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Abstract

To enhance user experience on focused browsing activities, as a mega website, university web sites need to

provide topical related URLs. The purpose of this thesis was to see how domain adaptation method could

be employed to classify URLs using labeled out-of-domain URLs as the training data. The classification

was meant to support link prediction approach, which previously suggested “unlabeled ”related URLs. The

URL classification with ignoring the “difference”of both training and test data could possibly lead to poor

performances. This thesis choosed data selection as a domain adaptation method to lower error rates of

classification performances by minimazing disparity between training data and test data. To select the best

data, entropy-based selection was the simple way of data selection to measure the closeness of data. This

work used and compared four entropy-based selection methods: cross entropy, entropy difference, cross entropy

difference and average entropy gain. This thesis results demonstrate that the four entropy-based methods need

to be evaluated regarding their measurement issues on data sparseness. The finding indicates that prioritizing

to the low entropy score data only as the closest data was problematic in URL classification. The miscalculated

consideration could lead to data miss-selection. This thesis also revealed that token and cross entropy were the

best pair of feature and method respectively to increase the classification performances.
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Chapter 1

Introduction

1.1 Background

As a mega-website which contains a huge amount of web pages, university web sites provide a lot of information

for their users. Finding relevant information on this kind of web sites sometimes takes a lot of effort. To minimize

this effort and optimize the user’s experience on the site, the web sites normally offer links to pages related to

the content of the pages where their users visit. The related pages are normally included in the visited page in

the form of related or suggested links. By inserting these links (URLs) on the pages, the users are expected to

easily explore relevant information on the web sites.

Focused browsing refers to a personalized web experience, where links are generated to macth hte user

interest. Ideally the users would only view links to “on topic”pages that will be interest. It is similar to the

concept of focused crawling [5] which is to selectively seek out web pages relevant to pre-defined topics. For

instance, the users only want to see web pages related to student topic or research topic only. In such case,

related URLs would be attractive and useful to those users if they are annotated or labeled with their category

or topic.

Related URLs may be extracted from link prediction processes [6]. Link prediction is commonly described

as the work of predicting relationships in a network. The network could be a collection of connected data.

In an existing link prediction approach [2] which used Weblog access as their input data collection, the URLs

as a part of the data were completely unlabeled. Those URLs were obtained from a web server for every

single request it obtained from its users. Since the URLs were unlabeled, the related URLs proposed from

the prediction approach do not include sufficient information (i.e. URL category) to the users who want to do

focused browsing.

To provide the sufficient information for focused browsing users, URL labeling becomes an essential task to

support link prediction. Labeling or categorizing is one of the tasks in machine learning called classification[7].

Classification in machine learning uses at least two part datasets: a training set and a test set. Normally they

are derived from splitting a whole dataset into those two parts. The training set is assumed already having

class/topic/category for each of its instance data and thereby from that training set, a classifier can learn to
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predict the testing dataset. Both the training and test sets are assumed generated from the same source of

data in order to produce good performance accuracy.

Figure 1.1: Abstract representation of domain adaptation. Here, S and T represents source and target do-
main respectively [1].

In case no labeled set of URLs exist that can be used as a training dataset, two solutions can be adopted to

solve this issue. First, the dataset can be annotated manually, but this is a costly effort in terms of resources.

The second solution is to use labeled out-of-domain data as training data to classify the whole URL dataset.

However, with training data and test data coming from a different domain, learning a classifier with training

data and classifying the test data may lead to degraded classification results [8].

Domain adaptation [9] is a method to tackle the issue of discrepancy between training data and testing

data. Figure 1.1 shows an abstract representation of domain adaptation. The idea of domain adaptation is

closely related to transfer learning. Given a source domain Ds and its learning task Ts, a target domain Dt

and its learning task Tt, transfer learning aims to help improve the learning of the target predictive function

Ft in Dt using the knowledge from Ds and Dt, where Ds 6= Dt and Ts 6= Tt. Domain adaptation is a part of

transductive transfer learning methods where Ts and Tt are the same, while Ds and Dt are different [10]. By

designing algorithms to transfer knowledge from labeled data in Ds to Dt, we may succeed in Tt, for example,

annotating the new data in Dt, while keeping high performance. As an example of domain adaptation, the

approach to NE detection presented in [11] has trained a classifier on the ACE data to be evaluated in the

CoNLL corpus. The approach demonstrated that allowing information to be shared between domains could

significantly improve NE performances.

Ds data selection is a common approach to domain adaptation. It requires no labeled data in Ds and also

independent from any classifiers [1]. Entropy-based adaptation [12, 13, 14] is a prevailing method for selecting

data in Ds based on their entropy-measure scores. The entropy-measure can help to estimate the difference

of probability distribution between Ds and Dt. By approximating which data in Ds are close to Dt using the

entropy-measure, we can select the data that can be used to improve Tt performances [13].

Therefore, we can consider which approach that can be used to classify URLs to support link prediction

with considering the cost of annotating the URLs manually and the cost of using external labeled URLs as the

training data. Adopting labeled URLs from external or out-of-domain as the training data (Ds) to classify the

URLs as the test data (Dt) using entropy-based adaptation approaches seems as a trade-off to deal with both

cost issues.
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1.2 Research Question

The challenge using entropy-based adaptation is to find a good measure for calculating the similarity between

training URLs in Ds and test URLs in Dt to improve selection. From the proposed solution, a research question

can be formulated as follows :

To what extent is it possible to classify URLs with labeled out-of-domain URLs as training set using entropy-

based adaptation methods?

The research question can be divided into several sub-questions as follows:

• Can entropy-based adaptation methods help Ds data selection to increase URL classification performance

in using labeled out-of-domain or Ds URLs?

• What is the most useful feature representative of URL that allows entropy-based adaptation methods to

reduce error rates on URL classification in using labeled out-of-domain URLs in Ds?

• What is the most effective entropy-based adaptation method in selecting Ds for URL classification?

1.3 Scope of Study

In this thesis, Entropy-based adaptation methods are proposed to classify URLs using URL features only.

Commonly URL classification is used to classify its web page [15]. To classify the URL, one can use its web

page content as its metadata, but URL classification without its page’s content is preferable for three reasons

[16]. First, when the content of the URL is not available, for example, the content provider want to limit access

to the corresponding content. The second reason is when the classification is needed before we can obtain the

content of the URL, for example, when it is used in topic focused crawlers. If such a system can predict the

topic of a hyperlink before downloading the page, it can limit the waste of bandwidth caused by irrelevant

pages. The third reason is when the classification speed is crucial. This is particularly relevant for an on-the-fly

classification of Web search results, where only limited content is available and speed is of utmost importance.

1.4 Outline

This thesis consists of five chapters as follows:

• Introduction: this chapter introduces the background of this research including problems, motivation

selecting this topic, proposed solution, research question, research objective and limitation of this thesis.

• Related Work: this chapter describes the theoretical framework related to this thesis including Web Logs,

Link Prediction concepts, Classification theories particularly URL Classification, and Domain Adaptation

algorithms.
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• Method: this chapter presents the research methodology of this research. It explains the procedures taken

in this research from data selection until evaluation including which classification approaches used in this

thesis.

• Evaluation: this chapter discusses the finding of the research and evaluation of this research conducted

by human experts using standard evaluation criteria.

• Conclusion and Future Work: this chapter states the answer to the research questions posed as a final

conclusion of this research and includes some discussion for further work.
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Chapter 2

Related Work

2.1 Web Logs

Web servers record a web log access [17] for every single request they get from web user, including the URL

requested, the IP address from which the requested originated, and a timestamps. A fragment of the Web Log

we use in the study is shown as follows:

Figure 2.1: A fragment of web log file with masked IP addresses in the first column [2].

The first column in Figure 2.1 corresponds to IP addresses from which the URLs were requested. The IP

addresses have been anonymized (for privacy concerns).

2.2 Link Prediction

Link prediction is a popular research area with important applications in a variety of disciplines, including

biology, social science, security, and medicine. Link prediction refers to the problem of predicting relationships

in a network [18, 19]. Link prediction can be used for recommending relevant web pages to the web user and

thereby improving the user experience on a web domain [2]. Prior work employed a Markov model employed

to estimate the probabilities of visiting other clusters and pages, given a weblog file and a current user access

[20].

2.3 Focused Browsing

Focused Browsing fasilitates navigation between pages “on topic”that will most likely be interest to the user [20].

A focused Browsing approach is meant to provide the user with interactive feedback to support their browsing.
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The idea of Focused Browsing is similar to the principle of Focused Crawling [5] which is to selectively seek out

web pages relevant to pre-defined topics. Normally such users only predict and open the link offered to them

to seek their preferences. They often can only know exactly what topic of the link they have opened after they

see the web page content about. To not waste their time, one need to indicate the topic of the URLs to support

their focused browsing behaviour.

2.4 Classification

Document classification can be useful at numerous stages of the Information Retrieval processes. The documents

to be classified may be text, music; image, etc., each kind of document possesses its special classification

problems. Text categorization is the task of assigning a Boolean value to each pair 〈dj , ci〉 ∈ D×C, where D is

a domain of documents and C = {c1, ..., c|C|} is a set of pre-defined categories. A value of T assigned to 〈dj , ci〉

indicates a decision to file dj under ci, while a value of F indicates a decision not to file dj under ci. More

formally, the task is to approximate the unknown target function Φ̆ : D × C → {T, F}, (that describes how

documents ought to be classified) by means of a function Φ : D × C → {T, F} called the classifier (aka rule, or

hypothesis, or model) such that Φ̆ and Φ “coincide as much as possible” [7].

2.4.1 Training Set and Test Set

A machine learning approach relies on the availability of an initial corpus Ω = {d1, ..., d|Ω|} ⊂ D of documents

preclassified under C = {c1, ..., c|C|}. That is, the values of the total function Φ̆ : D × C → {T, F} are known

for every pair 〈dj , ci〉 ∈ Ω × C. A document dj is a positive example of ci if Φ̆(dj , ci) = T , a negative example

of ci if Φ̆(dj , ci) = F .

Training Data

In machine learning, the decision criterion of the text classifier is learned automatically from training data [21].

The training data Tr = {d1, ..., d|Tr|} is used to learn the best parameter values. The classifier Φ for categories

C = {c1, ..., c|C|} is inductively built by evaluating the characteristic of these data [7]. In the context of domain

adaptation described later in the next sub-section, the term training data Tr will be changed by the term

domain source Ds.

Test Data

A test set Te = {d|Tr|+1, ..., d|Ω|}, used for testing the effectiveness of the classifiers. Each dj ∈ Te is fed to the

classifier, and the classifier decisions Φ(dj , ci) are compared with the expert decisions Φ̆(dj , ci). A measure of

classification effectiveness is based on how often the Φ(dj , ci) values match the Φ̆(dj , ci) values [7]. In the next

sub-section and also the rest of this thesis, we will use domain target Dt as the term to refer to test set Te.

2.4.2 URL Classification

Commonly URL classification is used to classify its web page [15]. To classify the URL, one can use its web

page content as its metadata, but URL classification without its page’s content is preferable when the content

of the URL is not available, when the classification is needed before we can obtain the content of the URL and
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when the classification speed is utmost importance [16]. Classification of wab pages based on URL-only is not

new, see e.g. [22, 23]. Unlike URL classification using web page content as its metadata, URL classification

using URL-only is more challenging since its features are derived only in limited numbers. The features are

normally obtained either from tokenizing the URL into tokens or from partitioning the URLs into a subsequence

of characters called n-grams. Features used in [22, 23] are tokens and n-grams characters of tokens respectively.

The previous works used a standard classification setup i.e. where Ts = Tt and Ds = Dt. The classifiers can

be accurate but only when based on a large quantity and high quality of training set to predict new data in

test set Dt.

2.5 Domain Adaptation

A survey conducted by [1] mentioned several definitions of a domain. One of the definitions mentions that

adaptation happens between different corpora so that each corpus is considered as a unique domain. For

example, we can consider the ACE corpus as the source domain and the CoNLL corpus as the target domain

to perform named entity recognition[11].

The idea of domain adaptation is closely related to transfer learning. Transfer learning is a general term

that refers to a class of machine learning problems that involve different tasks or domains[1]. A comprehensive

survey of transfer learning techniques[10] provides a clear definition of transfer learning:

Given a source domain Ds and its learning task Ts, a target domain Dt and its learning task Tt,

transfer learning aims to help improve the learning of the target predictive function Ft in Dt using

the knowledge from Ds and Dt, where Ds 6= Dt and Ts 6= Tt.

It is assumed that training data is D = {(xi, yi)}ni=1 where xi ∈ X is an observed variable, and yi ∈ Y is

the output label/class of xi. The subscript S and T are used to distinguish source domain and target domain

respectively. Therefore Ds means the training data in the source domain, and Dt stands for the training data in

the target domain. The subscript l and u are also used to distinguish labeled and unlabeled data, for example

Dt,l refers to labeled data in the target domain. Domain adaptation is a part of transductive transfer learning

methods where Ts and Tt are the same, while Ds and Dt are different [10]. In classification setting, by designing

algorithms to transfer knowledge from labeled data in Ds to Dt, we may succeed in Tt for annotating the new

data in Dt while keeping high performance.

As reviewed in [3], we can distinguish three Domain Adaptation settings: Supervised Domain Adaptation,

Unsupervised Domain Adaptation and Semi-supervised Domain Adaptation.

Supervised Domain Adaptation

In the supervised domain adaptation setting, depicted in Figure 2.2, we are given a rather large amount of

labeled source data Ds : {(xsi , ysi )}ns
i=1 and only a limited amount of labeled data from the target domain:

Dt : (xti, y
t
i)

nt

i=1. That is, there is considerably more source data than target data, i.e ns � nt. The goal of

this setting is to exploit the limited target data together with the source data in order to build a model that

performs well on the new target domain.
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Labeled Source Data
Ds : {(xsi , ysi )}ns

i=1

Labeled Target Data
Dt : {(xti, yti)}

nt
i=1

Figure 2.2: Supervised domain adaptation scenario. Both Ds and Dt are labeled, however ns � nt [3].

Unsupervised Domain Adaptation

In the unsupervised domain adaptation, illustrated in Figure 2.3, instead of having labeled target domain data,

we only have unlabeled data from the target domain. The goal of this setting is to use the original, labeled

source domain data together with the unlabeled target domain data to build a model that performs well on the

new target domain.

Labeled Source Data
Ds : {(xsi , ysi )}ns

i=1

Unlabeled Target Data
Dt : {xti}

nt
i=1

Figure 2.3: Unsupervised domain adaptation scenario. Rather than having labeled data for the target domain,
in this setting only unlabeled data od Dt is available. However, there might be lots of unlabeled data, i.e
nt � ns [3].

Semi-supervised Domain Adaptation

Recent studies have started to employ both labeled and unlabeled data from target domain, as illustrated in

Figure 2.4. The goal of this setting is to use the labeled source data as well as a limited amount of labeled

target data together with lots of unlabeled target data.

Labeled
Source Data

Ds : {(xsi , ysi )}ns
i=1

Labeled
Target Data

Dt : {(xti, yti)}
nt,u

i=1

Unlabeled
Target Data
Dt : {xti}

nt,l

i=1

Figure 2.4: Semi-supervised domain adaptation setting. There is both labeled and unlabeled data available for
the target domain. However, there is only a small amount of labeled target data, i.e nt,u � nt,l [3].

The scenario in which there are no annotated data available in Dt (unsupervised domain adaptation) is a

much more realistic situation. That is a most prominently reason where the idea of domain adaptation come

from. To deal with the situation, empirical studies [13, 12, 14] have used adapatation approaches based on

entropy. The methods measure entropy-estimations in Ds with respect to Dt in order to select data in Ds which

are close to Dt. These methods, discussed below, are preferable in most practical settings not only because they

are independent of the availability of labeled data in Dt but also they are agnostic of the underlying machine

learning algorithms since they can be considered as a preprocessing step before performing any implementations

[1].
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2.6 Entropy-based Data Selection

Ds data selection is a common method for domain adaptation. The goal of the method is to select a subset of

Ds that can give better results for a given Dt. The method is independent of the choise of classifier, especially

suitable to the situation in which there exist many examples xi in Ds for which ps(y|xi) is similar to pt(y|xi)

[1]. The main challenge of this method is how to evaluate the importance of the data that we want to select in

Ds according to their relevance to Dt. The entropy-based measure discussed below is a simple way to tackle

the challenge of adapting Ds to Dt.

Entropy, Information Theory and Probability

If two independent events x1 and x2 occur (whose p(x1, x2) = p(x1) ∗ p(x2)), then the information we get from

observing the events is the sum of the two informations as explained in [24]:

I(p(x1) ∗ p(x2)) = I(p(x1)) + I(p(x2)) (2.1)

Suppose we have n events {x1, x2, ..., xn} and some source is providing us with a stream of these events. Suppose

further that the source produces probabilities of the events {p(x1), p(x2), .., p(xn)}. For now, we also assume

that the events are transmitted independently (successive events do not depend in any way on past events).

What is the average amount of information we get from each event we see in the stream?

What we really want here is a weighted average. If we observe the event xi, we will then obtain log(1/p(xi))

information from that particular observation. In a long run (say N) of observations, we will see (approximately)

N ∗ p(xi) occurrences of symbol xi (in the frequentist sense, that’s what it means to say that the probability

of seeing xi is p(xi)). Thus, in the N (independent) observations, we will get total information I of

I =

n∑
i=1

(N ∗ p(xi)) log2(
1

p(xi)
) (2.2)

But then, the average information we get per event observed will be

I

N
= (

1

N
)

n∑
i=1

(N ∗ p(xi)) log2(
1

p(xi)
)

=

n∑
i=1

(p(xi)) log2(
1

p(xi)
)

= −
n∑

i=1

(p(xi)) log2(p(xi))

(2.3)

This leads to a fundamental definition. This definition is essentially coming from Shannon’s seminal paper

[4]. As we have observed, we have defined information strictly in terms of the probabilities of events. Therefore,

suppose we have a discrete probability distribution P = {p1, p2, ..., pn}. We define the entropy of the distribution

P by:

H(P ) = −
n∑

i=1

pi log2 pi (2.4)

In information theory, Eq. 2.5 shows the standard definition of entropy, where X is a discrete random

variable with m possible outcomes xi,..., xm and p is a probability distribution of X.
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H(X) = −
m∑
i=1

p(xi) log2 p(xi) (2.5)

Figure 2.5: Entropy vs Probability [4]

Figure 2.5 shows the relation between entropy and probability of a fair coin. According to the entropy curve

as depicted in Figure 2.5, entropy is a measure of uncertainty of unknown or random variables where the higher

entropy scores are placed in between two extreme probabilities; low and high.

Cross Entropy

As described in [12], in the case of word segmentation and POS tagging, cross entropy becomes a measure by

calculating the cross entropy for a sentence s over two discrete probability distributions p and q, where p and

q are estimated from Ds and Dt, respectively and x1, x2, ..xn are feature representatives of s. This measure is

meant to calculate similarity of sentences in p with respect to q as formulated in Eq.

refeqn:ce-related-work. The sentences with lowest cross entropy score are prioritized. The intuition of this

criterion is to select sentences in Ds whose distribution is similar to Dt data.

CE(s, p, q) = −
n∑

i=1

p(xi) log2 q(xi) (2.6)

Cross Entropy Difference

To estimate similarity between sentences, cross entropy difference measure can be used as described in [14]. To

describe cross entropy difference measure formally, let p be an training set or Ds and q be a test set or Dt.

Let H(s,p,q) be the cross-entropy, according to x feature representatives of s in q, of a sentence s drawn from

p and let H(s,p) be the cross-entropy of s according to x feature representatives of s in p. For each sentence,

we score it according to H(s,p,q) − H(s,p) . It is assumed that if a sentence has a low cross entropy difference

score then it is close or similar to sentences in q.

H(s, p, q)−H(s, p) = |(−
n∑

i=1

p(xi) log2 q(xi))− (−
n∑

i=1

p(xi) log2 p(xi))| (2.7)

Entropy Difference

As described in [12], in word segmentation and POS tagging, entropy difference can be used to estimate

similarity of sentences. For formal definition, given a sentence s, s is represented as a set of information units

x1,...,xn, where an information unit can be a word/n-gram tokens. Let p be the probability distribution over

all the information units collected from a data set C. Instead of calculating the entropy of the random variable
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X as in Eq 2.5 which uses all the possible xi in C, it will be better if it focuses only on the xi in s; therefore,

a new function H(s, p) is defined as in Eq 2.8.

H(s, p) = −
n∑

i=1

p(xi) log2 p(xi) (2.8)

Let p and q be the probability distributions estimated from Ds and Dt, respectively. Let s be a sentence

in the Ds. Eq. 2.9 defines the difference of sentence entropy, ED(s,p,q). Intuitively, choosing sentences with

low values of entropy difference means the sentences are preferable since their units xi have similar values with

respect to p and q.

ED(s, p, q) = |H(s, p)−H(s, q)| (2.9)

Average Entropy Gain

The term entropy gain refers to how much entropy is accordingly changed when the data is changed a little

bit. In word segmentation and POS tagging case [12], average entropy gain can be employed to give better

similarity measures. To define average entropy gain formally, let C be the test corpus and s be a sentence, and

entropy gain (EG) is defined as in Eq 2.10, where q is a probability distribution estimated from C and q1 is

one estimated from C+s, a new corpus formed by adding s to C. Intuitively, if s is similar to C, q1 will be very

similar to q and EG(s,c) will be small.

EG(s, C) = |H(C + s, q1)−H(C, q)| (2.10)

The measures in Eq 2.10 can be normalized by sentence length. Eq 2.11 shows the normalized entropy gain

and it is called average entropy gain.

AEG(s, C) =
EG(s, C)

length(s)
(2.11)
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Chapter 3

Method

We present a method of applying entropy-based adaptation to the problem of URL classification in focused

browsing setting. Here we represent URLs by their constituent feature entropies. We will empirically evaluate

the best choice of features in the evaluation chapter.

3.1 Independence feature assumption

Let {x1, x2, ..., xn} be feature representatives of URLs in a collection and {p1, p2, ..., pn} be the probability of

each feature respectively. We assume {x1, x2, ..., xn} are independence each other so that the joint probability

p(x1, x2, ..., xn) = p(x1) ∗ p(x2) ∗ ... ∗ p(xn) (3.1)

We can estimate the information from a particular feature I(xi) = −log2 p(xi). From the independence as-

sumption, we can derive total information in collection I(x1 ∗ x2 ∗ ... ∗ xn) = I(x1) + I(x2) + ... + I(xn) and

then the average information we get per feature observed as known also as entropy as follows:

I/N = −
n∑

i=1

p(xi) log2 p(xi) (3.2)

Let {u1, u2, ..., un} be URLs in a collection and {x1, ..., xm} be the features of ui, if we want to estimate the

entropy of features H(uxi) in a specific URL ui, we can sum all the average of information of features in ui as

follows:

H(uxi) = −
m∑
j=1

p(xj) log2 p(xj) (3.3)

where xj indicates features in ui and p(xj) is probability of xj in the collection.

3.2 URL entropy-based calculation

The following sections will use Ds and Dt as the input data in their algorithmic explanations. To make it

clear to understand, both Ds and Dt consist of URLs and their representative features. The features could

be words/tokens/n-grams derived from preprocessing step. In detail, we will discuss the preprocessing steps in
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chapter 4.

3.2.1 Cross entropy

Cross entropy of URL features is calculated as follows. Let u be an URL from Ds, {x1, x2, ..., xn} be feature

representatives of u, ps be discrete probability distribution in Ds and pt be discrete probability distribution in

Dt.

CE(u, ps, pt) = −
n∑

i=1

ps(xi) log2 pt(xi) (3.4)

The cross entropy of features in u is estimated over two discrete probability distributions ps and pt. The

following algo. details the calculation of cross entropy of URL features:

Data: Ds, Dt

Result: sorted URLs in Ds

urltemp = [ ];

for each URL u in Ds do

CExu = 0;

for each feature xi in u do

Count fxsi frequency of xi in Ds;

Count fxti frequency of xi in Dt;

Count fxs total features in Ds;

Count fxt total features in Dt;

Count ps(xi) probability of xi in Ds : fxsi/fxs;

Count pt(xi) probability of xi in Dt : fxti/fxt;

if pt(xi) = 0 then

CExu + = 0;

else

Count CExi cross entropy score of xi : −(ps(xi) log2 pt(xi));

CExu + = CExi;

end

end

Store u along with its CExu score in urltemp;

end

Sort all u in urltemp based on their CExu score in ascending order;

Algorithm 1: URL feature cross entropy calculation.

3.2.2 Entropy difference

To count entropy difference of URL features, let u be a URL and u is represented as a set of unit features

{x1,...,xn}. Let ps be the discrete probability distribution over all the unit features collected from Ds. If we

focus only on the entropy of xi in u, then H(u, ps) is defined as in Eq 3.5.

H(u, ps) = −
n∑

i=1

ps(xi) log2 ps(xi) (3.5)

Let ps and pt be the discrete probability distributions estimated from Ds and Dt, respectively. We define

the difference of URL feature entropy, ED(u,ps,pt), as in Eq 3.6. The detailed calculation can be seen in algo.
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2.

ED(u, ps, pt) = |H(u, ps)−H(u, pt)| (3.6)

Data: Ds, Dt

Result: sorted URLs in Ds

urltemp = [ ] ;

for each url u in Ds do

Esu = 0;

Etu = 0;

for each feature xi in u do

Count fxsi frequency of xi in Ds;

Count fxti frequency of xi in Dt;

Count fxs total features in Ds;

Count fxt total features in Dt;

Count ps(xi) probability of xi in Ds : fxsi/fxs;

Count pt(xi) probability of xi in Dt : fxti/fxt;

if ps(xi) = 0 then

Esu + = 0;

else

Count Esi entropy score of xi with respect to Ds : −(ps(xi) log2 ps(xi)) ;

Esu + = Esi;

end

if pt(xi) = 0 then

Etu + = 0;

else

Count Eti entropy score of xi with respect to Dt : −(pt(xi) log2 pt(xi)) ;

Etu + = Eti;

end

end

Count EDxu entropy difference of x in u : |Esu − Etu| ;

Store u along with its EDxu score in urltemp;

end

Sort all u in urltemp based on their EDu score in ascending order ;

Algorithm 2: URL feature entropy difference calculation.

3.2.3 Cross entropy difference

To calculate cross entropy of features in each URL in Ds, let {x1, x2, ..., xn} be feature representatives of URL u,

ps be a discrete probability distribution in Ds and pt be discrete probability distribution in Dt. Let H(u, ps, pt)

be the cross-entropy, according to xi in pt, of u drawn from ps and let H(u, ps) be the cross-entropy of features

of u according to xi in ps only. For each u, we estimate it according to |H(u, ps, pt) − H(u, ps)|. The detail

calculation of cross entropy difference can be seen in algo. 3.
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|H(u, ps, pt)−H(u, ps)| = |(−
n∑

i=1

ps(xi) log2 pt(xi))− (−
n∑

i=1

ps(xi) log2 ps(xi))| (3.7)

Data: Ds, Dt

Result: sorted URLs in Ds

urltemp = [ ] ;

for each URL u in Ds do

CEDsu = 0;

CEDtu = 0;

for each feature xi in u do

Count fxsi frequency of xi in Ds;

Count fxti frequency of xi in Dt;

Count fxs total features in Ds;

Count fxt total features in Dt;

Count ps(xi) probability of xi in Ds : fxsi/fxs;

Count pt(xi) probability of xi in Dt : fxti/fxt;

if pt(xi) = 0 then

CEstu + = 0;

else

Count CExsti cross entropy score of xi with respect to Ds and Dt : −(ps(xi) log2 pt(xi)) ;

CEstu + = CExsti;

Count CExsi cross entropy score of xi with respect to Ds only : −(ps(xi) log2 ps(xi)) ;

CEsu + = CExti;

end

end

Count CEDxu cross entropy difference of x in u : |CEstu − CEsu| ;

Store u along with its CEDxu score in urltemp;

end

Sort all u in urltemp based on their CEDxu score in ascending order;

Algorithm 3: URL feature cross entropy difference calculation.

3.2.4 Average entropy gain

Average entropy gain adopted from [12] can be employed for URL selection. Let u be a URL from Ds, and

entropy gain (EG) of u features is defined as in Eq 3.8, where pt is a probability distribution estimated from

Dt and pt1 is one estimated from a new corpus formed by adding u to Dt. The detail calculation can be seen

in algo. 4.

EG(u,X) = |H(X + u, pt1)−H(X, pt)| (3.8)

H(X, p) follows the standard definition of entropy in information theory, where X is a discrete random

variable with n possible outcomes {x1, x2, ..., xn} and p is a probability distribution of X.

H(X, p) = −
n∑

i=1

p(xi) log2 p(xi) (3.9)

then URL feature average entropy gain calculation can be seen as follows:
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AEG(u,X) =
EG(u,X)

length(u)
(3.10)

Data: Ds, Dt

Result: sorted URLs in Ds

urltemp = [ ] ;

for each url u in Ds do

Make a new corpus Dq : Dt + u ;

Count fxt total features in Dt;

Count fxq total features in Dq;

Count fxu total features in u;

Equ = 0;

Etu = 0;

for each feature xqi in Dq do

Count fxqi frequency of xqi in Dq;

Count pq(xi) probability of xqi in Dq : fxqi/fxq;

if pq(xi) = 0 then

Equ + = 0 ;

else

Count Exqi entropy score of xqi with respect to Dq : −(pq(xqi) log2 pq(xqi)) ;

Equ + = Exqi ;

end

end

for each feature xti in Dt do

Count fxti frequency of xti in Dt;

Count pt(xi) probability of xti in Dt : fxti/fxt;

if pt(xi) = 0 then

Etu + = 0 ;

else

Count Exti entropy score of xti with respect to Dt : −(pt(xti) log2 pt(xti));

Etu + = Exti ;

end

end

Count EGxu entropy gain of x in u : |Equ − Etu|;

Count AEGxu average entropy gain of x in u : EGxu/fxu;

Store u along with its AEGxu score in urltemp;

end

Sort all u in urltemp based on their AEGxu score in ascending order;

Algorithm 4: URL feature average entropy gain calculation.
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Chapter 4

Experimental Setup

In this chapter, we will introduce the experimental evaluation setup that was taken and considered in this thesis

from data that were used, data preprocessing methods, approaches and algorithms that were used to classify

URLs and evaluation methods.

4.1 Data

For this experiment, Web-KB [25] dataset was employed either as Ds or Dt data. It was choosen because

it contains URLs from various universities. Web-KB URLs were collected and annotated from the computer

science departments in four universities (Cornell, Texas, Washington, Wisconsin) and one from universities

grouped as Misc. Each ”university” group subset of Web-KB URLs was considered as an unique domain

because it has its own URL characteristics.

In this thesis, we only selected the class of Web-KB dataset with sufficient number of URLs per each

”university” group. As the result, from seven classes, three classes were removed i.e. staff, department and

other. In total, there were five unique domains: Cornell, Texas, Washington, Wisconsin and Misc. where each

domain contains four classes-labels : course, faculty, student, and project. In detail, we can see the number of

Web-KB URLs for each domain and class in table 4.1.

We used leave-one-domain-out setup where each domain in Dt with four domains in Ds. To see the reliablity

of the experimental result on Web-KB dataset, 100 random english-version URLs of Radboud University Ni-

jmegen was also set as Dt while the five group universities in Web-KB (Cornell, Texas, Washington, Wisconsin

and Misc.) was set as Ds.

University (course) (faculty) (project) (student) (staff)* (department)* (other)*

Cornell 44 34 20 128 21 1 619
Texas 77 31 21 126 3 1 571

Washington 85 42 25 156 10 1 939
Wisconsin 38 46 20 148 12 1 942

Misc. 686 971 418 1083 91 178 693

Table 4.1: The number of URLs in WebKB dataset. * indicates removed classes.
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4.2 Preprocessing and feature extraction

In this thesis, two data representations are used as features in the classifier: tokens as features and character

n-grams of tokenized features as features as employed in [23]. For the n-grams features, only 2, 3 and 4-grams

were used, following the empirical results of [26]. In the evaluation phase, these features were evaluated to see

which one was useful to reduce error rates for URL classification using entropy-based adaptation methods.

The preprocessing relied on the pattern of features mentioned above. Therefore, two preprocessing pro-

cesses were conducted. The first preprocessing was for obtaining tokens as features as described instructively

in algo. 5. The second preprocessing was for extracting character n-grams as features from tokenized features

as explained algorithmically in preprocess algo. 6.

Data: URLs

Result: URL token features

for each URL u do

Remove the domain name and the protocol (e.g. http) of u;

Obtain r the rest part of u;

Tokenize r into tokens t by removing any special character, symbol and number;

feattemp = [ ];

for each t > 1 do

ti ← lowercase(ti) ;

Store ti in feattemp ;

end

Add all tokens in feattemp as feature values into URL dataset;

end

Algorithm 5: Preprocessing steps to obtain tokens as features of URLs

To see at a glance the input and the output of both type of preprocessing, consider the examples below:

An input (class, university, URL all seperated by a tab) from URL dataset is given as follows:

http://www.cs.cornell.edu/edu/courses/341/spring96/index.html

As the result of algo. 5, the URL in the input will be transformed into token features as follows:

edu courses spring index html
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Data: URLs

Result: URL n− gram features

for each URL u do

Set n as the number of sub-sequence characters in n− grams;

Remove the domain name and the protocol (e.g. http) of u;

Obtain r the rest part of u;

Tokenize r into tokens t by removing any special character, symbol and number;

feattemp = [ ] ;

for each t > 1 do

if ti ≤ n then

ti ← lowercase(ti) ;

Store ti in feattemp ;

else

Partition the sub-sequence ti into n− gram characters ng;

Store ng in feattemp;

end

end

Add all ng in feattemp as feature values into URL dataset;

end

Algorithm 6: Preprocessing steps to obtain character n− grams features of URLs

and for character n-gram features, given an input data:

http://www.cs.cornell.edu/edu/courses/341/spring96/index.html

As the result of algo. 6, the URL will be transformed into 4-grams characters of tokenized features as

follows:

edu cour ours urse rses spri prin ring inde ndex html

Since the domain name of URLs in all datasets are constant, it was removed in both feature representations,

as well as the sub-domain parts. It means that only the right part of URLs were preprocessed. For Radboud

University Nijmegen URL, since we only selected the english version of URLs, we extended the removed part

until sub-path /english/ or /en/ part. That was because the URLs are all constant until to those parts.

4.3 Approach and algorithm

The objective of the study is to find out the effectiveness of the entropy-based selection. To answer that question

we compared entropy-based selection methods to random selections as the baseline. We used standard text

classification methods in both scenarios.

1. Random selection (baseline).

In this setting, URLs in Ds were selected randomly and then used as the training data to classify URLs

in Dt using standard text classification algorithms i.e. Multinomial Naive Bayes and Linear Support

Vector Machine (LinearSVC) with default settings and TF-IDF weighting as the baseline using scikit-

learn software [27].

2. Entropy-based selection

28



In this approach, the classification process was similar to random selection setting but before the clas-

sification was taken, the training data must be sorted and selected using entropy-based measures in

unsupervised domain adaptation setting.

3. Selecting Ds as the training data

Before both random selection and entropy-based selection were performed, to see variances of the classifi-

cation performances over the increasing number of URLs in the selected part of Ds, the Ds were divided

into 10 percentage parts of total URLs: 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 %.

4.4 Measuring effectiveness

There were two evaluations conducted in this thesis as described as follows:

1. Classification evaluation over Web-KB dataset

In this phase, the test data will be partitioned into 10 parts with keeping all the four classes’ data available

in those parts. It was designed to see the stability of the classification performance over all partitions

of data through a macro-averaged F1-score evaluation that would compensate the imbalanced classes.

To determine whether the result from applying entropy-based selection leads to a statistically significant

difference in classification effectiveness or not, the clasification result for each part of the test data and

each percentage of the training data were evaluated using a ten-partition two-tailed paired student t-

test as also used in [12], comparing each entropy-based selection with average of three random selection

experiment results.

To be more specific, the t-test was conducted in the following steps:

(a) Split the test data into 10 parts.

(b) For each percentage of training data, calculate the classification result on each part the test data

when using random selection (the average of three random selection results) vs. a particular selection

method (e.g. entropy difference). That gives 10 pairs of scores.

(c) Compute t-test scores on the 10 pair of scores aboved to determine whether the difference between

random selection and a particular entropy-based selection method is statistically significant.

2. Classification evaluation over Radboud University Nijmegen URLs

In this evaluation phase, we performed URL classification over a random sample of 100 english-version

URLs from Radboud University Nijmegen. This evaluation was meant to validate reliability and con-

sistency of the best features and entropy-based adaptation mehtod based on the outcome of the first

evaluation. We set all subset of Web-KB dataset as Ds and URLs from Radboud University Nijmegen as

Dt.

As the effectiveness measurement, we asked two human judges from Radboud University Nijmegen stu-

dents 1 to choose a suitable category/class for each URL of the 100-random in selected URLs and then

we compared the results between the rater categories and the prediction from both random and entropy-

based selection methods using Cohen’s kappa measurement. We also counted how many times the judges

1We choosed one student from Information Science programme and another from Lingustics programme.
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agree and then we evaluated the URLs (which both judges agree) using cross-validation with leave-one-

out approach to see how close or far the results between the prediction derived from entropy-methods

proposed and human labels.

The Cohen’s Kappa measurement proposed are described as follows:

k =
po − pe
1− pe

(4.1)

where po is the relative observed agreement among raters (identical to accuracy), and pe is the hypothetical

probability of chance agreement, using the observed data to calculate the probabilities of each observer

randomly saying each category. If the raters are in complete agreement then k = 1. If there is no

agreement among the raters other than what would be expected by chance (as given by pe), k ≤ 0.
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Chapter 5

Evaluation

5.1 Classification performance on Web-KB URLs

In this chapter, we will see the effectiveness of each entropy-based selection method on selecting data in Ds to

give better URL classification performance compared to random selection over Web-KB dataset. We expect

that the entropy-based selection method could select the URLs in Ds which are close to URLs in Dt through

calculating their features using entropy-measures. The small portion of selected data in Ds, but close to or

similar to data distribution in Dt, could be equal or even better to give classification performance than a huge

amount of noisy data in Ds.

All results presented below are the average of 10 result performances of 10 test sets in macro-averaged F1

scores. Abbreviation RDM, CE, ED, CED, AEG mean random, cross entropy, entropy difference, cross entropy

difference, average entropy gain respectively. For feature abbreviations, tk, ng2, ng3 and ng4 mean tokens,

2-grams, 3-grams and 4-grams features respectively.

RDM CE ED CED AEG
Cl. %Train tk ng2 ng3 ng4 tk ng2 ng3 ng4 tk ng2 ng3 ng4 tk ng2 ng3 ng4 tk ng2 ng3 ng4

NB 10% 32.34 57.00 54.94 60.00 18.09 24.78 18.09 18.09 24.25 51.54 44.83 18.00 21.55 41.98 30.53 26.31 27.37 34.88 46.77 46.31
20% 34.48 58.54 55.07 53.99 18.09 15.46 18.09 18.09 23.52 56.22 50.48 30.35 20.31 49.50 42.54 27.79 29.91 52.70 51.25 53.14
30% 33.85 57.48 53.88 54.26 18.09 15.36 18.11 18.09 23.04 57.34 59.27 39.16 33.85 50.60 52.81 36.97 28.20 58.42 53.84 52.97
40% 34.37 57.81 54.48 54.57 18.09 37.96 15.63 18.09 32.97 53.84 61.55 45.58 44.58 53.58 54.82 51.33 32.73 57.57 54.20 53.54
50% 37.78 57.72 54.47 54.44 43.99 42.87 38.97 20.72 38.08 56.29 64.34* 55.22 42.91 54.88 54.54 55.74 39.10 60.46 55.59 55.24
60% 38.86 59.20 54.17 55.99 53.87** 51.61 53.08 47.43 40.18 57.85 64.21* 58.22 42.54 53.86 49.99 53.15 37.81 60.46 56.86 55.18
70% 36.72 58.92 55.66 55.55 53.87** 64.25 56.07 54.88 42.59 58.67 62.24 56.22 45.79 54.21 52.50 53.20 37.98 59.75 56.56 55.18
80% 36.06 58.63 55.70 55.47 64.76** 64.18 68.22* 62.55 46.07 58.64 56.67 54.83 47.97* 54.88 56.19 55.91 37.13 59.66 56.15 55.71
90% 37.67 58.38 56.07 55.88 51.64** 64.22 67.05 63.91 32.96 59.37 58.12 53.74 41.63 55.89 58.14 57.60 37.13 58.35 55.41 55.71
100% 37.69 57.61 55.70 55.71 38.19 57.61 55.70 55.71 37.52 57.61 55.41 55.71 37.92 57.61 55.70 55.71 37.69 57.61 55.70 55.71

SVM 10% 47.60 64.93 62.16 61.43 18.09 23.58 18.09 18.09 15.91 60.34 43.30 27.51 29.90 56.40 53.82 39.24 42.70 45.86 53.31 49.09
20% 53.50 60.77 63.69 57.39 18.09 23.32 18.09 18.09 15.91 58.39 54.84 34.44 29.90 57.64 59.01 44.32 53.56 53.91 57.50 55.64
30% 54.63 61.19 61.13 57.74 18.09 34.93 17.85 18.09 20.65 60.17 59.31 46.65 46.27 61.33 62.89 52.06 52.93 56.39 57.60 56.09
40% 54.86 60.96 58.52 57.35 18.09 58.46 17.88 18.09 32.23 59.62 62.87 54.69 54.70 64.80 63.24 52.56 54.35 57.59 57.22 55.67
50% 54.87 59.63 59.28 56.05 48.68 69.31 55.36 36.21 38.21 64.17 66.53 55.01 58.27 60.77 62.32 53.48 55.53 58.38 57.51 55.41
60% 55.25 60.17 59.40 56.66 53.15 68.74 60.11 50.96 40.03 61.26 63.05 58.67 54.38 59.87 53.84 54.99 55.94 57.89 58.67 57.04
70% 55.23 59.07 59.40 56.44 52.87 62.00 58.42 54.40 41.99 64.70 63.49 57.88 54.68 58.85 55.91 54.17 55.94 57.99 58.06 55.05
80% 55.37 59.22 58.45 55.38 54.31 61.48 56.13 55.02 49.04 62.50 63.25 56.47 55.48 59.32 58.00 53.53 55.48 57.52 57.78 54.77
90% 55.50 59.26 59.63 55.51 55.48 59.29 58.81 57.36 54.30 62.48 62.88 51.64 55.48 57.33 58.19 54.91 55.48 59.49 57.84 55.20
100% 55.48 60.38 57.14 55.56 55.48 60.22 57.27 55.97 55.48 59.84 57.27 55.56 55.48 59.30 57.27 55.56 55.48 60.22 57.27 55.56

Table 5.1: URL classification performance: Tested on Cornell and trained on the other three group
universities. * and ** indicate significance at 0.05 and 0.01 respectively. The highest score in each row is in
bold.

Imbalanced shared feature

For Cornell as the Dt setup, the classification performance can be seen in Table 5.1. To make it easy to observe,

we plotted the data from the table into graphs as depicted in Figure 5.1. We clearly notice that the average
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Figure 5.1: The classification performance over the size of Ds: The graph plots the performance score
that is made up by the fraction of Ds with Cornell as the Dt. X-axis and Y-axis represents Ds percentage and
macro-averaged F-1 score respectively.

of the classification performance in random selection was really poor in tk as feature i.e. only around 36. By

contrast, the Cornell setup had relatively a higher number of token and vocabulary similarities between Dt and

Ds over the size of Ds compared to the other three group university settings (see figure 5.3 and appendix F).

Dt Class Token Dt Token Ds

Cornell Student people:126, info:126, html:126,
home:26, index:12, welcome:3, kuen:2,
jiawang:2, aswin:2, ychung:2

html:441, users:235, homes:127,
home:115, students:96, grads:79,
phd:65, index:63, people:41, www:28

Cornell Faculty info:34, html:31, people:23, fac-
ulty:11, department:9, annual:9,
dean:2, sam:2, lnt:2, cardie:2

html:496, Faculty:284, cs:98, users:87,
people:86, info:82, index:68,
home:65, fac:51, dept:43

Table 5.2: Top Ten Keywords in class student and faculty in Cornell setup: The table shows top
ten token features and shared tokens (bold text) in both class student and faculty along with their frequen-
cies for each Dt and Ds setup.

However, many of those tokens and vocabularies were shared among classes, for example, the words info

and people, as shown in Table D.2. Those two words are keywords to determine class faculty and student.

Since majority of Dt URLs of class student contained those two words and the Ds URLs of class faculty had

those word frequencies bigger than the Ds URLs of class student, as the result many Dt URLs of class student

were miss-classified as faculty URLs. Those imbalanced shared features were the most likely causes for miss-

classification using Multinomial Naive Bayes classifier in tk as feature as shown briefly in Table 5.3. Unlike the

Multinomial Naive Bayes results, results using SVM classifier shows almost consistent for all features. That

was because SVM measured the complexity of hypotheses based on the margin with which it separated the

data, and not the number of features.
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URL true class predicted class

http://www.cs.cornell.edu/Info/People/eva/eva.html faculty faculty
http://www.cs.cornell.edu/Info/People/kguo/home.html student faculty
http://www.cs.utexas.edu/users/wylee/ student student
http://www.cs.utexas.edu/users/vin/ faculty student
http://www.cs.washington.edu/homes/dougz/ student student
http://www.cs.washington.edu/homes/levy/ faculty student
http://www.cs.wisc.edu/∼carey/carey.html faculty faculty
http://www.cs.wisc.edu/∼zeiden/zeiden.html student faculty

Table 5.3: A chunk of true and miss-classification of Web-KB URLs : The table shows the similarity
of URL patterns that can lead to miss-classifications.

Smoothing

We found that the classification performance using CE selection method in this Cornell setup suffered poor

classification performances for all features at the small percentage of Ds (10% - 40%). Figure 5.3 shows that

the average frequency of similar data among Dt and Ds partitions was zero at tk and ng4 as feature in those

Ds fraction. It means that CE prioritized data whose Pt(x) = 0 as the closest data to Dt. We suspected that

those data which contained many Pt(x) = 0 caused CE scores to be 0 since we set −log(0) = 0. The data

ascending order which prioritized the low CE scores in the beginning of selection polluted the data partitions

with many of these “unsimilar”data. These data could give poor performances since they could not help the

classifiers to identify correctly data in Dt. To solve this issue, we tried to perform add-one smoothing to give

the “unseen”data a little bit probability in order to increase their ”information” (−log(Pt(x))) as follows:

P (x) =
c(xi) + 1

N + α
(5.1)

where x is a feature representative of URLs, P(x) is probability of x, c(xi) is total feature representative x

in dataset, N is total all feature representatives in dataset and α is vocabulary sizes in dataset.

Normalization

All the same, the smoothing still produced poor performances and only selected a few similar data at those

small percentages of Ds (see Figure 5.2 and Appendix F). We assumed that the lowest CE scores derived from

summations of many pairs of Ps(x) and Pt(x) were still owned by abundant data with Pt(x) = 0; therefore

they were still placed as the best data to classify Dt. It means that the summation results of many pairs of

Ps(x) and Pt(x) = 0 with add-one smoothing were still lower and dominant at those data partitions than the

results from Ps(x) and Pt(x) > 0 pairs. We wondered that the features, which had the expected probabilities:

Pt(x) > 0 and low Ps(x), most likely appeared along with many more features in an URL compared to other

features with Pt(x) = 0. Therefore, the summation of their average individual “information”(-Ps(x)log(Pt(x)))

could possibly produce a higher CE value. To fix the issue, after we performed the smoothing, we then tried

to normalize the CE score by dividing it with the URL length.

Data sparseness

The performances from the normalization still did not really increase significantly at the whole problematic data

partitions except some partitions between 30% and 60% as shown in Figure 5.2. Another possible explanation

for the poor performances was that Pt(x) > 0 most likely existed along with Ps(x) whose value was relatively
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Figure 5.2: The difference of classification performance using different type of CE over the size of
Ds: The graph shows the performance differences random selection, natural, smoothing and normalized CE
with Cornell as the Dt. X-axis and Y-axis represents Ds percentage and macro-averaged F-1 score respectively.

higher than Ps(x) where Pt(x) = 0 paired. Since the feature probability Ps(x) was most likely smaller than

Pt(x) because Ds � Dt in this setup, the smaller Ps(x) values could possibly compensate the Pt(x) = 0 +

add-one smoothing to produce a low CE score. This last possibility was more realistic since the token similarity

among Ds and Dt was lower compared to other features (see Appendix E). The CE scores derived from that

possible cause could most likely exceed the CE score derived from a pair of low Ps(x) and Pt(x) = 0 at those

small percentage of Ds.

Class imbalance

The poor performances at the small percentages ofDs (10%-40%) selected using CE in Cornell setup were almost

similar to its non-machine learning classification performances i.e. majority class classification performances (see

Table 5.4). It indicates that the low performances were not only because of bad quality of Ds data produced

from the selection, but also due to the imbalanced class data (see Table B.1 in Appendix B). The classifiers

seemed to predict Dt classes solely based on the majority class data appeared in Ds.

Majority Class Classifier
University E[F1] E[macro− ave.F1]

(co.) (fa.) (pr.) (st.)

Cornell 0.0 0.0 0.0 72.3 18.1
Texas 0.0 0.0 0.0 66.1 16.5

Washington 0.0 0.0 0.0 67.2 16.8
Wisconsin 0.0 0.0 0.0 73.9 18.5

Table 5.4: The expected F1 and macro-average F1 score for Majority Class Classifier. co., fa., pr.
and st. indicate class course, faculty, project and student respectively.

On the other side, as we measured the performance using macro-averaged F1 estimation that gave each class

equal weight, the significance results at the relatively big portion of Ds fractions (around 60% - 80%) especially

in tk as feature as shown in Table 5.1 indicate that CE selection method helped the classifier to lower error rates
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of the classification performances in many classes in this Cornell setup. The results were derived mostly from

true-classification of the other three class URLs such as class course, project and course. It indicates that the

best data we wanted to select appeared at relatively big amount of Ds partitions. In other words, we assumed

that the data which had low Ps(x) and Pt(x) > 0 started to show up at these Ds partitions.

Data miss-selection

CED and ED selection methods seemed not really effective to find similar tokens at the small percentage of Ds

in this Cornell setting (see Figure 5.3). Estimating the closeness of features by their entropy difference in Ds

and Dt could lead to data miss-selection. If some data did not really exist in Ds and their probabilities in Dt

were 0 then those data could possibly have a low entropy score because they could have two almost close low

entropy scores; a low score from Ds estimation and a zero score from Dt. Those data in Ds could be selected

and prioritized as the closest data to data in Dt simply because they had a small entropy difference scores.

Though those data were not really useful for classifying data in Dt because they were not similar to data in

Dt. However, the assumption above was partially true because the measurement of difference could be also

applicable in determining the closeness of data in which the Ds data had similarity to Dt. The data could have

also a lower entropy difference when their probabilities in both Ds and Dt compensated each other, so they

had approximately the same entropy scores.

Figure 5.3: The average number of token and vocabulary similarity between Ds and Dt over the
size of Ds: Counted on Cornell as the Dt and the other four group universities as the Ds. The graph plots
the token and vocabulary intersections between Ds and Dt over Ds selection percentage. X-axis and Y-axis
represents Ds percentage and the number of token or vocabulary intersections respectively.

We also observed that AEG selection method in all features could not really help to increase the classification

performances in this Cornell setup. The performances derived from that method estimation was frequently

close to the performances produced from random selection. We found that selecting data by their entropy gain

calculation could also lead to data miss-selection. Since entropy gain is the measurement of how much entropy
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is changed when the data is changed a little bit, then it could give the data which have low probabilities low

entropy gain scores because their entropy changed could approach to 0. To give an illustration, let assume an

URL in Ds consists of tk features such as words like texas, washington and wisconsin. Those tokens should be

considered as the words which are not similar to data in Cornell dataset due to their existence probabilities in

Cornell dataset possibly can be zero. However, according to AEG calculation (see Eq. 3.10), the URL which

has those features can be considered as close to Dt only because it can have a lower AEG score. This is because

its small feature probabilities in Dt can also produce lower entropy scores and adding those scores to Dt’s

feature entropy scores as the entropy gain estimation input can also derive a lower AEG score. Again, the

assumption was also partially true because the entropy gain was also suitable to measure the closeness of data.

The Ds data which had a significance frequency in Dt could also contribute to a lower entropy gain as their

high probabilities could also produce low entropy scores.

Useful feature

In this setup, tk seemed helpful to give entropy-based methods an opportunity to select data in Ds in order to

lower error rates of random selection performances. The entropy-based methods were applicable to specifically

seek out and retrieve the tokens as important keywords for a specific class. N-grams on the other hand, could

boost random selection performances (without entropy-based method assistances) by feeding the classifiers with

a huge amount of data. The classifiers would then be able to classify correctly not only some of ”student” URLs

but also some of the other three class URLs i.e. course, project and faculty at the small percentages of Ds.

N-grams reduced the vocabulary sizes that led to many similarities between Ds and Dt data as shown in Figure

5.3. 2-grams, for example, lowered the number of vocabularies in Web-KB dataset from ± 3000 to only ± 600

approaching ln where l is the number of letters in the english alphabet (see Figure E.1 in Appendix E).

The other group university setups produced the same performance patterns for the above analysis (see

appendix A for the complete proofs). In the next section we will present the result of classification performance

using URL from Radboud University Nijmegen (RUN) as the Dt and URLs from Web-KB as the Ds with the

same feature and selection method settings.

5.2 Classification performance on Radboud University Nijmegen

(RUN) URLs

Since the 100-random RUN URLs were unlabeled (see Appendix G), we measured the prediction results from

both random selection and entropy-based selection methods by estimating their prediction performance on the

ground truth data. We used Cohen’s kappa agreement to see whether both prediction results make sense or

not.

Cross Validation

Total URLs (both judges agree) 64
KFolds CV 8
Cohen Kappa Score* 0.62

Table 5.5: The performances of Cross Validation on RUN URLs. * indicates the average perfor-
mances from all features (tk, ng2, ng3 and ng4) using Linear SVM classifier.
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The empirical results are summarized in Table 5.6. All scores are in Cohen’s kappa aggreement scores. To

make it clear to observe, again we plotted the table into graphs as shown in Figure 5.4. We see that the average

of the acceptance results are around 0.50 which is not really far from cross validation score (see Table 5.5).

This 0.50 score are considered as a moderate aggreement score [28]. These all moderate scores were caused by

the differences of aggreements of both judges as shown briefly in Table 5.7.

RDM CE ED CED AEG
Cl. %Train tk ng2 ng3 ng4 tk ng2 ng3 ng4 tk ng2 ng3 ng4 tk ng2 ng3 ng4 tk ng2 ng3 ng4

NB 10% 0.52 0.53 0.52 0.52 0.40 0.45 0.40 0.40 0.40 0.40 0.44 0.44 0.40 0.58 0.42 0.42 0.53 0.52 0.45 0.51
20% 0.52 0.49 0.47 0.52 0.40 0.47 0.50 0.40 0.40 0.44 0.47 0.44 0.40 0.52 0.42 0.39 0.53 0.56 0.43 0.50
30% 0.52 0.51 0.47 0.52 0.40 0.44 0.46 0.40 0.39 0.44 0.46 0.42 0.39 0.51 0.46 0.42 0.53 0.51 0.47 0.50
40% 0.53 0.52 0.46 0.52 0.40 0.47 0.49 0.40 0.40 0.41 0.49 0.52 0.40 0.51 0.42 0.40 0.53 0.51 0.46 0.52
50% 0.53 0.49 0.50 0.50 0.40 0.50 0.57 0.40 0.50 0.41 0.53 0.52 0.50 0.46 0.45 0.49 0.50 0.51 0.48 0.49
60% 0.53 0.51 0.50 0.49 0.40 0.51 0.59 0.40 0.53 0.42 0.54 0.50 0.50 0.49 0.49 0.46 0.53 0.50 0.49 0.51
70% 0.53 0.50 0.48 0.51 0.40 0.46 0.54 0.44 0.53 0.45 0.47 0.47 0.52 0.46 0.45 0.50 0.53 0.52 0.48 0.51
80% 0.53 0.50 0.46 0.51 0.40 0.48 0.55 0.52 0.53 0.47 0.42 0.49 0.53 0.47 0.41 0.50 0.53 0.49 0.47 0.51
90% 0.53 0.50 0.46 0.49 0.45 0.51 0.46 0.54 0.53 0.51 0.46 0.49 0.53 0.50 0.43 0.51 0.53 0.49 0.48 0.51
100% 0.53 0.50 0.46 0.49 0.53 0.50 0.48 0.49 0.53 0.50 0.48 0.49 0.53 0.50 0.48 0.49 0.53 0.50 0.48 0.49

SVM 10% 0.51 0.49 0.56 0.54 0.40 0.46 0.40 0.40 0.40 0.43 0.47 0.46 0.38 0.55 0.45 0.42 0.53 0.51 0.48 0.51
20% 0.53 0.43 0.55 0.54 0.40 0.46 0.54 0.40 0.40 0.49 0.53 0.49 0.38 0.49 0.43 0.40 0.52 0.42 0.51 0.58
30% 0.49 0.40 0.57 0.46 0.40 0.51 0.44 0.40 0.39 0.41 0.61 0.46 0.39 0.48 0.49 0.44 0.52 0.43 0.64 0.51
40% 0.47 0.43 0.60 0.48 0.40 0.45 0.68 0.40 0.51 0.43 0.57 0.50 0.40 0.40 0.60 0.44 0.50 0.42 0.62 0.49
50% 0.47 0.41 0.53 0.51 0.40 0.44 0.57 0.40 0.50 0.45 0.71 0.43 0.50 0.40 0.68 0.44 0.49 0.41 0.66 0.44
60% 0.49 0.44 0.51 0.48 0.40 0.40 0.55 0.40 0.47 0.42 0.66 0.42 0.51 0.42 0.64 0.54 0.49 0.45 0.64 0.47
70% 0.49 0.41 0.57 0.50 0.40 0.45 0.56 0.41 0.47 0.36 0.63 0.45 0.53 0.43 0.66 0.54 0.49 0.45 0.66 0.47
80% 0.50 0.41 0.61 0.49 0.40 0.41 0.59 0.49 0.50 0.37 0.57 0.49 0.50 0.40 0.60 0.51 0.49 0.45 0.64 0.48
90% 0.49 0.38 0.53 0.50 0.44 0.40 0.59 0.49 0.49 0.40 0.52 0.48 0.49 0.39 0.61 0.49 0.49 0.41 0.56 0.48
100% 0.49 0.35 0.56 0.49 0.49 0.36 0.56 0.49 0.49 0.35 0.56 0.49 0.49 0.35 0.56 0.49 0.49 0.35 0.56 0.49

Table 5.6: URL classification acceptance: Tested on the Radboud 100-random-URLs and trained on
Web-KB URLs. All values are in Cohen’s kappa scores.

As shown in Figure 5.4, prediction results derived from CE selection estimation obtained almost constantly

poor acceptances in all features especially in the beginning of Ds percentages. We believed that indicates our

assumption in the first evaluation on Web-KB dataset also occured in this setup. We then performed smoothing

and normalization for CE estimation. The prediction performances as shown in Table 5.5 seems close to our

analysis in the first evaluation on Web-KB dataset.

We found that prediction results of ED and CED selection methods lead to inaccurate classification results

for almost all features, especially at the small percentage of Ds. We interpreted this finding as an indication

that ED and CED again performed miss-selection of similar data on Ds data as shown in figure 5.6. They only

choosed correctly a small number of similar tokens and vocabularies in Ds at the small percentages of Ds.

URL Judge 1 Judge 2

http://www.ru.nl/english/education/masters/historical-literary/ course project
http://www.ru.nl/english/education/masters/pathobiology/our-approach-to-this/ course project
http://www.ru.nl/english/@928631/grant-worth-22-9/ project other
http://www.ru.nl/english/about-us/our-university/history/prime-minsters/ faculty other
http://www.ru.nl/english/research/radboud/themes/astronomy/vm/alma-world-largest/ project course
http://www.ru.nl/english/education/masters/philosophy-social/contact/ faculty course
http://www.ru.nl/english/education/masters/computing-foundation course course
http://www.ru.nl/english/education/masters student/financial matters/student budget and/ student student
http://www.ru.nl/english/research/radboud/themes/brain-cognition/vm/news-brain-cognition/? project project
http://www.ru.nl/english/@936463/prof-nico/? faculty faculty

Table 5.7: A chunk of the similarity and difference of agreements on RUN URLs : The table
shows the similarity and difference of class aggreements on RUN URLs between two observers.

AEG in this setup seems to be similar to the first evaluation analysis even though its results received slighlty

more acceptances in tk as feature than random selection predictions in small percentage of Ds (see Figure 5.4

or table 5.6). That was because it helped to collect more token and vocabulary similarities in Ds than random
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Figure 5.4: The classification performance over the size of Ds with Radboud as the Dt: The graph
plots the performance score that is made up by the fraction of Ds. X-axis and Y-axis represents Ds percentage
and Cohen’s kappa score respectively.

selection at those fractions of Ds as shown in Figure 5.6. However, in general, its prediction results are about

the same (low) level as these obtained with random selection.

Figure 5.5: The difference of classification performance using different type of CE over the size of
Ds with RUN as the Dt: The graph shows the performance differences over CE scores in smoothing and
normalized CE. X-axis and Y-axis represents Ds percentage and Cohen’s kappa score respectively.

In the first evaluation on Web-KB dataset, we achieved generally that tk as the most useful feature for

entropy-based selections to lower the error rates of random selection. In this second evaluation, we found that

random selection received relatively higher acceptances at tk as the feature (see Figure 5.4). As shown in
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Figure 5.6: The number of token and vocabulary similarity between Ds and Dt over the size of
Ds: Counted on Radboud as the Dt and Web-KB as the Ds. The graph plots the token and vocabulary
intersections between Ds and Dt over Ds selection percentage. X-axis and Y-axis represents Ds percentage
and the number of token or vocabulary intersections respectively.

Table 5.8, we identified that the top ten keywords in RUN dataset such as education and research appeared

also in top ten keywords Web-KB dataset (see appendix D). The top keyword intersection was the significant

source that led random selection to receiving relatively good acceptances from both observers. For that reason,

entropy-based methods were difficult to exceed those random selection acceptance scores using tk as feature.

tk ng2 ng3 ng4

education:75,
masters:75, pro-
grammes:19,
radboud:18, mas-
ter:16, vm:16, re-
search:10, news:9,
and:8, science:8

ti:127, on:155,
io:108, at:105,
er:101, st:97, ca:92,
ma:90, te:83, ed:81

ion:98, tio:95,
ati:92, cat:77,
duc:76, edu:75,
ter:75, uca:75,
ste:69, ast:68

tion:95, atio:87,
cati:76, duca:75,
educ:75, ucat:75,
ster:69, aste:66,
mast:66, ters:51

Table 5.8: Top Ten Keywords in RUN dataset: The table shows top ten tokens and n-grams along with
their frequencies.
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Chapter 6

Conclusion and Discussion

6.1 Conclusion

In this section, the conclusion is constructed to answer the research questions. We will describe directly the

answers supported by the analysis from previous chapters.

• Can entropy-based adaptation methods help Ds data selection to increase URL classification

performances using labeled out-of-domain?

Entropy-based selection methods in some circumstances could increase the URL classification perfor-

mances of random Ds selection. In some cases, they were able to select labeled out-of-domain URLs in

Ds by estimating their feature probabilities in Dt and hence the URLs could contribute to high perfor-

mances. However, cross entropy method needs to be evaluated deeply in regard to their data prioritizing

problems. Entropy difference, cross entropy difference and average entropy gain calculations also need to

be evaluated regarding their similarity measurement issues.

• What is the most useful feature representative of URL that allows entropy-based adaptation

methods to reduce error rates of URL classification using labeled out-of-domain URLs?

Token seemed as the right feature to give entropy-based selection methods a chance to increase the

performance of random selection when the Ds contained sparse relevant features to determine Dt’s URL

class. In other words, the entropy-based selection method were only useful when the Ds consisted of token

features in which their existence were insignificant in small percentage of Ds selections. Entropy-based

selection methods could seek and select specifically the labeled out-of-domain URLs in Ds by estimating

their token features and discriminate the URLs either as the important Ds URLs or not important Ds

URLs.

• What is the most effective entropy-based adaptation method in selecting Ds for URL clas-

sification?

Cross entropy, entropy difference, cross entropy difference and average entropy gain all measured the

importantness of labeled out-of-domain URLs with respect to in-domain URLs by estimating their feature

probabilities. Considering Ds and Dt are assumed from different domains, a majority of data in Ds mostly

would have probabilities around 0 - 0.5 with respect to Dt. Since the probabilites of Ds data in Dt were
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impossible to reach 1, cross entropy is considered as the most effective method to calculate data based on

their probabilities both in Ds and Dt. It can simply select and prioritize linearly Ds data by putting low

entropy scores on the data whose Ps(x) are low and Pt(x) are high and high entropy scores for the data

whose Ps(x) are high approaching 0.5 and Pt(x) are low even though it should deal with Pt(x) = 0. The

other three methods could incorrectly select the closest data between Ds and Dt because their difference

and gain measurements could give the unlike data the same score as the similar data scores.

6.2 Discussion and future work

Entropy-based selections are supposed to be an easy and competitive approach to select closest data in domain

adaptation area [1]. Previous reports [12, 13, 14] demonstrated that the data Ds which had lowest entropy-based

scores indicate that the data were close enough to the target data Dt. The entropy-based studies reported that

the task performances were improved significantly while adapting different domain data as the training data

by estimating their entropy values. Such studies may have observed the large amount of data while missing the

sparseness of small data.

Since the idea of data selection explains that the small high quality data is better than big noisy data,

we expect that machine learning classifiers combined with entropy-based methods are smarter than a classifier

built by assigning classes arbitrarily in using small dataset. In fact, the performances we got could not really

fulfill the idea demanded. The performances from cross entropy which were almost similar to majority class

classification performances and the performances from other entropy-based methods using tk as feature were

also close to random classification performances at small partitions of Ds (see Table 6.1, Table 5.1 and Appendix

A).

Random Classifier Majority Class Classifier
University E[F1] E[macro− ave.F1] E[F1] E[macro− ave.F1]

(co.) (fa.) (pr.) (st.) (co.) (fa.) (pr.) (st.)

Cornell 21.9 18.7 13.0 34.7 24.9 0.0 0.0 0.0 72.3 18.1
Texas 28.9 16.4 12.3 33.2 25.4 0.0 0.0 0.0 66.1 16.5

Washington 26.2 17.6 12.2 33.5 24.9 0.0 0.0 0.0 67.2 16.8
Wisconsin 18.8 21.1 12.0 35.0 25.0 0.0 0.0 0.0 73.9 18.5

Table 6.1: The expected F1 and macro-average F1 score for Random and Majority Class Classi-
fier. The abbreviations co., fa., pr. and st. mean class course, faculty, project and student respectively.

Our finding shows that prioritizing only to the data with low entropy scores was considered problematic

approach in data selection for URL classification using labeled out-of-domain training data. Since we used

relatively small datasets and both Ds and Dt were not the same domains, disparity of features between both

datasets could be high. This inequality of data may lead to many data in Ds having low or even zero entropy

scores with respect to Dt. The problem could be more complicated since the words or n-gram tokens in a

URL may vary. The words sometimes had different entropy scores or even their scores contrasted each others.

Deciding to select or to not select a URL that has those words in that situation was not an easy work.

Although our analysis seems to fit the data presented in the evaluation, it solely represents one interpretation

of our results. Different experimental procedures, including different scoring and weighting for each features in

a URL, would be required to reveal the underlying problem on why entropy-based measurements only did not

work as expected. In the future, we would like to see if other weighting score estimations could be implemented
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to reduce the importantness of “bad”features to improve the performances, potentially by using estimations

that increase the importantness of other “good”features in a URL at the same time.
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Appendix A

Classification Performances

RDM CE ED CED AEG
Cl. %Train tk ng2 ng3 ng4 tk ng2 ng3 ng4 tk ng2 ng3 ng4 tk ng2 ng3 ng4 tk ng2 ng3 ng4

NB 10% 36.91 37.93 27.42 28.98 18.51 22.02 18.51 18.51 18.51 26.86 25.93 19.30 22.55 30.80 24.41 26.27 43.14 31.11 33.74 35.73
20% 30.76 40.77 27.73 28.71 18.51 23.89 18.51 18.51 18.51 36.91 32.89 18.43 21.33 34.82 28.49 26.78 35.47 34.84 30.58 32.72
30% 28.62 41.24 27.79 28.58 18.51 25.07 21.87 18.51 30.46 35.79 29.89 30.41 36.19 36.10 31.83 30.75 31.44 32.98 28.41 30.39
40% 28.36 39.69 27.72 28.77 18.51 25.98 27.30 18.51 39.83* 37.37 32.21 37.25 28.76 39.00 34.38 32.06 30.20 37.80 27.72 29.55
50% 30.17 41.37 29.90 28.98 26.39 22.05 26.41 31.48 42.18* 41.10 33.75 41.47* 27.67 40.09 33.69 32.26 30.36 37.59 28.11 28.23
60% 29.84 40.46 29.66 28.17 27.22 28.71 27.51 31.48 41.96** 41.91 29.01 38.12 28.43 41.49 31.68 30.18 30.36 36.56 27.39 29.58
70% 29.87 41.10 28.19 28.11 27.86 36.13 28.01 31.48 33.50 40.78 28.97 34.78 28.89 41.33 29.15 29.56 30.80 38.25 26.43 28.81
80% 30.51 40.75 28.04 28.02 27.86 36.42 27.43 30.59 43.64* 39.16 27.75 26.78 29.15 40.42 29.69 29.26 30.80 38.48 27.64 28.81
90% 30.65 41.80 28.22 27.97 30.20 40.20 26.48 28.55 32.89 40.47 29.62 29.02 29.72 40.53 30.14 29.37 30.91 40.38 28.13 28.97
100% 30.91 40.91 28.88 27.37 30.91 40.46 28.86 27.66 30.91 40.38 30.60 27.66 30.91 40.43 28.92 27.66 30.91 40.46 28.86 27.66

SVM 10% 43.29 38.11 33.81 41.65 18.51 20.16 18.51 18.51 21.85 39.48 31.74 24.76 26.46 41.09 32.76 34.37 38.69 34.34 39.49 45.25
20% 46.01 46.16 36.81 43.94 18.51 18.48 18.51 18.51 21.85 40.21 37.20 28.78 26.46 42.45 36.26 41.24 44.13 43.33 46.64* 39.44
30% 46.08 47.07 38.30 45.81 18.51 31.79 21.29 18.51 34.84 47.48 37.16 38.68 46.80 45.86 46.79 53.62 46.00 43.79 50.22* 47.32
40% 46.83 49.72 42.67 47.53 18.51 31.68 24.76 18.51 42.75 45.37 31.83 46.09 41.13 45.48 44.93 47.03 48.07 45.82 48.87 45.57
50% 50.92 50.65 47.05 49.55 47.64 28.34 44.09 51.01 40.32 45.73 27.52 48.20 49.83 47.12 49.81 53.87 54.23 48.79 49.19 45.64
60% 51.03 49.54 45.48 49.29 47.89 45.28 52.11 54.43 39.03 42.43 25.08 39.25 53.95 50.36 50.87 51.99 47.81 50.16 50.66 46.62
70% 51.19 48.84 47.74 46.97 47.89 45.17 53.15 54.19 41.42 41.78 31.51 40.11 50.80 48.27 50.48 52.78 53.59 48.73 50.97 48.81
80% 51.23 47.98 48.15 48.42 47.73 46.03 52.37 51.81 46.48 50.17 37.07 38.37 55.58 47.20 49.81 51.07 47.81 46.02 51.47 48.81
90% 48.36 47.13 49.03 49.71 47.87 47.40 49.30 48.59 46.55 52.76 38.24 47.39 46.99 46.38 48.78 51.13 47.81 46.89 49.93 49.07
100% 47.81 47.59 48.63 49.71 47.81 47.39 48.57 49.71 47.81 47.39 49.49 49.62 47.81 47.33 48.57 49.71 47.81 47.39 48.57 49.71

Table A.1: URL classification performance : Tested on Texas and trained on the other universities. *
and ** indicate significance at 0.05 and 0.01 respectively. The highest score in each row is in bold.

RDM CE ED CED AEG
Cl. %Train tk ng2 ng3 ng4 tk ng2 ng3 ng4 tk ng2 ng3 ng4 tk ng2 ng3 ng4 tk ng2 ng3 ng4

NB 10% 77.94 71.08 81.25 81.66 16.54 17.91 16.54 16.54 20.73 37.14 27.54 19.64 16.40 34.66 52.46 30.61 54.14 67.92 63.03 58.11
20% 68.96 64.74 79.83 80.88 16.54 20.87 16.54 16.54 18.63 44.80 54.11 24.41 16.40 44.18 59.67 38.68 71.67 73.24 71.40 66.84
30% 71.18 72.96 79.36 80.76 16.54 20.18 17.95 16.54 34.56 39.96 63.80 37.70 24.90 53.82 74.85 44.61 73.64 70.20 76.33 75.35
40% 60.73 73.17 79.94 81.32 16.54 36.99 39.94 16.37 78.70** 43.85 63.76 63.48 71.45 57.08 82.39 73.01 63.43 75.23 77.51 77.33
50% 60.83 73.25 79.71 80.19 73.39* 71.46 81.57 82.16 82.16** 48.77 74.27 72.66 81.17** 59.74 83.13 83.48 53.78 74.37 79.54 77.61
60% 60.94 73.35 79.02 79.97 82.56** 72.17 81.36 82.16 82.55** 44.97 78.46 76.37 83.42** 67.83 83.26 82.79 71.79 75.37 79.49 77.98
70% 71.81 73.38 79.21 80.34 83.48* 72.05 82.16 82.16 81.47 57.97 80.53 78.60 81.40* 71.84 80.96 82.15 83.42* 74.54 79.27 80.20
80% 71.81 74.07 77.81 80.12 83.48* 75.98 79.14 82.26 81.57 51.09 78.43 77.76 82.32* 71.87 81.35 82.08 83.48* 72.26 79.27 81.09
90% 83.48 74.78 78.35 81.65 83.48 78.43 81.65 81.91 82.44 61.00 79.73 78.15 83.48 72.76 80.69 81.33 83.48 74.04 79.27 81.09
100% 83.48 74.80 79.59 81.17 83.48 74.62 79.86 81.33 83.48 74.26 79.59 81.09 83.48 75.38 79.59 81.09 83.48 74.62 79.59 81.09

SVM 10% 81.41 71.48 80.66 81.45 16.54 18.02 16.54 16.54 34.19 44.12 56.83 28.38 16.54 47.85 71.27 44.16 82.41 66.65 78.56 82.83
20% 71.42 59.70 79.05 81.23 16.54 19.63 16.54 16.54 34.19 46.22 64.22 36.70 16.54 44.44 74.99 52.26 81.98 76.09** 80.79 81.43
30% 71.33 73.66 78.72 80.50 16.54 26.21 18.35 16.54 68.31 36.27 65.79 51.20 34.44 49.24 77.34 57.01 82.62* 74.78 80.87 80.07
40% 71.13 74.60 79.45 79.76 16.54 62.72 40.76 16.76 81.45 43.92 67.82 59.63 76.09 56.00 81.83 77.89 82.62* 75.66 79.06 81.10
50% 60.78 73.48 77.20 78.51 74.90* 75.48 79.60 80.56 82.16** 58.32 73.02 65.95 82.69** 63.01 83.11 82.34 82.35** 75.53 78.66 80.61
60% 71.56 74.59 76.61 78.30 82.42* 76.89 78.88 80.56 76.02 48.07 73.75 67.55 82.69* 62.60 81.40 81.48 82.35* 76.08 79.03 80.31
70% 82.49 73.49 76.40 79.03 82.42 75.30 80.94 80.93 72.55 42.66 64.31 72.56 82.42 57.68 81.62 79.75 82.35 75.06 77.03 80.24
80% 82.14 72.55 75.57 78.40 81.86 76.05 74.48 76.32 69.68 44.66 71.62 76.79 82.36 61.83 79.88 80.32 82.35 74.16 75.23 79.94
90% 82.85 73.83 77.14 79.10 81.37 76.79 75.10 77.77 82.35 54.46 74.60 76.56 82.15 73.17 77.48 79.49 82.35 77.46 75.81 79.94
100% 82.35 77.05 76.65 78.67 82.35 76.82 76.19 78.45 82.35 76.82 76.19 78.45 82.35 77.17 76.54 78.75 82.35 76.82 76.19 78.45

Table A.2: URL classification performance: Tested on Washington and trained on the other universities.
* and ** indicate significance at 0.05 and 0.01 respectively. The highest score in each row is in bold.
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Figure A.1: The classification performance over the size of Ds with Texas as Dt: The graph plots
the performance score that is made up by the fraction of Ds. X-axis and Y-axis represents Ds percentage and
F-1 score domain respectively. The first and the second graph rows are the performances using Naive Bayes
and SVM as the classifiers respectively.

Figure A.2: The classification performance over the size of Ds with Washington as Dt: The graph
plots the performance score that is made up by the fraction of Ds. X-axis and Y-axis represents Ds percentage
and F-1 score domain respectively. The first and the second graph rows are the performances using Naive Bayes
and SVM as the classifiers respectively.
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RDM CE ED CED AEG
Cl. %Train tk ng2 ng3 ng4 tk ng2 ng3 ng4 tk ng2 ng3 ng4 tk ng2 ng3 ng4 tk ng2 ng3 ng4

NB 10% 45.05 45.40 51.64 49.84 16.82 21.13 16.82 16.82 14.69 44.81 29.73 12.69 17.72 34.17 28.65 21.11 18.04 36.19 30.39 27.32
20% 44.81 48.41 54.06 54.30 16.82 33.77 16.82 16.82 14.77 44.67 37.36 10.85 17.72 35.26 31.30 26.62 23.15 39.34 33.33 33.50
30% 44.95 46.11 52.98 55.14 16.82 40.16 16.82 16.82 17.58 48.35 45.15 26.47 31.27 36.40 49.75 24.56 24.51 41.51 36.83 32.92
40% 51.94 46.39 50.23 51.36 16.82 43.66 20.01 16.82 20.66 50.17 49.51 34.52 45.82 41.57 42.71 40.95 27.04 42.70 41.36 36.58
50% 45.36 46.36 50.45 51.50 20.36 47.34 32.51 28.48 36.95 48.50 53.21 44.20 32.41 42.71 48.80 45.26 26.78 44.85 45.77 42.25
60% 34.86 46.06 49.85 47.19 55.59** 47.14 50.72 47.82 38.49 48.44 51.74 48.57 40.70 42.44 47.03 46.29 26.64 45.83 48.28 44.88
70% 35.00 46.27 49.28 48.07 59.29** 47.24 50.70 51.38 39.02 47.70 50.47 47.71 35.51 45.69 47.82 46.61 28.04 46.62 49.18 45.83
80% 31.11 45.98 49.74 48.78 55.59** 46.88 54.13 50.21 39.08 46.32 50.96 49.58 39.82 45.68 50.58 48.38 27.86 46.25 50.72 46.13
90% 35.16 46.55 49.87 45.70 44.22** 46.72 54.30 54.89 39.11 46.59 50.93 51.55 35.98 45.54 50.86 50.07 27.41 46.18 50.54 46.34
100% 39.24 45.74 50.37 47.97 39.25 45.76 50.37 50.83 39.25 45.59 50.20 47.43 39.25 45.91 50.37 47.96 39.22 45.73 50.37 49.11

SVM 10% 34.18 49.39 50.93 41.89 16.82 21.63 16.82 16.82 20.96 48.16 42.64 14.12 18.80 41.77 27.26 21.93 22.80 47.53 45.38 40.49
20% 29.43 49.28 51.13 40.82 16.82 36.03 16.82 16.82 24.13 49.33 48.44 20.11 18.80 44.70 34.11 26.27 23.79 47.90 47.60 43.05
30% 29.69 49.21 52.41 42.49 16.82 41.43 16.82 16.82 22.78 49.19 51.16 31.14 37.96 51.86 55.94 33.21 25.18 48.80 48.73 41.92
40% 26.94 50.14 54.36 43.09 16.82 46.09 22.10 16.82 37.97 52.14 52.57 40.74 50.95** 52.20 52.51 44.48 26.69 48.46 53.39 46.20
50% 27.06 50.55 53.21 44.27 20.36 49.17 41.23 32.13 37.55* 52.31 53.56 50.28 31.61 53.23 52.19 42.00 26.97 49.09 61.02 46.56
60% 26.79 50.39 53.82 44.47 27.67 52.95 55.58 40.13 29.73 50.54 56.15 50.23 27.87 51.52 50.40 42.95 27.51 50.15 57.92 48.78
70% 27.11 51.04 53.89 45.36 27.67 52.50 53.24 41.21 28.50 50.38 54.05 43.93 27.73 53.10 51.63 43.85 27.51 52.48 57.06 48.03
80% 27.44 52.40 56.18 46.83 27.67 53.11 55.90 43.99 27.74 51.56 55.38 47.48 27.96 52.13 53.14 46.71 27.51 52.22 57.21 46.41
90% 27.60 51.99 56.23 46.69 27.52 53.88 56.07 48.36 27.96 52.36 53.97 46.62 27.79 53.10 54.65 45.64 28.21 53.47 56.35 48.99
100% 27.79 53.77 55.72 46.55 27.79 53.50 55.72 46.55 27.79 53.65 55.72 46.55 27.79 53.89 55.73 46.55 27.79 53.65 55.72 48.39

Table A.3: URL classification performance : Tested on Wisconsin and trained on the other universities.
* and ** indicate significance at 0.05 and 0.01 respectively. The highest score in each row is in bold.

Figure A.3: The classification performance over the size of Ds with Wisconsin as Dt: The graph
plots the performance score that is made up by the fraction of Ds. X-axis and Y-axis represents Ds percentage
and F-1 score domain respectively. The first and the second graph rows are the performances using Naive Bayes
and SVM as the classifiers respectively.
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Appendix B

Training Size on Cross Entropy

tk ng2 ng3 ng4
%Train st. fa. pr. co. st. fa. pr. co. st. fa. pr. co. st. fa. .pr co.

10% 209.9 123.9 42.7 19.5 167.6 119.1 73.7 35.6 206.1 130.0 44.8 15.1 208.8 124.7 42.3 20.2
20% 435.7 243.7 72.3 40.3 391.6 255.4 86.8 58.2 419.1 255.5 77.0 40.4 417.6 258.3 70.9 45.2
30% 676.0 340.7 100.4 70.9 593.4 394.4 107.3 92.9 626.1 376.7 124.2 61.0 643.9 359.1 105.2 79.8
40% 888.5 455.0 141.6 98.9 812.6 488.7 138.2 144.5 857.8 490.8 156.9 78.5 845.4 478.2 154.1 106.3
50% 1052.4 547.2 206.9 173.5 1031.9 570.1 173.6 204.4 1048.1 543.7 191.0 197.2 1082.5 550.8 168.9 177.8
60% 1135.1 636.7 252.2 352.0 1216.1 650.9 209.5 299.5 1164.6 626.1 260.8 324.5 1203.8 637.6 274.1 260.5
70% 1279.3 741.6 340.4 410.7 1309.6 734.3 275.8 452.3 1309.1 719.0 330.6 413.3 1341.4 726.1 339.1 365.4
80% 1416.9 847.6 414.7 488.8 1389.2 853.4 355.1 570.3 1390.6 820.9 383.9 572.6 1454.7 843.0 377.7 492.6
90% 1501.1 1021.2 467.1 574.6 1479.5 956.5 432.9 695.1 1496.4 922.9 459.0 685.7 1510.9 921.9 455.8 675.4
100% 1513.0 1089.0 482.0 876.0 1513.0 1088.7 482.0 876.3 1513.0 1089.0 482.0 876.0 1513.0 1089.0 482.0 876.0

Table B.1: The average URL size selected per each class using CE: Counted on Cornell. The abbrevi-
ation st., fa., pr. and co. mean class student, faculty, project and course respectively.

tk ng2 ng3 ng4
%Train st. fa. pr. co. st. fa. pr. co. st. fa. pr. co. st. fa. .pr co.

10% 176.8 130.2 52.6 34.4 165.1 120.0 72.9 36.0 186.6 135.8 45.5 26.1 180.4 130.0 51.7 31.9
20% 373.9 258.0 89.7 66.4 378.8 265.5 91.5 52.2 383.9 262.4 78.9 62.8 376.5 260.4 88.0 63.1
30% 584.2 357.6 121.8 118.4 578.2 403.5 110.4 89.9 574.1 392.9 121.4 93.6 585.7 361.8 121.5 113.0
40% 767.0 485.7 167.3 156.0 771.8 519.3 134.4 150.5 776.8 511.2 159.8 128.2 771.9 489.8 166.9 147.4
50% 939.0 570.0 206.4 254.6 929.2 564.4 180.8 295.6 934.8 568.8 208.0 258.4 940.1 571.1 208.3 250.5
60% 1049.5 661.4 271.4 381.7 1065.7 654.6 247.2 396.5 1058.1 674.5 249.8 381.6 1060.7 669.1 273.1 361.1
70% 1188.7 798.0 345.5 425.8 1174.2 773.6 302.3 507.9 1219.8 803.2 298.6 436.4 1198.4 805.6 346.5 407.5
80% 1344.8 916.5 408.1 482.6 1299.7 891.4 374.4 586.5 1367.0 914.4 386.3 484.3 1352.9 924.1 408.3 466.7
90% 1481.3 1017.5 467.3 579.9 1419.5 981.9 433.8 710.8 1459.1 1007.0 450.6 629.3 1471.3 1017.9 459.7 597.1
100% 1493.0 1076.8 481.8 888.4 1493.0 1076.4 481.4 889.2 1492.9 1077.0 481.9 888.2 1492.7 1077.0 482.0 888.3

Table B.2: The average URL size selected per each class using CE: Counted on Texas. The abbreviation
st., fa., pr. and co. mean class student, faculty, project and course respectively.

tk ng2 ng3 ng4
%Train st. fa. pr. co. st. fa. pr. co. st. fa. pr. co. st. fa. .pr co.

10% 195.4 119.6 36.3 41.7 153.8 114.1 73.4 51.7 197.5 126.7 39.8 29.0 197.3 119.9 34.3 41.5
20% 404.6 241.2 61.3 78.9 378.1 253.0 90.4 64.5 400.7 249.4 68.6 67.3 400.9 244.9 57.8 82.4
30% 619.4 338.4 89.9 131.3 584.2 374.5 106.5 113.8 608.4 364.0 108.2 98.4 615.1 341.6 88.2 134.1
40% 819.0 448.7 127.6 176.7 771.9 478.8 137.9 183.4 823.3 469.9 130.4 148.4 810.7 456.1 128.4 176.8
50% 952.3 523.1 212.1 277.5 952.3 572.1 193.0 247.6 957.2 535.4 201.8 270.6 960.4 532.6 199.9 272.1
60% 1070.2 655.1 258.4 374.3 1093.2 650.7 248.8 365.3 1071.3 652.5 256.8 377.4 1077.0 653.8 256.4 370.8
70% 1204.7 744.9 310.7 490.7 1201.6 752.8 308.7 487.9 1214.9 731.2 308.9 496.0 1219.8 740.5 300.2 490.5
80% 1320.7 823.5 383.7 616.1 1317.4 852.3 384.4 589.9 1327.1 835.4 380.7 600.8 1347.0 839.0 361.2 596.8
90% 1448.3 897.1 441.6 750.0 1450.2 948.0 440.4 698.4 1460.8 906.6 444.7 724.9 1460.2 905.5 435.4 735.9
100% 1515.0 1086.6 480.8 847.6 1515.0 1086.4 480.9 847.7 1515.0 1085.8 480.8 848.4 1515.0 1085.9 480.3 848.8

Table B.3: The average URL size selected per each class using CE: Counted on Washington. The
abbreviation st., fa., pr. and co. mean class student, faculty, project and course respectively.
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tk ng2 ng3 ng4
%Train st. fa. pr. co. st. fa. pr. co. st. fa. pr. co. st. fa. .pr co.

10% 195.3 115.9 43.5 33.3 164.9 118.0 69.4 35.7 202.0 119.3 40.6 26.1 198.2 119.9 40.3 29.6
20% 409.6 231.0 76.4 59.0 377.3 249.0 86.0 63.7 416.1 235.3 65.2 59.4 412.0 238.2 70.5 55.3
30% 634.4 332.0 99.3 98.3 586.5 380.6 102.9 94.0 629.5 338.0 100.5 96.0 640.7 335.6 93.6 94.1
40% 845.6 431.0 137.4 138.0 804.0 475.2 129.7 143.1 839.6 448.1 137.3 127.0 845.8 444.0 131.5 130.7
50% 1045.5 535.4 183.6 175.5 985.1 554.8 175.2 224.9 1023.6 534.7 183.3 198.4 1032.6 536.7 176.9 193.8
60% 1108.9 623.7 239.8 355.6 1113.7 654.2 238.2 321.9 1141.8 605.5 252.6 328.1 1145.7 607.3 249.0 326.0
70% 1230.8 732.1 332.0 421.1 1215.3 760.0 319.0 421.7 1249.7 715.1 338.9 412.3 1266.5 718.2 333.1 398.2
80% 1334.8 849.0 419.2 501.0 1342.8 846.9 382.2 532.1 1354.6 826.3 405.5 517.6 1384.9 808.6 414.1 496.4
90% 1400.2 970.8 458.0 663.0 1450.6 943.6 438.7 659.1 1457.2 908.0 460.0 666.8 1473.9 889.4 464.0 664.7
100% 1484.9 1077.2 477.0 840.9 1485.0 1077.8 477.0 840.2 1485.0 1077.6 476.9 840.5 1485.0 1078.2 477.0 839.8

Table B.4: The average URL size selected per each class using CE: Counted on Wisconsin. The
abbreviation st., fa., pr. and co. mean class student, faculty, project and course respectively.
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Appendix C

The Performances of Different Type of

Cross Entropy

Figure C.1: The difference of classification performance using different type of CE over the size of
Ds: The graph shows the performance differences random selection, natural, smoothing and normalized CE
with Texas as the Dt. X-axis and Y-axis represents Ds percentage and macro-averaged F-1 score respectively.
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Figure C.2: The difference of classification performance using different type of CE over the size
of Ds: The graph shows the performance differences random selection, natural, smoothing and normalized
CE with Washington as the Dt. X-axis and Y-axis represents Ds percentage and macro-averaged F-1 score
respectively.

Figure C.3: The difference of classification performance using different type of CE over the size of
Ds: The graph shows the performance differences between random selection, natural, smoothing and normalized
CE with Wisconsin as the Dt. X-axis and Y-axis represents Ds percentage and macro-averaged F-1 score
respectively.
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Appendix D

Top Ten Keywords in Web-KB Dataset

Feature Student Faculty Project Course

tk html:567,
users:235,
people:167,
home:141, info:140,
homes:127, stu-
dents:96, grads:79,
index:75, phd:65

html:527, fac-
ulty:295, info:116,
people:109, cs:98,
users:87, index:68,
home:66, fac:51,
dept:43

html:267,
projects:118,
research:113,
cs:37, index:36,
project:32,
users:20, info:19,
groups:17,
brochure:17

cs:631, html:565,
courses:278, in-
dex:110, info:110,
classes:107,
home:90, edu-
cation:79, fall:70,
cse:50

ng2 ht:584, tm:577,
ml:575, er:413,
in:412, ho:337,
me:331, an:317,
om:312, le:284

tm:572, ht:569,
ml:560, ac:379,
fa:357, er:322,
ul:304, lt:302,
ty:299, cu:297

ht:287, tm:276,
ml:276, ro:232,
pr:180, se:171,
ec:169, ct:160,
oj:160, ar:160

cs:761, tm:572,
ht:570, ml:568,
se:554, es:441,
rs:399, ur:395,
co:372, ou:355

ng3 htm:573, tml:569,
ome:290, hom:289,
ers:258, ser:239,
use:237, eop:168,
opl:167, ple:167

htm:561, tml:560,
fac:346, ult:296,
cul:296, lty:296,
acu:295, ome:126,
inf:126, ser:126

htm:273, tml:272,
pro:166, roj:160,
ect:153, jec:151,
oje:151, cts:118,
arc:118, sea:117

cs:631, htm:569,
tml:565, ses:385,
our:352, rse:346,
urs:346, cou:346,
cla:145, ass:137

ng4 html:569,
home:285,
user:236, sers:235,
peop:167, eopl:167,
ople:167, info:140,
omes:127, uden:98

html:560, cult:295,
ulty:295, acul:295,
facu:295, info:126,
home:122,
peop:109, eopl:109,
ople:109

htm:272, proj:160,
ojec:151, ject:151,
roje:151, ects:118,
arch:114, earc:114,
esea:114, sear:114

cs:631, html:565,
urse:346, ours:346,
cour:346, rses:278,
lass:137, clas:137,
inde:110, ndex:110

Table D.1: Top Ten Keywords in Web-KB datasets: The table shows top ten tokens and n-grams along
with their frequencies.
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Dt Class Token Dt Token Ds

Cornell Student people:126, info:126, html:126,
home:26, index:12, welcome:3, kuen:2,
jiawang:2, aswin:2, ychung:2

html:441, users:235, homes:127,
home:115, students:96, grads:79,
phd:65, index:63, people:41, www:28

Cornell Faculty info:34, html:31, people:23, fac-
ulty:11, department:9, annual:9,
dean:2, sam:2, lnt:2, cardie:2

html:496, Faculty:284, cs:98, users:87,
people:86, info:82, index:68,
home:65, fac:51, dept:43

Texas Student users:148, madhukar:1, cdj:1, cor-
rel:1, chuang:1, chaput:1, ckwong:1,
rou:1, bayardo:1, markng:1

html:567, people:167, home:141,
info:140, homes:127, students:96,
users:87, grads:79, index:75, pnhd:65

Texas faculty users:46, html:15, report:14, pro-
files:14, miranker:1, vin:1, lavender:1,
novak:1, dijkstra:1

html:512, Faculty:295, info:116, peo-
ple:109, cs:98, index:68, home:66,
fac:51, dept:43, users:41

Washington Student homes:126, dbj:1, dougz:1, dbc:1,
zamir:1, sungeun:1, paul:1, speed:1,
segal:1, fix:1

html:567, users:235, people:167,
home:141, info:140, students:96,
grads:79, index:75, phd:65, www:28

Washington Faculty homes:18, html:14, people:13, fac-
ulty:13, beame:2, weld:2, shapiro:1,
karp:1, chambers:1, eggers:1

html:513, faculty:282, info:116,
cs:98, people:96, users:87, index:68,
home:66, fac:51, dept:43

Wisconsin Student html:156, shubu:2, raji:2, parker:2,
moshovos:2, dzimm:2, samit:2, lloyd:2,
milo:2, zeiden:2

html:441, users:235, people:167,
home:141, info:140, homes:127, stu-
dents:96, grads:79, index:75, phd:65

Wisconsin Faculty html:42, faculty:10, info:7, pubs:7,
lumelsky:4, rrm:2, bart:2, strik:2,
bach:2, olvi:2

html:485, faculty:285, people:109,
info:109, cs:98, users:87, index:68,
home:66, fac:51, dept:43

Table D.2: Top Ten Keywords in class student and faculty in Web-KB datasets: The table shows
top ten token features and shared tokens (bold text) in both class student and faculty along with their fre-
quencies for each Dt and Ds setup.

55



Appendix E

Token and Vocabulary Similarities be-

tween Ds and Dt

(a) Cornell as Dt (b) Texas as Dt

(c) Washington as Dt (d) Wisconsin as Dt

Figure E.1: The number of vocabularies in Web-KB dataset setup : The graph plots the number of
intersection and unique vocabularies between Ds and Dt per each feature in each Web-KB dataset setup.
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(a) Cornell as Dt (b) Texas as Dt

(c) Washington as Dt (d) Wisconsin as Dt

Figure E.2: The number of tokens in Web-KB dataset setup : The graph shows the number of intersection
and unique tokens between Ds and Dt per each feature in each Web-KB dataset setup.
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Appendix F

Token and Vocabulary Similarities over

the Size of Ds

Figure F.1: The average number of token and vocabulary similarity between Ds and Dt over the
size of Ds: Counted on Texas as the Dt and the other four group universities as the Ds. The graph plots
the token and vocabulary intersections between Ds and Dt over Ds selection percentage. X-axis and Y-axis
represents Ds percentage and the number of token or vocabulary intersections respectively.
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Figure F.2: The average number of token and vocabulary similarity between Ds and Dt over the
size of Ds: Counted on Washington as the Dt and the other four group universities as the Ds. The graph
plots the token and vocabulary intersections between Ds and Dt over Ds selection percentage. X-axis and
Y-axis represents Ds percentage and the number of token or vocabulary intersections respectively.

Figure F.3: The average number of token and vocabulary similarity between Ds and Dt over the
size of Ds: Counted on Wisconsin as the Dt and the other four group universities as the Ds. The graph plots
the token and vocabulary intersections between Ds and Dt over Ds selection percentage. X-axis and Y-axis
represents Ds percentage and the number of token or vocabulary intersections respectively.
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Figure F.4: The average number of token and vocabulary similarity between Ds and Dt over the
size of Ds: Counted on Cornell as the Dt and the other four group universities as the Ds. The graph plots
the token and vocabulary intersections between Ds and Dt over Ds selection percentage. X-axis and Y-axis
represents Ds percentage and the number of token or vocabulary intersections respectively.

Figure F.5: The average number of token and vocabulary similarity between Ds and Dt over the
size of Ds: Counted on Texas as the Dt and the other four group universities as the Ds. The graph plots
the token and vocabulary intersections between Ds and Dt over Ds selection percentage. X-axis and Y-axis
represents Ds percentage and the number of token or vocabulary intersections respectively.
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Figure F.6: The average number of token and vocabulary similarity between Ds and Dt over the
size of Ds: Counted on Washington as the Dt and the other four group universities as the Ds. The graph
plots the token and vocabulary intersections between Ds and Dt over Ds selection percentage. X-axis and
Y-axis represents Ds percentage and the number of token or vocabulary intersections respectively.

Figure F.7: The average number of token and vocabulary similarity between Ds and Dt over the
size of Ds: Counted on Wisconsin as the Dt and the other four group universities as the Ds. The graph plots
the token and vocabulary intersections between Ds and Dt over Ds selection percentage. X-axis and Y-axis
represents Ds percentage and the number of token or vocabulary intersections respectively.
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Appendix G

Radboud University Nijmegen URLs

Judge 1 Judge 2 URL

course course http://www.ru.nl/english/education/masters/medical-neuroscience/programme-outline/

course student http://www.ru.nl/english/education/study-radboud/housing/housing-bachelor/

course course
http://www.ru.nl/english/education/master’s-programmes/

programme/science/mathematics/specialisations/foundations/

other project http://www.ru.nl/english/@928631/grant-worth-22-9/

course course http://www.ru.nl/english/education/masters/computing-security

course course http://www.ru.nl/english/education/masters/religiewetenschappen/pre-master/

other student http://www.ru.nl/english/education/masters/anthropology-0/scholarships-loans/scholarships/ots-korea/

course course http://www.ru.nl/english/education/master’s-programmes/english-taught/computer-sciences/computing-science

other student http://www.ru.nl/english/education/masters/science-physical-0/scholarships-and/scholarships/ots-korea/

other faculty http://www.ru.nl/english/about-us/our-university/history/prime-minsters/

course course http://www.ru.nl/english/education/masters/molecular-life-2/

course course http://www.ru.nl/english/education/masters/computing-foundation

project course http://www.ru.nl/english/education/masters/pathobiology/our-approach-to-this/

project course http://www.ru.nl/english/education/masters/historical-literary/

other other http://www.ru.nl/english/general/90-years-radboud-0/radboud-ceremony/

course course http://www.ru.nl/english/education/masters/linguistics-language/deadlines

course course http://www.ru.nl/english/education/masters/theology-general/programme-outline/@960852/disclaimer-en/

course course http://www.ru.nl/english/education/masters/computing-data/deadlines/

project project http://www.ru.nl/english/research/radboud/themes/brain-cognition/vm/news-brain-cognition/?

course faculty http://www.ru.nl/english/education/masters/philosophy-social/contact/

other student http://www.ru.nl/english/education/master%27s-programmes/service-package/visa-and-residence/residence permit/

faculty faculty http://www.ru.nl/english/education/bachelor/filosofie/anderen-filosofie/maxim-asseldonk/

course course http://www.ru.nl/english/education/master’s-programmes/phiosophy

student student http://www.ru.nl/english/education/masters student/financial matters/student budget and/

faculty faculty https://www.ru.nl/english/about-us/facilities/confidential-advisor/

project project http://www.ru.nl/english/news-agenda/vm/brain-cognition/2014/decode-grant/

faculty faculty http://www.ru.nl/english/contact/addresses e-mail

course course http://www.ru.nl/english/education/masters/physics-astrophysics/programme-outline/

course course http://www.ru.nl/english/education/masters/artificial/programme-outline/

other student http://www.ru.nl/english/education/studying in nijmegen/

course project http://www.ru.nl/english/research/radboud/themes/astronomy/vm/alma-world-largest/

course course http://www.ru.nl/english/education/masters/political-science/pre-masters-dutch/

course course http://www.ru.nl/english/education/master%27s-programmes/medical-services/

other student http://www.ru.nl/english/about-us/working-radboud/integrity-conduct/confidential/vm/academic integrity/
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student student http://www.ru.nl/english/education/exchange-phd-other/exchange-students/admission/online application

project project http://www.ru.nl/english/news-agenda/vm/brain-cognition/2014/social-dominance/@960852/disclaimer-en/

other student http://www.ru.nl/english/education/master’s-programmes/service-package/visa-and-residence/residence permit/

course course http://www.ru.nl/english/education/masters/philosophy-research/

course course http://www.ru.nl/english/education/masters/biomedical-sciences/our-approach/

course student
http://www.ru.nl/english/education/bachelor’-programmes/

financial-matters/working-as-student/@960852/disclaimer-en/

student student http://www.ru.nl/english/education/exchange student/

project project http://www.ru.nl/english/education/masters/pathobiology/our-research-this/

other student http://www.ru.nl/english/education/study-radboud/city-nijmegen/expat desk/

other student http://www.ru.nl/english/education/master’s-programmes/admission-enrolment/language/

other other http://www.ru.nl/english/education/master’s-programmes/nfp

course course http://www.ru.nl/english/education/masters/chemistry/

course student http://www.ru.nl/english/education/masters/business-analysis/tuition-and-handling/

faculty faculty http://www.ru.nl/english/education/masters/science-genomics/contact/

course student http://www.ru.nl/english/education/masters/medical-biology/admission/

course course http://www.ru.nl/english/education/masters/planologie/

student student
http://www.ru.nl/english/education/bachelor’-programmes/

financial-matters/student-budget-and/@960844/information-about/

project project http://www.ru.nl/english/news-agenda/vm/humanities/2014/anchoring-innovation/

faculty faculty http://www.ru.nl/english/about-us/our-university/change-perspective/vm/anne-willemsen/

student student http://www.ru.nl/english/education/exchange student/programmes/certificate/cps/nijmegen-school/

course course http://www.ru.nl/english/education/masters/filosofie-analytisch/voorlichting/masterdag/register-law/

course course http://www.ru.nl/english/education/master

faculty faculty http://www.ru.nl/english/research/radboud/themes/health/vm/news-health/@958727/dr-philip-poortmans/

other course http://www.ru.nl/english/@895556/learning-agreement/

course course http://www.ru.nl/english/education/masters/microbiology/specific-requirement/

course student http://www.ru.nl/english/education/masters/biomedical-sciences/scholarships-loans/

course course http://www.ru.nl/english/education/masters/pedagogische/toelating/

course student http://www.ru.nl/english/education/masters/mathematics/tuition-handling-fee-0/vm/tuition-fees-wizard/

course course http://www.ru.nl/english/education/masters/fiscaal-recht/voorlichting/masterdag/register-law/

course student http://www.ru.nl/english/education/masters/water-environment/tuition-and-handling/

course project http://www.ru.nl/english/research/radboud/themes/children-parenting/vm/academic-centre/

other project http://www.ru.nl/english/@678307/social activities/

other faculty http://www.ru.nl/english/education/master’s-programmes/contact/newsitems/nobelprize geim/

course student http://www.ru.nl/english/education/masters/science-particle/scholarships-and/@957136/ots-russia/

course course
http://www.ru.nl/english/education/master’s-programmes/programme/

planning-human/human-geography/specialisations/europe-borders/

student student http://www.ru.nl/english/education/master’s-programmes/information-your-own/greek-students/

student student http://www.ru.nl/english/education/masters/information-sciences/what-others-say/testimonials/deri-taufan/

course other http://www.ru.nl/english/education/bachelor/informatica/daarom-radboud/

course course http://www.ru.nl/english/education/masters/algebra-topology/

project course http://www.ru.nl/english/research/radboud/themes/genetics-cellular/vm/epigenetica/

project project http://www.ru.nl/english/news-agenda/vm/language/2014/signlanguage 0114/

course faculty http://www.ru.nl/english/education/masters/mls-neuroscience/contact/

course course http://www.ru.nl/english/education/masters/artificial/deadlines/

other faculty http://www.ru.nl/english/news-agenda/vm/informatics-digital/2013/radboud-university/

faculty faculty http://www.ru.nl/english/information/staff/?

project project http://www.ru.nl/english/research/radboud/themes/language/vm/news-language/@924197/’huh-’-universals/

course course http://www.ru.nl/english/education/masters/philosophy-research/meet-radboud/

other project http://www.ru.nl/english/news-agenda/agenda/all-events/@978040/famelab-science-180/
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other student http://www.ru.nl/english/education/study-radboud/

course course http://www.ru.nl/english/education/masters/european-law-human/

course course http://www.ru.nl/english/education/masters/math-foundations/meet-radboud/

course faculty http://www.ru.nl/english/education/master’s-programmes/contact/newsitems/masterkeuzegids2014

student student http://www.ru.nl/english/education/exchange student/admis/

course course http://www.ru.nl/english/education/masters/linguistics-english

course course http://www.ru.nl/english/education/masters/clinical-biology/meet-radboud/

faculty faculty http://www.ru.nl/english/vm/search/@919387/heer-prof-schulte/

course faculty http://www.ru.nl/english/education/masters/political-science-0/contact/

course faculty http://www.ru.nl/english/education/masters/linguistics-german/contact/

course course http://www.ru.nl/english/education/masters/chemistry-life/our-approach/

course student
http://www.ru.nl/english/education/master’s-programmes/

information-your-own/brazilian-students/@960852/disclaimer-en/

faculty faculty http://www.ru.nl/english/@936463/prof-nico/?

course course http://www.ru.nl/english/education/masters/biology/our-approach/

student student http://www.ru.nl/english/education/exchange student/programmes/ects guide 0/ects guide/ects guide

course course http://www.ru.nl/english/education/master’s-programmes/overview

course course http://www.ru.nl/english/education/programmes/@674089/religious studies/

faculty faculty http://www.ru.nl/english/research/radboud/themes/health/vm/professor-jan/
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