
August 27, 2018

Refactoring
A Practical Application of Model Learning and

Code Generation

Author: Supervisors:
ing. Gijs van der Meijde prof.dr. Frits Vaandrager

dr.ir. Ammar Osaiweran

Second reader
dr.ir. G.J. Tretmans

Radboud Universiteit
Comeniuslaan 4

NL-6525 HP Nijmegen
The Netherlands

http://www.ru.nl

Refactoring
A Practical Application of Model Learning and Code Generation

Name ing. Gijs van der Meijde
Student number s4645251

Discipline Master in Computing Science
Specialization: Software Science

Host organization ASML

Start date 12-02-2018
Presentation date 31-08-2018

University coach prof.dr. Frits. Vaandrager
Host organization coach dr.ir. Ammar Osaiweran
Second reader dr.ir. G.J. Tretmans

Date of this document August 27, 2018

Document created using the KingTex Template (https://www.kingtech.nl/kingtex)

Abstract

Refactoring (or re-engineering) software is not without risks. Changing legacy software poses
a risk of introducing bugs into the system. On top of that, it is time-intensive work with high
costs. In order to mitigate the struggle of software engineers, we propose a method that uses
a combination of model-learning, test- and code generation. Our method complements common
software refactoring processes applied in the industry. It aims at reducing the risk of refactoring
software and assists in improving software maintainability using proven guidelines.
In this thesis, we show how model-learning can be applied to extract a behavioral model from
legacy components and how this model is refined to reflect the desired behavior of the software.
This process allows us to gain a better understanding of the legacy code. From the model, a set of
tests is generated for the legacy component. These tests are used to form a basis for guaranteeing
behavior preservation by enabling engineers to refactor code in a test-driven way. The model is
also used to generate an anti-corruption layer that protects the software component from ‘illegal’
behavior at run-time. Using these techniques we can reduce the risk of refactoring the component
by increasing confidence in the preservation of behavior when refactoring.

Keywords: model learning, refactoring, legacy software, model based testing, test generation,
anti-corruption layer, industrial application

Executive Summary

In this research, we explored a method to assist engineers in refactoring legacy software. Our
method can be used as an addition to the current refactoring methods used by companies. It helps
engineers gain a better understanding of the behavior of the legacy software and gain confidence in
their refactored code by providing tests and an anti-corruption layer. By looking into the learned
model and modifying it, we also force the engineers to think about the desired behavior of the
software before refactoring it.

To gain a better understanding of the logic and behavior of legacy modules we used a model
learning tool (LearnLib) to learn the behavior of the module in the form of a model. The past
few years’ model learning algorithms have improved significantly, but they are still not perfect.
So to be sure that the model at least describes the behavior that is currently used in the field,
we used system traces extracted from a simulator to guide the model learner. This still does not
mean our learned model is always correct, but at least the behavior we need is described.

The resulting model might represent the current behavior, but this is not necessarily behavior
the engineers desired for the module. If this is the case the model can be manually modified, a
lot of tools can be found to assist engineers in doing so. We implemented multiple import and
export formats to support as many of these tools as possible. Models can also be marked using
the system traces. This way the behavior currently used by the system can be visualized in the
model.

When the engineer is satisfied with the model it can be used to generate tests and an anti-
corruption layer. Tests prevent engineers from damaging the rest of the system when refactoring
the module by showing the refactored code preserves the old (or desired) behavior. While model-
based testing is a known concept, not much could be found about the generation of tests that
can be used in existing testing frameworks. This is strange since it seems more appealing for
most companies. Our tool uses the HADS [1] tool to generate a set of test cases that cover all
transitions of the model and is able to translate these into the JUnit and GTest formats.

Anti-corruption layers are meant as a run-time protection for the software that prevents
and/or logs ‘illegal’ action sequences when being called on the legacy or refactored module. Such
sequences may occur when external systems (that call the module) are being refactored. We
formalize the anti-corruption layer and show 4 reference implementations: The Observer, Armor,
Enforcer and Shield. For this research, we implemented the first three examples. The Observer
monitors all operations of the module, and if a behavior violation is detected this will be logged.
This implementation is mainly meant for debugging purposes. The Armor is a more aggressive
form of the Observer. Besides logging the behavior violations the Armor will also block these
violations and return an error. This way the Armor actively protects the module from undesired
behavior. The Enforcer is a lot like the armor, but besides blocking the undesired operation, it
will also trigger a reset sequence on the module. When undesired behavior is detected the module
returns to its initial state. Finally, we looked at the Shield proposed in [2]. While this paper
proposed to generate a shield from safety and liveness properties, we state it is also possible
to generate it from a model. The Shield corrects illegal behavior rather than blocking it. All
implementations have their strengths and limitations which are discussed in this thesis.

Our method is proven by concept using an industrial case at ASML. For confidentiality matters,
we explained the method in more detail using an example project.

Preface

I would like to thank my supervisors (Frits Vaandrager and Ammar Osaiweran) for their guidance
and help during this master thesis. Frits Vaandrager who signed an NDA with ASML and always
gave good feedback so I could get the most out of my thesis. Ammar Osaiweran and the Metrology
team who supported me during the project, were always there to answer questions, show me handy
ASML tools and provide feedback on my thesis.
I also would like to thank my fellow students at Radboud University. Without you the last two
years would not have been possible. I want to thank my girlfriend Astrid for always supporting
me and Simone Meeuwsen from the Radboud University for providing a place to work during the
weekends and in the evenings.
Finally, I would like to thank ASML for enabling me to conduct this research using their systems
as a proof of concept.

Gijs van der Meijde - August 27, 2018

Contents

1 Introduction . 1
1.1 Software maintainability . 1
1.2 Refactoring legacy software . 2
1.3 Models as Mealy Machines . 3
1.4 Research goal . 4
1.5 Research questions . 5
1.6 Outline of this thesis . 5

2 Methodology . 6
3 Industrial Case . 8

3.1 The TWINSCAN system . 8
3.2 Metrology . 9
3.3 Case-study . 10
3.4 Chocolate vending machine . 10

4 Isolating the system . 11
4.1 Removing cyclic dependencies . 11
4.2 Creating the stubs and adapter . 12
4.3 Resulting system . 13

5 Learning the model . 14
5.1 Chocolate vending machine . 14
5.2 Industrial case . 19
5.3 Modifying the model . 22

6 Generating tests . 23
6.1 A review on tools for test case generation . 23
6.2 Google Test and Bullseye . 27
6.3 Chocolate vending machine . 28
6.4 Industrial case . 29

7 Anti-corruption layer . 31
7.1 What is an anti-corruption layer (ACL)? . 31
7.2 Types of anti-corruption layers . 32
7.3 Chocolate vending machine . 37
7.4 Industrial case . 38

8 Refactoring the code . 40
9 Conclusions . 41

9.1 Recommendations and Future work . 44
10 Appendix A: Vending Machine . 46
11 Appendix B: Model Converters . 48
12 Appendix C: generated tests . 49
13 Literature . 50

1. INTRODUCTION

1 Introduction

An important aspect of software is the ability to evolve with new functionalities based on the de-
mands of its users. This does not only mean adding new features, but also changing existing code.
Even when adding new features, changing existing code is often needed. Thus, it is important
for software to be maintainable. Unfortunately, this is not always the case. Many organizations
face big problems when having to change legacy components in their software. Documentation is
usually scarce and the original developers of the legacy modules often no longer work in the or-
ganization. Updating legacy modules to comply with more modern software architectures is time
intensive and poses the risk of introducing bugs into the system. Since delivering new functional-
ities is restricted by time-to-market, many organizations leave legacy components intact and add
the new features in new layers ‘above’ the legacy components as a quick solution. This results
in high software complexity, lower software maintainability and thus not only postpones but also
worsens the problems of low-quality code. Section 1.2 elaborates on the challenges engineers have
to deal with when updating legacy code.

In this thesis, we propose a method to reduce the risks of refactoring legacy components using
a combination of model learning and code/test generation.

1.1 Software maintainability

Figure 1: Costs of software development

An important motivation to refactor code
is improving its maintainability. Accord-
ing to IEEE’s software engineering ter-
minology (2012), maintainability is “the
ease with which a software system or com-
ponent can be modified to correct faults,
improve performance or other attributes,
or adapt to a changed environment”. As
stated before, an important aspect of soft-
ware is the ability to evolve with new
trends and the demands of its users. For
example; new breakthroughs in mathe-
matical algorithms can improve the space
and/or time complexity and execution
time of existing programs, keeping a com-
pany ahead of its competitors, but to
profit from these new developments soft-
ware must be able to change. Software
architectures are usually created for just
this purpose, but a lot of legacy code at companies does not yet profit from these architectures,
making it harder to understand and maintain. Software maintenance is the most expensive part
of software development. According to [3] it is estimated that maintenance after software delivery
even takes up to 70% of the development costs, as can be seen in Figure 1. This shows us that also
from a financial point of view, it is important to develop software that is easy to maintain and
evolve. To help developers achieve this the Software Improvement Group [4] drafted 10 guidelines
to measure the general quality of software:

1

1. INTRODUCTION

1. Write short units of code (functions should be <= 15 lines).
2. Write simple units of code.
3. Write code once (no duplicate code).
4. Keep unit interfaces small.
5. Separate concerns in modules.
6. Couple architecture components loosely.
7. Keep architecture components balanced.
8. Keep your codebase small.
9. Automate tests.

10. Write clean code.

Additionally [5] states a function should take no more than 3 parameters. These guidelines are
designed to guide developers in creating their software in such a way that their software is more
flexible to the changing environment. The guidelines can also be used to measure the improvement
of the refactored code over the original code.

1.2 Refactoring legacy software

To gain a better understanding of the challenges that await us when updating legacy systems
we must first understand what refactoring is. For this reason, a literature study was conducted.
The concept of refactoring means restructuring code (modules, classes, variables, methods) to
become more future-proof1, without actually changing the external behavior of the code. The
IEEE provides a more formal description in [6]. They distinguish 3 types of software ‘refactoring’,
namely: Restructuring, Refactoring and Re-engineering.
Restructuring is defined as “the transformation from one representation to another at the same
relative abstraction level, while preserving the subject system’s external behavior (functionality
and semantics). A restructuring transformation is often one of appearance, such as altering code
to improve its structure in the traditional sense of structured design. While restructuring creates
new versions that implement or propose change to the subject system, it does not normally in-
volve modifications because of new requirements. However, it may lead to better observations of
the subject system that suggest changes that would improve aspects of the system.” [6].
Refactoring hints more at an object-oriented approach and is defined as “the process of changing
a [object-oriented] software system in such a way that it does not alter the external behavior of
the code, yet improves its internal structure” [7].
Re-engineering is a more extreme form of restructuring/refactoring. IEEE [6] describes this as
“The examination and alteration of a subject system to reconstitute it in a new form and the
subsequent implementation of the new form. In this context, restructuring is needed to convert
legacy code or deteriorated code into a more modular or structured form or even to migrate code
to a different programming language or even language paradigm”.

Regardless of the type of refactoring, the behavior of the system is preserved. Behavior preser-
vation means that, for the same set of input values the resulting set of output values should be
identical before and after refactoring. This can even be extended with the execution time of
software (for real-time systems), power consumption (for embedded systems) or safety proper-
ties (for safety-critical systems). Another, slightly weaker, notion of behavior preservation is call
preservation [8]. This means that the way a system behaves on function calls is the same before
and after refactoring, which implies changes are internal while external interfaces remain un-
changed. In this research we use the latter notion, since the models we learn using model learning
(Chapter 5) mostly describe the external call behavior of the software. Proving behavior preserva-
tion can be done using an extensive set of test cases or, as demonstrated in [9], by model checking.

1 following the 10 guidelines discussed in Section 1.1.

2

1. INTRODUCTION

Our method does not limit itself to one of the refactoring types. As long as the external
interfaces of the component that needs to be updated stay intact, our method will be applicable.
For convenience, we shall limit ourselves to the more commonly used term ‘refactoring’ in this
thesis.

To gain a better understanding of the global refactoring process, [8] distinguishes the following
activities:

– Identify where the software should be refactored.
– Determine which refactoring(s) should be applied to the identified places.
– Guarantee that the applied refactoring preserves behavior.
– Apply the refactoring.
– Assess the effect of the refactoring on quality characteristics of the software (e.g., complexity,

understandability, maintainability) or the process (e.g., productivity, cost, effort).
– Maintain the consistency between the refactored program code and other software artifacts

(such as documentation, design documents, requirements specifications, tests, etc.).

Additionally, we propose to determine the state of the to be refactored software using the 10
guidelines previously discussed in Section 1.1, so improvement can be ‘measured’. Identifying
where software should be refactored mostly happens by detecting so-called ‘bad smells’. These
are “structures in the code that suggest (sometimes scream for) the possibility of refactoring” [7].
Good examples of bad smells are code duplication or high dependencies (cyclic dependencies)
which can be detected using static analysis tools like CodeSonar [10] or BetterCodeHub [11].

The company ASML also has to deal with legacy code that is very risky to change because
it is embedded deeply in their systems. For their more recent code, they make a clear separation
between data, control, and algorithms. Their legacy code however does not follow a specific
pattern. This means that, to be able to improve the maintainability (Section 1.1) of their software,
it is important to refactor, restructure or even completely re-engineer this code.

1.3 Models as Mealy Machines

Software is considered stateful if it records information about preceding events (like function
calls) and adjusts its behavior accordingly. If the recorded information changes the behavior of
the software this is called a state. Software behavior can be represented using a collection of these
states, and can be described using a model. This research uses Mealy Machines [12] to represent
models. Let us consider Figure 2 as an example to explain Mealy Machines. Every node in this
Mealy Machine (S0, S1) represents a state of a system. The transitions represent the inputs with
a corresponding output of the system. If we take S0 as our initial state we can feed the Mealy
Machine input a which results in output 1 and brings us in state S1. If we feed the machine input
b in state S0 this will result in output 0 and leaves us in state S0.

Figure 2: Mealy Machine

3

1. INTRODUCTION

This definition assumes that a Mealy Machine is deterministic and input enabled, as is also
the case for our models. Formally, a Mealy Machine is described as a 6-tuple: (S, s0, Σ, Λ, T,G).
These 6-tuples consist of:

- S: A finite set of states.
- s0: An initial (start) state s0 ∈ S.
- Σ: A finite set of inputs.
- Λ: A finite set of outputs.
- T: A transition function T : S ×Σ → S mapping a state and an input symbol to the

next state.
- G: An output function G : S ×Σ → Λ mapping a state and an input symbol to an

output symbol.

An important rule for Mealy Machines is that for each state in S, for every input defined in Σ
a transition is defined. If an input does not make the system change its state, the corresponding
transition should loop back to the same state (See Figure 2: T (S0, b)). In this thesis the input
alphabet Σ of our models represents the functions we call on the external interface of the system.
The output alphabet Λ represents the return values of the functions that are called on the system.
Any symbol e /∈ Σ is not accepted by the system and will result in undefined behavior. This means
it depends on the software how these inputs are handled, some programs for example might just
ignore these inputs while others might crash completely.

1.4 Research goal

This study was conducted at ASML to find a uniform approach for their refactoring projects.
The goal of this research was to explore a method that assists engineers in refactoring legacy
code using model learning. In this thesis, we focus on the reasons for refactoring, the risks that
come with it and how to reduce these risks. We also present guidelines to assist engineers in
writing more maintainable code. If engineers adhere to these guidelines, this would benefit future
refactoring.

To reduce the risks in refactoring, a method using a combination of model learning and
text/code generation was explored. This method uses the learned model to generate unit tests
and an anti-corruption layer that helps engineers gain confidence in the behavior of the refactored
code. The generated unit-tests can help prove behavior preservation after refactoring, while the
anti-corruption layer is used to enforce certain behavior at run-time.

In addition to providing software engineers with a uniform approach for their refactoring
projects, the purpose of exploring this method is showing the current strengths and limitations
of the used model-based techniques in similar settings. To show these strengths and limitations,
the method was applied to an industrial case at ASML. This thesis discusses these and appoints
some possible solutions for the limitations.

4

1. INTRODUCTION

1.5 Research questions

The goal of this thesis is to apply model-based techniques and in particular model learning in
industrial settings. For this research, we chose to use these techniques to facilitate the refactoring
process of complex software components. We explored a practical application of model learning;
assisting engineers in refactoring legacy code. The direction this research takes is based on the
pre-conducted study on the problems in software refactoring described in the previous sections.
The main research questions addressed during this research are:

(RQ1) Can we provide engineers with a method to refactor legacy code based on model
learning?

(RQ2) Is model learning mature enough to be applied in an industrial setting?
(RQ3) When model learning is applied for refactoring industrial software, what are the ben-

efits and the limitations?
(RQ4) Based on experience gained in the industry, can we provide engineers with general

guidelines for software refactoring?
(RQ5) Can we automatically generate tests from a learned model to assist engineers in refac-

toring legacy code in a test driven way?
a) If so, what is the most convenient test framework to use?

(RQ6) Can we use models to guarantee behavior preservation when deploying the refactored
code?

Some of the subjects mentioned above are also treated by M.T.W. Schuts in his doctoral
thesis [13] at Phillips. However, as he describes in his thesis, his research was focused on a specific
industrial case. The industrial case used in this thesis yields valuable experience from a different
perspective, that can be used to shed a different light on Model Learning in industrial applications.

1.6 Outline of this thesis

This thesis is structured as follows: prior to this research, a literature study was conducted to gain
a better understanding of the problems and importance of refactoring software. The findings of
this study are discussed in the introduction of this thesis (Chapter 1). Next, we propose a solution
by briefly describing a method for reducing the risks of refactoring in Chapter 2. To support our
method we applied it to an industrial case study at ASML. Chapter 3 explains our industrial case
in more detail and Chapter 4 explains how the case was prepared for model learning.

To help overcome the problems in software refactoring, we use a combination of model learning
techniques, explained in Chapter 5, and code/test generation to assist engineers in refactoring
legacy code. The learned model can also be used by the engineers to gain a better understanding
of the behavior of the system.

In Chapter 6 we show it is possible to generate tests from a learned model to help preserve
behavior when refactoring. These tests can be used to refactor legacy code in a test-driven way.
Chapter 7 introduces an anti-corruption layer that can also be generated from the learned model.
This anti-corruption layer is used to protect the system from ‘illegal’ behavior at run-time and
thus further reduces the risks of refactoring.

To put our method to the test we carried out some light refactoring in Chapter 8. While doing
so we encountered some limitations which are discussed in this chapter.

Finally, we end this thesis in Chapter 9 by reflecting on the research and discuss our proposed
methods strengths and weaknesses and possible extensions to improve the method.

5

2. METHODOLOGY

2 Methodology

In this chapter, we propose a method to refactor software in a safe manner. The different com-
ponents of this method are explained in more detail in their own chapters. Figure 17 shows an
overview of the steps for refactoring the system as explained below.

Figure 3: Proposed refactoring method

1.) Model learning is a technique to learn the
behavior of a system from a black-box perspective.
The piece (slice) of software you want to learn the
behavior of, depends strongly on the type of refac-
toring you want to apply (Section 1.2) and the way
the legacy software is structured. If, for example,
the components of the software are strongly con-
nected but contain little logic it might prove more
effective to learn bigger chunks of, or even the en-
tire, software at once. If the software contains a lot
of logic, like in our industrial case, it might prove
more effective to isolate a smaller module of the
software and learn its behavior first. Thus refactor-
ing the software step by step.
To learn the behavior of a software module us-
ing automated learning tools, these tools need to
be able to communicate with the software mod-
ule. This means an adapter to replace the system
that normally calls the module by the learning tool
needs to be created. To properly learn the behavior
of this single software module and not that of its
dependencies, the dependencies should be replaced
using so-called stubs. The chosen module may also
contain cyclic dependencies with other modules. In
order to isolate the desired component these cyclic
dependencies need to be resolved. By generating
a graph of all dependencies and distinguishing all
strongly connected components in this graph, it is
possible to see how strong or loose the different
modules of a system are coupled. This helps in iden-
tifying the specific functions that need to be refac-
tored to uncouple a specific component. In Chapter
4, we describe the method we applied for isolating
the module in our industrial case.

2.) To learn the behavior of the legacy module
as precisely as possible, we used a combination of
model learning and analysis of system traces from our industrial case (trace analysis). Model
learning is a black box method to learn the behavior of a system, but because it is black box it is
not guaranteed to learn the complete behavior of the system. If, for example, a system responds
identically the first 100 times a button is pressed but responds differently the 101st time, most
model learning algorithms will already have stopped ‘exploring’ that button and not discover this
change in behavior. On the other hand, model learning tries to learn all possible combinations
of actions on the system. This means it might also learn behavior that should not occur during
a normal run of the system. This might be because of defensive programming (the software just
ignores illegal moves) or because the original developer never expected someone to use the module
in this way.

6

2. METHODOLOGY

Trace analysis however might learn a model that does not cover all possible traces because some
functions in the module are never (or rarely) used. This means the learned model contains all the
currently used behavior but is not robust to future changes. For our method, we propose using the
system traces to guide our model learner such that the learned model covers at least these traces.
This means while we still cannot guarantee the learned model covers all possible behavior, it at
least covers the behavior that is currently used by the system. Chapter 5 describes the method
we applied for learning the behavior of our example and industrial case.

3.) While the learned model might reflect the current behavior of the module, this does not
necessarily mean it is the desired behavior of this module. Since the model learner tries to learn
all possible actions on a system, it might also find flaws in its behavior. If this is the case we
propose refining the behavioral model before refactoring the component, in this way the generated
tests will guide the engineer in implementing the correct behavior when refactoring the learned
software module. To assist the engineers in refining the model, the system traces are used to mark
all inconsistencies between the learned and the currently used behavior. After refining the model,
the system traces can again be used to increase confidence that the new model does not conflict
with the currently used behavior. Section 5.3 discusses this in more detail.

4.) As discussed in Section 1.2, one of the most important parts of refactoring is preserv-
ing the behavior of the original (legacy) code. Unfortunately, as discussed before, learning the
behavior of the model might reveal flaws in the current behavior. Thus, rather than preserving
the behavior of the original code, we propose preserving the desired behavior as described in the
refined model. To assist engineers in preserving this behavior, a set of (unit)tests can be gener-
ated from the model. These tests show the engineers whether their code is correct according to
the desired behavior and thus enable refactoring in a test-driven way. In Chapter 6 we present
a comparison of different test generation tools and show how we applied test generation to the
models of our example and industrial case.
To protect the refactored system from ‘illegal’ behavior at run-time, we introduce an anti-
corruption layer. This layer can be seen as a wrapper for the software module that checks all
actions that are called and keeps track of the current state. If an action is triggered that is not
allowed in the current state the anti-corruption layer will block (and/or log) this action. Chapter
7 elaborates on this concept.

5.) To be able to measure the improvement gained by refactoring the software module, the
quality of the legacy module can be measured using the tools and guidelines discussed in Section
1.1 and Section 1.2. The results of these measurements can then be used to guide the engineers
in the refactoring process. When the model used for generating tests is refined, these tests might
fail on the current implementation of the legacy code. The results of these tests then show the
engineers what to refactor and can be used to confirm the refactored code’s behavior is still correct
to the model after each refactoring step.

6.) Finally, the engineer can refactor the software module in a step-wise manner. By using the
generated tests this can be done in an iterative way. Rather than refactoring the entire module
at once we prefer to refactor a small part of the module, running the generated tests to gain
confidence in the refactored code, measuring the quality again to compare this to the previous
quality metrics. Only if everything is correct the engineer should start refactoring the next part
of the module.

7.) To make the system more robust against ‘illegal’ behavior, we generated an anti-corruption
layer from our model and apply it to the learned module. By refactoring the software module using
the generated tests in the previous steps, we gained confidence the refactored module behaves as
described in the model. The anti-corruption layer however, helps guarantee the module is also used
this way by external systems. Thus after refactoring the software, we apply an anti-corruption
layer, as explained in Chapter 7, to make the entire system more robust against unexpected
behavior.

7

3. INDUSTRIAL CASE

3 Industrial Case

“Make chips. Faster, smaller, greener.”

Founded in the Netherlands in 1984 and listed on the stock exchanges NASDAQ and Euronext
since 1995, ASML is currently the largest supplier of photolithography systems for the semicon-
ductor industry. ASML systems engrave circuits on silicon wafers using a laser that can do this
with a resolution of 13nm. In comparison: the size of a skin flake is between 500nm and 10.000nm
[14]. After engraving the wafers can be processed further to form Integrated Circuits (IC’s) or
chips. ASML does not manufacture IC’s, it only develops the engraving systems. Important cus-
tomers of ASML are companies like Samsung, Intel, and TSMC.
This chapter introduces the TWINSCAN machines (Figure 4) developed by ASML and the com-
ponent used as a case study for the refactoring method described in this paper.

Figure 4: TWINSCAN

3.1 The TWINSCAN system

ASML’s current line of photo-lithography systems is called the TWINSCAN. These systems use
light to print an image on a silicon wafer covered with a photo-sensitive material. The most
recent TWINSCAN system uses Extreme UltraViolet (EUV) light to engrave circuits with a
13nm resolution. A laser is fired at microscopic droplets of molten tin, this produces a plasma
which emits the EUV light used to engrave the wafers. The reason EUV is used is that it has
an extremely short wavelength which is needed for projecting images on such a small scale. The
EUV light passes through a screen with the image and displays this on the wafer. After exposure
to the image, the unexposed parts of the photosensitive material are etched away, leaving only
the projected circuit. After this, a new layer is added to the wafer and the process is repeated

8

3. INDUSTRIAL CASE

(Figure 5). the different layers do not necessarily have to be processed using the same lithography
machine.

Figure 5: Wafer production [15]

To stay ahead of its competitors, ASML has to develop new technologies to keep decreasing
the resolution with which their systems can engrave wafers. This way chips can become smaller,
have more capacity and use less power. Until now this goes according to Moore’s law [16]. This
law predicts circuits to become smaller by a factor of 2 every two years.

3.2 Metrology

“Metrology is the brain of the TWINSCAN that is used to create
electronic devices that seem impossible today and that shape our future.”

During processing the wafers are being subjected to fast movements (Formula 1 acceleration rates
even) and extreme temperatures, any deformation caused by this can cause imperfections in the
photolithography process. When working on a nano-metric scale, every unevenness can be fatal.
This is why every wafer is constantly measured carefully. From these measurements mathemati-
cal models are created and compared to the expected models, this way any deformation can be
predicted and countered, optimizing the yields and enabling ASML to stay ahead of its competi-
tors. The department responsible for the software that handles the measuring of the wafers and
correcting for mechanical imperfections is Metrology. Their mission statement:

“ ‘Metrology Measure’ measures, models, and corrects wafer deformation at the
performance level required to win race against Moore’s law - over and over again.”

9

3. INDUSTRIAL CASE

3.3 Case-study

This part is removed for confidentiality and can be found in the original version of
this document.

3.4 Chocolate vending machine

In order to prevent spilling confidential information we use Inputs (Σ) Outputs (Λ)
5ct OK
10ct NOK
mars
twix
snickers

Table 2: Inputs and outputs of the
vending machine

an example application to show the different techniques in
detail. The example application is a simple vending machine
that accepts 5ct and 10ct coins, and sells Mars, Twix and
Snickers for respectively 10ct, 15ct and 25ct. It is based on
a JavaScript web-application used during the Testing Tech-
niques [17] course at Radboud University [18]. The vending
machine application has been rewritten to a Java appli-
cation that uses the java.net.Socket to communicate with
the learner. The source code for the example application is
added in the appendices (Chapter 10) so all our experiments are repeatable. Controlling the appli-
cation can be done by sending the input commands depicted in Table 2 over a socket connection.
The application responds with OK if an action is allowed and NOK otherwise.

10

4. ISOLATING THE SYSTEM

4 Isolating the system

For our industrial case, we used an ASML module as our SUL2. Since the module is still connected
to other modules the resulting model will also reflect the behavior of these modules, potentially
giving a wrong impression of our SUL’s behavior. Thus, to learn the behavior of only our SUL,
it has to be isolated from the rest of the code.

4.1 Removing cyclic dependencies

This part is removed for confidentiality and can be found in the original version of
this document.

2 System Under Learning

11

4. ISOLATING THE SYSTEM

4.2 Creating the stubs and adapter

As stated in Section 1.2, the scope of the SUL depends on the software and type of refactoring that
is applied. For example, our vending machine application was relatively small and can be learned
in one go. But including too much in your scope might result in a very big model, including too
little might mean you need to learn multiple modules. In this research we decided to learn the
behavior of just the SUL (without its dependencies), thus connections to these dependencies have
to be separated.

Since we want to change our SUL as less as possible before learning its behavior, we created
stubs to replace the dependencies. A stub is basically a ‘dummy’ implementation for a class or
module. Most of the original dependency functions returned an integer code referring to either an
error type or a successful execution. Our stub functions always return 0, which means the functions
executed successfully. By doing so we tried to cover the ‘happy flow’ of our dependencies assuming
they will always pass the execution and made sure we only learned the logic contained in our
SUL and not that of its dependencies. Some exceptions were made for functions that needed to
work for the SUL to function. For example, one of the stubbed functions returns a predefined
wafer diameter and a stubbed ‘clone’ function actually clones a variable. But only a very basic
implementation was used.

After removing the cyclic dependencies the structure of the code closely resembled that of
Figure 7 (left). Since the original dependencies implemented their corresponding header files, we
decided the stubs should do the same. The SUL is not aware of the implementation of these
header files and thus it does not need to be modified to use the stubs instead of the original
implementations. Because a source (implementation) file can implement multiple header files, we
created one stub that implements all the header files as shown in Figure 7 (right).

Figure 7: Left: dependencies before isolating. Right: dependencies after isolating.

To communicate with the SUL we had to replace the system that usually calls the module with
an adapter for our model learner as shown in Figure 7. LearnLib only supports string input and
output, thus our adapter had to translate these string messages to actual function calls. To be able
to influence some of the function parameters, we used multiple string messages to denote these
function calls with different parameters. For example, function foo contains a boolean parameter.
This can be resolved by using two different messages: foo true and foo false. To communicate

12

4. ISOLATING THE SYSTEM

with the learner, our adapter uses a TCP/IP socket connection. The adapter receives commands
listed above via the socket connection and responds by calling the corresponding functions of the
SUL and returning their outputs. To keep our model small, we abstracted the outputs to OK and
NOK, where OK denotes a successful execution, and any error type is being translated to NOK.

4.3 Resulting system

After isolating the SUL, we are able to compile the SUL and its dependencies as a separate library.
By replacing the dependency modules by our stubs and adding the adapter, we compiled our SUL
as a standalone executable. This way, we are not dependent on the ASML systems. Using this
executable, we learned the models by connecting the SUL to LearnLib via a TCP/IP connection
as shown in Figure 8. Chapter 5 continues by describing how we learned models from the SUL.

Figure 8: Connecting the learner to our SUL

13

5. LEARNING THE MODEL

5 Learning the model

After isolating the SUL as described in Chapter 4, we can begin learning its behavior. Therefore,
different model learning techniques can be applied to the component. This chapter explains the
model learning techniques used to construct behavioral models of legacy components. First, we
will give a brief introduction to model learning using a simple vending machine as case-study in
Section 5.1. Next, Section 5.3 continues by explaining the learning methods used on the SUL in
our industrial case. Finally, Section 5.2 explains why it is sometimes needed to refine the learned
models to describe the desired behavior of the refactored code.

5.1 Chocolate vending machine

In [19] it is stated that “Model Learning aims to construct black-box state diagram models of
software and hardware systems by providing inputs and observing outputs”. But what does this
mean? Looking at a system from a black-box perspective means looking at its external behavior
without checking its internal structure. The most intuitive ways to learn a system like this is by
trying every possible sequence of inputs and see what happens. Since this is impractical due to the
infinite number of possible input sequences, there are algorithms that can help us ‘try sequences’
in a more efficient way.

One of these model learning algorithms is the L* algorithm [20]. This algorithm uses a matrix
to learn a model from the input and output of a system. Every system has at least one state (the
initial state). The L* matrix consists of a row for each examined prefix and a column for each
suffix (input). The initial state is denoted using an empty (ε) prefix and a suffix for each input,
the values in the matrix represent the given outputs. In Table 3 we see that in its initial state the
vending machine returns OK on inputs 5ct and 10ct whereas the inputs mars, twix and snickers
return NOK.

Prefix Suffix

5ct 10ct mars twix snickers

ε OK OK NOK NOK NOK

Table 3: L*: Initial state

When the L* algorithm discovers a new state, which can be seen as a unique combination
of output values, it uses the prefix for this state in combination with all suffixes as a new set
of prefixes to be explored. So after the initial state is discovered, the L* algorithm will try each
input for the initial state (ε) to discover where they lead. Table 4 shows this results in five new
rows.

Prefix Suffix

5ct 10ct mars twix snickers

ε OK OK NOK NOK NOK

5ct OK OK NOK NOK NOK

10ct OK OK OK NOK NOK

mars OK OK NOK NOK NOK

twix OK OK NOK NOK NOK

snickers OK OK NOK NOK NOK

Table 4: L*: First iteration

14

5. LEARNING THE MODEL

The highlighted rows in the tables are considered as a new state because they result in new
unique sets of outputs. Four of the five new rows in Table 4 consist of a set of outputs that
equals the set of the initial state. These rows will not be considered as a new state, instead, these
sequences lead to the initial state. The prefix 10ct (row 3) results in a new set of prefixes that
did not occur in the matrix before. This means a new state is detected and L* will now continue
exploring using a set of sequences consisting of the newly found state (10ct) and all possible
suffixes (inputs). The result of this continued exploration is added in Table 5.

Prefix Suffix

5ct 10ct mars twix snickers

ε OK OK NOK NOK NOK

10ct OK OK OK NOK NOK

5ct OK OK NOK NOK NOK

mars OK OK NOK NOK NOK

twix OK OK NOK NOK NOK

snickers OK OK NOK NOK NOK

10ct 5ct OK OK OK OK NOK

10ct 10ct OK OK OK OK NOK

10ct mars OK OK NOK NOK NOK

10ct twix OK OK OK NOK NOK

10ct snickers OK OK OK NOK NOK

Table 5: L*: Second iteration

This time it appears that prefixes 10ct 5ct (row 7) and 10ct 10ct (row 8) result in a new state.
The L* algorithm will now continue exploring from the newly found states. It will continue this
way until no new unique sets of outputs are discovered. If no new states are detected the algorithm
will consider the model as complete. If the system actually contains more states the model learner
can be guided using counterexamples. These counterexamples are sequences of actions that result
in a new state. In the L* Algorithm these counterexamples are added to the list of suffixes and
will form new columns. The L* Algorithm will then consider these new columns and check if new
states can be found.

While L* is probably the easiest model learning algorithm to understand, it is not the most
efficient one. There are a number of research papers available on model learning. For this research,
we looked at a paper about refactoring software using model learning and equivalence checking at
Philips [21], and a thesis about refactoring using model learning and Domain Specific Languages
[9] that builds on the previous paper. In [21] the L* algorithm was chosen for model learning,
however, the author notes this algorithm might not be the most efficient way and performed tests
with the TTT learning algorithm [22] showing it is much faster.

Both papers use LearnLib [23] to learn a model of legacy software. LearnLib is a black-box
model learning tool that learns a model without looking at the internal structure of the SUL. It
is released as a Java library that contains multiple learning algorithms and can be connected to
a SUL by writing your own adapter as shown in Chapter 4. After LearnLib finishes learning, it
generates models in graphviz .DOT format.

To enable communication between the LearnLib tool and the SUL, we use TCP/IP Sockets
since they provide a generic way to communicate, which makes them easier to reuse on other
SUL’s. To increase the confidence in the model learner we first tested it on a simple example
application of which we knew the model beforehand: the chocolate vending machine example
explained in Section 3.4.

15

5. LEARNING THE MODEL

5.1.1 First model

Our first experiments with the TTT algorithm show that it is very fast indeed, which is in line with
the observations of [21]. But without prior knowledge of the system it cannot learn a complete
model. The initial model in Figure 9 shows a stateless behavior which was far from complete.

Figure 9: Initial TTT model - Vending machine

While the behavior in the model is indeed correct, it is immediately clear the model learner did
not learn more than one action per sequence. If it, for example, would have tried the mars action
after the 10ct action it would have found a new state. In our example application, the amount of
money is also limited using the function below. This makes every state that contains a self-loop
where money is added and OK is returned suspicious.

private static boolean addMoney(int x){
if(money <= 25){

money += x;
return true;

}
return false;

}

Using the input sequence {10ct mars} for example, we can disprove the learned model. This
sequence should result in OK as response, but according to Figure 9 the response would be NOK.
If such a sequence exists, we call it an counterexample. These counterexamples can be used to
guide the learner in learning more complete models. The initially learned model shows the TTT
algorithm alone was not enough for our learner to get a complete image of the system’s behavior.
Therefore, we had to give the learner more information, in the form of counter-examples, to
guide it in exploring more behavior. Fortunately, LearnLib contains several testing algorithms to
automatically find these counterexamples. In Section 5.1.2 we show how the initial model was
improved.

After our first try with the TTT algorithm failed to gain a complete model, we tried to learn
a new model using the L* algorithm. Except for the learning algorithm, we kept the setup of
our learner identical to our initial attempt. Figure 10 shows the first model learned with the L*
algorithm. This experiment shows that, without any additional information, the L* algorithm
learns more complete models.

16

5. LEARNING THE MODEL

Figure 10: Initial L* model - Vending machine

5.1.2 Refining the model

If a model is not correct with respect to the SUL, counterexamples can be presented to the
learner to improve the learned model. The learner will check if these counterexamples indeed
conflict with the learned behavior and are correct according to the SUL. If a presented sequence
is indeed a counterexample, it will be considered a new state and the learner will continue learning
the behavior from this state. While engineers can present counterexamples manually, LearnLib
also features multiple algorithms to automatically find counterexamples. One of these algorithms
is the W-method [24], which is explained in Section 6.1.17.

To improve the learned model, the experiments in Section 5.1.1 were extended with the W-
method to find counterexamples. Both the L* algorithm and the TTT algorithm now learned the
same model shown in Figure 11.

17

5. LEARNING THE MODEL

Figure 11: Improved model - Vending machine

Normally we would try and improve the model by experimenting with different learning tech-
niques and finding more counterexamples, but since we created the vending machine ourselves
we are confident this model reflects its actual behavior. So trying different learning techniques
should have no positive effect on the learned model.

To be able to learn models with different Model Learning algorithms and use counterexamples
in a fast and easy way, we developed a prototype tool using LearnLib as a basis (Figure 12). By
using this tool an engineer can select one of the model learning algorithms embedded in LearnLib
and configure all possible inputs and outputs. It is also possible to feed the tool counterexamples
to guide LearnLib in learning more complete models. As can be seen in Figure 12 the prototype
tool automates a big part of the method described in Chapter 2. It featured the model learner
(LearnLib) explained in this chapter and is able to export and import models. From these models,
it can generate tests and an anti-corruption layer, which will be explained further on in this thesis.

Figure 12: Prototype learning tool

18

5. LEARNING THE MODEL

5.2 Industrial case

For our industrial case at ASML, we learned the legacy module explained in Chapter 3. In
preparation of learning the SUL, it was isolated from the rest of the code as described in Chapter
4. In this section, we discuss the model learning process for the ASML SUL. For confidentiality,
we maintain an abstract perspective.

5.2.1 The first model

After isolating the SUL and running the first model learning algorithms we learned the model
shown below. Since the SUL responded nearly instantly and our previous experiment showed the
L* algorithm learned a more complete model without any additional information, we decided to
use this algorithm for our industrial case.

This part is removed for confidentiality and can be found in the original version of
this document.

5.2.2 Improving the model

19

5. LEARNING THE MODEL

This part is removed for confidentiality and can be found in the original version of
this document.

20

5. LEARNING THE MODEL

Guiding the learner with system traces
As explained in Section 5.1, model learning algorithms can be guided using counterexamples.
These counterexamples are sequences that are possible in the SUL, but not in the learned model.
If such a sequence is discovered the model learner can use this counterexample to discover a new
state and continue learning from this state.

Since legacy systems usually are fully operational, it is possible to trace function calls as the
system is being used. These traces give us a good picture of the currently used behavior of the
system. Since systems often do not utilize all possible behavior, the traces will be a subset of the
actual behavior of the system. By translating the extracted traces to counterexamples, LearnLib
can disprove the correctness of a learned model and modify the model accordingly. This way, the
previously learned model might be improved.

One of the options of the simulator ASML developed for their TWINSCAN hardware, is to
log system traces in an external file. These traces contain all functions that are called in the
order they are called. The simulator also features predefined test cases to check how the system
behaves under certain circumstances. Running these tests on the current software yields system
traces that describe the system’s behavior as it is at run-time.

The tool we created is able to use the extracted trace files as counterexamples for LearnLib.
Figure 12 shows the global activity flow of our tool. By using a configuration file, the inputs and
outputs of the SUL can be configured and one of the model learning algorithms and Equivalence
testing methods (used for automatically finding counterexamples) embedded in LearnLib can be
chosen. All the traces we used were already contained in the model learned in Section 5.2.2, so
the model stayed unchanged. While we can not guarantee the learned model is correct to the
SUL, we can be certain it at least contains all traces used by the current systems. The learned
model did however contain undesired behavior. In the next section, we explain how we refined
the learned model and discuss the results.

5.2.3 Refined model

After learning the final model, we presented the model to domain experts from ASML. To highlight
the current behavior of the system, we used the system traces, explained in Section 5.2.2, to mark
all used transitions in the model by symbolical execution (‘walking’ through the model using input
sequences as steps). The marked transitions form the subset of the behavior that is currently used
at run-time.

Transitions that are not marked, and thus not used in the current implementation, are not
necessarily wrong, but they are suspicious. Vice versa transitions that are marked are not nec-
essarily correct to the desired implementation, but we advise extra caution when changing this
behavior. If the behavior that is used at run-time is changed, this might cause unexpected errors
in the system.

This part is removed for confidentiality and can be found in the original version of
this document.

21

5. LEARNING THE MODEL

The new model is used to generate tests (Chapter 6) and an anti-corruption layer (Chapter 7).
We work with a white-box SUL, and the model learning techniques used in this research are

created for black-box learning. This means we learn the software by calling its interfaces rather
than inspecting its internal behavior. It might prove worthwhile to look into tools for static code
analysis to learn models from the SUL, like CPAchecker [25]. Unfortunately, due to the limitation
of time, we did not do this during our research.

5.3 Modifying the model

Before the refactoring process of the code takes place, we want to use the learned model to
generate tests and other artifacts, like the anti-corruption layer described in Chapter 7, to guard
the correctness of the refactoring process later on. In Section 1.2 it is stated that refactoring should
preserve the behavior of the legacy code. However, as we discovered in Section 5.2.3 hidden flaws
(bugs) in the current behavior might be revealed during the process of refactoring code.

One of the advantages of using model learning is that when learning models of the legacy code
these models show us the exact behavior of the current implementation. Thus any flaws, if they
exist, will appear in the learned model. When such flaws are discovered refactoring does not limit
itself to redistributing code without changing its behavior, but also means solving possible issues.
This means the behavior of the refactored code is not necessarily the same as that of the legacy
code.

When undesired behavior is detected in the learned model, generating tests and other artifacts
from this model does not make sense because this behavior should first be corrected in the legacy
code. However, we think correcting these flaws in the legacy code to learn a new model is a
waste of time since this code is going to be changed (or completely replaced as in our industrial
case) when refactoring anyway. A more logical move is modifying the learned model to reflect the
desired behavior. This way we can generate tests and an anti-corruption layer for the behavior
that is actually intended and implement that behavior when refactoring the legacy code.

This part is removed for confidentiality and can be found in the original version of
this document.

Because the learned model might include faulty behavior that should be corrected, our proto-
type tool is able to export the learned model to the various output formats named in Appendix
B. This way, engineers can use a tool of their own choice to modify the model to represent the
desired behavior. After a model is modified it can be imported to our tool again and then tests
and an anti-corruption layer reflecting the desired behavior rather than the learned behavior can
be generated. These tests can then guide refactoring the code and be used as a basis to guarantee
correctness. The process to reach the final refined model is visualized in Figure 12.

External systems that call the legacy code might actually ‘exploit’ the undesired behavior.
Thus changing this behavior can cause unexpected problems in these external systems. This is
why, when changing the behavior of (legacy) code, it is important to know the way it is currently
used by other systems. For this, the generated anti-corruption layer can be used to confirm the
new behavior will not conflict with the current usage of the legacy code. This process will be
further discussed in Chapter 7.

22

6. GENERATING TESTS

6 Generating tests

The goal of this research is to assist engineers in refactoring legacy code. To gain confidence in the
refactored code, the behavior of the module before refactoring can be compared to the behavior
after refactoring. There are different possibilities when using a model for testing. One way to
be considered is model-based testing [26] [27]. Model-based testing uses the model to check if a
transition from state A to state B in the model also results in a transition from state A to state
B in the System Under Test (SUT).

Another way to gain confidence, is to compare the learned model with a new one learned after
refactoring the code and use model-checking techniques to see if this new model is IOCO [28]
or even bi-similar [29] to the current model. IOCO, or Input Output COnformance, states that
for every input in model A, model B must result in the same output. Bisimulation means that 2
systems are equal from a black box perspective, thus for each input in model A, model B must
result in the same output and vice versa. Both methods assume the learned models are correct
according to the SUT.

From an engineering and industrial perspective it might be more appealing to generate a set
of test cases that can be used in existing test suites (like Gtest, JUnit or xUnit). Also, these
generated tests can be reused multiple times for regression when code is being refactored and
changed. Often coverage reports are generated from these test suites to indicate the quality of the
code to engineers and management. Hence, we decided to generate test cases rather than using
model-based testing.

Multiple ways of test generation are considered, in Section 6.1 we discuss some tools we looked
into to generate tests sequences. These generated sequences still need to be translated to tests
that can be included in, for example, the GTest tool suite ASML uses for testing their code. The
tests reduce the risk to the system as a whole by proving the refactored component’s behavior
does comply with that of the model.

6.1 A review on tools for test case generation

There are a number of tools for testing using models. Since we do not wish to reinvent the
wheel, we decided to use an existing tool to generate our test sequences. For the generation of
test sequences we looked at external tools, specifically, the 15 tools described in [30], JUMBL
(J Usage Model Building Library) [31], GraphWalker [32] and Hybrid Adaptive Distinguishing
Sequences (HADS) [1].

In this section we will discuss the pros and cons of the tools we looked at, a brief summary
can be found in Table 6. We checked the tools for the following criteria:

– Publicly available: We need a tool that is actually available to us.
– Model compatible: We need a tool that is compatible with our models and does not need

additional information to generate tests.
– Offline testing: Offline testing means testing happens in 2 phases. First the tests are gen-

erated, then the tests are executed. Online testing generates tests on-the-go. We need a tool
that can generate tests without executing them.

– Export functionality: Since we want to use the test sequences in our own tool the test tool
needs to be able to export its test sequences.

– Coverage based: For our test purpose it is important that all transitions are covered. Thus
the generated test sequences need to be coverage based.

– Multi platform: This criterion is not as important as the other ones, but since we work
with both Linux and Windows systems a multi-platform tool is preferred.

Unfortunately, not all of these tools where suitable for this research because of the criteria men-
tioned above. That does not mean these tools are not potentially interesting for future work.

23

6. GENERATING TESTS

We also came up with the idea of a simulator (interpreter) for the model. Since a lot of tools
do not save or export their tests but instead execute them immediately on the SUT, a future
extension of this research could be creating a simulator that reflects the behavior of the model
and log’s all input’s as a way of retrieving the test sequences from these tools. Unfortunately, we
did not have time to implement and test this.

Tool
publicly
available

Compatible
with model

Offline
testing

Export
functionality

Coverage
based

Multi-
platform

Lutess Yes No No No Yes -

Lurette Yes No No No Yes -

GATeL Yes No Yes - - -

AutoFocus Yes No Yes Yes Yes -

Conformance
kit

No - - - - -

PHACT No - - - - -

TVEDA Yes Yes Yes - Yes -

Cooper Yes Yes - - Yes -

AsmL Yes Yes Yes Yes Yes No

TGV Yes - Yes Yes Yes -

TorX Yes Yes No No Yes Yes

STG No - Yes Yes - -

AGEDIS No No Yes Yes Yes -

TestComposer Yes Yes Yes Yes Yes Yes

AutoLink Yes Yes Yes Yes Yes -

Jumbl Yes Yes Yes Yes Yes Yes

GraphWalker Yes Yes Yes Yes Yes Yes

HADS Yes Yes Yes Yes Yes Yes

Table 6: Comparing test tools

In the subsections below, we briefly describe the different tools we looked at. For our proof of
concept, we use the HADS tool to generate test sequences, since this seemed the most promising
way. The HADS tool met all our criteria and the original developer was available if needed. This
does not mean the other tools cannot be used as well, provided they are available and compatible
with our models.

The generated test sequences need to be translated to a different format to be accepted by a
test suite. We designed our tool in such a way we can extend it with more output formats and
sequence generation methods in the future. For this research we limited ourselves to JUnit [33]
and GTest (Section 6.2).

6.1.1 Lutess

Lutess [34] is a tool that uses Binary Decision Diagrams (BDD’s) to generate its tests. One
limitation is that it can only validate systems which have boolean inputs and outputs. Lutess
expects a complete environment description in the Lustre language and only supports Online
testing. For testing, Lutess randomly selects a new transition for every step, these steps can be
guided using a condition/property or behavior pattern. Lutess will calculate the probabilities
for the different transitions towards this condition and generate the sequences with the highest
probabilities. Unfortunately, Lutess does not provide a way to generate tests based on coverage
criteria, which is one of the cornerstones of our research.

24

6. GENERATING TESTS

6.1.2 Lurette

Lurette [35] is very similar to Lutess, but works with numerical inputs and outputs in contrast to
Lutess boolean values. Besides Lustre, the Lurette tool also accepts the Lucky and Lutin language
as input. Unfortunately for us, this does not change the underlying system and Lurette also does
not support offline testing.

6.1.3 GATeL

GATeL [36] uses constraints for its test generation. These constraints consist of invariants and
a test purpose. Test purposes can be expressed using path predicates. The tools translate the
models into the CPL language and interpret (symbolically execute) this to generate test sequences.
GATeL starts generating tests from the last state in a test sequence and tries to find a sequence
towards this state such that it satisfies the invariant(s) and test purpose. This tool requires
a complete specification of the SUT (in Lustre code), an environment description and a test
objective.

6.1.4 AutoFocus

AutoFocus [37], like GATeL, uses constraints for its test generation and uses CPL to symboli-
cally execute the model and generate test cases which it can save for later use. AutoFocus uses
functional, structural and stochastic test specifications to guide the generation of test sequences.
The advantage of AutoFocus is that it can generate test-cases conform given coverage criteria to
the model.

6.1.5 Conformance Kit and PHACT

PHACT is a tool that builds on Conformance Kit. Unfortunately, both tools are not publicly
available and thus we did not look into them any further.

6.1.6 TVEDA

TVEDA is an older tool (1995). It can generate TTCN-2 formatted test sequences. TVEDA’s
test approach is achieving a complete test coverage. It also uses symbolic execution to generate
it’s test cases. First, it tries to reach all states using a breath-first-search that is limited to 30.000
states. Then it (re)uses the previously discovered sequences to get as close as possible to all non-
discovered transitions and executes another breath-first-search to reach them. This results in a
set of test cases that uses all transitions. This tool might be interesting for future work.

6.1.7 Cooper

Cooper is meant for educational purposes and not for practical work. Cooper uses the imple-
mentation relation conf, this states that: for two processes B1 and B2, B1 conforms to B2 if and
only if when B2 deadlocks, B1 should also deadlock. This means that B1 may contain traces
that are not possible in B2. For our method, this would mean we allow either the model or the
implementation to be more strict.

6.1.8 Asml

The AsmL Test Tool [38] generates a Finite State Machine from its model. Using the Chinese
Postman algorithm to cover all branches in the FSM, the tool tries to generate test cases covering
all transitions. Asml is written for the .NET framework and embedded in the .NET development
environment. This makes the tool interesting for future work, but connecting it to our tool would
have taken too much time for our current research.

25

6. GENERATING TESTS

6.1.9 TGV

TGV uses the IOCO implementation relation for its test generation. It is available as part of
the Caesar Aldebaran Development Package so it should be relatively easy to integrate it into
our tool. TGV uses IOLTS (Input Output Linear Transition Systems) equipped with an accept
sink state and a refuse sink state to generate tests. If there is a state with an incomplete set of
transitions TGV will complete it with self-loop transitions. TGV features a documented API to
connect new ‘specification languages’ to. It has been tested in multiple industrial environments,
making it interesting for our research.

6.1.10 TorX

Like TGV, TorX also uses the IOCO implementation relation for its test generation. It is a free
tool that can be used for both test generation and execution. TorX features a “batch mode”
and a “on-the-fly mode”. The batch mode can be used to generate tests without executing them.
Unfortunately, this mode is only described in the TorX architecture and not actually implemented.
In the on-the-fly mode, generating tests and executing them happen simultaneously. TorX can
work with any model that can be expressed as an LTS, and interfaces between components are
well documented so it should be possible to integrate it into our tool in the future. As an added
bonus TorX is also able to work with non-deterministic systems.

6.1.11 Symbolic Test Generator (STG)

STG (Symbolic Test Generator) is inspired by TGV and TorX. It is able to generate executable
test cases based on the IOCO principle but unfortunately, the STG tool is not publicly available.

6.1.12 AGEDIS

AGEDIS matches most of the list of criteria we are interested in. It is written in Java, Can
generate tests for both state and transition coverage, it supports Java, C, and C++ for its test
execution. But it is not publically available and cannot use a model alone to generate tests. It
needs more information conform the UML standard, and thus it is not convenient for our research.

6.1.13 TestComposer

TestComposer is inspired by TVEDA and TGV and combines their strengths. It features both
online and offline testing and uses a model with inputs and outputs to generate its tests. Making
it suitable for our research. TestComposer can generate a set of tests given a coverage percentage
and output it in multiple formats. Tests are automatically split into 3 parts: preamble, body, and
postamble.

6.1.14 AutoLink

AutoLink [39], like TestComposer, is based on TVEDA and TGV and can automatically generate
tests based on state space exploration. It uses an on-the-fly method based on that of TGV
to generate TTCN formatted test suites from an SDL specification and can work with non-
determinism.

6.1.15 JUMBL

JUMBL (J Usage Model Building Library) [31] supports construction and analysis of models,
generation of test sequences, automated execution of tests and analysis of the test results. It
uses Markov Chains [40] to determine the most useful test set based on the likeliness a path
in the model is taken and generates it, but can also work with standard transition systems.

26

6. GENERATING TESTS

Unfortunately, these systems need to be finite, meaning they have a clear start and end state,
while our learned models often are not. For test generation, JUMBL uses the Chinese Postman
Algorithm [41] to construct test sequences for the model based on the probability of usage.

6.1.16 GraphWalker

GraphWalker [32] is a Model-Based testing tool that implements multiple algorithms to generate
tests. These algorithm’s keep generating tests until a given stop condition is reached. In our case
edge coverage (transition coverage) is an interesting stop condition. GraphWalker features a Java
library that can be embedded in other tools. It uses Extended Finite State Machines (EFSM) as
input to generate tests and execute them. GraphWalker features an ‘online testing’ and an ‘offline
testing’ mode. The online testing mode is an on-the-fly test generator that generates tests and
executes them immediately. The offline testing mode stores the test-cases for later use. This means
we can use GraphWalker to generate test sequences, store them and translate them into GTest
tests using our own tool. Unfortunately, the documentation on GraphWalker is a bit lacking, so
we decided to not take the risk of adopting the tool in our work.

6.1.17 Hybrid adaptive distinguishing sequences

Hybrid adaptive distinguishing sequences (HADS) [26] builds on the W-method introduced by
Chow [24] and Vasilevskii [42]. The improved method reduces the number of test cases needed to
confirm an implementation is correct to a given model.

The test sequences consist of 3 parts. First, we get to each state by taking the shortest prefix.
Then all sequences of length k are taken from each state. Finally, for each of these sequences, we
verify that the state we reach is the correct state by checking it’s distinguishing sequence(s). This
results in PI≤kW test-sequences. Where P is the number of states, I≤k the number of sequences
of length k and W the amount of distinguishing sequences of each resulting state. For k = 1 this
set of test-cases is such that if these tests succeed either the SUT is correct to the model, or the
SUT consists of more states than the model. To check additional states we can increase k, but
this increases the number of test cases exponentially.

Since the source code of this tool is available on GitLab [1], we can compile it for both
Linux and Windows. The tool is compatible with the models generated by LearnLib and most
importantly it is possible to use the tool in combination with a Java application and export the
generated test sequences.

6.2 Google Test and Bullseye

To test its software, ASML used the Google Test (GTest) framework [43]. GTest is a unit-testing
framework for C/C++ projects based on xUnit [44]. Unit-testing focuses on testing the functions
of the code rather than testing the functionalities of the code (integration testing). One of the
most common ways of testing is by checking for equality. Tests can be defined as the example
test below:

TEST (SquareRootTest, PositiveNos) {
EXPECT_EQ (18.0, square-root(324.0));
EXPECT_NE (45.4, square-root(645.16));
EXPECT_EQ (50.3321, square-root(2533.310224));

}

Where SquareRootTest is the hierarchy of the test, PositiveNos the name of the test and the
EXPECT EQ and EXPECT NE functions are the test steps. EXPECT EQ checks if the values
given in its parameters are equal, and EXPECT NE checks if they are not equal.

Developers can compose a set of tests like the one above and use GTest to run them and
view the results. GTest features a mechanism for mocking classes called Google Mock (GMock).

27

6. GENERATING TESTS

This feature can be used to replace a class with a dummy instance that mocks its behavior. We
experimented with this for stubbing our dependencies but found it easier to create the stubs
mentioned in Chapter 4. Another feature of the GTest framework is monitoring function calls
that happen in the deeper layers of the code. This way it is possible to check how many times
a given function is called by the SUT when a test is executed. Unfortunately, this functionality
needs information that is not contained in our models, thus we cannot generate useful tests for
them.

Additionally, ASML used the Bullseye Code Coverage Analyzer [45] to extract test coverage
information at run-time. The Bullseye tool monitors the usage of the code and generates a report
about the function and decision coverage. Running Bullseye while running the generated tests
gives us the coverage metrics of these tests.

6.3 Chocolate vending machine

For our chocolate vending machine we generated JUnit tests [33] since the application is written in
Java and GTest only works for C/C++. The JUnit test format is relatively easy so it seemed like
a good first step. For the model described in Section 5.1.2 the tool generated 38 test sequences.
Part of these test sequences is included in Appendix C.

The example below shows there are still some limitations to the way we generate unit-tests
from the model. The model lacks some critical knowledge of what is needed to test the actual
SUT because the learner only communicated with an adapter. Supplying data parameters to the
functions, for example, is done by the adapter since LearnLib does not support this yet. Therefore
the model has no knowledge of the parameters needed for calling the actual functions. Also, the
model had no knowledge of the reset function or sequence of the actual SUT. This is fixed by
using the reset command used by the learner, but this is not necessarily a valid function call since,
as in our industrial case, this might be a function created in the adapter that is not present in
the actual application.

public void test6(){
reset();
assertEquals(5ct(),"OK");
assertEquals(twix(),"NOK");
assertEquals(mars(),"NOK");
assertEquals(5ct(),"OK");
assertEquals(mars(),"OK");

}

The generated test files can be used as a template for the final tests. Most of the information
needed to execute the tests might not be available in the test tool but has already been used
for constructing the adapter. Thus the reset function and function parameters, for example, can
be copied from there. For our experiments simple find and replace operations sufficed to gain an
operational test suite.

The generated test cover all transitions, but this does not mean they also cover all functions
of the SUT. Internal functions are typically left out of consideration since they were not called
by the model learner. In our case, the messages sent to the adapter did not match the functions
called in the SUT at all, thus we had to modify the SUT to support these unit tests by subtracting
the logic in the main function that received and handled the messages to separate functions we
could call from the generated tests.

From this experiment, we can conclude that, while there are still limitations, it is possible to
generate test cases from a model to test the behavior of a system using an existing test suite like
JUnit. This way model learning can be an addition to a company’s current development environ-
ment. The generated test cases can show an implementation is correct to the model and thus,
providing the model is complete and correct to the implementation, show behavior preservation
when refactoring the software.

28

6. GENERATING TESTS

6.4 Industrial case

Since ASML uses the GTest tool suite (Section 6.2) for testing its more recent software modules,
we implemented a way to translate test sequences to the GTest format. We chose to generate
a test-set similar to the JUnit tests shown in Chapter 12 but leave room for engineers to add
additional functionalities by hand if they feel like it adds value to the test.

This part is removed for confidentiality and can be found in the original version of
this document.

Using the proposed model, 60 test cases are generated. Like in our example application, we
face limitation concerning function parameters. To be able to execute these tests, we added the
parameters used by our adapter since choosing a different set of data parameters might result in
a different behavior, causing the tests to fail unexpectedly.

Using the Bullseye Code Coverage Analyzer [45] we can generate a coverage report for the
generated tests.

This part is removed for confidentiality and can be found in the original version of
this document.

29

6. GENERATING TESTS

The assumption our model covers the entire behavior of the code is also based on the assump-
tion the model learning algorithm learns the entire behavior. But like we mentioned in Chapter 2:
if, for example, a system responds identically the first 100 times a button is pressed but responds
differently the 101st time, most model learning algorithms will already have stopped ‘exploring’
that button and not discover this change in behavior. If this behavior is intended, this can be
added by using it as a counterexample for the learned. This behavior will then be covered in the
model and a test sequence will be generated for it. If this behavior is not intended but does occur,
it will most likely not be covered in the model and thus not be discovered by the generated tests.

30

7. ANTI-CORRUPTION LAYER

7 Anti-corruption layer

The generated tests described in Chapter 6 increase the engineer’s confidence in the refactored
module’s behavior and are meant to protect the rest of the system while refactoring the module.
But refactoring often does not limit itself to one module. If multiple parts of the system are
being refactored, this might accidentally lead to ‘illegal’ action sequences being called, resulting
in crashing modules. To protect the SUL from such illegal actions at run-time we introduce an
anti-corruption layer (ACL).

For our ACL we looked at the Shield Synthesis [2] approach (Section 7.2.4) and the way ASML
currently regulates the connection between different sub-systems using so-called armors. First,
we give a more formal definition for the ACL. Next, Section 7.2 shows four possible types of the
ACL. In Section 7.3 we show a proof of concept using our chocolate vending machine example,
and finally in Section 7.4 we discuss our industrial case at ASML.

7.1 What is an anti-corruption layer (ACL)?

Figure 17: Generating an ACL from a
Mealy Machine

An ACL is a wrapper for a software module that mon-
itors and/or enforces certain behavior depending on
its implementation, protecting the module at run-time.
When an external client triggers a sequence that is not
allowed, the ACL will jump in and act on it.

To generate an ACL from a behavioral model (Mealy
Machine) M = (S, s0, Σ, Λ, T,G), output set Λ is split
into two subsets: Λok ⊆ Λ denotes the set of all ac-
cepted outputs, and Λnok ⊆ Λ denotes the set of all
not-accepted outputs. This last category contains any
output that is the result of erroneous or undesired be-
havior. To determine if an output ψ is accepted or not
we define the function classify that maps any output
ψ ∈ Λok to OK, and any output ψ ∈ Λnok to NOK.

Using this function we can convert a Mealy Machine
to a specific kind of Mealy Machine called an ACL in-
terface machine M ′ = (S, s0, Σ, {OK,NOK}, T, classify ◦ G) that describes what actions are
and are not accepted. To protect the system from ‘illegal’ behavior the ACL should take action
if, and only if, a sequence is triggered results in an output ψ /∈ Λok. Note that this definition
not only protects the software module from any not-accepted output ψ ∈ Λnok, but also from
unexpected inputs σ /∈ Σ.

By example: If we consider the behavior in Figure 18 where S0 is the initial state. The ACL
acts for any sequence ϕ if and only if ϕ does not result in output OK. Meaning input sequences
abaa and abba are not accepted and thus the ACL will be triggered, but also input c is not
recognized and will trigger an action from the ACL.

Figure 18: ACL interface machine for regular expression (ab)∗

31

7. ANTI-CORRUPTION LAYER

7.2 Types of anti-corruption layers

For our research we implemented three types of anti-corruption layers, additionally we looked
at Shield Synthesis [2] for a possible fourth implementation. These types all use our abstract
definition as a starting point, but have their own implementation for the action taken by the
anti-corruption layer and can be used in different stages of the refactoring process.

7.2.1 ACL: Observer

Figure 19: Abstract activity diagram: Observer

The first type is called the Observer (Figure 19). Via this type of ACL, it is possible to identify
clients that do not adhere to the behavior described in the ACL interface machine. The Observer
forms a layer between the client and the module and passes all calls from the client to the module.
The Observer has an internal representation of the ACL interface machine and keeps track of the
current state of the module using the observed inputs. As shown in Figure 20, when an input
is passed that is not accepted by the ACL interface machine, the Observer logs this input to
an external file. When an engineer is not 100% sure a model describes the correct behavior, it
might be preferable to first implement this weaker form of ACL to detect potential violations
without affecting the system. If the generated file shows behavior violations occur, the engineer
can analyze whether these violations are caused by faults in the model or in the implementation.

Figure 20: Abstract sequence diagram: Observer

32

7. ANTI-CORRUPTION LAYER

7.2.2 ACL: Armor

Figure 21: Abstract activity diagram: Armor

The second type is called an Armor (Figure 21). Like the previously explained Observer, the
Armor uses an internal representation of the ACL interface machine to keep track of the current
state of the module. By actively blocking not-accepted inputs, as can be seen in Figure 22,
the Armor actively protects the module. Enforcing the behavior described in the ACL interface
machine can prevent systems from crashing or, when considering embedded systems, causing
physical damage. The Armor also logs not-accepted inputs since in practice it turned out to be
useful to log behavior violations to allow the tracking of potential errors caused by refactoring.

An important effect of the Armor to consider is that, when a client calls a not-accepted input
for its side effects instead of for the ‘failing’ part of the operation, this side effect will also be
blocked. If blocking these side effects is the desired effect of the Armor, such clients should be
modified.

Figure 22: Abstract sequence diagram: Armor

33

7. ANTI-CORRUPTION LAYER

7.2.3 ACL: Enforcer

Figure 23: Abstract activity diagram: Enforcer

A more sophisticated way of handling behavior violations might be the Enforcer (Figure 23).
When this type encounters a behavior violation, it will not only log and block it, but also reset
the module. Like the Armor, the Enforcer blocks not-accepted inputs and returns an error code,
but additionally, it triggers a reset sequence on the module to bring both the module and the
Enforcer back to their initial state.

The reset sequence can be the shortest sequence in the ACL interface machine, assuming such
a sequence exists for every state with not-accepted inputs. These sequences can be obtained by
applying breadth-first search between the current state and the initial state, which can either be
calculated at run-time or when generating the Enforcer. In the latter case, these sequences will
be hard-coded in the implementation.

If there is a clear and safe reset sequence for the code, as used during the model learning
process, it is also possible to use this as the reset sequence triggered by the Enforcer.

Figure 24: Abstract sequence diagram: Enforcer

34

7. ANTI-CORRUPTION LAYER

7.2.4 Shield Synthesis

Another possible type of the anti-corruption layers was proposed in the Shield Synthesis ap-
proach [2]. In [2] a pattern similar to the anti-corruption layer, called a Shield, is ‘generated’ from
safety-properties (“No bad things happen”) and liveness-properties (“A good thing will eventually
happen”). However, the way the Shield is described would also make it possible to generate it
using our method.

The main difference between the Shield and the Observer, Armor and Enforcer mentioned
before is that Shields are positioned ‘after’ the module, whereas the Observer, Armor and Enforcer
are positioned ‘before’ the module (see Figure 25). The Shield is described to modify the output
of a module if this output is not accepted. However, experts in ASML preferred reporting and
preventing an error to the client that caused it, like our Armor does, rather than performing a
corrective action like the Shield does. By moving the perspective of the Shield from the module
to the client, the client’s output, and thus the input of the module, can be corrected.

Figure 25: Shield VS Armor

When experimenting with the Shield implementation, we encountered an important limitation.
In [2] the author explains how the Shield works by using a traffic light as an example. As shown
in Figure 25 the Shield modifies illegal output’s to represent a pseudo-random legal value. In the
traffic light example, it should not be possible to have multiple traffic lights showing green. If the
traffic-light-controller gives this output nonetheless, the Shield will modify it to have at most one
green light.
In this example, it makes perfect sense, but if we go back to our chocolate vending machine
example and apply a Shield here the following situation might occur:

Suppose that a Snicker which costs 25 cents is requested, but only 20 cents is inserted. Normally
the machine should refuse this request, but if for some reason it wants to give the Snicker anyway,
the Shield will be triggered and it changes the Snicker output into an output that is actually
allowed in this state: for example, a Twix or a Mars. The problem with this is that a Twix or a
Mars was not requested by the user and if the system would have produced a warning, the user
might have inserted the remaining 5 cents or canceled the purchase.

More dangerous even is that in Embedded Systems like our industrial case modifying values
can give the software a wrong picture of the ‘real world’. For example, when measuring a wafer in
the TWINSCAN machines a sensor might be faulty, but the software would not know that since
it only receives correct looking values because the Shield has modified them.

35

7. ANTI-CORRUPTION LAYER

From these hypothetical situations, we can conclude the Shield is useful in specific situations
but can cause problems in others. This all of-course strongly depends on how the Shield is applied
and one might argue the same goes for blocking undesired behavior or returning to the initial
state as occurs in our Armor and Enforcer approach. Thus, when deploying an anti-corruption
layer, one should beware of the possible effects this might have on the system.

When experimenting with generating a Shield, we tried to implement the corrective action
in such a way it finds the nearest state where the requested input is accepted and then handles
the requested input. In Figure 26 this is called the legalizing sequence. For each not-accepted
input this legalizing sequence is added as a prefix. Assuming such a sequence exists, finding the
legalizing sequence can be done using breadth-first search.

Figure 26: Abstract sequence diagram: Shield

The experiment revealed a problem with this implementation. Sometimes a total reset se-
quence appears to be the shortest path. If this is the case, a lot of previously gathered data might
be lost. A possible solution to this problem would be adding weights to the transitions or even
the states. Unfortunately, the current model does not contain enough information to implement
this, but it could be interesting for future work.

From our experiment with the Shield, we conclude that there are still some limitations that
prevent us from generating smart Shields from our models. We addressed some possible solutions
to the current problems, but due to the limitation of time, this will be a subject for future work.
We are not stating a Shield is a bad idea. In fact, we do see the potential in situations like the
traffic light example and since the Shield fits our anti-corruption layer definition it is possible to
generate Shields from an ACL interface machine, but like with the other types of the ACL we
advise caution when applying it on a system.

36

7. ANTI-CORRUPTION LAYER

7.3 Chocolate vending machine

As stated before, an ACL checks and/or enforces certain behavior. The Armor implementation
for example, will prevent not-accepted actions by blocking them and returning an error code, it
will also log the function call to enable the tracking of errors.

Using the previously learned model, an Armor can automatically be generated for our example
application. As the outputs in the model are already represented by OK and NOK, converting
the model to an ACL interface system is unnecessary. As a proof-of-concept, an Armor that
contains all functions that are used to learn the model is generated. Each function checks if it is
allowed in the current state and updates the current state accordingly. The function returns an
error code (integer) if it is not allowed in the current state, otherwise the function will call the
accompanying function in the original module. ‘Illegal’ inputs (inputs that are not present in the
input language) are automatically protected by the compiler. Since the inputs represent function
calls, and functions that do not exist simply cannot be called. The code snippet below shows the
generated function in the Armor corresponding to the twix input of the vending machine:

int chocolateVendor_armor_twix(){
switch(chocolateVendor_armor_state){

case 0:
chocolateVendor_armor_state = 0;
System.out.println(String.format("Action \"twix\" not allowed in state %d",

chocolateVendor_armor_state));
return -1;

case 1:
chocolateVendor_armor_state = 1;
System.out.println(String.format("Action \"twix\" not allowed in state %d",

chocolateVendor_armor_state));
return -1;

case 2:
chocolateVendor_armor_state = 2;
System.out.println(String.format("Action \"twix\" not allowed in state %d",

chocolateVendor_armor_state));
return -1;

case 3:
chocolateVendor_armor_state = 2;
return twix();

case 4:
chocolateVendor_armor_state = 5;
return twix();

case 5:
chocolateVendor_armor_state = 0;
return twix();

case 6:
chocolateVendor_armor_state = 1;
return twix();

case 7:
chocolateVendor_armor_state = 3;
return twix();

}
return -1;

}

The chocolateVendor armor state variable is used to keep track of the state as described in
the model. When applying the Armor, the original calls to the module need to be redirected to
the ACL. In the chocolate vending machine example this was a bit more complicated, since the
commands that were used to learn a model were not actual functions in the code. But if the
original function calls are used as input this should, in object-oriented languages, be little more
than replacing the original object for the generated Armor.

After implementing the ACL in the chocolate vending machine, the tests generated in Chapter
6 where executed. The tests confirmed the generated ACL was correct to the previously learned
model. Additionally, a new model was learned including the Armor. This new model was compared
to the previously learned model (Figure 11), confirming the behavior was indeed identical. By
checking the logs (in this case the console) it was also confirmed that all illegal actions were
blocked correctly.

37

7. ANTI-CORRUPTION LAYER

7.4 Industrial case

For our industrial case at ASML, we generated the Observer and Armor in C++. The Observer
is used to check if clients do not violate the desired behavior settled on by the domain experts.

To confirm the functioning of our anti-corruption layer, we first generated an Armor (Section
7.2.2) from the learned model. Since the model is fairly small, it was possible to manually check
it and doing so we confirmed its correctness to the model.

This part is removed for confidentiality and can be found in the original version of
this document.

After applying the Armor some regression tests were executed on the simulator (DevBench).
These tests detected no errors, which was in line with our expectation since the same tests were
used to generate the system traces that were used to guide our learner.

This part is removed for confidentiality and can be found in the original version of
this document.

In Chapter 5, system traces were used to learn the model. This revealed the traces, and thus
the regression tests, only cover a subset of the learned model. To test the entire Armor we also
ran the generated unit-tests. The Armor not only blocks, but also logs behavior violations. By
comparing the log file to the expected outputs of the unit-tests the Armor’s behavior could be
confirmed, assuming the tests are correct to the model. Additionally, the completeness of the
generated unit tests could be confirmed by generating a coverage report for the Armor.

38

7. ANTI-CORRUPTION LAYER

This part is removed for confidentiality and can be found in the original version of
this document.

the coverage report shows a 100% function coverage, but only a 79% condition/decision cov-
erage. Upon closer inspection, this was caused by the exception handling in our Armor. For each
function call, the Armor checks the state it is currently in. When this state is unknown for the
function, which should not be possible with a correct model, it will return an error. This means
one condition per function should not be triggered if the model is correct to the implementation
and thus will not be covered by the generated tests.

The Armor also checks whether the log file could be opened before writing to it, this is to
prevent system crashes. In our experiments, this problem never occurred. Thus, when not taking
these exceptions into account, we can state we reach 100% test coverage for our Armor.

39

8. REFACTORING THE CODE

8 Refactoring the code

This chapter is removed for confidentiality and can be found in the original version
of this document.

40

9. CONCLUSIONS

9 Conclusions

To conclude this research, we look back at the original research questions. In this thesis a method
to assist engineers in refactoring legacy code is proposed. This method used a combination of
model learning and test/code generation to reduce the risk of refactoring. To answer the first
(main) question, Can we provide engineers with a method to refactor legacy code based on model
learning?, we addressed the original research questions introduced in Section 1.5 as follows:

RQ2) Is model learning mature enough to be applied in an industrial setting?
In Section 5.1 we explain the principle of model learning using the vending machine example
introduced in Section 3.4 and the L* algorithm. Before a model can be learned the System Under
Learning (SUL) should be isolated from the rest of the software. Chapter 4 shows how we did this
for our industrial case. The scope of the software that is isolated depends on what and how you
wish to refactor. For refactoring an entire component, it might be useful to isolate more than a
single module. In the case of the chocolate vending machine, we even learn the entire application.
Engineers should keep in mind that larger scopes might result in larger models, thus a trade-off
between the clarity of their models and the number of models that need to be learned must be
made.
Using LearnLib, the L* algorithm and system traces extracted from a simulator of ASML’s
TWINSCAN machine we were able to learn a model of the legacy code of our industrial case.
Chapter 5 discusses the current strengths and limitations of our learning method.
Since the learned behavior does not necessarily reflect the desired behavior of the code, engineers
can refine the learned model. There are multiple tools that enable engineers to do so, and to
support as much of them as possible we implemented multiple import and export formats for the
models in our tool.
As [13], we also used a specific industrial case. From the experience gained during this research
we conclude that, while model learning is relatively young, it is mature enough to be used for
similar industrial applications. But, in the case of LearnLib, there are still some major limitations
in, for example, the use of function parameters that strongly limit scalability.

RQ3) When model learning is applied for refactoring industrial software, what
are the benefits and the limitations?
For our research, we used LearnLib to learn a behavioral model of our industrial case. By doing
so we discovered some very useful benefits to the learned models, but unfortunately, there are
still limitations to the methods we used. Table 7 briefly summarizes our findings, for a detailed
description of all strengths and weaknesses we refer to Chapter 5.

Strengths Limitations

Revealing potential flaws (bugs) The SUL needs to be isolated from the system

Models form a clear representation of behavior Not guaranteed to learn the complete behavior

Only a limited understanding of the code is
needed

Models can grow very big, making manual mod-
ification nearly impossible

Combined with system traces the current behav-
ior of the system can be shown

Models can be represented in many different for-
mats

Learned models can be modified to assist engi-
neers in fixing potential flaws when refactoring

LearnLib does not work with function parame-
ters (yet)

Table 7: The strengths and limitations of model learning

As explained in Chapter 4, LearnLib still requires some manual labor before it can learn a model.
Also, it is not guaranteed to learn the complete behavior of the legacy code. But using system
traces we can at least make sure it contains the behavior that is currently used at run-time.

41

9. CONCLUSIONS

A very strong benefit of learning models of legacy systems, is that it may reveal flaws (bugs) in
the behavior of the system. If such flaws are discovered, an engineer can modify the learned model
to represent the desired behavior. This way potential problems can be solved while refactoring
the code. Modifying the behavior of the code does, however, pose the risk of introducing new
bugs. Using an anti-corruption layer, we gain confidence that our desired model does not conflict
with the current usage of the system.

Another strong feature of the learned model is that it visualizes the behavior of the system in
a readable way. Marking the model with system traces gives a clear view of the current behavior
of the system. However, we know from previous experience these models can grow quite big and
become very unreadable.

Model learning is a black-box method for learning a system, this means the learned model
represents the behavior from an external perspective. It also means that, because the model
learner does not look at the internal code of the system it is very hard to learn the complete
behavior of a system. When for example a system responds identical to the first 100 times an
action is called but changes it’s behavior the 101st time, most model learning algorithms will
already have stopped learning and not discover this behavior. Counterexamples can be used to
guide the model learner into learning this behavior, but this requires knowledge of the system
and that is usually scarce when considering legacy systems.

The biggest inconvenience we experienced while learning our industrial case, is that LearnLib
does not support function parameters yet. We solved this problem by using multiple messages for
some actions. For example, function foo contains a boolean parameter. This can be resolved by
using two different messages: foo true and foo false.

RQ4) Based on experience gained in the industry, can we provide engineers with
general guidelines for software refactoring?
Section 1.2 refers to 6 activities needed for software refactoring, namely:

– Identify where the software should be refactored.
– Determine which refactoring(s) should be applied to the identified places.
– Guarantee that the applied refactoring preserves behavior.
– Apply the refactoring.
– Assess the effect of the refactoring on quality characteristics of the software (e.g., complexity,

understandability, maintainability) or the process (e.g., productivity, cost, effort).
– Maintain the consistency between the refactored program code and other software artifacts

(such as documentation, design documents, requirements specifications, tests, etc.).

To help identify where software should be refactored, we opted to determine the state of the
software using the following 11 guidelines from [4] and [5] as discussed in Section 1.1:

1. Write short units of code (functions should be <= 15 lines).
2. Write simple units of code.
3. Write code once (no duplicate code).
4. Keep unit interfaces small.
5. Separate concerns in modules.
6. Couple architecture components loosely.
7. Keep architecture components balanced.
8. Keep your codebase small.
9. Automate tests.

10. Write clean code.
11. Functions take at most 3 parameters.

This can be (partially) automated by using static analysis tools like CodeSonar [10] or Better-
CodeHub [11].

42

9. CONCLUSIONS

Furthermore, we propose a method for refactoring using model learning, test and code gen-
eration. This method assists in gaining a better understanding of the to be refactored code and
increases the engineers confidence in the refactored code. Chapter 2 shows all the steps needed for
our proposed method. Section 1.2 explains there are 3 types of refactoring, for ASML refactoring
means a combination of redesigning and restructuring code in such a way that it is easier to
understand and maintain. Our method however, is applicable for any of these types.

RQ5) Can we automatically generate tests from a learned model to assist en-
gineers in refactoring legacy code in a test driven way? If so, what is the most
convenient test framework to use?
Chapter 6 shows us there are multiple possible ways of testing when using models. For our re-
search, we chose to generate tests that can be implemented in the company’s current test suite.
The generated tests are used to increase the engineer’s confidence in the behavior preservation
of their refactored code. By generating unit-tests we enable the possibility of test-driven devel-
opment when refactoring the code, this means that while refactoring commonly used unit testing
frameworks (like JUnit and GTest) can be used to confirm the code’s behavior.
To find a suitable tool to generate test sequences multiple test generation tools were studied. For
our proof of concept, we use the HADS [1] tool to generate test sequences that cover all transitions
of the model. These test sequences are then translated to the JUnit and GTest formats. Using
the Bullseye Code Coverage Analyzer, we generated metrics to show the function and statement
coverage of the generated tests. While they did not reach 100% we are confident it is possible
to increase these statistics by refactoring the code and improving our learner to handle more
function parameters.

RQ6) Can we use models to guarantee behavior preservation when deploying the
refactored code?
We explained in RQ3 that the learned model might expose flaws in the current behavior. Thus
for this research, we opted to preserve the desired behavior rather than that of the legacy system.
RQ5 dealt with generating tests to increase the engineer’s confidence in the behavior of the
refactored code. Using the HADS [1] tool we generated a set of tests that guarantee either the
system is correct according to the model, or the system contains more states. Unfortunately, this
does not completely guarantee behavior preservation from the refactored code. Also, it proved to
be complicated to learn complete and correct models from big systems like our industrial case
because of the current limitations of the model learning tool LearnLib. Thus it might prove useful
to look into other tools for model learning.

To protect the module from illegal action sequences at run-time we also introduced an anti-
corruption layer in Chapter 7. This anti-corruption layer can be generated from the model and
forms a protective wrapper around the learned code. We showed three types of the anti-corruption
layer:
The Observer is a type of anti-corruption layer that logs behavior violations and can be used to
confirm the system’s behavior when modifying a model.
The Armor is a type of anti-corruption layer that both logs and prevents behavior violations by
throwing an error instead of forwarding the call to the module.
The Enforcer is a type of anti-corruption layer that logs behavior violations, throws an error
instead of forwarding the call to the module and brings the module back to the initial state.
Additionally, we also experimented with a Shield. This type corrects the given input by adding
a prefix to bring the system to a state where the input is allowed. Unfortunately, there are still
some limitations in the current models that cause problems when using the Shield in practice.

The techniques we use, increase an engineers confidence in the behavior of the refactored
code, but they are not enough to completely guarantee behavior preservation. As stated before,
the generated tests will show the software contains at least the behavior described in the model,
but they are not able to detect whether the software contains more states. The anti-corruption

43

9. CONCLUSIONS

layers can prevent illegal behavior from external clients, but this also assumes the model is correct
for the implementation of the software.

By answering the questions above we can answer the main question of this thesis: Can we
provide engineers with a method to refactor legacy code based on model learning?
Combining the answers to the research questions above we came up with a method to refactor
code by combining model learning, test and code generation.

To learn a model, the to be refactored part of the system needs to be isolated from the rest
of the system. Using this isolated system multiple model learning techniques can be applied to
extract a model from the system. For this research, we used the L* and TTT algorithms that
are implemented in LearnLib. After a behavioral model is learned from the system, potential
flaws in it can be corrected. From this corrected model tests and an anti-corruption layer can be
generated. The generated tests can be used to refactor the code in a test-driven way. By using
the 10 guidelines discussed in RQ4 the quality, and therefore the quality improvement, of the
code can be measured. This guides engineers in developing maintainable code and increases their
confidence in the behavior of the refactored code. After refactoring, the generated anti-corruption
layer can be applied to protect the refactored code from ‘illegal’ behavior. The anti-corruption
layer can also be used to check if the current system does not violate the desired behavior.

A detailed description of this method can be found in Chapter 2. Using our method we aim
at helping companies reduce the risks posed by refactoring, increase their test coverage and even
solve potential flaws in their systems. To prove that the method works we applied it to our
industrial case in Chapter 8.

9.1 Recommendations and Future work

This research was meant to explore a possible method for refactoring software using model learn-
ing. During the limited time-frame of this research, we had to make choices on which ideas to
execute. In this section, we will discuss the most promising ideas that unfortunately where out
of our scope.

9.1.1 Using strongly connected components to detect cyclic dependencies

ASML is in possession of a tool that generates dependency graphs of existing code. We used this
tool to identify cyclic dependencies when isolating the module. Identifying strongly connected
components in these graphs can prove useful to assist engineers in isolating modules from this
code since these strongly connected components reveal the cyclic connections to other modules
that need to be severed. We recommend looking into extending this tool with this functionality,
in order to simplify the isolation of the SUL in the future.

9.1.2 Static code analysis

Refactoring software usually means working with a white-box SUL, though the model learning
techniques used in this research are created for black-box learning. This means we learned the
code’s behavior from an external interface (client perspective). It might prove useful to look into
static code analysis tools like CPAchecker[25] (previously known as BLAST[46]) to learn models
or sequences that can be combined with the model learned by LearnLib or used to provide
counterexamples to improve the learned model.

9.1.3 Consider more variables when learning models

During this research, the behavior of the system consisted mainly of the order of system calls.
However, the real behavior is also be affected by other variables (like function parameters). Ap-
plying our techniques in Chapter 8 showed us that without this the generated tests do not cover

44

9. CONCLUSIONS

all conditions/decisions and cannot guarantee behavior preservation. LearnLib only works with
string representations of inputs and outputs, so it is not possible to work with function param-
eters or variables unless these are being ‘mimicked’ by using multiple messages to call functions
with different parameters. To improve this work we recommend looking into different behavior
aspects like function parameters or variables and how to influence them to learn their impact on
the behavior more effectively.

9.1.4 Potential problems with big models

When refactoring entire systems, models can become quite big. The models we used for our
research where very small, thus we did not encounter problems concerning their size. However, as
stated before, the scope of the SUL depends on the project. A bigger SUL, or a SUL containing
more behavior, can result in very big models. If this is the case modifying these models by hand
poses problems. A possible solution might be to split the model into multiple smaller models. In
[47] a method for splitting models is described. Additionally, we planned to look into ways to
modify models in a semi-automatic way but due to time limitations, we had to exclude this idea.

Semi-automatically modifying models can be done using, for example, predicate logic. For
example: if we would give our tool a predicate stating that only one Twix is allowed at a time,
the tool should be able to modify the model in such a way that this is the case. Model checking
algorithms can also be used to check the model for these predicates, in this way certain behavior
(like deadlocks or specific sequences) are easier to detect. There are a lot of tools available to
check and/or modify models.

9.1.5 Tools for test generation

In Section 6.1, multiple interesting tools for test generation are discussed. For the sake of time
not all of these tools could be tested, in the future it might profit to dive deeper into these and
other tools.

Some of the investigated tools do not allow for exporting test sequences, but only support
online testing (generate tests while executing them). A method for extracting test sequences from
these tools could be creating a simulator that reflects the behavior of the model and logs all
inputs as a way of retrieving the test sequences from these tools. Extending our prototype tool
with this functionality allows us to embed more test generation tools.

9.1.6 Add weights to the model

For this research we used models as generated by LearnLib, these models considered the weight
of every operation (transition) as equal, while in practice this might not be the case. It might
be profitable to consider the running-time of each operation while generating the shortest routes
between states. This way we might be able to reduce the running time of the test sequences. This
weight can then also be used to generate more effective anti-corruption layers like the Enforcer
or the Shield.

The Shield Synthesis approach discussed in [2] showed us how to create Shields from liveness
and safety properties. In Section 7.2.4, we experimented with generating a Shield from a model.
Instead of a ‘random’ output, we opted to trigger a sequence that brings us in a state where the
requested action is allowed. If, for example, there is a lot started and we want to start another
lot before finishing the current one. A sequence of actions can be called to first finish the current
lot, and then start the new one. Our experiment however, showed that sometimes this means
resetting the system and thus losing the current progress. However, using weighted transitions
we can guide the Shield in which action to take. While this is still tricky, looking into safer and
more efficient ways to generate this kind of anti-corruption layers might prove worthwhile.

45

10. APPENDIX A: VENDING MACHINE

10 Appendix A: Vending Machine

This appendix contains the source code of the vending machine example used to explain the
model learner. The example is based on a JavaScript application used by Jan Tretmans for his
Testing Techniques lectures.

public class ChocolateVendorExample {
private static final boolean verbose = false;
private static final int port = 1026;
private static int money = 0;
private static HashMap<String, Integer> chocs = new HashMap<>();

public static void main(String[] args) {
chocs.put("mars", 10);
chocs.put("twix", 15);
chocs.put("snickers", 25);

int emptyMsgAmount = 0;

// Get commands from socket.
try {

log("Setting up communication...");
Communicator com = new Communicator("localhost", port);
log("System connected!");
while(emptyMsgAmount < 3){

//Handle incoming message
String msg = com.receiveMessage().replaceAll(System.lineSeparator(), "");
String log = "received: "+msg+" |pre-amount: "+money;

boolean success = false;
if(chocs.containsKey(msg)){

success = getChoc(msg);
}else if(msg.equals("reset")){

reset();
success = true;

}else if(msg.equals("5ct")){
success = addMoney(5);

}else if(msg.equals("10ct")){
success = addMoney(10);

}else if(msg.equals("")){
emptyMsgAmount += 1;

}

//Send response
if(success && !msg.equals("") && !msg.equals("reset")){

log(log+" |post-amount: "+money+" |sending: OK");
com.sendMessage("OK");

}else if(!msg.equals("") && !msg.equals("reset")){
log(log+" |post-amount: "+money+" |sending: NOK");
com.sendMessage("NOK");

}
TimeUnit.MILLISECONDS.sleep(100);

}
log("Not receiving input anymore.");

} catch (IOException | InterruptedException e) {
e.printStackTrace();

}
System.out.println("THE END.");

}

private static boolean addMoney(int x){
if(money <= 25){

money += x;
return true;

}
return false;

}

private static boolean subtractMoney(int x){
if(money < x)

return false;
money -= x;
return true;

}

private static void reset(){

46

10. APPENDIX A: VENDING MACHINE

money = 0;
log("resetting");

}

private static boolean getChoc(String choc){
log("buying "+choc);
if(chocs.containsKey(choc)){

return subtractMoney(chocs.get(choc));
}
return false;

}

private static void log(String msg){
if(verbose)

System.out.println(msg);
}

}

47

11. APPENDIX B: MODEL CONVERTERS

11 Appendix B: Model Converters

For this research, different tool have been explored and used. Unfortunately, the world of model
learning and -checking has not settled on a universal format for models yet. To be able to use
tools like Jumbl, MCRL2, GraphViz, LearnLib, yEd, CADP and more, we had to convert between
format’s a lot. At the start of this research, we used mCRL2 [48] [49] for converting between
different modeling formats. Since this was a bit inconvenient in combination with our own tool,
we extended our tool with a converter as well. Our tool contains an internal model class that is
used for most operations, we extended our tool with a ‘converter’ interface to read and write this
model from and to different file formats. This way, our tool can be used in combination with a
big number of different model learning, model checking and model based testing tools. Currently
our tool can read and write the following formats:

– .aut
– .dot
– .tml
– .gml
– ASML traces (input only).

We also implemented scripts to convert ASML traces to a MCRL2 model and partially generate
a stub file from a folder with header files.

Figure 28: Converter tool

48

12. APPENDIX C: GENERATED TESTS

12 Appendix C: generated tests

import static org.junit.Assert.assertEquals;
import org.junit.Test;

public class UnitTests {
public void test1(){

reset();
assertEquals(twix(),"NOK");
assertEquals(twix(),"NOK");
assertEquals(mars(),"NOK");
assertEquals(5ct(),"OK");
assertEquals(mars(),"NOK");

}
public void test2(){

reset();
assertEquals(twix(),"NOK");
assertEquals(mars(),"NOK");
assertEquals(5ct(),"OK");
assertEquals(mars(),"NOK");

}
public void test3(){

reset();
assertEquals(mars(),"NOK");
assertEquals(twix(),"NOK");
assertEquals(mars(),"NOK");
assertEquals(5ct(),"OK");
assertEquals(mars(),"NOK");

}
public void test4(){

reset();
assertEquals(snickers(),"NOK");
assertEquals(twix(),"NOK");
assertEquals(mars(),"NOK");
assertEquals(5ct(),"OK");
assertEquals(mars(),"NOK");

}
public void test5(){

reset();
assertEquals(5ct(),"OK");
assertEquals(twix(),"NOK");
assertEquals(twix(),"NOK");
assertEquals(mars(),"NOK");
assertEquals(5ct(),"OK");
assertEquals(mars(),"OK");

}
public void test6(){

reset();
assertEquals(5ct(),"OK");
assertEquals(twix(),"NOK");
assertEquals(mars(),"NOK");
assertEquals(5ct(),"OK");
assertEquals(mars(),"OK");

}

...

public void test38(){
reset();
assertEquals(10ct(),"OK");
assertEquals(10ct(),"OK");
assertEquals(10ct(),"OK");
assertEquals(10ct(),"NOK");
assertEquals(twix(),"OK");
assertEquals(twix(),"OK");
assertEquals(5ct(),"OK");
assertEquals(mars(),"NOK");

}
}

49

13. LITERATURE

13 Literature

1. Hybrid adaptive distinguishing sequences for fsm-based complete testing. https://gitlab.
science.ru.nl/moerman/hybrid-ads. Accessed: 2018-06-21.

2. Roderick Bloem, Bettina Könighofer, Robert Könighofer, and Chao Wang. Shield synthesis.
In International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 533–548. Springer, 2015.

3. Edward E Ogheneovo. On the relationship between software complexity and maintenance
costs. Journal of Computer and Communications, 2(14):1, 2014.

4. Joost Visser, Sylvan Rigal, Rob van der Leek, Pascal van Eck, and Gijs Wijnholds. Build-
ing Maintainable Software, Java Edition: Ten Guidelines for Future-Proof Code. ” O’Reilly
Media, Inc.”, 2016.

5. Robert C Martin. Clean code: a handbook of agile software craftsmanship. Pearson Education,
2009.

6. Robert S Arnold. An introduction to software restructuring. Tutorial on Software Restruc-
turing, pages 1–11, 1986.

7. Martin Fowler, Kent Beck, J Brant, William Opdyke, and Don Roberts. Refactoring: Im-
proving the design of existing programs, 1999.

8. Tom Mens and Tom Tourwé. A survey of software refactoring. IEEE Transactions on software
engineering, 30(2):126–139, 2004.

9. Natanael Adityasatria, JJM Hooman, MTW Schuts, and Bart GJ Knols. Applying model
learning and domain specific languages to refactor legacy software. 2017.

10. Grammatech codesonar. https://www.grammatech.com/products/codesonar. Accessed:
2018-06-26.

11. Better Code Hub spend less time fixing bugs. and more time shipping new features. https:
//bettercodehub.com. Accessed: 2018-06-30.

12. George H Mealy. A method for synthesizing sequential circuits. Bell Labs Technical Journal,
34(5):1045–1079, 1955.

13. MTW Schuts. Industrial Experiences in Applying Domain Specific Languages for System
Evolution. PhD thesis, Sl: sn, 2017.

14. Particle Sizes sizes of airborne particles as dust, pollen bacteria, virus and many more. https:
//www.engineeringtoolbox.com/particle-sizes-d_934.html. Accessed: 2018-06-21.

15. Arie J den Boef. Optical wafer metrology sensors for process-robust cd and overlay con-
trol in semiconductor device manufacturing. Surface Topography: Metrology and Properties,
4(2):023001, 2016.

16. Robert R Schaller. Moore’s law: past, present and future. IEEE spectrum, 34(6):52–59, 1997.
17. Onderwijs Catalogus testing techniques. https://sis.ru.nl/osiris-student/

OnderwijsCatalogusSelect.do?selectie=cursus&collegejaar=2016&cursus=

NWI-I00110. Accessed: 2018-06-21.
18. Radboud university nijmegen. https://www.ru.nl/. Accessed: 2018-06-26.
19. Frits Vaandrager. Model learning. Communications of the ACM, 60(2):86–95, 2017.
20. Dana Angluin. Learning regular sets from queries and counterexamples. Information and

computation, 75(2):87–106, 1987.
21. Mathijs Schuts, Jozef Hooman, and Frits Vaandrager. Refactoring of legacy software using

model learning and equivalence checking: an industrial experience report. In International
Conference on Integrated Formal Methods, pages 311–325. Springer, 2016.

22. Malte Isberner. Foundations of active automata learning: an algorithmic perspective. 2015.
23. Harald Raffelt, Bernhard Steffen, and Therese Berg. Learnlib: A library for automata learning

and experimentation. In Proceedings of the 10th international workshop on Formal methods
for industrial critical systems, pages 62–71. ACM, 2005.

24. Tsun S. Chow. Testing software design modeled by finite-state machines. IEEE transactions
on software engineering, (3):178–187, 1978.

50

https://gitlab.science.ru.nl/moerman/hybrid-ads
https://gitlab.science.ru.nl/moerman/hybrid-ads
https://www.grammatech.com/products/codesonar
https://bettercodehub.com
https://bettercodehub.com
https://www.engineeringtoolbox.com/particle-sizes-d_934.html
https://www.engineeringtoolbox.com/particle-sizes-d_934.html
https://sis.ru.nl/osiris-student/OnderwijsCatalogusSelect.do?selectie=cursus&collegejaar=2016&cursus=NWI-I00110
https://sis.ru.nl/osiris-student/OnderwijsCatalogusSelect.do?selectie=cursus&collegejaar=2016&cursus=NWI-I00110
https://sis.ru.nl/osiris-student/OnderwijsCatalogusSelect.do?selectie=cursus&collegejaar=2016&cursus=NWI-I00110
https://www.ru.nl/

13. LITERATURE

25. Dirk Beyer and M Erkan Keremoglu. Cpachecker: A tool for configurable software verification.
In International Conference on Computer Aided Verification, pages 184–190. Springer, 2011.

26. Wouter Smeenk, Joshua Moerman, Frits Vaandrager, and David N Jansen. Applying au-
tomata learning to embedded control software. In International Conference on Formal En-
gineering Methods, pages 67–83. Springer, 2015.

27. Jan Tretmans. Model based testing with labelled transition systems. In Formal methods and
testing, pages 1–38. Springer, 2008.

28. Machiel Van Der Bijl, Arend Rensink, and Jan Tretmans. Compositional testing with ioco. In
International Workshop on Formal Approaches to Software Testing, pages 86–100. Springer,
2003.

29. Kathi Fisler and Moshe Y Vardi. Bisimulation and model checking. In Advanced Research
Working Conference on Correct Hardware Design and Verification Methods, pages 338–342.
Springer, 1999.

30. Axel Belinfante, Lars Frantzen, and Christian Schallhart. 14 tools for test case generation.
In Model-Based Testing of Reactive Systems, pages 391–438. Springer, 2005.

31. Stacy J Prowell. Jumbl: A tool for model-based statistical testing. In System Sciences, 2003.
Proceedings of the 36th Annual Hawaii International Conference on, pages 9–pp. IEEE, 2003.

32. Kristian Karl. Graphwalker. URL: www. graphwalker. org [accessed: 2015-12-18], 2013.
33. Junit 5. https://junit.org/junit5/. Accessed: 2018-07-03.
34. Lydie du Bousquet and Nicolas Zuanon. An overview of lutess a specification-based tool for

testing synchronous software. In Automated Software Engineering, 1999. 14th IEEE Inter-
national Conference on., pages 208–215. IEEE, 1999.

35. Nicolas Halbwachs and Pascal Raymond. Validation of synchronous reactive systems: from
formal verification to automatic testing. In Annual Asian Computing Science Conference,
pages 1–12. Springer, 1999.

36. Bruno Marre and Agnes Arnould. Test sequences generation from lustre descriptions: Ga-
tel. In Automated Software Engineering, 2000. Proceedings ASE 2000. The Fifteenth IEEE
International Conference on, pages 229–237. IEEE, 2000.

37. Alexander Pretschner, Heiko Lotzbeyer, and Jan Philipps. Model based testing in evolution-
ary software development. In Rapid System Prototyping, 12th International Workshop on,
2001., pages 155–160. IEEE, 2001.

38. Michael Barnett, Wolfgang Grieskamp, Wolfram Schulte, Nikolai Tillmann, and Margus
Veanes. Validating use-cases with the asml test tool. In Quality Software, 2003. Proceed-
ings. Third International Conference on, pages 238–246. IEEE, 2003.

39. Michael Schmitt, Anders Ek, Jens Grabowski, Dieter Hogrefe, and Beat Koch. Au-
tolink—putting sdl-based test generation into practice. In Testing of Communicating Systems,
pages 227–243. Springer, 1998.

40. Paul A Gagniuc. Markov Chains: From Theory to Implementation and Experimentation.
John Wiley & Sons, 2017.

41. William Rowan Hamilton. Travelling salesman problem.
42. MP Vasilevskii. Failure diagnosis of automata. Cybernetics, 9(4):653–665, 1973.
43. Arpan Sen. A quick introduction to the google c++ testing framework. IBM DeveloperWorks,

page 20, 2010.
44. About xunit.net. https://xunit.github.io/. Accessed: 2018-07-03.
45. Bullseye testing technologies. https://www.bullseye.com/. Accessed: 2018-07-03.
46. Dirk Beyer, Thomas A Henzinger, Ranjit Jhala, and Rupak Majumdar. The software model

checker b last. International Journal on Software Tools for Technology Transfer, 9(5-6):505–
525, 2007.

47. Corina S Pasareanu, Dimitra Giannakopoulou, Mihaela Gheorghiu Bobaru, Jamieson M
Cobleigh, and Howard Barringer. Learning to divide and conquer: applying the l* algorithm
to automate assume-guarantee reasoning. Formal Methods in System Design, 32(3):175–205,
2008.

51

https://junit.org/junit5/
https://xunit.github.io/
https://www.bullseye.com/

13. LITERATURE

48. Jan Friso Groote, Aad Mathijssen, Michel Reniers, Yaroslav Usenko, and Muck Van Weer-
denburg. The formal specification language mcrl2. In Dagstuhl Seminar Proceedings. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2007.

49. Sjoerd Cranen, Jan Friso Groote, Jeroen JA Keiren, Frank PM Stappers, Erik P De Vink,
Wieger Wesselink, and Tim AC Willemse. An overview of the mcrl2 toolset and its recent
advances. In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 199–213. Springer, 2013.

52

	1 Introduction
	1.1 Software maintainability
	1.2 Refactoring legacy software
	1.3 Models as Mealy Machines
	1.4 Research goal
	1.5 Research questions
	1.6 Outline of this thesis

	2 Methodology
	3 Industrial Case
	3.1 The TWINSCAN system
	3.2 Metrology
	3.3 Case-study
	3.4 Chocolate vending machine

	4 Isolating the system
	4.1 Removing cyclic dependencies
	4.2 Creating the stubs and adapter
	4.3 Resulting system

	5 Learning the model
	5.1 Chocolate vending machine
	5.2 Industrial case
	5.3 Modifying the model

	6 Generating tests
	6.1 A review on tools for test case generation
	6.2 Google Test and Bullseye
	6.3 Chocolate vending machine
	6.4 Industrial case

	7 Anti-corruption layer
	7.1 What is an anti-corruption layer (ACL)?
	7.2 Types of anti-corruption layers
	7.3 Chocolate vending machine
	7.4 Industrial case

	8 Refactoring the code
	9 Conclusions
	9.1 Recommendations and Future work

	10 Appendix A: Vending Machine
	11 Appendix B: Model Converters
	12 Appendix C: generated tests
	13 Literature

