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Abstract
Security Operations Center (SOC) analysts are concerned with triaging alarms com-
ing from an Intrusion Detection System quickly but carefully. In most cases, how-
ever, scattering of information throughout multiple sources makes it difficult to do
so. We introduce a way to capture information from different sources into one struc-
tured dataset, by use of EDXML. We define the notion of Model Based Concept Min-
ing to retrieve entities defined by an ontology. By defining the ontology, we add
semantics to the data involved with security events, which make it possible for a
computer to understand the data. A framework for the process of going from raw
data to the presentation of the relevant information consists of four stages, two of
which are application dependent. We show how to implement these steps to create
a graph yielding the information necessary for an analyst to gather insights into the
context of an alarm, and to aid in making a justified decision on the risk an alarm
poses. The process of generating a structured data set and presenting the data con-
sists of four steps, which can be tailored to the needs for each application domain.
For the SOC domain, time constraints play a key role, and adaptations to the model
are necessary. A preliminary evaluation of evidence presented after applying the
model on real data has been conducted. This evaluation did not test the model itself,
but its use when analysing an alarm. This evaluation showed that there are potential
benefits in terms of speed and focus when analysing an alarm.
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Chapter 1

Introduction

1.1 Background

It is nearly 30 years ago that Tim Berners-Lee brought forward what is now known as
’the World Wide Web’ [3]. This has since led to a transformation of business activity
from paperwork to a fully digitised environment.

The last decade, digitisation of companies introduced new problems because valu-
able data needed to be secured. Attackers, competitors or even state actors are find-
ing ways to steal data continuously, with various reasons. With more people and
devices being connected, the risk of a breach is continuously increasing. While at-
tacks could lead to considerable damage, most companies and individuals try to
secure their networks and assets.

To be able to identify attacks as they happen, intrusion detection systems (IDS) that
continuously analyse data emerged. These systems record all sorts of data travelling
around a network, and capture irregularities. In the case of abnormal activity, the
system raises an alarm. This alarm is then looked at by an analyst, who tries to find
the reason why the system triggered an alarm. This is key to identifying whether
the activity found is indeed harmful and thus if actions have to be taken in order to
secure the data.

The analyst has to infer reasons for the alarm based on data presented by traffic
logs, vulnerability scans or any other piece of information that is recorded by the
system. To solve the puzzle, the analyst has to manually find interesting parts of the
logs, and trace back the path that triggered the system. In most cases, this requires
repeating a series of steps, which in turn makes it possible to make errors. Besides,
alarm fatigue may occur, due to the fact that there are a lot of false positives raised.

1.2 Related Work

IDS has been a focus of research for the last decades ([10]). However, most research
has looked at how to implement an IDS. We will deal with IDS and how they work
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in Section 2.1. Besides the advances in the field of information security, artificial
intelligence and data science are major subjects of research currently. Data mining
is being applied on a multitude of domains to gather insights in the data contained.
This research in related to that, as we will try to combine ideas from both fields into
the domain of a SOC.

1.3 Research Question

This research tries to find a way to assist analysts in judging whether an alarm is
a true positive or not, and try to find the root cause of an alarm by linking some
pieces of the puzzle together. The question to be answered is the following: To what
extent can model based concept mining be used to aid analysts in judging IDS alerts? The
following sub-questions guide this process:

1. How are alarms generated by an IDS?

2. What data is involved in judging an alert?

3. What is Model Based Concept Mining?

4. What is the current workflow for an analyst and how can this be improved?

1.4 Scope

The focus of this research lies in the post-processing of the raw event data generated
by an IDS in such a way that an analyst can perform his work more easily. As there
are a lot of different attack scenarios, each with its own characteristics, a selection
has been made on the following criteria:

• Prevalence

• Impact

• Availability of data

This selection is further discussed in Chapter 3.

1.5 Outline

In Chapter 2, we take a close look at IDS and their properties. Furthermore, we
show a couple of prevalent attacks that they try to uncover. Chapter 3 deals with
the data sources that are necessary within the research domain of a SOC, and shows
the use case that is taken as example to test the model. In Chapter 4, we introduce
Model Based Concept Mining and the mathematical properties of the model, as well
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Rules

Storage Analysis

LogsLogsLogs
Logs

External 
data

sources

Triage

IDS Focus

FIGURE 1.1: Outline of the processes from raw events to alarm triage.
The focus of this research is mostly based around the triage.

as the general sequence of steps necessary. Chapter 5 discusses alteration to the
general model specific to the SOC use case. Chapter 6 shows the results obtained
with the Proof of Concept, Glaukos. Finally, Chapter 7 concludes the findings and
give pointers to further research topics.
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Chapter 2

Theory

This chapter will be focused on identifying theoretical aspects of intrusion detection
systems and the way they are built up. This is dealt with in Section 2.1. Then, in
Section 2.2, types of prevalent attacks on networks will be shown. Lastly, a couple
of analysis methods for IDS data are introduced in Section 2.3.

2.1 Intrusion Detection Systems

As computer systems became more prevalent in offices, people started to identify
risks of intruding machines on local networks. The first ideas of an intrusion de-
tection system were proposed during the 1980s. In 1987, Dorothy E. Denning intro-
duced a model to capture events in such a way that rules could decide whether an
event was abnormal [10]. The proposed model dealt with the following entities:

Subjects The users of systems in a network.

Objects The devices that are being used by the subjects.

Audit Records Records that are generated when subjects (attempt to) perform ac-
tions on objects, for example a login attempt or file access.

Profiles Data that characterises a subject’s behaviour with regards to objects.

Anomaly Records Records generated when behaviour deviating from a particular
profile is detected.

Activity Rules Descriptions of actions that are taken when certain conditions are
met, like updating profiles or generating audit records.

The proposed model was a so-called expert system, because rules that would check
whether certain behaviour could be classified as abnormal had to be written before-
hand. In addition, the system described profiles which were used to characterise
patterns in the behaviour of subjects, in such a way that normal usage could be dis-
tinguished from possible intrusion activities.
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2.1.1 Types of IDS

On a high level, two types of intrusion detection systems can be identified [9]:

Knowledge-based Systems that use predefined rules or information that charac-
terise which activity should be labelled as an intrusion.

Behaviour-based Systems that depend on deviations from a learned model to clas-
sify new behaviour.

Knowledge-based systems accept any action that is not explicitly stated in the rules.
Thus, if the system triggers an alarm, the action performed should be anomalous.
However, due to the continuous evolution of attack patterns, it is difficult to keep
the rules up to date. If a new attack pattern is used on the system, and the rule base
is not yet updated, the attack might not be identified. One way to model rules is to
have a list of signatures for network traffic that are makred as harmful. If a signature
observed is present in the list, an alert is generated.

Behaviour-based systems use a different approach: instead of hard rules stating which
activities should trigger an alarm, they model a baseline that describes what normal
behaviour on the system looks like. When a pattern is found that deviates too much
from the baseline, the system triggers an alarm. However, it might not always be
the case that a deviation from normal activity is an attack. This introduces the risk
of false positives, which might pollute the alarm base. On the other hand, while
behaviour-based systems do not rely on a set of rules, they are capable of identi-
fying new attack patterns. The necessity is to have an accurate model for normal
behaviour, which is a complex task.

In some literature [16], the class of behaviour based systems is divided into two sub-
categories: anomaly based intrusion detection and stateful protocol analysis. Stateful pro-
tocol analysis is useful in the case of finding strange sequences of commands being
issued in a certain protocol. This might indicate that someone is trying to break in
via misuse of the protocol.

In most cases, alerts generated by an IDS have to be checked by analysts. To be able
to correctly identify whether an alert has to be investigated further, the analyst has
to find out why the alert was triggered. The advantage of using a knowledge-based
system is that it is easy to find the reason of the alert, namely the rule that was appli-
cable on the data. On the contrary, an anomaly-based system is less transparent as to
why an alarm was generated: it can only show the used statistics and measures that
generated the alert. Therefore, the latter is more difficult to process for an analyst.
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2.1.2 Scope of IDS

Intrusion detection systems monitor activity on a variety of devices. When the first
system was introduced, it took just a single device with multiple users into con-
sideration [10]. Disk accesses, file execution and login attempts were some of the
pointers being looked at. Such a system can be defined as host-based. Nowadays,
we have multiple machines tied together within a network, or even residing in the
cloud. This poses the challenge that not only one single device has to be monitored,
but data within a large network, and going in and out of the network, must also be
incorporated. Such systems can be classified as network-based. An advantage of this
approach is that more data is available for the creation of a baseline. This can also be
considered a disadvantage due to the complexity of generating the baseline.

One way to monitor a network is by means of packet sniffing. Information extracted
from network traffic includes IP addresses of the source and destination, source and
destination ports, the protocol used and the size of a packet. In some cases the
full raw content of a packet is scanned. While scanning the whole packet gives
the most information, it also has a high consumption of resources. Besides, privacy
issues may prevent data from being stored. In turn, only the source and destination
indicators might give enough information already.

To elaborate more on different connections, there exists a way to aggregate the pack-
ets coming through. One way to do this is by capturing IP flows, which will be
further discussed in Section 2.3.1. The idea is to combine packets with the same ori-
gin and destination over time, in order to extract information about the duration of
the communication as well as the size of the data being sent.

Another way to look at scoping of IDS is by using the OSI model [14]. This model
divides a communication system, such as a computer, into a set of 7 layers. Each of
these layers has its own function and protocols to communicate with other systems.
The example of packet sniffing would be performed on the third layer, also known
as the network layer. However, an IDS may also look at file access on a single host,
in which case it performs on the application layer. A depiction of the different layers
and the possible monitoring of an IDS can be found in Table 2.1.

TABLE 2.1: The OSI model of communication and the possible IDS
monitoring per layer.

OSI Layer Possible Monitoring
Application Layer Antivirus, syslog, resource access, user behaviour
Presentation layer

Session Layer Authentication attempts
Transport Layer Protocol Analysis (TCP/UDP)
Network Layer Packet inspection, firewall rules
Data Link Layer MAC Address monitoring
Physical Layer
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Sensor

IDS

FIGURE 2.1: Typical outline of a network with sensors which provide
input for the IDS. These sensors are attached to the different subnets

of the network.

2.1.3 Components

A typical IDS is split up into three main components: sensors, storage and an analy-
sis engine, as shown in Figure 1.1. First of all, sensors attached to the network that is
monitored are used to capture traffic and generate logs based on the observed traffic.
These logs are then stored in the storage mechanism, which in most cases would be
a database. Then, the analysis engine can process the logs by applying rules and cor-
relation techniques, producing alarms if anything is matched. The basic architecture
of a network being monitored by an IDS is shown in Figure 2.1.

Rules

The basis of IDS alert generation lies in the rules that define what behaviour is
anomalous. To exemplify how rules are built up, we use the rule syntax as proposed
by Roesch in his introduction of Snort, a network-based IDS [24].

The basic building blocks of a rule are as follows:

Action The action that needs to be performed if the rule matches. Either one of drop
(drop all traffic that matches the rule), log (log all traffic that matches the rule)
or alert (raise an alert if traffic matches the rule).

Matching Rule The core part of the rule that matches to certain traffic. This consists
of the protocol, the direction and the source and destination of the traffic.
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Optional Fields Additional flags that indicate for example what content should be
matched in the traffic or what message is applied to the alert if generated.

For example, we may be presented with the following rule, which indicates that all
traffic over TCP to port 80 in the destination IP range (10.0.0.1/24) should be logged:

log tcp any any -> 10.0.0.1/24 80

When we want to generate an alert based on the previous rule, given that it contains
the value malicious, one may add the following:

alert tcp any any -> 10.0.0.1/24 80 (content: "malicious";

msg: "Malicious traffic to a webserver detected")

The collection of rules, also called the rule base, is the main resource for a knowledge-
based IDS analysis engine for the creation of alerts.

2.1.4 Risk Assessment

In order to characterise the seriousness of an event, an IDS awards a risk score to an
alert, based on data that can be linked to the objects involved. This risk score may
be calculated using the following factors:

Asset value The importance of the asset involved. Given a server in a DMZ serving
web pages and a server containing secret data, the latter is of higher impor-
tance, and an alert generated for this asset may have a higher risk score than
the first asset.

Impact A threat of gaining unwanted privileges has a higher risk than the detection
malicious software that annoys the user by showing certain advertisements.

The risk score may be used by analysts to quickly assess which alerts should be
handled first to prevent damage, and which might not be posing any harm to a user.

Even though a single event on itself might not have a high impact, in certain cases
and sequences of events, the same event might be threatening. Thus, the recent
history of events is important in the assessment of new events.

2.2 Prevalent Attacks and Threats

To examine how analysis of raised alerts can be improved, it is useful to know what
kind of attacks are currently performed and what patterns trigger such an alert. The
following section explains the background behind attacks and depicts details of dif-
ferent kinds of network attacks.
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2.2.1 Motivation

In order to identify attacks, it is important to know why they are executed. Further-
more, to find the root cause of an attack, it is useful to know which actor initiated
the attack. There are a couple of reasons which are of importance nowadays, and
present the highest risks:

• An attacker might want to have some financial gain out of his actions. Exam-
ples of this type include the spread of ransomware, that persuades victims to
pay a certain amount of money in order to get their files back.

• Some attacks are performed to gather confidential data, for example from a
competitor (industrial espionage).

• Attacks may be performed in order to achieve widespread disruption of ser-
vices at a certain supplier.

• State actors could target vital systems in other countries to disrupt normal life,
e.g. causing power outage (cyber-warfare).

The above cases are most likely to be performed by an external attacker. On the other
hand, there exist attacks which are motivated by for example anger towards one or
more people. This gives rise to so-called internal attacks, where the attacker belongs
to, or has belonged, to the target. In most cases, the attacker then has access to a
number of devices and might have some privileges. During such attacks, there is no
real intrusion into the network, and instead only behavioural patterns might indicate
wrongdoing. In most cases, these attacks are mostly destructive or disruptive. The
attacker does not need financial gains, but wants the target to suffer losses.

Examples of internal attacks include those initiated by disgruntled employees. In
2006, an employee of UBS was convicted for planting a so-called Logic Bomb, a
piece of (malicious) software that is triggered when certain conditions are met, in the
company’s network. By doing so, about 2000 machines were rendered unusable. His
motivation was that he thought he did not receive a high enough bonus. According
to Verizon, about 25% of cyber attacks they had information about had been initiated
from an internal actor [30].

2.2.2 Network Attacks

There are a variety of different attacks, with effects ranging from a minor disruption
to full destruction of data and services. Now, the attacks which currently pose the
highest risk are identified and explained.
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(Distributed) Denial of Service

Among the most destructive attacks belong the (Distributed) Denial of Service, or
(D)DoS, attacks. These attacks are extremely difficult to protect against, because the
purpose is not to invade into a network, but to disrupt the systems so that normal
operation becomes impossible, involving the destruction of machines in some cases.
Examples of methods include:

Reflection attacks Reflectors are defined as hosts that always reply with a packet
if they are sent a packet [20]. Attackers can misuse this property by sending
large volumes of requests to such machines, after which the reflected answers
are sent to the targeted machine.

Amplification attacks An advanced form of reflection that uses a property found in
some protocols that drastically increases the response size.

Protocol Exploit attacks Attacks that exploit properties which cannot be avoided
due to the nature of a protocol. An example is the TCP protocol, which in-
volves the three-way handshake (SYN, SYN, ACK) to start a connection. The
essence of this attack is that a large amount of SYN-packets are sent by the
attacker, but are never acknowledged. The server waits for the acknowledge-
ment, and in the meantime its buffer is used up. Eventually, the server will be
overloaded and stop accepting new requests.

The key feature of DDoS attacks is that they flood a network with large volumes
of traffic. The difficulty of resolving such an attack lies in the ability to distinguish
legitimate requests from malicious traffic.

To reach the desired amount of traffic, a pool of hosts needs to be set up, called a
botnet. Machines belonging to a botnet, also called bots, are usually infected personal
computers, and users generally do not detect misuse of their systems. The bots
are connected with a controller, operated by the attacker, that sends commands to
the bots. With the rise of Internet of Things (IoT) devices, the size of botnets has
grown, intensifying the volume of traffic used in attacks. The latest DDoS attacks
(February 2018) amounted to up to 1.7 Tbps of traffic being sent to a network by
means of a reflection attack. [17]. To enable reflection attacks reaching the targeted
system, attackers spoof requests by inserting the target IP address as the sender of
the packets. In that way, the reflected data is sent towards the targeted machine.
Outlines of (reflection) DDOS attacks are shown in Fig. 2.2 and Fig. 2.3.

ISPs play an important role in the possibility of launching an amplification attack.
In most cases, the spoofed IP address belongs to a server which is under control of
a different ISP. However, back in 2000, Ferguson and Senie proposed a technique
called network ingress filtering to counter spoofing of IP addresses [12]. It works by
checking whether the source of the IP packet is part of the network managed by the
ISP, blocking traffic if it does not pass this simple test.
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FIGURE 2.2: Simple outline of a DDOS attack. The attacker has con-
trol over a number of bots, which he commands to send large vol-

umes of data to a single target.

Espionage

Another kind of attack is motivated by interest in confidential information. Instead
of sending huge volumes of traffic to a target machine, this attack is carefully set up.
The attacker tries to find some vulnerabilities which can be used to infiltrate into the
target network. A common used technique to find the vulnerabilities is to perform a
port scan to identify which applications and protocols can serve as a starting point
towards attacking a system.

To be able to control the targeted machine, the attacker may set up a reverse shell
connection to their own machine in order to transfer acquired data. Another ap-
proach is installing key loggers, which may be used to steal authentication creden-
tials, so that the attacker himself may login into secure systems.
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FIGURE 2.3: Outline of an amplification DDOS attack using a spoofed
packet. The vulnerable server receives a package it beliefs it got from
the target. However, one of the infected bots spoofed the target’s IP
address. The server sends a larger response to the target device, using

up some of the bandwidth.
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Phishing

One attack group with widespread effects are phishing attacks. These attacks can be
easily deployed and can be targeted at anyone. The main goal is to steal credentials,
or other secret information. It is one of the attacks that are based on the idea of
social engineering, in which users are tricked into thinking that the communication
performed happens with a trusted party. Phishing attacks are mostly carried out by
sending e-mails to staff containing links to websites that look like the original one.
In reality, these websites are set up by the attacker, and all information sent can be
acquired by the attacker before sending the data to the real website. By doing so,
the end user might not notice that their data has been stolen. By stealing credentials,
attackers could provide themselves access to systems within a network, and might
thus be able to get hold of confidential information.

2.2.3 Sequence of Events

A typical attack consists of the following stages:

Reconnaissance In this phase, the attacker starts to search for vulnerabilities in any
of the systems on a network. This typically involves a port scan, enumerating
all available ports on a target machine, and checking which applications reside
there.

Intrusion The second phase involves the real intrusion into the attacked system,
using a vulnerability found during the reconnaissance phase.

Insertion In order to control the targeted machine, the attacker needs to insert some
file, like a worm, virus, root-kit or any other type of malware, to gain control
over the device.

Extraction An attack is most likely motivated by the retrieval of certain data. During
the extraction phase, the attacker tries to retrieve the data they are looking for,
and copy it to another machine.

Clean-up Finally, the attacker wants to make sure that no traces are left of his in-
trusion. In the final step, they destroy any evidence that could point towards
them. This makes it more difficult to find the cause and initiator of the attack.

There exist different ways to identify intrusions for each of the stages. The reconnais-
sance stage typically uses port scans, which generate traffic to one or more servers
and ports within a short period of time. This traffic can easily be identified by an
IDS and will most likely trigger an alarm. When uploading certain malware, the
files come with a signature that can be easily identified in the case of a well known
piece of malware. Again, an alarm is raised stating that some form of malware has
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travelled over the network from A to B. Finding these patterns for each of the stages
can help build rules for an IDS.

The outlined sequence of events can be illustrated using the Diginotar case as an ex-
ample [22]. Diginotar was a provider of digital certificates for various governmental
parties in The Netherlands, and was recognised as a Trusted Third Party by multiple
vendors. A security breach meant that rogue certificates were issued, which lead to
a man-in-the-middle attack on Google-credentials.

The point of entrance for this attack were two servers that were running outdated
software vulnerable for know exploits. It is likely that the attacker found these entry
points using a scan. This marks the reconnaissance phase. When the attacker found
the vulnerabilities, he found a way to enter the systems and get into the target net-
work, thus performing the intrusion. In this specific case, the attacker then had to
find their way into another segment of the network. This may be regarded as an-
other reconnaissance step, which was used to find a way into the secure part of the
network.

The insertion phase started when the attacker had access to the secure part of the
network. They crafted a script that was capable of creating new rogue certificates,
which they then used to initiate a Man-in-the-Middle attack. In this particular case,
the clean-up phase may have been composed of the removal of some access log files,
which may have indicated the intrusion. However, a notable feature of this incident
was that the attacker left a signature in the form of comments in a configuration file,
detailing his actions.

2.3 IDS Data Analysis

Data generated by an IDS can consist of multiple log files, each of which contains
knowledge of a certain part or protocol used on the system. Combining this data
is essential in finding the cause of an alert or when gathering forensic evidence.
In recent years, multiple ideas on how to process and interpret data have been in-
troduced. This goes along with the rise of the field of Data Mining and Machine
Learning. Below, some of the ideas presented are introduced.

2.3.1 IP Flows

Network logs often contain information about which machines are connected. Not
only is it interesting to see which machines are connected, but also when and how
long machines are connected. These details might show a possible intrusion in the
network. To structure this data, the concept of IP Flows was introduced. An IP
Flow is described in the IP Flow Information Export (IPFIX) protocol as a set of IP
packets that are captured in the network within a set time interval, sharing a set of
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common properties [7]. Using these flows, one can aggregate multiple records into
a single record describing activity over time and export this for later analysis. A
widely known implementation of flow export is Netflow, which was developed at
Cisco [6]. Not that IP flows only consist of metadata about the connections.

Monitoring flows consists of four stages [13]:

Packet Observation Collect the packets, and apply some pre-processing steps. This
might include timestamping and sampling.

Flow Metering & Export Aggregation of packets into flows happens here. Descrip-
tive properties of the flow are attached. These include but are not limited to:
source and destination addresses, protocol identifier, number of packets in the
flow.

Data Collection A Flow Collector handles the flow data and performs some further
processing on them, like anonymisation and compressing.

Data Analysis The flows are analysed to find evidence of threats and to monitor the
performance of services on the network.

The final step, data analysis of flow data, is of most particular interest for intrusion
detection. The data obtained can be used in two ways:

1. Forensic analysis: Create an overview of who communicated with whom, at
which time and so forth. This can be used as evidence for certain behaviour.

2. Model creation: The other way around, flow data can serve as a model of anoma-
lous network behaviour. This can then be fed to the IDS.

In short, aggregating traffic information from network data can help give a better
understanding of traffic patterns through the network over time. Besides, the size of
data to be analysed can be lowered without losing a lot of information.

2.3.2 Graph-based Approach

As shown in Section 2.2, attacks go through a series of phases in sequence through
time. To find the root cause of the attack, one has to traverse through the sequence
upward. A way to model this sequence of events is by generating a graph. Wang and
Daniels have described an approach on handling the raw network data for forensic
analysis [32], specifying IDS data as a main source of information for forensic ana-
lysts. They classify evidence generated from data in two categories:

Primary evidence Direct indications of attacks or violations.

Secondary evidence Information that does not on its own represent attacks, but
could in certain contexts be an indication of malicious activity.
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Before analysing the data, it has to be normalised. While network traffic data is con-
sidered, it is easily deduced which features play a key role in the raw data, namely:

• Source/Destination IP

• Protocol

• Source/Destination Port

• Timestamp

Besides these base features of network traffic, features special to alert formats in IDS
may be introduced. In the case of Netflow [6], for example, it would be likely to
incorporate all properties of a flow.

Wang and Daniels also propose to introduce hyper alerts to aggregate raw data [32].
These hyper alerts then correspond in a one-to-many relation with raw alerts. It may
be useful to append a mapping from the raw event data to the hyper alerts.

Aggregation of the raw events into hyper alerts is in essence based on alert corre-
lation as proposed by Valdes and Skinner [29]. Several features are extracted from
the raw alerts to classify in which hyper alert they must be contained. Features in-
clude: the address pair, the attack class of the alert, and events that occurred within
a certain set time window.

Graph Model

Wang and Daniels describe the model of the evidence graph [32] as a quadruple
G = (N, E, LN , LE) with:

N Set of nodes, describing a single entity in the network.
E Set of directed edges, describing a piece of forensic evidence gathered.

LN Labels that indicate the attributes of nodes.
LE Labels that indicate the attributes of edges.

There are different levels at which entities can be described. In most cases, it is useful
to model an entity as a single host or device in the network, as this can be identified
quite simply (IP or MAC).

Some properties of nodes and edges describe their significance within the analysis.
They are as follows:

Node Value A value 0 ≤ v ≤ 1 describing how important the node is as an asset
within the network. For example, a web server with the task of hosting a web-
site within the DMZ has a lower value than a database server with corporate
data in the private network.

Edge Weight A value 0 ≤ w ≤ 1 representing the seriousness of the evidence.
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Edge Relevance A three-valued descriptor of the relevance of the evidence, being
either non-relevant or false positive (0), non-verifiable (0.5), or relevant (1).

Edge Host Value Binds the importance value of the edge to its connected nodes.
Displays the maximum value of the node values it is connected to: Ve =

max(Vsrc, Vdst)

Based on the above information, a graph can be constructed showing each of the
properties defined. For each of the edges, a priority score p(e) is calculated, as a
product of the weight, relevance and host value of edge e. This allows for a quick
analysis of all the evidence gathered, by conveying which information is most rele-
vant for the attack.

A typical issue that comes up with IDS is the high volume of alerts. Analysts are
thus presented with the task of properly assessing which alerts are worth looking
at. Problems that might arise from generating a graph with incorrect values for
evidence priority and node importance is the neglect of some evidence. It might
well be possible, in this case, that the overlooked evidence is of vital importance,
although obtained from a lesser prioritised system.

2.4 Conclusion

This chapter introduced the main theory behind intrusion detection systems and the
way they are used. Furthermore, some of the attacks performed on a network have
been outlined. Finally, a number of analysis techniques that can be used to build
IDS have been shown. With this theory, the next sections will try to delve deeper
into what data is generated and how this data can be transformed in such a way that
an analyst can quickly grasp the background behind an alert.
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Chapter 3

Current Situation

This chapter deals with the observations done within a single working environment
of SOC analysts. The first section deals with the workflow that is currently in use.
Section 3.2 shows the various sources of information available and how the data they
deliver has to be transformed for later usage. Finally, Section 3.3 deals with the use
cases that will be looked at throughout the rest of the research process, based on the
acquired experience.

3.1 Current Workflow

To understand the way in which analysts can be supported, it is useful to know the
approach of handling an alarm. Therefore, an analysis of the processes that are per-
formed in the SOC was carried out. The SOC employees are grouped into multiple
tiers that play a role at different moments in time. When an alarm is triggered, a
tier-1 analyst has to start a process of triage in order to identify the seriousness of an
alarm. The triage consists of checking the information that accompanies the alarm,
after which the decision is made whether or not the alarm is a false positive. The
triage is thus a vital step in the process, as an incorrect analysis could lead to serious
breaches. It thus requires focus from the analyst.

To be able to assess the alarm, the analyst gathers information from multiple sources,
which is a time consuming operation. This introduces a clash of interests. On one
hand, the analysis has to be performed as precise as possible, while on the other it
also has to be performed within a short period of time. Because gathering informa-
tion from multiple sources is time-consuming, an improvement can be made here.

Based on the triage, there are multiple follow-up steps. The first one is that the alarm
is ignored, either being irrelevant or being a false positive. A false positive means
that the alarm triggered by the IDS really should not have happened based on the
evidence presented. An irrelevant alarm means that the IDS itself has correctly trig-
gered the alarm, but that the alarm can be ignored given the circumstances defined
by the client. This difference can be vital in later analysis of the alarm.
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Further analysis Inform other parties

False Positive

Inform

FIGURE 3.1: Overview of the phases when an alarm is triggered

Secondly, there is a possibility that the tier-1 analyst cannot capture enough infor-
mation to make a decision. In this case, the alarm is passed on to a tier-2 analyst,
who can then spend more time gathering all necessary information and make a well
thought decision.

The last option is that the alarm is handled as a true positive. In this case, the follow-
up steps are based on the importance and risk of the alarm. The possible steps in-
clude notifying the client up till escalating directly and handling the alarm as a crisis.

3.2 Data Sources and Preprocessing

While the raw data may provide detailed information of what is going on, it is useful
to pre-process the data for further usage. This might mean that some information is
lost along the way. However, for analysis purposes, it is important that all the data
can be processed as if it were the same. So formatting the data to a predefined model
is more consistent. In order to create a conforming model, we first identify the data
sources.
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3.2.1 Data sources

There are a couple of data sources that could be used in a SOC. We discuss the vari-
ous types of data sources, and how they can be combined to create an alarm. Some
examples for each of the sources are given.

System/Application Log Files

The main source of data for security analysis are log files. In most cases, these con-
tain the raw events that happened while using certain applications. They provide
the detailed low-level performed tasks, as well as errors or warnings when illegal
operations are performed. Likewise, certain security applications, like anti-virus
software, may log actions they perform on untrusted applications and possible mal-
ware samples. This class of data is typically host-based, thus providing information
about a single machine. Collectors of various log files include the Windows Event
Log on Microsoft systems, and syslog on UNIX-based machines. From these, one
can check on login attempts, file accesses, and errors that occurred when operating
the machine.

Network Traffic Logs

Besides host-based log files, another important source of information are the net-
work logs. These contain information about all traffic from and to a network, rang-
ing from protocol checks (DNS, FTP, HTTP) to application level logs (MySQL) and
certificate information. All this information combined in a proper way can give a
detailed insight in the processes that take place in a network. An example of a net-
work log collector and analysis tool is Bro, first described by Paxson in 1999 [21]. Bro
consists of two elements: an event engine that processes low level data into higher
level events, as well as an interpreter that can provide handling of events.

Another source of information for network traffic are firewall logs. These may pro-
vide insight in blocked connection attempts, and size of data flows. For anomaly
based detection, mainly the latter comes in handy, while patterns may be observed
on a day-to-day basis. Anomalies in sizes of traffic might indicate malicious activity.
As discussed in Section 2.3.1, network traffic can be aggregated to create a high-level
overview of connections and data. This can also provide information to an analyst
in how data has been flowing to, from and through a network.

Vulnerability scans

Information that is of vital important when assessing risk of exploits is knowledge
about which vulnerabilities are present on assets in a network. Scanning assets the
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way that attackers do in order to find gaps in security is useful in finding and re-
solving the problems. Furthermore, data about lingering vulnerabilities on systems
in a network can provide information to the analyst as to what might have caused
an intrusion in the first place.

In addition, an analyst may be able to check whether an asset is vulnerable to a
certain attack, when an attack pattern is found to be performed on an asset. For
example, when an asset is running a UNIX-like operating system, attacks specific to
the Windows platform will not be effective. Combining this knowledge may assist
the analyst in resolving such an event quickly.

Examples of vulnerability scanners are Nessus and its open source descendant Open-
VAS [18]. Both can be used to scan systems for misconfiguration, vulnerable appli-
cation versions reachable at open ports or lingering default passwords. The purpose
is to mimic actions an attacker might perform, in order to be able to harden the sys-
tem in advance. A report of the found problems can be produced as a source of
information for analysts and system engineers.

Open Source Intelligence

Besides the data sources that are within a network described above, there are some
additional helpers which may be used to gather information. For example, when
presented with a file hash, one may check whether this hash is known in any anti-
virus database. Open source intelligence platforms exist which gather information
presented by the community about new exploits or indicators of compromise (IoCs)
that can be used to assess alarms.

A number of tools that may be used by analysts currently include the following:

VirusTotal When presented with a suspicious file, the analyst can send the file, or
an URL, to VirusTotal, which then returns whether the file is classified as clean
or not in a number of virus scanners [31].

Threat Intelligence services To check whether a device is known to be hostile, an
analyst might turn to data available through threat intelligence services, which
are mostly fed by members of the information security crowd.

Web sandboxes Sandbox for requesting a specified URL. These tools can show an
overview of the content on the page, the redirects that occurred, and informa-
tion on the location of the server. An example of such a tool is urlscan.io. [28].

In addition, analysts use tools to find out to which domains and companies IP ad-
dresses belong by using Border Gateway Protocol and Who-is data, which are pub-
licly available. It would be useful to do these checks automatically instead of the
analyst needing to perform the checks manually, while it would speed up investiga-
tion of alerts.
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Event correlation

Considering all data sources on their own may provide a description of the events
that happened, it may be more useful to combine them all, and infer events based
upon that. Event correlation is used to combine these low-level events, that them-
selves might not indicate wrongdoing, but together may show a possible risk. For
example, consider an event where a login attempt is made, but fails. These attempts
on their own may not indicate a malicious attack. When the correlator sees 200 more
failing login attempts, it might indicate a brute-force attack taking place on the ac-
count. Then, in the network logs, a log entry shows that the login attempts have
taken place from a location out-of-office. The event correlation engine may then
conclude that this pattern is indeed malicious, and should be taken care of. Combin-
ing information from multiple sources may thus indicate an attack with higher risk
than what the events on their own might have indicated.

SIEM

We can combine all of the above into one single package, which is called a SIEM,
or a Security Information and Event Management tool. This tool can be used to
collect all the different log data, perform correlation on the logs, and raise alarms
to analysts. Common examples of SIEM software include Alienvault [19], Splunk
[26] and ArcSight [1]. They provide an environment to perform asset management,
compliancy tracking and alarm generation.

A SIEM is likely to be the first platform an analyst depends upon when receiving
an alarm. Based on the information they find to be linked within the alarm, further
analysis is conducted into what may have caused the alarm. For that, they mostly
utilise the logs that have been described above themselves, because they provide the
best context.

Analysis of SIEM alarms

The problem that is currently noticed in the SOC lies around the fact that information
that is needed to analyse an alarm generated by the SIEM is spread through all the
different log sources. Furthermore, the alarm only shows the events it is directly
based upon. In some cases, information about what happened just before or after
the events is of importance as well. This information can typically be found in the
various log files named earlier. The goal is to provide this information to the analyst
given the alarm, so that the analyst does not have to search through the different log
files themselves to find indicators of malicious or otherwise remarkable behaviour.

The data we can gather from the SIEM and that we can use as pointers for searching
the data are the following:
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Timestamp The timestamp of the alarm and the underlying events that were corre-
lated to generate the alarm.

Source and Destination The source and destination involved in the events that gen-
erated the alarm. This includes the IP addresses and ports that sent or received
traffic.

Rule signature The signatures of the rules that generated the alarms. This may be
based on the rules described in Section 2.1.3. In some cases, the rules triggered
contain information to which exploits are involved, and what applications are
targeted.

Past Events: Issue Trackers

Besides checking the context of the current event, it may be useful to look at similar
cases that have happened in the past. There are popular software tools for tracking
issues in software projects, but can also be used when tracking IDS alarms. Popular
tools for tracking issues are JIRA and Redmine. Tickets from these issue trackers
provide information about who handled past events and how previous cases of a
certain alarm have been resolved. Also, it is useful to see who has knowledge of a
certain type of attack. Data from issue trackers can thus provide further details to an
alarm, and pointers about how to deal with an alarm accordingly.

3.2.2 Preprocessing

All of the above explained sources define their own logging language. It is thus
useful to transcode all the data into a single format for analysis.

At Northwave, Takken has proposed a XML format that is able to add semantics to
any kind of data, called EDXML [27]. EDXML (Event Dataset XML) has the advan-
tage that it can handle any information, but in a structured way. Also, being based
on XML, it is easy to query and also traversable.

Although other options for preprocessing data into a structured set may exist, we
proceed with this option as it is already available in the environment in which the
research is conducted.

The building blocks defined within EDXML require some background information.
An EDXML file consists of one or more ontologies, which describe the layout of the
underlying events. Events are the main data model within EDXML. An event is
described to be "an environment providing coherence and context for a group of one or
more objects" [27]. Events are grouped by event type and event source into an event
group. An event type could be, for example, a phone call. The event source might be
specified as the object or instance that created the event.
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Noteworthy is that the ontology defines what information is present in the underly-
ing event groups and events. Besides, it gives meaning to the data included in the
events, the semantics. This allows for machines to interpret the data. In Chapter 4, a
more detailed explanation of an ontology and the usage of EDXML are given.

3.3 Use Case

Based on the observations in the SOC, two distinct events are being looked at in
the remainder of this research. The workflow analysis described in Section 3.1 was
extended with checking how a Tier-1 analyst processed alarms. The analysis in-
volved with over-the-shoulder monitoring of the Tier-1 at duty, by checking which
actions were performed when analysing an alarm. This analysis has been extended
by hands-on experience as a Tier-1 analyst by processing alarms myself.

Case: Phishing

During the workflow analysis, I found that the alarms that cost the most time are
related to phishing. First, the information given by the alarm had to be processed,
and involved objects have to be identified. The IP address belonging to the host
suspected of phishing that was noted in the alarm has to be investigated. First, a
scan of the URL was made to check what type of web page was accessed. Then, to
identify whether it indeed was a phishing attempt, the analyst had to find out how
the connection was established, and what redirects were made during this process.
Finally, he had to check whether there had been an exchange of confidential data to
the other server. This requires looking in multiple logs to establish which protocols
were used, to which sources, and how much data was sent during the connections.
Checking for all this information requires opening multiple sources, and switching
context a lot of times. This takes up a lot of time for the analyst.

To illustrate such a case, consider the following: an alarm is triggered on the rule
signature below:

alarm tcp any any -> any 80 (content: "bank.com-")

This rule may trigger when a user visits a website using an URL that they think is
for the website www.bank.com. However, the signature states that the URL is not fin-
ished, due to a dash being appended to the domain. This may be an indication of
phishing, while the user may be tricked into visiting a different website than was in-
tended. For example, the resulting URL might look like www.bank.com-malicious.com.
The domain that the user is thus sent to is com-malicious.com. If the user is presented
with a login screen, they might give away credentials. Therefore, in such a case, the
analyst would like to know whether an actual connection was made and whether
possible confidential data was leaked.
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In Chapter 5, we take a look at what further information is needed and how this can
be deduced using the information in the alarm.

The option have been chosen based on prevalence as well as the possibility to in-
crease the speed of handling an event. Another option for a use case would have
been DDOS attacks, which have high impact on businesses involved. However, due
to the low occurrence of these kind of events, and lack of testing data, the decision
was made to leave this use case aside.

3.4 Conclusion

In this chapter, we have established a set of information sources that one may find at
a SOC. While all of the systems themselves can be used to identify risks and threats
in advance, they can act as a perfect starting point when an attack has taken place or
when an anomaly has been detected. By combining the different sources of data, one
may be able to identify new patterns or lay out the track that has been travelled to
get into a system. The next chapter deals with a way of turning the different sources
of data into a useful outline of the systems involved in an alarm.
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Chapter 4

Ontology, Description Logic and
Model Based Concept Mining

The focus of this research is on how to add semantics to raw log data for the purpose
of creating an overview of relevant concepts involved in a SOC alarm. To do so, we
need to effectively represent knowledge contained in the data. This chapter focuses
on the theory behind knowledge representation and the reasoning that can be per-
formed. We introduce the notion of Model Based Concept Mining, and elaborate on
the involved objects.

4.1 Ontology

Most information can be classified into a certain domain. Such a domain is char-
acterised by the objects that belong to it, as well as relations between these objects.
This is represented by an ontology. The following entities typically form the basis of
an ontology:

Instances Instances of the concept classes, also called individuals.

Concepts Concept classes to which individuals/instances belong.

Relations Descriptions of how concept classes relate to each other.

Attributes Characteristics that individuals may have.

Events Changes in attributes of or relations between instances.

Figure 4.1 shows how an ontology, concepts and instances relate to each other. Infor-
mation about individuals can be fragmented across multiple data sources. In order
to facilitate analysis of these individuals, it is necessary to integrate data from mul-
tiple sources into a single consistent data set and model it using an ontology that
defines these individuals. We use EDXML to do so, because this is readily available
in the research environment, and is tailored to describe an ontology.
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FIGURE 4.1: Depiction of how concepts, their relations and attributes
are defined in an ontology (top). An instantiation of the ontology

(bottom).

4.1.1 Describing Ontologies Using EDXML

In Section 3.2.2, an introduction of EDXML was given. We will now look at the
structure of EDXML as well as how this translates to components of an ontology.
Example code can be found in Appendix A.1.

Starting off with events, we have to find a way to capture various kinds of events in
a structured way. In EDXML, this is solved by defining event types, showing what
kind of properties exist within a single event from a certain source, and what these
properties mean. The event types and their properties define the backbone of the
ontology. All other entities within an ontology are derived from here.

First of all, a concept can be defined by a certain event property. For instance, an IP
address or MAC address define (with some probability) a unique device. In EDXML,
this is modelled as an attribute to the property, defining the name of the concept as
well as the confidence that the given property implies the concept. The notion of
confidence will be further detailed in Section 4.5.2.

Secondly, for each event type, relations between properties defining concepts can be
defined. The properties linked are required to define a concept, because a relation
can only exist between concept instances. The relations may either be between two
different concept instances, so-called inter-relations, or within one instance, known
as intra-relations.
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By defining an event type with its relations, semantics can be added to the raw data.
Furthermore, a more structured dataset is created, which can be more easily pro-
cessed. The described ontology can be used to parse log lines into events. In Ap-
pendix A.2, an example of a parsed event is given. A log line is parsed into XML,
with each of the properties being a tag.

4.2 Description Logic

To be able to reason about specific domains and their contents, a set of rules specially
tailored for the domain has to be set up. To generalise this problem, Description
Logic (DL) was introduced [2]. This section briefly introduces the main ideas behind
DL, and will touch upon the basic syntax and semantics of DL.

As an analogy, one could look at a domain using a network of nodes and links.
The nodes represent the different classes, and links show the relationships between
classes. Sometimes, a relation itself is modelled as a class to which individuals might
belong, e.g. being a parent. The first ideas of such a network were dealt with in
the introduction of the KL-ONE representation system proposed by Brachman and
Schmolze [5].

4.2.1 Intensional vs. Extensional Knowledge

Until now, we only specified what the domain looks like. However, to understand
how knowledge actually can be extracted from the base, we need to look at how the
knowledge behaves.

We can split the knowledge contained in the knowledge base into two classes. First,
we can state facts about individuals that are always true. For example, a book always
has a single identification number (ISBN). This is known to be general information
within the domain. We call this intensional knowledge.

On the other hand, a instantiation of the domain in the form of an individual might
be influenced by the given circumstances. Knowledge might change over time, e.g.
when a book is being loaned by someone, the book has its features changed due to
the event of loaning. This is known as extensional knowledge.

We can thus state that the intensional knowledge is always present in the domain,
and extensional knowledge is obtained by the series of events that happen over time.

4.2.2 Handling Unknown Features

In first-order logic, defining a rule makes it either true or false. If a statement cannot
be solved, then it is classified as ’false’ under the closed world assumption. One of the
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key features of DL is that it does not assume a closed world [4]. Instead, a variable can
actually be classified as unknown. This can be translated loosely into the fact that
’it might be the case that an attribute or relation holds, but we cannot guarantee it
does’. This is very important when dealing with partial information.

To elaborate on this, it also seems that ignoring the closed world assumption is a better
way to capture the actual state of the world. When a feature is unknown to the
system, normally it would say that it is false, although in reality the feature is true.
Then, when querying the knowledge base, one would be confronted with incorrect
information.

For this research, the representation of unknown data is of key importance. While
analysts would like to have an as much detailed picture of the world as possible, it
would be a disaster if incorrect assumptions were to be made about unknown data.
Therefore, it is better to just state that the value is not known, so that the analyst is
informed properly, and can act responsibly on the data presented.

4.2.3 Representing the SOC Domain

To capture data from the different sources in the SOC, we need to find a represen-
tation that is suitable for querying, without having to know the precise data each
source has in it. It is therefore useful to find the relations between parts of the data
to make the connections between the sources implicit. For example, we could iden-
tify a concept class Computing device, with a unique MAC-address (intensional
knowledge), an IP address and a user logged in (extensional knowledge). We could
then derive a relation ’ConnectsWith’ to the class itself that defines a connection of
two devices. Note that this does not imply that an individual can only make a con-
nection with itself, but that this is possible between multiple individuals belonging
to the same class. Note that this also is an extensional relation, as it is influenced by
events (connecting and disconnecting).

By representing the data sources in an ontology, we might be able to build a knowl-
edge base of the sources, which can then be queried along the lines of an alarm
coming in.

4.3 Extracting Knowledge: Model Based Concept Mining

The problem we are dealing with is the following: an analyst is presented with an
alarm which contains a slight amount of information, and we want to assist the
analyst by expanding the information presented. Based on the theory described in
the previous sections, we take a look at how we can approach this problem. To
extract the knowledge, we introduce a new technique which we call Model Based



4.3. Extracting Knowledge: Model Based Concept Mining 31

Concept Mining. This section elaborates on the processes that are performed by
elaborating on a small example.

Suppose we have the following situation: an alarm of a phishing attempt is trig-
gered. The alarm contains the following basic information1:

Attribute Value
timestamp 2018-02-24T12:34:56.0000

uid x
src_ip 12.34.56.78

src_port 5243
dest_ip 222.32.42.52

dest_port 6345
protocol TCP

An analyst presented with the phishing alarm would typically start off investigating
by asking the following:

1. To what devices do the IP addresses belong?

2. What kind of system services are bound to the ports?

3. To what devices has a connection also been made (redirects)? And what are
their respective URLs?

4. What data has been sent over the connection?

5. Is the destination known to be a threat?

6. Have there been similar events in the past and how were they solved?

The first logical step is to derive concept instances, or individuals of the domain,
from the information in the alarm. After that, we would like to have a representation
of the domain instances over the last x minutes/hours. We thus want an overview
of everything that has happened in the near past.

The first question can be represented in a query to the knowledge database asking
for the different attributes known to the instance whose IP address is given. We
might be able to identify the current user, current host-name and MAC-address of
the device. This might give information about the risk that is involved with the
current alarm.

The next section dives into the subject of how we can represent the given event, and
how we can extract the right knowledge from the created ontology.

1This data is fictional, but the structure is based on real events
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4.4 Representing Concepts

In order to depict individuals, we need to define a format that can capture the prop-
erties outlined in the structured source (EDXML). We also need to show the relations
that exist between individuals, based on the information gathered. The solution is
to use a graph-based structure. Let graph G = (V, E), with V the set of vertices and
E the set of directed edges. The individuals are represented by the vertices, which
contains additional information based on the events that captured the individual.
The relations can then be represented by edges connecting the different individuals.

4.4.1 Vertices

As explained, the vertices in the graph represent individuals that have been ex-
tracted from the dataset. These individuals have been defined by properties that
according to the ontology describe a particular concept. Thus, each vertex can be
decorated using the information that created the individual. For example, an indi-
vidual of the concept "Computer" may be described by an IP address x. We may
then denote this vertex as Computer(IP = x), showing how the node was derived.

4.4.2 Edges

The edges in the graph show the relations that exist between or within the individ-
uals. EDXML provides three types of relations that can be distinguished. First, an
event may contain intra-relations, meaning that the properties are shared within an
individual. Secondly, there exist inter-relations, which relate properties of two dif-
ferent individuals with each other. Finally, we denote all other relationships in a
separate class. These relations do not necessarily link one of two individuals and
their properties, but might give extra context.

Relations in the ontology may be either directed or undirected. For example, a con-
nection attempt from A to B gives a directed relation from source A to destination
B. On the other hand, a relation linking an IP address to a device works both ways.
Because building a graph with both directed and indirected edges might pose prob-
lems, and we want a directed graph, we add a translation step in describing indi-
rected relations. We represent this type of relation by two directed edges.

4.5 Mining Concept Instances

From the set of nodes and edges, we need to define the concept instances. A concept
instance can be described as a set of nodes sharing intra-relations between properties
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that define the same individual. More formally, we define what nodes share intra-
relations, and how this translates to a concept instance.

Definition 4.5.1 (Intra-reachable). Let G = (V, E), and nodes N, M ∈ V. Node M
is intra-reachable from N if and only if there exists a path π(N, M) and all edges
{E1, .., En} on that path are intra-relations.

Definition 4.5.2 (Concept Instance). Let G = (V, E), and N ∈ V being a node repre-
senting an individual, used as seed. Concept Instance CI is the set of nodes NI ⊆ V
which are intra-reachable from N.

Important to note is that intra-relations can only connect nodes which represent in-
dividuals of the same concept. Thus, the set of nodes in NI described in Definition
4.5.2 all denote individuals of the same concept.

As a consequence of Definition 4.5.2, it is trivial that it does not matter which node
of the instance is used as seed, while this node should be intra-reachable from all
other nodes in the instance. So any node in a single concept instance yields the same
concept instance when used as seed.

4.5.1 Describing a Concept Instance

We have seen that a concept instance can be described by a set of nodes that share
intra-relations. We would like to have an instance being defined by a set of proper-
ties in order to combine information and reduce the amount of nodes. The provided
definitions can be used to extend the notion of a single concept instance and the at-
tributes defining it. The intuition is that an instance is defined by all the features
that are reachable through the intra-relations. We can thus provide an alternative
representation of a concept instance, denoting the feature set and the values therein.
Let I be an individual of concept t with seed x1 = v1, denoted It(x1 = v1). For
each intra-reachable node ni ∈ {n0, .., nm} that describes an individual It(xi = vi),
we can join the individuals, yielding the concept instance described by all available
attributes: CI t({x1 = v1, x2 = v2, .., xm = vm}).

TABLE 4.1: Example event of a connection between two objects

Property Value
timestamp t
source-ip x
destination-ip y
source-hostname pc01
destination-hostname pc02
source-macaddress a:b:c:d:e:f

Suppose we are represented event depicted in Table 4.1, and an ontology describing
which properties define individuals of concepts shown in Table 4.2. We can describe
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TABLE 4.2: Ontology excerpt for a connection event

Property Defined concept
source-ip Computer
destination-ip Computer
source-hostname Computer
destination-hostname Computer
source-macaddress Computer

Relation Type Properties
hasHostname intra source-ip↔ source-hostname
hasHostname intra destination-ip↔ destination-hostname
hasMac intra source-ip↔ source-macaddress
connectsWith inter source-ip→ destination-ip

the following list of individuals:

Computer(Source-IP = x)

Computer(Destination-IP = y)

Computer(Source-hostname = pc01)

Computer(Destination-hostname = pc02)

Computer(Source-MAC = a : b : c : d : e : f )

Based on the individuals and the relations that are found in the ontology, we can
generate the graph for this event. The graph is depicted in Figure 4.2. The intra-
relations have been drawn as bidirectional arrows. The next step is to derive the
concept instances from these individuals. We follow the described process of com-
bining all nodes that are connected with intra-relations, and merge the individuals
with their attribute values. This yields the graph shown in Figure 4.3. We are left
with two concept instances of type Computer connected through a relation Connects
with.

4.5.2 Confidence

While some of the relations are not guaranteed to exist, we need to find a way to
model uncertainty in the graph. Furthermore, some of the properties defining in-
dividuals might not be unique. For example, an IP address may exist twice within
different sub-networks, resulting in the fact that two different devices may have the
same IP address. One way to solve these problems is by defining a confidence factor
for each relation and for each property defining an individual. This confidence value
defines the probability that two concepts are equal if the property is equal. As the
confidence level describes a certain probability, this value must adhere to the range
[0..1]. This means that when a property receives the confidence value 1, concepts
with an equal value for this property are the same.
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The confidence value plays an important role when combining and merging differ-
ent instances. When combining, it is important that it is very clear that there are
assumptions made based on the information presented, and that there is a chance
that the merged instance is not really there. We look at two important cases where
the confidence factor plays a role.

Within this research, the domain is manually created by a domain expert. That
means that the expert also decides what confidence value is linked to a property.
This in turn means that a change in the domain specification may have a big influ-
ence in the outcome of evidence. For now, we assume that the expert has correctly
specified the domain.

4.5.3 Similarity Score

In Section 4.5.1, a concept instance was described as an object made up of a set of
attributes which define the instance. As outlined, a conflict may appear when a non-
unique value described different concept instances. To solve this conflict, we could
either merge the two instances, or make sure that the instances can be distinguished

Source-IP=x

Source-Mac
=a:b:c:d:e:f

Source-Hostname
=‘pc01’

Has hostnameHas MAC

Destination-IP
=y

Destination-Hostname
=‘pc02’

Has hostname

Connects with

FIGURE 4.2: The graph showing attributes and relations between
properties generated from the example event and ontology described

in Table 4.1 and Table 4.2

Connects with
Computer

IP address x

Hostname pc01

MAC address a:b:c:d:e:f

Computer
IP adress y

Hostname pc02

FIGURE 4.3: The concept graph after merging the different nodes be-
longing to a distinct concept instance. We are left with two concept

instances of type Computer, each with their own set of attributes.
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through other factors. We thus want to check whether the instances are similar or
not.

Checking similarity of objects in an ontology has been investigated multiple times
[11, 23]. However, in most cases a similarity score over concepts is derived from
IS-A relations in an hierarchical ontology. In this case, we are interested not in the
similarity of concepts, but in the individuals belonging to a concept. Besides, we
do not have strict IS-A relations in the ontology. Therefore, the proposal is to create
a similarity score between instances based on their attributes and their particular
confidence values.

To be able to calculate the similarity, a confidence factor is attached to each of the
properties defining an individual. Given the concept "Computer", individuals may
be derived from properties like the IP address, MAC address and a hostname. How-
ever, some properties are more detailed than others. For example, a MAC address
should be a unique identifier of a device, whereas a hostname or IP address can be
found multiple times in different cases. The model should reflect this probability in
the confidence value. A MAC address would receive a confidence factor which is
close to 1, meaning that when individuals are defined by equal values for the MAC
address, they have a high probability of being the same within the domain. On the
other hand, when presented with two individuals defined by the same hostname, it
is less certain that they are the same. We should base this decision then on the other
information that is available in the individual or concept instance.

The similarity then can be calculated using the combination of all attributes present.
Given are two concept instances CIA({x1 = v1, ..., xn = vn}) and
CIB({x1 = u1, ..., xn = un}). We define a weight function c(x)→ {0..1} that maps a
property to a confidence value. We define the similarity score sim(CIA, CIB) as:

sim(CIA, CIB) =
∑n

i=1 c(xi) ∗ f (vi, ui)

∑n
i=1 c(xi)

(4.1)

where the function comparing the values for the attributes is defined as:

f (x, y) =

1 if x = y

0 otherwise
(4.2)

If the confidence score exceeds a set threshold, the concept instances are merged into
one. This means that all the attributes that were available in the separate instances
should be combined into one. This may lead to conflicting values for certain at-
tributes. This is solved by keeping track of all values that are merge in a set. As a
consequence, the calculation of similarity of attributes has to be adapted to take the
prevalence of a single value into consideration. Given that X now represents a set
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of values for a given attribute, and count(y, X) gives the number of occurrences of y
currently in X, the comparison function changes into the following:

f (X, y) =
count(y, X)

|X| (4.3)

The intuition behind this function is that as the amount of similar values increases,
checking a new value will have a higher influence on the similarity than a value that
has a low occurrence in the set. Furthermore, the requirement that a value that does
not appear does not count in the similarity is satisfied, because the function will then
evaluate to 0.

Unknown Values

As described in Section 4.2, we need to have a representation for unknown values
for a given concept instance. We currently base the similarity score only on the
values that are actually known. The reason behind this is that we also need to satisfy
the commutative property of merging instances. Thus, the order of comparing and
merging instances should not influence the similarity scores when comparing a new
instance.

A conflict of interest exists between these two properties. In Section 4.6, an example
calculation given a pool of four concept instances for the same concept type is given,
based on the similarity score outlined in the previous section. If we were to adapt
the similarity function f to handle empty values or unknowns, we might get the
following function:

f (X, y) =

0.5 if X = ∅ or y = ∅
count(y,X)
|X| otherwise

(4.4)

This would create an asymmetric operation when merging instances based on their
similarity. For example, if an empty value is propagated first, and then compared to
a new instance which has this value, the calculation would be different from when
the value was already there, and then checked against with a non-present value.
The choice was thus made to omit unknown values in checking similarity in favour
of satisfying commutativity of the operation. Another argument that backs this ap-
proach is that checking empty values is involved with added or removed informa-
tion, but when the other values are similar, this should not influence the similarity
of instances.
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4.5.4 Unique attributes

In some cases, an attribute can uniquely identify a single instance. For example,
every inhabitant of the Netherlands has their own social security number, which is
used to uniquely identify a single person. Consider two events that contain the same
social security number, we may directly state that they deal with the same person.

In the described model, this could only be captured with the confidence value. If this
value is set to 1 for a particular attribute, it means that the probability that two con-
cept instances are the same is 1, if defined by the same value for a unique attribute.

We adapt the similarity score to accommodate this change. That is, if in the set of
similar attributes an attribute with a confidence value of 1 is present, we return 1 as
similarity score:

A = {ai|1 ≤ i ≤ n ∧ f (vi, ui) = 1} (4.5)

sim(CIA, CIB) =

1 If ∃x ∈ A : c(x) = 1
∑n

i=1 c(xi)∗ f (vi ,ui)

∑n
i=1 c(xi)

otherwise
(4.6)

If all attributes defined in the individuals are equal, we also obtain the value 1, even
though these attributes may not be unique. For now, we assume that these situations
are similar.

4.5.5 Propagation of Uncertainty

When merging instances, we introduce new levels of uncertainty. We have to make
sure that this uncertainty is reflected as we continue comparing the instances, and
expanding the domain. The merge concepts into one instance by performing two
operations, as outlined before:

1. Merge the attributes that describe the different concepts.

2. Merge the relations that exist from the added concept.

There are thus two possibilities to reflect added uncertainty. We would also like to
be able to retrieve the single concepts back from the merged concept if necessary.
We can combine both by retaining the old concepts on their own, but storing the
similarity score for each of the merged concepts. We then also need to make sure
we can trace back the root, or first instance that created the merged concept. By
doing so, we can define the uncertainty by multiplying attribute confidence with
the similarity score for the given concept. This also enables the possibility to cut off
edges from the result graph if the certainty is too low.
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4.6 Example

To illustrate the described model, an example is now discussed. We are confronted
with 4 events, each generating a concept based on information contained in these
events. The concepts all belong to the same concept class, so we can try to combine
them. The data extracted is shown in Table 4.3.

TABLE 4.3: Data of four concepts derived from events.

Attribute (x) c(x) A B C D
MAC Address 0.9 1:1:1:1:1:1 - 1:1:1:1:1:1 -

IP Address 0.8 10.11.12.13 10.11.12.13 10.11.12.14 10.11.12.15
Hostname 0.2 PC1 PC1 - PC2

OS 0.1 WIN7 WIN7 WIN7 WIN8

We start out with an empty instance pool. The first concept, A, is then added as the
first base instance. We do not merge or compare anything.

We then add concept B, by comparing it to the instance in the pool. The following
calculation is performed:

sim(A, B) = ∑n
i=1 c(xi) ∗ f (vi, ui)

∑n
i=1 c(xi)

=
0.8(1) + 0.2(1) + 0.1(1)

0.8 + 0.2 + 0.1
= 1

(4.7)

The similarity score is equal to 1, because the unknown value in B is ignored in the
comparison. We thus decide to merge the concepts. The relations linked to B will
now be added towards to merged instance AB.

The next concept to be added is C. We are comparing this to the merged concept
AB, which has the same attributes as A. The calculation that to be performed is the
following:

sim(AB, C) = ∑n
i=1 c(xi) ∗ f (vi, ui)

∑n
i=1 c(xi)

=
0.9(1) + 0.8(0) + 0.1(1)

0.9 + 0.8 + 0.1
= 0.56

(4.8)

We are now dependent on the threshold value that is set. The threshold is a pre-
defined value, and greatly influences the way data is aggregated. We only merge
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instances if the similarity is higher than the threshold. Suppose the threshold is set
to 0.5, the concept instances would be merged, yielding the following instance:

TABLE 4.4: Merged concept ABC, with the set of IP addresses defined
in the single concepts.

Attribute (x) c(x) ABC
mac-addr 0.9 1:1:1:1:1:1

ip-addr 0.8 {10.11.12.13, 10.11.12.13, 10.11.12.14}
hostname 0.2 PC1

os 0.1 WIN7

We include two copies of the same value in the set, in order to show the importance
of each of the values when comparing to a new instance. For instance, when a con-
cept with ip-addr = 10.11.12.13 is compared, it will have a higher similarity than a
concept with ip-addr = 10.11.12.14, given all other attributes are equal. We show
this by merging another concept with the following attributes:

TABLE 4.5: Two concepts to be added.

Attribute (x) c(x) E F
mac-addr 0.9 1:1:1:1:1:1 1:1:1:1:1:1

ip-addr 0.8 10.11.12.13 10.11.12.14
hostname 0.2 PC1 PC1

os 0.1 WIN7 WIN7

The similarity scores based on the combined event ABC and events E and F respec-
tively yield:

sim(ABC, E) = ∑n
i=1 c(xi) ∗ f (vi, ui)

∑n
i=1 c(xi)

=
0.9(1) + 0.8( 2

3 ) + 0.1(1)
0.9 + 0.8 + 0.1

= 0.85

(4.9)

sim(ABC, F) = ∑n
i=1 c(xi) ∗ f (vi, ui)

∑n
i=1 c(xi)

=
0.9(1) + 0.8( 1

3 ) + 0.1(1)
0.9 + 0.8 + 0.1

= 0.70

(4.10)

This calculation continues as the concept is expanded further.

It is trivial that the last concept in Table 4.3, D, will have a similarity score of 0, while
all attributes are different from the values in the merged concept ABC. This means
we have a pool of concepts {ABC, D} after processing the current list. Because an
added concept will always only have a single value based on a single event, we do
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not consider the case of merging two sets of values during this research. However,
the set comparison using union and difference can easily be extended for this pur-
pose.

Section 5.2 further outlines the process of merging instances. While the above pro-
cess lists the scoring technique generally, there may be constraints per domain which
need to be taken care of as well.

4.7 Conclusion

In this section, the background behind concepts is explained. We looked at how to
represent a domain within an ontology, and how this can be transferred to depicting
raw logs into graphs presenting individuals. In the next section, we outline the full
process from raw events to a presentation of the evidence. Besides, some practical
issues and how to solve them are discussed.
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Chapter 5

Applying Model Based Concept
Mining on the SOC Domain

In the previous section, the process of mining concepts has been explained generally.
This section deals with the implementation steps, as well as a description for the
given SOC use case.

Recall the problem that we are dealing with: an analyst is presented with en alert,
which contains minimal information about the event and the involved entities. This
mostly means the source and destination IP addresses and the time and type of the
event. Instead of letting the analyst need to perform multiple tasks, the proposed
solution takes on this work to provide a way to give the analyst enough context to
make a justified decision more quickly.

5.1 Methodology

The goal of the process is to generate a graph of the domain that is described in the
different log files, each containing its own format. The process from the raw data
to the graph can be split into four distinct phases: Preprocessing, Concept Mining,
Post-processing and Enrichment. Each of these phases is now briefly discussed.

Phase 1: Preprocessing
In the first phase, we need to align the data into a standard format, which can be
further processed to generate graph data. Earlier, a description of EDXML has been
given. This first phase is exactly transcoding the raw data formats to the structured
EDXML format. The EDXML data describes the ontology of the data presented in
the log files, and thus adds semantics and relations to the data. This process has
been described in Section 4.1. The domain specification describing the concepts and
their relations in this research is created by a domain expert (supervised).

Phase 2: Concept Mining
The second phase deals with the mining of the concepts from the preprocessed data
into sub-graphs, as detailed in Sect. 4.3.
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Preprocess Concept 
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Logs
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Evidence

Fixed steps Application-dependent

Domain 
Specification

FIGURE 5.1: The different phases of processing raw data into the con-
cept graph.

Phase 3: Post-processing
The third phase deals with processing the mined concepts toward a working state.
This may involve grouping, splitting, combining and merging concept instances, or
filtering on certain criteria. This also may include an external query.

Phase 4: Enrichment
The final phase can be used to enrich the concept graph with data from external
sources.

Globally, the first two phases always have to be the same: retrieve a pool of concept
instances from raw data. The last two phases are dependent on the solution that
needs to be built. Processing the mined concepts into a data format that is suitable
for an application is necessary. Furthermore, different external sources may be used
to enrich the data. Figure 5.1 shows the outline of the processing steps.

5.2 The SOC Use Case

The previous section outlined the basic steps that need to be performed to go from
raw data to a suitable data format for analysis. This section dives deeper into the
specific use case that deals with the SOC processes. We take a look at the constraints
of the context, but also at a suitable way of filtering the important data from the
whole.
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5.2.1 Time Constraints

One of the biggest challenges that come with the analysis of alarms in the SOC is the
constraint of time. Most of the events leading up to the alert happen within a short
time period before the alert is sent. This also means that at any given moment, the
graph representing the raw data that is linked to the alert is different over time. We
have to reflect this property in the creation of the graph and the presentation of the
data to the analyst. The solution that is presented does not only work for the given
domain, but also for other time constraints.

Most of the data sources contain pointers as to when an event happened. For exam-
ple, a log line in most cases contains the timestamp of the creation of the log. We can
reflect this property in the processed form (EDXML). We can then use this property
to create time-based instances of concepts contained in the structured data. The idea
follows along the lines of combining instances which are closely related in terms of
time.

Decoration of Nodes

As presented in Chapter 4, we can represent a single concept instance as a subgraph
with a root node or seed defining an individual. We can decorate each node in the
graph with extra information, which in this case is the timestamp of the event. This
is possible while each node is created from an event, and each event thus contains
the timestamp of its creation. In addition, we may also add the timestamp to each of
the relations that is generated from the raw events. This may aid in the creation of
the edges within the graph.

When presented with an alarm, we want to reconstruct the graph containing all the
data necessary, but with the addition that the data must be valid at the time of the
alarm. We thus have to look for the instances that were most likely to be present
at the time of the alarm. That means, we have to search for instances with seeds
that have a timestamp which is in the search range. This range may be different for
each type of data. For instance, the validity of a vulnerability scan, which may only
take place once a week, spans over a longer period of time than a DHCP lease event,
which is more volatile. We have to incorporate these differences in the data as well.

One solution to the latter is to provide a value for each type of source indicating
for how long an instance will be valid. That means that a node has to be decorated
with not only a timestamp indicating when the event was created, but also a times-
tamp indicating the expiration of the validity of the instance. By doing so, we can
eliminate the instances that are not valid for a given search range immediately. Note
however that this might pose risks regarding loss of valuable data.
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Building Merged Concepts

In Chapter 4, we dealt with the way how concepts should be merged. To trace back
the uncertainty in these merges, we defined that we need to know the root of the
merged instance, and generate the graph from there, until the certainty for a relation
gets too low. Because we are now dealing with a time-based order of events, we can
easily define the event that happened first to be the root of a merged instance.

In addition, merging concepts should ideally be delayed as long as possible. Due to
the introduction of uncertainty, the reality may be reflected in a less detailed way.
When postponing the merging process, we retain most of the raw data, and thus a
more detailed depiction of the real world.

Reconstruction

Consider the following case: we want to have a depiction of the situation from
within the time range [Tbegin, Tend]. We now go through the reconstruction phase
for this range.

Before we can take multiple concepts into consideration, we need to aggregate the
instances for a single concept into one, as a representative of that concept instance
for the given time range. This means that the length of the time range may influence
the amount of instances being combined. The idea of the aggregation process is to
merge the similar seeds which all lay within the time range into one single instance
using the similarity score, containing all edges present in the unique seeds.

After aggregating the single concept instances, we are left with only one instance
for each concept in an ideal situation. We then have to recombine these concept
instances based on the inter-relations. While either side of an inter-relation should
be the seed of a concept instance, this process is merely substituting the singular
nodes at the sides of the inter-relation with its respective concept. This is shown in
Figure 5.2.

5.2.2 External sources

Enrichment with external data can be very useful to fill in gaps of information that
cannot be found in the processed sources. Most of the data used in the enrichment
process originates from open sources. In the specific SOC use case, we can have the
following sources for enrichment, most of which have been described in Sect. 3.2:

VirusTotal VirusTotal offers information about malicious hosts and files based on
analysis of multiple anti-virus tools.
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FIGURE 5.2: Substitution of nodes of an inter-relation with its respec-
tive concept based on the time-aggregated instance.

Threat Intelligence Threat intelligence sources provide information on indicators
of compromise of IP addresses or domains. In addition, Who-is information
for an IP address can be retrieved.

Urlscan.io Urlscan.io can be used to visit a site in a sandbox. Information that can
be returned shows the routing and loaded external resources when visiting the
site.

Knowledge Base The Knowledge Base may provide information about the infras-
tructure of the client’s network, as well as what assets are present. By enriching
the graph with this information, an analyst may have pointers about what as-
sets are more valuable and might pose extra risks when attacked.

Another interesting enrichment source are the rules that triggered the alert, which
have been described in Section 2.1. This information may aid the analyst in deciding
which links in the graph are of most particular interest. Moreover, this information
may be used to assist filtering the concepts before enrichment.

5.2.3 Filter relevant information

To ensure that the analyst is presented with the most relevant information, we can
use the document ranking technique tf-idf that is used in most data mining systems
[25]. We can model the alarm that the analyst obtains as a document itself. Sub-
sequently, we can rank each of the concept instances as well as relations between
them against the alarm using a tf-idf with cosine similarity score. We chose not to
use the same similarity score as used between concepts, while attributes of relations
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may contain raw string values which are not further processed. When scoring exact
matches, these may not be selected and thus not shown initially.

The tf-idf score depends on the weight a term has within a data set. TF, or Term
Frequency, describes the amount of occurrences of a single term within a document.
IDF, or Inverse Document Frequency, provides a measure of the information content a
single term has. For example, the word the does not have a high information content,
because it is likely that this word occurs a lot within a document set.

Based on the model described in Chapter 4, and the constraint handling defined in
the previous sections, we are presented by a set of instances along with the relations
that exist between concepts. All of these are modelled as a set of key-value pairs. The
analysis starts out with an alarm generated by the IDS. We can also model this alarm
as a set of key-value pairs. To be able to examine the relevancy of different relations,
we should look at the values. We can perform the TF/IDF similarity score with the
document pool being all relations defined in the current environment, and have the
IDS alarm as the query. By comparing these values, we are left with a ranking of
relations that are most relevant. These should be shown first, as they might already
contain enough information for the analyst to check out the alarm, being either a real
alarm or a false positive.

5.3 Conclusion

This chapter introduced the overall processing steps that can be performed when
applying Concept Mining on raw data, and showed the application thereof in the
SOC domain. Note that the described process can be performed on any data and for
any purpose, which might require tuning or restructuring the post-processing and
enrichment steps. Also, the constraints within the SOC domain have been explained,
as well as possible solutions for tackling these problems. In the next section, we take
a look at a proof of concept that applies the outlined theory on a practical case.
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Chapter 6

Glaukos - Proof of Concept

In the previous chapters, we have looked at the theory that describes the process
of turning raw data from different sources into a model combining the information
retrieved into a single object that can be used to analyse an alarm. The research
question however not only deals with the theory of concept mining, but also how it
can be applied to a situation where the analyst is aided by this model. In this chapter,
we look at a code implementation named Glaukos, a proof of concept based on the
theory described, and evaluate how the proof of concept can aid analyst given their
current workflow.

6.1 Used Technology

In order to evaluate whether evidence generated the model is suitable for use by
an analyst, we had to find a way that made sure the data represented by the model
could be conveyed to the user. As denoted in Chapter 4, we model the universe
as a directed graph, with nodes being concept instances, and edges being relations
between concept instances. This can be directly transferred to the user, while graphs
can depict almost all the information that is needed by the analyst.

Glaukos contains two components. One is the back-end module, written in Python,
which is currently used to do the following:

1. Process the EDXML-formatted files into suitable objects in Python.

2. Generate a graph given a query from the user.

3. Obtain extra information (see phase 4, enrichment) for concept instances that
are part of the graph.

On the other hand, we have a user interface in a browser based on JavaScript. For
showing the graph in JavaScript, the D3-Library is used [8]. In the interface, the
analyst can query the data set to generate and show a graph, either:

• Within a given time range, all data
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• Within a given time range, all data with a defined root property and maximum
depth of traversing the graph.

• For a given issue tracker ticket describing an alarm.

The defined root property in the second option is an attribute value that is part of a
concept instance, which can be used to query and select the instances from which to
start the depth-first search procedure from.

The last case is the most important. If all data is captured live, we can also query
tickets that appear in an issue tracker. In this ticket, important information about
affected hosts, the cause of the alarm, and maybe some alarm identifiers may be
included. The concept instances that are directly related to the ticket are likely to be
of most importance.

For all nodes and edges, the relevant information is shown after clicking or hovering
over them. This allows the analyst to easily retrieve the wanted information within
a short time.

While this research was focused on generating a model to collect and combine infor-
mation from different sources in a single source, the process of creating the interface
falls outside the scope of the research. Therefore, the current depiction may not
be the final one used, nor may it be the best for the given model. The design is
mostly based upon first-hand experience with alarm analysis and the ideas of what
information should be available within the blink of an eye. Some figures show the
representation of the data contained in the model as a graph. Figure 6.1 shows the
graph on its own, showing the concepts and the relations between them. Figure 6.2
shows the interface as presented currently, with the option to search for a concept
within a given time range, and a specified depth optionally for cutting of the Breadth
First search process. Figure 6.3 shows the information that is shown when an edge
is selected. One relation contained in this edge can be further analysed, as shown
by Figure 6.4. This UI was used in the evaluation process, which is described in the
next section.

6.2 Evaluation process

There are two questions that can be looked at to evaluate the model that has been
proposed for the problem dealt with:

1. Is the information contained in the model similar to the information an analyst
retrieves when manually checking? (Model precision)

2. Can an analyst efficiently use the model in the way it is presented, and does it
have additional value over the current process? (Efficiency)
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FIGURE 6.1: Instance of a graph as shown in the user interface.

FIGURE 6.2: The full basic user interface, with the possibility to filter
items.
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FIGURE 6.3: Information for a selected relation between two in-
stances.

FIGURE 6.4: Expanded information for a single event contained in
the relation.
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To calculate model precision, one would need a lot of data that can be processed
on the go. However, due to the nature of the data (security sensitive) and rules
regarding ownership of data, it was very difficult to generate the data necessary to
perform this analysis. There is therefore no possibility yet to measure the precision.
However, in the future, this may be a topic of interest in order to test the model
described

Therefore, the decision was made to perform an interview with the analysts to check
whether their work could be enhanced when the data obtained using the model was
presented to them. As explained before, the presentation that is contained within
the proof of concept is based on personal experience, this may not be tailored to suit
the needs of everyone.

6.3 Methodology

The main question to be answered was: Can a depiction of the domain with the relevant
data provide enough insight into the context of an alarm that an analyst can effectively solve
the case? This question can be answered using the following sub-questions:

• Can you correctly analyse the alarm given the presented evidence?

• What information would you consider vital but is missing from the presented
evidence?

First of all, the SOC domain was defined in the domain specification by a domain
expert, in order to perform the preprocessing step. An alarm that was generated
for the phishing use case was captured, as well as the data that was available in the
different sources used by a SOC analyst. This data was preprocessed to generate the
concept instances (step 2 of the process).

Then, a number of analysts was asked to analyse the alarm using Glaukos. During
their analysis, they could ask questions about the interface, but not about the alarm
itself. The evaluation was conducted using an adaptation of the think-aloud proto-
col, described by Lewis and Rieman [15]. Afterwards, they were asked the questions
described above.

6.3.1 Results

During the evaluation, a total of 6 analysts were asked to perform the analysis. I will
outline the most important findings as well as some pointers to the improvements
named by the analyst.

The general impression from most of the analysts was that the combination of raw
information as well as a contextual presentation using the graph could provide more
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information than just plain data. Furthermore, a frequently mentioned benefit is that
no context switching is necessary any more. In the current situation, analysts have to
switch to different systems to gather the information necessary. Using Glaukos, they
were able to find all the data within only one source, so they can be more focused on
the task.

Furthermore, the conclusion of most analysts is that the proposed model is of high
additional value for performing an analysis, and could speed up analysis of most
alarms. There surely are cases in which the model will fail to generate the most
relevant piece of data, but in general, the data presented should be enough to solve
the alarm efficiently.

Therefore, the questions can generally be answered as follows:

Can you correctly analyse the alarm given the presented evidence?
All analysts were able to correctly solve the alarm using the provided context and
the data contained in the presented evidence. This required performing an extra
search, which all of the interviewed analysts were able to perform. The right data
came out of the model.

What information would you consider vital but is missing from the presented con-
text?
One of the analysts proposed to include an extra external source with which an im-
age of a web page could be shown, as is currently used by some analysts to check
the legitimacy of a website. Although this could provide extra insight, he did not
consider this to be vital. Otherwise, no data was missed by any analyst.

6.3.2 Possible improvements

The current system only provides one way of showing the context. That is, the graph
represents the connections that are present between different concepts. However,
some analysts proposed to include a timeline of events. The graph does not show
the order in which events come in, although this can be deduced from the data if
necessary. If the analyst could see a graph with the relations as well as the sequence
of events, this would mean a complete picture of the event can be generated instantly
in the analyst’s mind.

Given the assumption that the UI would not be part of the analysis whether the
model succeeds in conveying the series of events that lead up to an alarm, we can
conclude that the model contains all necessary information to correctly analyse this
type of alarm in the given test case. While the phishing use case shown is on the
more complex side, involving a lot of context, the model may work efficiently on
alarms which are more frequent but pose an equal amount of risk.
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Besides, analysts also mentioned a danger of this tool. The representation in a graph
may force the analyst into only looking at the data contained there, although other
relevant data is not shown. This may induce tunnel vision, and should at all costs be
prevented. A solution could be to include the graph as an option, and find another
way of displaying the data.

6.4 Conclusion

In this chapter, we looked at a proof of concept to perform an analysis of the applica-
tion of the model. A use case regarding phishing was presented to the analyst using
Glaukos as a Proof of Concept to evaluate the effectiveness of the data contained
in the presented evidence generated by the model in solving an alarm. We saw the
opinions of the analysts which have used the tool as well as some improvements
proposed by them.
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Chapter 7

Conclusion

During this research, we studied how to capture security data in a semantic model,
in order to aid SOC analysts in their task of triaging alarms.

First of all, there are differences in how alarms are generated by an IDS. In some
cases, a hard rule defining exceptional content triggers an alarm. This rule details the
exact circumstances around why an alarm was generated, and these alarms are thus
easy to examine. In other cases, however, alarms are generated based on anomalous
behaviour with respect to a baseline of known traffic. Alarms generated by such
systems are in general more difficult to examine, as they rely on statistics. No hard
indicators can be found, and the analyst has to dive deeper into the data.

For an analyst in a SOC, there are multiple data sources which should be looked
at to analyse an alarm. This usually starts off with the alarm itself, after which the
analyst has to check network logs, application logs or outputs of a vulnerability
scan. In addition, open source data streams may provide extra context to domains
and IP addresses found in network traffic. All this data originates from a variety of
data sources. This poses a workflow that is not optimised, because an analyst has to
switch context very often.

We tried to solve this by proposing a model to grasp the semantics of the security
domain within the data, so a computer can aid the analyst in providing a full context
around an alert. By using Model Based Concept Mining, multiple data streams can
be combined into a single structured data stream, which can be handled by a com-
puter. The model is based on concepts and relations which are currently defined by
an expert. The process can be split out into four phases, which can be extended to
the needs of the domain.

For the domain regarding security information in the SOC, I have found that some
adaptations have to be made towards accommodating for the time constraints that
have to be dealt with within the SOC when analysing alarms.

A Proof of Concept to evaluate the possibilities of the model has been built. Al-
though the evaluation was dependent on the user interface the analyst was con-
fronted with, the overall feeling was that the model itself, and the context it provides
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for an alarm, is useful. The major benefit is that all data is now contained within one
system, and no context switching is necessary to analyse an alarm. Furthermore, a
specific use case regarding a phishing alarm could be correctly analysed using the
model by all of the analysts that were asked to use the system. Because the phishing
alarm is one that required a lot of context, the model should be suitable for other
alarms requiring less context as well.

All in all, the model proposed thus seems to be a good fit for the analysts in the SOC,
and should be of additional value to analyses performed, although improvements
may be necessary to fully suit the needs of an analyst.

7.1 Discussion

Based on the results achieved using the evaluation, we may be able to conclude that
the model proposed is of additional value to the analyst. However, there are some
considerations regarding the outcome presented. First of all, the model is not fully
tested for precision. That is, the model was only tested in combination with the user
interface. This may generate noise as to whether the model is suitable for aggre-
gating data correctly. Secondly, only one use case has been tested. This, however,
should not be a problem while a use case which needs a lot of context is chosen.
On the other hand, it would have been better if multiple types of alarms could be
analysed in order to check whether the model is a good fit for the general purpose
of analysing alarms.

A shortcoming of the model is that the domain specification has to be done by hand.
This makes the model and the data represented by the model dependent on the
hands of the expert specifying the domain. Furthermore, some relations might be
incorrect, and others might be missing. This could lead to problems when analysing
alarms because incorrect information, or no information at all, is present.

7.1.1 Further Research

The current domain specification is generated by hand. Because this can be erro-
neous, there may be a way to perform a feedback operation to improve the domain
specification, or generate the domain specification using further data analysis tools.

As confidence values are defined within the domain specification, there may be the
need for a feedback loop regarding changes to the confidence value, so incorrect
combinations based on assumptions on the confidence value can be corrected.

As explained before, the model could not be tested on a dataset that consists of
alarms and the data from the different data sources related to them. To really check
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whether the model has the right precision, research could be done into the precision
of the model on the SOC domain.

Furthermore, the proposed model is defined in four general steps, and can be ex-
tended to other applications. This raises the idea to perform an analysis whether
other domains can benefit from this technique as well, with alterations specific for
the domain.

Besides, the interface generated to evaluate the model has some shortcomings, and
may be adapted to suit the workflow even better. This creates another topic of re-
search which is more tuned to user experience.

The similarity score proposed in Section 4.5.3 can also be extended to suit other types
of variables. For example, string matching may be performed using a distance score,
which may map nearly equal strings to the same concept attribute. This may extend
the model to perform more fuzzy matching. However, a good look should be taken
here that properties of the model are kept in place, like symmetry in merging in-
stances.

Furthermore, the model can be extended in the way merges are performed. In the
proposed model, we combine sets with single values. The model can be altered to
provide a way to define combinations of sets being merged.

7.1.2 Reflection

During the research, some problems were experienced. First of all, the data to per-
form tests with was not available at the start. This in the end still was not available,
which hampered the research regarding the precision of the model. In an ideal envi-
ronment, the test data is available before the research is conducted to eliminate any
dependencies.

Secondly, this research taught me not to fall deeply into the literature, because study-
ing irrelevant literature may take up a lot of time which could be spent in a better
way. On the other hand, this helped scoping the research correctly, and may in the
end even be positive with regards to the result.
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Appendix A

EDXML

A.1 EDXML Event Type

Below is the event type for an event coming from the dns.log file of Bro. The type is
defined by properties that should be present in the log. Furthermore, properties host-
ip and responder-ip contain the attributes concept and concept-confidence, indicating
that these properties define a certain concept (nad.computer) with a certain confidence
(9, or 0.9 in terms of probability)

<eventtype classlist="" description="Bro DNS Log Event"
display -name="Bro DNS Log Event/Bro DNS Log Events"
name="com.bro.log.dns" story="no description available"
summary="Bro log: [[ origin ]]">

<properties >
<property description="Origin of the event -data" merge="drop"

multivalued="true" name="origin" object -type="com.bro.log.name"
optional="true" similar="" unique="false"/>

<property cnp="128" concept="nad.computer" concept -confidence="9"
description="IP of the Host machine" merge="drop"
multivalued="true" name="host -ip"
object -type="computing.networking.host.ipv4" optional="true"
similar="" unique="false"/>

<property cnp="128" concept="nad.computer" concept -confidence="9"
description="IP of the responding machine" merge="drop"
multivalued="true" name="responder -ip"
object -type="computing.networking.host.ipv4" optional="true"
similar="" unique="false"/>

<property description="Protocol name" merge="drop" multivalued="true"
name="proto" object -type="computing.networking.protocol.name"
optional="true" similar="" unique="false"/>

<property description="Port of the responding machine" merge="drop"
multivalued="true" name="responder -port" object -type="count.small"
optional="true" similar="" unique="false"/>

<property description="Linux Epoch time" merge="match"
multivalued="false" name="timestamp" object -type="datetime"
optional="false" similar="" unique="true"/>
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<property description="Specifies whether the query was rejected by the
server" merge="drop" multivalued="true" name="rejected"
object -type="boolean" optional="true" similar="" unique="false"/>

<property description="Round trip time of the query and response.
Indicates delay" merge="drop" multivalued="true" name="rtt"
object -type="datetime.duration.seconds" optional="true" similar=""
unique="false"/>

<property description="Port of the Host machine" merge="drop"
multivalued="true" name="host -port" object -type="count.small"
optional="true" similar="" unique="false"/>

<property description="Unique ID linked to a connection" merge="drop"
multivalued="true" name="unique -interface -id"
object -type="com.bro.log.connectionuid" optional="true" similar=""
unique="false"/>

<property description="DNS Query subject" merge="drop"
multivalued="true" name="query"
object -type="computing.networking.host.dns.name" optional="true"
similar="" unique="false"/>

<property description="Response code of the DNS query" merge="drop"
multivalued="true" name="resp -name"
object -type="computing.networking.protocol.name" optional="true"
similar="" unique="false"/>

<property description="Response code of the DNS query" merge="drop"
multivalued="true" name="rcode" object -type="count.small"
optional="true" similar="" unique="false"/>

<property description="Random number chosen by the client for
transaction" merge="drop" multivalued="true" name="trans -id"
object -type="count.large" optional="true" similar=""
unique="false"/>

</properties >
<relations >
<relation confidence="10" description="Bro produced a log based on

communication from [[host -ip]] to [[responder -ip]]"
directed="true" property1="host -ip" property2="responder -ip"
type="inter:communicates via DNS with">

<descriptors >
<descriptor description="The connection is identified with id:

[[unique -interface -id]]" property="unique -interface -id"/>
<descriptor description="The connection used protocol [[proto ]]"

property="proto"/>
<descriptor description="The host requested [[ query]]"

property="query"/>
<descriptor description="The query was responded to with status code

[[rcode ]]" property="rcode"/>
<descriptor description="The query had a RTT of [[rtt]]"

property="rtt"/>
<descriptor description="The query was rejected: [[ rejected ]]"

property="rejected"/>
<descriptor description="The query was performed at [[ timestamp ]]"

property="timestamp"/>
</descriptors >
</relation >
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</relations >
</eventtype >

A.2 EDXML Event

An event that has been parsed from a Bro dns.log file is shown below. Note that the
information has been slightly adapted to prevent showing real-world data.

<event >
<properties >

<origin >dns</origin >
<host -ip>11.1.1.11 </host -ip>
<responder -ip>11.1.2.12 </responder -ip>
<proto >udp</proto>
<responder -port>53</responder -port>
<timestamp >2018 -04 -25 T22:00:22 .222222Z</timestamp >
<rejected >false</rejected >
<rtt>4.041000E-003</rtt>
<host -port>37239</host -port>
<unique -interface -id>abcdefghijklmnopqr </unique -interface -id>
<query >github.com</query >
<resp -name>NOERROR </resp -name>
<rcode >0</rcode>
<trans -id>12345</trans -id>

</properties >
</event >
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