 6d 70 a9 8b d8 3a 84 ’.zc..b..mp...:.
7 30 de e7 b6 52 bf 42 fb 49 cc 6b 70 52 e0 5b f8 0...R.B.I.kpR.[.
8 0d 87 9c 77 fc 30 d1 e0 fa 83 cd 82 d4 c4 e9 b5 ...w.0..........
9 48 45 37 ed 93 8b 80 c1 c2 45 40 17 ab 85 42 ad HE7......E@...B.
10 f9 d0 d0 24 5c fc b5 a9 27 2e 33 6e 95 59 5a 4d ...$\...’.3n.YZM

Listing 5.13: Encrypted application data

5.2.7. BluetoothMessage 16

Figure 5.4 shows the second MSC diagram of the three-part. It continues where
MSC 5.3 left off. The next message (message 16) is human-readable and contains
a response to the statusTender request transmitted just prior to message 15.
The response provides information on the state of the tender and the request
reference. This information is presented in the table below.

Message 16
state ADDITIONAL_DATA_AVAILABLE
requestReference 16PK71437462998074

Table 5.2: The contents of the elements state and requestReference for message 16

The state ADDITIONAL_DATA_AVAILABLE refers to an extra element addi-
tionalData, which holds 24 key entries. These key entries are listed in Table
5.3. The entries hold information on the inserted payment card, such as expiry
date, issue number and country, card type and scheme. The card holder name is
not listed, but an alias is provided instead. The card summary key holds the last
four digits of the bank account number. Furthermore, the remaining keys hold
information on the transaction, such as the transaction amount (listed twice),
start date and time of the transaction, and the merchant reference.

5.2.8. BluetoothMessage 17 & 18

The Payleven app then reacts with message 17. The message contains a request to
update the tender. The request is shown in Listing 5.14.

1 <n1:request>
2 <n1:merchantAccount>653Klu*******</n1:merchantAccount>

90 5. Bluetooth Traffic Analysis

3 <n1:terminalId>Shuttle-016303651</n1:terminalId>
4 <n1:tenderReference>16PK71437462986069</n1:tenderReference>
5 <n1:modifyState>JustProcess</n1:modifyState>
6 <n1:process>false</n1:process>
7 </n1:request>

Listing 5.14: SOAP request in message 17 (updateTender)

Figure 5.4: Message sequence chart of the Bluetooth traffic during the transaction phase. Part 2 of 3.

The goal of the SOAP request is probably to trigger the processing of the trans-

5.2. Bluetooth traffic during the transaction 91

expiryYear 2019
cardIssueNumber 02

posAuthAmountValue 100
cardHolderName empty

alias C133084544881715
cardSummary 0537

cardIssuerCountryId 528
merchantReference de82fb6b2237210dbf17

posAuthAmountCurrency EUR
cardType MAESTRO

cardScheme maestro
txtime 9:16:27

applicationPreferredName MAESTRO
transactionType GOODS_SERVICES

startYear 2014
expiryMonth 02

AID A0000000043060
applicationLabel MAESTRO

tid 16303651
posEntryMode ICC
startMonth 02

txdate 21-7-2015
posOriginalAmountValue 100

cardBin 673703

Table 5.3: Key entries listed in the additionalData element from message 16.

action by the card reader. This can be deduced from the element modifyState,
which is set to the value JustProcess. However, the element process is set to
‘false’. Therefore, the purpose of the update request not completely clear.
The card reader then replies with message 18 (see Listing 5.15) which con-

tains the SOAP response. The response signifies that the tender update has been
accepted.

1 <n1:requestReference>16PK71437463001075</n1:requestReference>
2 <n1:resultCode>UpdateAccepted</n1:resultCode>

Listing 5.15: SOAP response from message 18 (updateTenderResponse)

5.2.9. BluetoothMessage 19, 20, 21 & 22

Subsequent to message 17 and message 18, the Payleven app starts retransmitting
‘Status Tender’ messages to the card reader. The reader then replies with the
messages 19, 20, 21 and 22. The state element of the messages, as shown in
Table 5.4, gives a clear indication of the transaction state applicable at that time.
Message 19 indicates that the processing of the tender request (i.e., the trans-

action) has been initiated by the card reader. The reader then requests the card

92 5. Bluetooth Traffic Analysis

Message 19
state PROCESSING_TENDER
requestReference 16PK71437463002076

Message 20
state WAIT_FOR_PIN
requestReference 16PK71437463002077

Message 21

state PIN_DIGIT_ENTERED
requestReference 16PK71437463003078

16PK71437463008079
16PK71437463008080
16PK71437463008081

Message 22
state PIN_ENTERED
requestReference 16PK71437463009082

Table 5.4: The contents of elements state and requestReference for messages 19, 20, 21, 22.

holder to enter the PIN in order to continue the process and authenticate the
transaction. This is pointed out in message 20. For each PIN digit entered on
the PIN terminal, message 21 is generated and sent to the Payleven app. Hence
that the request reference is listed four times for message 21 in Table 5.4. This is
also reflected in MSC 5.4. Message 22 is transmitted once the PIN is entered and
confirmed.

5.2.10. Encrypted Data Exchange (2)

Subsequently, the Payleven app sends a ‘Status Tender’ message to the card reader.
The card reader then replies with message 15. What then follows is an exchange
of encrypted data as has already been observed earlier in the protocol run in En-
crypted Data Exchange - 1. This time, the card readers sends 1914 bytes of en-
crypted application data. The Payleven app then replies with 742 bytes of en-
crypted data. The data sent here to the Payleven app is ultimately forwarded to
Adyen in web request A4a (see Section 4.5).
This is probably the most important message exchange of the whole protocol

run since it occurs directly after the PIN was entered by the customer. The mes-
sage exchange probably holds interesting and sensitive information regarding the
handling of the transaction.
Also, it should be noted that each message 15 triggers an encrypted data ex-

change between the Payleven app and the Chip & PIN card reader.

5.2.11. BluetoothMessage 23

Message 23 holds the statusTenderResponse on the latest ‘Status Tender’
request sent prior to the encrypted data exchange. Table 5.6 shows the values for
the state and requestReference elements of message 23.

Message 23
state PRINT_RECEIPT
requestReference 16PK71437463010083

Table 5.5: The contents of elements state and requestReference for messages 23

5.2. Bluetooth traffic during the transaction 93

Additionally, message 23 also lists the elements additionalData, auth-
Code, cardHolderReceipt and merchantReceipt. The additionalData
element holds the same key entries as listed in Table 5.3 and was supplemented
with four extra key entries:

• transactionReferenceNumber;

• signature.merchant.name1 and signature.merchant.name2, which
hold the merchant company name and location;

• and, paymentverificationdata.

The key entry paymentverificationdata has been sent earlier in message 8
and was holding the term ‘populate’ then. In message 23, paymentverifica-
tiondata is populated with the following data:

1 <entry><key xsi:type=”xsd:string”>paymentverificationdata</key>
2 <value xsi:type=”xsd:string”>
3 BQABAQCF6Aopma3OeaKR0evqqNls+x7b+xzpOsmM+2fkyu9EwR4Z1GEl7Z+O2bl/
4 6njgQWVpPsPYppK5bTM3bxrGs00f90jiCfDpr5ppsiU40r8Gn9b01f++NsxSPrH
5 eoa+Jkv7QXs2PBoPYcQkUmm+MbqbzB0o37EMiN/jeqj4nWmziPzNAxCFqaEZbuF
6 Yy4+lphhK7ULTOT5AVAk8o9nq44ZpNUnPvjxbpFGjSJlvKo0alsuupTKo1JoHZh
7 wZBVHdl2x1cv0aCtik0e8XVffOBi2hoffwX/2MUvARa0sBvullutfm8fbzfBtFD
8 IPy4jJKnCU7ROgZtbZ2F1LFIPeyT+709EPb6SeDrCuNuUpeateUmNvMAADYOdiJ
9 P8RCf0K+obdOgPSGH+13MM/kNWDxa9Z0q/e4NLI3na5tS5ZJ15nRZZGJEOdk7Id
10 jL6BhhgMhASFBBEbIUf0LuKe2oHzdBlSA5rj1y+jbyhXem16nQbo4j1ysBRGGsw
11 7rDwWjjw+GmdVknFE92WSeYLlldZ25vAaqJsdecWkoKEN3UqaApX+3AcnPtf8Ug
12 </value>
13 </entry>

Listing 5.16: The value of paymentverificationdata in message 23.

Unfortunately, decoding the payment verification data according to Base64
does not reveal any human-readable information. It is suspected that the payment
verification data is also subjected to application-level encryption.
The element authCode contains a 6-digit alphanumeric authorization code:

in this case 26M9M2. The authorization code is different for each transaction.
The remaining elements, cardHolderReceipt and merchantReceipt, rep-

resented the receipt information. The receipt information is generated by the
Payleven Chip & PIN card reader upon transaction completion and is structured
according to the following syntax:

1 <n1:cardHolderReceipt>
2 <n1:content>
3 <n1:ReceiptLine>
4 <n1:format>Normal</n1:format>
5 <n1:mustPrint>false</n1:mustPrint>
6 <n1:name>Datum</n1:name>
7 <n1:position>1</n1:position>
8 <n1:value>21-7-2015</n1:value>
9 </n1:ReceiptLine>

Listing 5.17: Structure of cardHolderReceipt in message 23

94 5. Bluetooth Traffic Analysis

Each line on the receipt is defined by the elements enclosed in ReceiptLine.
The position element indicates the position of the receipt line. The first line
on the receipt for the card holder holds the date of the transaction. The elements
format and mustPrint are self-explanatory.

5.2. Bluetooth traffic during the transaction 95

Figure 5.5 holds the last part of the MSC representing the Bluetooth message
exchange during the transaction phase.

Figure 5.5: Message sequence chart of the Bluetooth traffic during the transaction phase. Part 3 of 3.

5.2.12. BluetoothMessage 24, 25 & Encrypted Data Exchange (3)

The Payleven app then proceeds the protocol run with transmitting an update-
Tender request in message 24. The modifyState parameter was set to re-
ceiptPrinted:

1 <n1:modifyState>ReceiptPrinted</n1:modifyState>

Listing 5.18: modifyState in message 24 (updateTender)

96 5. Bluetooth Traffic Analysis

The message probably serves as a confirmation to the card reader that the receipt
has been received. The reader then replies with message 18 as described earlier in
Listing 5.15.
Message 25 contains a response on the ‘Status Tender’ request. The authen-

tication code (authCode) is added to the standard layout of a statusTender-
Response. With this message, the card reader probably acknowledges the fact
that the receipt has been received by the Payleven app.

Message 25
state RECEIPT_PRINTED
requestReference 16PK71437463016085
authCode 26M9M2

Message 26
state APPROVED
requestReference 16PK71437463017086
authCode 26M9M2

Table 5.6: The contents of elements state, requestReference and authCode for messages 25
and 26.

Then again, message 15 is retransmitted to the Payleven app, followed by 13kB
of encrypted application data.

5.2.13. BluetoothMessage 26, 27 & EncryptedData Exchange (4, 5)

The next message after the encrypted data exchange is message 26, which holds a
statusTenderResponse. The additionalData element in message 26 holds
the same key entries as message 23 (except for signature.merchant. name).
The contents of the payment verification data entry did not change.
Message 26 is then followed by another encrypted message exchange, which

in turn is followed by another message 26. The last human-readable message is
message 27 and it is similar to message 15; only the last part of the message, the
URL, is different:

1 jaasToken=
NDlkMWM1NmEtY2QxZi00N2ZjLWIzZjctNmEzZjZhN2RiZTYwXk1xcUd1aFQ5bmFNcDQ2Qmc
%3D&terminal Id=Shutt le ዅ016303651&Authorizat ion=Bas ic+
OTI4NzM2QENvbXBhbnkuTWVyY2hhbnRBY2NvdW50LjY1M0tsdU1lZG9QT1M6&#c l=ዅ1&#
ur l=https ://2 Fpalዅ l i v e . adyen .com/pal / adapter /batchsync . proto

Listing 5.19: Contents of message 27

The protocol run is then concluded with another encrypted message exchange.
The last part of the URL-path (batchsync.proto) suggests that the last en-
crypted messages must contain batch data. What data exactly is synchronized
during the batch synchronization, is unknown. However, the batch must hold a
set of requests from current (and maybe previous) transactions which need to be
executed or communicated to another party all at once.

6
Software &Hardware Analysis

The first part of this chapter focuses on the Payleven app;
the source code is examined and findings are presented.
The second part is aimed at the Payleven Chip & PIN card
reader; the hardware is tested for its temper resistance and
the reader’s firmware is extracted and scrutinized.

6.1.Analyzing the app’s source code

The Payleven app forms an essential part of the Payleven payment platform. It
handles the communication between the Chip& PIN card reader and the Payleven
and Adyen back-end servers. The app also provides the user interface to the pay-
ment platform. In essence, the Payleven app, and the smartphone, function as
some sort of ‘trusted’ intermediary for sensitive transaction data. The app has to
be trusted up to a certain extent as it passes on account information to the card
reader on which, in the end, the transactions are based.1 Therefore, the Payleven
app and its source code had to to be examined.
Unfortunately, it soon turned out that the Payleven app was too big to be

investigated throughly within a short period of time. The Payleven app comprised
an astonishing 5000 JAVA classes distributed over roughly 200 packages. It was
not possible to explore every aspect of the app and to set out its workings in more
detail. It simply comprised too many classes, which in terms of functionality also
seemed to overlap. This and the fact that multiple parties are involved made it
hard assert any interesting and valuable claims as regards security and operations.
The initial aim of this software analysis was (1) to uncover security flaws and

privacy issues, and (2) to provide useful insights regarding the structure of the
Payleven app. However, the focus of the analysis had to be narrowed. In the end,

1note that the app is not trusted with the actual transactions data as it has not access. On the other
hand, the card reader is trusted.

97

98 6. Software & Hardware Analysis

the software analysis of the source code primarily provided insights at a global
level. That is to say, the source code of the Payleven app was consulted when
necessary in order to fill in knowledge gaps which could not be explained by the
information provided by the network and Bluetooth traffic.
This does not mean that the Payleven app has not been addressed. Some ob-

servations regarding the program contents are made in the next subsection.

6.1.1. Program understanding

The large number of classes and packages made it very difficult to identify the logic
behind the Payleven app. Based on a first glance of the source code, it can be stated
that a great number of the classes did not directly contribute to the main core of
the program. Themain core is defined as the security relevant parts responsible for
the initialization and processing of transactions and other sensitive information,
and the establishment and handling of the Bluetooth and network connection.
Eventually three packages were identified that could hold relevant classes cov-

ering some core activities.

• adyen - the ‘adyen’ package forms probably the vital part of the Payleven
app. It contains the Adyen API which encompasses roughly 400 classes.
Moreover, the API comprises classes aimed at the card reader and app regis-
tration, the communication towards the card reader and the payment server,
SOAP message transport and handling, and the transaction API.

• evopay - Evopay is the former name of Payleven. The corresponding package
contains folders and classes that seem to cover various basic functionalities
of the Payleven app. That is, ‘evopay’ holds source code concerning the user
interface, communication handling (e.g., contains HTTP client), tokens,
payment stubs, tracking and also comprises the logic behind the handling of
different types of card readers, banking cards applications and transactions.
Large part of the ‘evopay’ package seems to concern legacy source code.

• payleven - the ‘payleven’ package is relatively small and contains classes
that seem to add Chip & PIN functionalities to the Payleven app. The possi-
bility exists that this package has been added later on to support new func-
tionalities. The earlier versions of the Payleven app seem to only support
mag-stripe functionalities

Other interesting observation that emerged from the analysis is that func-
tionalities seem to overlap among different packages. For example, the JAVA-file
TransactionData.java appears both in ‘evopay’ and ‘adyen’. Which class is then
utilized to represent transaction data? Both packages seem to overlap in certain
functionalities, as indicated here; however, put against each other, the packages
seem to act complementary. The Adyen package is aimed at the Adyen related
functionalities of the Payleven app; for example, the registration of the Chip &
PIN card reader and the Payleven app, whereas the other two packages provide
functionalities that relate to the responsibilities of Payleven.

6.1. Analyzing the app’s source code 99

6.1.2. Client-side encryption key

During the app registration process (see Section 4.3.1), the Payleven app receives
a client side encryption key via a SOAP response from Adyen. It was not pos-
sible to deduce from the SOAP message for which purposes the encryption key
is used. Of course, the possibility existed that the encryption key could be used
for the application-level encrypted data exchange (see Section 4.1). If that would
be the case, the application-level encryption would be easily circumvented. The
next logical step was to search all files in the ‘adyen’ directory for the keyword
‘clientsideencryptionkey’ in the hope that the aim would then be apparent from
the source code. The keyword was found in 6 JAVA-files:

• LibraryReal.java in ‘library/real/’;

• AppRegistrationTask.java in ‘library/real/tasks/’;

• Preferences.java in ‘adyenpos/generic/’;

• RegisterAppResponse.java in ‘services/posregistration/’;

• RegisterAppResponse.java in ‘services/posregistrationsync/’;

• and, RunMotoPayment.java in ‘adyenpos/transactionapi/emv/processing/’.

In the method createMotoPaymentRequest() in RunMotoPayment.java the client
side encryption key is used as follows:

1 context.setEncryptedCardData((new AdyenEncrypter(preferences.
getClientSideEncryptionKey())).encrypt(jsonobject.toString()));

The encryption key is loaded in the AdyenEncrypter class (see above code snipper).
From AdyenEncrypter.java (‘library/clientencryption’) it became clear that the
client side encryption key represents a public RSA key. The encrypt() method
in that class subsequently generates a 256-bit AES key and uses it to encrypt the
method’s input (in this case, a JSON-object). The RSA key is used to encrypt the
freshly generated AES key. The output of the encrypt() method then consists
of an AES-encrypted JSON-object and a RSA-encrypted AES key.
This part of the Payleven app would be interesting to attack. By making the

AES and RSA known fixed values, it would be possible to decrypt data that is en-
crypted with the above-mentioned encryption method. However, this encryption
method is only invoked in RunMotoPayment.java and, unfortunately, this class
is never put into operation by the Payleven app. The acronym MOTO stands for
‘Mail Order/Telephone Order’ and, thus, a MOTO payment is a payment in re-
sponse to an order made via the telephone or mail (so called virtual POS)[24]. In
conclusion, the client side encryption key sent during the app registration phase
is used to encrypt an AES key which, in turn, was used to encrypt the transaction
and card details within a MOTO-payment. These payments are never invoked in
the Payleven payment platform.

100 6. Software & Hardware Analysis

6.2.Analyzing the Chip & PIN card reader

The security evaluation of the Chip & PIN card reader consisted of two parts.
The first part was aimed at the hardware of the card reader; a closer look was
taken at the internals. The second part focused on the extraction of the firmware
from the reader and its evaluation. The goal of the hardware evaluation was to
investigate how tamper-resistant the card reader actually is. As slightly pointed
out during the methodology in Chapter 3, there exists the threat that the reader
is tampered with. For example, a small device could be planted that registers and
stores keystrokes, or the reader’s display is manipulated. Therefore, the hardware
was taken apart and the possibilities for tampering were investigated. As regards
the firmware, it was first necessary to extract all files located on the card reader.
This seemed struggling as the card reader did not appear as a local drive while
plugged-in on a USB port. Eventually, it was possible to extract all files through
the methods described in Section 3.3.4. Manual investigation was then used to
sift through all detected files, seeking for striking or sensitive information and
files. All file were subjected to examination.

The next section deals with the evaluation of the hardware, whereas the sub-
sections thereafter discuss the findings of the evaluation on the file system and
firmware found on the card reader.

6.2.1.Dissembling the card reader

Taking apart the card reader was far from easy. It was clearly built to never be
opened again. No bolts were used to fasten the plastic casings, thus force was
required to loosen the casing. In the end, with some patience and a lot of force,
the backside became detached.

(a) The backside of the card
reader without plastic casing.

(b) The frontside of the card
reader without plastic casing.

Figure 6.1: The Payleven Chip & PIN card reader with the plastic casing removed.

6.2. Analyzing the Chip & PIN card reader 101

Figure 6.1a shows the backside of the card reader without the plastic casing.
The battery (silver) and the smart card slot are exposed. The exposed frontside is
shown in Figure 6.1b. The keypad and the display can clearly be seen. The top of
the card reader comprises a magnetic strip reader.

Subsequently, the card reader was further taken apart. The remaining plastic
was removed and the battery was detached from the backside. The battery was
welded on two points on the backside and needed to be cut loose. This caused an
electrical short cut which rendered the device useless. Figure 6.2a showcases the
card reader without the battery. The integrated circuit of the card reader is clearly
visible, as are the processor, memory, and other chipsets. However, no JTAG port
was detected on the main board.

(a) The internals of the card reader
demonstrating the integrated cir-
cuit.

(b) The magnetic strip reader is
loosened from the card reader.

Figure 6.2: The card reader is further torn apart. The battery and magnetic strip reader are removed.

Figure 6.3: The message on the display indicates that the card reader has been tampered with.

102 6. Software & Hardware Analysis

Prior to removing the battery, the card reader was alive; however, it was still
useless. The Chip & PIN card reader immediately noticed that the plastic cas-
ing was removed. Once the casing was detached, the display on the card reader
showed the message ‘xx SYSTEM TAMPERED xx’, thus indicating that it has de-
tected an attempt to comprise security. The tamper attempt has probably been
detected by detection points on the keypad. The plastic front case namely has
small pins on the inside that exert pressure on specific points on the main board.
By removing the front case, the pressure disappears and the card reader shuts
down and ends up in an infinite error state. That is, it is not possible for the card
reader to exit the error state. Restarting the device is useless.
In conclusion, opening the Payleven Chip & PIN card reader carelessly will

render the device useless. This makes it unfeasible for an attacker to apply mod-
ifications on the internals of the device. Moreover, the size and volume of the
card reader leaves little room for the emergence of other attack possibilities. The
only weakness of the hardware as became apparent in this research was the fact
that it allowed for the extraction of the firmware.

6.2.2. Extracting the file system

The card reader’s file system was extracted and copied into an ISO-file (approx.
33.6MB) using the methodology as described in Section 3.3.4. Subsequently,
‘Binwalk’ was then used to identify and extract separate individual files from the
ISO-file. The extraction ended up with some folders, a few shell scripts, bina-
ries, certificates, configuration files, .txt-files and JAVA .properties-files. A
selection of these findings is listed below:

• .txt-files:

– cardbin.txt: lists range of allowed bank identification numbers (BIN)
together with card type and issuing country code;

– cardReferral.txt: lists three short Base64 encoded strings.;

– capkeys.text: lists the CAPKI and RID. THe CAPKI stands for Certifi-
cation Authority Public Key Index. It identifies the certificate authori-
ties public key in combination with the RID. The RID is the Registered
Application Provider Identifier which is allocated to each card scheme
to identify the corresponding EMV application. It seems that this text
file stores the public keys for each RID in order to support Offline En-
ciphered PIN [25][26].

• Certificates:

– main-user.crt: signed by Adyen and issued by Miura Systems (i.e.,
card reader manufacturer);

– terminal.crt;

– prod-sign.crt.

6.2. Analyzing the Chip & PIN card reader 103

• Shell scripts:

– start: defines the start procedure during boot time;

– restore: defines restore procedure;

– install: defines the install procedure. Probably the more interesting
script as it demonstrates what steps are invoked to be completed or ex-
ecuted before the system is considered to be ready. For example, during
the install procedure several certificates are verified on the device.

• JAVA .properties files:

– terminal.properties: lists the supported terminal capabilities of the
card reader, such as manual key entry and online/offline enciphered
PIN handling.

– global.properties: lists the global properties of the firmware. It lists,
for example, the local time, location, used currency. It also defines the
posmessage.proto and batchsync.proto URLs as encountered during the
network analysis in Section 4.4 and 4.5. The most interesting part of
this file concerned four PIN codes held in plaintext. The respective
piece from the .properties-file is shown below in Listing 6.1.

These PIN codes are presumably used to access an adminmenu or setup
on the card reader. This is indeed the case as will be demonstrated later
on in Section 6.2.4.

Moreover, the four admin PIN codes are, as it seems, sorted based on
access rights. The ‘adyen’ clearance level is probably the highest (i.e.,
level 1) and the ‘operator’ level is the lowest (i.e., level 4). Indeed,
this is true as the ‘operator’ PIN code will result in less options in the
admin menu than when accessed with the ‘adyen’ PIN code. Section
6.2.4 describes the hidden admin menu on the card reader.

0 setup.clearance.adyen.pin = *********** (11 digits)
1 setup.clearance.adminplus.pin = ************ (12 digits)
2 setup.clearance.admin.pin = **** (4 digits)
3 setup.clearance.operator.pin = **** (4 digits)
4

Listing 6.1: The discovered admin PIN codes in ‘global.properties’. The PIN codes are removed for
security reasons.

• Folders:

– icons: comprises the icons that are displayed on the card reader screen,
such as the Payleven logo;

– fonts: lists several fonts in BDF format;

– adyen: lists several JAR-files. Obviously, this is the most interest-
ing folder as it contains the application. The JAR-archives ‘miura-
sup’ and ‘miurajni’ hold the firmware of the card reader. The archive

104 6. Software & Hardware Analysis

‘protobuf-java-2.4.1.jar’ was also included in the folder. This confirms
that Google’s Protocol Buffers are used within the Payleven payment
platform.

– remaining folders: bin, fs,META-INF and receipts.

Although a clear file system including firmware could be extracted from the
card reader, a large part of the extracted ISO-file was as it seemed obfuscated
(entropy approached the value 1.0). Binwalk was not able to identify or extract
any useful files from that portion of the ISO-file. This could be an indication of
encryption. The extracted file system did not contain any secret keys, hence it
might be the case that these keys were situated within the obfuscated part. This
stresses the fact that some kind of security measurement was implemented on the
card reader to protect sensitive data. Further research is required to investigate
this finding.

6.2.3. Comments regarding the firmware

As mentioned in the previous section, the two JAR-archives ‘miurasup’ and ‘mi-
urajni’ found in the folder ‘adyen’ represented the firmware of the card reader. A
quick analysis of the source code of the firmware identified several functionalities;
for example, the firmware comprised source code for the Bluetooth functionality,
the (SOAP) message and transport handling, the card reader registration and the
payment handling. Basically, similar functionalities as encountered in the analy-
sis of the Payleven app. However, the firmware did also include source code which
covered EMV and cryptography functionalities. The firmware clearly covers the
‘core’ functionalities of the payment system, which is obvious as the card reader
plays a central role within the system.
The examination of the firmware did further not reveal any security-related

issues, however it should be noted that the examination was far from complete
and comprehensive. The firmware did comprise many files and was definitely too
complex to be understood within a short period of time. Moreover, far too little
time was spend into examining the firmware.
Nevertheless, some notions have been made on basis of a first view analysis

on the firmware:

• A significant part of the firmware is provided or co-developed by Adyen.
To underline this observation, no occurrences of the string ‘Payleven’ were
found in the firmware. This stresses the fact that Payleven was not involved
in the development of the payment system. More importantly, it points out
the significance of Adyen to the Payleven payment platform.

• The firmware clearly pointed out the implementation of the DUKPT key
management scheme. Also, it was observed in the source code that several
important (secret) keys are loaded from the card reader’s file system. As
slightly noted at the end of the previous section, a major part of the data

6.2. Analyzing the Chip & PIN card reader 105

extracted from the card reader was obfuscated; that is to say, no useful in-
formation could be identified or extracted. Hence, it may be concluded that
this part of the file system that contained these keys was obfuscated in order
to ensure that sensitive keys are confiscated.

6.2.4.Accessing the hidden adminmenu

As pointed out in the previous section, the card reader holds a ‘global.properties’
file which lists four admin PIN codes in plaintext. At first it was not clear how
and where these PIN codes could be used, however, very soon the suspicion arose
that a hidden admin menu had to exist on the Payleven Chip & PIN card reader.
Therefore, the remaining question is how to evoke the menu on the card reader.
As this is obviously not mentioned in the instructions guide of the Payleven pay-
ment platform, it had to be sought elsewhere. The firmware formed an obvious
spot.
Finally, the firmware was searched for occurrences of the string ‘setup.clearance’.

Eventually, the search ended up inMainActivity.java and SetupAuthActivity.java:

516 private boolean key9()
517 {
518 this.console.setBacklight(true);
519 new SetupAuthActivity().waitDone();
520 return true;
521 }

Listing 6.2: The key9() method in MainActivity.java

20 public SetupAuthActivity()
21 {
22 this.dpy = new ScreenTextInput(getConsole(), new PinInputFormatter

(), I18NUtil.getI18NString(”enter.admin.pin”), true);
23 this.pins = getClearanceLevels();
24 this.dpy.setInput(””);
25 this.dpy.setValidator(new AdminPinValidator(null));
26 this.dpy.display();
27 }
28

29 [...]
30

31 private Map<String, String> getClearanceLevels()
32 {
33 String levels = Configuration.getString(”setup.clearance.levels”);
34 [...]

Listing 6.3: The SetupAuthActivity() method in SetupAuthActivity.java. The string
‘setup.clearance’ was found in this JAVA-file (line 33).

Method key9() suggests that key ‘9’ is involved in the handling of the de-
tected admin PIN codes. Indeed, holding the ‘9’ on the reader’s keypad evokes the
admin menu as shown in Figure 6.4. Subsequently, the card reader prompts for
the admin PIN code. The four admin PIN codes cover different clearance levels as
noted previously. Hence, the setup of the admin menu differed slightly for each
PIN code. Figure 6.4b shows the menu for the lowest clearance level.

106 6. Software & Hardware Analysis

(a) (b)

Figure 6.4: The admin menu. (a) The card reader prompts for the admin PIN. (b) The upper menu
items (4 items).

The admin menu consisted of the following menu items:

1. Bluetooth (1, 2, 3, 4)

2. Show report (1, 3, 4)

3. Synchroniseren (1, 2, 3)

4. Show debug info (1)

5. Keypad test (1)

6. Export log (1, 2, 3)

7. MSD Update (1, 2, 3)

8. Delete Settings (1, 2, 3)

9. Device Info (1, 2, 3)

10. Set the Clock (1, 2, 3, 4)

11. Key Load (1, 2, 3, 4)

12. Leave Setup (1, 2, 3, 4)

The numbers inside the parentheses indicate the clearance level required to
access the menu item in question. The highest clearance level is ‘1’, the lowest
‘4’.
The ‘Key Load’ option is an interesting one as its suggests that it enables users

to load a custom key on the card reader. However, this is not the case. If selected,
the card reader tries to set up an encrypted channel with the Adyen back-end
servers to download the new key. Therefore, the ‘Key Load’ option requires that
the card reader is connected to a smartphone with a network connection.
By selecting the ‘MSD Update’ option, the card reader showed up as a USB

drive (no files are shown). The objective was then to copy an ‘update.dat’ file
into the USB drive window. The card reader will then try to update its firmware

6.2. Analyzing the Chip & PIN card reader 107

based on the loaded .dat-file. It is assumed that ‘update.dat’ needs to be signed in
order to be accepted, hence uploading malicious .dat-files would not be possible.
The remaining menu items were not very interesting except for ‘Export Log’.

The ‘Export Log’ option generated a zip-file containing several log-files. The card
reader then showed up again as a USB drive. This time, the window included
the zip-file ‘logs-Shuttle-016303651.zip’. Extracting the zip-file resulted in the
following log-files:

zip-file
adyen.properties
aeskey
alog
alog.1
alog.2
App-version.txt
bootstrap-files.log
cpuinfo
dmesg
events.log
global.properties
main.log
receipt.properties
terminal.properties

Figure 6.5: The log-files contained in the ‘Export Log’ zip-file.

Two observations stood out regarding the log-files: (1) the contents of all the
log-files were encrypted, and (2) an AES key was included. The possibility exists
that the provided AES key was used to encrypt the log-files. However, no attempt
has been made yet to decrypt the log-files with the AES key. A quick test revealed
that the IV or passphrase were missing. Moreover, the .properties-files listed
above were also present in the ISO file that was extracted from the card reader.

7
Results

This chapter presents the results of the security analysis by
discussing three possible attack scenarios. These scenar-
ios are based on various security issues identified within
the Payleven payment platform. Additionally, this chap-
ter also highlights and addresses these issues. Section 7.1
describes a theoretical attack in which payments are di-
verted by modifying the merchant account. Section 7.2 de-
scribes an attack in which payments are faked towards the
Payleven back-end. Lastly, Section 7.3 describes an attack
in which illegitimate refunds are triggered by brute-forcing
the refund authorization PIN code.

7.1. Scenario 1: altering the Adyenmerchant account

This section describes a theoretical attack scenario on the Payleven payment plat-
form. The attack is aimed at diverting monetary transactions by substituting the
genuine merchant account by the merchant account belonging to the attacker.
In the end, this leads to monetary loss for the merchant and monetary gain for
the attacker. Firstly, Section 7.1.1 will discuss the issue concerning the Adyen
merchant account that led to this attack scenario. The section thereafter will
elaborate on the attack scenario and its impact. The remaining sections will ad-
dress the feasibility and traceability of the attack.

7.1.1. The issue concerning the Adyenmerchant account

The Adyen merchant account plays a key role within the Payleven payment plat-
form. In fact, it can be stated that the whole payment system revolves around the
merchant account. It determines, in the end, at whose bank account the money

109

110 7. Results

will be credited. Hence, it is to be expected that the merchant account is properly
preserved against malicious practice.
Unfortunately, this is not the case. The corresponding merchant account is

communicated by Payleven to the Payleven app during the app login phase based
on the logged-in Payleven user account (see Section 4.2). This suggests that the
Payleven user account and the Adyen merchant account are intrinsically linked.
After all, the Payleven account is used to retrieve the corresponding merchant ac-
count, after which themerchant account is used as themerchant’s main identifier
throughout the payment process. However, this link is non-existent throughout
the Payleven payment platform; only the Payleven back-end is aware of this link
between the merchant account and the Payleven account. That is to say, the
Payleven app cannot verify whether the merchant account actually corresponds
to the Payleven account logged in at that moment. This is simply not possible.
These two accounts, or instances, exist independently from each other within the
payment platform. This means that one instance can be modified without affect-
ing the other one. So, accordingly, what will happen if the merchant account is
modified?
This is a concerning thought. However, the lack of verification measures on

the Chip & PIN card reader is of greater concern. The card reader has no con-
ception of the existence of a Payleven user account. The only identifier it receives
from the app is the Adyen merchant account (see Section), which is, in turn,
used by the card reader to process transactions with Adyen. This means that the
card reader should be accepting any merchant account as it cannot verify whether
the received merchant account is also the correct one (i.e., corresponds with the
logged-in Payleven account). In other words, it is theoretically possible to change
merchant account, and thus divert transaction away from the merchant, without
the card reader or the app noticing it. After all, they cannot detect the modifi-
cation since the link between the merchant account and the Payleven account is
non-existent throughout the platform.
Indeed, the card reader will accept any merchant account fed to it, as long as

the reader is not set up with an another merchant account; i.e., the card reader
needs to be factory reseted. This has been observed in the Bluetooth traffic. How-
ever, it is expected that the modification will be detected and the transaction
will be canceled due to the permanent linkage between the card reader and the
merchant account. The card reader will eventually communicate its identifica-
tion number (i.e., terminal ID) and the modified merchant account to Adyen.
Consequently, Adyen will detect the mismatch as the terminal ID is not linked
to that specific merchant account. It is linked to the original, pre-modification,
merchant account.
Although this may be true, it does not make an attack based on the above-

mentioned findings completely impossible. It does however make the attack more
difficult and more improbable to be put into practice. The next section will de-
scribe a theoretical attack scenario in which transactions are diverted successfully
by replacing the genuine merchant account with the account belonging to the
attacker (so-called malicious merchant account), and by replacing the genuine

7.1. Scenario 1: altering the Adyenmerchant account 111

card reader with the reader whose terminal ID is linked to the malicious merchant
account (so-called malicious card reader).

7.1.2.Attack scenario: diverting transactions

Based on the notions discussed in Section 7.1.1, it is thus possible to conduct a
serious attack on the Payleven payment platform. The fact that (1) the authen-
ticity and integrity of the Adyen merchant account cannot be assured throughout
the payment platform, and (2) the fact that the Chip & PIN card reader is not
capable of verifying whether the received Adyen merchant account corresponds
to the logged-in Payleven account, facilitate an attack on the payment system. A
successful attack would consist of three steps:

1. Firstly, the attacker would need to substitute the genuine merchant account
with the malicious one. This could be accomplished in several ways: (1) via
an MITM-attack on the network channel as applied in this research, (2) by
substituting the Payleven app with a rogue variant, (3) or through mobile
malware. In the end, the essence of this step is to ensure that the card reader
is fed with the malicious merchant account.

2. Secondly, the attacker would need to swap out the genuine card reader. As
pointed out in the previous section, the card reader will accept anymerchant
account, as long as the reader has been factory reseted. However, eventually
the Adyen back-end will detect the mismatch between the malicious mer-
chant account and the genuine card reader as it is expected that the card
reader will forward all the information it has to Adyen. Therefore, Adyen
will cancel any attempted transaction based on the mismatched combina-
tion of terminal ID and merchant account. Evidently, this linkage between
the card reader and merchant account is a good thing. It is clearly intended
to prevent abuse, and indeed, it makes the attack a lot less feasible and prac-
tical. The attacker is forced to physically replace the merchant’s genuine
card reader with a different card reader whose terminal ID is linked to the
malicious merchant account, and all this without the merchant noticing.
The feasibility of this is discussed in 7.1.4.

3. Lastly, all outbound communication towards the Payleven back-end needs
to be altered in such way that neither the malicious merchant account nor
the malicious card reader are referred to in the logs. Instead, the original
merchant account and the original terminal ID should be used. This way
both Payleven and the merchant are fooled to believe that the transactions
were executed flawlessly.

Interestingly, themerchant account is never sent towards the Payleven back-
end, expect for once during the app initialization phase for logging purposes.
All the other times the marketplace merchant ID is used to refer to the
merchant. However, it is unknown whether this ID is generated by Adyen
or by Payleven. It is in any case not transmitted to the card reader.

112 7. Results

In summary, all information destined for Payleven must refer to the original
merchant account and card reader, whereas information destined for Adyen
must refer to themaliciousmerchant account and themalicious card reader.
This can be achieved in the same way the merchant account is altered.

In brief, an attacker would need to (1) replace the original merchant account
with the malicious account, (2) replace the original card reader with the mali-
cious reader, and (3) modify all outbound communication towards Payleven to
go unnoticed. As a result, a transaction conducted on the payment system will
be diverted to the attacker’s bank account. This all happens under the surface,
whereby the merchant only has a visibility of this surface. Neither Payleven nor
the merchant will be aware of anything since all information towards Payleven
and the Payleven dashboard is manipulated. The merchant will only notice after a
few days as there is no money credited. Even Adyen would not notice anything er-
roneous as it receives seemingly legitimate data from the card reader. This clearly
points out the issue here caused by the lack of cooperation between the two in-
stances within the Payleven payment platform.

7.1.3. Traceability of the attack

As has been slightly addressed in the previous sections, Payleven would not no-
tice the attack. Payleven would not notice that the payment transactions were
diverted to a merchant account other than the one associated with the logged-in
Payleven account. At least, not in the first days; payments are credited on the
merchant’s bank account after two or three business days. Only after these days
have passed - maybe a week - the merchant would notice that nomoney is coming
in. The merchant would then contact Payleven and raise the problem. Payleven,
in turn, would contact Adyen, since they are responsible for the payment process-
ing. As regards the communication between Payleven and Adyen, its contents are
unknown and each assumption about the content would be based on pure specu-
lations. In that case, it is important to determine whether the attack can be traced
based on the information that is sent to the Chip & PIN card reader, as the card
reader probably forwards all received information to Adyen.
All traffic going back and forth between the card reader and the Payleven app,

and the Payleven app and the Internet was set out in the Chapters 4 and 5. Any
information that was sent to the card reader, but originated from the Payleven
back-end will raise suspicion, because this information could, in turn, be sent to
Adyen via the encrypted channel. This would then link the transaction known
to Payleven to the malicious transaction known to Adyen. A call to Adyen would
then immediately result in finding the attacker.
Indeed, such information is exchanged. Payleven generates and sends a pay-

ment stub (20 bytes) as a response to web request P4a (first web request in the
transaction process, Section 4.5). This payment stub is then forwarded in Blue-
tooth message 8 as a tender reference (first message to card reader in transaction
process, Section 5.2). Thereafter, the payment stub is sent as a merchant ref-

7.1. Scenario 1: altering the Adyenmerchant account 113

erence code back to the Payleven app in Bluetooth message 16 (see Table 5.3).
Finally, the payment stub is forwarded to the Payleven back-end together with
other information regarding the completed transaction in web request P5a. In the
transaction overview on the Payleven dashboard, the payment stub is displayed
as the payment ID (Dutch: ‘Betalings ID’). Figure 7.1 visualizes the exchange of
the payment stub in the Payleven payment platform.

Therefore, the tender reference code sent to the card reader should be made
different from the payment stub received by the Payleven app. Only this way it can
be precluded that Adyen ever receives information that would link the transaction
back to Payleven. Without this link, neither Payleven nor Adyen cannot ascertain
to what merchant account the money was diverted to.

Figure 7.1: The exchange of the payment stub. First, the stub is transmitted to the Payleven app
in the response to web request P4a. The stub is then included as a tender reference in Bluetooth
message 8 and sent back as a merchant reference in Bluetooth message 16. Finally, the payment stub
is included together with other transaction information in web request P5a. The changes are high
that the payment stub is also communicated to Adyen via the encrypted channel.

It is further unknown whether Payleven communicates the payment stub to
Adyen in some other way. However, this seems unlikely since the Payleven app
never sends information to the Payleven back-end that may link the Adyen trans-
action to the payment stub.

Another issue that it has not been investigated is whether Adyen will accept the
manipulated tender reference code. It could be possible that Adyen has a list of
all payment stubs generated by Payleven. Then the manipulated tender reference
would not be accepted that easily.

7.1.4. Feasibility of the attack

The feasibility of an attack on the merchant account is dependent on the fea-
sibility of the three steps discussed previously in the attack scenario. Firstly, it
depends on the extent to which the attacker is capable of altering the merchant
account. Several methods to accomplish this have been referred to such as: (1) an
MITM-attack on the network channel, (2) installing a rogue Payleven app on the
merchant’s smartphone, or (3) malware on the Android device (e.g., by means
of Android Hooking). Secondly, it depends on how difficult it is to switch the
original Chip & PIN card reader without the merchant noticing it.

114 7. Results

The first method has been applied successfully in this research to intercept,
gather and alter information sent back and forth over the network channel. How-
ever, a number of issues can be identified concerning this method. The Payleven
app makes use of SSL certificate pinning, hence making a conventional MITM-
attack impossible. In order to remove this security feature, a tool was installed
on the Android smartphone that bypasses the SSL certificate pinning. The only
downside: the Android smartphone needs to be rooted. As long as the merchant’s
Android smartphone is not rooted, the attack is unrealizable. And on top of that,
an MITM-attack is very limited; it does not enable complete control over the app.
For example, Bluetooth messages sent from the Payleven app cannot be modified
via an MITM-attack. So, in the end, this method promises a quick and easy attack
setup, but is otherwise limited and unpractical in real-life situations.

The secondmethod is more practical and enables full control over the Payleven
app. Obviously, replacing the original Payleven app by a rogue variant provides
full access and control. The rogue variant behaves and acts like the original
Payleven app: it exchanges information with Payleven and Adyen and pairs with
the Chip & PIN card reader. The only difference with the original Payleven app is
that the rogue variant manipulates specific outgoing information (i.e., from the
smartphone) in such way that is it beneficial for the attacker. It implements all
the features necessary for a successful and untraceable attack.

The question then arises how to get the rogue variant on the merchant’s An-
droid smartphone. There exists a number of ways to accomplish this. The rogue
variant could be placed in the Google Play Store; however, it is then still ques-
tionable whether the merchant will download the rogue variant. Moreover, the
rogue Payleven app would be probably detected immediately, either by Google or
by Payleven. Then, the best options for an attacker to make the merchant in-
stall the rogue variant would be via malware or phishing. Through phishing the
merchant could be urged to install the newest update of the Payleven app via an
update link in the mail, which in the end would replace the genuine app by the
rogue variant. Malware could have the same objective. But at the same time,
once malware is installed on the target’s smartphone, its rogue functions could
easily be extended to directly attack specific information exchange of the genuine
Payleven app. Therefore, the last method is related to malware targeting Android.

All things considered, there are plausible ways for an attacker to alter the mer-
chant account code. The only measure left is the substitution of the genuine Chip
& PIN card reader. The attack requires the genuine card reader to be replaced by
an alternate reader that is linked to the malicious merchant account. Given the
fact that the card reader is mobile and wireless, it is not hard to imagine that
substituting the card reader is very easy. The only issue is that, once the card
reader is replaced, the merchant would need to redo the Bluetooth pairing pro-
cess. However, this would not raise any suspicion since this operation also had
to be repeated every once in a while in an honest setup. The only possible way to
verify whether the genuine card reader is used, is by checking the serial number
on the back of the reader. However, it can be assumed that no merchant will
memorize the serial number of the card reader.

7.1. Scenario 1: altering the Adyenmerchant account 115

7.1.5. The ideal approach

Reflecting on Section 7.1.4, it can be argued that switching the card reader in
sight of the merchant is not necessarily needed. The same effect can namely be
achieved by corrupting payment system from the start; that is, (in)directly sell-
ing the merchant the malicious card reader. This corrupted Payleven payment kit
would be identical to the official genuine kit, including box and manual. More-
over, the corrupted kit could also contain a leaflet that lists the download link
for the rogue Payleven app and the instructions to enter the link directly on the
Android smartphone (instead using the Play Store). This attack scenario tackles
both the issues described in the previous section regarding the feasibility of the
attack; namely, how to get a rogue variant of the Payleven app on the merchant’s
Android smartphone, and how to switch the card reader without the merchant
noticing it. Furthermore, in this case, the attacker does not need to figure out
which merchant has downloaded the rogue app and does not need to physically
go there to replace the card reader. The ideal scenario would thus consist of selling
corrupt Payleven payment kits to merchants.

The only issue is that the merchant must eventually register the card reader
during the registration phase. This would result in an error as the card reader is
already linked to the attacker’s merchant account. Therefore, the attacker must
purchase two card readers, wherein one reader is linked to the attacker and the
other is left unlinked. Subsequently, the attacker swaps out the stickers on the
back of the card readers stating the serial number. This would lead the merchant
to register the serial number of the unlinked card reader, but in the end, use the
malicious card reader to process transactions.

7.1.6. Examination of the attack

The possibilities of this attack have been investigated. Unfortunately, due to the
lack of a second valid merchant account, it was not possible to fully validate the
existence of this attack. It was not possible to test the attack scenario without
a second account. However, a few things did became clear. For example, the
merchant account was modified while in transit to the Payleven app and the app
accepted the merchant account without any errors. Subsequently, the app used
the modified merchant account during the whole login session. This also meant
that themodifiedmerchant account was forwarded to the Chip & PIN card reader.
This has been observed in the Bluetooth traffic. It only went wrong on the part
of the card reader. The reader was factory reseted, however since an non-existent
merchant account was used - the account was simply altered - the card reader
could easily detect the anomaly. This is because during the Bluetooth pairing
process the reader receives an Adyen token (i.e., so called ‘jaastoken’) which is
generated by the Adyen back-end. Since all communication towards the Adyen
back-end was based on the original merchant account, the card reader could easily
spot the discrepancy by comparing the jaastoken, which was based on the original

116 7. Results

merchant account, to the altered merchant account. The card reader did thus re-
ject the non-existent merchant account. However, if it concerned a valid account
it would be accepted by the card reader as it does not receive any information
from the app that could prove that the merchant account is modified.

7.2. Scenario 2: altering transaction information

The Payleven app feeds information regarding the transactions to the Payleven
back-end servers (both apiproxy and fapi). This information is then included
in the Payleven dashboard. As elaborated in Chapter 2, the dashboard lists all
successful and unsuccessful transactions including the transaction amount, time
stamp, both payment and transaction ID, and even the location of the trans-
action. Furthermore, the dashboard also provides the merchant the option to
process refunds on individual transactions. All this information included in the
dashboard, originates from the Payleven app. But what happens if all this infor-
mation transmitted from the Payleven app to the Payleven back-end is modified
while en route?

7.2.1.Altering the transaction amount

As described in Section 3.3.2, it was possible to apply a successful MITM-attack
between the Payleven app and the Payleven back-end. This attack gave full ‘read-
and-write’ access to the information exchanged with the Payleven back-end. There-
fore, it was very easy to modify certain data fields.
The first data field that was modified was the transaction amount value. Dur-

ing a legitimate transaction, all occurrences of the transaction amount were al-
tered and replaced by a different amount. The transaction amount is communi-
cated to Payleven in web requests P4a, log 4 and P5a (see Section 4.5).
All transactions were conducted with a transaction amount of €1 (i.e., the

minimum starting value). The transaction amounts communicated to Payleven
were subsequently altered and replaced by an amount of €10. It was expected that
this illegitimate transaction amount would then be reflected in the transaction
overview on the Payleven dashboard. And indeed, the transaction amount of the
affected transactions included in the transaction overview comprised a value of
€10 instead of the actual value of €1.

7.2.2. Refunding altered transactions

It was then attempted to initiate a refund on the altered transaction. It was hoped
that the €10 would be refunded. Unfortunately, and also slightly expected, each
attempt to start a refund resulted in an unknown error message. The refund re-
quest sent to Payleven is probably forwarded to Adyen. Because Adyen receives
genuine transaction information directly from the card reader via the encrypted
channel, disparities in the transaction information received from Payleven will be

7.2. Scenario 2: altering transaction information 117

detected instantly. The payment ID’s would match, however the corresponding
transaction amounts would differ. This results in a failed refund request. Obvi-
ously, the €10 is also never credited to the merchant’s bank account as Adyen is
responsible for the processing of the transactions. In conclusion, in order to gain
money, an attacker would need to focus on Adyen or, to be more precise, on the
transaction information sent to the card reader and the data transmitted by the
Payleven app to Adyen. Payleven clearly focuses on the administrative part of the
payment platform.

7.2.3. Faking transactions towards Payleven

More interesting is the fact that the web requests sent to the Payleven back-end
during the transaction process (i.e., P4a and P5a) can be replayed. Replaying
these two requests will ensure that a fake transaction is added to the transaction
overview on the Payleven dashboard. Payleven is tricked to believe that a real
transaction has taken place. The only thing that needs to be considered when
performing this replay attack is to include the payment stub (i.e., payment ID)
received from the Payleven back-end (response to web request P4a), in request
P5a. Furthermore, the PSP identifier (psp_payment_id) included in request
P5a should not been used before; changing one byte is often enough.

Just as with the refund attempt on an altered transaction, a refund request on
a fake transaction also failed for obvious reasons. However, in comparison with
the previous refund attempt, this attempt immediately prompted a fail message
(‘Internal server error’), whereas a refund attempt on an altered transaction did
not result in an error message until after a few minutes. The error message was
also different. In either case, an altered or fake transaction on the side of Payleven
will not lead to monetary gain.

7.2.4. Cash backs with fake payment receipts

More serious is the issue regarding the payment receipts of fake transactions.
These fake receipts are identical to legitimate receipts and can be abused by ma-
licious attackers as they form a proof of payment. An evil customer could fake a
transaction via an MITM-attack and use the corresponding fake receipts to claim
a refund at the merchant. The refund would then have to be processed outside the
Payleven payment system as refunds via the platform would immediately result in
a fail message. Fortunately, it is possible to initiate refunds partially outside the
payment platform. That is to say, payment transactions handled via the Payleven
payment platform in cash can be refunded without the involvement of Adyen.
The evil customer would then only need to fake a payment transaction in cash
and use the corresponding fake receipt to claim a refund in cash (so called cash
backs).

This attack would definitely be successful, but depends highly on the assump-
tion that the attacker is already in possession of the fake receipt. This is however

118 7. Results

not self-evident. The evil customer could not be in possession of the receipt, since
if the transaction never took place, the merchant would never had an opportunity
to hand over the receipt to the customer.
Luckily, Payleven always includes the web URL of the payment receipt directly

in the response to the transaction request (i.e., request P4a, see Section 4.5). The
web request for a payment transaction in cash is slightly different from request
P4a, which is aimed at card payments. The main difference is that the PSP is set
to ‘Cash’. However, the response to this request also contained the payment stub,
the transaction stub and the URL of the receipt.
In summary, an evil customer is capable to carry out this cash back attack

with fake receipts by replaying just one web request (i.e., a variant of P4a). The
response to this request would then lead the attacker directly to the fake payment
receipt.
It should also be noted that Payleven does warn merchants not to give cash

backs on payments conducted via the Payleven payment platform. This would
suggest that Payleven is aware of the possible threats regarding fake receipts and
fake transactions1. However, this does not retain uninformed merchants from
doing so.
As a side note, the attacks discussed in this and the previous subsection do

not necessarily require a MITM-setup in order to be executable. These attacks can
be carried out by replaying or re-using specific web request to Payleven. The only
requisite is a valid Payleven session token, which is included in the authorization
header of each web request sent to Payleven. Otherwise, it is not possible to
authenticate to the Payleven back-end. The session token will be elaborated in
the next section in more detail as it exhibits some undesirable characteristics.
Also, some ways to retrieve Payleven login credentials will be touched upon in the
next section since it gives access to a valid session token.

7.2.5. Bypassing location restrictions

As been pointed out in Section 2.2.3, the Payleven payment platform can, due to
security reasons, only be used in the country the merchant has registered in. To
enforce this, geo location details are included in almost every web request sent
towards Payleven. However, it should now be clear that these location details can
be altered very easily. For example, transaction have been conducted in Berlin
(Germany) according to the receipt shown partially in Figure 7.2, while actually
the payment platform was located in the Netherlands.

1http://help.payleven.co.uk/what-are-rules-using-payleven

http://help.payleven.co.uk/what-are-rules-using-payleven

7.3. Scenario 3: triggering illegitimate refunds 119

Figure 7.2: The receipt clearly indicates that the transaction was conducted in Berlin, Germany.

This finding gives the merchants the opportunity to fake their location and
enables them to operate outside their permitted region. The only necessity is a
proxy setup as described in this research.

7.3. Scenario 3: triggering illegitimate refunds

The Payleven payment platformmakes it possible to carry out refunds on payment
transactions. In order to use the possibility to initiate refunds, a 4-digit PIN code
needs to be set up by the merchant. This PIN is then used to authorize refunds.
The refund process is described in more detail in Section 2.3.5.
Section 4.6 describes the web request that is sent by the Payleven app to the

Payleven back-end to initiate the refund process. As can be seen in Listing 4.29,
the body of the web request holds a short JSON-message that lists the PIN and the
transaction ID of the transaction in question. The header of the web request also
includes the Payleven session token in the authorization header line. The session
token is supplied to the Payleven app in the response to the app login request (see
Section 4.2).
To sum up, the following three elements are required in order to carry out a

refund successfully:

1. the Payleven session token (48 bytes);

2. a 4-digit refund authorization PIN code (set up by the merchant);

3. and the transaction ID.

7.3.1. Brute-forcing the refund authorization PIN

In essence, an attacker (in this case a malicious customer) could be capable of
initiating illegitimate refunds: the attacker only needs to be in possession of the
three above-mentioned elements. The transaction ID is easily retrieved since it
is listed on the customer receipt. What remains is the PIN code and the session
token. The PIN consists of a 4-digit numeric code, which means that there are
10,000 (10ኾ) different PIN combinations. This may be sufficient to ward off
manual brute force attacks (i.e., entering the PIN on the smartphone manually);
however, 10,000 PIN combinations are not sufficient in an automated environ-
ment.

120 7. Results

Burp offers such an automated environment.2 It features an automated tool
that targets a specific payload value and performs brute-force attack against that
value. In the case of a 4-digit PIN code, Burp will generate requests for each
PIN combination and send these requests to the Payleven web servers. A total of
10,000 requests is sent to the back-end. This is equivalent to 10,000 PIN entry
retries.
However, web applications often do implementmeasurements to counter these

types of brute-force attacks. Counter measurements would be for example: (1)
disabling the account after few retries (but sensitive to DOS) or (2) introducing
random time delays between unsuccessful entries. Further countermeasures ex-
ist [27] [28] [29]. Strikingly, the Payleven back-end implemented none of these
counter measurements. Payleven did not avert the 10,000 requests generated by
Burp. This means that an attacker can easily retrieve the refund authorization
PIN code through brute forcing.

7.3.2. Improper session expirationmanagement

What is left is the session token. The attacker needs a valid session token to au-
thenticate against the Payleven back-end. The session token is generated server
side once a login request containing the Payleven authentication credentials is
submitted. It is needless to say that, if in possession of these authentication
credentials, an attacker can easily retrieve a valid session token. Obviously, the
attacker could mainly focus on retrieving the Payleven credentials, however the
attacker could also try to hijack the login session through session sniffing (via an
MITM-attack) or cross-site scripting.
An attack on the session token itself seems improbable: a statistical analysis

of 2000 tokens have shown that the quality of randomness within the token is
estimated to be very high. The effective entropy is estimated to be 221 bits, at a
significance level of 1%.3 Predicting the session token is thus not doable.
Nonetheless, an unexpected and interesting finding was observed during the

collection of these 2000 tokens. Prior gathering 2000 tokens, 2000 login requests
with the same login credentials were sent to the Payleven back-end. An interest-
ing observation was the fact that it was not necessary to log out a existing login
session prior it was possible to proceed with the next login request. However,
the observation that immediately stood out was the fact that a new login request
did not automatically invalidate the previous session. This means that multiple
active sessions from the same Payleven account could exist at the same time. In
this case, 2000 concurrent login sessions were active.
Furthermore, the session token lacks proper expiration management. Even

after weeks of inactivity, the session tokens remain valid. This increases the pay-
ment platform’s exposure to attacks [30] [31].
It is important to realize that this Payleven session token is not utilized by the

Payleven web application. Therefore, cross-site scripting attacks to steal the token

2https://portswigger.net/burp/intruder.html
3The statistical analysis is performed with the Burp Sequencer module.

https://portswigger.net/burp/intruder.html

7.3. Scenario 3: triggering illegitimate refunds 121

are not applicable here.

7.3.3. Retrieving the login credentials

An attacker may obtain the Payleven login credentials through several methods
such as social engineering, phishing (e.g., via mail, malware or rogue website),
MITM or dictionary attacks on the password. This section will highlight the lat-
ter two. As regards phishing, the next subsection will elaborated on the lack of
Extended Validated (EV) SSL certificates and its implications for phishing attacks.

Dictionary attacks can be successful since no counter measurement are imple-
mented to prevent such types of attacks, as indicated previously with the refund
authorization PIN. The same applies for the login credentials. However, it should
be noted that without the corresponding email address such attacks are not fea-
sible. Fortunately, email address are public and often easily guessed or retrieved,
especially corporate email addresses. For example, the email address may have the
form ‘info@corporate.com’ or ‘merchantname@corporate.com’. Merchants also
often have a business card which lists their email address. The same address is
then in all probability used for the Payleven payment platform since using multi-
ple email addresses for different platforms will form a nuisance for most people.

Another way of obtaining the authentication credentials is through anMITM-
attack. An attacker can perform MITM-attacks on two positions in the payment
platform: between the Payleven app and the Payleven back-end, and between
the merchant’s web browser and the Payleven back-end (i.e., the Payleven dash-
board). Performing a successful MITM-attack on the secure connection from the
Payleven app to the Payleven back-end is not that feasible. That is because the
Payleven app uses SSL certificate pinning to validate the server certificate. In or-
der to perform a successful MITM attack, the attacker would then need to: (1)
bypass SSL pinning on the merchant’s smartphone with Android-SSL-Killer; (2)
install Cydia Substrate since it is required by Android-SSL-Killer - which, in ad-
dition, requires a rooted device; (3) setup a malicious WiFi hotspot or proxy to
which the smartphone connects to; and (4) install the proxy’s malicious certifi-
cate on the smartphone. An MITM-attack on the merchant’s browser does not
require the above-mentioned steps and is relatively easier to be carried out.

Also, it is worth mentioning that Payleven does implement HTTP Strict Trans-
port Security (HSTS). Therefore, downgrading the HTTPS connection will not
work.

7.3.4. The lack of Extended Validated SSL certificates

The Payleven website lacks Extended Validated (EV) SSL certificate. Instead they
use Domain Validated (DV) certificates. DV certificates provide the lowest level
of validation available from commercial certificate authorities and are extremely
easy to obtain. These types of certificates can be issued to anyone who is listed as
the domain admin contact in the WHOIS record of a domain name. There is no

122 7. Results

connection with a legal entity.
The lack of EV certificates make websites such as Payleven prone to phishing

attacks. Attackers can set up a phishing site with the misspelled name of the
legitimate domain (e.g., ‘*.pay1even.com’) and request a cheap SSL certificate
for that domain (i.e., not EV) [32]. Visitors may then be tricked into visiting
the phishing website and entering their authentication credentials. Because the
phishing site has a legitimate certificate, it will display the padlock in the browser’s
address bar. In effect, visitor are unlikely to have a proper reason to check whether
the URL is correct. After all, the padlock indicates a secure connection.
EV certificates could have prevented this as they show a distinctive green lock

in the address bar. Often the company’s name is also presented in green in the ad-
dress bar. By making visitors aware of this, Payleven can prevent phishing attack
which involve misspelled domain names, because certificate authorities would
never issue EV certificates for misspelled domain names since the validation is far
more extensive.

8
Conclusion

Obviously, security is important for a functional smartphone-based card payment
system. Therefore, this research set out to evaluate the security of such system:
the Payleven payment platform. The payment platform consists of a smartphone
payment app, a web-based personal dashboard, and a wireless Chip & PIN card
reader (see Chapter 2). The card reader forms a separate mobile device that passes
on sensitive transaction and card data to the corresponding smartphone app via
Bluetooth. Particular the wireless and smartphone-based nature of the payment
platform raised suspicion as to whether the information security of the system is
adequately safeguarded.
This research has identified a number of security issues within the Payleven

payment platform, which may make the platform susceptible to various attacks.
Surprisingly, these issues did not concern the wireless nature of the payment
system, but concern other aspects of the system. That is, the issues concerned
the overall information-flow design of the platform and the implementation of
server-side security measures. Moreover, the fact that the payment system uses a
smartphone that may be compromised by a attacker only facilitates the exploita-
tion of these issues.

8.1.Mainfindings

1. One of the more interesting findings is that Payleven is not responsible for
the actual processing of payments as thought first. In fact, Payleven is only
responsible for the administrative part of the payment platform; i.e., the
handling of login sessions and the personal dashboard. From the point of
view of the merchant (i.e., the customer of Payleven), it appears as Payleven
is the only party involved. However, it soon became apparent that a second
party is involved in the Payleven payment platform. Indeed, the payments

123

124 8. Conclusion

are processed by Adyen, a payment service provider (PSP) based in the Ams-
terdam, the Netherlands. The whole payment platform probably originates
from Adyen, as supporting evidence for this have been found in the source
code of both the Payleven app and the firmware on the Chip & PIN card
reader (see Section 6.1 & 6.2.2). In conclusion, Adyen is a very important
actor of the Payleven payment platform.

2. Another key point and also the biggest issue within the Payleven payment
platform is the interconnection between the Payleven account and the Adyen
merchant account. The merchant account is the main identifier of the mer-
chant towards the card reader and towards Adyen. It determines on whose
bank account the money is credited. The whole payment platform revolves
around this identifier. The merchant account is communicated by Payleven
to the Payleven app during each and every app login based on the logged-in
Payleven account (see Section 4.3). It is this loose link between the Adyen
merchant account and the Payleven account that forms a weak point. The
Payleven app is assumed to trust all information received from the Payleven
back-end regarding the merchant account, however the integrity and au-
thenticity of this data throughout the payment platform cannot be assured,
which poses a significant monetary threat for the merchant. The Payleven
app does not have the possibility to check whether the received merchant
account is indeed the correct one1 and is not tampered with. The same ap-
plies to the card reader. The reader will accept any merchant account, and
thus any destination bank account, that is fed to it and process transactions
based on that account. This might make it possible to divert payments from
the merchant to an adversary. A theoretical attack is discussed in Section
7.1.

The remaining issues identified in the Payleven payment platform are due to
improper security implementations:

3. It is possible to brute-force the 4-digit refund authorization PIN code. No
brute-force counter measurements are implemented by Payleven. By brute-
forcing this PIN, it would be possible for an attacker to trigger illegitimate
refunds (see Section 7.3). This further only requires a valid Payleven session
token which can be, for example, retrieved via an MITM-attack or indirectly
via phishing attacks. Furthermore, Payleven username and password are
also susceptible to brute-force attacks.

4. As regards the Payleven session token, the Payleven payment platform lacks
proper session expirationmanagement (see Section 7.3.2). That is, multiple
concurrent Payleven sessions can exist. Moreover, a new session does not
invalidate the previous one and sessions only expire after a considerable
large time frame (i.e., few weeks). This increases the exposure to attacks.

1i.e., associated with the logged-in Payleven account

8.2. Concluding remarks & recommendations 125

5. It is possible to fake transactions towards the Payleven back-end. Refunds
on fake transaction will not work; however, it is possible to fake cash trans-
actions together with the corresponding invoice. With that fake invoice, an
attacker could claim a cash refund for a transaction that never happened
(see Section 7.2.4).

6. Additionally, it is possible to fake location details towards the Payleven back-
end. As to the location restrictions, it is thus possible to bypass these by
changing the location coordinates to the country the Payleven account has
been registered in (see Section 7.2.5).

7. The lack of Extended Validated (EV) SSL certificates on the side of Payleven
is a cause of concern, especially since Payleven is registered as an official
payment institution. The lack of EV certificates makes the Payleven website
more susceptible to phishing attacks (see Section 7.3.4). Payleven should
take the extra step of using EV certificates to protect themerchant’s Payleven
login credentials as these can be abused to fake payments or trigger illegiti-
mate refunds as pointed out above.

8. As regards the card reader, it is possible to evoke a hidden admin menu on
the card reader by holding the ‘9’ key. The card reader then prompts for an
admin PIN code to unlock the menu (see Section 6.2.4). Strikingly, these
PIN codes were easily retrieved by extracting the firmware from the card
reader, which were stored in plain text. Moreover, it is relatively easy to ex-
tract the reader’s firmware and file system as no real protection is embedded
to prevent this from happening. However, a large part of the extracted file
system was obfuscated - probably holding the secret keys.

8.2. Concluding remarks & recommendations

In the final analysis, it can be concluded that the issues (2), (5) and (6) pri-
marily exist due to the fact that two parties with different responsibilities and
priorities are involved in the system. Adyen provides the core of the payment sys-
tem, whereas Payleven provides everything around the core; that is, the payment
dashboard, the login functionality, and the availability of the app. It may be the
case that these two systems were developed separately, without the inference of
the other, hence introducing weaknesses in the overall system which could easily
be prevented if the other was involved more in the process.
In comparison to the implementation related issues, the issue concerning the

Adyen merchant account is less easily resolved. It is inherent to the overall design
of the system. Therefore, some fundamental changes need to be applied. In the
end, the fundamental issue lies in the fact that Payleven has access to the crucial
Adyen merchant account. Payleven never should have provided the app with the
merchant account in the first place. This responsibility should be delegated to
Adyen. In fact, the Payleven app itself never should have had any access to the
merchant account. Its functionality does not depend on the account. Hence, a

126 8. Conclusion

possible solution would be to forward the merchant account directly to the card
reader via the application-level encryption channel set up by Adyen. After all, the
merchant account should be treated just as other sensitive banking data.

8.3. Future work

With respect to security, Adyen did a good job by setting up an application-level
encryption channel between the card reader and the Adyen back-end. How this
channel is set up, what keys are used and how the key management is carried
out, is unknown. Further research is required to determine the security of the key
management infrastructure underpinning the payment system. It would be very
interesting to see whether these keys could be extracted from the card reader.
As regards the Payleven app, investigations into the possibilities of a rogue

app are necessary in order to determine the feasibility of the theoretical attack
on the merchant account as outlined in Section 7.1. Also, further experimental
investigations are needed to estimate the effectiveness of this attack.
Another possible area of future research would be to investigate the possibil-

ities and effectiveness of Android malware targeting the Payleven app or other
comparable payment apps. This would be a very fruitful area for further work
since it could disrupt the market for smartphone-based payment applications.
Future research could also investigate the possibilities of a rogue card reader,

especially with regards to online banking. The card reader could, for example, act
like it is handling a Payleven payment, but ‘under the hood’ use the card details
and the customer’s PIN to start an online banking session.
More broadly, future research could also compare the Payleven payment plat-

form to similar smartphone-based payment systems from other vendors andman-
ufacturers. It is for example known that also other vendors make use of the Miura
Shuttle (i.e., the Chip & PIN card reader used by Payleven). Future research might
explore the similarities and differences in the firmware of those devices.

Bibliography

[1] W. Frisby, B. Moench, B. Recht, and T. Ristenpart, Security analysis of
smartphone point-of-sale systems. inWOOT (2012) pp. 22–33.

[2] [Youtube] Black Hat 2014 - Mobile: Mission mPOSsible, https://www.
youtube.com/watch?v=PqdFtYCRa2g, accessed: 2016-01-20.

[3] ’Smart credid card’ terminals can be hacked too, http:
//money.cnn.com/2014/08/08/technology/security/
hack-credit-card-terminal/, accessed: 2016-01-20.

[4] EMVCo: EMV 4.3 specifications, https://www.emvco.com/
specifications.aspx?id=2, accessed: 2016-01-20.

[5] M. Bond, O. Choudary, S. Murdoch, S. Skorobogatov, and R. Anderson,
Chip and skim: Cloning emv cards with the pre-play attack, in Security and
Privacy (SP), 2014 IEEE Symposium on (2014) pp. 49–64.

[6] S. Murdoch, S. Drimer, R. Anderson, and M. Bond, Chip and pin is broken,
in Security and Privacy (SP), 2010 IEEE Symposium on (2010) pp. 433–446.

[7] B. Adida, M. Bond, J. Clulow, A. Lin, S. Murdoch, R. Anderson, and
R. Rivest, Phish and chips, in Security Protocols (Springer, 2006) pp. 40–
48.

[8] J.-S. Coron, D. Naccache, andM. Tibouchi, Fault attacks against emv signa-
tures, in Topics in Cryptology-CT-RSA 2010 (Springer, 2010) pp. 208–220.

[9] PIN Transaction Security (PTS) Modular Security Requirements, PCI Secu-
rity Standard Council (2015).

[10] PCI DSS Version 3.1 Requirements and Security Assessment Procedures, PCI
Security Standard Council (2015).

[11] Miura Shuttle datasheet, http://www.miurasystems.com/hubfs/
MiuraUi/downloads/Shuttle-DataSheet.pdf?t=1440608034550,
accessed: 2015-03-03.

[12] Ubertooth, http://ubertooth.sourceforge.net/hardware/
zero/, accessed: 2016-01-20.

[13] Github - ubertooth, https://github.com/greatscottgadgets/
ubertooth/wiki/Ubertooth-One, accessed: 2016-01-20.

[14] Wireshark homepage, https://www.wireshark.org, accessed: 2016-
01-20.

127

https://www.youtube.com/watch?v=PqdFtYCRa2g
https://www.youtube.com/watch?v=PqdFtYCRa2g
http://money.cnn.com/2014/08/08/technology/security/hack-credit-card-terminal/
http://money.cnn.com/2014/08/08/technology/security/hack-credit-card-terminal/
http://money.cnn.com/2014/08/08/technology/security/hack-credit-card-terminal/
https://www.emvco.com/specifications.aspx?id=2
https://www.emvco.com/specifications.aspx?id=2
http://www.miurasystems.com/hubfs/MiuraUi/downloads/Shuttle-DataSheet.pdf?t=1440608034550
http://www.miurasystems.com/hubfs/MiuraUi/downloads/Shuttle-DataSheet.pdf?t=1440608034550
http://ubertooth.sourceforge.net/hardware/zero/
http://ubertooth.sourceforge.net/hardware/zero/
https://github.com/greatscottgadgets/ubertooth/wiki/Ubertooth-One
https://github.com/greatscottgadgets/ubertooth/wiki/Ubertooth-One
https://www.wireshark.org

128 Bibliography

[15] Sourceforge - ubertooth mailing 1, http://sourceforge.net/p/
ubertooth/mailman/message/31233507/ (), accessed: 2016-01-20.

[16] Sourceforge - ubertooth mailing 2, http://sourceforge.net/p/
ubertooth/mailman/message/32503427/ (), accessed: 2016-01-20.

[17] Google playstore - hci logger, https://play.google.com/store/
apps/details?id=com.android_rsap.logger&hl=nl, accessed:
2016-01-20.

[18] Portswigger burp proxy, https://portswigger.net/burp/, accessed:
2016-01-20.

[19] Wikipedia - dd (unix tool), https://en.wikipedia.org/wiki/Dd_
(Unix), accessed: 2016-01-20.

[20] Binwalk - firmware analysis tool, http://binwalk.org, accessed: 2016-
01-20.

[21] Jtag 101 - ieee 1149.x and software debug, http://www.intel.com/
content/dam/www/public/us/en/documents/white-papers/
jtag-101-ieee-1149x-paper.pdf, accessed: 2016-01-20.

[22] J. Hunker and C.W. Probst, Insiders and insider threats�an overview of def-
initions and mitigation techniques, Journal of Wireless Mobile Networks,
Ubiquitous Computing, and Dependable Applications 2, 4 (2011).

[23] F. Swiderski and W. Snyder, Threat Modeling, Microsoft Press (2004).

[24] Mail Order/Telephone Order Definition, https:
//www.cardpaymentoptions.com/glossary/
mail-ordertelephone-order-moto-definition/, accessed: 2016-
01-20.

[25] Emvlab.org - capki, http://www.emvlab.org/emvtags/show/
t9F22/, accessed: 2016-01-20.

[26] Emv glossary, https://www.level2kernel.com/emv-glossary.
html, accessed: 2016-01-20.

[27] Blocking brute force attacks, https://www.cs.virginia.edu/
~csadmin/gen_support/brute_force.php, accessed: 2016-01-20.

[28] I. Ristic,ModSecurity Handbook (Feisty Duck, United Kingdom, 2010).

[29] M. Burnett, Hacking the code: auditorus guide to writing secure code for
the web (Elsevier Science, Burlington, MA, 2004).

[30] Cwe-613: Insufficient session expiration, https://cwe.mitre.org/
data/definitions/613.html, accessed: 2016-01-20.

[31] R. C. Barnett, Preventing Web Attacks with Apache (Addison-Wesley Pro-
fessional, 2005).

http://sourceforge.net/p/ubertooth/mailman/message/31233507/
http://sourceforge.net/p/ubertooth/mailman/message/31233507/
http://sourceforge.net/p/ubertooth/mailman/message/32503427/
http://sourceforge.net/p/ubertooth/mailman/message/32503427/
https://play.google.com/store/apps/details?id=com.android_rsap.logger&hl=nl
https://play.google.com/store/apps/details?id=com.android_rsap.logger&hl=nl
https://portswigger.net/burp/
https://en.wikipedia.org/wiki/Dd_(Unix)
https://en.wikipedia.org/wiki/Dd_(Unix)
http://binwalk.org
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/jtag-101-ieee-1149x-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/jtag-101-ieee-1149x-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/jtag-101-ieee-1149x-paper.pdf
https://www.cardpaymentoptions.com/glossary/mail-ordertelephone-order-moto-definition/
https://www.cardpaymentoptions.com/glossary/mail-ordertelephone-order-moto-definition/
https://www.cardpaymentoptions.com/glossary/mail-ordertelephone-order-moto-definition/
http://www.emvlab.org/emvtags/show/t9F22/
http://www.emvlab.org/emvtags/show/t9F22/
https://www.level2kernel.com/emv-glossary.html
https://www.level2kernel.com/emv-glossary.html
https://www.cs.virginia.edu/~csadmin/gen_support/brute_force.php
https://www.cs.virginia.edu/~csadmin/gen_support/brute_force.php
https://cwe.mitre.org/data/definitions/613.html
https://cwe.mitre.org/data/definitions/613.html

Bibliography 129

[32] The dangers of domain validated ssl certifi-
cates, http://www.symantec.com/connect/blogs/
dangers-domain-validated-ssl-certificates, accessed: 2016-
01-20.

http://www.symantec.com/connect/blogs/dangers-domain-validated-ssl-certificates
http://www.symantec.com/connect/blogs/dangers-domain-validated-ssl-certificates

	Abstract
	Introduction
	Motivation
	Research goal
	Background & Related work
	Scope
	Outline

	Payleven
	The Payleven payment platform
	How does it work?
	Business model
	Adyen: the payment service provider
	Schematic overview of the payment platform
	Certification

	The components of the platform
	Card reader specifications
	Personal dashboard
	Payleven payment app

	Use cases
	Registration with Payleven
	App login and initialization
	Bluetooth pairing process
	Accepting Payments
	Refunds

	High-level message sequence charts of the various use cases
	MSC: app login & initialization
	MSC: Bluetooth pairing process
	MSC: transaction process
	MSC: refund process

	Methodology
	Research Approach
	Materials & Setup
	Methods & Tools
	Intercepting the Bluetooth traffic
	Analyzing the network traffic
	Reverse engineering the Payleven app
	Analyzing the card reader

	Threat Model
	Security Requirements
	Assumptions
	Attack Points
	Attack Vectors
	Assets
	Attacker Type
	Threat Categorization & Attacker Goal
	Data Flow Diagram
	Potential Threats
	Potential Attack Scenarios

	Internet Network Analysis
	Global overview of the network traffic
	Network traffic during app login
	Web request P1a
	Web request P2a
	Web request P2b
	Logs 1

	Network traffic during app initialization
	Web request A1a
	Log 2

	Network traffic during Bluetooth pairing process
	Web request P3a
	Web request A2a
	Web request A2b
	Log 3
	Web request A2c

	Network traffic during the transaction process
	Web request P4a
	Log 4
	Web request A3a & A4a (Encrypted)
	Web request P5a
	Log 5
	Web request A4b (Encrypted)

	Network traffic during the refund process
	Web request A5a

	Bluetooth Traffic Analysis
	Bluetooth traffic during the pairing process
	Bluetooth Message 1
	Bluetooth Message 2
	Bluetooth Message 3
	Bluetooth Message 4
	Bluetooth Message 5
	Bluetooth Message 6
	Bluetooth Message 7

	Bluetooth traffic during the transaction
	Bluetooth Message 8
	Bluetooth Message 9
	Bluetooth Message 10
	Bluetooth Messages 11 to 14
	Bluetooth Message 15
	Encrypted Data Exchange (1)
	Bluetooth Message 16
	Bluetooth Message 17 & 18
	Bluetooth Message 19, 20, 21 & 22
	Encrypted Data Exchange (2)
	Bluetooth Message 23
	Bluetooth Message 24, 25 & Encrypted Data Exchange (3)
	Bluetooth Message 26, 27 & Encrypted Data Exchange (4, 5)

	Software & Hardware Analysis
	Analyzing the app's source code
	Program understanding
	Client-side encryption key

	Analyzing the Chip & PIN card reader
	Dissembling the card reader
	Extracting the file system
	Comments regarding the firmware
	Accessing the hidden admin menu

	Results
	Scenario 1: altering the Adyen merchant account
	The issue concerning the Adyen merchant account
	Attack scenario: diverting transactions
	Traceability of the attack
	Feasibility of the attack
	The ideal approach
	Examination of the attack

	Scenario 2: altering transaction information
	Altering the transaction amount
	Refunding altered transactions
	Faking transactions towards Payleven
	Cash backs with fake payment receipts
	Bypassing location restrictions

	Scenario 3: triggering illegitimate refunds
	Brute-forcing the refund authorization PIN
	Improper session expiration management
	Retrieving the login credentials
	The lack of Extended Validated SSL certificates

	Conclusion
	Main findings
	Concluding remarks & recommendations
	Future work

	Bibliography

