
Master Thesis
Data Science

Radboud University

On the Generation and Evaluation of
Tabular Data using GANs

Author:
Bauke Brenninkmeijer, BSc
bauke.brenninkmeijer@gmail.com

First supervisor:
prof. dr. ir. A.P. de Vries

a.devries@cs.ru.nl

Second supervisor:
prof. dr. E. Marchiori

elenam@cs.ru.nl

Industry Supervisor:
Youri Hille, MSc

yourihille@gmail.com

December 9, 2019

Abstract

With privacy regulations becoming stricter, the opportunity to apply synthetic data is grow-
ing rapidly. Synthetic data can be used in any setting where access to data with personal
information is not strictly necessary. However, many require the synthetic data to present
the same relations as the original data. Existing statistical models and anonymization tools
often have adverse effects on the quality of data for downstream tasks like classification.
Deep learning based synthesization techniques like GANs provide solutions for cases where
it is vital these relations are kept. Inspired by GANs, we propose an improvement in the
state-of-the-art in maintaining these relations in synthetic data. Our proposal includes three
contributions. First, we propose the addition of skip connections in the generator, which
increases gradient flow and modeling capacity. Second, we propose using the WGAN-GP
architecture for training the GAN, which suffers less from mode-collapse and has a more
meaningful loss. And finally, we propose a new similarity metric for evaluating synthetic
data. This metric better captures different aspects of synthetic data when comparing it
to real data. We study the behaviour of our proposed model adaptations against several
baseline models on three datasets. Our results show that our proposals improve on the
state-of-the-art models, by creating higher quality data. Our evaluation metric captures
quality improvements in synthetic data and gives detailed insight into the strengths and
weaknesses of evaluated models. We conclude that our proposed adaptations should be
used for data synthesis, and our evaluation metric is precise and gives a balanced view of
different aspects of the data.

Chapter 1

Acknowledgements

This thesis would not be what it is without the help of my team and supervisor. Specifically,
I want to thank Youri Hille, MSc for his continued support and feedback. Additionally, many
thanks to Dr. Arjen de Vries and Dr. Masoud Mazloom for their constructive criticism and
writing suggestions.

1

Contents

1 Acknowledgements 1

2 Introduction 5
2.1 Problem and motivation . 5
2.2 Approach . 5
2.3 Contributions . 6

2.3.1 Improve TGAN using skip-connections 6
2.3.2 Improve TGAN using the WGAN-GP architecture 6
2.3.3 New metric for evaluating synthetic data: Similarity Score 6

3 Preliminaries 8
3.1 Synthetic Data . 8
3.2 Machine Learning . 9

3.2.1 Supervised Learning . 9
3.2.2 Unsupervised learning . 10
3.2.3 Reinforcement Learning . 10

3.3 Neural networks . 10
3.3.1 Backpropagation and Gradient Descent 11

3.4 Deep Learning . 11
3.5 Deep Generative Models . 12
3.6 Autoencoder . 12
3.7 Variational Autoencoders . 13
3.8 Generative Adversarial Networks . 14

3.8.1 Mode Collapse . 17
3.9 Wasserstein GAN . 18

3.9.1 1-Wasserstein Metric . 18
3.9.2 Limitations . 19
3.9.3 Usage in WGAN . 19

3.10 WGAN-GP . 20
3.11 GANs for Tabular Data . 21

3.11.1 Preprocessing . 22
3.11.2 Data transformations . 22
3.11.3 Reverse transformation . 22
3.11.4 GANs for categorical data . 23

2

4 Related Work 24
4.1 Generation Methods . 24

4.1.1 TGAN . 24
4.1.2 MedGAN . 25
4.1.3 TableGAN . 27
4.1.4 CTGAN . 28

4.2 Baselines . 30
4.2.1 Statistical Generation Techniques . 30
4.2.2 Neural Generation Techniques . 31
4.2.3 Data perturbation and anonimization tools 31

4.3 Evaluation metrics and methods . 31
4.3.1 Statistical properties . 31
4.3.2 Machine learning efficacy . 32
4.3.3 Privacy . 32
4.3.4 Human Experts . 32

5 Proposed Methods 33
5.1 GAN Synthesizer . 33

5.1.1 TGAN-skip . 33
5.1.2 TGAN-WGAN-GP . 35

5.2 Similarity Score . 36
5.2.1 Similarity Score - Statistical Measures 36
5.2.2 Similarity Score - Machine learning efficacy 39
5.2.3 Privacy evaluations . 40
5.2.4 Visual evaluation . 41
5.2.5 Similarity score . 41

6 Experimental Setup 42
6.1 Data . 42
6.2 Implementation details . 42
6.3 Experiment 1 . 43

7 Results: Experiment 1 44
7.1 Basic statistics . 44
7.2 Column Correlations . 45
7.3 Mirror Column Associations . 45
7.4 PCA Variance Correlations . 47
7.5 Estimator efficacy . 47
7.6 Privacy Evaluations . 48
7.7 Visual Evaluations . 50
7.8 Similarity Scores . 51

8 Conclusions 54

A Appendix 59
A.1 Results . 59

A.1.1 Basic Evaluation . 59
A.1.2 Column correlations . 59

3

A.1.3 Machine learning efficacy . 59
A.2 Python Package Example: TableEvaluator 65

4

Chapter 2

Introduction

2.1 Problem and motivation

Ideally, data scientists would use real data for everything. From model training and evalua-
tion to test data for software to plotting the number of sales in a month, real data would be
the resource of choice because it captures actual events. However, real data also has many
drawbacks such as the need to find, gather and organise it. Additionally, real data is often
limited in quantity and might not be sufficient for the requirements of the task. Moreover,
real data can be very strictly regulated, for example when it contains personal information.

Synthetic data can give relieve in many of those situations. The main point of data
synthesis is generating new, never seen before data. This can be used as a separate dataset
for model evaluation and training by data scientists or as test data for software engineers.
Because these new datasets do not contain any of the real data points, this method does not
let users access the real data, which on its own has many privacy advantages. Furthermore,
this data can be used as an addition to existing data. Current deep learning models often
require a lot of data for good generalization. Say one has 10,000 rows of some dataset,
but for effective generalization one needs ten times more. Realistic synthetic data can then
allow training of models that would normally not be available.

However, the way this data is synthesized is changing. Earlier, synthetic data was often
created by modeling some joint multivariate probability distribution, which was then sam-
pled. Example models include Bayesian networks and Gaussian Copulas. Some researchers
have also found their answers using randomization-based methods [36], but most of these
methods have one or more restrictions related to data size or complexity. Recent develop-
ments in work on Generative Adversarial Networks (GANs) have shown promising results
with tabular data. The question whether GANs would be better than their statistical coun-
terparts rose and several papers have tried to answer [58, 59]. Xu and Veeramachaneni [58]
compare GANs on multiple datasets to several statistical methods and show that GANs
outperform these classic methods in most tasks.

2.2 Approach

The state of the art for general data synthesis currently resides in the computer vision
department, where GANs have taken the world by storm the last five years. The results of
these GANs are unmatched by any other technique and seem promising for adaptation in
other fields, like tabular data generation. The characteristics of GANs allow it to overcome

5

issues which earlier methods suffered from, like intractable computations. Instead, the GAN
implicitly models the distribution of data to overcome these problems. Intuitively, a GAN
can be thought of as someone learning to create fake IDs and bouncers detecting these fake
IDs. The person creating the IDs tries to improve their skills and have the IDs look as real
as possible, while the bouncer tries to become as good as possible in recognizing the fake
IDs.

Due to the flexibility of the GAN framework, many advances have been made in recent
years. Regularization methods have been introduced to handle problems with overfitting
and mode collapse [5, 23, 45]. Additionally, evaluation metrics specifically for GANs have
been proposed, like Inception Score and Frećhet Inception Distance [26]. GANs offer a very
diverse and useful framework for many applications, which is why they are securing a lot
of spots in top conferences like CVPR and ICLR.

This success has inspired the adoption of GANs for tabular data, such as TGAN[58],
TableGAN[50], MedGAN[12] and CTGAN [59]. Where the difficulties with visual data
arise from the high dimensionality and complex 2D or 3D relations in the data, tabular
data has slightly different problems like having a variety of data types that require different
encodings to be suitable for deep learning. In this work, the application of GANs to tabular
data is limited to categorical and continuous data. More complex data structures like dates,
geospatial data and free text are very interesting directions of research for future work.

2.3 Contributions

In this thesis we propose three contributions. The first and second contributions are changes
to the current state of the art model: TGAN [58]. The third contribution is proposing a
general synthesized tabular data evaluation method. Using this method, we also present
the first apples to apples comparison between current State-of-the-Art methods 1.

2.3.1 Improve TGAN using skip-connections

The first contribution is to use the WGAN-GP training method instead to the original
GAN method with adapted loss function. This training method has shown considerable
improvements with regards to mode collapse and sample diversity in images [5, 23, 43].
This approach is detailed in 5.1.2.

2.3.2 Improve TGAN using the WGAN-GP architecture

The second addition is the inclusion of skip connections to the generator. This addition has
revolutionized discriminative models, leading to well known architectures like ResNet [24]
and DenseNet [28], and the hypothesis is this addition will improve the approximation of
the real data when used in GANs. MedGAN [12] already shows improvements using this
technique in their generators. This approach is detailed in section 5.1.1..

2.3.3 New metric for evaluating synthetic data: Similarity Score

So far, literature has been somewhat disappointing in their evaluations. To name a few is-
sues, the baselines are often quite weak and have not been other State-of-the-Art generation

1The paper on CTGAN [59] does this partly as well. Their results were published in July 1. I became
aware of their results on July 5.

6

methods, but rather models like Variational Autoencoders (VAE) [35] or data perturbation
tools [1, 57]. Additionally, the evaluation is done with a range of metrics and different
datasets, which makes comparing them quite hard. Papers often evaluate using one or
more of the following three metrics: privacy, statistics and machine learning.

Privacy evaluations range from membership attacks to information leakage. Statistical
methods include correlations and standard deviations. Machine learning capabilities cover
the usability of data with regards to model training and evaluation.

In this work I propose a new method that combines these three aspects called the
similarity score. Of the three mentioned aspects, the similarity score has a focus on
the statistical and machine learning ones. Evaluation metrics used by the similarity score
include regressions on what we call association matrices and the F1-scores/RMSE-scores of
datasets on different classifiers. Our evaluation library is available as a standalone package
for python2.

2Available on https://github.com/Baukebrenninkmeijer/TableEvaluator and https://pypi.org/

project/table-evaluator

7

https://github.com/Baukebrenninkmeijer/TableEvaluator
https://pypi.org/project/table-evaluator
https://pypi.org/project/table-evaluator

Chapter 3

Preliminaries

To understand our contributions, several concepts related to machine learning need to be
clear. Here, we elaborate on some core concepts from machine learning, and more specifically
Generative Adversarial Nets (GANs) to allow for a better understanding of our approach.

3.1 Synthetic Data

Synthetic data can be created in three ways. One, by using some perturbation of real data.
Two, by combining attributes from the real data and three, by generating samples from
some distribution. All three methods have advantages and disadvantages. Historically,
synthetic data has been associated with either the anonimization of data [1, 57] or the
development and testing of software. In many cases, these overlapped. With the rise of big
data and deep learning, private data has become a one of the most valuable types of data,
and the promise of realistic synthetic data has so far been a holy grail. This is often because
the utility and privacy of data are inversely proportional when it comes to machine learning
models. The field of data synthesis with deep learning techniques is still in its infancy, and
we expect to see promising results in the near future, as well as standardization of methods
and evaluations.

Notation Definition

pz Distribution of noise variable z

pg Distribution of generated data

pr Distribution of real data

x Sample from pr

z Sample from pz

G The Generator

D The Discriminator

Table 3.1: The following notations are used in this thesis.

8

Figure 3.1: An overview of the different types of machine learning. On the right, there
is supervised learning which uses labeled data to make predictions. On the left, we have
unsupervised learning which uses unlabeled data and tries to find patterns and structures.
At the bottom, we have reinforcement learning which tries to learn from its own experience.

3.2 Machine Learning

Machine learning is the capacity of machines to learn a specific task without explicit in-
structions, relying on patterns instead. Machine learning is considered a subset of the term
Artificial Intelligence. There are three main types of machine learning: supervised learning,
unsupervised learning and reinforcement learning.

3.2.1 Supervised Learning

Supervised learning [49] is done with labeled data, meaning that for each data point it is
known to which class that data point belongs. This is used, for example, when performing
classification and regression. Say we have a picture of a cat and a model that tells you
whether the image contains a cat or a dog. The input data is the picture of the cat and
since we know the picture contains a cat, the class (also called label) of the picture is ‘cat’.
Training is done by feeding the model the image and telling it how wrong the predicted
class was. To achieve this ability, the data and classes need to be transformed to a format
interpretable by a machine learning model. Often, this means the data and classes are
transformed to numbers. For example, in this case we transform the class cat into a 0 while
the class dog becomes a 1.

In learning tasks with tabular data, the data is often organised as follows. The rows
contain data points while the columns contain features of those data points. When doing
supervised learning, one column generally contains the class. Using the example of predict-
ing one’s salary using their personal information (age, ethnicity, number of children, etc), a
row contains this personal information. When doing supervised learning, the class column
indicates the salary of this person. This can be used as input to a machine learning model.

9

Figure 3.2: A example of a neural network, containing two hidden layers. The input layer
contains the features that are used as input, while the output layer can represent several
things, like a class probability or a scalar indicating some continuous value. From [19].

3.2.2 Unsupervised learning

The biggest difference between supervised learning and unsupervised learning [49] is the ab-
sence of classes. This means that this method is not suitable for classification or regression,
but rather has applications in dimensionality reduction and clustering. Usually, dimension-
ality reduction tries to reduce the amount of data while preserving the same information,
which is useful in, for example, image compression. Clustering can determine groups of
data points that share characteristics, and are more closely related to each other than to
the rest of the data points.

3.2.3 Reinforcement Learning

Reinforcement learning [56] can be considered a self learning model, where the model per-
forms actions in a certain environment and receives feedback from the environment. To
oversimplify it, this is similar to how humans learn. When a child get a reward for doing
the right things but is being punished for doing the wrong things, it slowly learns. The
same principle is applied in reinforcement learning. Reinforcement learning has seen a lot
of usage in playing games with machine learning, like chess and go. In both cases, reinforce-
ment learning was one of the fundamental blocks that allowed these models to perform so
well.

3.3 Neural networks

Artificial Neural Networks (ANN), as is their full title, have existed since the 1940s [46, 25].
Neural networks are inspired by the workings of biological neurons from the brain. These
neurons get a certain input and produce a certain output depending on the input. A neural
network combines many layers of these neurons to create complex structures, which is able
to learn advanced non-linear functions. The weights of the neuron’s input and the threshold
of the neuron are learned during training and are also called the parameters of the model.

After their gradual deaths in the 90s, also referred to as the AI Winter, neural networks
were not used for quite some time due to the extremely long training times. But due
to modern developments of hardware, most notably Graphics Processing Units (GPUs),

10

Figure 3.3: Example of the gra-
dient descent algorithm. The pa-
rameter w is updated by calcu-
lating the gradient with respect
to the loss (‘cost’ in the image)
and multiplying it with a learn-
ing step. This is done until con-
vergence, i.e. when w is at the
minimum. From [9].

Figure 3.4: Example the forward and backward
pass in a neural network. During the forward
pass, we calculate the results by applying the
function f on the input values x and y. In the
backward pass, we calculate partial derivatives
with respect to the loss with which we update
the model parameters. From [38].

and some breakthroughs by LeCun et al. [42], Hinton and Nair [27] and Bengio, Lamblin,
Popovici, and Larochelle [6], neural networks became popular again in the second part of
the 00s. It would take another couple of years, but these hardware advancements combined
with improved software, better understanding of neural networks, and huge amounts of data
allowed for the rise of deep learning.

3.3.1 Backpropagation and Gradient Descent

One of the major building blocks of neural networks is their capacity to learn many pa-
rameters, sometimes millions. This capability is enabled by back propagation and gradient
descent. A neural network is trained in two steps. First, some data is put into the network
and produces a result. Second, it is measured how wrong the answer was (called loss or
error) and the weights of the network are updated accordingly. The crux is in this update.
Gradient descent enables a network to slowly converge to a minimum of the loss by iter-
atively calculating the gradients of the weights with respect to the loss and updating the
network parameters. When the loss reaches its minimum, the network cannot improve with
training anymore. The gradients are calculated with backpropagation, which is essentially
the chain rule, applied from the output to the input of the network. By doing this many
times of data, the network learns how to perform the task at hand. See figure 3.4 and figure
3.3.

3.4 Deep Learning

The term deep learning commonly refers to neural networks with several or many hidden
layers. It originated in 2012, with the introduction of AlexNet [39]. AlexNet is a deep
convolutional neural network which won the ImageNet challenge [14] (ImageNet Large Scale
Visual Recognition Challenge in full, one of the standard computer vision datasets used for
benchmarking) by a significant margin. Since then, neural networks have become one of the
most researched subjects in artificial intelligence. Having the capacity to model essentially

11

Figure 3.5: Overview of a standard autoencoder. The input is the image of an 2 from the
MNIST dataset [41]. This digit is encoded to a lower dimensional latent space. The decoder
then tries to reconstruct the input image from the encoding. The model learns how to do
this by measuring the difference between the input and the output. From [3].

anything, neural networks have not only revolutionized computer vision but also natural
language processing, speech processing and autonomous agents.

3.5 Deep Generative Models

The field of deep generative models is even younger than deep learning, with the inception of
the Variational Autoencoder (VAE) [35] and Generative Adversarial Network (GAN) [20] in
2013 and 2014, respectively. Deep generative models are characterized by multi-layer neural
network that are able to generate samples following the distribution of the data. The most
important difference is that the VAE tries to model this distribution explicitly, which has
the advantage of being able to do approximate posterior inference, i.e. given some data
x, we can find the latent representation that caused this x. This will be explained more
extensively in section 3.7. The GAN, on the other hand, tries to model the data implicitly
which does not have this characteristic.

3.6 Autoencoder

Before discussing the variational autoencoder, some understanding of the vanilla autoen-
coder is required. An autoencoder consists of two parts: the encoder q and the decoder p.
The encoder takes an input x and outputs a latent variable z of size n. The encoder has
parameters θ. The encoder is formally represented as qθ(z|x). Taking MNIST [41], a famous
dataset consisting of 28x28 images of handwritten digits, as an example, the input of the
encoder is an 28x28-dimensional image and this is encoded into a lower dimension of size n.
When n is smaller than the dimension of x (which is generally the case), this corresponds
to a compression of information into the lower dimension of z. The decoder p does the
exact opposite and tries to reconstruct the original input x from the latent variable z. The
network is often the exact opposite structure of the encoder network. The parameters of
the decoder are denoted by φ. The decoder is formally represented as pφ(x|z).

These networks are trained using the so called reconstruction loss, which often is the
mean-squared error or cross entropy between the input and output. Intuitively it gives and
indication how closely the output data resembles the input data.

The fundamental problem with normal autoencoders for generation is that the latent
space of the encoded values may contain gaps, with the consequence that sampling this space

12

is not straight forward and interpolation might be meaningless. This is clear in Figure 3.6,
where clusters are visible. It makes sense for the autoencoder to do, since these segments
make it easier for the decoder to decode the latent vector z. However, it prevents from
arbitrary sampling form the latent space and interpolating between points.

Figure 3.6: Latent space of autoencoder
trained on MNIST, optimized solely for
reconstruction loss [53]

When dealing with a latent space with dis-
continuities, sampling the gaps essentially pro-
vides the decoder with data never seen before.
The decoder has no idea what these latent vec-
tors correspond to and will output unrealistic
and unrecognizable data.

3.7 Variational Autoencoders

The variational autoencoder was developed as
an answer to modern data sampling require-
ments, like being able to handle complex models
and large datasets. Where GANs have the ca-
pacity to generate very realistic samples, they
have little control over which features you want
present or omitted. A variational autoencoder
on the other hand allows for very specific fea-
ture selection on generated data and also allows
for altering of existing data.

The variational autoencoder fundamentally
differs from the normal autoencoder because it does not have gaps in the latent space. This
makes them excellent for generative tasks and allows for interpolation and transformations
on real data. This is achieved by a rather surprising mechanism, namely splitting the latent
vector of size n in two vectors of size n: one vector of means µ and one vector of standard
deviations σ. Each value in the vector of means corresponds to a value in the vector of
standard deviations at the same index. Combined, they define a probability distribution,
generally a Gaussian, which is sampled to get input for the decoder. Say, we have a latent
space of length 2; the encoder outputs two vectors, one with two means: [0.3, 0.75] and one
with two standard deviations: [0.09, 0.04]. We sample two Gaussians with those means and
standard deviations to get the latent vector z: [0.34, 0.74].

The result is that during training, the decoder not only sees the exact encodings of the
input data, but sees samples from the distribution of the encoding. Intuitively, this means
that the decoder learns that not only an exact points corresponds to a certain output, but
the area surrounding it as well which contains very similar data points.

Because there are no limits to µ and σ, they could end up as many small ’islands’ in the
latent space, keeping the problem of the gaps. Ideally, we want these distributions to be as
close to each other as possible while still being separate to allow for smooth interpolation,
arbitrary sampling. To achieve this, the Kullback-Leibler Divergence (KL-divergence) is
introduced as part of the loss function. The KL-divergence is a measure of how diverged
two probability distributions are. Minimizing this means to optimize the parameters of the
probability distribution µ and σ to resemble the real distribution as closely as possible. The

13

Figure 3.7: Latent space of an autoen-
coder trained on MNIST, solely opti-
mized for KL-divergence loss [53]

Figure 3.8: Latent space of an autoen-
coder trained on MNIST, optimized on
the combined reconstruction loss and KL-
divergence [53]

KL-divergence is defined as

KL(p ‖ q) =

N∑
i

pi · log
(
pi
qi

)
where p and q represent two distributions.

Because the loss function is a sum of errors from individual data points we can decompose
it to just one data point. The total loss function is

L = E[log p(x|z)]−KL(q(z|x) ‖ pz)

In this loss function the first part is the reconstruction error between the input and output
and the second part is the just mentioned KL-divergence. Intuitively, the KL-divergence
rewards the encoder for putting values around the center of the latent space, distributed
according to the density function. However, it has little regard for clustering similar images
and results in distributions as seen in Figure 3.7

The magic happens when we combine both losses. The results is a densely packed
latent space which maintains the similarity among local encodings and maintains the global
segmentations. This is shown in Figure 3.8.

3.8 Generative Adversarial Networks

GANs [20] were introduced by Ian Goodfellow et al. in 2014. Their paper introduced a
novel neural architecture based on game theory where two adversarial “players” compete in
a minimax game. Their proposed architecture sidesteps some of the problems of explicitly
modeling a data distribution, like approximating intractable probabilistic calculations that

14

Figure 3.9: Overview of the GAN architecture with MNIST images as examples. The
generator gets some random noise as input and learns to map this to the distribution of the
real data. The output of the generator goes into the discriminator, along with a real image.
The discriminator then tries to tell which image is fake and which is real. From [10].

occur in maximum likelihood estimation with complex functions (Such as in the VAE). The
GAN framework consists of a generative model, pitted against an adversary: an discrimi-
native model that learns to determine whether the samples originated from the generative
model or the real data. This competition drives both parties to improve their methods until
the fake data points are indistinguishable from the real data points.

In this and the coming subsections, we outline the vanilla GAN architecture, the WGAN
architecture and the WGAN-GP architecture. The GAN and WGAN-GP architecture are
used in my experiments and the WGAN is required background knowledge for understanding
the WGAN-GP. These architectures are all suited for “normal” generation, meaning they
were proposed to simply generate samples from the implicit distribution learned from the
real data. There are other models who allow for conditional training and sampling like
CGAN[48] and InfoGAN [11]. In the case of CGAN, this is achieved by simply appending
a one-hot encoded vector to the input of both the generator and the discriminator. For
example, you can let a generator trained on images of cats and dogs generate only images
of cats. The capacity to conditionally model data often corresponds to having some control
over the presence of certain features. InfoGAN specifically targets disentangling features,
allowing for fine control of features like subject, rotation and shift in images. Furthermore,
there are style transfer architectures that enable the copying and pasting of a specific style
on a target image or between two images like CycleGAN[61] and Pix2Pix GAN[31], enabling
very impressive results like real time video style transfer. Formally, a GAN consist of a
generator G that tries to learn the distribution over data x using an random noise variable z.
To learn, a prior is defined on the random noise variable pz. This pz can be any distribution
and in the original GAN was represented by a uniform distribution. However, in more recent
research a Gaussian distribution is more common. A mapping function is defined from the
prior z to the data space with G(z; θg), where G is a differentiable functioned represented
by a neural network with parameters θg. Additionally, a second neural network D(x;σd) is
defined, which maps from its input data x to a single value which represents the probability
that x came from the input data, rather than G(z), which is called the discriminator. The
parameters of the discriminator are indicated with σd For ease of use, from now on pz refers
to the noise prior, pg refers to the data distribution created by the generator and pr to the
distribution of real data. The minimax game that is played by the two is defined by the

15

Figure 3.10: Translation of an image with the Pix2Pix GAN [31]. The Pix2Pix GAN gets
an input image from some domain and learns to map that to a different domain. In this
example, the drawing of the handbag is mapped to a realistic image of a handbag.

following value function

min
G

max
D

V (D,G) = Ex∼pr [logD(x)] + Ez∼pz [log(1−D(G(z)))].

which is essentially the same as minimizing the Jensen Shannon Divergence (JS-divergence).
The JS-divergence is build up from the already familiar KL-divergence and is defined as
follows

JSD(pr, pg) =
1

2
KL(pr ‖ m) +

1

2
KL(pg ‖ m)

where m =
1

2
(pr + pg)

The above formula results in the two following loss functions for the discriminator (Ld)
and generator (Lg), respectively.

Ld = logD (x) + log (1−D (G (z)))

Lg = log (1−D (G (z)))

A drawback of this specific implementation is that the JS-divergence does not always
provide usable gradients. Most notably, when the discriminator D comes close to the
optimal discriminator D?, the JS-divergence saturates and the gradient for the generator
vanish. To circumvent this problem, Goodfellow et al. proposed a slightly adapted loss
function for the generator as follows

Lg = −log(D(G(z))

Even though this adaptation fixes the previously mentioned problem, it introduces new
ones of its own which we will go into in a minute. The adapted loss function is based on a
reverse KL-divergence and a JS-divergence term as follows

Lg = KL(pg ‖ pr)− 2 · JSD(pg ‖ pr)

Where, again, P is the data and Q are generated samples. Note that the terms are different
than the earlier KL terms in the JSD formula. This KL term has the generated data as
first parameter and the real data as second parameter. This adapted loss function penalizes
unnatural new data by means of the KL-divergence term, but does not enforce diversity
which may lead to mode collapse.

16

Figure 3.11: Vanishing gradients when using KL and JS divergence loss with increasing
distance between pr and pg. It becomes clear that when the distance between pr and pg is
large, the gradient vanishes. From [29]

3.8.1 Mode Collapse

Mode collapse is a phenomenon seen in GANs where the generator learns to output only a
subset of the real data. For example with MNIST, a generative model might only output
the numbers 4 and 7. These outputs can be quite realistic, but globally do not approach the
distribution of the real data. Mode collapse in one of the major problems still to be solved
with GANs. Complete mode collapse is not very common, but partial mode collapse is.
Although the debate as to how mode collapse exactly works is still ongoing, we’ll illustrate
what the common suspicion is.

The objective of the generator is to provide samples that fool the discriminator the
most. Looking at the loss function Lg = log(1−D(G(z)) it is clear that the generator gets
a low (good) loss when the discriminator outputs a value close to 1 for the generated data.
Consider a situation where we’re training a GAN for MNIST images. If we train G without
updating D, G will converge to the optimal image x? where it generates only images that
fool D. From the perspective of the discriminator, this x? is the most realistic image. In
this extreme case, x? becomes independent of z. This means, no matter what z goes into
G, G always outputs x?.

x? = argmaxxD(x)

The mode collapses to a single point: total mode collapse. As a consequence, the
gradient of z approaches zero and the GAN is stuck. When restarting training of the
discriminator, the most effective way for the discriminator to detect images from G is
to detect the single point x?. Because the generator has desensitized itself from z, the
gradient from D will likely push the single point to the next most vulnerable mode. Due
to the imbalance in the samples generated by G, it loses the capability to detect other
modes. Both networks are overfitting to the weakness of the opponent. This results in a
cat-and-mouse game between modes and the model will not converge. This phenomenon is
illustrated in Figure 3.12

17

Figure 3.12: Mode collapse illustrated on a 2D toy dataset. We see the collapsing GAN
trying to find a point that can be exploited, but the discriminator keeps learning that
this weakness is being abused, and corrects itself. This pattern repeats itself while never
converging. From [47].

3.9 Wasserstein GAN

The Wasserstein GAN (WGAN in short) is an adaptation from the vanilla GAN, proposed
by Arjovsky et al. [5] in 2017. They identified many of the problems mentioned in section
3.8 with the original architecture and try to improve it by having a meaningful distance
measure as loss function, namely the 1-Wasserstein distance. This seemingly small change
results in a model that not only trains more stable, but also suffers less from mode collapse
and the end result is often also better. So lets dissect why this is.

3.9.1 1-Wasserstein Metric

The 1-Wasserstein metric is a measure for the distance between two probability distributions
in a given metric space. The 1-Wasserstein metric is also called the Earth Mover’s distance
(EM), because it is best explained intuitively as having two piles of dirt, where the cost of
turning one pile into the other is corresponds to the amount that needs to be moved times
the distance it needs to travel.

From here on, we will refer to the 1-Wasserstein metric as either just the Wasserstein
metric or the Earth Movers distance. The 1-Wasserstein metric is defined as follows:

W (pr, pg) = inf
γ∈Π(pr,pg)

E(x,y)∼γ
[
‖x− y‖

]
(3.1)

where, like before pr and pg denote the distributions of the real and fake data, respectively.
Furthermore,

∏
(pr, pg) denotes all possible joint distributions γ(x, y) whose marginals are

pr and pg, respectively. Intuitively, γ(x, y) denotes the amount of mass that needs to be
transported from x to y to transform the distribution pr into pg. The EM distance is then
the cost that is associated with the optimal transport plan.

The EM distance has two main advantages over alternatives like the JS-divergence. In
their paper, Arjovsky et al. [5] prove, under certain restrictions, the following: given a func-
tion g : Z × Rd → X where Z denotes the space of the latent input z and X denotes the
space of the real data.

1. If g is continuous, then so is W (pr, pz)

2. If g is locally 1-Lipschitz1, then W (pr, pz) is continuous everywhere and differentiable
almost everywhere.

1A differentiable function f is 1-Lipschitz if and only if it has gradients with norm at most 1 everywhere.

18

Both statements are false for the JS-divergence, making the EM distance a much more
applicable measure as a loss function.

In figure 3.13, it is clearly visible that the Wasserstein metric provides smoother gradi-
ents, even when the generator provides very poor samples. This is in stark contrast to the
gradients provided by the vanilla GAN discriminator, which provides no gradients if the
real and fake data distributions are far apart.

3.9.2 Limitations

However, the equation for the Wasserstein distance is intractable, because to compute
the infimum infγ∈Π(pr,pg) from equation 3.1, one needs to exhaust all the possible joint
distributions. Using the Kantorovich-Rubeinstein duality, the calculation can be simplified
to

W (pr, pg) = sup
‖f‖L≤1

Ex∼pr [f(x)]− Ex∼pg [f(x)]

where sup is the least upper bound and f is a 1-Lipschitz function with the constraint
|f(x1) − f(x2)| ≤ |x1 − x2|. The only step left until we can calculate the Wasserstein
distance is to find a 1-Lipschitz function. Creating a function for the task is something a
neural network is very well suited for, but it does not adhere to the 1-Lipschitz constraint
by itself. This is why the authors clip the weights during training:

w ← clip(w,−c, c)

As is also noted by the authors, this is obviously a sub optimal measure to comply with the
1-Lipschitz constraint. When clipping, the model will take longer to converge on the and
the final performance is related with choosing a good c. The model is quite susceptible to
changes of c, where a good c will provide a good network, but a bad c provides a network
that does not converge and produces poor results. The clipping measure was chosen for its
simplicity, but is something that can easily be improved upon.

3.9.3 Usage in WGAN

In the WGAN, the discriminator does not have a sigmoid activation at the end layer and the
Wasserstein metric is applied to the output of the last layer of the discriminator. In deep
learning, outputs without a activation are often referred to as the logits and applying the
Wasserstein metric on this forces the logit distributions to be similar. The score correlates
to how real the discriminator thinks the samples from G are, but is not a probability. The
literature renames the discriminator to a critic to reflect this change, but we will keep using
the shorthand D in formulas for both the WGAN and WGAN-GP.

Making it concrete, the loss functions of the WGAN are

LD =
1

m

m∑
i=1

D(x)− 1

m

m∑
i=1

D(G(z))

LG =
1

m

m∑
i=1

D(G(z))

which are both easily calculable values. Additionally, mode collapse was not observed in
their experiments and does not seem to occur when using the Wasserstein distance.

19

Figure 3.13: Wasserstein GAN loss ver-
sus vanilla GAN loss. It becomes clear
that the Wasserstein distance as an error
function provides much more stable gra-
dients when the data distributions of the
real and fake data are far apart. From
[5].

Figure 3.14: Gradients of the critic
for different values of c. The gradi-
ent penalty will be discussed in section
3.10, but in short; it is an improvement
on the clipping measure of the WGAN
which greatly improves the capacity to
learn. Instead of most weights being ei-
ther the minimum or the maximum, we
get a smooth distribution. From [23].

As a last measure, it is observed that the usage of momentum in the optimizer results
in unstable gradients when using the Wasserstein distance. They solved this by setting β1

in Adam [34] to 0, making it the same as RMSProp [21]. In summary, the WGAN has two
major advantages over the vanilla GAN architecture:

1. it shows no sign of mode collapse

2. the generator can still learn when the critic performs well and pr and pg are far apart.

3.10 WGAN-GP

WGAN-GP is short for Wasserstein GAN with Gradient Penalty, and was introduced by
Gulrajani et al. [23] shortly after the original WGAN paper. It proposes a gradient penalty
to comply with the 1-Lipschitz constraint, removing the need for clipping. WGAN-GP
increases and decreases the gradient penalty depending on how far the gradient is from
being 1-Lipschitz. They change the loss function of the WGAN to

Ld = E [D(x)]− E[D(G(z))]︸ ︷︷ ︸
Original critic loss

+λ · Ex̂∼px̂ [(‖∇x̂(D(x̂)‖2 − 1)2]︸ ︷︷ ︸
Gradient penalty

with x̂ = εx+ (1− ε)G(z)

and ε ∼ U [0, 1]

where λ is set to 10. This λ was empirically found to be effective across a variety of architec-
tures and datasets. This change requires some additional changes to the architecture, most
notably the omission of batch normalization in the critic. In other work, batch normaliza-
tion is generally encouraged because it stabilizes training. However, batch normalization
changes the form of the discriminator problem from mapping a single input to a single

20

ARCHITECTURE MNIST FASHION CIFAR CELEBA

MM GAN[20] 9.8± 0.9 29.6± 1.6 72.7± 3.6 65.6± 4.2

NS GAN[20] 6.8± 0.5 26.5± 1.6 58.5± 1.9 55.0± 3.3

LSGAN[45] 7.8± 0.6 30.7± 2.2 87.1± 47.5 53.9± 2.8

WGAN[5] 6.7± 0.4 21.5± 1.6 55.2± 2.3 41.3± 2.0

WGAN GP[23] 20.3± 5.0 24.5± 2.1 55.8± 0.9 30.0± 1.0

DRAGAN[37] 7.6± 0.4 27.7± 1.2 69.8± 2.0 42.3± 3.0

BEGAN[8] 13.1± 1.0 22.9± 0.9 71.4± 1.6 38.9± 0.9

VAE[35] 23.8± 0.6 58.7± 1.2 155.7± 11.6 85.7± 3.8

Table 3.2: FID scores for different GAN architectures on four well known datasets. It shows
the WGAN and WGAN-GP beating out most of the other architectures. From [44].

output to mapping a batch of inputs to a batch of outputs. Since the gradient penalty is
calculated with respect to each individual data point and not the entire batch, the gradient
penalty would not be valid anymore. Experiments show that the model still trains well
without batch normalization. Normalization techniques that do not introduce correlations
between samples are still available, like layer normalization, which is used as a drop-in
replacement for batch normalization.

To show that this method actually works; in a study from Google Brain, they compared
models with different training methods and loss functions. They trained the listed models
to synthesize images from the four datasets and evaluated it using the Fréchet Inception
distances (FID). FID is a metric to determine how realistic an image is, where lower scores
correspond to more realistic images. WGAN and WGAN-GP achieve some of the best FIDs,
especially on larger datasets (CIFAR, CELEBA). Table 3.2 shows how different architectures
stack up against each other.

3.11 GANs for Tabular Data

So far we have only discussed GANs in general, which are commonly applied to images.
However, this thesis goes into GANs applied to tabular data so that will be discussed
extensively in this section. GANs for tabular data have numerous extra hurdles to clear for
generating data, like transforming data to be applicable for GAN usage, being able to handle
different data types simultaneously and doing an deterministic inverse transformation of
generated data. So compared to discriminative models and GANs for image data, this
requires a couple more steps. In this section we will walk through the steps that are
required to train GANs on tabular data.

As discussed in the introduction, in this project we focus on the two most common
data types: categorical and continuous. No distinction between nominal and ordinal data is
made, so, for example, gender will have the same encoding as education, although education
clearly has an order with higher and lower levels.

21

3.11.1 Preprocessing

Preprocessing is limited when working with GANs. Rows with empty values are removed,
because we have enough data. Additionally, we make a judgement of which columns we
want to generate with the GAN. Some columns will make sense to generate, while others
will not. For example, generating unique IDs with a GAN makes no sense, since their is
no correlation with any of the attributes and GANs are not suited for generated unique
data. These columns are better removed and than added after the process again with an
appropriate method. When generating unique IDs, generating k numbers could be done
by generating all numbers from 1 to n where n > k and then sampling k numbers without
replacement from this set. If the numbers need to be in a certain range, say between i and
j, the same principle can be applied starting from i instead of from 1.

3.11.2 Data transformations

To generate meaningful data, the data needs to have, like in all neural networks, an ap-
propriate representation. There are different ways to approach this for the two data types.
Normalizing continuous values can be done in many ways, but is often done by using stan-
dardization or normalization. Standardization transforms the data to have mean 0 and
standard deviation 1 while normalization transforms all data to a value between 0 and 1.
Standardization is generally done with x′r = xr−µ

σ where xr is the real data, x′r the trans-
formed data, µ is the mean and σ is the standard deviation. One can multiply σ with some
scalar to capture more or less of the distribution within [−1, 1], with 4σ capturing 99.99% of
all data, if the data follows a Gaussian distribution. However, there are many alternatives
like min-max-scaling, binning into discrete values, using outlier reduction, and Gaussian
mixture models.

Categorical values are a bit of a different story, because in discriminative models these
are typically represented with learned embeddings. This approach has proven to be ex-
tremely powerful and is the core that is powering the natural language processing renaissance
[15, 52]. However, inverse transformations from generated embeddings require a distance
measure to see which real embedding is closest, and distance measures are often ambiguous
when applied in high dimensional spaces.

Detecting which columns corresponds to which data type is not trivial, which is why
many implementations require this to be given alongside the dataset. The effect of this
approach is that results are easily reproducible while reducing flexibility. To use a new
dataset, one needs to specify the data types for the all the columns, if categorical, define
how many values there are and what the labels corresponding with the numerical encoding
are.

3.11.3 Reverse transformation

Because the output of a GAN is within a very specific domain, typically between −1 and
1, the output needs to undergo an inverse transformation with respect to the initial trans-
formation. This ensures that the output data looks like the original data. For example, the
output of the GAN might be a one-hot encoded vector which needs to be transformed to
represent one of several classes. Additionally, a value of 100 is commonly scaled to a value
in the range [−1, 1] before being used in a neural net. After generation, an inverse trans-
formation is required. The inverse transformation is tailored to the initial transformation,
being the exact opposite.

22

3.11.4 GANs for categorical data

Generation of categorical data in GANs has been an issue with several proposed solutions
and workarounds. The problem arises due the the enforcement of a hard decision at the end
of the generator for categorical values. The output of a generator with categorical values
is often given with a softmax layer, indicating which output is most likely to be correct.
However, the data is one-hot encoded and if we were to give the softmax outputs and the
one-hot encoded data to the discriminator, it could easily tell the difference.

There are two workarounds for this problem.

1. The first one is to have an onehot(argmax(x)) applied to the output of the net-
work. For example, [0.01, 0.06, 0.12, 0.81] becomes [0, 0, 0, 1]. The problem with this
approach is that argmax does not have a derivative, which is a requirement for back
propagation to work. To work around argmax, one can use the Gumbel softmax [33],
which is an adaptation of softmax that pushes the softmax values to the limits 0 and
1. Like in the variational autoencoder, the Gumbel softmax uses a reparameteriza-
tion trick to create a differentiable approximation of argmax, leveraging softmax with
temperature. Gumbel softmax is calculated with

yi =
exp((logαi +Gi)/τ)∑K
j=1 exp((logαi +Gj)/τ)

where α is the input, y the output, Gi represents a sample from the Gumbel distri-
bution and τ is the temperature parameter, which controls how much the values are
pushed apart or together. Using τ > 1, the softmax values come closer together and
provide smoother gradients, which is desired at the beginning of training. Annealing
τ during training pushes the values closer to a one-hot encoded value, which is desired
at the end of training.

2. The second one is to apply noise to the onehot-encoded ground truth, so they look
more like the softmax output. The underlying assumption is that a discriminator
would not be able to easily distinguish between the noisy ground truth and the output
of the generator.

Both approaches are used throughout the literature, but recently the trend has been going
towards using the Gumbel softmax.

23

Chapter 4

Related Work

In this section we discuss three main topics: generation methods, evaluation metrics and
baselines. Starting with the generation methods, we will look at the current state of the art
contenders and what approaches they take. We detail the four highest performing models
extensively.

4.1 Generation Methods

4.1.1 TGAN

TGAN is a architecture for tabular data generation proposed by Xu and Veeramachaneni
[58]. The authors’ goal was to provide a package capable of generating all datasets with cat-
egorical and continuous data. They do this with a generator that has an RNN with LSTM-
cells that walks over the columns and predicts the value for the next column depending on
earlier outputs. The output of the LSTM is put through a couple of dense layers, including
an attention layer to get the final output. The discriminator is much simpler, just being
a fully connected network. Furthermore, they identify the problems neural networks have
with non-Gaussian distributed inputs and propose a probabilistic distribution method to
circumvent these. More specifically, they use a Gaussian Mixture model (GMM) applied on
each numerical column individually. They call this approach mode-specific normalization
for numerical variables.

The GMM is trained with m components for each numerical column Ci. The result
of fitting the GMM are the the means and standard deviations of the m components,

µ
(1)
i , . . . , µ

(m)
i and σ

(1)
i , . . . , σ

(m)
i respectively. For each value in the column Ci,j , they

compute the probability coming from each of the m Gaussian distributions as a vector

u
(1)
i,j , . . . , u

(m)
i,j . So the final vector ui,j is a normalized probability distribution over m Gaus-

sians. As a last step, the values are normalized by the mean and standard deviations of

the Gaussian to which they most likely belong: vi,j = (ci,j − µ(k)
i)/2σ

(k)
i . As a very last

step, these values are clipped to [−0.99, 0.99] before they are used as input for the neural
network. In the end, each value ci,j is represented by the combination of ui,j and vi,j

To make this a bit more concrete, please have a look at figures 4.1 and 4.2 to get some
feel for this encoding. Each data point is encoded by their probability of belonging to each
of the four Gaussians, as well as their relative position within the most probable Gaussian.

Regarding the problems with categorical data, their implementation does not suffer from
the problem with the derivative of argmax being 0 because they do not apply argmax.

24

Figure 4.1: A set of data points created
by sampling three Gaussians 100 times
each. The results is a data distribution
that is very hard to model with a single
Gaussian. From [4].

Figure 4.2: Three Gaussians fitted to
the sampled data gives us three almost
identical Gaussians. If this were mod-
eled using a single Gaussian, sampled
data would be very different than the real
data. From [4].

Instead, they keep the normal softmax output. To close the gap that clearly exists between
a softmax distribution and a one-hot encoded real value they apply label smoothing on the
real data, which makes it harder for the discriminator to distinguish the two. In practise,
this seems to work quite well and they achieve fairly impressive results.

Additionally, they propose a regularization measure with what they call a diversity vec-
tor. Each dimension in this vector consists of the total distance between one sample and all
other samples in the mini-batch with a predefined metric. This gives the discriminator some
meta information about that specific sample. However, they do not specifically evaluate
this addition, so it is hard to say what and how much effect this has.

Lastly, they use the normal GAN losses, but add an KL-divergence term to the generator
loss to prevent overfitting. As discussed in section 3.8, this likely has a desired effect on the
sample diversity but hurts sample quality. The loss function of the TGAN generator is

LG = −Ez∼U (0,1) log(D(G(z)) +

nc∑
i=1

KL(u′i, ui) +

nd∑
i=1

KL(d′i,di)

where nc and nd indicate the number of continuous and categorical columns, respectively,
while, d indicates the one-hot vector of categorical columns.

In this thesis, we will propose two adaptations of the TGAN model that improve the
stability of training and the quality of generated samples.

4.1.2 MedGAN

MedGAN[12] takes a wildly different approach. They propose using an autoencoder to
translate categorical values to a latent continuous representation which can be learned by
the generator. Using a pretrained autoencoder (which consists of Dec and Enc), the decoder
sits between the generator and the discriminator and translates the continuous output of
the generator to the format of the real data. Their implementation had a couple of limi-
tations. For example, they only implemented and evaluated for binary and what they call
count variables. Count variables are essentially ordinal integer values, but do not seem to
have a predefined limit. Additionally, their implementation does not support handling of

25

Figure 4.3: The architecture of MedGAN. First, the autoencoder is trained, which is visible
left. Then, the GAN is trained with the decoder of the autoencoder situated between the
generator and discriminator.

both data types at the same time, but rather in separate models.

Before getting into the gritty details, lets talk about their contributions.

1. They propose a method to circumvent categorical values in GANs by using autoen-
coders.

2. They propose a technique called minibatch averaging, where they use the average of
a minibatch as additional input for the discriminator. This helps in reducing mode-
collapse and serves a similar purpose as the diversity vector used in TGAN.

3. They add skip connections to the dense layers in their generator G. These are the same
kind of connection as in ResNet and other state-of-the-art discriminative models and
allow for the model to look back at earlier information as well as improving the flow
of gradients.

In their results, they present results both with regard to classifier F1 scores and to privacy
capabilities. For the two data types mentioned, MedGAN seems to outperform the evaluated
alternatives like VAE, and Restricted Boltzmann Machines (RBM) [55]. Additionally they
evaluate on several artificial baselines like sampling from a Bernoulli distribution, based
on presence in the real dataset and randomly flipping a binary value in 10% of the cases.
However, they do seem to improve on the VAE and RBM, which is meaningful on its own.
Additionally, they perform a quite extensive evaluation with regards to the protection of
privacy.

All the parts of MedGAN consist of multilayer perceptrons with different activations,
depending on the datatype. For count variables, they use ReLU in both the Enc and the
Dec. For binary values, they use tanh in the Enc and sigmoid activations in the Dec.

Surprisingly, contradicting what was discussed in section 3.6 about sampling from a
latent space with gaps, this approach seems to work well for MedGAN; we return to this
topic in chapter 7. We chose not to built upon MedGAN for two reasons: the model was
only functional with specific data types, while we required more, and the model reported
performance that was much lower than TGAN and TableGAN.

26

4.1.3 TableGAN

TableGAN[50] takes a very different approach, and tries to capture correlations in 2D using
convolutional neural networks. We will walk through their approach step by step.

In TableGAN, data encodings are much more straight forward than in TGAN. categor-
ical values are transformed to numerical values which is than minimax scaled to a value in
[−1, 1] (i.e. [a, b, c]→ [1, 2, 3]→ [−1, 0, 1]) for usage with tanh in the final layer. Continuous
columns are just minimax scaled to between −1 and 1.

The TableGAN architecture is based on that of the Deep Convolutional GAN (DCGAN),
which was one of the key drivers for high fidelity image synthesis. In the generator G, all
intermediate layers use ReLU, as is common in convolutional models while the discriminator
D uses LeakyReLU for all except the last layer, which uses sigmoid.

They introduce a classifier C, identical to discriminator D in its design. However, C
does not classify whether the sample is real or fake, but uses one of the columns as labels
which it tries to predict. In their testing, this seems to help sample quality and coherence.
They give the example that someone with a cholesterol of 50 cannot have a label of diabetes,
because cholesterol of 50 is too low to be diagnosed with diabetes.

The loss of this classifier C is combined with the normal GAN loss and an additional loss,
called information loss. The information loss is closely related to the Wasserstein distance,
and is evaluated over the output of the last layer before the sigmoid in the discriminator.
Where the Wasserstein distance is defined as the absolute difference in means of the logits,
the information loss is defined as follows:

Lmean = ‖E[fx]x∼pr − E[fG(z)]z∼pz‖2
Lσ = ‖σ[fx]x∼pr − σ[fG(z)]z∼pz‖2

LGinfo = Lmean + Lσ

where f represents the logits in the last layer of the discriminator and σ represents the
standard deviation. So if lmean = 0 and lσ = 0, the real and synthetic data look identical
to the discriminator, which will not be able to distinguish them from each other.

The authors identify a need to control the privacy of the real data points, where a distri-
bution of synthetic data identical to the real data is the least private and one that deviates
from the real data distribution more private. They control this by adapting LGinfo to

LGinfo = max(0, Lmean − δmean) +max(0, Lσ − δσ)

where δmean and δσ are two hyper parameters to control the privacy. This regularization
sets LGinfo = 0 as long as L is smaller than δ for both the mean and standard deviation
losses. If δmean and δσ are 0, the loss in unconstrained and the synthetic data distribution
will try to match the real data distribution. This adaptation seems to accomplish exactly
what it was set out to do, with a strong relation between sample quality and δmean and δσ.

In our testing, TableGAN works quite well for continuous values, but suffers in situations
with categorical values, which is why we chose TGAN over TableGAN.

27

4.1.4 CTGAN

Conditional Tabular GAN [59] is a follow-up paper of [58], but does not directly continue
where that paper left of. This paper introduces another tabular GAN architecture, along
with new data preprocessing steps that improve tabular GANs. Confusingly, they have
called this architecture TGAN as well, but have since renamed it to CTGAN in the accom-
panied python package so this is how we will refer to it as well.

The paper starts strong, by identifying five crucial problems that need to be addressed
for successful tabular data synthesis.

1. Mixed data types. Real data often consists of mixed data types. To generate this
data simultaneously, a GAN must be able to apply both softmax and tanh on the
output.

2. Non-Gaussian distributions. In images, values generally follow a Gaussian-like
distribution, which can easily be normalized to [−1, 1], whereas with tabular data,
continuous data often have non-Gaussian distributions with long tails. With tanh
and sigmoid, the location of the gradients will often be flat and a phenomenon called
gradient saturation occurs. When gradient saturation occurs, a model loses the ability
to learn through gradients.

3. Multimodal distributions. Tabular continuous data typically have multiple modes.
They find that 57/123 continuous columns in their test datasets have multiple modes.
This and the previous problem can be overcome with some specific preprocessing steps
which will be detailed in a minute.

4. Learning from sparse one-hot encoded vectors. The problem of softmax ap-
pears again, which is now solved by using the mentioned Gumbel-softmax [32].

5. Highly imbalanced categorical columns. Many categorical columns have a highly
imbalanced distribution, meaning the major category appears on more than 90% of
the rows. Missing the minor classes does not impact the overall distribution much, and
is often not noticed by the discriminator. In essence, this is a form of mode-collapse,
for which they apply PacGAN [43], in which multiple samples are presented together
to the discriminator to determine whether they are fake or real in total.

The data preprocessing steps are quite alike the ones of TGAN [58], with some small
adaptations. They still encode all continuous values, but instead of the normal Gaussian
mixture model, they use the variational Gaussian mixture model (VGMM). The VGMM
model has additional parameters u(1), . . . , u(mi), which are weights. Please recall that Ci
denotes column i and ci,j denotes a value in column Ci.

1. At first, we try to estimate the number of modes in the distribution of Ci. We
use the VGMM to do this. This produces the probabilistic model PCi(Ci,j) and a

Gaussian Mixture withmi components with means µ
(1)
i , . . . , µ

(mi)
i , standard deviations

σ
(1)
i , . . . , σ

(mi)
i and weights u(1), . . . u(mi).

PCi(ci,j) =

mi∑
k=1

u(k)N
(
ci,j ;µ

(k)
i , φ

(k)
i

)
The VGMM is trained to maximize the likelihood on the training data.

28

2. Compute the probability mass function (PMF) of the value ci,j sampled from each of
the mi modes as

Cat(k; [β̄
(k)
i,j]k=1...mi

), where β̄
(k)
i,j =

u(k)N
(
ci,j ;µ

(k)
i , φ

(k)
i

)
PCi(ci,j)

where Cat(x, [p1, . . . , pm]) is a categorical PMF of x with parameters p1, . . . , pm. Like
in TGAN, this results in a probability distribution over the components mi.

3. Sample ki,j ∼ Cat(k; [β
(k)
i,j]k=1...m) and convert it to a one-hot representation βi,j .

4. As a final step, just as it happened in TGAN, the data ci,j is normalized with the
mean and standard deviation of the most probable Gaussian, following ai,j = (ci,j −
µ

(k)
i)/4φ

(k)
i . The value is then clipped to [−1, 1] which covers 99.99% of all samples.

Value ci,j is then represented by ai,j and βi,j .

Three other methods are proposed to improve training. The first one is a conditional
vector, which allows for conditioning on a certain value of a certain column through one-hot
encoding. Without going into specifics, this method helps broadening the variety of samples
by sometimes explicitly conditioning on a specific value of a column, forcing the generator G
to mimic this. Normally, if a columns contains a class that spans the majority (say > 90%),
it is easy or the generator to ignore this value because the critic does not enforce having the
minor class present. With this explicit conditioning, G will be punished if it deviates from
the required class. This conditional vector consists of all the categorical columns one-hot
encoded concatenated together, where the only 1 is at the desired class. So say there are
two columns, D1 = 1, 2 and D2 = 1, 2, 3 and the condition is (D1 = 2). The columns are
then represented by their one-hot encoded vectors m1 = [0, 1] and m2 = [0, 0, 0] which are
combined into cond = [0, 1, 0, 0, 0].

This also relates to the second contribution: they add a section to the loss function
which is the cross entropy between the cond and the generated one-hot encoding of the
categorical columns.

The last proposition closely ties together with the previous two, namely how does one
determine on which class to condition and with what probability. This is done by first
selecting one of the categorical column with equal probability. Compute the PMF of the
values in that column where the mass of each value is the logarithm of its frequency in that
column. As a last step, select a random value from the PMF and set this value to 1. Set
all other values of the conditional vector to 0: cond = m1 ⊕ . . .⊕mN where N is the total
number of categorical columns, ⊕ means the concatenation of two vectors and the selected
value in the selected columns is 1.

The architecture of the network has also changed. The authors found the LSTM cells were
not required to achieve the required performance, so the network is now just some dense
layers with batch normalization [30], which improved training time significantly. Addition-
ally, although it isn’t mentioned anywhere in the paper, they changed the GAN architecture
from the vanilla GAN to the WGAN-GP basis.

This paper is interesting because it is the first paper that compares against other GAN
based data synthesis methods. They compare against TableGAN, MedGAN and some oth-
ers. They do not, however, compare against their own previous TGAN model. Interestingly

29

enough, in both they have some overlap in evaluation, for example, F1 scores on the Cen-
sus dataset, where their older TGAN model outperforms their newer CTGAN model. The
other metric, accuracy on the covertype dataset, does show improved results for CTGAN,
so we would have really liked to see TGAN be incorporated into the results of CTGAN.

The expectation of CTGAN was quite high, but unfortunately the code provided by the
authors did not work in our testing. As a consequence, we did not include CTGAN in our
comparisons and used TGAN to improve upon.

4.2 Baselines

One of the major gripes with such a young area of research is that evaluations are not
always comparable, due to different datasets and different metrics. Additionally, evaluating
synthesized data is hard in and on itself due to the use of different definitions of what is a
“good” sample, especially with tabular data.

In the literature, many different baselines are used, which makes comparing different
deep learning based generative models surprisingly difficult; the reported results do not
compare with each other. In general, publications on this area have reported on statis-
tical models and anonymization tools as baselines. Even though these baselines are not
meaningless, the omission of other deep learning based generative methods is a major issue.
TableGAN does compare against DCGAN, but this mainly indicates the effect of the adap-
tations they made to create TableGAN, and not as a competitive tabular data synthesis
model.

4.2.1 Statistical Generation Techniques

In the statistical models we essentially include everything that does not fall into neural gen-
eration techniques nor data perturbation and anonimization tools. Statistical generation
techniques include graphical models like Bayesian networks, but in this case also includes
applying random noise to real data points to get permuted data points and independent
sampling, which is only possible for binary values. Finally, Gaussian copula are also in-
cluded in this section.

Bayesian networks. Bayesian networks are generally quite capable of modeling rela-
tionships, but struggle when datasets get larger. In the evaluation TGAN, Bayesian net-
works are applied to model both the column independently as well as to the whole dataset.
The first approach does not perform well, since it does not capture any relations between
columns. During evaluation, many machine learning models applied to these samples dete-
riorate into predicting the majority, which is a consequence of the absence of inter-column
relations. The second approach takes an extremely long time to train, even with a subset
of the dataset. In CTGAN, they use two slightly different approaches, of which one is quite
old [13], while the other is more recent and also targets privacy in Bayesian networks [60].
While these baselines at least give some usable results, they are still significantly outclassed
by most of the deep generative methods.

Random noise. Random noise is applied by randomly switching binary values with 10%
probability. This approach is straight forward and has the expected results. Distributions
change somewhat, while F1 scores correlate a bit less between the datasets.

30

Independent sampling. Independent sampling means a Bernoulli distribution modeled
by the data distribution. So, as expected, this achieves the exact same distribution for
binary features as the real data but is not feasible for any other datatype.

Gaussian Copula. Without going into exactly how Gaussian copulas work, they allow
the transformation of any distribution to a Gaussian distribution, and create an encoding
for the original values in the new domain. After converting all rows to this encoding, the
covariance matrix Σ can be computed. The parameters for the distributions of each column,
together with Σ become the generative model for the dataset. This modeling is done per
column, meaning that this approach also is not able to capture relations between columns
[58, 51].

4.2.2 Neural Generation Techniques

Neural generation techniques are a bit more interesting, and include Restricted Boltzmann
Machines (RBMs) and Variational Autoencoders (VAEs). Additionally, in [59] they adapt
a VAE to be able to handle different data types and provide quite a good comparison.
However, the RBM is only used for binary variables, meaning its utility is quite limited.
The ins and outs of the VAE have been discussed in section 3.7, and should make some
of the limitation clear with respect to this evaluation. Without modifications, it is only
applicable on binary and categorical data. This is why the adaptations done by [59] are
quite interesting and provide state-of-the-art results in some of the evaluated tasks.

4.2.3 Data perturbation and anonimization tools

TableGAN is the main contributor to this section, and compare their approach with two
data anonymization tools: ARX [1] and sdcMicro [57]. Both are open source tools, of which
sdcMicro is also an R package. Both packages have different functionalities and options
with regard to data perturbation and privacy. Since these baselines will not come back in
this thesis, we will not discuss these any further. For more information, refer to [50].

4.3 Evaluation metrics and methods

In this section, we will outline the different evaluation methods that have been applied so
far, as well as discuss their advantages and disadvantages. The criteria listed below are
all applied in a situation where we have a trained generator G from which a number of
data points are sampled. In this thesis, we propose a combination of some of these meth-
ods and several novel methods to form a cohesive metric for the evaluation of synthetic data.

In short, the three views on different evaluation are:

1. Statistical properties

2. Machine learning efficacy

3. Privacy

4.3.1 Statistical properties

Statistical properties refer to very basic properties of the data, like the mean and the
standard deviation. These kinds of properties are basic enough to have their similarity

31

RN IS DBM VAE medGAN

Figure 4.4: F1 scores for predictions on all columns on all datasets. From MedGAN [12]

be a minimal requirement for each data synthesis method. Additional metrics can also be
calculated over these properties, like distance between correlation matrices and differences
in mean and deviation, for a more quantitative way of evaluation.

4.3.2 Machine learning efficacy

Machine learning efficacy looks at how usable data is for cross domain applications. Ad-
ditionally, it gives insight into some relations that might be more or less apparent in on
of the two datasets. This metric is one of the recurring evaluation methods in the related
work. Typically, it is done by comparing a classification metric (F1-score, Accuracy) or a
regression metric (Root Mean Squared Error, Mean Absolute Error) of different models on
both the synthetic and the real dataset. For example, TableGAN reports the F1 and Mean
Absolute Percentage Error for applicable column from their test datasets. A very interest-
ing twist to these metrics is when a model trained on real data is evaluated on synthetic
data and vice versa. This really shows whether a model would be intercompatible between
datasets. These evaluations are usually visualized as in figure 4.4.

4.3.3 Privacy

Privacy is a bit more controversial as a metric, with very wide ranging methods of evaluation.
Some papers do nothing with it during evaluation [59], while others use it as their main
focus [50]. For example, in [50, 58] they calculate the mean distance between each synthetic
data point and its closest data point from the real dataset. Some also go a lot further,
such as [50] attempting a membership attack, which is a specific attack to machine learning
models to distinguish values that appeared in the real dataset. Additionally, [12] dives into
whether one can recover a real data point if some of the values of that data point are known,
which is a very interesting approach. Luckily, they find that this does not matter a great
deal which inspires some confidence in the ability of these models.

4.3.4 Human Experts

Human experts have been asked to evaluate generated data in Choi et al. [12]. In one of
their experiments, they let a medical doctor rank 100 records on realness, which consisted
of 50 real and 50 fake records. In their evaluation they find that the majority of samples
that were classified as not very real had some conflicting information in them, like a woman
with prostate cancer.

32

Chapter 5

Proposed Methods

In this chapter, we elaborate on our three proposals. The first two are adaptations to the
architecture of TGAN, which we hypothesized perform better. The first proposal reflects a
major trend in neural networks, where so called skip-connection are added to a network to
increase gradient flow and information retention. The other is a GAN specific adaptation,
the WGAN-GP architecture, which uses a different training setup and loss function that
reduces mode-collapse and has a more interpretable loss function. Our third proposal is
a similarity metric to evaluate synthetic data against real data, which captures the total
similarity in a single value and displays a more balanced view of how they compare. The
two proposed adaptations are different versions of a GAN synthesizer, while the evaluation
metric is in the similarity score section. In figure 5.1, we describe an overview of the
framework, along with where our proposals fit into it.

5.1 GAN Synthesizer

5.1.1 TGAN-skip

The first proposal is adding skip connections to TGAN, which will applicably be called
TGAN-skip. Skip connections have been proven to be extremely effective in discriminative
models like ResNet [24] and DenseNet [28]. The main advantage of adding skip connections

Figure 5.1: The framework in which we do our proposals. We propose two versions of the
GAN synthesizer, TGAN-skip and TGAN-WGAN-GP. Our proposed metric, the Similarity
Score, is in the scoring part.

33

Figure 5.2: The adaptation made to TGAN to get TGAN-skip. The skip connection is
between the noise input z and the second dense layer.

is that this solves the vanishing gradient problem. The vanishing gradient problem occurs in
models with many layers where the activations in later layers start to near 0. With these low
activations, gradients are also very small and take a long time to converge. Skip connection
allow earlier activations to skip over layers to keep the magnitude of the activation high.
With higher activations come higher gradients and so we can train deeper models (with
more expressive power).

Additionally, skip connections retain old information, which is used in models like U-net,
a semantic segmentation network. In these models, data is reduced to a very low dimension
after which it is scaled up again. Keeping the exact details of images is very hard this way.
To help the model do this, old information is combined with new information to finish at
the desired results.

Skip connection are already used in the generator of MedGAN [12], where they claim
it improves training. To understand the changes made to TGAN, I will first detail the
architecture a bit more. As stated in section 4.1.1, TGAN’s main components is an LSTM
cell that loops over the columns. The output of the LSTM cell is not directly used as output
for the whole, but rather goes through two dense layers before creating the final output.
Additionally, the output of these two layers goes through another dense layer to formulate
the attention vector for the next LSTM iteration, where it is used as input to the LSTM
cell. The skip connection is added between the first two dense layers. The hypothesis is
that this decreases convergence time due to greater gradients. Additionally, it should yield
higher overall performance due to the extra information that is able to flow through. So
the resulting model would be one that trains faster and achieves greater performance than
it would otherwise do.

To make it concrete, the adaptation done is as follows. Between the two fully connected
layers, we concatenate the input z and output of the first dense layer. Note that in the

34

actual code, this change is done three times due to different handling of categorical values
and the two parts of continuous values. The following piece of code

1 z = tf.placeholder_with_default(z, [None, self.z_dim], name='z')

2 ...

3 h = FullyConnected('FC', output, self.num_gen_feature, nl=tf.tanh)

4 w = FullyConnected('FC2', h, gaussian_components, nl=tf.nn.softmax)

5 outputs.append(w)

becomes

1 z = tf.placeholder_with_default(z, [None, self.z_dim], name='z')

2 ...

3 h = FullyConnected('FC', output, self.num_gen_feature, nl=tf.tanh)

4 h = tf.concat([h, z], axis=1)

5 w = FullyConnected('FC2', h, gaussian_components, nl=tf.nn.softmax)

6 outputs.append(w)

5.1.2 TGAN-WGAN-GP

The original TGAN architecture uses the vanilla GAN training, except for an extra KL-
divergence term in the loss of the generator. With the WGAN-GP architecture outperform-
ing most contenders in many GAN related tasks, the hypothesis is that also in this task,
a WGAN-GP approach will improve results. For the exact details on why this training
method has improved performance over the vanilla GAN, we refer you to section 3.10. In
short, the following effects should occur: WGAN-GP has a loss function that has semantic
meaning (i.e. decrease of the discriminator loss means a better generator), which is not
the case with a vanilla GAN. In the vanilla GAN, the loss can increase, even when sample
quality is increasing. Additionally, this loss function does not suffer from the caveats of the
vanilla GAN, where an imbalanced generator and discriminator caused training stagnation
and finally, using the Wasserstein distance should reduce the occurrence of mode collapse.
In total, the model should converge smoother and faster to the optimum, as well as have
improved performance over vanilla GAN.

While WGAN-GP conceptually is a small change, it requires some intrusive alterations
to the code. First, the loss function must be adapted to the Wasserstein distance and the
gradient penalty must be calculated. The batch normalization in the discriminator must be
adapted to layer normalization. Batch normalization in the discriminator has many strange
artefacts when combined with a Wasserstein distance metric, as discussed in section 3.10.
Additionally, the parameters of Adam must be changed to reflect the changes of [23, 5]
(β1 = 0, β2 = 0.9), essentially transforming Adam into RMSprop. The sigmoid activation
on the last layer needs to be removed, and lastly, we need to change the ratio of training
between the generator and discriminator. In WGAN-GP, the discriminator trains more
iterations than the generator, in a 5 : 1 ratio, respectively.

35

5.2 Similarity Score

To improve the evaluation methods of synthesized data, we propose our own metric, called
the similarity score SS. This score aggregates different measures to cover all aspects of
data. The goal is to get a single value representing how close a synthetic dataset is to a
real dataset. For this score, we focus on statistical and machine learning metrics. Apart
from the single resulting value, some additional metrics are reported to highlight certain
aspects of the datasets. In this chapter, we detail what features are weighted and how, and
it should give a sense of what characteristics of a synthetic dataset are most important for
this goal.

If the datasets being compared are very alike, the scores of the metrics should be very
similar for each metric. If the datasets are the same, the scores should be the same and
thus we can benchmark the similarity by doing a correlation analysis on the results of most
metrics. Pearson’s correlation coefficient is in this case quite well suited because Pearson’s
correlation coefficient is a metric that determines the linearity between two variables and
in this case, the optimal relation is linear. One disadvantage of this is that a linear relation
need not have a slope of 1, but the chances of encountering a linear relationship with a slope
other than 1 are quite low. This is mainly because the synthesizers are trying to replicate
relations from the real data. If the metrics applied to the synthetic data have a linear
relationship with a slope other than 1, the synthesizer somehow modeled the relations with
some scalar consistently.

Alternatively, one could argue using a rank correlation coefficient like Kendall’s τ . The
argument would be that if some metric u achieves better results on dataset A than on
dataset B, another metric v would do so as well. Applied to this situation, Pearson’s
measures how close the results of the estimators are to each other, contrary to consistency
between estimators. The problem with just comparing the ordering is that it does not
matter how much higher or lower a value is. Due to this characteristic, we take Pearson’s
correlation metric in most of the upcoming evaluations.

The results of these metrics generally range between [−1, 1] and indicates the correlation
coefficient where −1 means a negative correlation, 0 means no correlation and 1 means
positive correlation. A negative correlation means that when variable a goes up, variable b
goes down and vice versa.

5.2.1 Similarity Score - Statistical Measures

Basic measures

The statistical evaluation starts with aggregating four simple statistics, which are the mean,
median, standard deviation and deviance. One could argue that some metrics do not really
add information in most cases, but there is not downside to including them, and it does
stabilize the results by having more data points. This gives four values per column per
dataset. We calculate the correlation coefficient for the similarity score. However, because
some columns can contain very large numbers while other columns can be very small, a
single large columns can impact the Pearson’s correlation coefficient over the whole dataset
significantly. To counter this effect somewhat, we use the Spearman’s ρ [16] correlation
instead of Pearson’s. Spearman’s ρ is similar to Kendall’s τ in that it is a rank correlation
metric but also takes into account the values. In practise, it determines whether there is a
monotonic relationship instead of a linear one (Pearson’s). The result is a metric similar to
Pearson’s, but less perceptive to outliers in the tails. Applying Spearman’s ρ gives the first

36

value of our similarity score: Sbasic. This is calculated by

Sbasic(A,B) = ρspearman(〈mean(R), std(R)〉, 〈mean(F), std(F)〉) (5.1)

where 〈A,B〉 denotes the concatenation of two lists and mean(A) and std(A) refer to the
list of means and standard deviations of each column of table A, respectively.

An additional sanity check will be to report the number of duplicate rows in the real
dataset and each of the synthesized datasets. This can give us an idea whether mode
collapse occurred and how well distributed the data is originally.

Correlation matrix for mixed data types

The second statistical evaluation considers the correlations between the columns of each
dataset. Building a correlation matrix for a table is important to understand the relation-
ships between the columns. This approach gives us 2N2 values in total, where N is the
number of columns in the datasets.

Getting a correlation matrix is a bit more challenging than usual, because we have non-
continuous data. Since correlation has a specific mathematical definition, we will refer to
cases with possible non-continuous situations as associations instead of correlations. The
correlation matrix of a table with mixed data will then be called the association matrix.
The range for associations with mixed data or purely categorical data is often [0, 1] where
0 and 1 have the same meaning as in the correlation case with Pearson’s. With categorical
values however, a negative association cannot exist because for a negative correlation to
exist, both variables are required to have an ordering. With our categorical data (often or-
dinal is also considered categorical in these architectures), there is no order and thus there
cannot be a negative association between non-continuous data. The difference in range
is recognized, but no normalization is applied because the value 0 means no correlation in
all cases. So without further ado, lets introduce the methods to calculate these associations.

Continuous - Continuous. The case of continuous - continuous is easy, because it allows
us to use Pearson’s correlation. This metric is also able to measure negative correlation
between columns. We revert back to using Pearson’s instead of Spearman’s because the
impact of outliers will be much lower, due to the size of our datasets.

Continuous - categorical. In the case where one column is categorical and one con-
tinuous, we take the correlation ratio [18], another measure introduced by Karl Pearson,
the same that proposed Pearson’s correlation coefficient. Mathematically, it is defined as
the weighted variance of the mean of each category divided by the variance of all samples.
In short it answer the question: given a continuous value, how well we can tell which cate-
gory it belongs to. The range of the correlation ratio is [0, 1].

categorical - categorical. In the case of two categorical columns, we use Theil’s U [54]1

as a metric. Also called the Uncertainty Coefficient, Theil’s U is based on the conditional
entropy between two variables. In short, it is a measure of how many values and with what
probabilities there are for variable x, given a value for variable y. The range for Theil’s U is
also [0, 1]. An alternative would be to use Cramer’s V. However, Cramer’s V is symmetric,
and thus fails to capture asymmetries between columns. Theil’s U is able to capture this

1Shannon [54] uses the term uncertainty coefficient

37

and thus preferred.

By using these metrics when applicable, we can create an association matrix for a tab-
ular dataset. The logic of comparing metrics of datasets by linearity can be reused here,
and thus we calculate the correlation between the datasets. If this is 1, we know that the
column associations are very similar between the datasets. Before doing the regression, the
diagonal values are removed, since it indicates the correlation/association of a column with
itself, which will always be 1. Because this gives no additional information and gives the
correlation a bias towards 1, we remove these values. The correlation coefficient gives us
the second value for the similarity score Scorr. This is calculated as

Scorr(A,B) = ρpearson(association(A), association(B)) (5.2)

where association refers to the association matrix of each table.
For completeness, the distance between these matrices is also calculated on an element-

wise basis using the mean absolute error and root mean squared error. However, these
distances are reported as is and are not taken into account for the similarity score under
the assumption that this information is incorporated in the correlation coefficient.

Mirror Column Associations

In the previous section we only calculated associations within a single table. However, it
is also quite interesting to see if a column in dataset A correlates with that same column
in dataset B. For this, we calculate the association values the same way as in the previous
section. The results in N values, where N is the number of columns. Because these values
are already a comparison between the datasets we simply take the mean as final value for
the similarity score: Smirr. This measure will be named the mirror column associations.
Formally, this is as follows

Smirr(A,B) =
1

N

N∑
i=1

association(Ai, Bi) (5.3)

where N is the number of columns in A and B and Ai means the ith column of A.

Principle Component Analysis

Principle component analysis (PCA) is a well known statistical method of dimensionality
reduction while maintaining the same amount of information. It tries to convert the data
onto principal components, which are linearly uncorrelated vectors. These are then sorted
by the amount of variance captured in that component, of which we keep the top k values.
If k is smaller than the original number of dimensions, the dimensionality is reduced.

In this case, we take explained variance of the top five principle components. This
approach has three problems for our normal evaluation. First, PCA is quite similar between
datasets where other metrics report some differences. Additionally, we only take the top
five components, which is not that much when doing a correlation analysis. Lastly, the
same problem as with the basic statistical features occurs again. When there is a large
magnitude difference between columns, the first PCA components capture the variance of
columns with a larger magnitude more. The small number of data points makes using

38

the Pearson’s hard and thus we resort to something else. We calculate the mean absolute
percentage error, indicating the average error in percentages, as follows:

MAPE =
100

N

N∑
i=1

|yi − ŷi|
yi

(5.4)

where N is the total number of values being compared, i.e. the number of principle com-
ponents.

With pcA indicating the explained variance of the principle components of dataset A
and N being the number of principle components that are evaluated, we calculate the final
value for the similarity score with

Spca(A,B) = 1− MAPE(log(pcA), log(pcB))

100

We apply the log to circumvent having very large percentage errors (> 1000%), which swing
the similarity scores quite a lot. This gives us our fourth value for the similarity score: Spca.

5.2.2 Similarity Score - Machine learning efficacy

The machine learning measures are split between analysis on continuous and categorical
columns. The classifiers and regressors used are chosen due to their common usage and
not for any specific performance on these datasets. If the target column is categorical,
the following classifiers (all from scikit-learn) are used. If no parameters are specified, the
default parameters are used:

1. Logistic Regression (multi class = auto, solver=lbfgs, max iter=500)

2. Random Forest

3. Decision Tree

4. Multilayer Perceptron ([50, 50], solver=adam, activation=relu, lr=adaptive)

If the target column is continuous, the following regressors are used:

1. Random Forest (n estimators=20, max depth=5)

2. Lasso Regression

3. Ridge Regression (alpha=1.0)

4. ElasticNet

For evaluation of the effectiveness of the trained classifiers, the F1-score is used. The F1-
score is the harmonic mean between the precision and recall, two other measures for model
performance. In a multi class situation, F1-scores can be applied in different ways, but we
take the micro version, where all evaluations are done global instead of within a class.

F1 =
2 · precision · recall
precision+ recall

(5.5)

39

However, when working with continuous data we use the root mean squared error (RMSE)
to evaluate the models results. As the name indicates, the RMSE is calculated as follows

RMSE(y, ŷ) =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (5.6)

where N is the number of results that are compared.
The method of evaluation for both is similar, so we will refer to whichever is chosen as

the estimators from now on. Two sets of estimators are created (ER and EF) and the steps
of the evaluation is described below.

1. Real data R and fake data F are split in a 80%/20% split for train/test and the target
column is sliced of, resulting in F xtrain and F ytrain for the fake training set and similar
for the test set and the real data.

2. ER is trained on Rtrain and EF is trained on Ftrain. We now have one set of estimators
fit on the real training data and one set of estimators fit on the fake train data.

3. Taking the evaluation of ER as an example: we evaluate ER on both Rtest and Ftest
with the appropriate metric (F1/RMSE). We do the same for EF . This results in two
scores for each estimator.

4. If we have F1 scores, we calculate MAPE on the resulting scores to get single value
and take 1−MAPE. If we have RMSE scores, we apply Pearson’s to get a correlation
coefficient. This difference is due to correlations becoming arbitrary when the points
are clustered together closely, which happens when the real and fake dataset are quite
alike and the F1 scores only differ ±1%. The results is the fourth value for the
similarity score: Sest. Formally, this is

Sregrest = ρpearson(RMSE(ER), RMSE(EF)) (5.7)

Sclassest = 1−MAPE(F1(ER), F1(EF)) (5.8)

where RMSE and F1 return the scores of the given estimators on both test sets.

5.2.3 Privacy evaluations

These results are not part of the similarity score, but are relevant metrics to report on. With
regards to privacy, two metrics are used. The first is a simple analysis whether any rows
in the synthetic dataset are identical to corresponding rows in the real dataset. Generally,
this is not desired and possible regularization or checks might be required to prevent this.
The second metric is the mean and standard deviation of the distance between each fake
record and the most similar real record. This is a metric also used in related work [58, 50],
and offers some perspective into how similar individual records are between datasets. The
desired outcome is a high mean with a low standard deviation. If the standard deviation
is high (or close to the mean), it could mean that many synthetic records are quite similar
to the real records. This metric is calculated by scaling all continuous values to [0, 1] and
one-hot encoding the categorical values. We then take the Euclidean distance between each
row. The Euclidean distance has been a controversial metric for high dimensional data, and
results in almost arbitrary values in those high dimensions. In this work we have chosen to
use the Euclidean distance to be able to compare it to related work, which also uses this
metric.

40

5.2.4 Visual evaluation

Visuals are a very powerful tool for humans to verify results and recognize patterns. The
visual evaluation in this framework uses the following parts:

1. Columnwise mean and standard deviation

2. Cumulative Sums

3. Column Correlations

Columnwise mean and standard deviation

This is not an advanced metric and does not reveal any hidden relations, but functions as
a quick sanity check. The means and standard deviations of each column are plotted on
a log scale. If the plotted values follow the diagonal, the data has comparable means and
standard deviations. Furthermore, the general results do appear to have a correlation with
how well these values follow the diagonal, meaning that if many points deviate from the
diagonal, it is likely the cumulative distributions and quantitative measures will follow a
similar pattern of deviations.

Cumulative Sum

To visually inspect the similarity between the distributions per column, we plot the cumu-
lative sum of each column for both the real and the fake data on top of each other. This
gives one a quite thorough understanding of a column with just one plot, and works for
both categorical and continuous columns. Note that this plot does not give any insights
into the relations between columns, giving it limited representational power for the whole
table. It does allow one to determine which kind of values and columns are easier or more
difficult than others.

Column Correlations

The third visualization shows one an association table for the both the real and synthetic
data. It gives a clear understanding of what columns have associations with each other,
and shows where the synthetic data diverges, indicating struggles that the model had with
modeling this relationship.

5.2.5 Similarity score

From these different evaluations metrics we have now obtained five values used for the
similarity score SS: Sbasic, Scorr, Smirr, Spca and Sest. The similarity score is then calculated
by taking the mean of these five values.

SS =
1

NS

∑
s∈S

s

where S is the set of all similarity metrics {Sbasic, Scorr, Smirr, Spca, Sest} and NS the length
of S.

41

Chapter 6

Experimental Setup

To evaluate our proposal, we perform an experiment with five models (TGAN, TGAN-
skip, TGAN-WGAN-GP, MedGAN, TableGAN), and three publicly available datasets. For
evaluation, we use our proposed method outlined in section 5.2 to benchmark the models.

6.1 Data

We select three datasets for evaluation, which are the Census dataset [40, 17], the Berka
Czech Financial dataset [7] and Creditcard Fraud dataset [2]. These datasets are chosen for
their differences in data type distributions. The census dataset is mostly categorical values,
the creditcard dataset is mostly continuous values and the Berka dataset is a nice mix of
both. This allows us to detect whether the models work better or worse for certain kinds
of data.

The Berka dataset is a Czech financial dataset from a bank, including transactions, bank
accounts and more. The Census dataset is a sample from the US census, used to predict
whether someone earns over 50k per year. The creditcard dataset is a fraud prediction
dataset, where the features are the top 28 PCA features of some unknown financial input.
In table 6.1, we show some statistics of these datasets.

Dataset #Features #D #C #Rows #Labels

Berka [40, 17] 8 4 4 1056320 3

Census [7] 40 33 7 199522 2

Creditcard [2] 30 1 29 248808 2

Table 6.1: Properties of each dataset. #D indicates the number of discrete/categorical
columns, #C the number of continuous columns.

6.2 Implementation details

We used the same data transformation steps as TGAN, to get comparable results. In short,
each continuous value is represented by two values, to which Gaussian distribution it most
likely belongs and where in that Gaussian the value relatively lies. Each categorical values
is onehot-encoded. For exact details, please see 4.1.1.

42

Our LSTM cell has a hidden state of length 50, which an output feature length of 64.
The learning rate is 0.001 and our discriminator has one dense layer with 100 nodes. We
use a L2-norm of 0.00001 and our random noise vector has a length of 200.

All of these models were trained for 100 epochs on the datasets, where the number of
steps is N/batchsize where N is the number of rows in the dataset and batchsize = 200.
After training, we sample 100k rows for evaluation. Earlier work did evaluations on much
smaller datasets, with 10k rows or less. In our experiments, this did not provide stable
results for most of the tests, specifically when evaluated on machine learning models where
accuracy and F1 scores could swing multiple percent points between runs when using these
small datasets.

6.3 Experiment 1

Our experiment will be performed by generating data with five models: TGAN, TGAN-skip
(ours), TGAN-WGAN-GP (ours), MedGAN and TableGAN. CTGAN is a notable omission,
because in our testing, their model did not work, even on the toy datasets provided by the
authors. The five resulting synthetic datasets are then evaluated using our proposed method:
the similarity score. With this experiment, we show that our proposed models perform
better than alternative models and our proposed evaluation metric correlates well with
sample quality and is a good indication of synthesizer performance. Because our evaluation
method is an aggregate from several from smaller parts that occur in the literature, we can
show for each part that our models perform better.

43

Chapter 7

Results: Experiment 1

The results of the previously mentioned evaluations will be discussed, while highlighting
the weaknesses and strengths of the individual models. Not all visuals will be presented in
the results section, but remaining ones can be found in appendix A.1.

7.1 Basic statistics

Starting with the first evaluation, we take a look at the mean and standard deviations of
the real and fake dataset. We plot the log transformed values of all the numeric columns.
The assumption is made that if a synthesizer already fails to capture these basic properties,
more derived features will likely suffer the same fate. In the Berka dataset (figure 7.1)
we observe that four of the five synthesizers capture these properties with relative ease.
MedGAN, however, already has a hard time reproducing these values, which is not a great
sign. This behaviour is continued in the Census dataset.

In figure 7.2 with the Creditcard dataset, more differences can be noticed. Most models
are able to capture the standard deviations, but have quite a hard time capturing the correct
means. It seems the synthetic data differs by multiple orders of magnitude from the real
data, but keeps the standard deviations in the same order of magnitude. It is clear that
this dataset was much harder to synthesize.The number of duplicate rows in the datasets
are presented in table 7.1. The quantitative results can be found in appendix A.1

Figure 7.1: Mean and standard deviations of each column of the real and synthetic Berka
dataset. All values are log transformed.

44

Figure 7.2: Mean and standard deviations of each column of the real and synthetic credit-
card dataset. All values are log transformed. Recall the line follows the x = y diagonal.

Real TGAN WGAN SKIP MedGAN TableGAN

Berka 0 0 0 0 7563 0

Census 24263 27668 18481 8472 23115 3356

Creditcard 3881 0 0 0 212 0

Table 7.1: Number of duplicate rows per dataset per synthesizer. Using the real creditcard
dataset as an example, there are not 3881 identical rows, but rather there are 3881 rows
that occur twice or more.

7.2 Column Correlations

The difference in correlation values plot is capped at 0.3, since we consider this a large
deviation from the target. However, this max is not present when calculating distances
and correlation values. Figure 7.3 shows the column wise correlations of the Berka dataset.
It becomes clear TableGAN is lacking behind the TGAN versions, and has a hard time
capturing some correlations. The later columns of Berka contain the categorical columns,
which seems to be an obstacle for TableGAN. Also, we see the performance of MedGAN is
very poor, being essentially random. In figure 7.4, a similar pattern appears with TGAN-
WGAN-GP seemingly performing best. TGAN and TGAN-skip show similar pattern and
are not much worse. TableGAN does not seem to perform necessarily worse, but shows
a different pattern with regards to what is was and was not able to capture. MedGAN
shows no capability to capture results. This pattern repeats for the creditcard dataset. The
quantitative results are presented in table 7.2, where we can see the same pattern as just
described being reproduced. The vanilla TGAN takes the top spot in the Berka dataset,
while TGAN-WGAN-GP is best in class with the census and creditcard datasets.

7.3 Mirror Column Associations

The mirror column associations’ quantitative results are presented in table 7.3. We observe
a result close to the column associations, where TGAN performs best on the Berka dataset,
but is outshined in the other synthesization tasks. TGAN-WGAN-GP is the best in 2/3

45

TGAN WGAN SKIP MedGAN TableGAN

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Berka 0.0244 0.0184 0.0883 0.0619 0.0407 0.0288 0.2251 0.1781 0.2131 0.1284

Census 0.0674 0.0295 0.0488 0.0218 0.1057 0.0479 0.4341 0.2801 0.0865 0.0364

Creditcard 0.0786 0.0525 0.0540 0.0357 0 .0681 0 .0459 0.5617 0.4861 0 .0579 0 .0381

Table 7.2: Correlation matrix distances. Bold indicates the best in row, while italics in-
dicates an improvement over TGAN. The WGAN-GP approach outmatches TGAN in 2/3
tasks, while TGAN-skip improves in 1/3. TableGAN improves on TGAN with the credit-
card dataset, but otherwise severely lacks behind TGAN. MedGAN does not improve on
TGAN.

Figure 7.3: Associations per column from the real dataset and each of the synthesizers. The
bottom row is the absolute difference between the synthesizer and the ground truth. The
range of the difference is reduced to [0, 0.3].

Figure 7.4: Associations per column from the real dataset and each of the synthesizers on
the Census dataset. The bottom row is the absolute difference between the synthesizer and
the ground truth. The range of the difference is reduced to [0, 0.3].

46

TGAN WGAN SKIP MedGAN TableGAN

Berka 0.9956 0.9594 0.9939 0.7654 0.6283

Census 0.9574 0.9769 0.9051 0.0645 0.9129

Creditcard 0.4541 0.6629 0.4594 -0.0634 0.5608

Table 7.3: Mirror columns association results for each synthesizer and dataset. Values are
means of associations. Higher is better. Bold indicates best in row, while italics indicate
improvement over TGAN.

tasks, with TGAN-skip and TableGAN improving upon TGAN in the creditcard tasks.
MedGAN does not improve on TGAN in any task. A pattern seems to become clear where
TGAN is best in the Berka dataset but not in others. A possible explanation is that the
Berka dataset has many more data points (5x and 4x more than census and creditcard,
respectively). The hypothesis of the TGAN adaptations was that they would improve
convergence time, and it could be the case that TGAN has not yet converged fully after the
100 epochs.

7.4 PCA Variance Correlations

Table 7.4 presents the PCA correlation values for each synthesizer and dataset. Here we
see that TableGAN takes the top spot in every task. Between the TGAN versions, we
see the TGAN is best for the Berka dataset and the creditcard dataset, while WGAN is
better on the census dataset. TGAN-skip improves upon TGAN only in the census dataset.
MedGAN is the worst in every task. The sudden performance of TableGAN is caused by the
fact that PCA is meant for continuous data and does not accurately reflect the synthesizer
performance on categorical data. Additionally, the magnitude of continuous data is typically
much larger than that of categorical data, which is often one-hot encoded. In short, PCA
prioritizes performance on continuous columns, and as we will see soon, TableGAN is very
good in approximating individual column distribution.

In hindsight, PCA alone might not be the best metric to evaluate a mixed data set with.
Creating a combined metric with multiple correspondence analysis [22] could have provided
a more balanced representation of the datasets. At the moment, this metric is the only
biased metric for a specific data type and it impacts the final results somewhat because
TGAN and its variants perform worse on continuous data than TableGAN.

7.5 Estimator efficacy

Things get quite interesting in this evaluation step. Both Berka and the census dataset are
approached as a classification problem, predicting the transaction type and income bucket,
respectively. However, in the creditcard dataset the number of fraudulent transactions is
very low (0.1%). As a consequence, some synthesizers do not generate records belonging to
this very minor class at all, like TGAN, MedGAN and TableGAN. This prohibits us from
evaluating these datasets with classifiers, because they only have one class. The alternate

47

TGAN WGAN SKIP MedGAN TableGAN

Berka 0.9456 0.9399 0.9424 0.8236 0.9465

Census 0.9507 0.9739 0.9643 0.6907 0.9748

Creditcard 0.8501 0.7810 0.7266 0.1726 0.8667

Table 7.4: PCA Correlation coefficients for the sorted values of each column from the real
dataset and its mirror column in the fake dataset. Higher is better. Bold indicates best in
row, while italics indicate improvement over TGAN.

TGAN WGAN SKIP MedGAN TableGAN

Berka 0.9929 0.9807 0.8640 0.4168 0.8899

Census 0.9854 0.9871 0.9840 -292.1 (0.9114) 0.9673

Creditcard 0.7999 0.9817 0.9712 -0.8533 0.1696

Table 7.5: Scores for the estimator results. Higher is better. Bold indicates best in row,
while italics indicate improvement over TGAN. Berka and census are 1 − MAPE, while
creditcard is the correlation coefficient of RMSE scores.

approach taken is to predict the transaction amount, making it a regression problem instead
of a classification problem.

We observe that TGAN-WGAN-GP improves upon TGAN on all three datasets, with
TGAN-skip improving upon TGAN in the Berka and creditcard dataset. TableGAN does
not improve on TGAN and neither does MedGAN. Additionally, something interesting
happens with MedGAN in the census dataset. The logistic regression and MLP classifiers
both perform so poorly on the real dataset when trained on the fake dataset, that the MAPE
score skyrockets far beyond 1. Taking 1−MAPE results in a large negative number. We also
observed large swings in this MAPE score specifically, indicating that the random sampling
of test set seems to matter a lot. This is likely related to the fact that the census dataset
has a lot of duplicate rows, and how these rows are distributed in the train and test set
influences the F1-scores. Removing these two outlier values, we get the value in brackets,
which is a lot more reasonable. However, in the final evaluation we use the original value.

7.6 Privacy Evaluations

We evaluate two privacy metrics: the number of rows in the synthetic dataset that occur in
the real dataset and the mean and standard deviation to the closest record from the fake
dataset to the real dataset. From a privacy perspective, it is best to have a large mean
and a small standard deviation, but from a synthetic data perspective you want them to be
as close to 0 as possible. Furthermore, the magnitude of the mean and standard deviation
correlate with the number of columns of the tables due to the way they are calculated, so
comparisons are only fair within a dataset.

48

TGAN WGAN SKIP MedGAN TableGAN

Dist. Copies Dist. Copies Dist. Copies Dist. Copies Dist. Copies

Berka 0.27±0.20 0 0.34±0.31 0 0.29±0.22 0 1.78±0.47 0 0.49±0.44 0

Census 2.39±1.45 0 2.69±1.24 5 2.83±1.28 2 5.51±1.19 0 2.86±1.32 1351

Creditcard 2.75±2.04 0 2.63±1.86 0 2.65±1.70 0 4.21±2.33 0 2.60±1.85 0

Table 7.6: The first value indicates the distances (mean + standard deviation) for all rows
in the fake dataset and their most similar row in the real dataset. The second indicates the
number of rows that occur exactly in the real dataset, i.e. are copies.

Figure 7.5: Cumulative sums of MedGAN on the Berka dataset. The distributions clearly
indicate mode collapse is occurring.

We also see that most synthesizers do not replicate any data from the real dataset, with
TableGAN having a surprising amount of duplicating in the Census Dataset. It seemed
it suffered from partial mode collapse, because most of the 1351 copies are the same. We
see that TGAN-WGAN-GP and TGAN-skip both contain a couple of copies, with can be
attributed to getting closer to the real dataset that eventually you will generate data that
appears in the real dataset. At this moment, the number of copied data points is not a part
of the final similarity metric, but this might be a valuable addition to it. Knowing there
are over a thousand copied rows is very relevant information. Especially since TableGAN
has the overall best performance on the census dataset. A metric like 1 − λ

ncopies

N with
ncopies being the number of copied rows, N being the number of rows in the dataset and λ
being a parameter to control the impact, could help reflect the necessary change. A λ might
be required, because without it, the 1351 copied rows would still give a score of 0.98649,
resulting in a relatively low penalty.

49

(a) Cumulative sums of TableGAN on the creditcard dataset. Blue indicates
real data points, orange synthetic.

(b) Cumulative sums of TGAN-WGAN-GP on the creditcard dataset. Blue
indicates real data points, orange synthetic.

Figure 7.6: (a) shows the cumulative sums of four columns of the creditcard dataset cre-
ated by TableGAN, while (b) does the same for TGAN-WGAN-GP. It becomes clear that
TableGAN is better in capturing values further from the mean, reaching up into the tails
of the distribution. TGAN and its variants do this much less.

7.7 Visual Evaluations

The visual inspection of results provides some insight that the quantitative results alone
do not. For example, it allows us to see what is happening with MedGAN and why its
results are quite low. In figure 7.5 we observe the column distributions of MedGAN on the
Berka dataset. It becomes clear that MedGAN is only synthesizing samples that have values
within certain ranges. This indicates that mode collapse is occurring, and the generator is
successfully fooling the discriminator with a subset of the real data. Additionally, we can
see where the differences between the TGAN versions and TableGAN lie. This is presented
in figure 7.6.

The hypothesis for the cause lies in the generator creating the intermediate represen-
tation for the autoencoder. As discussed in section 3.7, an autoencoder is not suitable for
arbitrary latent space sampling, because the latent space contains gaps. In this situation,
it would find some very good latent vectors which map to almost real data reconstruc-
tions. We tried to solve this by creating a continuous latent space using a VAE instead of
a normal autoencoder. The VAE has a continuous latent space that allows for arbitrary
sampling. However, the same pattern occurred and thus the results are fully attributed to
mode collapse.

50

Figure 7.6 presents the differences between continuous column distributions from Table-
GAN and TGAN-WGAN-GP. The other TGAN variants follow the same pattern. This
shows us why TableGAN get much higher scores for Spca. This can be explained by the fact
that the TGAN variants normalize with two times the standard deviation, which captures
97.7%, whereas TableGAN uses four times the standard deviation which captures 99.99%.
Both are then clipped to [−0.99, 0.99]. This ±2.3% difference likely explains why TGAN
does not get into the tails as much.

Since these cumulative sum plots are mainly useful to indicate some identified charac-
teristic, are not part of the quantitative analysis and come in great numbers (±450), we
refrained from including all of them here or in the appendix. If interested to see these,
please contact us.

7.8 Similarity Scores

Finally, we calculate the similarity scores, presented in table 7.7. The pattern of ear-
lier results are repeated, with TGAN performing best in the Berka dataset while TGAN-
WGAN-GP is best in creditcard and census. Furthermore, TGAN-skip and TableGAN also
outperform TGAN in the census and creditcard dataset. MedGAN performs by far the
worst, suffering from mode collapse. Note that the samples it does generate are realistic
by themselves, just that the whole synthetic dataset characteristics are not an accurate
approximation of the real data.

Going back to the original hypotheses of using the WGAN-GP architecture and skip-
connection, it is fair to say that both improve performance over TGAN. In the cases they
did not, their results are quite close to those of TGAN, like in the Berka dataset. When
they improve on TGAN, it is often with fairly big margins.

To give some feel for the fake data, figure 7.8 contains a sample of real and fake data.

51

TGAN WGAN-GP TGAN-SKIP MedGAN TableGAN

Berka

basic statistics 0.9910 0.9955 0.9850 0.9113 0.9895

Correlation column correlations 0.9821 0.9470 0.9832 0.7694 0.6468

Mirror Column Correlation 0.9276 0.9150 0.9572 0.5602 0.8864

1 - MAPE Estimator 0.9929 0.9807 0.8640 0.4168 0.8899

1 - MAPE PCA 0.9456 0.9399 0.9424 0.8236 0.9465

Similarity Score 0.9678 0.9556 0.9464 0.6963 0.8718

Census

basic statistics 0.9212 0.9909 0.9894 0.4325 0.9947

Correlation column correlations 0.9581 0.9773 0.9053 0.0644 0.9128

Mirror Column Correlation 0.7008 0.8722 0.7941 0.2092 0.8651

1 - MAPE Estimator 0.9854 0.9871 0.9840 -292.1544 0.9673

1 - MAPE PCA 0.9507 0.9739 0.9643 0.6907 0.9748

Similarity Score 0.9032 0.9603 0.9274 -58.1515 0.9429

Creditcard

basic statistics 0.8028 0.8661 0.8799 -0.0329 0.8734

Correlation column correlations 0.0968 0.2932 0.2114 -0.0471 0.2157

Mirror Column Correlation 0.9215 0.9605 0.9342 0.7888 0.9425

Correlation RMSE 0.7999 0.9817 0.9712 -0.8533 0.1696

1 - MAPE PCA 0.8501 0.7810 0.7266 0.1726 0.8667

Similarity Score 0.6942 0.7765 0.7447 0.0056 0.6136

Table 7.7: All final metrics and the corresponding similarity score, which is the mean of the
five other scores.

52

trans id account id trans amount balance after trans trans type trans operation trans k symbol trans date

674640 2305 6000 243959 WITHDRAWAL WITHDRAWAL IN CASH UNKNOWN 742

2789525 9236 146 289345 WITHDRAWAL WITHDRAWAL IN CASH PAYMENT FOR STATEMENT 576

3674501 6138 748 192086 CREDIT UNKNOWN INTEREST CREDITED 2037

435602 1480 34252 311763 WITHDRAWAL REMITTANCE TO OTHER BANK LOAN PAYMENT 1957

747762 2550 146 523926 WITHDRAWAL WITHDRAWAL IN CASH PAYMENT FOR STATEMENT 1611

337627 1146 13840 734047 WITHDRAWAL REMITTANCE TO OTHER BANK UNKNOWN 1014

873155 2974 55820 378277 CREDIT COLLECTION FROM OTHER BANK OLD AGE PENSION 892

1372411 4681 50160 394154 WITHDRAWAL REMITTANCE TO OTHER BANK HOUSEHOLD 1528

1032713 3530 66000 111710 WITHDRAWAL WITHDRAWAL IN CASH UNKNOWN 2057

882616 3007 55960 452086 WITHDRAWAL REMITTANCE TO OTHER BANK INSURANCE PAYMENT 1164

680517 2322 146 315633 WITHDRAWAL WITHDRAWAL IN CASH PAYMENT FOR STATEMENT 1884

(a) Sample of the real data from the Berka data set

trans id account id trans amount balance after trans trans type trans operation trans k symbol trans date

2774156 8978 62170 228850 WITHDRAWAL REMITTANCE TO OTHER BANK LOAN PAYMENT 2009

269721 645 22320 262990 WITHDRAWAL WITHDRAWAL IN CASH UNKNOWN 1810

3574794 224 340 200910 CREDIT UNKNOWN INTEREST CREDITED 1270

1280872 4223 25940 186010 WITHDRAWAL WITHDRAWAL IN CASH UNKNOWN 1640

3227842 10455 26000 617300 WITHDRAWAL WITHDRAWAL IN CASH UNKNOWN 2059

2310514 7195 143350 716130 CREDIT CREDIT IN CASH UNKNOWN 1520

3612642 2291 960 350940 CREDIT UNKNOWN INTEREST CREDITED 2057

1027721 3394 212400 1149170 CREDIT CREDIT IN CASH UNKNOWN 1942

407896 1157 1860 161090 WITHDRAWAL REMITTANCE TO OTHER BANK UNKNOWN 883

3659869 3557 1000 469260 CREDIT UNKNOWN INTEREST CREDITED 1162

1583806 5325 41220 227030 WITHDRAWAL REMITTANCE TO OTHER BANK HOUSEHOLD 1627

(b) Sample of the fake data from the Berka data set, synthesized by TGAN.

Table 7.8: Sample (a) is a real sample while sample (b) is a synthetic sample. It gives you
some feel as to how similar they can be. Both samples where randomly sampled from the
total dataset.

53

Chapter 8

Conclusions

In this thesis, we have shown that considerable improvements can be made in the generation
of synthetic data when using skip-connections and the WGAN-GP architecture. Both adap-
tations to the TGAN model displayed an improvement in sample quality over TGAN, while
also improving on other models like MedGAN and TableGAN. Additionally, we have deter-
mined that the usage of synthetic tabular data, created by GANs are a serious contender
for usage in industry applications like finance, healthcare and government applications.

Furthermore, We have proposed an evaluation method that provides a single value in-
dicator for the similarity of a synthetic dataset when compared to a real dataset. This
Similarity Score correlates with sample quality and allows for easy evaluation of synthetic
data generation models. When used, this metric results in more consistent and insightful
evaluation of synthetic data than previous methods.

Future improvements can be achieved in a couple of different areas. First, we did not
explore combining the TGAN-WGAN-GP architecture and skip-connections at the same
time, which would be a good next step. Also, optimizing the hyper parameters of the
normalization might yield improvements, as we concluded that some implementations limit
the distribution of generated data. The way the PCA metric was evaluated was unfair
compared to models that had stronger performance in categorical data, rather than in con-
tinuous data. Using a more balanced metric could improve the stability of results. Finally,
we should consider experiments with larger datasets and longer training periods, since the
performance of TGAN on the Berka dataset indicated that convergence might take longer
than the 100 epochs used by us. As a last direction of research, methods that expand the
number of data types can be explored. Dates and ordinal data are both suitable directions
of research.

54

Bibliography

[1] ARX - data anonymization tool. http://arx.deidentifier.org.

[2] Credit card fraud dataset, 2013. URL www.kaggle.com/mlg-ulb/creditcardfraud.

[3] Auto-encoder: What is it? and what is it used for?
(part 1), 2019. URL https://towardsdatascience.com/

auto-encoder-what-is-it-and-what-is-it-used-for-part-1-3e5c6f017726.

[4] How to code gaussian mixture models from scratch in
python, 2019. URL https://towardsdatascience.com/

how-to-code-gaussian-mixture-models-from-scratch-in-python-9e7975df5252.

[5] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN. 2017. URL https:

//arxiv.org/pdf/1701.07875.pdf.

[6] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of
deep networks. In Advances in neural information processing systems, pages 153–160,
2007.

[7] P. Berka and M. Sochorova. 1999 czech financial dataset - real
anonymized transactions, 2019. URL https://data.world/lpetrocelli/

czech-financial-dataset-real-anonymized-transactions.

[8] D. Berthelot, T. Schumm, and L. Metz. Began: Boundary equilibrium generative
adversarial networks. arXiv preprint arXiv:1703.10717, 2017.

[9] S. Bhattarai. What is gradient descent in machine learning, 2018. URL https://

saugatbhattarai.com.np/what-is-gradient-descent-in-machine-learning/.

[10] O. Carey. Generative adversarial networks (gans) — a be-
ginner’s guide, 2018. URL https://towardsdatascience.com/

generative-adversarial-networks-gans-a-beginners-guide-5b38eceece24.

[11] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial
nets. In Advances in neural information processing systems, pages 2172–2180, 2016.

[12] E. Choi, S. Biswal, B. Malin, J. Duke, W. F. Stewart, S. Org, and J. Sun. Generating
Multi-label Discrete Patient Records using Generative Adversarial Networks. URL
https://arxiv.org/pdf/1703.06490.pdf.

[13] C. Chow and C. Liu. Approximating discrete probability distributions with dependence
trees. IEEE transactions on Information Theory, 14(3):462–467, 1968.

55

www.kaggle.com/mlg-ulb/creditcardfraud
https://towardsdatascience.com/auto-encoder-what-is-it-and-what-is-it-used-for-part-1-3e5c6f017726
https://towardsdatascience.com/auto-encoder-what-is-it-and-what-is-it-used-for-part-1-3e5c6f017726
https://towardsdatascience.com/how-to-code-gaussian-mixture-models-from-scratch-in-python-9e7975df5252
https://towardsdatascience.com/how-to-code-gaussian-mixture-models-from-scratch-in-python-9e7975df5252
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1701.07875.pdf
https://data.world/lpetrocelli/czech-financial-dataset-real-anonymized-transactions
https://data.world/lpetrocelli/czech-financial-dataset-real-anonymized-transactions
https://saugatbhattarai.com.np/what-is-gradient-descent-in-machine-learning/
https://saugatbhattarai.com.np/what-is-gradient-descent-in-machine-learning/
https://towardsdatascience.com/generative-adversarial-networks-gans-a-beginners-guide-5b38eceece24
https://towardsdatascience.com/generative-adversarial-networks-gans-a-beginners-guide-5b38eceece24
https://arxiv.org/pdf/1703.06490.pdf

[14] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009.

[15] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. 2018. URL https://arxiv.

org/abs/1810.04805.

[16] Y. Dodge. The concise encyclopedia of statistics. Springer Science & Business Media,
2008.

[17] D. Dua and C. Graff. UCI machine learning repository, 2017. URL http://archive.

ics.uci.edu/ml.

[18] R. A. Fisher. Statistical methods for research workers. 1926.

[19] C. Glosser. Artificial neural network with layer coloring, 2013. URL
https://en.wikipedia.org/wiki/Artificial_neural_network#/media/File:

Colored_neural_network.svg. [Online; accessed October 1, 2019].

[20] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative Adversarial Nets. URL http://www.github.

com/goodfeli/adversarial.

[21] A. Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

[22] M. Greenacre and J. Blasius. Multiple correspondence analysis and related methods.
Chapman and Hall/CRC, 2006.

[23] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville. Improved Train-
ing of Wasserstein GANs. 2017. URL http://arxiv.org/abs/1704.00028.

[24] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition.
URL http://image-net.org/challenges/LSVRC/2015/.

[25] D. O. Hebb. The organization of behavior: a neuropsychological theory. Science Edi-
tions, 1962.

[26] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. GANs Trained
by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. Technical
report. URL https://arxiv.org/pdf/1706.08500.pdf.

[27] G. Hinton and V. Nair. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th international conference on machine learning (ICML-10),
pages 807–814, 2010.

[28] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely Connected
Convolutional Networks. URL https://arxiv.org/abs/1608.06993.

[29] J. Hui. Gan — wasserstein gan & wgan-gp, 2019. URL https://medium.com/

@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490.

[30] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

56

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://en.wikipedia.org/wiki/Artificial_neural_network#/media/File:Colored_neural_network.svg
https://en.wikipedia.org/wiki/Artificial_neural_network#/media/File:Colored_neural_network.svg
http://www.github.com/goodfeli/adversarial
http://www.github.com/goodfeli/adversarial
http://arxiv.org/abs/1704.00028
http://image-net.org/challenges/LSVRC/2015/
https://arxiv.org/pdf/1706.08500.pdf
https://arxiv.org/abs/1608.06993
https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490
https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490

[31] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with condi-
tional adversarial networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1125–1134, 2017.

[32] E. Jang, S. Gu, and B. Poole. Categorical Reparameterization with Gumbel-Softmax.
2016. URL https://arxiv.org/pdf/1611.01144.pdf.

[33] E. Jang, S. Gu, and B. Poole. Categorical Reparameterization with Gumbel-Softmax.
arXiv e-prints, art. arXiv:1611.01144, Nov 2016.

[34] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[35] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[36] S. K. Kinney, J. P. Reiter, A. P. Reznek, J. Miranda, R. S. Jarmin, and J. M. Abowd.
Towards unrestricted public use business microdata: The synthetic longitudinal busi-
ness database. International Statistical Review / Revue Internationale de Statistique, 79
(3):362–384, 2011. ISSN 03067734, 17515823. URL http://www.jstor.org/stable/

41305056.

[37] N. Kodali, J. Abernethy, J. Hays, and Z. Kira. On convergence and stability of gans.
arXiv preprint arXiv:1705.07215, 2017.

[38] F. Kratzert. Understanding the backward pass through batch normal-
ization layer, 2016. URL https://kratzert.github.io/2016/02/12/

understanding-the-gradient-flow-through-the-batch-normalization-layer.

html.

[39] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105, 2012.

[40] T. Lane and R. Kohavi. Census-income (kdd) data set, 2000. URL https://archive.

ics.uci.edu/ml/datasets/Census-Income+%28KDD%29.

[41] Y. LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exd-
b/mnist/, 1998.

[42] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural
computation, 1(4):541–551, 1989.

[43] Z. Lin, A. Khetan, G. Fanti, and S. Oh. PacGAN: The power of two samples in
generative adversarial networks. URL https://arxiv.org/pdf/1712.04086.pdf.

[44] M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet. Are gans created equal.
A Large-Scale Study. ArXiv e-prints, 2(4), 2017.

[45] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley. Least squares
generative adversarial networks. In Proceedings of the IEEE International Conference
on Computer Vision, pages 2794–2802, 2017.

57

https://arxiv.org/pdf/1611.01144.pdf
http://www.jstor.org/stable/41305056
http://www.jstor.org/stable/41305056
https://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html
https://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html
https://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html
https://archive.ics.uci.edu/ml/datasets/Census-Income+%28KDD%29
https://archive.ics.uci.edu/ml/datasets/Census-Income+%28KDD%29
https://arxiv.org/pdf/1712.04086.pdf

[46] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[47] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein. Unrolled generative adversarial
networks, 2016.

[48] M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

[49] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning. MIT
press, 2018.

[50] N. Park, M. Mohammadi, K. Gorde, S. Jajodia, H. Park, and Y. Kim. Data Synthesis
based on Generative Adversarial Networks. Data Synthesis based on Generative Ad-
versarial Networks. PVLDB, 11(10):1071–1083, 2018. doi: 10.14778/3231751.3231757.
URL http://arxiv.org/abs/1806.03384.

[51] N. Patki, R. Wedge, and K. Veeramachaneni. The synthetic data vault. In 2016 IEEE
International Conference on Data Science and Advanced Analytics (DSAA), pages 399–
410. IEEE, 2016.

[52] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models
are unsupervised multitask learners. OpenAI Blog, 1(8), 2019.

[53] I. Shafkat. Intuitively understanding variational autoencoders - to-
wards data science, Apr 2018. URL https://towardsdatascience.com/

intuitively-understanding-variational-autoencoders-1bfe67eb5daf.

[54] C. E. Shannon. A mathematical theory of communication. Bell system technical
journal, 27(3):379–423, 1948.

[55] P. Smolensky. Information processing in dynamical systems: Foundations of harmony
theory. Technical report, Colorado Univ at Boulder Dept of Computer Science, 1986.

[56] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press,
2018.

[57] M. Templ, A. Kowarik, and B. Meindl. Statistical disclosure control for micro-data
using the R package sdcMicro. Journal of Statistical Software, 67(4):1–36, 2015. doi:
10.18637/jss.v067.i04.

[58] L. Xu and K. Veeramachaneni. Synthesizing Tabular Data using Generative Adversarial
Networks. 2018. URL http://arxiv.org/abs/1811.11264.

[59] L. Xu, M. Skoularidou, and A. Cuesta-infante. Modeling Tabular data using Condi-
tional GAN. pages 1–24. URL https://github.com/DAI-Lab/SDGym.

[60] J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and X. Xiao. Privbayes:
Private data release via bayesian networks. ACM Transactions on Database Systems
(TODS), 42(4):25, 2017.

[61] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE international
conference on computer vision, pages 2223–2232, 2017.

58

http://arxiv.org/abs/1806.03384
https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
http://arxiv.org/abs/1811.11264
https://github.com/DAI-Lab/SDGym.

Appendix A

Appendix

A.1 Results

A.1.1 Basic Evaluation

In table A.1 the correlations between the basic statistical values are presented. TGAN-
WGAN-GP is again the strongest in, outperforming TGAN in all tasks. However, it is only
the best in Berka, with TableGAN being best in the creditcard dataset and Skip being best
in the census dataset. MedGAN does not perform well. I did not include all the data the
basic evaluation results were based on due to space constraint. The number of values would
be
∑

ds∈DS
∑

m∈M 2 · dscolumns where DS is the set of all the datasets, M is the set of all
synthesization models used and dscolumns is the number of columns in ds. This amounts to
2340 values. If you would like to see these values, please contact me.

TGAN WGAN-GP TGAN-skip MedGAN TableGAN

Berka 0.9909 0.9954 0.9849 0.9112 0.9894

Census 0.9212 0.9909 0.9893 0.4324 0.9947

Creditcard 0.8028 0.8661 0.8799 -0.0329 0.8734

Table A.1: Basic statistics correlation coefficients for the real and synthetic dataset. Higher
is better. Bold indicates best in row, while italics indicate improvement over TGAN.

A.1.2 Column correlations

In figure A.2, the column correlation for all the creditcard datasets are plotted.

A.1.3 Machine learning efficacy

The machine learning efficacy results omitted in the results section are presented in figure
A.4. These are included to give some insights into the specifics of the machine learning
efficacy of all the methods, which are one of the most interesting results.

59

Figure A.1: Mean and standard deviations of each column of the real and synthetic census
dataset. All values are log transformed.

Figure A.2: Associations per column from the real dataset and each of the synthesizers on
the Creditcard dataset. The bottom row is the absolute difference between the synthesizer
and the ground truth. The range of the difference is reduced to [0, 0.3].

60

Logistic Regression Random Forest Decision Tree MLP

Trained on Real Fake Real Fake Real Fake Real Fake

Evaluated on

TGAN

Real 0.7988 0.7938 0.9852 0.9808 0.9761 0.9685 0.7904 0.7697

Fake 0.7956 0.7916 0.9833 0.9810 0.9576 0.9667 0.6010 0.5994

TGAN-WGAN-GP

Real 0.7932 0.7247 0.9832 0.9248 0.9745 0.9145 0.6011 0.6003

Fake 0.7778 0.7292 0.9719 0.9398 0.9126 0.9085 0.6005 0.6003

TGAN-skip

Real 0.7937 0.7186 0.9841 0.9696 0.9740 0.9593 0.5976 0.5668

Fake 0.7861 0.7469 0.9829 0.9702 0.9326 0.9460 0.5905 0.5666

MedGAN

Real 0.8062 0.1688 0.9849 0.9637 0.9770 0.9637 0.8318 0.1688

Fake 0.7614 0.8655 0.7789 0.9981 0.9614 0.9970 0.5735 0.8312

TableGAN

Real 0.7984 0.7170 0.9835 0.8192 0.9744 0.8086 0.7901 0.7134

Fake 0.7805 0.7024 0.9043 0.9103 0.8700 0.8802 0.7193 0.6754

Table A.2: F1 scores for each classifier on the Berka dataset.

61

Logistic Regression Random Forest Decision Tree MLP

Trained on Real Fake Real Fake Real Fake Real Fake

Evaluated on

TGAN

Real 0.9511 0.9556 0.9503 0.9567 0.9339 0.9314 0.9443 0.9367

Fake 0.9425 0.9595 0.9406 0.9580 0.9032 0.9321 0.9385 0.9567

TGAN-WGAN-GP

Real 0.9473 0.9301 0.9489 0.9292 0.9297 0.9056 0.9489 0.9289

Fake 0.9412 0.9302 0.9388 0.9305 0.8999 0.9028 0.9341 0.9298

TGAN-skip

Real 0.9513 0.9265 0.9508 0.9283 0.9341 0.8902 0.9533 0.9155

Fake 0.9401 0.9294 0.9388 0.9294 0.8870 0.8809 0.9384 0.9290

MedGAN

Real 0.9468 0.0013 0.9468 0.9711 0.9308 0.8093 0.9372 0.0013

Fake 0.9281 0.9998 0.9349 0.9994 0.6077 0.9992 0.9341 0.9987

TableGAN

Real 0.9502 0.9305 0.9478 0.9299 0.9325 0.9214 0.9424 0.9341

Fake 0.9295 0.9644 0.9372 0.9654 0.9260 0.9624 0.9293 0.9688

Table A.3: F1 scores for each classifier on the census dataset.

62

Random Forest Lasso Ridge ElasticNet

Trained on Real Fake Real Fake Real Fake Real Fake

Evaluated on

TGAN

Real 82 320 74 327 75 327 95 336

Fake 232 247 207 298 212 298 148 315

TGAN-WGAN-GP

Real 83 223 68 246 67 248 94 227

Fake 150 207 124 219 123 219 147 221

TGAN-skip

Real 99 232 74 254 74 255 100 236

Fake 189 215 138 229 136 229 163 232

MedGAN

Real 83 7,896 74 5,300 74 5,033 93 7,175

Fake 13,148 47 10,669 32 8,263 12 9,976 69

TableGAN

Real 83 120 63 123 63 124 87 121

Fake 106 247 78 110 91 111 100 121

Table A.4: RMSE scores for each regressor on creditcard dataset. Each synthesizer seems
to capture relations well enough for the RMSE to be fairly close, except for MedGAN. In
the case of MedGAN, we see a strong divergence between the real and fake dataset MRSE.

63

64

A.2 Python Package Example: TableEvaluator

In [1]: from table_evaluator import *

In [2]: real, fake = load_data('data/real_test_sample.csv', 'data/fake_test_sample.csv')

In [3]: real.head()

Out[3]: trans_id account_id trans_amount balance_after_trans trans_type \
0 951892 3245 3878.0 13680.0 WITHDRAWAL
1 3547680 515 65.9 14898.6 CREDIT
2 1187131 4066 32245.0 57995.5 CREDIT
3 531421 1811 3990.8 23324.9 WITHDRAWAL
4 37081 119 12100.0 36580.0 WITHDRAWAL

trans_operation trans_k_symbol trans_date
0 REMITTANCE_TO_OTHER_BANK HOUSEHOLD 2165
1 UNKNOWN INTEREST_CREDITED 2006
2 COLLECTION_FROM_OTHER_BANK UNKNOWN 2139
3 REMITTANCE_TO_OTHER_BANK LOAN_PAYMENT 892
4 WITHDRAWAL_IN_CASH UNKNOWN 654

In [4]: fake.head()

Out[4]: trans_id account_id trans_amount balance_after_trans trans_type \
0 911598 3001 13619.0 92079.0 CREDIT
1 377371 1042 4174.0 32470.0 WITHDRAWAL
2 970113 3225 274.0 57608.0 WITHDRAWAL
3 450090 1489 301.0 36258.0 CREDIT
4 1120409 3634 6303.0 50975.0 WITHDRAWAL

trans_operation trans_k_symbol trans_date
0 COLLECTION_FROM_OTHER_BANK UNKNOWN 1885
1 REMITTANCE_TO_OTHER_BANK HOUSEHOLD 1483
2 WITHDRAWAL_IN_CASH UNKNOWN 1855
3 CREDIT_IN_CASH UNKNOWN 885
4 REMITTANCE_TO_OTHER_BANK HOUSEHOLD 1211

In [5]: cat_cols = ['trans_type', 'trans_operation', 'trans_k_symbol']

In [6]: table_evaluator = TableEvaluator(real, fake, cat_cols=cat_cols)

In [7]: table_evaluator.visual_evaluation()

65

66

In [8]: table_evaluator.evaluate(target_col='trans_type')

Correlation metric: pearsonr

Classifier F1-scores:
real fake

real_data_LogisticRegression_F1 0.8550 0.8450
real_data_RandomForestClassifier_F1 0.9950 0.9950
real_data_DecisionTreeClassifier_F1 0.9700 0.9450
real_data_MLPClassifier_F1 0.3950 0.6250
fake_data_LogisticRegression_F1 0.7750 0.7800
fake_data_RandomForestClassifier_F1 0.9600 0.9550
fake_data_DecisionTreeClassifier_F1 0.9450 0.9500

67

fake_data_MLPClassifier_F1 0.4500 0.5550

Miscellaneous results:
Result

Column Correlation Distance RMSE 0.0399
Column Correlation distance MAE 0.0296
Duplicate rows between sets (real/fake) (0, 0)
nearest neighbor mean 0.5655
nearest neighbor std 0.3726

Results:
Result

basic statistics 0.9940
Correlation column correlations 0.9904
Mean Correlation between fake and real columns 0.9566
1 - MAPE Estimator results 0.8912
1 - MAPE 5 PCA components 0.9138
Similarity Score 0.9492

68

	Acknowledgements
	Introduction
	Problem and motivation
	Approach
	Contributions
	Improve TGAN using skip-connections
	Improve TGAN using the WGAN-GP architecture
	New metric for evaluating synthetic data: Similarity Score

	Preliminaries
	Synthetic Data
	Machine Learning
	Supervised Learning
	Unsupervised learning
	Reinforcement Learning

	Neural networks
	Backpropagation and Gradient Descent

	Deep Learning
	Deep Generative Models
	Autoencoder
	Variational Autoencoders
	Generative Adversarial Networks
	Mode Collapse

	Wasserstein GAN
	1-Wasserstein Metric
	Limitations
	Usage in WGAN

	WGAN-GP
	GANs for Tabular Data
	Preprocessing
	Data transformations
	Reverse transformation
	GANs for categorical data

	Related Work
	Generation Methods
	TGAN
	MedGAN
	TableGAN
	CTGAN

	Baselines
	Statistical Generation Techniques
	Neural Generation Techniques
	Data perturbation and anonimization tools

	Evaluation metrics and methods
	Statistical properties
	Machine learning efficacy
	Privacy
	Human Experts

	Proposed Methods
	GAN Synthesizer
	TGAN-skip
	TGAN-WGAN-GP

	Similarity Score
	Similarity Score - Statistical Measures
	Similarity Score - Machine learning efficacy
	Privacy evaluations
	Visual evaluation
	Similarity score

	Experimental Setup
	Data
	Implementation details
	Experiment 1

	Results: Experiment 1
	Basic statistics
	Column Correlations
	Mirror Column Associations
	PCA Variance Correlations
	Estimator efficacy
	Privacy Evaluations
	Visual Evaluations
	Similarity Scores

	Conclusions
	Appendix
	Results
	Basic Evaluation
	Column correlations
	Machine learning efficacy

	Python Package Example: TableEvaluator

