
Radboud University

Master thesis computing science

An offline analysis of the
CLEF-NEWSREEL evaluation

Author:
Martijn Nanne

Supervisor:
Arjen De Vries

Student number:
s4243692

Second reader:
Martha Larson

July 13, 2017

Abstract

In this research we show an extensive offline analysis of the CLEF-NEWSREEL
data 2016. Recommendations have to be made from an emulated stream of data
consisting of page views, item updates and click events. Most research is focused
on a live setting and use click through rate as evaluation measure.

We show the strengths and weaknesses of different recommendation algo-
rithms on different parts of the data and on different evaluation measures. We
show the trade off in the use of session data, the use of page views versus click
events and how we handle the exploration/exploitation dilemma.

We set up different experiments where we replay the data in order to test
the different recommendation strategies under different circumstances.

We show that the use of other evaluation measures like recall lead to dif-
ferent results. We also showed that click events are very important in news
recommendation and should be exploited. We have made the first steps toward
hybrid recommenders where we exploit with a most clicked recommender and
explore with other recommenders.

1

Contents

1 Introduction 4
1.1 Scope and research questions . 4
1.2 Research challenges . 5
1.3 Novel contributions . 5
1.4 Practical relevance . 6
1.5 Thesis structure . 6

2 Previous work 7
2.1 News Recommendation . 7
2.2 CLEF-NEWSREEL . 8

2.2.1 Overview of CLEF-NEWSREEL Recommenders 9
2.3 Session based recommendations 10
2.4 Exploitation vs Exploration . 11

3 Experimental setup 12
3.1 Data & Data Preprocessing . 12
3.2 Evaluation . 14

3.2.1 Click through rate . 15
3.2.2 Recall . 15
3.2.3 Cumulative Gain . 16

3.3 Experiments performed . 16
3.3.1 Recommender Overview (A) 17
3.3.2 Session based Recommenders (B) 17

3.4 Views vs Clicks (C) . 17
3.4.1 Exploitation vs Exploration (D) 17

4 Method 19
4.1 Recommender Overview . 19

4.1.1 Popularity based recommender [15, 6, 7, 12] 19
4.1.2 Most popular sequence recommender [15] 19
4.1.3 Most clicked . 20
4.1.4 Cooccurrence based recommender 20
4.1.5 Stem overlap based recommender 21
4.1.6 Keyword based recommender 22
4.1.7 Most popular topic . 22

4.2 Session recommenders . 23
4.2.1 Most popular sequence session recommender 23
4.2.2 Cooccurrence session based recommender 24

4.3 Exploration/Exploitation recommenders 25
4.3.1 Popularity based recommender and most clicked 25
4.3.2 Keyword based ranker and most clicked 26
4.3.3 Most popular sequence and most clicked 28

2

5 Results & Analysis 29
5.1 Recommender Overview (A) . 29

5.1.1 CTR . 29
5.1.2 Recall . 31
5.1.3 Gain . 34

5.2 Session based Recommenders (B) 35
5.3 Views vs Clicks (C) . 37
5.4 Exploitation vs Exploration (D) 39

6 Discussion 43

7 Conclusion 45

8 Future work 46

9 Code 47

3

1 Introduction

News websites want to optimize the time spent on their website to increase
advertisement revenue. These news websites are continuously looking for new
ways to optimize their websites.

One of these ways is to provide news recommendations to the user. These
recommendations are provided by an automated system. Conversions by these
recommendations could mean that a website could get a competitive advantage
by increasing user engagement or time spent on the website.

A news publisher usually publishes a large number of news articles each day.
The large amount of articles on the news website causes information overload.
A page has only space to provide a couple of recommendations to the user.
In order to provide these recommendations we need a recommendation system
[18] that will learn which recommendations will be best for the website. The
recommendation system has to solve the problem of information overload.

Since 2014, the CLEF-NEWSREEL organization [11] has organized evalu-
ation activities in order to benchmark recommendation systems in the news
domain. These evaluations are hosted in collaboration with Plista1. Plista is a
company that provides recommendation services for online publishers. When-
ever a user requests a page, Plista will provide the recommendations that will
be shown to the user. In a evaluation, participants have the opportunity to test
their recommender systems in an live or offline setting. The offline evaluation
consists of a dataset gathered by Plista in the month February 2016. In the live
evaluation, participants have to provide recommendations in a live setting to
real users on real websites.

1.1 Scope and research questions

In this work we look at the data collected by Plista over the month February
2016. We focus on an offline evaluation of a wide range of recommendation sys-
tems. These recommendation systems are evaluated based on the click behavior
that was captured in the log data.

The evaluation of CLEF-NEWSREEL is only based on click through rate.
This is an important metric, however this metric does not consider the recall
of the recommendations. As a result, a system can perform well even if it
recommends only a small subset of all possible articles of interest to the user.
In this research we compare performance on a set of metrics, to capture more
aspects of relevance.

About half of the users in the Plista recommendations are tracked by cookie
ids. Therefore, there is a subset of users we have session information for. Prior
research has shown that session based recommendations can improve the per-
formance of recommender systems [1]. Yet little research on session based rec-
ommenders has been applied to the news domain.

1https://www.plista.com/

4

The Plista data consists of item updates, page views and click events. Ear-
lier research [26] suggested that click events contain a good signal for news
recommendations. We would like to see how much difference there is between
training recommender systems on page views and on the click events in the
dataset. News recommenders have to continuously explore novel new items to
recommend. There has to be a trade-off between exploring for new items that
are being available on the publishers website and exploiting items that are novel
recommendations. In this research we want to explore this trade off.

The main focus of this work will be about the following research questions:

• To what extent can we explain the performance of a recommendation
system by means of click through rate?

• To what extent can we exploit session information to improve news rec-
ommendations?

• To what extent can we utilize a page view and a click event in news
recommendation?

• How can we make the trade off between exploration and exploitation in
news recommendation?

1.2 Research challenges

A news website is a dynamic environment, with a continuous stream of new
news articles where users usually prefer most recent news articles. Therefore,
it is difficult to build up a long term profile of users. Furthermore, many users
are not required to log in [6, 17], making it impossible to track the user.

1.3 Novel contributions

This is the first work to evaluate recommendation systems in the CLEF-NEWSREEL
evaluation from a variety of angles that reflect different user needs.

We can see that the click behavior of the users brings the most significant
signal in terms of click through rate. Most clicked (section 4.1.3) is clearly the
best performing algorithm when we evaluate it on click through rate. However
if we look at recall, this approach does not perform as well since it only recom-
mends a few different articles. Most popular navigation sequence recommenders
(section 4.1.2) [15] seem to be among the best strategies and score fairly well
on each evaluation. Furthermore, this research confirms that content based
strategies do not seem to perform very well on any of the evaluation measures.

We have made the first steps in using session information in our CLEF-
NEWSREEL recommendation systems. We have not been able to get better
performance by using session information in order to personalize results.

We showed that recommenders trained only on click event data perform
significantly better than recommenders trained on page view data or both page
view data and click event data.

5

We have run experiments using reinforcement learning on the CLEF-NEWSREEL
data. We have evaluated the results using only the click events. We have seen
that there are significant benefits in hybridizing an explorative recommender
with a most clicked recommender, where clicked items are reinforced.

1.4 Practical relevance

This work provides an overview of methods and techniques used in order to pro-
vide recommendations in a highly dynamic environment such as news websites.
We bring new insights into the CLEF-NEWSREEL evaluation and the field of
content recommendation in general. Continued research in this field is relevant
because websites want users to be more engaged with the website. Some of the
insights in this work can be tested in next year’s evaluation.

1.5 Thesis structure

In section 2 we look into previous work related to this work. In section 3 we
explain our experimental setup. Here, we explain how the data is structured,
detail the preprocessing methods, our evaluation measures and the experiments
performed. In section 4, we give an detailed overview of each recommender used
in this work. In section 5, we show an analysis of the results. Section 6 provides
a discussion about the work and also provide suggestions for future work. In
section 7 we answer our research questions based on the results observed in
section 4.

6

2 Previous work

Literature about Recommender Systems has expanded rapidly over the past 20
years. Most of the research is focused on collaborative filtering or a content-
based approach. In this section, we discuss previous work on news recommenda-
tion, session based recommendation and the exploration/exploitation dilemma
in the news domain.

2.1 News Recommendation

We start to provide an overview of previous work in the field of news recom-
mendation, with a focus on work related to the CLEF-NEWSREEL evaluation.

Recommender systems are used to reduce information overload [18]. One
news portal will usually publish many articles a day. However, the “screen
real estate” is limited; we cannot promote all the articles that could be of
interest. In CLEF-NEWSREEL that is build on a real life platform for news
recommendation, each page request, we can only recommend between 1 and
6 recommendations. Therefore it will become hard to select which articles to
show to a user.

News articles usually become less relevant to the users as they get older. In
order to give a recommendation of an item based on a collaborative filtering
algorithm, there have to be interactions with an item first. However, fresh
articles do not have these interactions yet. This is called the cold start problem in
recommender systems [19]. Liu et al. [14] reported that the Google News system
needed several hours in order to collect enough clicks in order to recommend
new news stories to their users. A half day latency is a problem in the news
domain as it is dependent on delivering news in a timely manner.

Recommendations should not only be recent, they should also be relevant
to the users. There is a recency-relevancy trade off when recommending news
articles [4]. The lifespan of a news item is dependent on the publishers domain
and the popularity of the article [15]. For example, a small news article has a
relatively short lifespan compared to an extensive background article. On the
Newsreel domains KSTA and Motor-Talk we can see a significant drop in the
average amount of impressions after 12 hours of publishing the article in Figure
1. The rank in Figure 1 is the popularity of the articles falling in that category.
For example, rank 1..250 is the average over the 250 most popular items .

7

Figure 1: Impressions over time

2.2 CLEF-NEWSREEL

The CLEF-NEWSREEL evaluation is comprised of two tasks to evaluate news
recommender algorithms [11]. For researchers, there has been little opportu-
nity to evaluate recommender systems in a live environment. It is important to
evaluate algorithms in a live environment because industry tends to evaluate al-
gorithms in a live setting. CLEF-NEWSREEL provides the opportunity to eval-
uate your algorithms both in a live and an offline setting. CLEF-NEWSREEL
closes the gap between evaluation strategies found in industry and academia.

It is organized as an evaluation for researchers to test their news recom-
mender systems in order to make significant advances in this field. This work
will not focus on the live environment but will try to replicate the live setting
using the data provided for offline evaluation. Earlier research has also used
this approach to evaluate their algorithms in a “near to online” setting [15, 4].
In this setting, the data will be replayed in the same way as the live setting,
implying a data stream of events. These events consists of page views, click
events and item updates. A streaming or online setting puts additional con-
straints on recommender systems. Factorization methods are often used in a

8

batch processing manner, making it difficult to apply to streams [15]. Further-
more, the stream is dynamic in nature, meaning that items have a short time to
live and user behavior changes over time [6]. The behavior of users is different
on each publisher’s website [15]. For example, users read articles in different
time windows, read a wider range of articles or are more likely to read popular
articles.

Personalized news recommendation in the Google News domain builds up a
long term user profile but also uses recent local news trends [14]. In the CLEF-
NEWSREEL evaluation, participants cannot construct a long term data profile
about users. Users often do not have to log on in order to read the news. Many
users are not tracked at all and user profiles can be noisy because they are only
partially tracked [17]. CLEF-NEWSREEL provides us with only one month of
log data to evaluate our recommender algorithms, making it difficult to build
up a long term profile of interests of a user.

Another difference between CLEF-NEWSREEL and the aggregated news
websites like Google News is that Plista does have data about different publish-
ers but it cannot recommend items from one publisher on another publishers
website. The users are also not tracked across different domains.

2.2.1 Overview of CLEF-NEWSREEL Recommenders

In this section we provide an overview of the recommenders used in the CLEF-
NEWSREEL evaluations:

Popularity based recommenders - These recommenders are based on
the popularity of an item [15, 6, 7, 12]. The time window of considered rec-
ommendations has a significant effect on the accuracy of the recommendations.
Recommendations based on the most popular items of the last week perform
worse than if we base our recommendations on the most popular items of the
current day [15].

Another recommender strategy that is based on popularity is the most
clicked recommender strategy. The difference with the most popular recom-
mender is that this recommender bases popularity only on click events. The
CLEF-NEWSREEL evaluation broadcasts click events to all participants. The
most clicked algorithm was the winning recommendation strategy from 3-9 April
2016 [26]. The number of clicks on items seem to follow a power law, where the
top six most clicked items continuously make up for more than 80% of the total
amount of clicks. However, the set of items that make up the majority of clicks
is dynamic and the time duration for when an article is a top six most clicked
items is not the same for each item [26].

The most popular based recommender does not take any user context into
account.

Content based recommenders - These recommenders are based on the
similarity between the item being read and other recent items.

Different approaches are mentioned in literature. CWI has used the title
and the preamble in order to make content based recommendations. Apache

9

Lucene was used in order to determine similar articles. Other participants used
the conventional TF-IDF vector space model on the title and summary [6].

Content based approaches have had varying success in the CLEF-NEWSREEL
evaluation [17, 6, 15, 26]. Content based approaches do not take popularity into
account and often fail to pick up on the most interesting news stories. Content
based approaches redirects users to similar contents. Little research has been
done on combining popularity with content similarity in the CLEF-NEWSREEL
evaluation.

Category based recommenders - A category based recommender is based
on the similarity between the category of other items and the item currently
being viewed [17]. The category of an item are present in the page view or
click event context. A popularity based approach has also been performed on
categories. Items that intersect with the category of the currently viewed items
category are considered within a popularity based recommender [6]. Moderate
success has been achieved using this approach.

Most popular navigation sequence - This approach is based on the
transition of viewed items [15]. For each article, a statistic is kept of which
article is requested next by users.

The most popular navigation sequence recommender aims to take an im-
portant context variable into account. The context variable is the page which
a user is currently viewing. The most popular sequence recommender aims to
better adapt to the particular context than the most popular recommender.

Lommatzsch et al. [15] have been the only team testing this approach. The
most popular sequence was the best performing recommender on a couple do-
mains in their research. These results are based on data from Plista in 2014.

User based collaborative filtering - User based collaborative filtering
will aim to recommend similar news items to similar users. Users will give
implicit feedback about their preferences through item views. The similarity
between users is directly computed on the interactions [15].

A problem with this approach is that this approach is still suffering from the
cold start problem.

Geolocation based recommender - Based on the idea that people from
similar locations prefer similar articles [8, 6, 14]. However, this approach has
not led to significant results so far.

2.3 Session based recommendations

Other fields of study have explored the use of session information in order to
make predictions. Session based recommenders use the users current session
information in order to make recommendations [22].

In the context of search, Bennett et al. [2] have studied the use of short term
(session) behavior in combination with long term (historic) behavior in order
to make personalized predictions. Their research showed that the use of session
information provided a major gain in extended sessions.

Session based recommenders have also been an active field of study in the
domain of item recommendation in e-commerce. At Recsys 2015, a challenge

10

was organized to address the problem of item recommendation in e-commerce
using session information [1]. There are many situations where the users of
e-commerce websites are not identified. However, users are still tracked on the
website. In this context, using session information has been shown to help
improve performance when making recommendations [25, 9].

Session information can also be leveraged as a post filtering mechanism [12].
For example, a most popular recommender can be post filtered by the interests
showed inside a session. This can be done based on feature matching, cooccur-
rence scores or recently viewed.

Yet little research has been done in the field of session based recommen-
dation services in the news recommendation domain. To our knowledge, none
of the participants attempted to leverage session information in the CLEF-
NEWSREEL evaluation. We could only argue that the most popular navigation
sequence recommender takes session information into account.

2.4 Exploitation vs Exploration

Traditional approaches such as Collaborative Filtering seem to fail to take nov-
elty into consideration. Many recommenders are too greedy in their recommen-
dations, predicting the items with the highest predicted ratings or highest click
through rate [24, 23]. The recommended items are not new and unexpected and
the user may not be aware about other content that is available on the website.
When intent is unclear or uncertain, discovery should always be the goal [20].

Reinforcement learning is a different strategy to make recommendations.
It uses feedback from the user in order to reinforce desired actions. One key
element in reinforcement learning is exploration. It means that rather than
always taking the most optimal action for to get the short term benefit, we
take a suboptimal action to gather information. This information can lead to
an even better performance in the future [23]. When a recommender is too
exploitative, it might not discover items that might maximize the amount of
clicks. A fraction of all user actions could be used in order to do such exploration.
However, if we use too many actions to gather this information, we might hurt
the short term recommendations too much. This trade off is known as the
exploration/exploitation dilemma [10, 23].

News items are only relevant for a relatively short period of time. Therefore
it is necessary to discover when items are relevant and when items become
irrelevant. There is a classic exploitation versus exploration problem in news
recommendation. We constantly want to exploit the items that do well in our
recommendation strategy while also exploring new items that will become the
most relevant items in the future.

There is no research on this topic within the CLEF-NEWSREEL use case
to our knowledge.

11

3 Experimental setup

3.1 Data & Data Preprocessing

The data used in this work is a log dump by Plista [13]. The log dump was
performed during Febuary 2016. The dataset consists of 58000 item updates, 2
million click event notifications and 168 million page views. The data can be
replayed as a stream of events. Each item in the dataset has a specific timestamp
so we are sure that the events are replayed in the same order as the live event.

The replayed events consist of three types:

• Page View

• Click event

• Item Update

Contextual information has been provided for each page view. A page view
consists of a timestamp, the user id of the user, the id of the viewed item, the
publisher id and contextual information. The user id of the page view belongs
to a specific publisher, and is therefore unique to one publisher. We are not
able to track a user over different domains.

The data provides a variety of contextual fields including category, keywords,
age group of the user and geographical location. For a full explanation of the
contextual fields we refer to the dataset website2. Notice that most records
contain only a subset of all possible contextual fields.

Click events have the full information about the page from where a recomme-
dation has been clicked and provides the information about which recommen-
dation has been clicked.

Item updates contain the created timestamp and the updated timestamp.
The created timestamp contains the point in time when the article was initially
created. If the article is then updated, the updated timestamp will show the
timestamp of the update. Item updates also contain the title of the article and
a short preview about the article. Finally, there is a url link to the published
article.

We want to mimic the real world situation where we get events into the
system in the same way as it would be in a live setting. Therefore we stream
the data in the temporal order of the log data.

Table 1 shows the number of clicks per publisher. Out of the eight domains
occurring in the dataset, only seven have click events. We can see that three
more domains (publisher ids 596, 3336 and 13556) contain an insufficient number
of clicks to form the basis of a statistically meaningful evaluation. We ignore
these 4 sets in our evaluation in the rest of this work. We do not know the
publisher names of the ids mentioned without a name because they do not
occur in any item update.

2http://www.clef-newsreel.org/dataset/

12

Publisher Clicks
Sport1 1498076

Tagesspiegel 403211
KSTA 194165
Gulli 13813
3336 45
13554 2
596 1

Table 1: Total amount of clicks per publisher

Table 2 provides an overview of the unique item updates and unique items
clicked. Most domains have more unique items clicked than there are item
updates, the only publisher that has more unique items clicked than updates is
the publisher Tagesspiegel. This implies that at the point of recommendation,
the content of many of the clicked items is not known, because the item updated
corresponding to creation of the item on the website is not part of the data dump.

Publisher unique item updates unique items clicked
Sport1 1669 2272

Tagesspiegel 5423 2719
KSTA 1073 2086
Gulli 23 168
3336 0 19
13554 0 1
596 0 1

Table 2: Total amount of clicks per publisher

Table 3 shows the number of views made by users with a cookie id versus
those by users without a cookie id. We can see that the number of clicks and
the number of views (and their ratio) differ per publisher. Note that a large
fraction of the total number of page views results from users known by their
cookie id.

Publisher views unknown users views known users
Sport1 59.125.428 58.609.907

Tagesspiegel 4.089.966 17.213.414
13554 2.503.951 6.657.483
KSTA 2.122.357 9.472.782
Gulli 784.261 2.086.350
3336 1.607 6.526
2522 40 18
15739 1 10

Table 3: Total amount of clicks per publisher

13

We have created a subset of the data where we only account for users that
contain a session of more than two page views in order to evaluate the click
through rate on this part of the data. We only use this subset of the data
when we evaluate our session based recommenders which we discuss later in
this manuscript. We count one day as one session, considering all page views of
a user on that day to belong to the same session. When we discuss a session in
this manuscript, we use this definition of a session.

Figure 2: CTR per session length page views

In Figure 2 we can see the click through rate for a session with x number of
page views. We see an increasing trend which suggests that there is a higher
click through rate when pages are requested later in a session. We can see a
quick rise in click through rate at 1 - 5 views within a session. The datapoints
in the graph are based on at least 100 users in the dataset a day.

3.2 Evaluation

In our evaluation we use the near-to-online evaluation methodology [15]. In
near-to-online evaluation, we replay the Plista dataset as if it were a live setting,
which means that we stream all samples in the Plista dataset. In the live setting,
participants are asked to provide recommendations to each recommendation
request. In our case, we use the click events for our evaluation.

The number of recommendations to be made varies between one and six in
the live competition. Whenever we receive a click event, we do not know how

14

many recommendations had to be given, therefore we chose to always provide
six recommendations.

The information that is available to the recommender is derived from all
views, events and item updates that have occurred before this point in time.
No future information from the data set will be used in order to make these
recommendations. If the clicked item occurs in these six recommendations, it is
counted as correct, otherwise it is counted as not correct. We only use the click
events in our evaluation.

A short summary of our evaluation process:

1. For every click event received

2. Extract the page viewed and the item clicked from the click event

3. Make 6 recommendations based on this page and its contextual informa-
tion

4. Evaluate if the clicked item occurs in our recommendations

We apply two restrictions to considered recommended items:

• The recommended items have not been seen by the user

• Items without an identifier will not be recommended

3.2.1 Click through rate

The Newsreel competition uses click through rate as the final evaluation measure
[11]. The click through rate is calculated in the following way:

CTR =
correct recommendations

total nr recommendations

A correct recommendation is added whenever one of the six recommenda-
tions is correctly predicting the clicked item. We only use click events for our
evaluation. Total recommendations means the total number of recommenda-
tions made.

We calculate the CTR for each publisher on each day of the data stream.
An average CTR is calculated over all days (the average of the CTR of each
day).

3.2.2 Recall

Aside from a CTR based evaluation, we wanted to consider a measure that
rewards recall:

Recall =
unique items correct

total nr unique items clicked

Each click event is handled as described above in our evaluation process.
However, instead of calculating the click through rate, we calculate the recall.

15

We keep track of all unique items that are predicted correctly and we keep track
of all unique items clicked in the data stream. Each day, we compute the recall
as described above. An average recall is computed over all days (the average of
the recall of each day).

3.2.3 Cumulative Gain

If an article is just very popular, it might be less interesting to the user. The
user might not get the best experience from the service by just seeing the same
items all the time. The user might want to be “surprised” sometimes.

We defined a third measure with the objective to favor less obvious recom-
mendations and thus favor a diverse set of recommendations though not ignoring
the popular articles. We have developed this measure at the end of our research
and aim to make the first step in order to define a measure that captures both
CTR and recall in news recommendations. Each clicked recommendation will
have a relevancy score which will be added to the total gain score. The relevancy
score will be added to the gain score whenever we make the recommendation.
The relevancy score will decay as there are more clicks on the same item.

Rel(item) =
1√

times clicked(item)

CG =

correct items∑
item

Rel(item)

Again, we only use the clicked items in this evaluation and calculate the
cumulative gain over each day and than calculate the average gain over the gain
of each day. We keep track of the times an item is clicked over all days. We do
not reset the times an item is clicked in the evaluation at the start of each day.

3.3 Experiments performed

In this section I motivate the setup of four different experiments, each related
to one of the following questions:

A How do the different recommenders, behave under different evaluation mea-
sures?

B What is the right trade off between session and non-session based recom-
menders?

C Should recommenders be trained on views or on events?

D How should the trade off between exploration and exploitation be made?

16

3.3.1 Recommender Overview (A)

In these experiments, we will use all data available to test the recommendation
algorithms mentioned in the next section. We follow the approach of [6] to
flush all statistics any recommender has each day, because it had the highest
performance in this research compared to other time windows. Statistics will
be kept separately for each recommender and each publisher.

We are going to compare the different types of recommendation systems on
each of the evaluation measures. The result is the performance over time for
each recommender and an averaged performance over all domains.

3.3.2 Session based Recommenders (B)

In this part, we only use the session data. We only make predictions on click
events where we have session information, where we have at least two views by
this user on the same day. We will compare different algorithms where we have
a baseline algorithm which will only look at the currently viewed item and a
modified algorithm that takes the whole session into account.

We will compare the session based recommender with its corresponding rec-
ommender based only on the currently viewed item.

3.4 Views vs Clicks (C)

In this part, we pick a couple of recommender systems and train each of those
recommender systems on seperate parts of the data. We train each recommender
on the page view data, the click event data and on both page views and click
events. We compare the performance of these recommenders on each part of
the data.

3.4.1 Exploitation vs Exploration (D)

The CLEF-NEWSREEL evaluation broadcasts all click events to all partici-
pants. Therefore the participants can utilize click events on recommendations
made by other recommender systems. The system a participant creates should
take into account that it has to reproduce the competition setting to achieve
the same result in a live setting. For example, a most clicked algorithm in the
competition should take into account that it needs the other algorithms in the
competition in order to discover click events. However, the evaluation in the
competition only evaluates on the participants part of the recommendations
regardless of the click events used by other recommeders.

In a real system we do not have the click events from other recommenders
unless we combine the most clicked recommender with other recommenders.
We need a recommendation engine to be both explorative and exploitive. We
cannot use a most clicked algorithm without determining which articles are
clicked at all. In these experiments we want to make the first steps toward hybrid
recommenders that take exploitation and exploration into account. We are going

17

to make a combination of multiple recommenders that can explore for novel new
items while exploiting items that prove to be successful recommendations.

In these experiments, the recommenders will only use click event informa-
tion if the recommender has actually made a correct prediction. We therefore
emulate a situation where we have no other information than the information
we get from our own recommender system.

18

4 Method

This section introduces the different recommender strategies used in our re-
search. We provide an explanation along with pseudocode for each recommender
strategy. First, we will assess a couple of basic recommender strategies that will
be evaluated on all data. Next, we will show a couple of recommender strategies
that incorporate session information. Finally we will show the hybrid recom-
menders that will make the exploration/exploitation trade off and will only use
correctly predicted click events.

4.1 Recommender Overview

4.1.1 Popularity based recommender [15, 6, 7, 12]

A popularity based recommender provides recommendations based on the popu-
larity of items on a specific domain. The recommender recommends the most
viewed pages at a specific time.

For each item, we count the number of times the item is accessed. Counts
are stored in a dictionary. For each publisher, we keep track of the counts in
a separate dictionary. Whenever a recommendation is requested, we make a
lookup in the dictionary of the specific publisher and order the counts in de-
scending order. The resulting recommendations are the top 6 recommendations
requested, these are the most viewed items of the specific publisher at that point
in time.

We use both the page views as well as the click events in order to calculate
this statistic. A page view is not added to the item if a user has already requested
the item before.

Every hour, we remove the statistics that are not in the 250 most popular
items on a domain for peformance reasons.

Data: Recs and Events
while Input do

read nextInput;
if nextInput = recommendation request then

add view(publisher, viewed item id);
else if nextInput = Event Click then

make recommendations(publisher);
add view(publisher, from page);
add view(publisher, clicked page);

end

end
Algorithm 1: Popularity based recommender

4.1.2 Most popular sequence recommender [15]

This recommender learns which item is requested most after each article. We
learn this statistic from both the page views as well as the click events. When

19

a user has clicked a recommendation, we know that these pages are clicked in
sequence. We also count sequences of different page views by the same user.
We are not able to use page views by an unknown users.

Also, we do not put any time constraint on this factor. If a user has observed
page X at 10AM in the morning and visited page Y in the evening, we still count
(X,Y) as a sequence.

Data: Recs and Events
while Input do

read nextInput;
if nextInput = recommendation request then

if already seen(nextInput.user) then
add view(item id, prev seen id);
user.prev seen id := item id;

else
user.prev seen id := item id;

end

else if nextInput = Event Click then
make recommendations(item id);
add view(item id, rec id);
add view(item id, prev seen id);
user.prev seen id := rec id;

end

end
Algorithm 2: Most popular sequence based recommender

4.1.3 Most clicked

The most clicked recommender recommends the articles that are most clicked
thus far. This recommender counts the clicked recommendations.

Data: Events
while Input do

read nextInput;
if nextInput = Event Click then

make recommendations(item id);
add click(rec id);

end

end
Algorithm 3: Most clicked recommender

4.1.4 Cooccurrence based recommender

This recommender is based on the cooccurrence of clicks on news articles by
the same user. For each combination of articles, we compute the amount of
cooccurrences between articles. More clearly, if user A views articles X - Y - Z,
and user B views articles Z - Y, we get the cooccurrence scores (X, Z, 1), (X,

20

Y, 1), (Y, Z, 2). Whenever user C views article Z, it recommended Y because
it has the highest coocurrence score with Z.

We also include the event data in the statistics. Clicks from unknown users
are counted as a cooccurrence between the page from where this recommenda-
tion was clicked and the clicked item.

Whenever we have to make a recommendation, we look up the item id in
the dictionary and pick the top 6 items that have cooccurred the most with the
currently viewed page.

Data: Events and Updates
while Input do

read nextInput;
if nextInput = recommendation request then

store combinations(item id, user id, user.seen items)
add seen item(user.seen items, item id)

else if nextInput = event click then
make recommendations(item id) store combinations(item id,
user id, user.seen items) store combinations(clicked item, user id,
user.seen items)

end

end
Algorithm 4: Cooccurrence based recommender

4.1.5 Stem overlap based recommender

A content based recommendation system recommends content similar to content
that a user has liked in the past [16]. This recommender makes recommendations
based on the similarity between the currently viewed item and other items. We
do this by computing the stem overlap [15] over the title and text of the article
and other items published by the same publisher. We apply stemming and stop
word removal to improve performance.

The items considered are the items that have occurred in the item updates
up until the current point in time.

21

Data: Events and Updates
while Input do

read nextInput;
if nextInput = item update then

remove stop words(nextInput);
stem words(nextInput);
store stemming(nextInput);

else if nextInput = event click then
overlap dict := compute overlap(nextInput.item, publisher items);
sort on overlap(overlap dict);
make reccommendations(overlap dict);

end

end
Algorithm 5: Stem overlap based recommender

4.1.6 Keyword based recommender

Each item contains a specific set of keywords. This recommender will try to find
similar items based on these keywords. We store the keywords for each article
in a dictionary. Keywords are provided in the context of a page view and a click
event. Whenever we need to provide recommendations, the system will find the
most similar articles based on the keyword overlap.

Data: Events and Updates
while Input do

read nextInput;
if nextInput = view then

store keywords(item id)
else if nextInput = event click then

keywords := get keywords(item id);
overlap dict := compute overlap(publisher, keywords);
sort on overlap(overlap dict);
make reccommendations(overlap dict);
store keywords(item id)

end

end
Algorithm 6: Keywords based recommender

4.1.7 Most popular topic

We could believe that there are specific news topics that are very popular.
This recommender looks at the most popular item sequences and then tries to
find articles similar to these items. In order to do this, we use the keyword
recommender to find the most similar articles around the most popular item.
We recommend the four most popular items together with two most similar

22

items.
Data: Events and Updates
while Input do

read nextInput;
if nextInput = view then

store keywords(item id);
store view(item id);

else if nextInput == event click then
keywords := get keywords(item id);
popular items := get poprecs(item id);
sim items := get similar items(popular items);
recommendations := popular items + sim items;
make recommedations(recommendations)

end

end
Algorithm 7: Most popular topic based recommender

4.2 Session recommenders

If we only use the users currently viewed page, there may be little personaliza-
tion. Many of the incoming recommendation requests are from a known user.
In these cases, we might be able to exploit past impressions in order to make a
personalized recommendation.

In this case, we do not only look at what the most popular sequence will
be from the currently viewed page, but the algorithm will also account for the
items that were previously seen in the session.

Older page views have less value in order to predict recommendation for the
current point in time. Therefore we add a weight decay for older articles. The
weight decay is initially set to 0.5 determined by a few explorative experiments.
We also performed extensive experiments using different weight decay measures
using the most popular sequence session recommender.

4.2.1 Most popular sequence session recommender

In the session based most popular sequence recommender, we look at each item
in a user session and determine the most popular sequences for each of these
items. These counts are added up and result in the final recommendations.

23

Data: Recs and Events
parameter: weight decay
while Input do

read nextInput;
if nextInput = recommendation request then

if already seen(nextInput.user) then
add view(item id, prev seen id);
user.prev seen id := item id;

else
user.prev seen id := item id;

end

else if nextInput = Event Click then
foreach item in seen items today do

total mpc count += mpc count(item) * weight decay;
end
make recommendations(total mpc count);
add view(item id, rec id);
add view(item id, prev seen id);
user.prev seen id := rec id;

end

end
Algorithm 8: Most popular sequence session based recommender

4.2.2 Cooccurrence session based recommender

Like the session based mpc recommender, we look at every item the user has
already viewed. We count all cooccurrences from the viewed items. We recom-
mend the items with the most cooccurrences with the items the user has already
viewed.

24

Data: Events and Updates
parameter: weight decay
while Input do

read nextInput;
if nextInput = recommendation request then

store combinations(item id, user id, user.seen items);
add seen item(user.seen items, item id);

else if nextInput = event click then
foreach item in seen items today do

total cooc count += cooc count(item) * weight decay;
end
make recommendations(item id);
store combinations(item id, user id, user.seen items);

end

end
Algorithm 9: Cooccurrence session based recommender

4.3 Exploration/Exploitation recommenders

In this section we will present a set of hybrid recommenders [3]. These are
combinations of the recommenders mentioned in section 4.1. The goal of these
recommender algorithms is to be both explorative and exploitive in behavior.
We want to achieve an algorithm that can discover which items are going to be
most clicked and then exploit the most clicked algorithm. At the same time, we
still want to explore to identify new items that could potentially be a new most
clicked item.

We use an epsilon greedy based strategy [23] in order to explore new options.
Every recommendation made by the most clicked algorithm has a chance to
recommend from the explorative recommender instead. We have used ε = 0.2
in all of our experiments. Although 0.1 would be a typical value for epsilon [21],
we wanted to be more explorative as the news domain is dynamic in nature and
new articles have to be constantly discovered. However, an extensive search
over this has to be performed to determine the best value for this parameter.
We did not have sufficient time to do this and therefore used 0.2.

The explorative recommender has to be based on views rather than click
events.

4.3.1 Popularity based recommender and most clicked

This recommender is explorative by using the most popular based recommender.
The popularity based recommender tries to find popular items from the views.
Once these popular items are also clicked a lot, the most clicked recommender

25

will reinforce itself and will start to exploit these items.

Data: Events and Updates
parameter: ε
while Input do

read nextInput;
if nextInput = recommendation request then

pop rec.store view(nextInput)
else if nextInput = event click then

if train phase then
succes := pop rec.make recommendations;

else
recs := most clicked rec.make recommendations();
foreach rec in recs do

if rand(0, 1) > ε then
rec := pop rec.get rec();

end
succes := make recommendations(recs);

end
if succes then

pop rec.store click();
most clicked rec.store click();

end

end
Algorithm 10: Popularity based recommender and most clicked hybrid

4.3.2 Keyword based ranker and most clicked

The keyword based recommender does not need any click or view count infor-
mation in order to find similar items. It will try to explore by recommending

26

similar items as the user is currently viewing.

Data: Events and Updates
parameter: ε
while Input do

read nextInput;
if nextInput = recommendation request then

pop rec.store view(nextInput)
else if nextInput = event click then

if train phase then
succes := keyword rec.make recommendations;

else
recs := most clicked rec.make recommendations();
foreach rec in recs do

if rand(0, 1) > ε then
rec := keyword rec.get rec();

end
succes = make recommendations(recs);

end
if succes then

keyword rec.store click();
most clicked rec.store click();

end

end
Algorithm 11: Keyword based recommender and most clicked hybrid

27

4.3.3 Most popular sequence and most clicked

We have also made an hybrid recommender where we explore with most popular
sequences over the views.

Data: Events and Updates
parameter: ε
while Input do

read nextInput;
if nextInput = recommendation request then

mpc rec.store view(nextInput)
else if nextInput = event click then

if train phase then
succes := mpc rec.make recommendations;

else
recs := most clicked rec.make recommendations();
foreach rec in recs do

if rand(0, 1) > ε then
rec := mpc rec.get rec();

end
succes := make recommendations(recs);

end
if succes then

mpc rec.store click();
most clicked rec.store click();

end

end
Algorithm 12: Most popular sequence and most clicked hybrid

28

5 Results & Analysis

This section discusses the results from our experiments, in order of description
of the experimental setup in section 3.3. Table 4 describes the mapping of the
algorithms mentioned in the results.

Name Full Name Data used
poprec Popularity based recommender page views + click events
coocrec Cooccurence based recommender page views + click events

most clicked Most clicked recommender click events
mpseq Most popular sequence recommender page views + click events

mpseq clicks Most popular sequence recommender on click events click events
keywordrec Keyword overlap based recommender page views + click events

stemrec Stem overlap based recommender item updates
most popular topic Most popular topic recommender page views + click events

session mpseq mpseq session based recommender page views + click events
session mpseq clicks mpseq clicks session based recommender click events

session coocrec coocrec session based recommender page views + click events
mpseq views mpseq trained only on page view data page views
poprec views poprec trained only on page view data page views

Table 4: Mapping of result terminology

5.1 Recommender Overview (A)

5.1.1 CTR

In this section we describe the performance in terms of click through rate. Table
5 displays the average performance of each recommender on every domain.

Recommender Average CTR
coocrec 0.263
poprec 0.164

most clicked 0.764
mpseq 0.348

stemrec 0.007
mpseq clicks 0.624
keywordrec 0.017

most popular topic 0.496

Table 5: Average CTR over all domains

We can see that the recommenders that are only based on click events out-
perform the other recommenders. Most clicked is definitely the best performing
recommender in terms of click through rate. The content based recommenders
have the lowest click through rate.

29

Figure 3: Gulli

Figure 4: Tagesspiegel

30

Figure 5: Sport1

Figure 6: KSTA

We can see that the predictive power of the most clicked recommender is just
slightly different over different domains. We see stronger performance differences
in other recommenders. For example, we see that the performance of the most
popular sequence recommender is higher in the Tagesspiegel domain than the
Gulli domain. Stem overlap based recommendations do perform much worse.

5.1.2 Recall

We can see that the performance in terms of recall, which is the number of
uniquely correct predicted items, is quite different from the CTR performance.

31

While in table 5 the most clicked recommender performs best, in Table 6 we see
that the popularity based recommenders are not as performant.

Recommender Average Recall
coocrec 0.287
poprec 0.105

most clicked 0.137
mpseq 0.305

stemrec 0.073
mpseq clicks 0.345

keywordrec 0.196
most popular topic 0.276

Table 6: Average Recall over all domains

The highest recall score results from the most popular sequence recommender
trained only on the click data. This means that we obtain a higher recall
score from the recommendations when we make recommendations using a most
popular sequence recommender than if we make recommendations using a most
popular recommender.

The stem overlap based recommender has the worst performance, on recall as
well as CTR.

Figure 7: Gulli

32

Figure 8: Tagesspiegel

Figure 9: Sport1

33

Figure 10: KSTA

The performance of the most popular sequence recommender trained on clicks
is not always the best performing recommender in terms of recall. For example,
we can see that in Figure 10 the performance of coocrec and most popular
sequence trained on all data are outperforming most popular sequence trained
on click events on the last 15 days of the competition.

5.1.3 Gain

The gain measure is used to see which recommender gets a considerable amount
of clicks on a wide range of articles. We can see that on this measure, the
most popular sequence trained on clicks has the best performance. It performs
considerably better than the most popular clicked recommender.

Recommender Average Gain
coocrec 198
poprec 132

most clicked 229
mpseq 203

stemrec 27
mpseq clicks 323

keywordrec 50
most popular topic 230

Table 7: Average gain over all domains

Most clicked has a worse performance on this measure. The most clicked
algorithm only recommends the top 6 most clicked items, causing the gain of
these items to become small for each click. However, since the click through

34

rate is much higher, it still performs similar to other recommenders like the
cooccurrence based recommender.

5.2 Session based Recommenders (B)

In this section, we will go over the effect of using session information in our
recommendations. Note that we used a subset of the data where we only made
predictions on click events where the user had at least 2 page views. In order
to get these results, we only used the click events where we could use session
information in order to make the recommendations.

Recommender Average CTR
mpseq clicks 0.500

session mpseq clicks (decay 0.5) 0.526
coocrec 0.238

session coocrec (decay 0.5) 0.267
mpseq 0.242

session mpseq (decay 0.5) 0.289

Table 8: Average CTR over all domains

When we compare each recommender with its corresponding session based
recommender, we can see that all session based recommenders performed better
when we look at CTR.

Recommender Average Recall
mpseq clicks 0.343

session mpseq clicks (decay 0.5) 0.304
coocrec 0.298

session coocrec (decay 0.5) 0.255
mpseq 0.317

session mpseq (decay 0.5) 0.291

Table 9: Average Recall over all domains

When we look at Table 9, we can see that in contrast to the CTR perfor-
mance, the recall performance is worse when we use session based recommenders.
The amount of different recommendations is lower.

35

Recommender Average CTR
mpseq clicks session (decay 1) 0.520

mpseq clicks session (decay 0.8) 0.524
mpseq clicks session (decay 0.6) 0.527
mpseq clicks session (decay 0.5) 0.528
mpseq clicks session (decay 0.3) 0.529
mpseq clicks session (decay 0.2) 0.530
mpseq clicks session (decay 0.1) 0.531
mpseq clicks session (decay 0.0) 0.500

Table 10: Average CTR over all domains

In Table 10 we show the performance of most popular sequence session based
recommender trained on click data with different decay values. There is a perfor-
mance improvement when we go from a 100% decay (using only the currently
viewed item) to weight decay 0.1. This is a very large decay, therefore the
performance improvement is arguably the cause of using session information.
However, when we use the whole session using the same weight (decay = 1) the
performance is still better than if we did not use any session information.

Recommender Average Recall
mpseq clicks session (decay 1) 0.280

mpseq clicks session (decay 0.8) 0.287
mpseq clicks session (decay 0.6) 0.298
mpseq clicks session (decay 0.5) 0.304
mpseq clicks session (decay 0.3) 0.320
mpseq clicks session (decay 0.2) 0.328
mpseq clicks session (decay 0.1) 0.335
mpseq clicks session (decay 0.0) 0.340

Table 11: Average Recall over all domains

Table 11 shows that if we add more weight to session information, we see a
lower recall score. In our experimental setup, we have not been able to get a
higher recall score by incorporating session information.

36

5.3 Views vs Clicks (C)

Recommender Average CTR
mpseq views 0.071
mpseq clicks 0.575

mpseq 0.307
poprec views 0.150
most clicked 0.752

poprec 0.203

Table 12: Average CTR over all domains

In table 12 we can see that the performance of the same recommender trained
only on click data is much better than if we train the recommender only on the
view data. If we train the recommenders on both views and clicks, we get a score
in between the view based score and the click based score. We can conclude
that if we use both clicks and views, it is beneficial to train only on clicks and
leave out the view data.

Figure 11: Gulli

37

Figure 12: Tagesspiegel

Figure 13: Sport1

38

Figure 14: KSTA

We can see that the trade off between training on clicks or views is consistent
over all domains. However, the benefit of using only click events does depend
on the domain.

Recommender Average Recall
mpseq views 0.237
mpseq clicks 0.342

mpseq 0.302
poprec 0.103

most clicked 0.135
poprec views 0.098

Table 13: Average Recall over all domains

Table 13 shows that not only the CTR is better if we train on click data,
also the recall is higher. Training on views clearly worsens the performance on
both CTR and Recall.

5.4 Exploitation vs Exploration (D)

The performance of the recommenders are clearly worse due to the lower amount
of training data than when we do not use all click data. We can see that the
performance of the hybrid between most clicked and the most popular sequence
recommender has the best overall score while using click through rate as eval-
uation measure. We can see a clear improvement in performance in each of
the hybrid recommender variants, when compared to their corresponding single
recommender.

39

Recommender Average CTR
poprec 0.164
mpseq 0.243

most clicked + poprec 0.289
most clicked + keywordrec 0.229
most clicked + mpseq 0.541

Table 14: CTR over all domains (for reference, most clicked has a CTR of 0.764)

We see that most popular sequence recommender trained on all data has
a CTR of 0.348 (see Table 5). However, in the emulated setting where we
can only use correctly predicted click events, the CTR is 0.243. The difference
in performance is the result of “free” exploration done by other recommender
systems in the CLEF-NEWSREEL evaluation since these are click events that
are generated by other recommenders.

Figure 15: Gulli

40

Figure 16: Tagesspiegel

Figure 17: Sport1

41

Figure 18: KSTA

In the above figures, we can conclude that most popular sequence recom-
mender is the best explorative recommender on all domains. The performance
of all recommenders is worse on the Gulli domain.

In Table 15, we show that on recall the most popular sequence recommender
still has the best performance. When we look at the hybrid recommenders, the
most popular sequence - most clicked hybrid has the best performance.

Recommender Average Recall
poprec 0.097

mpseq only 0.289
most clicked + poprec 0.090

most clicked + keywordrec 0.130
most clicked + mpseq 0.185

Table 15: Recall over all domains

42

6 Discussion

We want to start off the discussion by talking about using the click through rate
as the main strategy in order to evaluate recommender systems in the news do-
main. We have seen in our results that if we use the broadcasted click events, we
can get the highest click through rate by recommending the most clicked items.
Other strategies, that include the data from views perform significantly worse.
In practice, we cannot use only click event data, since a recommender system
always has to find out which articles are being clicked on. In the competition
setting, participants get ”free” exploration where they can use click events from
recommendations made by other participants.

When we look at the recall and cumulative gain, we do get different results
from the recommender systems. Most popular sequence has a higher average
recall score and a higher gain score. On some domains we can see that at certain
time windows, other recommenders had a higher recall score. For example
coocrec and most popular sequence trained on all data outperformed most popular
sequence trained on click events in this time window. Reason for this could be
that the group of most popular sequences in the click event data was very small
while correct sequences or cooccurrences could still be learned from the page
views.

Since the click events have such a high bias in terms of results in click through
rate, it would be interesting to see how participants would score on either a
different measure like gain or when they can only use the click events from their
own recommendations. In a live setting, the system does only get feedback
from its own recommendations. However, in the competition researchers might
use click events explored by other participants. We have shown in the results
that when we train a most popular sequence recommender on all data we get
a better CTR and Recall than if we can only use the click events that are
correctly predicted. The difference in performance is what we call the effect of
“free exploration” when we use all data. If we want to replicate a live setting
as much as possible and give researchers a chance to compare their results with
other recommender systems, we have to make this evaluation.

Most clicked algorithms have a very low recall score. The recommendations
will always be the same for every user and no personal recommedations are given.
It might give a user a better experience to be surprised by the recommendations.
A trade off has to be made between sustaining a sufficient click through rate
and giving unexpected and interesting recommendations.

Content based approaches did not perform well in our experiments. The
content based approaches were not very sophisticated. Since the most clicked
items consist of only a couple of items that make up for a large portion of the
clicks, the content based approaches are unable to capture these characteristics.
Content based approaches that do not take popularity into account will therefore
not be successful. However, our most popular topic recommender also did not
perform better than most popular sequence.

Relatively simple approaches seem to perform really well. Classic approaches
as collaborative filtering or factorization methods are hard to execute due to the

43

dynamic nature of the data. Focus should be made towards approaches that
can quickly discover novel new items to recommend.

Using session information seems to be an interesting field in news recom-
mendation. In our data analysis we have seen that longer sessions have a higher
click through rate. However, in our experiments we have not been able to suc-
cessfully personalize recommendations using session information. We see that
regardless of our decay parameter, we do get a higher CTR when we use session
information. However, it is arguable that the improvement is caused by the
experimental setup. The reason for this is that sometimes the recommender
does not have sufficient statistics to make recommendations based on the cur-
rently viewed page. However if this is the case, it might have sufficient statistics
for pages earlier in the session and is therefore able to make recommendations
based on these items where it couldn’t make these recommendations without
the session information.

The use of session information in our experiments lowered recall, the recall
drops even more when we increase weight decay. We argue that the use of ses-
sion information in our experiments caused the recommendations to recommend
more popular items. When a few items are very popular it is not uncommon
that personalization tends to recommend the most popular items. In [5] the
goal is to give personalized recommendations for tourism. However, a couple of
places are very popular and recommender systems tend to recommend the most
popular items when personalizing results. The same problem seems to occur in
the news domain where a couple of news articles are extremely popular.

When we take into account that we can only use feedback from our correctly
predicted click events we observe a benefit in the use of hybrid recommender
systems. One part of this hybrid has to be the most clicked recommender.
By using a simple ε− greedy algorithm we can improve our click through rate
performance.

We have to take into account that all results are based on an offline eval-
uation, derived from a set of recommender algorithms running at that time.
There will be a bias in the way the data is gathered. If we successfully model
the recommenders used at the time, we have a higher chance to get a better
performance. However, since the data was gathered in a period where partici-
pants tested different recommender algorithms, we do feel confident about our
results.

44

7 Conclusion

We started off trying to answer the following research questions:

• To what extent can we explain the performance of a recommendation
system by means of click through rate?

• To what extent can we exploit session information to improve recommen-
dations?

• To what extent can we utilize a page view and a click event in news
recommendation?

• How can we make the trade off between exploration and exploitation in
news recommendation?

We have seen a difference in peformance of our recommenders on different
evaluation measures. Previous work has stated recall to be an important factor
while making recommendations. Since click through rate does not consider any
recall measure we recommend to also evaluate on a similar measure. However,
we can only use recall in the offline evaluation.

We have not been able to personalize results by using session information.
However, we have seen some positive results in CTR by using the session infor-
mation. Further research has to be done to personalize recommendations.

Recommenders trained on click events clearly outperform recommenders
trained on page views when we look at click through rate. To increase click
through rate performance, click information has to be utilized in order to in-
crease performance.

The last question came from the fact that in a live setting, we do not know
which items will be clicked. Participants should be aware of the “free explo-
ration” of clicked items by other participants in the evaluation. A live recom-
mender can be exploited by reinforcing most clicked items. We have shown
different exploration strategies and shown we’re able to get benefits by combin-
ing one exploration strategy with the most clicked recommender.

45

8 Future work

How users would respond to the recommendations in a live setting will remain a
question until we test these algorithms in a live setting. In the next evaluation
window, it would be interesting to see if we can test some of the approaches we
have described in this research in a live setting since we were not able to do so
this year due to the timing of the competition.

In this research we have used the session information by adding up the
statistics from each viewed item by a user. We might be able to get further
improvements by taking into account which page views in the sessions are more
unique and give more weight to these items. Also, we did not normalize the
scores on each page viewed. For example, if the most popular sequence recom-
mender did not get many transitions from a certain page, the scores we’ll add up
do not add much weight to the final recommendations. Further research could
provide smarter ways to utilize session information.

In order to personalize results, we should overcome the problem where per-
sonalization methods stimulate the recommendation of popular items. Further
research has to be done in order to overcome this problem.

It would be interesting to see if we can successfully deploy a hybrid recom-
mender in a live setting where we show that a hybrid between a most clicked
recommender and the most popular sequence recommender outperforms the most
popular sequence recommender.

Further improvements can be made to the hybrid recommenders that per-
form both exploration and exploitation. It would be interesting to see which
hybrids make the best trade off between exploration and exploitation.

Content based recommenders seemed to perform very weak in this research.
However, it would still be interesting to see if content similarity measures could
be used in order to make recommendations. For example, we could use cross
domain content similarity measures to determine popular topics. We did not
use any cross domain knowledge to improve recommendations and we intend to
perform further research in this field.

46

9 Code

The code can be found on Github 3.

3https://github.com/martijnnanne/newsreel-offline

47

References

[1] David Ben-Shimon, Alexander Tsikinovsky, Michael Friedmann, Bracha
Shapira, Lior Rokach, and Johannes Hoerle. Recsys challenge 2015 and the
yoochoose dataset. In Proceedings of the 9th ACM Conference on Recom-
mender Systems, RecSys ’15, pages 357–358, New York, NY, USA, 2015.
ACM.

[2] Paul N. Bennett, Ryen W. White, Wei Chu, Susan T. Dumais, Peter Bailey,
Fedor Borisyuk, and Xiaoyuan Cui. Modeling the impact of short- and
long-term behavior on search personalization. In Proceedings of the 35th
International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’12, pages 185–194, New York, NY, USA,
2012. ACM.

[3] Robin Burke. Hybrid web recommender systems. In The adaptive web,
pages 377–408. Springer, 2007.

[4] Abhijnan Chakraborty, Saptarshi Ghosh, Niloy Ganguly, and Krishna P
Gummadi. Optimizing the recency-relevancy trade-off in online news rec-
ommendations. In Proceedings of the 26th International Conference on
World Wide Web, pages 837–846. International World Wide Web Confer-
ences Steering Committee, 2017.

[5] Maarten Clements, Pavel Serdyukov, Arjen P. de Vries, and Marcel J.T.
Reinders. Using flickr geotags to predict user travel behaviour. In Proceed-
ings of the 33rd International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’10, pages 851–852, New
York, NY, USA, 2010. ACM.

[6] Doychin Doychev, Aonghus Lawlor, Rachael Rafter, and Barry Smyth. An
analysis of recommender algorithms for online news. In CLEF (Working
Notes), pages 825–836. Citeseer, 2014.

[7] Doychin Doychev, Rachael Rafter, Aonghus Lawlor, and Barry Smyth.
News recommenders: Real-time, real-life experiences. In International Con-
ference on User Modeling, Adaptation, and Personalization, pages 337–342.
Springer, 2015.

[8] Gebrekirstos G Gebremeskel and Arjen P de Vries. The degree of random-
ness in a live recommender systems evaluation. In CLEF (Working Notes),
2015.

[9] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos
Tikk. Session-based recommendations with recurrent neural networks.
arXiv preprint arXiv:1511.06939, 2015.

[10] Katja Hofmann, Shimon Whiteson, and Maarten de Rijke. Balancing ex-
ploration and exploitation in listwise and pairwise online learning to rank
for information retrieval. Information Retrieval, 16(1):63–90, 2013.

48

[11] Frank Hopfgartner, Torben Brodt, Jonas Seiler, Benjamin Kille, Andreas
Lommatzsch, Martha Larson, Roberto Turrin, and András Serény. Bench-
marking news recommendations: The CLEF-NEWSREEL use case. In
ACM SIGIR Forum, volume 49, pages 129–136. ACM, 2016.

[12] Dietmar Jannach, Lukas Lerche, and Michael Jugovac. Adaptation and
evaluation of recommendations for short-term shopping goals. In Proceed-
ings of the 9th ACM Conference on Recommender Systems, pages 211–218.
ACM, 2015.

[13] Benjamin Kille, Frank Hopfgartner, Torben Brodt, and Tobias Heintz. The
plista dataset. In Proceedings of the 2013 International News Recommender
Systems Workshop and Challenge, NRS ’13, pages 16–23, New York, NY,
USA, 2013. ACM.

[14] Jiahui Liu, Peter Dolan, and Elin Rønby Pedersen. Personalized news
recommendation based on click behavior. In Proceedings of the 15th in-
ternational conference on Intelligent user interfaces, pages 31–40. ACM,
2010.

[15] Andreas Lommatzsch and Sahin Albayrak. Real-time recommendations for
user-item streams. In Proceedings of the 30th Annual ACM Symposium on
Applied Computing, pages 1039–1046. ACM, 2015.

[16] Pasquale Lops, Marco De Gemmis, and Giovanni Semeraro. Content-based
recommender systems: State of the art and trends. In Recommender sys-
tems handbook, pages 73–105. Springer, 2011.

[17] Alan Said, A Bellogın, and Arjen De Vries. News recommendation in the
wild: Cwi’s recommendation algorithms in the CLEF-NEWSREEL chal-
lenge. In Proceedings of the 2013 International News Recommender Systems
Workshop and Challenge. NRS, volume 13, 2013.

[18] J Ben Schafer, Joseph Konstan, and John Riedl. Recommender systems
in e-commerce. In Proceedings of the 1st ACM conference on Electronic
commerce, pages 158–166. ACM, 1999.

[19] Andrew I. Schein, Alexandrin Popescul, Lyle H. Ungar, and David M. Pen-
nock. Methods and metrics for cold-start recommendations. In Proceedings
of the 25th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’02, pages 253–260, New
York, NY, USA, 2002. ACM.

[20] Brent Smith and Greg Linden. Two decades of recommender systems at
amazon.com. IEEE Internet Computing, 21(3):12–18, 2017.

[21] Richard S Sutton and Andrew G Barto. Reinforcement learning: An in-
troduction, volume 1. MIT press Cambridge, 1998.

49

[22] Yong Kiam Tan, Xinxing Xu, and Yong Liu. Improved recurrent neural
networks for session-based recommendations. In Proceedings of the 1st
Workshop on Deep Learning for Recommender Systems, pages 17–22. ACM,
2016.

[23] Stephan Ten Hagen, Maarten Van Someren, Vera Hollink, et al. Explo-
ration/exploitation in adaptive recommender systems. proceedings of Eu-
nite 2003, 2003.

[24] Zhe Xing, Xinxi Wang, and Ye Wang. Enhancing collaborative filtering mu-
sic recommendation by balancing exploration and exploitation. In ISMIR,
pages 445–450, 2014.

[25] Peng Yan, Xiaocong Zhou, and Yitao Duan. E-commerce item recom-
mendation based on field-aware factorization machine. In Proceedings of
the 2015 International ACM Recommender Systems Challenge, RecSys ’15
Challenge, pages 2:1–2:4, New York, NY, USA, 2015. ACM.

[26] Jing Yuan, Andreas Lommatzsch, and Benjamin Kille. Clicks pattern anal-
ysis for online news recommendation systems.

50

	Introduction
	Scope and research questions
	Research challenges
	Novel contributions
	Practical relevance
	Thesis structure

	Previous work
	News Recommendation
	CLEF-NEWSREEL
	Overview of CLEF-NEWSREEL Recommenders

	Session based recommendations
	Exploitation vs Exploration

	Experimental setup
	Data & Data Preprocessing
	Evaluation
	Click through rate
	Recall
	Cumulative Gain

	Experiments performed
	Recommender Overview (A)
	Session based Recommenders (B)

	Views vs Clicks (C)
	Exploitation vs Exploration (D)

	Method
	Recommender Overview
	Popularity based recommender lommatzsch2015real, doychev2014analysis,doychev2015news, jannach2015adaptation
	Most popular sequence recommender lommatzsch2015real
	Most clicked
	Cooccurrence based recommender
	Stem overlap based recommender
	Keyword based recommender
	Most popular topic

	Session recommenders
	Most popular sequence session recommender
	Cooccurrence session based recommender

	Exploration/Exploitation recommenders
	Popularity based recommender and most clicked
	Keyword based ranker and most clicked
	Most popular sequence and most clicked

	Results & Analysis
	Recommender Overview (A)
	CTR
	Recall
	Gain

	Session based Recommenders (B)
	Views vs Clicks (C)
	Exploitation vs Exploration (D)

	Discussion
	Conclusion
	Future work
	Code

