
Master Thesis

Inferring webdocument clusters based on structural similarity

Bob Klaase

March 25, 2018

Primary Supervisor:
prof.dr.dr.h.c.ir. M.J. Plasmeijer

Secondary Supervisor:
prof.em.dr.ir. Th.P. van der Weide

Abstract

The quintessential website consists of a domain, a landing page and additional pages
providing further content. In this case links to and from the website can be defined as
links to and from any of the pages that exist on the domain, which makes it easy to
map and visualize in relation to outside sources. Furthermore search results that point
to member-pages of the website can be clustered and presented as a single source of
information.
Within the world wide web though, domains exist where multiple websites are housed.
Examples of these are the personal pages of researchers on the domain of a research
group or university; Blog articles written by individual bloggers on a common, frame-
work providing, domain; or simply a multipurpose domain with a blog, a front page and
a forum, without the separation of third level domains.
Being able to cluster such domain sheltered websites offers the same benefits as having a
single website domain: incoming and outgoing links can be differentiated from references
to another part of the same site.
This paper shows that - at least with the methods conceived of in this research - struc-
tural DOM layout is a strong, but not perfect indicator of pages belonging to one an-
other which can subsequently be used to model their interactions with the outside world.
Multiple strategies for traversing DOM trees are combined with metrics for determining
DOM node similarity to reach this conclusion.

2

Preface

This document is written to be a master thesis; the last part of my computer science
degree. The process from formulating the intent to write such a document, to having
it at last in it’s completed form has been a long one. Initially I approached my then
supervisor, professor Theo van der Weide, with the idea to use all sorts of advanced
tooling to infer the social and professional relations of people based on their presence
on the internet. This went as far as scanning .pdf documents for second author, found
on the university research pages. Needless to say, this is not the research described in
these pages. In fact, much fear and doubt has been suffered in the process of adjusting
the scope and topic to something that can reasonably be investigated within the time
frame of a master thesis project.

The final topic sprang on the one hand from the need to narrow the subject down to
something more specific, and an actual practical need within the internet solutions com-
pany that I was part-owner of at the time of this research. Mindconnect, the company,
needed a way to tell if customers were using a service in a way that was explicitly pro-
hibited by the end user agreement. Namely to have more then one different website on
what was meant to be an introductory package. In this the setup created for this thesis
was actually very successful.

So now the work was done; literature was consulted, strategies were selected and results
were compiled. All that was left was to write it all down in a coherent format, give credit
were credit was due and talk about possible other applications already hinted upon in
the referenced literature. So trivial seemed this task, that I had started a full-time job,
in order to write down the details in the evening hours. A big mistake.

Since then I have struggled with all matter of insecurities regarding the relevance and
viability of the whole endeavor; kept putting even thinking about the project off for other
matters that “had to be” done as well in order to keep the guilt over procrastinating
at bay; and even contemplated giving up altogether. Luckily professor Rinus Plasmeijer
kindly offered to become my supervisor. Now I want to make it very clear that through
no fault whatsoever of professor Theo van der Weide has this process been stalled so
long. It was simply my own lack of discipline and the injudicious decision to start a
full-time job. Finally I would like to use the remainder of this section to give my thanks
to the people that slowly but surely, helped my break the stalemate.

First of all I want to thank Theo van der Weide, for getting me started, and helping me
to refine the scope and focus of this project. Second I want to thank Rinus for helping
me get back on track and without any hand holding making it clear, that whenever
there was some progress he would give me feedback and recommendations on the steps
required to have this be a valid master thesis. I want to thank my girlfriend Hilde, who
has been a tremendous support and never derided me for taking so ridiculously long to
complete. And finally my “friends” whose constant mockary and redicule were in a way
also part of the motivation for pulling through.

3

Contents

1 Introduction 6

2 Related Work 7
2.1 Clustering within a single website . 8
2.2 Clustering over multiple websites . 9

3 Approach 9
3.1 Page structure . 10
3.2 Data set . 10
3.3 Two parts per experiment . 11

4 Traversal strategies 11
4.1 Simple Breadth-first . 12
4.2 Exhaustive traversal . 13
4.3 Exhaustive right to left traversal . 14
4.4 Bidirectional traversal . 15

5 Similarity Metrics 17
5.1 Tag type matching . 17
5.2 Tag type and Element Id matching . 17
5.3 Number of child elements matching . 17

6 Experiments 18
6.1 Numbers in the results . 18

6.1.1 Average match score . 18
6.1.2 Standard deviation . 18
6.1.3 Minimum and maximum match score 19
6.1.4 Mean standard deviation within domain 19
6.1.5 Mean delta of minimum and maximum score within domain 19

6.2 Graphs in the Results . 19
6.3 Basic breadth-first traversal with tag type matching 19

6.3.1 Results . 20
6.3.2 Interpretation . 21

6.4 Exhaustive traversal with tag type matching 21
6.4.1 Results . 21
6.4.2 Interpretation . 22

6.5 Exhaustive right to left traversal with tag type matching 22
6.5.1 Results . 22
6.5.2 Interpretation . 23

6.6 Exhaustive bidirectional traversal with tag type matching 23
6.6.1 Results . 23
6.6.2 Interpretation . 24

4

6.7 Exhaustive traversal with tag type and Id matching 24
6.7.1 Results . 24
6.7.2 Interpretation . 25

6.8 Exhaustive bidirectional traversal with tag type and Id matching 25
6.8.1 Results . 26
6.8.2 Interpretation . 26

6.9 Exhaustive traversal with child count matching 26
6.9.1 Results . 27
6.9.2 Interpretation . 27

6.10 Reflection . 27

7 Conclusion 29
7.1 Impact and application . 29
7.2 Future work and extensions . 29

8 Appendix 30
8.1 Extended result listings . 30
8.2 Reproducing the results . 33

8.2.1 raw data and plot files . 33
8.2.2 database dump of captured websites 33
8.2.3 java source . 34

5

1 Introduction

The term website is a loosely defined one. Intuitively a website is a collection of pages
with related information, maintained by the same (group of) person(s). Dictionaries offer
definitions like: A set of related web pages located under a single domain name. (Oxford-
Dictionary). Or: a group of World Wide Web pages usually containing hyperlinks to
each other and made available online by an individual, company, educational institution,
government, or organization(Merriam-Webster).

The web and the technology it is build on is constantly evolving. As of this writing the
transition from HTML4 and its’ derivatives to HTML5 is almost complete. The line
between websites and web applications is blurring. However, even with application state
and complexity moving to the front-end of web applications being stateless, or able to
capture state in a URL still yields very helpful properties. There are best described in
Fielding [2000]. That means that methods able to harvest information through URL
based requests remain relevant. As long as the requesting application is able to handle
JavaScript and/or front-end routing.

In this paper methods of clustering web pages based on their structure are being ex-
plored. The hypothesis is, that when a person, or group of individuals create content for
the world wide web, the documents between which they divide this content will share
enough idiosyncratic (outer) structure, so as to be detectable. When viewing websites,
the individual pages share visual similarity (header, footer, menu’s) to help guide the
attention of the viewer to the content. This is accomplished with recurring pieces of
markup language that are shared between those documents. It is this overlap the setups
discussed in this paper, attempt to leverage to group pages together.

To do this 7 experiments are conducted on a sample set. Each experiment is a combi-
nation of a method for traversing HTML nodes, and a metric for determining whether
two DOM nodes ought to be considered similar. HTML structure is shaped like a tree.
The traversal methods will start at the outer edges of the HTML tree structure with the
assumption that layout related content is situated there. Each time two documents are
compared, further and further in their tree structure according to the traversal strategy,
a similarity metric is used to determine whether the next parts match. This results in
a score for each combination of documents which can then be used to have statistical
performance analyses of each of the 7 setups.

6

Figure 1: Going from a collection of pages, to modeled website interaction.

Sometimes, multiple conceptual websites are housed on a single domain. Think for
example about the profile pages of researchers on a university website. Being able to
cluster such domain sheltered websites offers the same benefits as having a single website
per domain. In fig. 1 the process of going from a collection of pages (potentially within
a single domain), to pages grouped, to finally the interactions between the groups is
visualized. Those interactions can only be extracted if documents are not all considered
to be in the same collection. Another benefit from looking at the overlap in web pages,
even on a singular domain, is to be able to separate content from structure. This can
be used in combination with other methods to better position the website in relation to
others, or generating logical views for easier navigation; examples of which are referenced
in the next section.

2 Related Work

The clustering of web documents is an extensive field. Usually documents are clustered
cross-site as a means to group and search for information. However research into clus-
tering documents inside a single website is done as well. Motivation varies from the
alternative presentation of content to optimizing data-mining tasks. The body of work
that I could locate that focuses on document structure as a metric for similarity was not
extensive. Nor was information on as to why that might be.

7

2.1 Clustering within a single website

The clustering of documents based on the structure of their outlinks is researched in
Crescenzi et al. [2005]. The research proposes a setup where from a single entry point,
the algorithm starts visiting a representative number of web pages. A prototype has been
developed and was used to perform experiments on life web sites. In the introduction
Crescenzi et al. describe to have chosen this method over what they view is the issue
with similar research: representative pages have to be manually selected. This research
operates under the premise that if a page has similar groups of links (for example a list
of HTML tags in an un-ordered list in a <div> element) that the page is bound
to be of similar structure. Levering structural similarities like this, the group wishes to
automatically group classes of pages together belonging to a website, in order to supply
the groups to the next step: building wrappers for content extraction. The algorithm
performs this task by building a model of groups of links in the entry point. Selecting
some, but not all documents the link group points to and repeating this process. This
results in a collection of documents with in-links belonging to link-groups for which the
model is used to judge structural similarity of the groups.

In Liu et al. [2004] the structure of individual web documents is used to infer the structure
of the entire website. The goal of he research is to present the resulting structure as
a logical view for easy navigation. In the abstract, the reason behind this is again
given as automated content extraction. With a visual mapping tool, referred to as the
mapping wizard, initial manual mappings are made to specific types of model component
recognized by the team; ea “record”, “item”, “collection”. Also common menu layout is
exploited to find the highest level of content separation: pages. With a tool dubbed the
“section extraction tool” groups of links that are present on multiple pages are presumed
to be menu items and used to generate the highest level of the resulting logical tree
structure. The next level is finding subsections on the pages themselves. The team have
create another tool “the structure copier” to help assist the process of first selecting one,
or more parts of web documents that can be deemed subsections, and allow the tool to
discover parts with similar structure. The results section of the paper shows statistics
on the performance of the setup on four major websites at the time. Satisfactory logical
tree representations were achieved with as little as between 2.5 and 10.4 percent of extra
manual modification.

In Blanco et al. [2011] URL structure as well as content features are used to build what
is presented a highly scalable algorithm. The title and abstract suggest this setup is
particularly suited for very large websites. For this paper 43 pages spanning 4 domains
were used. The focus on URLS is done by destructering the address in it’s domain and
subsequent slash (/) separated sub folders, which are referred to as “tokens”. All URLS
with the same arity (that is: the same number of tokens) are grouped and encoded.
This perspective is then combined with the actual text objects on the pages themselves.
Not just the occurrence of such objects are considered (“address”, “menu”), but also the
position in the web document. For these documents are considered as trees, and with
an XPATH query the element path from the root is taken as the value for comparing

8

an occurrence with others on different documents. The paper references quite a few
other works in advocating the need for efficiency when actual content is included in
the structuring, saying that “current state-of-the-art... ” (as of 2011) “ ...structural
clustering techniques do not scale to large websites” . (sections 1 and 7).

2.2 Clustering over multiple websites

In He et al. [2002] three clustering methods are examined for web documents: K-means,
multi-level METIS and normalized-cut. The research uses link references between pages,
co-citation structures and content itself. In order to consider link structure all documents
are considered as a graph, with links represented as the edges. Direction or frequency of
the links are ignored. Textual similarity is here taken from the entire HTML document
(not just anchor tags, or similar content containing elements). Tf.idf is used to determine
similarity. Consequently this is then used to gauge the strength of the connection be-
tween two documents; with links between more similar documents judged to be stronger
connections, resulting in a weighted graph. From here on out, graph edge-cut techniques
are used to partition the graph in order to ultimately have a clustering of the documents
represented in its edges.

In Flesca et al. [2007] document structure is used as well, but their approach goes about
encoding documents based on the occurrences of different tags as opposed to assuming
that “outside” structure is most indicative. Occurrences of tags are modeled as pulses
on a timeline and similarity inferred by analyzing the frequencies of the corresponding
Fourier transform. The motivation behind this approach is its attractive scaling function
of O(Nlog(N)) w.r.t. the amount of unique encountered HTML tags. This is presented
as performing rather better than techniques that were available at the time. An interest-
ing observation made, is that while it is easy to determine whether two documents have
identical structure, it is more difficult to find a measure in which to express the amount
of similarity. In stead of using graph-matching, looking at documents as time series is
proposed as the more efficient method. Before applying any of this setup, a method of
transforming the original HTML to valid XML is added, in order to deal with unclosed
or unmatched tags. This required validity being a consequence of having the nestedness,
as well as amount of child tags be input for the amplitude in the time series.

3 Approach

In the referenced literature it becomes clear that it is considered reasonable to expect
similar structure within pages belonging to a single website. Indeed, in Liu et al. [2004]
this consistency is the basis of believing a logical view can be generated, once it is
represented as a model. The ideas presented in Flesca et al. [2007] have arisen from the
fact that using graph-matching is quite an expensive method. Triggered by the idea of
“flattening” tree structure, and combined with the fact that the interest is not finding

9

similar content, but in fact similar (visual) layout, a different approach is presented here.
As pointed out in Flesca et al. [2007] equivalency is much cheaper to detect, than coming
up with a measure of similarity. This is why, with various variations, documents will be
compared as trees, for as long as they are similar, breaking of the comparison as soon as
they diverge. In order to verify the validity of document structure as indicator of pages
belonging to the same website, seven experiments are conducted on a sample set. This
section will give a high overview on the general approach and reasoning behind it that
was used to acquire statistical data on the combination components as well as comment
on the dataset itself.

3.1 Page structure

A distinguishing feature between web pages, is their layout. The reason to attempt to
infer similarity of layout from HTML structure, is the hypothesis that this layout is
reflected in the peripheral elements of the DOM hierarchy. An example of this is a web
site, in which all pages consist of a header and footer, as well as a menu on the top left.
All of which are wrapped in <div> tags with a specific name. In this case only looking
at the top level elements of the <body> tag, all pages with this structure have a DOM
tree which at its root and a few nodes in, is the same. Treating documents as trees
they will be compared node by node. Intuitively comparison will stop, when things get
“too different” (this will be expanded upon further in section 3.3 and more formally in
section 4 and section 5).

3.2 Data set

To truly demonstrate the ability of separating pages on the same Domain, it would
have been an obvious choice to select a large domain that houses a great number of
different websites and either label them by hand, or find some url structure that enables
automation. An approach less dependent on human labeling, however is to work with
websites on separate domains and keep the algorithm oblivious as to where pages be-
long to. In this fashion, all pages are already tagged for inspection. For this research
the websites that have been selected are housed at Mindconnect Webhosting, a shared
hosting company of which I was co-owner. Since web pages are always changing I have
included a link to an archive file which contains all referenced pages. This way results
can be reproduced and verified at a later time. For steps to reproduce as well as links
to required data see: section 8.2 in the appendix.

The set of pages P consists of 101 pages, spread across 20 domains in the domain set
D. This gives each experiment a set of comparisons C in the set of possible comparisons
in the set of pairs in P × P . In this paper all similarity metrics are designed to be
symmetric, thus only unique combination of pages are considered. Of which there are(101

2

)
= 5050.

10

3.3 Two parts per experiment

This paper describes seven experiments all consisting of two parts: A traversal strategy
and a similarity metric. A traversal strategy takes two trees as its input and from the
root node on, determines which two nodes to compare after that, and how to react given
the similarity of two nodes. A similarity metric takes two nodes and returns a judgment
on the similarity of those nodes. The reasoning behind and, the formal definition of,
both parts warrant their own sections which directly follow this one. The reason for
having an architecture that allows for swapping both parts is twofold: allowing for the
separation of measuring how indicative certain parts of the web documents are, and
through which lens. Secondly this makes it very easy for other researchers to implement
and test their own ideas concerning both which part of the document would be most
relevant and how to examine it.

4 Traversal strategies

In this section the various traversal tactics are discussed. These are ways in which the
DOM tree is walked through as well as the behavior when a mismatch is encountered.
The images used to visualize the elements that are going to be included for a certain
strategy might need a little elaboration. When two trees are compared, unless they are
the same document (which the algorithm prevents from happening in an earlier step),
the trees are not going to be isomorphic. However, this does not prevent the visualization
of the nodes that are deemed similar within a single tree. Consider that we have two
trees, T1, T2. Let Tij denote tree i, element j. Let Cij donate the children of that
element. Now each comparison is done with either the two root elements (T11, T21), or
two elements that have those roots as an ancestor through a line of descendants that
have also been deemed similar. If for any such a succession there is an equal number of
children in Cij(i ∈ {1, 2}) and they are all similar, there is no problem with representing
the path as a single tree. Else when comparing nodes in one direction (left to right, or
the reverse, more on this later) either we run into a mismatch, or one of the sides runs
out of nodes. Since in both cases no more similarity comparisons are done over elements
in Cij traversal is both commutative over T1 and T2 and the elements included in any
similarity score can be identified on either. This means that for traversal visualization,
one tree will suffice.

For each of the visualizations, the squares represent DOM nodes, or elements. The green
squares are elements that have been deemed similar by the selected similarity metric.
The red squares represent a mismatch, which can happen on three occasions:

• The nodes are dissimilar;

• T1 has one or more child-nodes to evaluate while T2 does not for this level;

• The converse of the previous statement.

11

Finally the green outline denotes which nodes are considered and thus count towards
the similarity score.

4.1 Simple Breadth-first

The first and simplest strategy is a basic breadth-first approach. Elements from the root
node are compared left to right, and when no mismatch is encountered, all elements are
then treated as new root nodes and the process continues recursively. In this strategy
a mismatch is either: not similar, or one of the two collections Cij , i ∈ {1, 2} runs out
before the other.

e13e12e11e10e9e8e7e6e5

e4e3e2

e1

Figure 2: Inclusion of elements in basic breadth-first traversal

Element e8 is not considered, because the run stops after a mismatch (see: algorithm 1).

Algorithm 1 Basic breadth-first

Require: isSimilar ← [function]
function breadthFirstCompare(e1, e2)

s← 0
while c1 ← e1.childElements.next() do

if c2 ← e2.childElements.next() then
if isSimilar(c1, c2) then

s+ +
similarElements.add([c1, c2])

else
return s

if e2.ChildElements.next() then
return s . don’t enter recursion

for i = 0; i < e1.childCount; i+ + do
s← s+breadthFirstCompare(e1.childElements[i], e2.childElements[i])

return s
result← breadthFirstCompare(T11, T21)

12

As can be seen, isSimilar is assumed to be defined elsewhere; Possible implementations
of such functions are discussed in the next section. The function is first started on
the two root nodes (the <body> element, of T1 and T2). If the iteration of the direct
descendants of those elements can terminate without the method returning, the process
will recursively continue on the collection of child nodes C11 and C21.

4.2 Exhaustive traversal

The basic breadth-first approach does not cover those page structures well that do not
have a top heavy level of hierarchical ordering. This is were the exhaustive traversal
comes in. Nodes are still considered breadth-first from left to right, but a mismatch only
ends comparisons on the children of an assumed shared parent between the two trees.

e13e12e11e10e9e8e7e6e5

e4e3e2

e1

Figure 3: Inclusion of elements in exhaustive traversal

Algorithm 2 Exhaustive traversal

Require: isSimilar ← [function]
function exhaustiveCompare(e1, e2)

s← 0
similarElements← {} . keep track of verified elements
while c1 ← e1.childElements.next() do

if c2 ← e2.childElements.next() then
if isSimilar(c1, c2) then

s+ +
similarElements.add([c1, c2])

else
break

for all [e1, e2] ∈ similarElements do
s← s+exhaustiveCompare(e1, e2)

return s
result← exhaustiveCompare(T11, T21)

13

As can be seen in algorithm 2, previously the traversal returned on either a mismatching
number of direct descendants, or a mismatch. This time the collection of nodes that did
match, is still considered and “exhausted”. Intuitively the algorithm collects nodes that
are considered matching, and stops on a mismatch only for that “level”. Then it takes
the collection and goes to look for more similarity.

4.3 Exhaustive right to left traversal

Right to left traversal is used to, given a particular similarity metric, test the hypothesis
that documents might be more similar on the bottom right, than the top left. One might
imagine a very simple header, and/or menu on the top, but an elaborate footer with
disclaimers and various links to for example contact information. It might be interesting
to see whether invariant site structure for a sample set resides not in the obvious place.

e13e12e11e10e9e8 e7e6e5

e4e3e2

e1

Figure 4: Inclusion of elements in exhaustive right to left traversal

14

Algorithm 3 Exhaustive right to left traversal

Require: isSimilar ← [function]
function exhaustiveRtLCompare(e1, e2)

s← 0
similarElements← {}
e1.childElements.iteratorIndex(e1.childCount) . reverse iteration
e2.childElements.iteratorIndex(e2.childCount)
while c1 ← e1.childElements.previous() do

if c2 ← e2.childElements.previous() then
if isSimilar(c1, c2) then

s+ +
similarElements.add([c1, c2])

else
break

for all [e1, e2] ∈ similarElements do
s← s+exhaustiveRtLCompare(e1, e2)

return s
result← exhaustiveRtLCompare(T11, T21)

Intuitively this method is very similar to the previous one. The only difference is the
order in which nodes are considered. Because of the different order nodes that where
previously excluded are now considered and vice versa!

4.4 Bidirectional traversal

Bidirectional traversal combines algorithm 2 and algorithm 3. As can be seen in fig. 5
each collection of children is approached exhaustively from the left and following that
from the right. Of course on any giving level nodes are still considered only once. So
when all nodes in a child collection are deemed similar, the right-to-left step, will simply
return immediately.

e13e12e11e10e9e8 e7e6e5

e4e3e2

e1

Figure 5: Inclusion of elements in bidirectional exhaustive traversal

15

This combined approach can reach elements which neither single directive approach
could have reached. Doing so has of course the risk of upsetting the balance between
excluding part of the structure and including part of the content, so it is probably best to
use with a very strict similarity measure. This effect will be explored in the experiments
section. Still this setup will test whether looking for overlap in structure in both the
top-left and bottom-right of a website yields better results then only considering either.

Algorithm 4 Bidirectional exhaustive traversal

Require: isSimilar ← [function]
function bidirectionalExhaustiveCompare(e1, e2)

s← 0
similarElements← {}
while c1 ← e1.childElements.next() do

if c2 ← e2.childElements.next() then
if isSimilar(c1, c2) then

s+ +
similarElements.add([c1, c2])

else
break

e1.childElements.iteratorIndex(e1.childCount) . reverse iteration
e2.childElements.iteratorIndex(e2.childCount)
while c1 ← e1.childElements.previous() do

if c2 ← e2.childElements.previous() then
if [c1, c2] /∈ similarElements ∧ isSimilar(c1, c2) then

s+ +
similarElements.add([c1, c2])

else
break

for all [e1, e2] ∈ similarElements do
s← s+bidirectionalExhaustiveCompare(e1, e2)

return s
result← bidirectionalExhaustiveCompare(T11, T21)

In this traversal strategy the two collections of child nodes, for every two parent nodes,
is iterated over from left to right, and from right to left. A mismatch, will stop one of the
iterations, but not the other. Of course, every combination of nodes is only considered
once.

16

5 Similarity Metrics

In this section the used metrics for DOM node similarity are discussed. Since the com-
parison of two nodes is much simpler than deciding how to traverse two non-isomorphic
trees simultaneously this section is going to be somewhat brief by comparison. All met-
rics here are binary; two nodes are either similar, or they are not. This property has
certain consequences for those aspects of similarity metrics that are usually discussed.
Since there is only similar or not similar, there is no concept of “distance”. Sometimes
when discussing similarity of documents, properties are mapped to a vector space, for
example viewing documents in terms of normalized word occurrences. Another conse-
quence that might follow somewhat trivially from viewing two nodes as being either
being similar, or not, is symmetry and transitivity. For each of the metrics discussed
below, certain properties of a node are considered, with the judgment of being similar
being a function of the matching of those properties.

5.1 Tag type matching

The first and most obvious matching strategy is comparing just the ’type’ of two DOM
nodes. This refers to the XML tagname by which the node is declared in the HTML
syntax. Examples are <div>, or <table>. In practice two <table> elements could
contain completely different contents. The assumption here is however, that if they are
contained in the same place in the hierarchy of the trees, this might be indicative of the
sharing a common structure.

5.2 Tag type and Element Id matching

Some websites might use <table>elements to define their layout, where in another by the
time such elements are reached is already presenting content. Such pages might then be
deemed “similar” if these element types are encountered roughly in the same place of the
tree. To counteract this somewhat, additional properties of the node can be considered;
in this case: the ’id’ attribute. This attribute is to be a unique yet optional identifier
for the element, should later reference or manipulation outside its original definition
take place W3Schools [2014]. The reason that it is interesting to even consider Tag
type without looking at the id attribute as well, is that this attribute is sometimes used
to differentiate between pages within the same website. A common example of this, is
adding id="currentPage" to one of the elements making up a navigational menu.

5.3 Number of child elements matching

The final metric that is used in the experiments, is comparing the number of direct
descendants. In other words nodes T1n and T2n are similar if the number of elements
in C1n is the same as those in C2n. The assumption being as before, that pages of the

17

same website, share some structure just before (and possibly after) their page specific
content. This metric can help determine whether looking at tree structure regardless of
the elements that make up that structure is indicative of pages belonging together.

6 Experiments

In this section various runs on the data and their results are discussed. An experiment
will consist of a traversal strategy (such as ”Exhaustive”) and a matching strategy (such
as ”Tag type matching”). The reasoning behind the combinations and interpretations
of the results will receive attention as well.

6.1 Numbers in the results

For each of the different combinations of options metrics are discussed indicating how
much promise a particular setup shows. These metrics are split between the positives
and negatives. When discussing positives and/or negatives, unless otherwise noted, this
will always concern true e.a. pre-labeled positives/negatives. Together these numbers
give a clear answer whether it is possible or not, to draw a line between the positives
and negatives given the scores the experiment has come up with, if not for all possible
data sets.

6.1.1 Average match score

The average number of nodes to be considered similar between two documents. For the
positive matches (those labeled beforehand), this ought to be considerably higher then
the negative ones. These numbers by themselves might be indicative of a combination
able to draw a line in the sample set, but not conclusive. The symbols used for these
metrics will be µ+ and µ− for positives and negatives respectively.

6.1.2 Standard deviation

The standard deviation among both the positive pairs, and the negative ones. This
metric can be used to evaluate distance between numbers pertaining to both sides. If
for example the scores of the positives and negatives are close, with a high standard
deviation, this does not bode well. The symbols used for these metrics will be σ+ and
σ− for positives and negatives respectively.

18

6.1.3 Minimum and maximum match score

The minimum and maximum score found for any two documents, both belonging to
the same domain, and from separate domains. For an experiment to be able to draw a
line between positives and negatives, these numbers should not overlap. Preferably there
should be multiple standard deviations between them. These metrics will be represented
by Min+ and Max+ for positives and Min− and Max− negatives respectively.

6.1.4 Mean standard deviation within domain

The mean of standard deviations computed for combinations of documents within the
same domain. The lower this number, the closer the similarity scores between two
arbitrary documents being a labeled positive match. This metric gives direct insight
into how much true positive scores within the same domain differ from each other for a
given experiment. Since the figure focuses on documents withing a domain, there is no
equivalent for true negatives. This metric will be represented by µ[σdom].

6.1.5 Mean delta of minimum and maximum score within domain

As the section title implies, this figure is calculated by taking the maximum similarity
score for each domain, and subtracting the minimum score that is still within that same
domain. Like the previous metric, this one gives a strong indication of the amount of
similarity between labeled positive matches and how much this is stable across domains.
This metric will be represented by µ[δdommin/max].

6.2 Graphs in the Results

The experiment results are visualized in multiple graph types to illustrate the perfor-
mance of a given setup. The first experiment: Basic breadth-first traversal with tag
type matching, has additional graphs, to clearly show additional perspectives of the re-
sults view. When looking at fig. 6, fig. 8 and fig. 9 it is clear to see that combinations
are mapped to positions on a two-dimensional plane, with the similarity score indicated
by the position on the Z-axis. Once this concept has been made clear, the subsequent
result section will not be providing these perspectives. In all graph types positives are
indicated by green plus signs (+), while negatives are indicated by red crosses (×).

6.3 Basic breadth-first traversal with tag type matching

The first experiment is going to be using the basic breadth-first traversal strategy speci-
fied in algorithm 1. The matching strategy is tag type matching, meaning that only the
DOM element type is considered for similarity.

19

6.3.1 Results

Statistic Positives Negatives

Average match score; µ+/µ− 78.7381 0.7165
Standard deviation; σ+/σ− 63.6031 0.9876
Minimum match score; Min+/Min− 1 0
Maximum match score; Max+/Max− 280 7

Mean stdev / domain; µ[σdom] 21.9179 na
Mean delta Min, Max; µ[δdommin/max] 53.4000 na

Table 1: Results; Basic breadth-first traversal with tag type matching

	0
	50

	100
	150
	200
	250
	300

si
m
ila
rit
y

si
m
ila
rit
y

Figure 6: Breadth-first/Tag Isometric

	1

	10

	100

	1000

	10000

	0 	50 	100 	150 	200 	250 	300

co
un

t

match

negatives
positives

Figure 7: Breadth-first/Tag Matches

Figure 8: Breadth-first/Tag Top

	0
	50

	100
	150
	200
	250
	300

si
m
ila
rit
y

si
m
ila
rit
y

Figure 9: Breadth-first/Tag Front

Because of the number of experiments, the graph format in which results will be pre-
sented for subsequent sections will just be the “frontal” view with positives and negatives
in a separate graph. This has the benefit of being able to better zoom in the spread
of the negative similarity scores, as well as being much easier to interpret in black and
white.

20

	0

	50

	100

	150

	200

	250

	300

si
m
ila
ri
ty

Figure 10: Breadth-first/Tag Positives

	0

	1

	2

	3

	4

	5

	6

	7

si
m
ila
ri
ty

Figure 11: Breadth-first/Tag Negatives

6.3.2 Interpretation

On the one hand, the average positive and negative scores µ+ and µ− are far apart.
When focusing on how negatives are judged, with both µ− and σ− less then 1, it seems
the conservative nature of basic breadth-first keeps most scores very low.

However still looking at Min+ there is more then 7 standard deviations worth of overlap
considering σ−. Coming from the positive side µ+ is only 1.13 standard deviations
removed from negative match scores.

6.4 Exhaustive traversal with tag type matching

This experiment uses the exhaustive traversal strategy, meaning that the DOM is ex-
plored both in depth and breadth. Whenever the binary matching function evaluates to
false, exploration stops for that branch. The tag comparison strategy simply evaluates
to true if two nodes of the DOM are of the same html tag type.

6.4.1 Results

Statistic Positives Negatives

Average match score; µ+/µ− 97.0762 1.8700
Standard deviation; σ+/σ− 57.6702 3.0552
Minimum match score; Min+/Min− 19 0
Maximum match score; Max+/Max− 280 16

Mean stdev / domain; µ[σdom] 11.4338 na
Mean delta Min, Max; µ[δdommin/max] 32.6500 na

Table 2: Results; Exhaustive traversal with tag type matching

21

	0

	50

	100

	150

	200

	250

	300

si
m
ila
ri
ty

Figure 12: Exhaustive/Tag Positives

	0
	2
	4
	6
	8

	10
	12
	14
	16

si
m
ila
ri
ty

Figure 13: Exhaustive/Tag Negatives

6.4.2 Interpretation

This experiment resulted in scores that have a separation point between the negatives and
the positives withMin+ andMax− not overlapping. µ− is 5.61 standard deviations away
from a positive score. For µ+ this is 1.41. Being less conservative then basic breadth-first
this setup performed better at differentiating between related and unrelated documents
on average, but worse in preventing unrelated documents from getting a higher score.
Within a domain, the scores were more stable, with µ[σdom] score being almost half as
low as that of the previous experiment.

6.5 Exhaustive right to left traversal with tag type matching

This experiment uses the exhaustive right to left traversal strategy, meaning that the
DOM is explored on each level from right to left. The tag comparison strategy remains
the same, in that it evaluates to true, if two DOM-nodes have the same type.

6.5.1 Results

Statistic Positives Negatives

Average match score; µ+/µ− 84.7905 1.1591
Standard deviation; σ+/σ− 61.4278 2.1332
Minimum match score; Min+/Min− 0 0
Maximum match score; Max+/Max− 280 15

Mean stdev / domain; µ[σdom] 23.2159 na
Mean delta Min, Max; µ[δdommin/max] 59.2500 na

Table 3: Results; Exhaustive right to left traversal with tag type matching

22

	0

	50

	100

	150

	200

	250

	300

si
m
ila
ri
ty

Figure 14: ExhaustiveRtL/Tag Positives

	0
	2
	4
	6
	8

	10
	12
	14
	16

si
m
ila
ri
ty

Figure 15: ExhaustiveRtL/Tag Negatives

6.5.2 Interpretation

This experiment shows that for the test set more overlap is in the top left, than in the
bottom right. This conclusion can be drawn from the lower µ+ and the much lower
Min+ scores. A direct consequence of the later, is complete overlap with the negative
matches. The Max+ being 280 is caused by the fact that for at least some combinations
of documents, they are structurally identical to each other when looking at just element
types as is done in the tag type metric. Finally, when comparing with the previous
experiment the µ[σdom] is more then twice as high, which means much more variation
within a domain.

6.6 Exhaustive bidirectional traversal with tag type matching

This experiment uses the exhaustive bidirectional traversal strategy, that combines al-
gorithm 2 and algorithm 3. This will be the final experiment in which the tag matching
strategy is used. Coming in from both directions at each level takes longer of course.
This experiment will test, whether it leads to more accurate results.

6.6.1 Results

Statistic Positives Negatives

Average match score; µ+/µ− 102.3857 3.0395
Standard deviation; σ+/σ− 55.1989 4.0250
Minimum match score; Min+/Min− 24 0
Maximum match score; Max+/Max− 280 24

Mean stdev / domain; µ[σdom] 11.7409 na
Mean delta Min, Max; µ[δdommin/max] 33.4500 na

Table 4: Results; Exhaustive right to left traversal with tag type matching

23

	0

	50

	100

	150

	200

	250

	300

si
m
ila
ri
ty

Figure 16: Bidirectional/Tag Positives

	0

	5

	10

	15

	20

	25

si
m
ila
ri
ty

Figure 17: Bidirectional/Tag Negatives

6.6.2 Interpretation

Looking at Min+ and Max− there is slight overlap which speaks against this method
being able to differentiate between the two classes. It is not surprising that overall
scores are higher, since more nodes get a chance at comparison. On the whole the
results in listing seem like a strict regression on all fronts compared to those presented
in section 6.4.

6.7 Exhaustive traversal with tag type and Id matching

This experiment uses the normal exhaustive traversal strategy from algorithm 2 and
uses both tag and id to determine similarity. Looking at both tag and id is of course
more strict and might pull positive matches where similar element types receive (perhaps
generated) id’s based on the content they contain. It will however also rule out unrelated
documents that happen to use the same style of formatting relying heavily on <div> and
 wrapper elements.

6.7.1 Results

Statistic Positives Negatives

Average match score; µ+/µ− 89.3810 0.0616
Standard deviation; σ+/σ− 56.6056 0.5640
Minimum match score; Min+/Min− 10 0
Maximum match score; Max+/Max− 280 7

Mean stdev / domain; µ[σdom] 14.2961 na
Mean delta Min, Max; µ[δdommin/max] 39.2000 na

Table 5: Results; Exhaustive traversal with tag type and Id matching

24

	0

	50

	100

	150

	200

	250

	300

si
m
ila
ri
ty

Figure 18: Exhaustive/Tag+Id Positives

	0

	1

	2

	3

	4

	5

	6

	7

si
m
ila
ri
ty

Figure 19: Exhaustive/Tag+Id Negatives

6.7.2 Interpretation

When looking at fig. 19 it is immediately obvious that for negatives this setup performs
significantly different than the experiments so far. Except for a few rare outliers all
match scores are either 1, or in most cases 0. Looking at the results in table 5 µ− and
σ− back this up nicely.

Conversely comparing fig. 18 with figures from earlier experiments yields only slightly
more conservative results. It’s interesting to note that when comparing with exhaustive
with tag matching (table 2), that although the σ+ is slightly lower, within a domain,
µ[σdom], it’s actually higher. Presumably the first is mostly influenced by the overall
lower scores, while the stricter similarity metric is causing a bit more variation within
domains.

This experiment is up until now the most promising combination with a clear divide
between most documents in the two classes.

6.8 Exhaustive bidirectional traversal with tag type and Id matching

This experiment uses the bidirectional traversal strategy from algorithm 4 and uses
both tag and id to determine similarity. For just tag matching, bidirectional performed
slightly and strictly worse than left to right traversal, this experiment test whether this
is the case for a more stricter similarity metric.

25

6.8.1 Results

Statistic Positives Negatives

Average match score; µ+/µ− 97.6000 0.5407
Standard deviation; σ+/σ− 55.4299 1.2572
Minimum match score; Min+/Min− 10 0
Maximum match score; Max+/Max− 280 8

Mean stdev / domain; µ[σdom] 14.2629 na
Mean delta Min, Max; µ[δdommin/max] 38.4500 na

Table 6: Results; Exhaustive bidirectional traversal with tag type and Id matching

	0

	50

	100

	150

	200

	250

	300

si
m
ila
ri
ty

Figure 20: Bidirectional/Tag+Id Positives

	0

	1

	2

	3

	4

	5

	6

	7

	8

si
m
ila
ri
ty

Figure 21: Bidirectional/Tag+Id Negatives

6.8.2 Interpretation

Again starting with the visual representation of the negatives in fig. 21 it seems that
while tag+id is an improvement over just looking at tags, bidirectional is a regression
compared to left to right. Positives get overall higher scores, but the significant change
is where the two meet; looking at the results in table 6 it is immediately obvious that
a higher µ− and σ− make it more difficult to distinguish between similar and dissimilar
documents.

6.9 Exhaustive traversal with child count matching

This experiment uses the left to right exhaustive traversal strategy from algorithm 2
and uses node child count to determine similarity. This metric looks purely at graph
structure by counting child nodes.

26

6.9.1 Results

Statistic Positives Negatives

Average match score; µ+/µ− 74.3810 0.2132
Standard deviation; σ+/σ− 61.7126 0.7708
Minimum match score; Min+/Min− 0 0
Maximum match score; Max+/Max− 280 7

Mean stdev / domain; µ[σdom] 21.1105 na
Mean delta Min, Max; µ[δdommin/max] 52.1000 na

Table 7: Results; Exhaustive traversal with child count matching

	0

	50

	100

	150

	200

	250

	300

si
m
ila
ri
ty

Figure 22: Exhaustive/Child Positives

	0

	1

	2

	3

	4

	5

	6

	7

si
m
ila
ri
ty

Figure 23: Exhaustive/Child Negatives

6.9.2 Interpretation

The look-ahead of counting childnodes proves to be stricter then examining tag types
for both negatives and positives. In both the table and in fig. 23 scores are lower than
those discussed in section 6.4. Comparing with tag+id similarity it fall short. It also
has low scoring positive outliers, which causes overlap between the two classes. Given
that child counting performs worse in the otherwise best scoring traversal method there
is no reason to explore it further.

6.10 Reflection

The hypothesis before doing any of the experiements, was that the structure of html
documents would be a strong indicator of documents belonging to the same website.
For even the arguably worst runs - basic breadth-first/tag and exhaustive/child count
- the scores were distributed in a way that calling them “indicative” doesn’t seem like
overstating. Looking at the best performing setup - exhaustive traversal combined with
tag and id matching - the divide becomes sufficiently clear, that it becomes feasible to
implement automated clustering. Of course it’s all well and good to be able to draw a
line between pre-labeled clusters, given the vast and ever changing nature of the internet,

27

it is perfectly conceivable that on average the measure in which documents are more,
or less similar to one another will change over time. The results are not perfect. Even
being able to prevent overlap in a small testset does nothing to guarantee this will be
the case for the internet at large.

Another challenge comes from the vast difference in which different websites seem to
overlap in structure within their own ranks. Especially structurally complex websites,
yield high scores, since it takes so long to get from layout to content. This effect can
well be seen in the extended result section in the Appendix. It is for this reason that
within this paper the properties of positives and negatives are kept so separate. For if
the combination of positive and negative matches proves very defuse, it might still be
the case that one might keep itself within boundaries with little variance. The best case
of this is visible in table 5. With µ− of 0.06 and σ− of only 0.56.

28

7 Conclusion

After definition, implementation, and interpretation of each set of results, this section
will reflect on whether the hypothesis is confirmed and where to go from here.

The hypothesis that was the basis for this research was that document structure is
indicative of pages belonging to the same website. I feel this has been shown to be the
case for the test set. Multiple experiments were able to draw a perfect line between
positives and negatives. The question one might ask now is: “Is document structure
sufficiently indicative to have practical applications?”. Well, for me personally it was,
and had, as I will discuss in the next subsection.

7.1 Impact and application

While not the initial reason for this research topic, one very obvious application was ap-
plying the setup to websites hosted on commercial servers to see if customers are playing
“fair”. By collecting documents through parsing web server logs, and eventually running
with the most successful combination - exhaustive traversal with tag and id match - we
were able to detect a few accounts that technically violated the terms of service. This
results in a domain with some documents being “quite” similar to each other and others
completely (scores lower than 2) dissimilar. In all cases upon human verification more
then one discrete website was being hosted (usually for testing purposes) on a single
service account.

Also, the diverse properties of matching websites can have other interesting applications.
If it is already known that a set of documents belong to one another, the part that they
have in common, could indicate where structure ends, and content begins, for example.

As for impact, I personally have no real interest in pursuing this topic further. It
might be that the results, and/or source code can someday help someone. Perhaps as
complementary to other document clustering work, or grouping pages on a single domain
together as separate bodies of information.

7.2 Future work and extensions

Possibilities to extend this research should, I feel, start with larger data sets. Comparing
the results with those presented in this paper. Also it could be interesting to combine
the methods used, with other similarity measures that look at content specifically. Thus
combining distance in feature space, with distance in structure.

29

8 Appendix

8.1 Extended result listings

In this section some extended results are printed that give more in depth view on the
performance of a particular combination of traversal and matching type.

Table 8: Extended results; Basic breadth-first traversal with tag type matching
Domain Mean µ Stdev σ Min Max
mindconnect.nl 152.40 7.3919 144 171
barbaragildevught.nl 90.10 68.7509 6 153
alerthygiene.nl 100.20 0.7483 99 101
deboschkens.com 77.33 3.4960 73 82
mindcontrolled.nl 26.00 1.5492 25 30
artesse.nl 41.20 12.5762 30 60
lotusvitaal.nl 78.40 27.6810 53 119
kookze.nl 18.47 11.2538 3 32
digipluggen.nl 92.60 4.5211 90 106
ttuin.nl 52.53 43.6744 17 114
financewerving.nl 101.67 2.6874 99 105
doelgerichtfysio.nl 20.70 26.0002 2 61
tintelingen.nl 179.33 85.2734 86 280
deputyit.nl 92.50 4.2249 88 100
voedselbank.my-mc.nl 41.40 30.5424 4 68
greenart.nl 54.70 63.4761 7 194
krebworkwear.eu 23.50 22.5000 1 46
sportprijzentiel.nl 18.33 3.2998 16 23
immotix.nl 44.10 7.3137 38 65
bi-kring.nl 207.90 11.3969 203 242

Table 9: Extended results; Exhaustive traversal with tag type matching
Domain Mean µ Stdev σ Min Max
mindconnect.nl 155.10 6.7000 150 173
barbaragildevught.nl 149.30 2.8653 147 157
alerthygiene.nl 107.60 5.5172 105 124
deboschkens.com 78.60 2.8000 75 82
mindcontrolled.nl 27.60 5.5714 25 44
artesse.nl 51.20 5.4918 46 62
lotusvitaal.nl 103.67 7.8117 98 125
kookze.nl 33.67 19.6254 22 105
digipluggen.nl 93.30 4.6701 90 107
ttuin.nl 105.13 8.2532 97 122
financewerving.nl 107.67 3.5434 104 115
doelgerichtfysio.nl 53.80 7.2083 45 61
tintelingen.nl 198.07 66.9731 139 280
deputyit.nl 92.60 4.4091 88 101
voedselbank.my-mc.nl 63.00 4.1231 58 68
greenart.nl 103.40 31.3949 87 194
krebworkwear.eu 33.17 14.2293 19 50
sportprijzentiel.nl 27.33 10.4030 19 42
immotix.nl 46.70 6.1652 43 65
bi-kring.nl 223.60 10.9197 209 242

30

Table 10: Extended results; Exhaustive right to left traversal with tag type matching
Domain Mean µ Stdev σ Min Max
mindconnect.nl 159.40 16.0947 148 206
barbaragildevught.nl 93.40 73.7837 4 184
alerthygiene.nl 95.80 1.4000 93 98
deboschkens.com 78.80 2.5087 76 83
mindcontrolled.nl 30.80 8.2195 25 44
artesse.nl 44.80 11.9482 31 63
lotusvitaal.nl 79.40 25.8710 54 114
kookze.nl 63.53 43.9680 2 115
digipluggen.nl 94.00 4.7329 90 107
ttuin.nl 56.87 40.1063 23 117
financewerving.nl 101.50 3.3541 100 109
doelgerichtfysio.nl 23.20 24.3549 1 59
tintelingen.nl 183.40 80.9047 98 280
deputyit.nl 92.60 2.5377 90 98
voedselbank.my-mc.nl 39.90 32.5836 0 68
greenart.nl 70.40 53.8576 25 197
krebworkwear.eu 32.67 12.6711 20 46
sportprijzentiel.nl 27.00 7.3485 18 36
immotix.nl 47.00 6.6182 43 63
bi-kring.nl 207.70 11.4547 203 242

Table 11: Extended results; Exhaustive bidirectional traversal with tag type matching
Domain Mean µ Stdev σ Min Max
mindconnect.nl 157.90 6.5338 150 173
barbaragildevught.nl 154.30 10.7056 148 185
alerthygiene.nl 108.70 7.1840 105 130
deboschkens.com 79.40 2.3036 76 83
mindcontrolled.nl 31.30 8.5563 25 45
artesse.nl 53.90 4.3232 49 62
lotusvitaal.nl 105.40 7.3194 101 125
kookze.nl 83.67 32.3948 24 122
digipluggen.nl 93.80 4.6217 90 107
ttuin.nl 105.20 8.3921 97 123
financewerving.nl 107.83 3.5785 104 115
doelgerichtfysio.nl 54.30 6.7978 46 61
tintelingen.nl 200.20 65.2301 139 280
deputyit.nl 93.60 3.8262 90 101
voedselbank.my-mc.nl 63.00 4.1231 58 68
greenart.nl 104.50 32.4815 87 198
krebworkwear.eu 43.17 4.3748 39 50
sportprijzentiel.nl 35.67 5.3125 29 42
immotix.nl 48.30 6.5582 43 66
bi-kring.nl 224.40 10.2000 209 242

31

Table 12: Extended results; Exhaustive traversal with tag type and Id matching
Domain Mean µ Stdev σ Min Max
mindconnect.nl 155.10 6.7000 150 173
barbaragildevught.nl 102.90 2.9479 100 111
alerthygiene.nl 92.90 8.3958 84 115
deboschkens.com 77.27 4.5821 71 82
mindcontrolled.nl 27.60 5.5714 25 44
artesse.nl 51.20 5.4918 46 62
lotusvitaal.nl 101.87 8.6708 97 125
kookze.nl 33.67 19.6254 22 105
digipluggen.nl 83.10 4.5266 78 95
ttuin.nl 75.07 46.5324 10 121
financewerving.nl 107.67 3.5434 104 115
doelgerichtfysio.nl 53.80 7.2083 45 61
tintelingen.nl 191.53 72.2559 130 280
deputyit.nl 92.60 4.4091 88 101
voedselbank.my-mc.nl 58.60 0.4899 58 59
greenart.nl 98.90 32.8495 80 191
krebworkwear.eu 31.33 13.5974 18 50
sportprijzentiel.nl 16.33 1.8856 15 19
immotix.nl 44.90 7.0349 39 65
bi-kring.nl 208.00 29.6041 172 242

Table 13: Extended results; Exhaustive bidirectional traversal with tag type and Id
matching

Domain Mean µ Stdev σ Min Max
mindconnect.nl 157.90 6.5338 150 173
barbaragildevught.nl 140.30 10.7056 134 171
alerthygiene.nl 102.40 7.3919 96 124
deboschkens.com 78.80 3.0155 75 83
mindcontrolled.nl 31.30 8.5563 25 45
artesse.nl 53.90 4.3232 49 62
lotusvitaal.nl 102.60 8.8979 97 125
kookze.nl 83.67 32.3948 24 122
digipluggen.nl 86.60 5.1614 81 101
ttuin.nl 76.33 47.4140 10 125
financewerving.nl 107.83 3.5785 104 115
doelgerichtfysio.nl 54.30 6.7978 46 61
tintelingen.nl 194.07 70.2002 134 280
deputyit.nl 93.60 3.8262 90 101
voedselbank.my-mc.nl 58.60 0.4899 58 59
greenart.nl 111.00 27.6478 98 193
krebworkwear.eu 41.33 4.2687 38 50
sportprijzentiel.nl 19.67 2.8674 16 23
immotix.nl 49.10 6.4413 45 66
bi-kring.nl 212.00 24.7467 182 242

32

Table 14: Extended results; Exhaustive traversal with child count matching
Domain Mean µ Stdev σ Min Max
mindconnect.nl 118.10 32.2752 76 152
barbaragildevught.nl 142.50 3.8536 138 147
alerthygiene.nl 92.30 5.2735 87 104
deboschkens.com 74.47 3.7035 70 81
mindcontrolled.nl 24.30 0.6403 24 26
artesse.nl 35.60 15.4415 23 56
lotusvitaal.nl 63.07 37.7756 28 111
kookze.nl 19.80 5.2051 15 31
digipluggen.nl 89.60 4.2708 87 102
ttuin.nl 47.33 44.8162 11 111
financewerving.nl 97.50 0.9574 96 99
doelgerichtfysio.nl 33.90 27.6819 0 57
tintelingen.nl 146.67 119.8147 0 280
deputyit.nl 88.20 0.9798 87 89
voedselbank.my-mc.nl 56.90 8.9045 46 65
greenart.nl 48.90 63.8850 1 190
krebworkwear.eu 21.50 21.5000 0 43
sportprijzentiel.nl 8.00 0.0000 8 8
immotix.nl 37.50 9.3622 27 61
bi-kring.nl 193.40 15.8695 188 241

8.2 Reproducing the results

In this section links to source code, database, aggregated data with plot files is linked. It
is possible to reproduce the results in this paper from any of the stages in the following
subsections, starting with those closest to the final result, and moving down to actually
running the setup on a similar, or even completely different set of pages.

8.2.1 raw data and plot files

The data of the various runs is stored in tab separated format for processing with gnuplot
(Gnuplot) (or indeed other plotting programs).

http://ethon.nl/universiteit/afstudeerscriptie-bijlagen/plots-and-data.zip

To reproduce the plots seen in this paper with gnuplot move into the sub folder and run
the gnu plot program. For example: Exhaustive-tagAndId. Now simply load one of
the prepared plots, by loading the config from the mailfolder like so:

load ’../3dscatter-iso.gp’

This will open a gnuplot window. For the 3dplots, rotation is possible by pressing and
holding the left mouse button.

8.2.2 database dump of captured websites

The websites were crawled from a generated pagelist. This pagelist is included with the
java source (see: next section). The result of visiting those pages is stored in a Mariadb

33

database. MySQL should work equally well, the two are sufficiently compatible for this
purpose. This was done so that for new runs the websites need not be visited again. It
also protects against changes, or indeed websites going offline. An export of the database
containing the pages can be found here:

http://ethon.nl/universiteit/afstudeerscriptie-bijlagen/database-export.sql

When running the java program, results are saved in a separate table, and can by
identified with their run_id. The SQL file in the link above generates everything required
to perform imports, runs and even exporting stats in LATEX format.

8.2.3 java source

The experiments were done in java. The source code required to (re)perform the exper-
iments is located here:

http://ethon.nl/universiteit/afstudeerscriptie-bijlagen/java-source.zip

In the root of this archive is a pagelist.txt which can be used, or altered to perform ex-
periments. All lines should contain a valid link to an HTML document. Lines beginning
with an # are ignored and can be used as comments.

To get the program working, simply load the structure as an eclipse project and modify
the Database.java util class with the correct database location and credentials.

No GUI was implemented, but running specific parts can easily be done from any java
environment. To begin, locate the Entry.java file and perform one of the operations
referenced there:

// uncomment one (or more) o f the l i n e s below to perform a
// c e r t a i n s tage o f the experiment .

// importPages () ; // saves the pages from a t e x t f i l e in a t a b l e
// getOracleData () ; // ge t s a l l p r e v i o u s l y imported pages
// performRuns () ; // performs d e s i r e d runs . See : f o r d e t a i l s
// getRunStats (1 1) ; //when given a runId p r i n t s s t a t s in LaTeX

34

List of Figures

1 Going from a collection of pages, to modeled website interaction. 7
2 Inclusion of elements in basic breadth-first traversal 12
3 Inclusion of elements in exhaustive traversal 13
4 Inclusion of elements in exhaustive right to left traversal 14
5 Inclusion of elements in bidirectional exhaustive traversal 15
6 Breadth-first/Tag Isometric . 20
7 Breadth-first/Tag Matches . 20
8 Breadth-first/Tag Top . 20
9 Breadth-first/Tag Front . 20
10 Breadth-first/Tag Positives . 21
11 Breadth-first/Tag Negatives . 21
12 Exhaustive/Tag Positives . 22
13 Exhaustive/Tag Negatives . 22
14 ExhaustiveRtL/Tag Positives . 23
15 ExhaustiveRtL/Tag Negatives . 23
16 Bidirectional/Tag Positives . 24
17 Bidirectional/Tag Negatives . 24
18 Exhaustive/Tag+Id Positives . 25
19 Exhaustive/Tag+Id Negatives . 25
20 Bidirectional/Tag+Id Positives . 26
21 Bidirectional/Tag+Id Negatives . 26
22 Exhaustive/Child Positives . 27
23 Exhaustive/Child Negatives . 27

List of Algorithms

1 Basic breadth-first . 12
2 Exhaustive traversal . 13
3 Exhaustive right to left traversal . 15
4 Bidirectional exhaustive traversal . 16

List of Tables

1 Results; Basic breadth-first traversal with tag type matching 20
2 Results; Exhaustive traversal with tag type matching 21
3 Results; Exhaustive right to left traversal with tag type matching 22
4 Results; Exhaustive right to left traversal with tag type matching 23
5 Results; Exhaustive traversal with tag type and Id matching 24
6 Results; Exhaustive bidirectional traversal with tag type and Id matching 26

35

7 Results; Exhaustive traversal with child count matching 27
8 Extended results; Basic breadth-first traversal with tag type matching . . 30
9 Extended results; Exhaustive traversal with tag type matching 30
10 Extended results; Exhaustive right to left traversal with tag type matching 31
11 Extended results; Exhaustive bidirectional traversal with tag type matching 31
12 Extended results; Exhaustive traversal with tag type and Id matching . . 32
13 Extended results; Exhaustive bidirectional traversal with tag type and Id

matching . 32
14 Extended results; Exhaustive traversal with child count matching 33

36

References

Lorenzo Blanco, Nilesh Dalvi, and Ashwin Machanavajjhala. Highly efficient algorithms
for structural clustering of large websites. WWW-2011, 2011.

Valter Crescenzi, Paolo Merialdo, and Paolo Missier. Clustering web pages based on
their structure. Data & Knowledge Engineering, 54:279–299, 2005.

Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, 2000.

Sergio Flesca, Giuseppe Manco, Elio Masciari, Luigi Pontieri, and AndreaPugliesea. Ex-
ploiting structural similarity for effective web information extraction. Data & Knowl-
edge Engineering, 60:222–234, 2007.

Gnuplot. Gnuplot homepage. URL http://gnuplot.info.

Xiaofeng He, Hongyuan Zha, Chris H.Q. Ding, and Horst D. Simon. Web document
clustering using hyperlink structures. Computational Statistics & Data Analysis, 41:
19–45, 2002.

Zehua Liu, Wee Keong Ng, Ee-Peng Lim, and Feifei Li. Towards building logical views
of websites. Data, Knowledge Engineering, 49:197–222, 2004.

Merriam-Webster. Merriam-webster dictionary on websites. URL https://www.

merriam-webster.com/dictionary/website.

Mindconnect. Mindconnect webservices. URL https://mindconnect.nl.

Oxford-Dictionary. Oxford dictionary on websites. URL https://en.

oxforddictionaries.com/definition/website.

W3Schools. Html 5.0 specification, 2014. URL https://www.w3.org/TR/html5/dom.

html.

37

http://gnuplot.info
https://www.merriam-webster.com/dictionary/website
https://www.merriam-webster.com/dictionary/website
https://mindconnect.nl
https://en.oxforddictionaries.com/definition/website
https://en.oxforddictionaries.com/definition/website
https://www.w3.org/TR/html5/dom.html
https://www.w3.org/TR/html5/dom.html

	Introduction
	Related Work
	Clustering within a single website
	Clustering over multiple websites

	Approach
	Page structure
	Data set
	Two parts per experiment

	Traversal strategies
	Simple Breadth-first
	Exhaustive traversal
	Exhaustive right to left traversal
	Bidirectional traversal

	Similarity Metrics
	Tag type matching
	Tag type and Element Id matching
	Number of child elements matching

	Experiments
	Numbers in the results
	Average match score
	Standard deviation
	Minimum and maximum match score
	Mean standard deviation within domain
	Mean delta of minimum and maximum score within domain

	Graphs in the Results
	Basic breadth-first traversal with tag type matching
	Results
	Interpretation

	Exhaustive traversal with tag type matching
	Results
	Interpretation

	Exhaustive right to left traversal with tag type matching
	Results
	Interpretation

	Exhaustive bidirectional traversal with tag type matching
	Results
	Interpretation

	Exhaustive traversal with tag type and Id matching
	Results
	Interpretation

	Exhaustive bidirectional traversal with tag type and Id matching
	Results
	Interpretation

	Exhaustive traversal with child count matching
	Results
	Interpretation

	Reflection

	Conclusion
	Impact and application
	Future work and extensions

	Appendix
	Extended result listings
	Reproducing the results
	raw data and plot files
	database dump of captured websites
	java source

