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ABSTRACT

This thesis is the first to provide an automated analysis of the Signal Protocol. It is a protocol
that is used by, among others, Signal andWhatsApp. Despite the extensive usage of this protocol,
the amount of research done in this field is limited. We hope that this research will function as
a stepping stone for further analyses on the implementation of the Signal Protocol.

The implementation of the Signal Protocol is not well documented and under-analysed. Al-
though the authors of the Signal Protocol have recently written several documents to explain
the protocol, it cannot be used as a specification as the documents are too high-level.

To address this problem, we will first analyse the implementation manually. We will also use
other academic papers that have analysed the theoretical protocol to get a better understanding
of the specification. Our contribution to academia is an implementation analysis and several
models (state machines) of the protocol. We will use an existing tool to generate models from
the implementation automatically. These models will give better a insight into the session man-
agement algorithm of the Signal Protocol. The advantage of using automated testing techniques
is that new versions of the implementation can be tested while requiring little to no changes in
the testing tool.
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CHAPTER

ONE

INTRODUCTION

The Signal Protocol is a cryptographic protocol that secures the conversations of over 1.5 billion
people [6]. This and similar protocols, such as OTR and OMEMO, are fundamental to support
the right to privacy and freedom of speech as described in Article 12 and 19 of the Universal
Declaration of Human Rights, “no one shall be subjected to arbitrary interference with his privacy”
and “everyone has the right to freedom of opinion and expression” respectively [34]. These rights
are often not seen as absolute rights and may be restricted for national security. An example
of recent tension is the new legislation in India, which requires companies to screen messages of
users to check on unlawful behaviour. This legislation makes applications that implement the
Signal Protocol unlawful. When the legislation is implemented, it would mean that more than
200 million users1 could not secure their conversations any longer [36].

Whereas other research has been conducted on the theoretical specification, this research is
the first that will use automated testing techniques on the implementation. Research on the
implementation is essential, as an implementation could have bugs or wrong interpretations of
the specification. Therefore, even when the specification has been formally proven to be correct,
it does not necessarily mean that the implementation is secure as well. Hence, this project will
test how the protocol is implemented.

1.1 History of Signal

The Signal Protocol is a protocol developed by Open Whisper Systems in 2013 [9]. At that
time the protocol was still known as the TextSecure Protocol. The protocol provides end-to-end
encryption and is used by Signal2 and WhatsApp3 [37]. Facebook Messenger4 uses the Signal
Protocol only for secret conversations [10].

Signal was first known as a proprietary application called TextSecure, which was used for
sending encrypted text messages in 2010 and was developed by Moxie Marlinspike and Stuart
Anderson of Whisper Systems [14, 16]. The start-up company also produced an app for encrypted
voice calls called RedPhone [8]. Whisper Systems was acquired by Twitter in 2011 and made
TextSecure open-source a month after the acquisition [14]. RedPhone was shut down by Twitter
in the same period [13] but was rereleased in July 2012 as open-source project [39].

1The amount of WhatsApp users in India [36]
2An open-source messaging application developed by Open Whisper Systems https://signal.org/
3A proprietary messaging application owned by Facebook https://www.whatsapp.com/
4A proprietary messaging application owned by Facebook https://www.messenger.com/
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2 CHAPTER 1. INTRODUCTION

In 2013 Moxie Marlinspike created Open Whisper Systems to develop TextSecure further [20].
The first version of the Signal application was released in 2014 for iOS, called Signal, and in 2015
they renamed the Android version from TextSecure to Signal [23, 24]. In 2016 the protocol
(TextSecure Protocol) was renamed to the Signal Protocol for consistency.

Figure 1.1 shows the development of Signal. The figure shows how it started as two different
projects, RedPhone and TextSecure. TextSecure has been redeveloped as instant messaging ap-
plication and later renamed to Signal. The figure also shows that the old TextSecure application
has been further developed as SMSSecure. Moreover, the figure shows that RedPhone has been
merged into Signal as (video) calling feature.

Feb 
2014

Jul 
2014

Mar 
2015

Nov 
2015

RedPhone

TextSecure

SMSSecure

Signal (Android)

Signal (iOS)

May
2010

Figure 1.1: Timeline of the Signal development5

1.2 Properties in Security Messaging Protocols

Traditionally there are three essential concepts in information security, namely confidentiality,
integrity and authenticity (CIA). CIA is often complemented with non-repudiation. For example,
pretty good privacy (PGP) offers confidentiality by encryption, integrity and non-repudiation by
signatures and authenticity when one knows the public key belongs to that particular person.
However, these properties are not enough. One would also want that when one key is comprised,
only one message is compromised and not preceding and succeeding messages — called forward
secrecy and future secrecy respectively. Furthermore, repudiation (also known as cryptographic
deniability) is also a crucial property for private messaging as one may not want to be held
responsible for private conversations. These properties are further explained in chapter 2.

1.3 Research Questions

This thesis will address the following questions:

1. What are the properties of the Signal Protocol and are these still valid in the implement-
ation?

2. How can the high-level protocol be modelled such that it gives a better understanding of
the implementation?

5https://en.wikipedia.org/wiki/Signal_(software)#/media/File:Signal_timeline.svg

https://en.wikipedia.org/wiki/Signal_(software)#/media/File:Signal_timeline.svg


1.4. RESEARCH SCOPE 3

1.4 Research Scope

Part of this project’s scope is to research the security guarantees of the protocol. This includes
checking if the guarantees hold under all conditions. Additionally, part of the scope is to find out
if the protocol is implemented as it should — which is hard as the protocol is not fully specified.
Therefore, we will use existing documentation and check if it is consistent and argue about the
security of undocumented behaviour. The research will cover the Java implementation of the
Signal Protocol and the Signal server.

Not part of the scope is explicitly searching for vulnerabilities. An error in the code could,
for example, make a message readable for a third-party or cause a cross-site scripting (XSS).
However, the goal of this project is to get a better understanding of the protocol implementation.
An inconsistency with the documentation may lead to a vulnerability, but it is not the focus of
this thesis.

To be more precise, this thesis will focus on the source code of Signal Android and Signal
server, but also on the state machine of the protocol. In this way, we get a high-level overview of
the protocol. The figure below shows how the state machine could look like. As the figure shows
the state machine of the protocol, parts of it might still be unclear but will become more evident
in the next chapters. Note that this is a concept state machine. The actual state machine of the
protocol will be built with the testing tools and discussed in chapter 5.

q0 q1 q2 q3 q4

q11 q12 q13 q14

q20 q21

Register keys Get prekey bundle

Receive message

Key Exchange (3 keys)

Key Exchange (4 keys)

Send 1st message

Get public keys

Key Exchange (3 keys)

Key Exchange (4 keys)
Send 2nd message

Receive message

δ

Sym ratchet

DH ratchet

Figure 1.2: Global state machine of the Signal Protocol

1.5 Thesis Outline

The Signal Protocol and fuzzing is introduced in chapter 2. An overview of the related work
is given in chapter 3. The implementation analysis is described in chapter 4. We present the
fuzzing set-up and results in chapter 5. Lastly, we discuss the findings in chapter 6, describe the
future work in chapter 7 and conclude the work in chapter 8.



CHAPTER

TWO

PRELIMINARIES

This chapter introduces the Signal Protocol and the testing technique fuzzing. The knowledge
will be used in the later chapters where the actual work is presented.

2.1 Signal Protocol

The Signal Protocol is a protocol that has been built to have private and group conversations
over the internet. The design considerations of the protocol have been leaning towards the ease
of use. To quote the developer, Moxie Marlinspike, “If it’s ‘like PGP,’ it’s wrong” and “The user
doesn’t know what a key is” [22]. Therefore, the application takes care of all the key management,
including key generation, key registration and key exchange.

Before diving into the details of the Signal Protocol, we first give a list of definitions. These
definitions may not all be clear at this point but will help to understand the terminology used in
the later sections. Table 2.1 describes the (public) asymmetric keys, and table 2.2 describes the
cryptographic functions that are used in the protocol. The private exponents are represented as
the inverse of the public key, e.g. ik−1.

Key Explanation
ikA Alice’s identity key
ekA Alice’s ephemeral key
ikB Bob’s identity key
spkB Bob’s signed pre-key
opkB Bob’s one-time pre-key

Table 2.1: Asymmetric keys

Function Explanation
DH(x, y) Diffie-Hellman key exchange where x is a private key and y a public key
KDF(x) One-way function to derive a new key from x
Enc(x, y) Encrypt message x with key y
Sig(x, y) Sign message x with key y

Table 2.2: Cryptographic functions

4
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2.1.1 Signal Protocol Phases

To make it easier for the reader, we describe the protocol as a multi-phase protocol. The phases
are the registration phase, the key agreement phase and the conversation phase. We will first
explain these phases globally, and in the later sections, the phases will be discussed in detail.

Key Registration Phase

The registration phase includes sending several public keys to the server. This makes it possible
for users to start a conversation while the other party is offline. When Alice wants to start a
conversation with Bob, she can request his public keys from the server.

Key Agreement Phase

The key agreement phase starts when Alice receives Bob’s public keys from the server. Alice
can use his public keys together with her private keys to generate a shared secret key. She will
then send Bob a message encrypted with the shared secret key. Bob will, on receiving Alice’s
message, fetch her public keys from the server. Finally, he will calculate the same shared secret
key based on his private keys and Alice’s public keys. This key agreement is possible by using
an extended version of the Diffie-Hellman key exchange, as will be explained in section 2.1.2.

Conversation Phase

When both parties have the shared secret key, the conversation phase starts. This phase can be
split into two sub-phases, the symmetric ratchet phase, and the Diffie-Hellman ratchet phase.

The symmetric ratchet phase is used to derive a new message key from the shared secret
key. When Alice sends multiple messages to Bob without receiving a reply, every message will
be encrypted with a new key. This new key is based on the previous key, so that both Alice and
Bob, but nobody else could calculate it (at least when the previous key has not leaked).

The Diffie-Hellman ratchet phase is to generate a new shared secret key. When Bob sends a
new message to Alice, he generates a new ephemeral key pair. Bob uses this key to derive a new
shared secret key. He sends his ephemeral public key to Alice so that Alice can also calculate the
new shared secret key. This shared secret key will then be used again in the symmetric ratchet
phase to generate new message keys.

2.1.2 Extended Triple Diffie-Hellman

The Signal Protocol uses an extended version of Diffie-Hellman, called extended triple Diffie-
Hellman (X3DH). For the sake of completeness, we first explain plain Diffie-Hellman briefly.
Alice and Bob both generate a public key pk which is based on the agreed generator g, modulus
m and their randomly chosen private key sk (also called secret key). Alice and Bob will then
share their public key over an (possibly insecure) channel. After this exchange both can derive
a shared secret key ssk. This key can then, for example, be used for communication using
symmetric cryptography. Figure 2.1 shows the protocol [7, 17].

X3DH has been developed by Open Whisper Systems to support that one party could be
offline during the key exchange. Something which is not possible in the case of plain Diffie-
Hellman. We will use the paper of Moxie Marlinspike to describe the protocol [29].

Let ikA, ekA be the public keys of Alice and ikB , spkB and opkB be the public keys of Bob,
where ik is the identity key, ek the ephemeral key, spk the signed pre-key and opk the one-time
pre-key. The identity keys are long-term public keys. An ephemeral key is a key that can only
be used once. Pre-keys are keys that are published before the protocol starts. One-time pre-keys
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Alice Bob

m, g

pkA ≡ gskA (mod m) pkA

pkB pkB ≡ gskB (mod m)

ssk ≡ (pkB)
skA (mod m) ssk ≡ (pkA)

skB (mod m)

Figure 2.1: Diffie-Hellman — Standard version

will be published in sets to the server as the server will send one of these keys every time another
user wants to start a conversation. The signed pre-key is a pre-key which is signed with the
private exponent of the identity key, i.e. Sig(spkX , ik

−1
X ).

For the protocol to be able to work offline, every user will send their public keys to the
server. For example, when Bob signs up, he will send ikB , spkB , the signature Sig(spkB , ik

−1
B )

and (opk1B , opk
2
B , opk

3
B , . . .) to the server. The identity key only has to be sent once, the signed

pre-key has to be renewed every week or month. The server will request new one-time pre-keys
when there are almost none left.

When Alice wants to start a conversation, she requests the pre-key bundle of Bob from the
server. The pre-key bundle exists of Bob’s identity key ikB , his signed pre-key spkB , the signature
of spkB and one of the one-time pre-keys opkxB . The server will delete opk

x
B after sending it with

the pre-key bundle. When there are no one-time pre-keys of Bob left, the pre-key bundle will be
sent without an one-time pre-key.

On receiving the pre-key bundle, Alice first verifies the signature of spkB . When the verific-
ation succeeds, Alice will generate her ephemeral key pair. Then she will calculate the shared
secret key ssk with key derivation function (KDF) KDF(x) as shown in the equation below. After
the calculation, Alice will delete ek−1A and all the Diffie-Hellman output values.

k1 = DH(ik−1A , spkB) (2.1)

k2 = DH(ek−1A , ikB) (2.2)

k3 = DH(ek−1A , spkB) (2.3)

k4 = DH(ek−1A , opkxB) Only when received opkxB (2.4)
ssk = KDF(k1‖k2‖k3‖k4) (2.5)

DH(x, y) is an elliptic curve Diffie-Hellman function that calculates a shared secret key based on
two keys. KDF(x) is a key derivation function based on RFC5869 [19]. k1 and k2 provide mutual
authentication, whilst k3 and k4 provide forward secrecy. Figure 2.2 depicts the relation.

Alice sends the initial message to Bob consisting of her identity key ikA, her ephemeral
key ekA, an identifier IDopkxB

so that Bob knows which one-time pre-key Alice used and ikA
concatenated with ikB encrypted with ssk, i.e. Enc(ikA‖ikB , ssk).

Bob, who receives the initial messages, will also calculate the shared secret key in the same
way Alice did. Bob will then decrypt the message that Alice has sent and checks if the value is
correct. When it is correct, Bob will delete the one-time pre-key that was used. After this, Alice
and Bob could reuse ssk for the following messages or keys derived from ssk.
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ikA

ekA

ikB

spkB

opkB

Figure 2.2: Diffie-Hellman key relation

Figure 2.3 shows a simplified version of X3DH, i.e. it does not show when keys have to be
deleted and how the calculations shall be done.

Alice Server Bob

ikB , spkB ,Sig(spkB , ik
−1
B ),

(opk1B , opk
2
B , opk

3
B , . . .)

request pre-key bundle

Verify spkB
ikB , spkB ,Sig(spkB), opk

1
B

Calculate ssk

ikA, ekA, IDopk1
B
,

Enc(ikA‖ikB , ssk)

ikA, ekA, IDopk1
B
,

Enc(ikA‖ikB , ssk)
Verify ssk

Figure 2.3: X3DH protocol

Note for both Diffie-Hellman and X3DH one cannot guarantee the identity of the other party
when the public key (identity key) is not manually verified.

2.1.3 Double Ratchet Algorithm

The Double Ratchet algorithm, formerly known as Axolotl Ratchet [27], is an algorithm developed
by Moxie Marlinspike and Trevor Perrin. The algorithm is used in combination with X3DH,
where X3DH is used to start a conversation and the Double Ratchet algorithm for the ongoing
conversation. We discuss this algorithm based on the paper written by Moxie Marlinspike [27].

Just like X3DH, the Double Ratchet algorithm uses a KDF function. The Double Ratchet
algorithm, however, uses the output of the KDF as input for the next key generation using again
the KDF. This is called the KDF chain, also shown in figure 2.4.
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KDF key

KDFInput

KDFInput

KDF key

Output key

Output key

Figure 2.4: KDF chain

The KDF chain provides some interesting properties, namely resilience, forward secrecy and
future secrecy. Resilience means that the output key looks random to an adversary. Forward
secrecy means that all keys that are generated before key k cannot be calculated when key k is
compromised. This is guaranteed as the KDF is a one-way function. Future secrecy means that
all keys that are generated after key k cannot be calculated when key k is compromised. Note
that this can only be guaranteed when there is enough entropy, i.e. when only the KDF output
is used as input, then future secrecy does not hold.

The Double Ratchet algorithm distinguishes two ratchets, the Diffie-Hellman ratchet (fig-
ure 2.7) and the symmetric-key ratchet (figure 2.5). The Diffie-Hellman ratchet uses a Diffie-
Hellman key to provide entropy for the KDF, while the symmetric-key ratchet ratchet does
not have any entropy. Thefore, the Diffie-Hellman ratchet provides future secrecy while the
symmetric-key ratchet does not. The generation of a new key is called a Diffie-Hellman/symmetric-
key ratchet step.

These two ratchets are mixed in the protocol, hence the name Double Ratchet algorithm.
The output keys of the Diffie-Hellman ratchet are used as input for the symmetric-key ratchet,
and the symmetric-key ratchet keys are then used to encrypt messages. The Signal implement-
ation generates a new Diffie-Hellman ratchet key for every message to provide future secrecy.
Computerphile1, an initiative from the University of Nottingham, has a great introduction video
that explains how these ratchets work.

Chain key ck

KDF

KDF

Chain key ck′

Message key mk1

Message key mk2

Figure 2.5: Symmetric-key ratchet

1https://youtu.be/watch?v=9sO2qdTci-s

https://youtu.be/watch?v=9sO2qdTci-s
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Figure 2.6 shows the Diffie-Hellman ratchet on protocol level. Both Alice and Bob will
generate a ratchet key pair. When Bob wants to send a message to Alice, he will send his
ratchet’s public key pk1B . Alice will then calculate a new shared secret key from her ratchet’s
private key and Bob’s public key, i.e. ssk1 = DH(sk1A, pk

1
B). Alice can then send a message with

her public key pk1A, so that Bob can perform a ratchet step, i.e. he can calculate the same shared
secret key ssk1 = DH(sk1B , pk

1
A). When Bob wants to send a new message, he generates a new

ratchet key pair, namely (pk2B , sk
2
B). He uses this key pair to calculate a new shared secret key

with Alice’s previous public key, ssk2 = DH(sk2B , pk
1
A). When Bob sends a message to Alice with

his new public key pk2B , Alice will calculate ssk2 and also generate a new ratchet key pair so that
she can calculate ssk3 = DH(sk2A, pk

2
B).

Alice Bob
Generate (pk1B , sk

1
B)

pk1B

Generate (pk1A, sk
1
A)

ssk1 = DH(sk1A, pk
1
B)

pk1A ssk1 = DH(sk1B , pk
1
A)

Generate (pk2B , sk
2
B)

ssk2 = DH(sk1A, pk
2
B)

pk2B ssk2 = DH(sk2B , pk
1
A)

Generate (pk2A, sk
2
A)

ssk3 = DH(sk2A, pk
2
B)

pk2A ssk3 = DH(sk2B , pk
2
A)

Figure 2.6: Diffie-Hellman ratchet on protocol level

It is trivial to see that the protocol in figure 2.6 is vulnerable to a man-in-the-middle attack
(MITM) as the ratchet key pairs does not prove the identity of Alice or Bob. Therefore, the first
shared secret key has to be mixed with the output of X3DH. Figure 2.7 shows how this is done
by deriving a key using the KDF. The output keys, the receiving chain key ckr and the sending
chain key cks, are used as input for the symmetric-key ratchet from figure 2.5. As the names
imply the sending chain keys are used to derive keys to encrypt messages for the other party,
and the receiving chain keys are used to derive keys that decrypt messages from the other party.

Root key ssk

KDFInput DH(sk1A, pk
1
B)

KDFInput DH(sk2A, pk
1
B)

Root key ssk′

pk1B

Receiving chain key ckr

Sending chain key cks

Figure 2.7: Diffie-Hellman ratchet from Alice’s perspective
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Figure 2.8 shows the Double Ratchet algorithm from Alice’s perspective. In the figure, Alice
first receives the public key pk1B of Bob. Alice uses this key to do a Diffie-Hellman ratchet step
and thereby she calculates the first receiving chain key ck1r. Bob sends Alice three messages, and
Alice can decrypt these messages by doing three symmetric-key ratchet steps to calculate mk1r,
mk2r and mk3r. Alice then wants to send two messages to Bob. First, she generates a new ratchet
key pair (pk2A, sk

2
A) and sends pk2A to Bob. Second, she does a Diffie-Hellman ratchet step to

calculate the sending chain key ck1s. Finally, she calculates the two message keys mk1s and mk2s
by doing two symmetric-key ratchet steps [21].

ssk1 = KDF
(
DH

(
sk1A, pk

1
B

)
, ssk

)

ssk2 = KDF
(
DH

(
sk2A, pk

1
B

)
, ssk1

)
ck1s = ssk2

mk1s = KDF(ck1s)

mk2s = KDF(mk1s) ssk3 = KDF
(
DH

(
sk2A, pk

2
B

)
, ssk2

)
... ck2r = ssk3

mk4r = KDF(ck2r)

ck1r = ssk1

mk1r = KDF(ck1r)

mk2r = KDF(mk1r)

mk3r = KDF(mk2r)

Root keyChain keyMessage key Chain key Message key

Alice
Sending Receiving

Figure 2.8: Double Ratchet algorithm

2.1.4 Sesame Algorithm

The Signal Protocol manages sessions with the Sesame algorithm [28]. An algorithm which is
specially developed for an asynchronous and multi-device setting. We introduce the need of this
algorithm by giving three examples. One, Bob may have multiple devices, meaning that Alice
should encrypt her message for all of Bob’s devices. Note that Bob could add or delete devices at
any given time. Two, as the protocol is asynchronous, both Alice and Bob could start a session
at the same time, which means they must agree on which of the two sessions to use for further
communication. Three, Bob could reset his state (e.g. by resetting his phone) or restore from
a backup, which causes the sessions to be out-of-sync. Apart from these examples specific to
the Signal Protocol, the algorithm must also be resistant to general network issues. Messages
might not arrive or might be received out-of-order. Moreover, an adversary could tamper with
messages on the network.

To explain the Sesame algorithm we first give a list of definitions (table 2.3). The algorithm
makes a distinction between users, devices and sessions. A user could have one or more devices,
and every device could have none to multiple sessions. The algorithm also makes a distinction
between active and inactive sessions. There can be at most one active session at any given time.
When a new session is started, the current active session is moved to the list of inactive sessions.
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Variable Definition
UserID The identifier of the user, e.g. a username or telephone number
DeviceID The identifier of the device (should be unique per user)
SessionID The identifier of the session
MessageID The identifier of a message
UserRecord A record containing a set of DeviceRecords
DeviceRecord A record containing an active session and/or a list of inactive sessions
MessageRecord A record containing the information of one message
MAXLATENCY The amount of time before a UserRecord or DeviceRecord will be deleted

Table 2.3: Sesame definitions

On the server-side, we have of course one or multiple servers and mailboxes. To keep it
simple, we assume one server in our further analysis. The server has a mailbox per device, which
contains the messages sent to this particular device. Once the messages are retrieved from the
mailbox, they will be deleted. When a device sends a message to another device’s mailbox, the
UserID and DeviceID of the sender will be stored on the server.

Before we discuss encryption and decryption, we first further elaborate the device state.
Every device stores a set of UserRecords containing the users it has started a conversation with.
A UserRecord or DeviceRecord may be marked stale, which means the corresponding user or
device has been deleted, but the record is being kept to decrypt delayed messages. A stale record
will be deleted after MAXLATENCY has been reached.

To send a message, the Sesame algorithm will encrypt the plain text for a given UserID. The
message will be encrypted for every non-stale device of the user, given there is an active session
for the device. The client then sends the encrypted messages together with the recipient’s UserID
and DeviceID(s) to the server. Upon retrieval, the server checks if the UserID and DeviceID(s) are
currently in use. If this is the case, the server will accept the encrypted messages. Otherwise,
it will reject the messages and warn the sender. The server will either warn that the user does
not exist, or that the device list has been updated. In the latter case, the server will inform the
sender of the updated device list. The sender will, on receiving the warning, mark the applicable
UserRecord(s) as stale in the case of a non-existing user. In the other case, it will encrypt the
message with the updated device list and mark the old DeviceRecord(s) as stale.

To receive a message, the Sesame algorithm fetches the encrypted message and the sender’s
UserID and DeviceID from the server. If the message is an initiation message and the recipient
does not have a session with the sender’s device, then the public key is extracted from the message
header and a new DeviceRecord is created with the initiation message. Otherwise, the message is
decrypted with the applicable session. If there is no such session, then the message is discarded.

For both sending and receiving messages, errors could occur. For sending messages, this
could be an invalid server response or another error during the session creation. When this
happens, the sender should stop encrypting this message and discard changes made to the state.
For receiving messages, errors could occur during the parsing and decryption of messages. The
receiver should stop the process, discard the message and also discard the changes to the state.

The paper does not discuss how a client can recover from simultaneously initiated sessions
and lost or out-of-order messages; it only discusses a solution to diverged sessions. Furthermore,
the paper discusses the Sesame algorithm as an independent algorithm. Especially out-of-order
and lost messages are interesting combined with the Double Ratchet algorithm, as this could
mean that some ratchet keys are lost. Below is described how one can recover from diverged
sessions and in chapter 5, we will analyse how diverged sessions are implemented.
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The following could be performed to recover from diverged sessions. A sender will store a
MessageRecord for each recipient device. This MessageRecord stores the plain text message, a
unique MessageID, the recipient’s UserID and the SessionID. When the recipient cannot decrypt
the message, it will ask the sender if it can resend the message by sending back the MessageID.
The sender then checks if the MessageID refers to one of the MessageRecords and if the UserID
is the same as the one in the MessageRecord. If not, the retry request is discarded. Otherwise,
when there is an active session in the DeviceRecord, the message will be encrypted and send to
the server. If such a session does not exist or if the session has the same SessionID as in the
MessageRecord, the device first queries the server. If the UserID or DeviceID does not exist, the
records will be marked stale. If they do exist, the device will encrypt the message with the keys it
got from the server. Moreover, if the session already exists, the device will send a new initiating
message.

2.1.5 Sealed Sender

To complement the end-to-end encryption it is also necessary to keep as less data as possible. This
is difficult as one normally authenticates over Transport Layer Security (TLS). It is, of course,
fixable by not having to authenticate to the server. However, this gives the problem that it is
easy to spoof or to perform denial of service (DOS) attacks. Sealed sender, introduced in October
2018, makes use of short-lived certificates and delivery tokens to solve these problems [30].

The sender will get a new certificate every x time. The x is not specified in the document, only
stated is that the certificate is short-lived. This certificate has the phone number and identity
key of the sender together with an expiry date. It will be encrypted together with the message.
The receiver can validate the authenticity of the certificate on retrieval.

The delivery token is derived from the profile key. To be able to send a message, the sender
should proof to the sever it knows the delivery token of the sender. This can only be the case
when the two parties have talked before, thus have shared their profile with each other and in
this way prevent most of the abuse.

2.1.6 Private Contact Discovery Service

Private contact discovery service is a service that has only been rolled out recently. The service
runs in a secure enclave and Signal clients can connect to it remotely. The client can test if
the code in the enclave is the same as the online source code — as the enclave supports this
functionality. To retrieve the contacts using Signal, the client will send an encrypted version of
its contacts. The server will respond with the intersection of all registered users and the contacts
send by the client. As the service runs in an enclave, Open Whisper Systems cannot learn about
the contacts of the user [26].
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2.2 Fuzzing

Fuzzing is a technique that can be used to test applications in a largely automated fashion. The
technique works by sending semi-random input to the application and observing the output. For
example, one could send special values like negative values, newlines and long strings to the
application and then observe if it crashes [31].

There are different kind of fuzzers, namely mutation-based, generation-based (also called
grammar-based), evolutionary and white-box fuzzers. Mutation-based fuzzers mutate valid in-
puts. This can be done by observing the network traffic and then changing some of the bits.
Generation-based fuzzers generate inputs based on the file or protocol specification. While
mutation-based and generation-based fuzzers are considered black-box testing, evolutionary fuzz-
ing is a grey-box technique. An evolutionary fuzzer tries random mutations; if the mutation leads
to a new path, the mutation will be saved [31]. White-box fuzzing analyses the source code by
symbolic execution, i.e. analysing what inputs will execute which branches of the code. Based
on this analysis, interesting inputs can be generated automatically [15].

2.2.1 Mutation-based Fuzzer

Based on the example of Zeller, Gopinath, Böhme, Fraser and Holler [41], we will illustrate how
mutation-based fuzzing works. Assume we have a program that takes a URL as input and parses
it. We send the following string:

https://www.google.com/search?q=fuzzing

Assume that the URL is parsed into different parts, e.g. the protocol is https://, the location
is www.google.com. Now, if we want to craft a valid URL, e.g. one that starts with https://,
then the actual chance of this happening is 1/938 where 93 represent all the possible ASCII
characters.

Using an existing URL and mutating it will reduce this number greatly. A mutation in this
sense is inserting, changing or deleting a character in the string. Mutating the protocol part of
the URL could lead to another valid protocol, e.g. https:// ⇒ http://. The chance of this
happening is 1/3 · 1/8 = 1/24 as we can choose between three operations (e.g. deleting) and
there are eight possible characters to delete. When mutating a string multiple times, it will look
similar to this:

0 mutations: http://www.google.com/search?q=fuzzing
5 mutations: http://www.cloogle.com/seaRchq=fuz:ing
10 mutations: http:/L/www.cloWglej.com/seaRchqfuz:in
15 mutations: http:/L/wwcloWglej.com/seaR3hqf,u:in
20 mutations: gtTps/L/SwcloWglej.cdm/seaR3hqf,u:in

Figure 2.9: Applying mutations to a URL

2.2.2 Generation-based Fuzzer

The idea of reusing valid input can be further extended by using the specification of the protocol
to be fuzzed. To stay with the example of URLs, we can use the URL specification to create
valid URLs. To do this, we will write a simple grammar. Figure 2.10 defines this grammar and
is loosely based on the book of Zeller et al. [40]. The grammar is in no way meant to be correct
nor exhaustive.
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URL := PROTOCOL | :// | NAME | . | DOMAIN | PATH | QUERY
PROTOCOL := https | http | ftp
NAME := google | bing | duckduckgo
DOMAIN := com | nl
PATH := / | /ID
ID := search | q | fuzzing
QUERY := ?PARAMS | ε
PARAMS := PARAM | PARAM&PARAMS
PARAM := ID=ID

Figure 2.10: URL grammar

The grammar can be used to generate URLs as input for a fuzzer. Several valid URLs that
can be generated by this grammar are shown in figure 2.11. Therefore, generation-based fuzzing
is a powerful tool to craft valid inputs easily. The method also has its drawbacks, e.g. the NAME
could be almost anything, which is hard to capture in a grammar, but much easier to generate
with mutations. Another caveat is the loops that can exist in grammars, e.g. the grammar defined
in figure 2.10 can, in theory, have unlimited PARAMS. However, this is easily fixed in practice by
only allowing to loop x amount of times.

http://bing.nl/search
ftp://duckduckgo.com/
http://bing.com/q?q=search
https://google.nl/fuzzing?search=q&fuzzing=fuzzing&q=search

Figure 2.11: Generate URLs based on a grammar

2.2.3 Evolutionary Fuzzer

The grammar that we defined for URLs was far from complete. It shows the difficulty of manually
defining a complex input. This would be even worse for programs that are not well documented.
It would be easier to automatically derive valid inputs by observing how the input is processed.

Valid inputs can be generated by using evolutionary algorithms. Such an algorithm is based
on biological evolution. First, we choose one or multiple inputs values to start. Second, we will
mutate these values to produce new values. When the new values are valid, we will mutate these
values further; otherwise we will go on to mutate the old values.

Figure 2.12 shows how an evolutionary algorithm works based on the URL example. We start
with a valid URL and mutate it. To know which URLs are valid, we feed the mutated URLs to
the program and observe the output. Only when the mutated URL is valid, this new URL will
be mutated further.

Clearly, the method depicted in figure 2.12 would not work to find URLs with FTP as protocol.
This could be solved by providing more input strings, by mixing valid URLs or by increasing the
number of invalid mutations before the branch is not processed any further.
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https://google.com/

X http://google.com/

× httpF//google.com/ X http://hoogle.com/

× gttp://hoogle.com/ X http://hoogley.com

× https://googleDcom/

Figure 2.12: URL mutation based on an evolutionary algorithm

2.2.4 White-box Fuzzer

Instead of guessing valid inputs, another method is to analyse the code by symbolic execution.
The idea is to use a symbolic value for variables (e.g. protocol = λ) instead of a concrete value
(e.g. protocol = "https://"). Algorithm 2.1 shows a part of the parser. When the code is
symbolically executed, then the following code is evaluated: if protocol == λ, which could be
either true or false. Both branches will be taken and hence eventually all paths will be executed.

Algorithm 2.1 URL parser
if protocol is HTTP then
. . .

else if protocol is HTTPS then
. . .

else if protocol is SSH then
. . .

end if

Figure 2.13 shows all possible paths from algorithm 2.1. As there are four paths, there are four
different inputs that are relevant; other inputs will not trigger anything new. This is thus much
more effective than, e.g. mutation-based fuzzing which produces many URLs that do not execute
new paths. Moreover, white-box fuzzing can find the edge cases. However, large programs do
have a lot of possible paths, and in practice, not all paths will be taken due to the limited time
and space [15, 31].

start

protocol = http:// protocol 6= http://

protocol = https:// protocol 6= https://

protocol = ssh:// protocol 6= ssh://

Figure 2.13: URL parser cases
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THREE

RELATED WORK

This chapter discusses the work that is closely related to this thesis. The related work is meant to
give an overview of the current state of the research regarding the Signal Protocol and protocol
state fuzzing but is not meant to be exhaustive. Furthermore, it also serves as a foundation to
get a better understanding of the Signal Protocol and to find techniques that could be used for
this thesis.

3.1 Protocol Verification

Several researchers have analysed the Signal Protocol. Frosch, Mainka, Bader, Bergsma, Schwenk
and Holz [12] were the first to verify the protocol when it was still called TextSecure. Cohn-
Gordon, Cremers, Dowling, Garratt and Stebila [5] have been the first to do a formal security
analysis with the Signal Protocol as a multi-stage key exchange protocol. Kobeissi, Bhargavan
and Blanchet [18] have used ProVerif and CryptoVerif to model the protocol and to verify it
formally. Rubín [32] did a security analysis on the Java protocol implementation. This paper
will discuss the papers of Frosch, Cohn-Gordon and Rubín.

3.1.1 Proving TextSecure Secure

TextSecure has been analysed and formally verified by Frosch et al. in 2016 [12]. The formal
verification includes the X3DH and the Double Ratchet algorithm individually, but not as com-
position. They have found two flaws in the implementation and found that the deniability
property was not fully satisfied.

Implementation Flaws

One of the implementation flaws resided in the export function. This function would export the
password in plain text on the Android device. The password was needed to register one-time
pre-keys with the server. The paper states that this feature has already been removed in the
meantime.

Another flaw is the vulnerability to the unknown key-share attack (UKS). This flaw is an
attack based on the working of the key agreement protocol, where Alice thinks she has the key of
Bob while in fact, she has the key of Dave [3]. Frosch et al. explain this by a TextSecure example.
In the example, Bob wants to play a joke on Charlie. Bob knows that Charlie will invite him for
a party — as Alice already told him. To trick Charlie, Bob will replace his key with the key of

16
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Dave. When Charlie invites Bob for his party using TextSecure, Bob will forward this message
to Dave. For Dave, it will look like Charlie has sent this message. So, Charlie thinks he invited
Bob, while he actually invited Dave. In 2016, the time the paper was written, the issue was not
yet resolved. However, the authors have contacted the developers of TextSecure, and they have
also provided methods to solve the issue.

Security Proof

Forward secrecy, future secrecy and deniability are important properties of the TextSecure Pro-
tocol. Frosch et al. have verified under what circumstances these properties hold.

Forward secrecy is satisfied as long as the private keys on the Android telephone are kept
secret. As the protocol mixes a long-term shared secret key with short-term keys, both parts
have to leak, i.e. when only the long-term key leaks, one cannot calculate the actual message
keys.

The paper claims that future secrecy is satisfied as long as the long-term private key does not
leak. Otherwise, it would be possible to impersonate that party.

Deniability is not satisfied, the messages are encrypted and authenticated using symmetric
cryptography, which makes that Alice and Bob can both generate the same encrypted message,
which gives deniability. Moreover, Alice or Bob could even hold a whole conversation locally, by
first downloading the pre-key bundle of the other party and then imitating the other party locally.
Although all this would provide deniability in theory, in practice, the server needs the identity
of the user for the correct delivery of messages. Therefore, a user cannot deny involvement in a
conversation.

3.1.2 Formal Security Analysis of the Signal Protocol

Cohn-Gordon et al. [5] were the first to conduct a formal analysis of the X3DH key agreement
and Double Ratchet algorithm as a multi-staged key exchange protocol. They have accomplished
this by modelling a tree of stages to describe the chains used in Signal. They have captured the
security properties of Signal with adversarial queries and freshness conditions.

In their paper, they have proven that the Signal Protocol is secure under the gap Diffie-
Hellman assumption and the assumption that all KDFs are random oracles. This proof has been
conducted in the random oracle model. Moreover, the attack of Frosch’s paper, the UKS is not
considered an attack in this model. This because the model of Cohn-Gordon does not include
identities, as this is also the case in the Signal Protocol. Therefore, the session identifier of Alice’s
session with Eve is the same as Alice’s session with Bob.

The model made several simplifications. Features implemented in Signal that are not con-
sidered part of the Signal Protocol such as header encryption are not modelled. The out-of-band
verification channel, the mechanism to verify the other party’s public key, is not analysed. Out-
of-order decryption, the mechanism to decrypt messages that are received later in the chain than
expected, is also not analysed. Signal can handle when Alice and Bob start a conversation at
the same time; however, this is not modelled. At last, a more complex issue, the model of Cohn-
Gordon does not catch attacks where the adversary alters the identity key and inserts a malicious
signed pre-key. This because they do not consider the signatures but enforce authentication of
the pre-keys. Hence, as the Signal Protocol uses the identity key for both signing the pre-key
and for the X3DH an attacker could alter this but the model will not catch it.
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3.1.3 Implementation Analysis of the Signal Protocol

Rubín is the first to analyse the Signal Android application. In his thesis, he discusses the
theoretical protocol and the Java implementation. Afterwards, he discusses potential security
vulnerabilities. In his implementation analysis, he documents a lot of essential functions of the
implementation, which is very useful for our project. We will not discuss his documentation here
but will use it for our analysis in chapter 4.

The conclusion of Rubín is that he could not find weaknesses in the protocol. The protocol
uses secure cryptographic standards, and the implementation of the protocol is also rather robust.
Just as Cohn-Gordon, Rubín analysed the documented header encryption variant of the Double
Ratchet algorithm. A variant that should be more secure as additional information is also
encrypted. However, he could not find this version in the implementation.

3.2 Protocol State Fuzzing

Fuzzing, but also protocol state fuzzing has successfully been used to find flaws in applica-
tions. An example is the paper by Fiterau-Brostean, Vaandrager, Poll, de Ruiter, Lenaerts and
Verleg [11] in which they have used protocol state fuzzing to check three Secure Shell (SSH)
implementations. De Ruiter and Poll [33] have also used protocol state fuzzing to infer state
machines from TLS implementations. Protocol state fuzzing is not limited to network protocols.
Aarts, de Ruiter and Poll [1] have used this technique to test bank cards that implement the
Europay, Mastercard, Visa (EMV) standard. In the next paragraphs, we will discuss the pa-
per about TLS fuzzing and another paper that discusses the effectiveness of several methods to
prevent vulnerabilities.

3.2.1 Fuzzing TLS Implementations

Multiple TLS implementations have been tested by de Ruiter and Poll [33]. They have used state
machine learning to deduce state machines from both the client and server TLS implementations.
To accomplish this, they have fuzzed different sequences of messages to infer the state machine.
This is why they called their version of state machine learning protocol state fuzzing.

To perform protocol state fuzzing, de Ruiter and Poll used LearnLib1 — a Java framework
for automata learning developed at TU Dortmund. The LearnLib framework offers numerous
learning algorithms. This research project used (a modified version of) Angluin’s L* algorithm.
To send messages with LearnLib to the system under test (SUT), one should create a grammar
(like in section 2.2.2). As the messages created from the grammar are abstract, de Ruiter and
Poll have implemented an adapter that translates these abstract messages to concrete messages
that the TLS implementation can understand. When sending these messages, LearnLib will
develop hypotheses for the state machine. The hypotheses are based on the responses from the
SUT. The hypotheses are checked on equivalence with the implemented state machine. However,
this state machine is unknown; therefore, the check is done with an (improved version) of Chow’s
W-method. This method can be used to proof the generated state machine correct to a given
upper bound.

This research project found new flaws in three out of the nine tested implementations. They
argue that protocol state fuzzing can find logic errors in the implementation. However, this
method is not suitable to find intentional backdoors. Moreover, this method would also not find
errors in, for instance, message parsing.

1https://learnlib.de/

https://learnlib.de/
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3.2.2 Testing Techniques to Prevent Vulnerabilities

This section discusses the effectiveness of testing techniques based on the Heartbleed2 bug. The
paper discusses multiple techniques including multiple types of fuzzing. The Heartbleed bug was
found in OpenSSL implementations and would let attackers obtain information from memory
remotely. As an attacker was able to control the length of the payload, which could be longer
than the actual payload, the attacker could read further than this payload in memory, i.e. a buffer
over-read. Interestingly is that many testing techniques would not find a bug like Heartbleed.

Wheeler [38] discussed multiple methods that do not work to find the Heartbleed bug. Static
analysis would not work, for the simple reason that the OpenSSL code is too complex. Dynamic
analysis would also not work, as it is not designed to find these sorts of vulnerabilities. Fuzzing
is a technique that mostly looks for crashes, something which will not happen with a buffer
over-read. Wheeler also states that most testing techniques will test correct input, which is in
contrast to Heartbleed and most other security vulnerabilities, which come from incorrect input.

The following methods are methods that would work to find a bug such as Heartbleed accord-
ing to Wheeler. Negative testing, as these tests are designed to let the software fail. Fuzzing could
also find the bug when extra tools are used that can detect these buffer over-reads. An example
of such a tool is Address Sanitizer (ASan), an open-source tool by Google to detect, amongst
other things, buffer overflows. Also, when the output during fuzzing is examined, Heartbleed
can be found. This is the way how Codenomicon3 found the vulnerability. Another method is
by human review. A person could do a review to analyse if all input is validated correctly. Static
analysis could be used when giving the analyser more context, e.g. by annotating the code. Mi-
crosoft’s source-code annotation language (SAL) is an example of such a tool. The last method
described by Wheeler is formal methods. For this, a formal specification should be made, and
then the code should be checked to prove that the code meets the specification.

2https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
3A company founded in 2011 that built fuzzing tools. Acquired by Synopsys in 2011

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
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FOUR

ANALYSIS OF PROTOCOL IMPLEMENTATION

This chapter gives an overview of the Signal code, with a focus on the Signal Protocol Java
library and Signal server. The chapter also gives an overview of how the whole system interacts.

4.1 Overview

The Signal Protocol is an instant messaging protocol developed for use with Android and iOS.
Open Whisper Systems also created a desktop version that can work independently from the
smartphone client after linking. Figure 4.1 shows how the applications interact with the Signal
server. This server has many dependencies, which will be explained in more detail later in this
chapter.

Figure 4.1: Signal Architecture1
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4.1.1 Signal Application

The Signal application for Android and iOS are made out of several layers. The lowest layer
consists of the cryptographic functions. These functions are used in the protocol layer, which
implements the Signal Protocol. As the protocol is stateful, these separate protocol functions
have to be combined to start an actual conversation, which is done in the service layer. The
Signal application uses these layers to build a smartphone application that can start end-to-end
encrypted conversations (it also supports other features, such as encrypted video calling).

There is also a desktop application written in JavaScript. This application can be used
independently, but only after it is linked to an Android or iOS device. When installed, the
desktop application will generate a key pair. The public key will be encoded as a QR code that
can be scanned by the Android or iOS app. The smartphone then encrypts the identity key with
the public key of the desktop app and uploads it to the Signal server. The encrypted identity
key will be downloaded by the desktop app and decrypted locally. From that point, the desktop
client can be used even when the phone is switched off.

In this thesis, the desktop and iOS app are left out of scope. The iOS codebase will still be
briefly discussed in the following paragraphs to show the differences with the Android codebase.
However, the in-depth analysis, starting from section 4.2, will only discuss the Java application,
as this is the application that will be fuzzed in chapter 5.

Cryptographic Functions Layer

The KDF() of both Java and C are built in the protocol library. The Java implementation
of Curve25519 (curve25519-java2), the elliptic curve used for key agreement, is implemented
by Open Whisper Systems. The C implementation of the elliptic curve is forked from Adam
Langley’s implementation (curve25519-donna3) of 2008. The GitHub page of Adam Langley
states the following: “Note: this code is from 2008. Since that time, many more, great imple-
mentations of curve25519 have been written, including several amd64 assembly versions by djb.
You are better served now by NaCl or libsodium.”. Although this could mean that the imple-
mentation has unresolved bugs, there are no open issues that imply this. The latest commit is
from 14 November 2015.

Protocol Library Layer

The Signal Protocol Android library is developed in Java (libsignal-protocol-java4), and the
library for iOS in C (libsignal-protocol-c5). These libraries use the cryptographic functions
to implement the Signal Protocol. As this library does not have states, it cannot be used to start
a conversation.

Service Layer

The repository also contains a service library in Java (signal-service-java6). This service
layer implements the states by using the Signal Protocol Java interfaces from the library. The
application programming interface (API) of the service layer is used in the Signal Android app.
There is no such service layer for iOS.

1https://sorincocorada.ro/signal-messanger-architecture/
2https://github.com/signalapp/curve25519-java
3https://github.com/agl/curve25519-donna
4https://github.com/signalapp/libsignal-protocol-java
5https://github.com/signalapp/libsignal-protocol-c
6https://github.com/signalapp/libsignal-service-java

https://sorincocorada.ro/signal-messanger-architecture/
https://github.com/signalapp/curve25519-java
https://github.com/agl/curve25519-donna
https://github.com/signalapp/libsignal-protocol-java
https://github.com/signalapp/libsignal-protocol-c
https://github.com/signalapp/libsignal-service-java
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4.1.2 Signal Server

The Signal server used to register keys and relay messages is developed in Java. The Signal
server (Signal-Server7) is also available on the GitHub repository. The dependencies of the
server can be found in the configuration file. PostgreSQL is used as database management
system, Remote Dictionary Server (Redis) as key-value database, Twilio for the phone number
verification using text messages and Amazon Web Services (AWS) to store attachments and
profiles. Furthermore, Apple Push Notification Service (APNs) and Google Cloud Messaging
(GCM) are used for sending push notifications [25].

4.2 Signal Android

First, we analyse the source code of Signal Android regarding key and session creation. We
present this analysis by using sequence diagrams.

4.2.1 Key Generation

The key generation is done in the smartphone application using the library functions. Figure 4.2
shows how the key generation is implemented in Android. To create a registration ID, the random
number generator of Java is used. Then the private identity key is loaded, as this key pair is
already created before the registration. After the key is loaded, the pre-keys are generated. The
application will create 100 one-time pre-keys and one signed pre-key using generatePreKeys().
The signed pre-key is signed with the private identity key using generateSignedPreKey(). This
concludes the key generation phase.

«Signal Android»
registration :

RegistrationActivity
«libsignal»
KeyHelper

«Signal Android»
IdentityKeyUtil

«Signal Android»
PreKeyUtil

«signal-service»
accountManager :

SignalService
-AccountManager

«curve25519»
Curve

«Java»
secureRandom :
SecureRandom

verifyAccount()

generateRegistrationId()

<<create>>("SHA1PRNG")

nextInt()

random int

registration ID

getIdentityKeyPair()

Note that the identity keys
are created in the
PassphraseCreateActivity

decodePrivatePoint(context)

EC private key

identity key pair

generatePreKeys()

loop [100 times]

generateKeyPair()

EC key pair

list of pre-key pairs

generateSignedPreKey(IdentityKeyPair)

generateKeyPair()

EC key pair

calculateSignature(
IdentityPrivateKey,
PublicPreKey)

signature

signed pre-key pair

Figure 4.2: Key generation

7https://github.com/signalapp/Signal-Server

https://github.com/signalapp/Signal-Server
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4.2.2 Session Creation

The session creation (figure 4.3) for one-to-one messaging is started by the process() call. This
call is done from the Signal service class SignalServiceMessageSender. First, the identity of
the other party is checked with isTrustedIdentity(). As Signal uses the trust on first use
(TOFU) principle, a key is also trusted when the database has no entry of this public key. Only
when there is a mismatch with the public key in the database, the other party is considered
untrusted. When this is the case, or when the signed pre-key is null or the signature cannot be
verified, an exception will be thrown.

After the checks, the session (if existing) will be loaded from the session store. Otherwise, a
new session will be returned from the loadSession() function. To start the X3DH, an ephemeral
key pair has to be created with generateKeyPair(). All the keys will then be set as a parameter
to the AliceSignalProtocolParameters class, which is used to start the key agreement.

«libsignal»
sessionBuilder :
SessionBuilder

«curve25519»
Curve

«libsignal»
sessionStore :
SessionStore

«libsignal»
parameters :
AliceSignal-

ProtocolParameters

«libsignal»
identityKeyStore :
IdentityKeyStore

process(PreKeyBundle)

Process PreKeyBundle
of other party

isTrustedIdentity(SignalProtocolAddress, IdentityKey, Direction)

Boolean

alt [Remote is untrusted client]

Throw untrusted identity exception

[SignedPreKey is NULL]

Throw invalid key exception

[Cannot verify signature]

Throw invalid key exception

loadSession(SignalProtocolAddress)

sessionRecord

Generate emphemeral key pair

generateKeyPair()

EC key pair

<<create>>

setOurBaseKey(EphemeralKeyPair)

setOurIdentityKey(IdentityKeyPair)

setTheirIdentityKey(IdentityKeyPair)

setTheirSignedPreKey(SignedPreKey)

setTheirRatchetKey(SignedPreKey)

setTheirOneTimePreKey(OneTimePreKey)

Figure 4.3: Session creation

Note that the loadSession() function is not implemented in the library, it is merely an
interface that should be implemented by the application that wants to run a Signal client. The
Signal Android app implements the interface in the class TextSecureSessionStore.
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4.2.3 Key Agreement

X3DH is implemented in the library for both Alice and Bob. This distinction is made as the key
agreement is different for the conversation starter and the conversation receiver (see figure 2.2 in
subsection 2.1.2).

Figure 4.4 depicts how the key agreement looks like from Alice’s perspective. First, the
SessionBuilder class calls the initializeSession() function. The RatchetingSession then
initialises the session by generating a ratchet key pair with generateKeyPair(). This key pair
will not be used during the key agreement, but has to be generated for the Double Ratchet
algorithm to work. Then all needed keys are loaded. In the actual implementation it is done in
the following way:

secrets.write(Curve.calculateAgreement(
parameters.getTheirSignedPreKey(),
parameters.getOurIdentityKey().getPrivateKey()))

However, to keep the diagram simpler, we show this as getKeys() and write(key). The
X3DH is calculated using the agreement function of the elliptic curve library using multiple
calculateAgreement() calls. Note the optional key agreement with the one-time pre-key at the
bottom of the figure.

«libsignal»
RatchetingSession

«libsignal»
sessionState :
SessionState

«curve25519»
Curve

«libsignal»
parameters :
AliceSignal-

ProtocolParameters

«Java»
secrets :

ByteArray-
OutputStream

initializeSession(
SessionState,
parameters)

generateKeyPair() Generate sending ratchet key pair

EC key pair

getKeys()

Get all the public and private keys
Actually the keys are retrieved
and written per agreement, this
call is only for simplicity

calculateAgreement(
TheirSignedPreKey,
OurIdentityKeyPrivate)

Shared secret key

write(ssk1)

calculateAgreement(
TheirIdentityKeyPublic,
OurEphemeralKeyPrivate)

Shared secret key

write(ssk2)

calculateAgreement(
TheirSignedPreKey,
OurEphemeralKeyPrivate)

Shared secret key

write(ssk3)

alt [If there is a one time pre-key]

calculateAgreement(
TheirOneTimePreKey,
OurEphemeralKeyPrivate)

Shared secret key

write(ssk4)

Figure 4.4: Key agreement
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The actual shared secret key that will be used as input for the Double Ratchet algorithm is
calculated with the calculateDerivedKeys() function, as shown in figure 4.5. This function
derives a key from the Diffie-Hellman secrets of figure 4.4. The first half of the shared secret key is
used as root key and the second half as chain key. These keys will be saved in the sessionState.
For the receiving chain, the ratchet key of the other party (Bob) will be saved, and for the sending
chain, the ratchet key of Alice.

«libsignal»
RatchetingSession

«Java»
secrets :

ByteArray-
OutputStream

«libsignal»
kdf :

HKDFv3
«libsignal»

ByteUtil

«libsignal»
sessionState :
SessionState

initializeSession(
SessionState,
parameters)

Extended Triple Diffie-Hellman

calculateDerivedKeys(secrets)

<<create>>

deriveSecrets(secrets, 64)

Derived secret (64 bytes)

split(DerivedSecrets, 32, 32)

Root key (32 bytes), Chain key (32 bytes)

addReceiverChain(TheirRatchetKey, ChainKey)

setSenderChain(SendingRatchetKey, ChainKey)

setRootKey(RootKey)

Figure 4.5: Key derivation

4.2.4 Double Ratchet

Messages are encrypted and decrypted using the encrypt() and decrypt() functions in the
class called SessionCipher. To be able to use these functions, the session has to be established
first with the SessionBuilder class (see section 4.2.2). Note that encrypt() and decrypt()
are not called in the library, but only in the Signal service. Hence, the starting call in figure 4.6
and 4.7 is from the Signal service.

Figure 4.6 depicts the start of the encrypt() function. The function first loads the session
and the session state. The function will then load all the needed keys from the session state with
the functions getSenderChainKey(), getMessageKeys() and getSenderRatchetKey(). At last,
other session information is loaded, i.e. the counter and session version.

Figure 4.7 shows the actual encryption. This is done with the getCiphertext() function
in class SessionCipher. A SignalMessage is then created which stores the ciphertext together
with the keys. To conclude this phase, the next chain key is generated with getNextChainKey()
and saved in the session state setSenderChainKey(). The identity of the other party is checked,
just like in figure 4.3. Finally, the identity is saved with saveIdentity(), the session stored
using storeSession(), and the SignalMessage ciphertext is returned.

Note that after every encryption a new chain key is generated with getNewChainKey(). This
means a new Diffie-Hellman secret is used for every encrypted message, and thus guarantees
future secrecy.
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«libsignal»
sessionCipher :
SessionCipher

«libsignal»
sessionRecord :
SessionRecord

«libsignal»
sessionState :
SessionState

«libsignal»
chainKey :
ChainKey

«libsignal»
messageKeys :
MessageKeys

«libsignal»
senderEphemeral :
SenderEphemeral

encrypt(Message)

loadSession(RemoteAddress)

session

getSessionState()

session state

getSenderChainKey()

chain key

getMessageKeys()

message keys

getSenderRatchetKey()

sender ephemeral key

getPreviousCounter()

previous counter

getSessionVersion()

session version

Figure 4.6: Encrypt function : Load keys

«libsignal»
sessionCipher :
SessionCipher

«libsignal»
sessionState :
SessionState

«libsignal»
chainKey :
ChainKey

«libsignal»
identityKeyStore :
IdentityKeyStore

«libsignal»
sessionStore :
SessionStore

«libsignal»
ciphertextMessage :

SignalMessage

encrypt(Message)

Load keys

getCipherText(MessageKeys, Message)

<<create>>(MacKey, SenderEphemeralKey, ChainKey, PreviousCounter, Ciphertext, IdentityKey, RemoteIdentityKey)

getNextChainKey()

next chain key

setSenderChainKey(NextChainKey)

isTrustedIdentity(SignalProtocolAddress, IdentityKey, Direction)

boolean

alt [Remote is untrusted client]

Throw untrusted identity exception

saveIdentity(remoteAddress, RemoteIdentityKey)

storeSession(remoteAddress, sessionRecord)

ciphertext message

Figure 4.7: Encrypt function : Generate ciphertext

4.3 Signal Server

For the Signal server we analysed the source code and the API that can be used to send messages
to the server.

4.3.1 Registration

The registration starts with a simple GET request. The user can either request for a verification
code through sms or voice using the transport option. The number should be an E.164 encoded
telephone number, e.g. +31612345678.
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GET /v1/accounts/{transport}/code/{number}

Figure 4.8: Request verification code (GET request)

The server, figure 4.9, responses to this request by checking the input values (transport
and number). When these are correct, the server will generate a verification code using Java’s
SecureRandom library. This code will be stored together with the current time so that there is a
time limit on how long this code can be used. Finally, the code is sent by either a text message
or through a call.

«Signal Server»
: AccountController

«Java»
random :

SecureRandom

«Signal Server»
storedVerificationCode :
StoredVerificationCode

«Signal Server»
smsSender :
SmsSender

createAccount(transport, number)

alt [invalid number]

400

[transport not equal to sms or voice]

422

generateVerificationCode(number)

<<create>>

nextInt(900000)

randomInt

<<create>>(randomInt, currentTime)

alt [transport is sms]

deliverSmsVerification(number, randomInt)

deliverVoxVerification(number, randomInt)

200

Figure 4.9: Request verification code

The user can confirm the verification code by sending a PUT request to the server. This re-
quest contains the values verification_code, the authentication token token, a registration ID
registration_id and a key called signaling_key. In practice, some extra variables have to be
sent as well, but these are less important — see appendix B.3 for the full request.

The authentication token is a Base64 encoded string consisting of {number}:{password},
where password is a random ASCII string of 24 bytes. This token has to be sent with all the
following requests as well, making it a kind of session key. The registration_id is a 14 bit
random integer which functions to identify the device. The signaling_key is a Base64 encoded
32 byte AES key and 20 byte HMAC-SHA1 MAC key.

PUT /v1/accounts/code/{verification_code}
Authorization: Basic {token}
{

"registrationId" : {registration_id},
"signalingKey" : "{signaling_key}",

}

Figure 4.10: Confirm verification code (PUT request)
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The server first checks if the verification code and the header are valid. If so, a new account
will be created with the information given to Signal such as the number, name, password, ID
and key. More notably is the other information that Signal stores, especially when thinking of
Signal’s focus on privacy. The server also stores the time of account creation, last seen status
precise on the day, and the user agent of the user.

«Signal Server»
: AccountController

«Signal Server»
device :
Device

«Signal Server»
account :
Account

verifyAccount(code, header, attributes)

alt [invalid code]

403

[invalid header]

401

createAccount(number, password, userAgent, attributes)

<<create>>(number, password, userAgent, attributes)

setAuthenticationCredentials(password)

setSignalingKey(attributes.signalingKey)

setRegistrationId(attributes.registrationId)

setName(attributes.name)

setCreated(currentTime)

setLastSeen(today)

setUserAgent(userAgent)

<<create>>

setNumber(number)

addDevice(device)

Figure 4.11: Confirm verification code

After the account is created, the user can upload the keys to the server. The identity_key
and public_keys are both Curve25519 Base64 encoded public keys with a size of 33 bytes. A
client will publish 100 pre-keys when registering, see figure 4.2, however, this is not a restriction.
Along with these keys, a signed pre-key will be sent with a signature over the public_key.
The key_id is an identifier of 3 bytes.

PUT /v2/keys/
Authorization: Basic {token}
{

"identityKey":"{identity_key}",
"preKeys" : [

{"keyId" : {key_id}, "publicKey" : "{public_key}"},
{"keyId" : {key_id}, "publicKey" : "{public_key}"},
...

],
"signedPreKey" : {

"keyId" : {key_id},
"publicKey" : "{public_key}",
"signature" : "{signature}"

}
}

Figure 4.12: Register keys
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4.3.2 Messaging

Messaging is in principle fairly easy. The difficulty mostly arises from the multi-device and the
asynchronous setting. For instance, messages may be sent to an already deleted device, and one
should make sure that messages can only be fetched by the user for which the message is meant.

Figure 4.13 shows how a message can be sent. The token generated during the registration
should be used to authenticate to the server. An array of messages is used to make it easy to
send a message when the receiver has multiple devices. For this reason, the device_id of the
receiver should be specified. The message encrypted_msg is uniquely encrypted per device and
Base64 encoded.

PUT /v1/messages/{destination_number}
Authorization: Basic {token}
{

"messages" : [{
"type" : 1,
"destinationDeviceId" : {device_id},
"body" : "{encrypted_msg}",
"timestamp" : {millis_since_epoch}

}]
}

Figure 4.13: Send a message

The most important task of the server is checking the header of the message. In figure 4.14
we see several error codes. First is error 404 when the user does not exist. Second, error 409
when there is a mismatch between the devices. The server will send the missing and/or extra
devices in the response. Error 410 will be returned when there are stale devices; the list of stale
devices will be sent in the response. The latest is 400 when the destination is invalid. If the
header is valid, the messages will be wrapped in the Envelope class and sent to the receiver.

«Signal Server»
: MessagingController

«Signal Server»
messageBuilder :

Envelope

«Signal Server»
pushSender :
PushSender

sendMessage(source, destination, messages)

alt [user does not exist]

404

[device mismatch]

409 (Missing + extra devices)

[stale device]

410 (Stale devices)

[invalid destination]

400

loop [message]

getMessageBody(message)

getContent(message)

<<create>>(type, srcNumber, time, srcDevice)

setLegacyMessage(messageBody)

setContent(messageContent)

sendMessage(destination, dstDevice, envelope)

Figure 4.14: Messaging
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4.4 Vulnerabilities

An implementation analysis would not be complete without describing the previously found
vulnerabilities. The common vulnerabilities and exposures (CVE) system lists one bug in the
Android app, two bugs in the iOS app and four bugs in the desktop application. The following
CVE descriptions are from the CVE Details8 website.

CVE-2018-9840 (Signal iOS) “allows physically proximate attackers to bypass the screen locker
feature via certain rapid sequences of actions that include app opening, clicking on cancel,
and using the home button.”

CVE-2018-16132 (Signal iOS) “The image rendering component (. . .) fails to check for unreas-
onably large images before manipulating received images. This allows for a large image
sent to a user to exhaust all available memory when the image is displayed, resulting in a
forced restart of the device.”

CVE-2018-10994 (Signal Desktop) “js/views/message_view.js (. . .) allows XSS via a URL.”

CVE-2018-11101 (Signal Desktop) “allows XSS via a resource location specified in an attribute
of a SCRIPT, IFRAME, or IMG element, leading to JavaScript execution after a reply.”

CVE-2018-14023 (Signal Desktop) “allows information leakage.”

CVE-2019-9970 (Signal Desktop & Signal Android) “are vulnerable to an IDN homograph
attack when displaying messages containing URLs. This occurs because the application
produces a clickable link even if (for example) Latin and Cyrillic characters exist in the
same domain name, and the available font has an identical representation of characters
from different alphabets.”

All found vulnerabilities are not related to the protocol itself but are related to the features
added in the applications. When looking at the paper [33] of de Ruiter and Poll in which they
have fuzzed multiple TLS implementations, they argue that protocol state fuzzing would not find
errors in the parsing of messages or deliberate backdoors. However, protocol state fuzzing could
find mistakes in the state machine of an implementation. This gives way to a whole different set
of vulnerabilities that are not (yet) found in one of the Signal implementations. Our attempt to
fuzz the Signal Protocol will be described in chapter 5.

8https://www.cvedetails.com/

https://www.cvedetails.com/
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FIVE

PROTOCOL STATE FUZZING

This chapter describes the test set-up that is used to fuzz the Signal Android application and
Signal server. Moreover, it describes the alphabet and the adapter (also known as test harness)
used in the test set-up. The alphabet is an abstract definition of the messages that can be sent
to Signal. These abstract messages have to be parsed by the adapter to actual messages that
can be understood by the Signal client and server.

5.1 Test Set-up

To test Signal Android and Signal server the following is needed:

• Signal client (two, to test Signal Android only)
• Signal server
• LearnLib (Signal server only)
• Adapter (Signal server only)

Figure 5.1 shows the set-up for client and server. For Android, manual fuzzing will be used.
LearnLib will be used as fuzzer for the server. LearnLib is a generation-based fuzzer which
generates input from an alphabet. The alphabet is converted to actual input using the adapter.
Output of the SUT is converted back to the alphabet. LearnLib can create a state machine of
this input and output.

The Signal Android application could either be emulated on a desktop computer or run on
an Android phone. The Signal server could run on any device supporting Java. While the Signal
client can run without dependencies, the Signal server depends on AWS for cloud storage and
Twilio for the phone number verification. Subscriptions have to be bought for both services to
be able to start the server.

Environment SUT

Fuzzer

Signal client A Signal server Signal client B

Human input

(a) Android Client

FuzzerTest harness

SUT

LearnLibAdapter

Signal server

(b) Server

Figure 5.1: Test set-up architecture
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5.2 LearnLib

LearnLib can infer Mealy machines from the implementation. A Mealy machine is a finite-state
machine where the output values are controlled by the input values and the current state. The
difference with a deterministic finite automaton (DFA) is that we specify both input and output
on a transition. For example, if we are in state q0 and there exists a transition to q1 with the
label a/x, then when we receive an a as input, the machine will output x. Formally, a Mealy
machine is defined as a tupleM = 〈Q, q0, I, O, δ, λ〉, where
• Q is a finite, non-empty set of states,
• q0 ∈ Q is an initial state,
• I is a finite set called the input alphabet,
• O is a finite set called the output alphabet,
• δ is a transition function defined as δ : Q× I → Q, and
• λ is an output function λ : Q× I → O [35].

LearnLib uses a modified algorithm of Angluin’s L* algorithm to infer Mealy machine [2].
The algorithm assumes a teacher and a learner. The teacher knows of a Mealy machineM and
the learner only knows the alphabet I and O ofM. The learner can learn the model by querying
the following:

• A reset query. The teacher will reset its state to the initial state q0.

• An output query i ∈ I. The teacher will do a transition q
i/o−−→ q′, where q is the current

state and q′ the new state. The output o ∈ O will be returned to the learner.
• An equivalence query H, where H is the hypothesis Mealy machine. The teacher will

answer yes when H ≡ M, else the teacher will give a counterexample λM(a) 6= λH(a),
where a ∈ I [1].

However, as the Signal applications are viewed as black-box, the equivalence queries can only
be approximated. Chow’s W-method executes this approximation [4]. Given a hypothesis H, the
upper bound for the W-method is the number of found states plus a specified depth. Counter-
examples will, therefore, only be up to the same length as the upper bound. If no counterexamples
are found, the hypothesis is assumed to be correct [33].

5.3 Hypothesis

As a finite-state machine is an abstract view of the implementation, we will have to choose the
right level of abstraction to be able to generate a sensible model. Since we treat the implementa-
tion as a black-box, the key agreement and encryption would be transitions in the state machine.
In other words, it is not possible to look at the internals of, e.g. the encryption function, and
therefore these are not states in the state machine. The model should thus be on the same level
as the Sesame algorithm; as this gives us the states in the model.

Although Mealy machines are deterministic, the hypotheses below are nondeterministic to
keep the models clean. However, one should keep in mind that all possible inputs from the input
alphabet I can be sent at any time. All the non-defined transitions will output an error and will
not change the current state. Note that these models are not the hypotheses H, but merely our
expectation of what the models will look like.

5.3.1 Signal Server

The Signal server keeps track of all registered devices. A user can only register when it verifies the
telephone number first. Figure 5.2 shows that it starts with requesting a verification code c. This
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code is sent to telephone number t. After confirming code c, one can upload its own keys k, get
the pre-key bundle of user u and get the list of contacts that are also using Signal by uploading
one’s own hashed contact list l.

0. init 1. wait 2. verified
get code (t) / OK confirm code (c) / OK

get code (t) / OK get pre-key bundle (u) / bundle

get contacts (l) / contacts

register keys (k) / OK

Figure 5.2: Signal server registration (Hypothesis)

In figure 5.3 we simplify registration as the ‘register’ transition. When the Signal server
receives a message for device A, it will store this message on the server until the device fetches
the message. The Signal server also keeps track of device changes. So when the server receives
a message intended for device A, but the owner of device A added an new device X, then the
server will reject the message. Along with the rejection, the server will pass the list of missing
devices.

0. init 1. active device A 2. active device A,X
register (A) / OK add device (X) / OK

message (A) / OK

message (A,X) / extra (X)

delete device (X) / OK

message (A) / missing (X)

message (A,X) / OK

Figure 5.3: Signal server (Hypothesis)

5.4 Results

In this section, we present simplified versions of the models as generated by LearnLib. The
models are simplified as otherwise they do not fit nicely on paper and are hard to read. The full
versions can be found in appendix C. After every description of the model, we will summarise
the differences between the model and the hypothesis.

5.4.1 Signal Server

We have edited the server code slightly to make it possible to fuzz. The server has rate limiters
in place to stop an adversary from making many requests. However, this would make the model
nondeterministic as after so many requests the server would give a different output for the same
input. As the version of LearnLib that we are using does not support nondeterminism, we
have deleted the rate limiters. Moreover, to be able to automate the registration, we send the
verification code in the response body of the HTTP request instead of through the SMS service
of Twilio. The responses in the model, such as 200, 204 and 401 are HTTP status codes.
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Registration

Figure 5.4 shows that the registration phase is implemented correctly. One cannot register keys
or request a pre-key bundle when its device is not yet verified. This thus means that one must
have a valid telephone number to register — at least when assumed the verification code cannot
be obtained in any other way.

0

1

REQUEST_CODE / 200

REQUEST_CODE / 200

2

CONFIRM_CODE / 204

REGISTER_KEYS / 204GET_CONTACTS / 200

GET_PREKEY_BUNDLE / 200

3

REQUEST_CODE / 200 CONFIRM_CODE / 204

REQUEST_CODE / 200

REGISTER_KEYS / 204

GET_CONTACTS / 200

GET_PREKEY_BUNDLE / 200

Figure 5.4: Registration

Conlusion The difference with the hypothesis from figure 5.2 is that this model has an extra
state. This is because it is possible to register a new device, e.g. switching to a new telephone,
which should make it possible to request a new verification code while already being registered.
We did not take this situation into account in our hypothesis. This extra state gives us an extra
edge case, what if the SIM card is stolen or the number gets assigned to a new person, will the
new device be able to decrypt all the data? Note that the Sesame algorithm can recover from
diverged sessions as described in section 2.1.4. This will be answered in section 5.4.2.

Messaging

We have generated multiple models to be able to focus on the different aspects of the Sesame
algorithm. The problem with fuzzing the server is that the amount of states can be infinite as
the state of the server is based on the registered devices. Therefore, there does not exist a correct
model as it exists for the registration phase. The generated models look into specific situations,
such as sending messages when the device does not exist or is deleted and how the protocol
handles a multi-device setting.

Figure 5.5 shows how basic messaging works. The transition from state 0 to state 1 and state
2 register device A and B respectively. In state 3 both, devices are registered. In this state, all
messages get accepted by the server. In state 1, messages to device B are rejected by the server
with a 404 error, and in state 2 the messages for device A are rejected. One cannot find out if
the device was ever registered, as after deletion (e.g. see the transition from 2 to 1) the server
will also give a 404 error. Appendix C.4 shows a similar model but with more devices.
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0MESSAGE_TO_A / 404 MESSAGE_TO_B / 404

1

REGISTER_A / 204

2

REGISTER_B / 204

DELETE_A / 204

MESSAGE_TO_A / 200 MESSAGE_TO_B / 404

3

REGISTER_B / 204 DELETE_B / 204

MESSAGE_TO_A / 404 MESSAGE_TO_B / 200

REGISTER_A / 204

DELETE_B / 204

DELETE_A / 204

MESSAGE_TO_A / 200 MESSAGE_TO_B / 200

Figure 5.5: Basic Messaging

Figure 5.6 is a model where the sender tries to send a message that is meant for multiple
devices to A; see section 4.3.2 for the syntax. This message gives the 409 error in state 1 and 3.
The log of our adapter shows the following response {"missingDevices":[],"extraDevices":[2]}.
It means that the server has rejected the message and that the client should try again without
adding the message to the device with ID 2.

0 MESSAGE_TO_B / 404MULTI_MESSAGE_TO_A / 404

1

REGISTER_A / 204

2

REGISTER_B / 204

DELETE_A / 204

MESSAGE_TO_B / 404MULTI_MESSAGE_TO_A / 409

3

REGISTER_B / 204 DELETE_B / 204

MESSAGE_TO_B / 200MULTI_MESSAGE_TO_A / 404

REGISTER_A / 204

DELETE_B / 204

DELETE_A / 204

MESSAGE_TO_B / 200MULTI_MESSAGE_TO_A / 409

Figure 5.6: Multi-Device Messaging

Conclusion The hypothesis we have built is for one user, while the generated models are for
two users. We have done this as we wanted to keep the hypothesis clean but wanted to test the
server with multiple users. The transition on state 1 of the hypothesis, message (A) / OK, is the
same as MESSAGE_TO_A / 200 in state 1 of figure 5.5. The other transition on state 1, message
(A,X) / extra (X), is the same as MULTI_MESSAGE_TO_A / 409 in state 1 of figure 5.6. We
were, however, not able to reproduce message (A) / missing (X) from the hypothesis in the
model of figure 5.6. In the DeviceController.java class of the server one can generate a
verification code for an extra device. While after adding the second device, it is findable in the
server database, one can still not send messages to this device.
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5.4.2 Signal Android

We use manual fuzzing to fuzz the Android client, as using the automated tool LearnLib is
infeasible to test features from the Sesame algorithm. One should automate the process of
starting the application, typing in the telephone number, entering the verification code, sending
messages to another user, deleting the account and clearing the cache of the Android app. For
manual fuzzing, we have done all these steps by hand.

Session Restoration

The Sesame algorithm should be able to recover from diverged sessions, as stated in the paper
of Marlinspike and Perrin [28] and discussed in section 2.1.4. The implementation of this feature
is crucial as a wrong implementation could leak messages to another user. For example, when
the SIM card is stolen or the telephone number is reassigned and the session is restored, then
messages will leak — see also section 5.4.1.

For the session restoration of the Android client, there are four distinct cases, namely
1. restoring from backup with account deletion,
2. restoring without backup with account deletion,
3. restoring from backup without account deletion,
4. restoring without backup without account deletion.
To analyse the first case, we have registered two accounts at the Signal server. We then started

a conversation by sending some messages from both sides. On one of the accounts we enabled the
backup function by going to the settings Chats and media > Chat backups. After the backup
has finished, we deleted the account by disabling Advanced > Signal messages and calls.
When the account is deleted, we send messages with the other telephone. The messages are now
unable to be sent, and the client receives the notification ‘sending has failed’ — which means
there is no need for session restoration.

For the second case, we first cleaned the database and Android phones. We then registered
two accounts as in the first case. Starting a session by sending some messages. This time, we did
not enable the backup function, but immediately deleted the account. After deletion, the other
device again received the notification ‘sending has failed’ when trying to send a message.

In the third case, we started similar to the second case, cleaning, registering and starting the
conversation. We enabled the backup function, and after the backup was finished, we deleted the
Android application without deleting the account. Now, when sending a message with the other
device, messages can be sent but are not delivered. After sending several messages, we reinstalled
the Signal application and restored from backup. However, unexpectedly, the messages are not
delivered after reinstallation.

For the final, fourth case, we started in the same fashion as the earlier cases. We did not
enable the backup function, but deleted the Android application after starting the conversation.
Just like in the third case, when sending some messages with the other device, the messages are
not delivered. After reinstalling the Signal application, messages sent during this inactive period
are not delivered. Moreover, the other device will receive a warning that the key of the other
party has changed. The sender should confirm before messages can be sent again.

To summarise, in the first case, messages received during the period Signal was not active,
i.e. deleted from the Android client, will fail to deliver. The sender will receive a notification
‘sending has failed’. The second case yields the same result as the first case. At the third case,
messages received during the inactive period will be lost. Unlike the first two cases, a user can
still send messages to the client; however, the messages will never be received. In the final case,
messages will be lost, just like in the third case. After re-registration, the sender will receive a
warning that the key of the other party has changed.
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This analysis shows that the session recovery as described in the Sesame algorithm paper [28]
is not implemented in the Android client. Something which is, in essence, wrong, as the Signal
implementation is thus not the same as documented. However, the feature does give a new attack
surface, which is at this moment not present in Signal Android. This attack is not explained in
the paper, nor is the mitigation of this attack given. Therefore, an implementation that does
want to implement the Sesame algorithm must be aware of the problem as described at the
beginning of this section.
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SIX

DISCUSSION

In this chapter we discuss our observations and their limitations.

6.1 Observations

Our major observation is that not all the properties of the Signal Protocol are met in practice.
Even for some of the properties that are met, there are some caveats. Furthermore, we found
that the Sesame algorithm is not implemented in the Signal Android application like Marlinspike
and Perrin documented it [28]. We first describe the observations and then discuss the solutions.

6.1.1 Deniability

The deniability property is not met. As found by Frosch et al. (section 3.1.1), even though
symmetric cryptography is used to encrypt messages, deniability is not met as a user still au-
thenticates to the server and thus cannot deny involvement in a conversation. Of course, Open
Whisper Systems could promise not to log any of this data, though this does not give the guar-
antee that the deniability property requires.

Sealed sender as described in section 2.1.5 looks promising to resolve this problem. The
feature has been introduced in October 2018, but it has not been formally analysed yet.

6.1.2 Forward and Future Secrecy

Although (a weaker version of) forward secrecy and future secrecy are met, supported by research
of Frosch et al. (section 3.1.1) and Rubín (section 3.1.3), we argue that this conclusion is too
simple when looking at the implementation. First, let us look again how Frosch et al. argue that
keys can be revealed, “When claiming perfect forward secrecy for TextSecure, we first have to
define which keys could be revealed. Since the TextSecure server does not store any private or
secret end-to-end communication keys, those keys can only be revealed from a TextSecure app”.
They then show how in some particular cases keys could be extracted as they are not yet deleted
from the device — thus breaking forward secrecy. However, they forget to note that on most
devices, erased data is not really erased.

It does sound odd that an adversary comprises a device and then tries to retrieve the private
keys instead of just reading the messages on the phone. Therefore, we argue that the notion
of forward secrecy does not mean a lot when having access to the device itself. In this same
way forward secrecy can also be easily bypassed by the organisation that created the message
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application. For instance, the organisation could perform analyses of the messages on the client-
side where messages are in plain-text. Then metadata could be inferred from the messages and
sent back to the server. This will still guarantee forward and future secrecy, but will defy the
meaning of end-to-end encryption.

We, therefore, advocate for a stronger notion of both forward secrecy and future secrecy
that deals with this situation. We define strong forward secrecy as “All messages that are sent
before message m cannot be retrieved when message m is compromised”, and strong future
secrecy as “All messages m that are sent after message m cannot be retrieved when message m is
compromised”. Meaning for forward secrecy that messages and keys must not be retrievable in any
way after erasure. It also implies that only one message and one key can be stored at a time. For
future secrecy, it means the device must be able to recover from a device compromise after every
message. These two notions, however, sound too strict and do not deal well with the example
above. We could also keep the current notion and add that the device is uncompromisable and
no information from the messages is inferred. This does not give us the restriction of having to
erase messages and keys instantly; however, this does require special hardware1.

6.1.3 Sesame Algorithm

The basic components of the Sesame algorithm are implemented as documented by Marlinspike
and Perrin [28]. One can only retrieve a pre-key bundle of a user or send messages once registered.
Messages that are sent to non-existing users or to wrong devices are rejected appropriately.

The session recovery mechanism of the Sesame algorithm is not implemented. On one side
this means information is not able to leak to an adversary, but on the other side, it means that
we were not able to analyse the implications of such implementation, see section 5.4.2.

6.2 Threats to Validity

In our thesis, we focused on the higher level layers, so parts of the lower level remain untouched,
such as the elliptic curve implementation. However, the thesis of Rubín does focus on the lower
layers. Our research is thus a good addition to the existing implementation analysis.

For protocol state fuzzing, one should choose the ‘right’ level of abstraction, which is not a
trivial task as it mainly depends on the purpose of the research. The abstraction level is reflected
in the chosen alphabet. This means that one should be careful that all the necessary inputs and
outputs are defined; otherwise, some cases will not show up in the finite-state machine. Therefore,
the chosen abstraction level, the alphabet and the interpretation of the model are very important
to assess the value of the research.

We did not look at group chats, the iOS and desktop codebase, nor the implementation
features of Signal such as sealed sender and the private contact discovery service. Research on
these parts may influence the observations. As written at the beginning of this chapter, sealed
sender may solve the problems with deniability.

1Tinfoil Chat is an application that meets the requirements with exception of physical compromise https:
//github.com/maqp/tfc

https://github.com/maqp/tfc
https://github.com/maqp/tfc
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SEVEN

FUTURE WORK

In this chapter, we describe the most relevant future work that could still be done in this field.

7.1 Desktop and iOS Client

Most of the research, including this paper, focuses on the Android version of Signal. Notably,
the paper of Frosch et al. [12], Cohn-Gordon et al. [5], and Rubín [32] are based on this version.
Therefore, analysing the desktop or iOS version could help to get a full picture of Signal.

7.2 Fuzzing on a Different Level

In this thesis, we have focused mostly on the Sesame algorithm. One could also take another
approach and search for vulnerabilities in one of the implementations. An easy target is the
Unicode renderer, which has been vulnerable for XSS attacks before — see CVE-2018-11101 1.
Also, the image and video viewer could be fuzzed. Open Whisper Systems recently even made
the attack surface bigger by adding support to search for GIFs online2 and previewing links3.
The buffer overflow in the Voice over Internet Protocol (VoIP) stack of WhatsApp targeted all
platforms (CVE-2019-3568 4). Signal also offers this service and fuzzing should be able to find
buffer overflows with the right toolset as described in section 3.2.2. So it is interesting to search
for similar kind of vulnerabilities in Signal.

7.3 Signal’s New Features

Signal brings out new features from time to time. Two of the most interesting features are sealed
sender and private contact discovery service. Sealed sender is a feature to hide the sender from
the Signal server. Normally, a Signal client will connect and authenticate to the server over
TLS. This authentication, however, gives the problem that the server can learn who is talking to
whom. Sealed sender is designed to hide the sender, but also to prevent spoofing and still give
control to the server to apply abuse protection.

1https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-11101
2https://signal.org/blog/giphy-experiment/
3https://signal.org/blog/i-link-therefore-i-am/
4https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-3568
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Private contact discovery service is a service to find friends on Signal without Signal needing
to have access to all contacts in the address book. For this to work the Signal server uses a
secure enclave, which allows performing computations in this enclave without Signal being able
to learn anything about it. The Signal client can even test if the source code in the enclave is
the same as the open-source version. The enclave then finds all the contacts of the user in the
list of registered users and sends this result encrypted to the client.

Both features are not trivial to implement and would benefit from some more in-depth ana-
lysis. Problems with the sealed sender could, for example, be that IP addresses still leak. Ques-
tions arise from using the secure enclave, how does the list of registered users get into the enclave
and are there any side-channel attacks possible?

7.4 Key Compromise

Frosch et al. [12] describe that in special cases forward secrecy can be broken by retrieving the
not yet deleted keys from a Signal client. A future research project could test the feasibility of
this attack by trying to retrieve the private keys from the device. This test also gives an even
better insight into the key deletion policy of Signal. Another research question could be, are the
keys still retrievable after erasure?

7.5 Fetching and Dropping Messages

There are two questions not yet answered in this thesis due to time constraints. One of them is,
how does Signal Android fetches messages from the server, does the server send the messages or
does the client poll for messages? In appendix B.3 one can see that on registration the variable
fetchesMessages can be set to either true or false. An interesting scenario would be when
Signal Android polls for new messages and authenticates with the authorisation code generated
at registration. When an adversary intercepts this authorisation code, the adversary could use
the code to authenticate to the server. The adversary can then fetch messages from the server,
which will be deleted on retrieval. This attack will thus lead to lost messages for the user.

The second question is, what happens when messages are lost? In section 2.1.3, we have
seen that keys to encrypt messages depend on the parent key. What if a previous message with
this parent key gets lost? One would, in theory, not be able to perform a ratchet step. For
instance, when the previous shared secret key is lost, the next could not be calculated with a
Diffie-Hellman ratchet as it depends on the previous shared secret key, see also figure 2.8. One
could research what happens in practice by dropping some of the messages and look if some
messages could not be decrypted.

7.6 Available Documentation and Code

Further research could benefit from the documentation and code written for this project. All can
be found on GitLab, https://gitlab.com/dvandam_thesis. Due to lack of documentation,
much time was spend to set up a Signal server. Therefore, we forked the project and added
documentation and a sample configuration, which can be found under the name Signal Server
v1.88. On this same GitLab page, the configuration for protocol state fuzzing can be found,
called Statelearner. Furthermore, the attempt to fuzz Signal Android with LearnLib can be
found in the repository called Signal Adapter v4.25.10 ; it contains a working server to receive
LearnLib messages and an auto-typer to simulate a user typing messages. Full quality images of
the models and diagrams can be found under Signal Protocol — MAIN.

https://gitlab.com/dvandam_thesis
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EIGHT

CONCLUSION

In this thesis, we have answered two research questions. “What are the properties of the Signal
Protocol and are these still valid in the implementation?”, which we have answered by ana-
lysing existing literature and the implementation analysis of chapter 4. The second question,
“How can the high-level protocol be modelled such that it gives a better understanding of the
implementation?”, we have answered by fuzzing and analysing the model (chapter 5).

We have found, by analysing existing literature, that deniability is not satisfied. Furthermore,
by analysing the implementation, we found that the notion of forward secrecy and future secrecy
is too weak when looking at the code. Previous research stated that in exceptional cases, forward
secrecy was broken as multiple keys were kept in storage. We argue that there is a more significant
problem, the first being that erasure on most systems only erases the link to the address and not
the data itself. More importantly, when having access to the device, one could already read all
the messages. Therefore, we have introduced a stronger notion in chapter 6 that also includes
device compromise.

By using manual fuzzing we have observed that the Sesame algorithm is not entirely im-
plemented. The mechanism to recover from diverged sessions is lacking. From a functionality
perspective, it means Signal is missing one of their documented features. With Signal’s focus on
ease of use, it seems logical to implement this feature as it prevents loss of messages. However,
from a security perspective, it makes sense not to implement this feature or to implement it in
such a way that an adversary cannot abuse it — implying such an implementation exists.

We have also figured that the usefulness of protocol state fuzzing is very depended on the
ability to automate the process. Protocol state fuzzing is easy to execute on the server-side as
we can send messages by using the API and we can restart the process by dropping the database
with only a few lines of code. To fuzz the client-side, one needs to be able to mimic a user and
be able to clear the cache of the Android client, which is much harder to set up.

Future work could be conducted on both the iOS version and the desktop version, as these are
less analysed in the literature. Fuzzing could be used to analyse, e.g. the Unicode renderer, the
JPEG viewer and the video calling service. Implementation analysis could be done on the new
features sealed sender and the private contact discovery service. Also, to research the feasibility
of compromising forward secrecy as described by Frosch et al., one could try to compromise the
Signal keys from a device.
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ONE

DATABASE STRUCTURE

A.1 Public Information

Information stored in the database for each person that registers at Signal. See section 4.3.1.

(id , number , data)
2 +27783 XXXXXX
{

"number ":"+27783 XXXXXX",
"devices ":
[{

"id":1,
"name":null ,
"authToken ":" ec69925615b61656e9dfcf8d21365f6d0d47a0a9",
"salt ":"184883909" ,
"signalingKey ":

"NMAEPTbvVFz4xcqnZuIRP1i3T7JMFQeRLL3XH
ilquLLjw /7 WXGY6+rwJISiUAWiRK /936A==",

"gcmId":
"APA91bEqQMIDee0Dqi9VxeCYTMmQ9lQYbA7mN
AEfwkfs0Dk2o1P -nm6XKcxXsi1JrYlLhEgn2A
4-Bp0PfwquifrceGLnRqB3w -_I_n4fIhdQm_ -
X-yldxkd0Dam0jcAA6iCd7LjMJ -X0",

"apnId":null ,
"voipApnId ":null ,
"pushTimestamp ":1562314176636 ,
"fetchesMessages ":true ,
"registrationId ":5615 ,
"signedPreKey ":
{

"keyId ":1251893 ,
"publicKey ":

"BWWeP5LtpwJghIHcDxhf7riStbUesdykux71+ayAL4Ay",
"signature ":

"yVVTngxTIo +1 vGN5b9Wk+O0N9aZ+RFQJj9+PVv0eiy1/
ZO5l+xl7r1WxiTiSkzGEN25QIoaLNOF1Nr6ldfIbDg"

},
"lastSeen ":1562284800000 ,
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"created ":1562314174141 ,
"voice":true ,
"video":true ,
"userAgent ":" OWA"

}],
"identityKey ":" BbnlEWBP+qfztfnACDimGbswZZp0a2wxPCpKtm6bE3tc",
"name":

"6 mJtQs6LD1mEKbyazxPwj9xxFFUZ8SeAqcvHw
4fP3Toh9mw8mK94JWVXRXgfmXIyX/jSzVq/",

"avatar ":" profiles/B0VsDmc0kz_80e6jj01LVg",
"avatarDigest ":null ,
"pin":null

}

A.2 Public Keys

Table containing all the public keys of every device registered at Signal. See section 4.2.1.

(id , number , key_id , public_key , last_resort , device_id)

2 +31611 XXXXXX 12056054 BX0hNur2vN6kHUH6poHLWILAkYAAlONFB4DFdW3VTRAv 0 1
3 +31611 XXXXXX 12056055 BVzoNI69s3wpGyz0E2KSLHwHglqULGSVgrQq2mzVRL0Y 0 1
4 +31611 XXXXXX 12056056 Bd7fuUxlOCy6OjClv8vz+cJ0DgnpugIbOpkLkia1r5sF 0 1
5 +31611 XXXXXX 12056057 BbRf3JW2RSQNZ/y1ZzbIVUA7FPQ7m83eSjD956LEkC4a 0 1
...
96 +31611 XXXXXX 12056148 BSaZEfXA8HciaPYt8fe2NNflA0lyvPn9AAmLCMYF30sE 0 1
97 +31611 XXXXXX 12056149 BaYmSvvOrpi/uBd8Sn1avJsMW+Yxfob95ULO54sVhiZP 0 1
98 +31611 XXXXXX 12056150 Bc/Hb8ETpaOy/ZlFLh5x8MghMsSgVvChgbHTN0NLhCVM 0 1
99 +31611 XXXXXX 12056151 BYNKeZ8Yhb3rHT0sPSC3bBH04mildchgZ /4 BDOQHr5dO 0 1
100 +31611 XXXXXX 12056152 BT9O4i4H+wBi9O9FeaYLwUzmpjz/RC2U2Mn5mTLzRKY5 0 1

102 +27783 XXXXXX 3244537 BTQ+JA4gtCYvXtAndEQQpDg2xi71bEKOCrPyUKKZh5Ir 0 1
103 +27783 XXXXXX 3244538 BUxtxJZK5Wm8kB7MM6VroeqeuBijnLP5VP24T2jMsypi 0 1
104 +27783 XXXXXX 3244539 BabYl5+Ito1QwLqlsUWMFTPW02CSFkHfbB0+KpYoHHFu 0 1
105 +27783 XXXXXX 3244540 BeNj/U+xyzs1ATdIPGq9hpkO7k4h1n2UQob+Xeht3jwc 0 1
...
196 +27783 XXXXXX 3244631 BT59fA6CW4OOMxwEA1E7DkYPgbGJaaeuzGvjNx/K4WgO 0 1
197 +27783 XXXXXX 3244632 BWW1QZ/iktEnZOzTl3C8mBTr94WtrxXeXk0MU0RYXeNW 0 1
198 +27783 XXXXXX 3244633 BdH67vDHTAAwSlXMG24bc /6 eUE2A9P/q6WgtPj+EIqRI 0 1
199 +27783 XXXXXX 3244634 BQTo1AMBatxYcst14+PwQ6xs9EmRMFJH7gay3NXLmGYp 0 1
200 +27783 XXXXXX 3244635 BVQeyJir64Wns9zzHAJsIIfXWwViDRICXnVcfMNAFrsX 0 1
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TWO

MESSAGE STRUCTURE

B.1 Server Log

Log showing the kind of information that the Signal server logs. The log contains all the requests
done to the server. See section 4.3.

"PUT /v2/keys/signed HTTP /1.0" 401 49 "-" "okhttp /3.9.0" 89
"PUT /v1/directory/tokens HTTP /1.0" 401 49 "-" "okhttp /3.9.0" 13
"PUT /v1/accounts/gcm/ HTTP /1.0" 401 49 "-" "okhttp /3.9.0" 19
"PUT /v1/directory/tokens HTTP /1.0" 401 49 "-" "okhttp /3.9.0" 9
"GET /v1/accounts/sms/code /+27783 XXXXXX HTTP /1.0" 200 0 "-" "okhttp

↪→ /3.9.0" 3323
"PUT /v1/accounts/code /463343 HTTP /1.0" 204 0 "-" "okhttp /3.9.0" 308
"PUT /v2/keys/ HTTP /1.0" 204 0 "-" "okhttp /3.9.0" 606
"PUT /v1/accounts/gcm/ HTTP /1.0" 204 0 "-" "okhttp /3.9.0" 301
"PUT /v1/directory/tokens HTTP /1.0" 200 120 "-" "okhttp /3.9.0" 89
"PUT /v1/profile/name/ClwolzrHTsQNPVMhxNEnM8jGtH8zIukdjVvfjp %2

↪→ FDRmPD73KLRh2Lt7qsjHupkscqHR7SaR1P HTTP /1.0" 204 0 "-" "okhttp
↪→ /3.9.0" 258

"GET /v1/profile/form/avatar HTTP /1.0" 200 795 "-" "okhttp /3.9.0" 232
"GET /v1/websocket /?login =+27783 XXXXXX&password=HypBjFZKf7znjoUqNPDaoXhw

↪→ HTTP /1.1" 101 0 "-" "okhttp /3.9.0" 66
"GET /v1/profile /+31611 XXXXXX HTTP /1.0" 200 0 "-" "-" 0
"GET /v2/keys /+31611 XXXXXX /* HTTP /1.0" 200 319 "-" "okhttp /3.9.0" 36
"PUT /v1/messages /+31611 XXXXXX HTTP /1.0" 200 0 "-" "-" 0
org.whispersystems.textsecuregcm.push.GCMSender: GCM Failed: org.

↪→ whispersystems.gcm.server.AuthenticationFailedException

B.2 Request a Verification Code

The GET request to ask a verification code by SMS. See section 4.3.1.

GET /v1/accounts/sms/code /+27783 XXXXXX HTTP /1.0

X-Signal -Agent: OWA
Accept -Encoding: gzip
User -Agent: okhttp /3.9.0
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B.3 Confirm a Verification Code

The PUT request to confirm the verification code received by either SMS or call. See section 4.3.1.
PUT /v1/accounts/code /284920 HTTP /1.0

Authorization: Basic KzI3NzgzWFhYWFhYOkFnNXNEczZUZ29DMWRvRmU5alpZMkRMUw ==
X-Signal -Agent: OWA
Content -Type: application/json; charset=utf -8
Accept -Encoding: gzip
User -Agent: okhttp /3.9.0

{
"fetchesMessages" : false ,
"pin" : null ,
"registrationId" : 5615,
"signalingKey" : "NMAEPTbvVFz4xcqnZuIRP1i3T7JMFQeRLL3XHilquLLjw /7 WXGY6+

↪→ rwJISiUAWiRK /936A==",
"video" : true ,
"voice" : true

}

B.4 Registering Keys

The PUT request to register the keys generated by the Signal client at the server. See section 4.2.1
and 4.3.1.
PUT /v2/keys/ HTTP /1.0

Authorization: Basic KzI3NzgzWFhYWFhYOkFnNXNEczZUZ29DMWRvRmU5alpZMkRMUw ==
X-Signal -Agent: OWA
Content -Type: application/json; charset=utf -8
Accept -Encoding: gzip
User -Agent: okhttp /3.9.0

{
"identityKey ":" BaUQEan9RhY /0 ina2Ey8GTbAICWCLifMmwphLpXouYsC",
"preKeys ":
[

{"keyId" : 11494154 , "publicKey" : "BeKIi8JcPDJtUEj5E9o2iILZVOvxLHp
↪→ +/2 pQgUmrvT0G "},

{"keyId" : 11494155 , "publicKey" : "BXLGjH /+ kCMfoZQWkcxeplN0S3oqzel /7
↪→ fXkzhO +04lN"},

{"keyId" : 11494156 , "publicKey" : "BaaybIOIkJucecjAL/
↪→ WJb59P77KvCtHddSpYnSvaEDId "},

...
],
"signedPreKey ":
{

"keyId" : 15273084 ,
"publicKey" : "BXOhm +95 qNypSut1WwiGk1ZGH8oHaZIqFIBqXlYSbyxD",
"signature" : "MszpBIcvcpEEU0iBpM/t//

↪→ xLmTabIaBxWUMySnLPlxA1f6ACWKX89T1je/
↪→ KJQWZ7KY57dX7QJOgkZoqYQzqIAw"
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}
}

B.5 Retrieve Contacts

The PUT request to retrieve the contacts that are also using Signal. See section 4.3.1.

PUT /v1/directory/tokens HTTP /1.0

Authorization: Basic KzI3NzgzWFhYWFhYOkFnNXNEczZUZ29DMWRvRmU5alpZMkRMUw ==
X-Signal -Agent: OWA
Content -Type: application/json; charset=utf -8
Accept -Encoding: gzip
User -Agent: okhttp /3.9.0

{" contacts ":[" tOLmkASkS/Ogfg","MBd3hr+qHflK0A ","131 SHxvDHqkZeg "]}

B.6 Retrieve Pre-key Bundle

The GET request to retrieve the pre-key bundle from another Signal user. See section 4.3.1.

GET /v2/keys /+31611 XXXXXX /* HTTP /1.0

Authorization: Basic KzI3NzgzWFhYWFhYOkFnNXNEczZUZ29DMWRvRmU5alpZMkRMUw ==
X-Signal -Agent: OWA
Accept -Encoding: gzip
User -Agent: okhttp /3.9.0

SERVER RESPONSE:
{

"identityKey ":" Bbqgqsljd0xcMK8zCU/Ex12/A0OQAiakaxHg8pXd85BW",
"devices ":
[

{
"deviceId ":1,
"registrationId ":13975 ,
"signedPreKey ":
{

"keyId ":4590740 ,
"publicKey ":" BfSBjiwTiiShoQb3PuTKHANgNI+KCSiDHfL6cmetFO0d",
"signature ":" yrpFYdPCl0d9cDsLVUm9JQPlIp5APKNuvHdKnVS

Oab7m6JuMNe6Xp1LcQMDG4mu3cRfpirCZ2aT7FQtAxVLWBA"
},
"preKey ":
{

"keyId ":12146509 ,
"publicKey ":" BRszJOJohHaI7zDMM3h3o95z/tllmqPmnOd7SjbzD41n"

}
}

]
}



APPENDIX

THREE

MODELS

The models are also available on https://gitlab.com/dvandam_thesis/main/tree/master/
models.

C.1 Signal Server Registration

Model that describes the registration phase when a Signal client wants to register. See sec-
tion 5.4.1.

0

CONFIRM_CODE / 403
REGISTER_KEYS / 401
GET_CONTACTS / 401

GET_PREKEY_BUNDLE / 401

1REQUEST_CODE / 200

REQUEST_CODE / 200
REGISTER_KEYS / 401
GET_CONTACTS / 401

GET_PREKEY_BUNDLE / 401

2CONFIRM_CODE / 204

CONFIRM_CODE / 403
REGISTER_KEYS / 204
GET_CONTACTS / 200

GET_PREKEY_BUNDLE / 200

3REQUEST_CODE / 200
CONFIRM_CODE / 204

REQUEST_CODE / 200
REGISTER_KEYS / 204
GET_CONTACTS / 200

GET_PREKEY_BUNDLE / 200

C.2 Signal Server Messaging (2 devices)

Model that describes the possible states of the server when two clients are connected. See
section 5.4.1.

0

MESSAGE_TO_A / 404
MESSAGE_TO_B / 404

DELETE_A / 204
DELETE_B / 204

1
REGISTER_A / 204

2REGISTER_B / 204

DELETE_A / 204

REGISTER_A / 204
MESSAGE_TO_A / 200
MESSAGE_TO_B / 404

DELETE_B / 204

3REGISTER_B / 204

DELETE_B / 204

REGISTER_B / 204
MESSAGE_TO_A / 404
MESSAGE_TO_B / 200

DELETE_A / 204

REGISTER_A / 204DELETE_B / 204

DELETE_A / 204

REGISTER_A / 204
REGISTER_B / 204

MESSAGE_TO_A / 200
MESSAGE_TO_B / 200
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C.3 Signal Server Multi-Device Messaging (2 devices)

Model that describes the possible states of the server when two client, one with multiple devices,
are connected. See section 5.4.1.

0

MESSAGE_TO_B / 404
MULTI_MESSAGE_TO_A / 404

DELETE_A / 204
DELETE_B / 204

1
REGISTER_A / 204

2REGISTER_B / 204

DELETE_A / 204

REGISTER_A / 204
MESSAGE_TO_B / 404

MULTI_MESSAGE_TO_A / 409
DELETE_B / 204

3REGISTER_B / 204

DELETE_B / 204

REGISTER_B / 204
MESSAGE_TO_B / 200

MULTI_MESSAGE_TO_A / 404
DELETE_A / 204

REGISTER_A / 204DELETE_B / 204

DELETE_A / 204

REGISTER_A / 204
REGISTER_B / 204

MESSAGE_TO_B / 200
MULTI_MESSAGE_TO_A / 409

C.4 Signal Server Messaging (3 devices)

Model that describes the possible states of the server when three clients are connected. See
section 5.4.1.

0 MESSAGE_TO_A / 404MESSAGE_TO_B / 404MESSAGE_TO_C / 404DELETE_A / 204DELETE_B / 204DELETE_C / 204

1

REGISTER_A / 204

2

REGISTER_B / 204

3

REGISTER_C / 204

DELETE_A / 204

REGISTER_A / 204MESSAGE_TO_A / 200MESSAGE_TO_B / 404MESSAGE_TO_C / 404DELETE_B / 204DELETE_C / 204

4

REGISTER_B / 204

5

REGISTER_C / 204

DELETE_B / 204

REGISTER_B / 204MESSAGE_TO_A / 404MESSAGE_TO_B / 200MESSAGE_TO_C / 404DELETE_A / 204DELETE_C / 204

REGISTER_A / 204

6

REGISTER_C / 204

DELETE_C / 204

REGISTER_C / 204MESSAGE_TO_A / 404MESSAGE_TO_B / 404MESSAGE_TO_C / 200DELETE_A / 204DELETE_B / 204

REGISTER_A / 204

REGISTER_B / 204

DELETE_B / 204

DELETE_A / 204

REGISTER_A / 204REGISTER_B / 204MESSAGE_TO_A / 200MESSAGE_TO_B / 200MESSAGE_TO_C / 404DELETE_C / 204

7

REGISTER_C / 204

DELETE_C / 204

DELETE_A / 204

REGISTER_A / 204REGISTER_C / 204MESSAGE_TO_A / 200MESSAGE_TO_B / 404MESSAGE_TO_C / 200DELETE_B / 204

REGISTER_B / 204

DELETE_C / 204

DELETE_B / 204

REGISTER_B / 204REGISTER_C / 204MESSAGE_TO_A / 404MESSAGE_TO_B / 200MESSAGE_TO_C / 200DELETE_A / 204

REGISTER_A / 204

DELETE_C / 204

DELETE_B / 204

DELETE_A / 204

REGISTER_A / 204REGISTER_B / 204REGISTER_C / 204MESSAGE_TO_A / 200MESSAGE_TO_B / 200MESSAGE_TO_C / 200
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address sanitizer An open-source tool developed by Google to detect memory corruption bugs.
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adapter In this sense it is a translator between two application. 31, 61
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authentication Proof that you are actually communicating with the person you think you are
communicating with. 6

Axolotl Ratchet The former name of the Double Ratchet algorithm. 7
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black-box testing A form of testing that sees the program as a black-box and thus can only
see in- and output. 13, 32, 59
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cryptographic deniability Not being able to proof to a third party that the other party had
said something. 2, 58

Curve25519 An elliptic curve that can be used for elliptic curve Diffie-Hellman. 21, 28

deniability See: cryptographic deniability. 16, 17, 38, 39, 42

Diffie-Hellman A protocol to agree on a shared secret key over a (possibly) insecure channel.
4–10, 25, 53, 58–60
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Diffie-Hellman ratchet An algorithm where both parties generate new key pairs by turns and
use these to do a Diffie-Hellman key exchange. The shared secret key will then be used as
chain keys. This gives the future secrecy property. See: Figure 2.7. 8, 9, 41, 53, 59, 60

Double Ratchet algorithm An algorithm that uses a Diffie-Hellman ratchet and a symmetric-
key ratchet to encrypt and decrypt messages. 7, 8, 10, 11, 16–18, 24, 25, 53, 58

E.164 A standard to define telephone numbers, starting with a country code of maximum 3
digits and a subscriber number of maximum 12 digits. 26

edge case Cases that are at the boundary, e.g. x >= 0 and x = 0 are sometimes confused and
can give errors. 15

elliptic curve An mathematical function that can be used for public-key cryptography when
used over finite fields. 6, 21, 24, 39, 58

end-to-end encryption Encryption from client to client, this means the server does not has
to be trusted. 1, 12, 39

ephemeral key A key in the Signal Protocol that may only be used once by the conversation
starter. 4–6, 23

evolutionary algorithm An algorithm that is based on biological evolution. An input is
mutated and the mutation is then checked. If the mutation is valid or better than the
previous, it will be further mutated. If not, the previous input is mutated again. 14, 15,
53, 59

evolutionary fuzzer A fuzzing technique that generates its input based on a evolutionary
algorithm, i.e. mutate valid input and check if the mutated input is still valid. 13

finite-state machine A model that can be used to describe the states of a system. 32, 39, 60

forward secrecy All keys that are generated before key k cannot be calculated when key k is
compromised. 2, 6, 8, 17, 38, 39, 41, 42, 60

future secrecy All keys that are generated after key k cannot be calculated when key k is
compromised. 2, 8, 17, 25, 38, 39, 42, 59

fuzzer Automated software testing technique by providing semi-random input to an application.
3, 4, 13, 14, 18, 19, 30, 31, 34, 36, 40, 42

generation-based fuzzer A fuzzing technique that generates its input based on a manually
defined grammar. 13, 14, 31, 59

grammar-based fuzzer See: generation-based fuzzer. 13

grey-box testing Combination of white-box and black-box testing. 13

Heartbleed A bug in OpenSSL that made it possible to access memory behind the buffer
boundary. 19

identity key The long-term key in the Signal Protocol. 4–6, 12, 17, 22, 61
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KDF chain Using the output of the KDF as input for the next KDF. See: Figure 2.4. 7, 8, 53,
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LearnLib A tool that can infer state machines. 18, 31–33, 36, 41, 58

Mealy machine A finite-state machine that defines both input and output on a transition. 32

mutation-based fuzzer A fuzzing technique that generates its input by mutations, e.g. insert-
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used by conversation starter to start the extended triple Diffie-Hellman. 4–6, 16, 22, 24

one-way function A function from which the inverse is not feasible to compute, i.e. when
having y it is not feasible to calculate x from f(x) = y. 4, 8

Open Whisper Systems A company founded in 2013 by Moxie Marlinspike. 1, 2, 5, 12, 20,
21, 38, 40, 60

OpenSSL Open-source implementation of SSL and TLS. 19, 59

perfect forward secrecy See: forward secrecy. 38

pre-key bundle . 33, 34, 39, 47

private contact discovery service A service that makes it possible to find contacts without
the server having to know the full address book. 12, 39–42

private key The key of a key pair that only the owner must known. 4, 5, 17, 61

protocol state fuzzing Inferring a state machine by sending semi-random messages to an ap-
plication an obversing the output. 16, 18, 30, 39, 41, 42, 61

public key The key of a key pair that may be known by everyone. 4, 5, 23

random oracle An oracle that has a random response for every unique query. 17

random oracle model Used to proof a system secure instead of using hash functions. 17

ratchet key pair The key pairs used to execute the Diffie-Hellman ratchet, i.e. used to agree
on new shared secret keys using the Diffie-Hellman key exchange. 9, 10, 24

ratchet step The generation of a new key for either the Diffie-Hellman ratchet or the symmetric-
key ratchet. 8–10, 41

receiving chain The keys that will be used to derive decryption keys. 9, 10, 25

RedPhone A proprietary encrypted voice calling application developed by Whisper Systems.
1, 2

resilience The output key looks random to an adversary. 8

sealed sender A function created by Open Whisper Systems to stay anonymous. 12, 38–42
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secret key See: private key. 5

secure enclave A separated space, either physically or virtually, which other processes are not
allowed to read from. 41

sending chain The keys that will be used to derive encryption keys. 9, 10, 25

sequence diagram A diagram defined by the UML standard describing how objects interact.
22

Sesame algorithm An algorithm that is used to manage sessions. 10, 11, 32, 34, 36–40, 42

shared secret key A key that is shared by two persons. 5, 6, 9, 17, 25, 41, 58–60

Signal An instant message application available for Android, iOS, Windows, macOS and Linux.
III, V, 1–3, 8, 12, 17, 18, 20–23, 25, 26, 28, 30–33, 36–48, 53, 61

Signal Protocol The protocol used by Signal to offer end-to-end encryption. III, V, 1–5, 10,
16, 17, 20, 21, 30, 38, 42, 53, 59–61

signed pre-key A key in the Signal Protocol that is signed with the identity key of the owner.
4–6, 17, 22, 28

state machine An abstract model that models the states of a computer program. III, 3, 18,
30–32, 53, 60

state machine learning See: protocol state fuzzing. 18

symbolic execution Following all the paths in the code by using symbolic values (e.g. x = λ).
13, 15, 61

symmetric-key ratchet An algorithm that uses the KDF chain to derive new keys. These
keys will be used as message keys. See: Figure 2.4. 8–10, 53, 59, 60

test harness See: adapter. 31

TextSecure The former name of Signal. 1, 2, 16, 17, 38

TextSecure Protocol Old name of the Signal Protocol. 1, 2, 17

Whisper Systems A company founded in 2010 by Moxie Marlinspike and Stuart Anderson.
The company was acquired by Twitter in 2011. 1, 60

white-box fuzzer A fuzzing technique that relies on symbolic execution. 13, 15

white-box testing A form of testing that tests the internal structure of the program. 59
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