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Abstract

Cryptomining malware takes up significant resources and computing power, with protection meth-
ods either focusing on behavioral analysis on individual systems or static network traffic signatures.
This thesis aimed to find a network based solution that used behavioral statistics of miners for de-
tection. A custom malware lab was created to perform controlled data collection of network traffic
from cryptominer samples. Next, an automated pipeline was built to label the data and generate
statistical features from the observed traffic. To explore for solutions, the data was scaled and cor-
related using a variety of methods for feature selection, resulting in fifteen mutations of the data.
Finally, six different machine learning classifiers were trained on ranges of parameters to find the
optimal tuning, resulting in a total of ninety combinations of classifiers and data mutations. The
Naive Bayes worked best, minimizing false negatives with a recall score of 98.11% but a precision
of only 19.55%. The potential for an improved system is shown without retraining the classifiers,
that is already capable of increasing the precision to 99.69%, but lowers recall to 50.40%.
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Chapter 1

Introduction

Historically, one would exchange physical objects with others for objects of the same perceived
value. A layer of abstraction was introduced by the concept of currencies as intermediary objects
that represented a value, most commonly in the form of a coin. This was then abstracted to bank
notes, which represented any number of coins. The dependency on all physical representations was
solved by technological advancements, allowing us to store a digital number as the representation
of our wealth. But with each of these transitions, the need for organization and infrastructure
increased. Third parties, such as governments and banks, have been responsible for all financial
transactions and the underlying infrastructure. A paper by Satoshi Nakamoto [46], noted the trust
that was placed in these organizations:

“While the system works well enough for most transactions, it still suffers from the
inherent weaknesses of the trust based model. Completely non-reversible transactions
are not really possible, since financial institutions cannot avoid mediating disputes. [...]
With the possibility of reversal, the need for trust spreads. Merchants must be wary of
their customers, hassling them for more information than they would otherwise need.
A certain percentage of fraud is accepted as unavoidable. These costs and payment
uncertainties can be avoided in person by using physical currency, but no mechanism
exists to make payments over a communications channel without a trusted party.” [46]

The same paper also introduced a design for a peer-to-peer electronic cash system: the Bitcoin.
The fundamental principle behind the Bitcoin, is that all actions rely purely on cryptographic
proofs instead of trust. Computers have to solve a cryptographic challenge that requires a lot of
computations. This process is known as mining - short for cryptomining. In addition, privacy can
be achieved by using anonymous keys, whereas banks would need to be trusted with keeping all
customer information private.

The possibility to maintain anonymity while using Bitcoin has attracted the attention of crim-
inals [16]. In September of 2013, the Cryptolocker ransomware was the first ransomware to allow
affected users to pay with Bitcoin [35]. But more importantly, resources of other systems could be
hijacked and used in the gathering process of cryptocurrencies. Any processor, from an Internet
of Things devices to corporate data centers or cloud servers, could contribute valuable computing
power. Botnets have been abusing infected computers since at least as early as August 2011 [79],
when Arbor Networks and Kaspersky Lab found malware with three embedded Bitcoin mining
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2 CHAPTER 1. INTRODUCTION

applications. This was just two years after the Bitcoin was introduced. The embedded mining
applications turn out to have become far more popular than ransomware campaigns [39].

Naturally, random malware infections can contribute to a large but unorganized mining network.
However, organized botnets are also being used for cryptocurrency mining [55]. The major advan-
tage of malware infections is the ability to gain persistence on infected systems as a process, which
allows for mining at any moment that the machine is operational. While the average workstation
might be operational for limited periods, corporate networks and data centers remain continuously
operational and are therefore more valuable targets [8].

Mining in browsers is a relatively recent development, with the CoinHive service launching in
August 2017 and a cryptojacking infection using this service already found in September 2017 [65].
Just a few weeks after CoinHive launched, 220 of the 100K most popular websites already used the
service [43]. Note that this service did not yet have an opt-in mechanism [62] at that time, making
most websites automatically start mining without asking the users for consent. The drive-by nature
of this type of mining makes it easy to temporarily hijack resources without needing to infect the
system and even use the GPU through WebAssembly for increased mining power [37]. However,
there is a major limitation to cryptojacking: the average page visit, and therefore mining time, is
generally limited to a few minutes [13].

Extended periods of mining will significantly heat up a machine. This thermal stress can cause
damage to the hardware components if cooled insufficiently [1], or significantly increase power con-
sumption to keep up with computation and cooling demands [77]. These side-effects of the malware
result in financial damages for organizations. But as companies implemented smarted detection
techniques, malicious miners implemented smarted evasion techniques too. In addition to generic
detection evasion techniques, cryptomining specific strategies had to be implemented. Examples of
these techniques include limiting the computing power taken up by the malware to prevent the host
system from noticeably slowing down, or pausing mining operations when users open resource mon-
itoring applications such as the Windows Task Manager. However, one mechanism of the malware
is impossible to hide. At some point, the malware needs to communicate with the cryptocurrency
network to retrieve information or to submit blocks.

In this thesis, a framework for detecting cryptominers on the network level is introduced. It
aims to make as few assumptions as possible, and avoids using static knowledge that might become
irrelevant as cryptominers change or adapt to current detection methods. Section 2 introduces
background information on cryptomining. Section 3 covers the methodology. Section 4 presents
the results. Section 5 discusses the results. Section 6 describes observations made during the
research. Section 7 outlines future work. Section 8 discusses related work. Section 9 gives the
conclusion.



Chapter 2

Background

2.1 Network Traffic Flows

There are several ways of describing the data streams between computers. However, experts and
literature tend to disagree on details or interpretations. To avoid confusion, I will use the definitions
used by Narang, Hota & Venkatakrishnan [47]. They used two levels of abstraction for communica-
tions: conversations and flows. The former describes the most basic case, where all traffic between
two IP addresses is grouped together. The latter describes the 5-tuple that is most commonly
used: the two IP addresses, the two ports, and the transport layer protocol. Conversations do not
differentiate between traffic from separate applications on the two endpoints, while flows tries to
make a distinction. As flows look at the transport protocol and ports, this can be viewed as shallow
packet inspection or stateful packet inspection.

2.1.1 UDP

The User Datagram Protocol (UDP) [56] is a stateless communication protocol that provides bare-
minimum connection capabilities. A UDP message contains a small header with the source port,
the destination port, the packet length and a checksum value. This is enough to route the message
over the internet, but also means that any control or verification mechanisms have to be handled
by the applications on the endpoints, as reliable delivery is not guaranteed in the protocol.

UDP connections are ideal for one-way traffic, where the sender does not necessarily care about
loss of messages, or for time-sensitive communication where messages become irrelevant once newer
information is received. Common uses include DNS or DHCP traffic, where conversations consist
of a single request and a single response message, or audio and video traffic, where consistency and
continuity are more important than completeness.

2.1.2 TCP

The Transmission Control Protocol (TCP) [57] keeps track of the current state of the connection
and provides reliable and ordered transmission of the data. It takes care of splitting data streams
into segments that are small enough to be transmitted. It also keeps track of any missing or
duplicate messages. For messages that do not arrive in time, retransmission is requested. The

3



4 CHAPTER 2. BACKGROUND

Figure 2.1: Schematic overview of TCP connection establishment and termination handshakes.
Note that the client and server use different sequence numbers, and acknowledge messages using
the last received number from the other party.

transmission speed and message buffer is also adjusted to compensate for the apparent network
congestion. Messages that arrive out of order are sorted before delivery to the application.

These features require some overhead. This starts with the three-way handshake to ensure
synchronisation between the two parties. The client sends a SYN message with a random sequence
number to the server. The server acknowledges the client’s SYN and sequence number, and sends its
own sequence number. Finally, the client acknowledges the server’s sequence number. Both parties
now know the first sequence number used by the other, which is increased with each following
message. During transmission, received messages are acknowledged using their number. This allows
TCP to detect missing messages and signal retransmission requests. Finally, another handshake is
performed to synchronise the termination of the connection. Both parties send and acknowledge
each others’ FIN message. A brief overview of the handshakes is shown in Figure 2.1.

2.2 Cryptocurrencies

The cryptomining process consists of a few general stages that are similar for most cryptocurrencies.
A high-level overview of this process for Bitcoin will be given, but differences do exist between
cryptocurrencies.

2.2.1 Bitcoin

First, a transaction is made by listing inputs and outputs. The inputs are references to unspent
funds owned by the user. Ownership of these funds can be proven if the public key of the user was
included in the previous transaction, and the funds have not been referenced in newer transactions.
The outputs list the public keys of recipients and the amounts of funds to be transferred. An
additional output can be included to return change to the user. Left-over funds are claimed by
miners processing the transaction. See Figure 2.2 for a visual representation.

Transactions are bundled in blocks. To link blocks together, a reference to the previous block
is included. See Figure 2.3 for a visual representation. At this point, the mining process begins.
In order for a block to be accepted, the hash of the block needs to be of a valid format. In the
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Figure 2.2: Visual representation of transaction chains. The public key references the new owner.
Ownership is verified with public keys from previous transactions. Unspent funds have not been
referenced in newer transactions. Transactions with multiple inputs reference multiple previous
transactions. Transactions with multiple outputs reference multiple public keys. Image by Satoshi
Nakamoto [46]

Block

Prev Hash Nonce

Tx Tx ...

Block

Prev Hash Nonce

Tx Tx ...

Figure 2.3: Blocks with the included transactions and the hash of the previous block. The nonce is
used to influence the hash of the current block, which must satisfy the difficulty requirement. The
process of trying various nonces is known as mining. Image by Satoshi Nakamoto [46]

case of Bitcoin, the first n characters of the hash need to be zeroes. To achieve this, a nonce is
included in each block. Miners compute the hash of the block for various nonces. The more zeroes
are required in the hash, the less valid hashes exist and thus the harder it is to find a nonce that
satisfies the requirement. It then serves as proof of work, as others can trivially verify that the block
now satisfies the difficulty requirement. The difficulty is adjusted to ensure that the entire mining
network finds such a nonce every ten minutes on average. This means that difficulty increases as
more miners join, and decreases as miners leave the mining network. Rewards are handed out to the
miner that mines a block. This gives miners an incentive to add more computing power, increasing
their share in the mining network and thereby increasing their chances of mining a block. Once a
block has been mined, it is published and added to the blockchain. The mining network then starts
mining the next block.

2.2.2 Altcoins

Since the release of Bitcoin in 2009, many more cryptocurrencies have been invented. All these
alternative coins, commonly abbreviated to altcoins, share some characteristics in one way or an-
other. However, a few coins have introduced innovative concepts that are worth noting. The list
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below features a few randomly selected coins that introduced noteworthy ideas to cryptocurrencies.
Note that many more altcoins have been invented, with many introducing their own novel features
or creative innovations. However, listing them all would go far beyond the scope of this thesis.

• Litecoin [80] (7 October 2011): considered to be the first successful altcoin, it made small
changes to the Bitcoin. Most notably, it replaced the hashing algorithm with scrypt, introduc-
ing memory requirements that dedicated hardware could not yet handle. This was the first
effort to prevent hardware solutions from dominating mining operations of a cryptocurrency.

• Dash [17] (18 January 2014): the X11 hashing algorithm was introduced, which uses a se-
quence of 11 different hashing algorithms. Dedicated hardware would need to become signifi-
cantly more complex to handle X11 efficiently. Additionally, all 11 hashing algorithms would
need to be broken simultaneously for the X11 algorithm to be broken.

• Monero [74] (18 April 2014): the CryptoNote protocol introduced both unlinkability and
untracability of transactions, hiding the identity of both sender and receiver. It also introduces
the CryptoNight hashing algorithm, which is an adaptation of scrypt as used by Litecoin.
However, it deals with optimizations and configurations that still made GPUs more effective
than CPUs. Not only does this halt dedicated hardware, but also GPU mining rigs that were
built for their performance over normal CPUs.

• Ethereum [81] (30 July 2015): provided smart contracts that can execute arbitrary code in
an isolated sandbox, run by community members. It uses the Ethash proof-of-work algorithm
and Keccak-256 hashing to create tasks that require a large amount of memory, resisting the
development of dedicated hardware.

• Zcash [28] (28 October 2016): introduced individual optional anonymity for both parties,
through zero-knowledge proofs known as zk-SNARKs. It also used the Equihash algorithm,
which is based on the Generalized Birthday Problem and is a different approach than most
coins take. It still relies on the fact that a lot of memory is required, preventing development
of dedicated hardware.

2.3 Cryptomining Protocols

Chances of mining a block are relatively low, and getting a significant share of the computing
power in the network is infeasible. This is why miners have grouped together in mining pools.
They cooperate in an organized fashion that can be used to minimize duplicate computations and
increase effectiveness of the pool. Profits from mining a block are shared among all participants in
the pool, usually proportional to the computing power contributed to the pool by the participant.

The Bitcoin Wiki lists five protocols that are used for pooled mining [73]: Bitcoin Binary Data
Protocol, BitPenny, getblocktemplate, getwork, Stratum Mining Protocol. At the time of writing,
only the getblocktemplate protocol (GBT) and the Stratum protocol are still in use. Both GBT
and Stratum use JSON Remote Procedure Calls for communication between the client and the pool
server, and Stratum even uses large parts of the message specification of GBT. The major difference
lies in the fact that GBT uses HTTP requests, while Stratum uses direct TCP connections.
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2.3.1 getwork

The basic protocol first used for pooled mining, is the getwork protocol [15]. Even though it is
no longer used, its successors still follow the same design principles. Getwork uses JSON Remote
Procedure Calls to request a block to mine, or submit the result of a computation. Messages are
sent as HTTP requests and responses. An empty request signals the server that a new task should
be sent back. A block of 256 bytes encodes the task that the miner should work on, and another
64 byte block encodes the target value.

Miners can add a header to the request with a list of non-standardized extensions that they
support. The server can add the corresponding headers to the response in order to better manage
the miner. Extensions can be used to (temporarily) redirect the miner to a different server, instruct
a miner to work on a partial task, or manage how the parties communicate.

Because of the little control that could be exercised by the server, the bad scalability, and the un-
official attempts at fixing various issues, the getwork protocol was replaced by the getblocktemplate
protocol (Section 2.3.2).

2.3.2 getblocktemplate

In 2012, the getwork protocol was replaced by the GBT protocol [14]. It was designed to incorporate
the unofficial extensions into a standard format as a list of identifiers, while keeping the JSON
format. In addition, the tasks distributed to the miners contain more information and options that
allow the miner to have more control over the mining process.

The GBT protocol does not send a specific task for the miner to work on, but gives the trans-
actions that the miner needs to work with. The server can mark some transactions to be required,
forcing the miner to include them in the block. A miner is then free to choose which of the optional
transactions will be included. If the server marks the template as mutable, a miner is also allowed
to alter the template parameters or add transactions. Because of the options and transactions,
GBT messages will almost always be larger than getwork messages.

Miners are allowed to ask for new transactions at any time. In practice, miners often request
work even if their current task is still valid and has not yet been invalidated by the server. Since
each transaction includes a fee for the miner who processes it, keeping the task up-to-date with the
maximum amount of transactions also maximizes the reward in case a miner is able to generate a
block.

One drawback of the GBT is that it is still based on HTTP requests, like getwork. Even though
miners can create as much work as they can handle, they are also responsible for maintaining
connection to the server. It is not possible for the server to push a message to the miner, although
tricks such as HTTP Long Polling provide workarounds. This was fixed with Stratum, which is
described in Section 2.3.3.

2.3.3 Stratum

The Stratum protocol [49] was first introduced as a custom protocol for a mining client, but shared
many similarities to getwork and GBT. The main difference is that GBT replaced the HTTP
connections with TCP connections. This gets rid of the tricks and workarounds that used to
be necessary, which simplifies communications and allows the server to push messages to miners
whenever necessary.
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The GBT protocol is used internally, but with a few slight modifications. First of all, only
transaction hashes are included instead of full transaction details, and all transactions have to be
processed. This makes messages significantly smaller, but also takes away the option for miners
to pick transactions. The assumption is that most miners will want to maximize the fees from
mining, automatically accepting all transactions. The second notable modification, is that miners
can subscribe to notifications from the server and authorize multiple workers on a single connection.
In practice, this means a single connection can serve multiple independent miners.

2.4 Machine Learning

In machine learning, there are two general approaches to training a model: supervised and unsu-
pervised. The difference lies in whether there is knowledge about the correct output used during
the training process.

In unsupervised learning we do not take any knowledge into account, whether this is available
or not. Instead, the records in a data set are compared with each other and some metric for
similarity has to be defined. From that metric, a method for splitting the data set has to be
defined. But without guidance on what is right, the configuration of unsupervised algorithms has
a direct influence on the results. Usually, the algorithm is trained and results are interpreted by
humans. Parameters are then tweaked in an effort to nudge the outcome to better match the
expected results, although this process does introduce an inherent bias.

In a supervised learning environment, the true labels of the records can be used to calculate
the performance of a model. Improvements can be measured, allowing for optimization. However,
the performance metric has a strong influence on how the model will be trained. Optimizing for
different metrics can result in very different models. Regardless, varying types of learning can
be used. Some algorithms may try to calculate absolute rules, while others incrementally adjust
parameters.

In this project, labels are available to the algorithms. Therefore, only supervised learning
algorithms will be described in the rest of this section. Section 2.4.1 describes the K-Nearest
Neighbors algorithm, Section 2.4.2 describes the Random Forest algorithm, Section 2.4.3 describes
AdaBoost, Section 2.4.4 describes the Naive Bayes algorithm, and Section 2.4.5 describes Support
Vector Machines.

2.4.1 K-Nearest Neighbors

The K-Nearest Neighbors (KNN) algorithm [2] is an intuitive clustering algorithm. When classifying
a record, the distance between it and all records from the training set are calculated. The distance
can be calculated in a number of different ways using different metrics, but the most common metric
is the sum of the euclidean distances per attribute. After calculating the distances, the closest k
records are selected. The classes of the selected records are used in a vote. A number of ways exists
to cast votes, a common method being the simple majority vote. Weighted methods often base
the weight of the vote on the distance between the records. In some situations, it is possible for
a record to receive equal scores for multiple classes. KNN classifiers should define how to handle
such cases.
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2.4.2 Random Forest

To understand the Random Forest algorithm [27], it is essential to understand the underlying
principle of the Decision Trees. A Decision Tree takes the data set and splits it based on an
attribute. The attribute is chosen based on information gain (Section 2.5.1) to maximize the
classification score. It may then recursively split each part further based on other attributes. The
decisions on how to split the data set may be encoded and visualized as branching nodes in a tree,
and leaves encoding the class decision. Note that a decision tree may be arbitrarily large, and might
be pruned to generalize the classifier and encode the majority class in a leaf.

The Random Forest classifier extends the concept of the Decision Tree classifier by combining
the decisions from multiple randomly initialized Decision Trees. While the individual Decision Trees
might come to different classifications, the Random Forest returns the majority vote among the
trees.

2.4.3 AdaBoost

AdaBoost [19] has some similarities with the Random Forest classifier that might help understand
how it works. Instead of building complex and independent Decision Trees, AdaBoost uses weighted
and dependent decisions. The algorithm starts by picking the attribute that maximizes information
gain, which can be seen as a decision tree with only one decision. The classification performance
is calculated and the decision is given a weight. Then, the weight of each record is updated based
on its current weight and the score of the last decision. Incorrectly classified records increase in
weight, and correctly classified records decrease in weight. The next iteration of the algorithm once
again looks for the decision that maximizes information gain, but now with respect to the weights
of the records. The decision is recorded, the score is calculated and the weights are updated again.
The final classifier takes a majority vote with the weight of each decision taken into account.

2.4.4 Naive Bayes

The Naive Bayes classifier [41] classifies records based on statistical knowledge of other records. Per
class, the probability that a record belongs to this class is calculated, with the highest probability
being used to classify the record. First, all records belonging to a class are selected. For each
attribute, the percentage of selected records with the same label as the record under classification
is calculated. These percentages are multiplied, along with the percentage of records in the entire
data set belonging to the selected class. This gives the probability that the record under classifi-
cation belongs to the selected class. The probability is not yet normalized, which is irrelevant for
classification but can be done to calculate the confidence that the record belongs to the selected
class.

The Naive Bayes classifier is formally defined as p(Ci|x) = p(Ci)p(x|Ci)
p(x) with x as feature vector.

Note how the denominator does not depend on any class, visualizing that normalization is not
necessary for classification. Also note that p(Ci) and all individual elements of both p(x|Ci) and
p(x) can be precomputed, significantly reducing the cost of classification.

Typical Naive Bayes classifiers make use of discrete attributes, making it trivial to calculate
the class probabilities per attribute. Continuous attributes can be discretized using binning, where
values are mapped to intervals at the cost of accuracy as the bins introduce artificial clustering
of the values. However, it is possible to estimate the probability more accurately using Gaussian
probability distributions [32].
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Figure 2.4: Example of the optimal separation line for a support vector machine on a two-
dimensional data set. Image by the scikit-learn developers [53]

2.4.5 Support Vector Machine

Support Vector Machines [11] are based on the intuitive sense that plotted data can be split into
groups using lines or (hyper)planes. The optimal case would split the data, but also maximize the
distance to all data points. Records are classified based on what side of the line or (hyper)plane
they are on. This principle works well on high-dimensional data, but it is computationally intensive
to find a solution as the (hyper)plane for an n dimensional data set has n − 1 dimensions. In
addition, hyper-parameters for the training algorithm itself need to be tuned, making training even
more expensive.

The algorithm starts off with a random guess at the best line or plane to separate the data. The
parameters are trained iteratively by computing the error of the separation plane, and adjusting
accordingly. Calculating the error for all samples, especially if many dimensions are involved, can
be costly. An alternative method is the Stochastic Gradient Descent, that computes the error for
a random subset of records and adjusts based on this partial calculation. In practice, this method
requires more iterations to converge, but reaches an optimum in less time. In this thesis, both a
standard Support Vector Machine and a Support Vector Machine using Stochastic Gradient Descent
were used.

Multidimensional cases are difficult to visualize or imagine, but the basic principle remains the
same for any number of dimensions. If the data set would be one-dimensional, the records could be
plotted on a number line where the optimal separation would be somewhere in between the means
of the groups. For the two-dimensional case, as visualized in Figure 2.4, a line separates the groups.
Note that it does not need to be linear, but could be polynomial at the increased cost of having
more parameters to tweak (see Figure 2.5). Finally, the three-dimensional case would have a plane
or surface that separates groups. Support Vector Machines can also be used for multi-class data,
which is also visualized in Figure 2.5.
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Figure 2.5: Example of the optimal separation line for a support vector machine on a two-
dimensional data set with multiple classes. Both linear and polynomial separations are visualized.
Image by the scikit-learn developers [53]. Note that SVC stands for Support Vector Classification.

2.5 Dimensionality Reduction

The curse of dimensionality [6], as it is commonly known, notes that achieving statistical significance
becomes harder when the number of dimensions in the data set increases. Combining this knowledge
with the fact that some machine learning algorithms require statistical significance to make accurate
predictions, as well as the significant increase in computation time that occurs for many algorithms,
and it is no surprise that there is a need to minimize the data while keeping the most relevant
information. In order to achieve this, several strategies and techniques exist. In this section I
will discuss information gain (Section 2.5.1), Principal Component Analysis (Section 2.5.2) and
Correlation Feature Selection (Section 2.5.3).

2.5.1 Information Gain

The metric of information gain describes the change in knowledge about a data set after splitting
it based on some arbitrary decision. We start by looking at the Shannon entropy [63] of our data
set. It is defined as Entropy = −

∑n
i=1 Pi log2 Pi, and can be seen as an impurity measure for the

set. Intuitively, when picking a random item from a high purity set, we have a high probability of
picking the majority class. And when picking a random item from an evenly distributed set, we
have a lower probability of correctly predicting which class we will pick. This can be translated
to classification problems. When classifying records, we can group records by label and calculate
the impurity of the prediction by looking at the original classes. When picking a random item
of a certain label, we hope to have a high probability of finding an item of the corresponding
class. In order to achieve such predictions and groupings, all decisions should aim to minimize
entropy, further refining the sets until we are satisfied with the purity of our labels. This is done
by using Kullback-Leibler divergence [38], also known as information gain, which is defined as

Gain(S,A) = Entropy(S) −
∑
v∈V alues(A)

|SV |
|S| Entropy(SV ). This compares the purity of the
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original set and the new subsets, and weighs each subset by its relative size. Any decision that
improves the overall purity of the predictions results in a positive value, namely the information
gained with the decision. Algorithms often pick the decision that maximizes the information gain to
most efficiently improve results with a single decision, and define lower bounds on the information
gain to prevent the number of decisions from exploding without significantly improving predictions.

2.5.2 Principal Component Analysis

Principal Component Analysis [20] redefines a data set as a set of linear combinations of attributes,
known as principal components. These components represent the major axes of variance in the
data set, and can be used to transform linearly dependent attributes into linearly independent
combinations. Intuitively, a person’s height and weight are correlated, meaning that defining a
healthy weight is impossible without taking their height into consideration. But two people of the
same height could have a different weight, as well as two people with the same weight having a
different height. PCA will find this correlation and transform it into the first principal component,
and transform the distance from this correlated combination into the second principal component.
Imagine such a scenario when looking at Figure 2.6, and it becomes clear that the second principal
component says something about the distance from the expected weight or height.

First, the data set is centered on the mean and attributes are scaled to unit variance. Then the
points are projected on a line through the origin and the sum of squared distances from the projected
point to the origin is calculated. The first principal component is the unit vector that aligns with
the line that maximizes the distance, which correlates to the axis with the greatest variance. Each
following principal component is then orthogonal to the previous ones, each describing a decreasing
amount of variance. When reducing dimensionality, selecting the first n principal components
ensures the maximum amount of information is kept.

2.5.3 Correlation Feature Selection

Correlation Feature Selection is a method described by Mark Hall [26]. The basic principle is to
select the feature that correlates most with the learning labels, but least with all other features.
Intuitively, duplicate features show equal correlations to the learning labels but do not add value
to the data set. Similarly, closely correlated features (such as distance in kilometers and distance
in miles) still add dimensions without efficiently describing new variance in the data set. It uses

a heuristic called merit, which is defined as MS =
krcf√

k+k(k−1)rff

. MS is the merit of feature

subset S, k is the number of features in subset S, rcf is the mean feature-class correlation for
features f in S, and rff is the mean feature-feature correlation for features f in S. Looking at
the formula, we see that a feature set with high feature-class correlations would maximize the
numerator. Simultaneously, adding too many features or features that show significant correlations
to each other, maximizes the denominator and thereby the cost of the feature set. One can start
with an empty feature set and grow the set by adding the feature that maximizes the merit, or
start with the full feature set and shrink it by deleting the feature that minimized the merit. These
strategies are known as forwards selection and backward elimination respectively. Depending on
what correlation metric is used, or what strategy is implemented, it is possible to obtain different
feature sets.
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Figure 2.6: An example of a principal component analysis, with the first principal component
showing the linear combination of attributes with the greatest variance. In dimensionality reduction,
the last component is discarded to reduce the amount of data while keeping as much variance as
possible. Image by Nicols Guarn [25]

Actual Class
Positive Negative

Predicted Positive True Positive (TP) False Positive (FP)
Class Negative False Negative (FN) True Negative (TN)

Table 2.1: Standard confusion matrix for binary classification. Rows represent predicted classes and
columns represent actual classes. Correct and incorrect classifications are found on the diagonals.

2.6 Performance Metrics

The performance of a classifier will always be quantified in terms of correct and incorrect labeling.
The most basic form is binary classification, for which the possible classes are Positive and Negative.
For both classes, a classifier can make a correct and incorrect prediction, resulting in four scenarios.
This is commonly visualized as a Confusion Matrix as shown in Table 2.1. While training classifiers,
the results from the confusion matrix are commonly condensed into a single value metric that focuses
on two or more of the metrics in the matrix. In this section, some of these scoring metrics and their
drawbacks will be discussed. The information in this section is based on work by Powers [58].

2.6.1 Precision

Precision describes the ratio between true positives and predicted positives. Intuitively, preci-
sion is the percentage of predicted positives that are actual positives. Precision is defined as
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TP FP TP FP TP FP TP FP TP FP
FN TN FN TN FN TN FN TN FN TN

Precision Recall Jaccard Fβ Matthews

Table 2.2: Relations between the confusion matrix and scoring metrics visualized. See Table 2.1
for an explanation of the confusion matrix.

precision = TP
TP+FP . Precision is most useful when the cost of false positives is significantly higher

than the cost of false negatives. In terms of this miner detection, this metric would show how
many flagged systems turn out to contain cryptomining software after inspection. Optimizing for
this metrics would mean minimizing the amount of systems unnecessarily checked for cryptominers.
The downside of this metric is that precision does not give insight into how many actual positives
were missed. Perfect precision can be achieved by a single correctly predicted positive, regardless
of the number of false negatives.

Table 2.2 displays how the precision score relates to the confusion matrix and other scoring
metrics.

2.6.2 Recall

Recall is quite similar to precision. However, recall looks at the true positives and actual positives.
This can be interpreted as the percentage of actual positives that is predicted as positive. The
formula is recall TP

TP+FN . Contrary to precision, recall is most useful when the cost of a false
negative is significantly higher than the cost of a false positive. In terms of mining detection, recall
would describe the percentage of active miners that is found and flagged. Optimization would
focus on minimizing the hidden costs of miners that remain active and undetected. Recall does
not provide insight into the number of false positives, leading to the scenario where unnecessarily
predicting only positives would always lead to a perfect recall score.

Table 2.2 displays how the recall score relates to the confusion matrix and other scoring metrics.

2.6.3 Jaccard Similarity Coefficient

Expanding upon the precision and recall metrics, the Jaccard Similarity Coefficient looks at all rele-
vant true positives and all incorrect predictions. Jaccard similarity is calculated using TP

TP+FP+FN .
As both false positives and false negatives can result in unnecessary costs, this metric can be in-
terpreted as the percentage of costs spent on correct miner detections in comparison to the total
amount of costs caused by miners and miner prevention. However, Jaccard similarity does not dif-
ferentiate between the cost of false positives and false negatives. For miner detection, false positives
might cost less than false negatives which result in miners remaining undetected.

Table 2.2 displays how the Jaccard Similarity Coefficient relates to the confusion matrix and
other scoring metrics.

2.6.4 Fβ

The F1 score is the harmonic mean of the precision and recall scores. The formula is F1 = 2 ∗
precision∗recall
precision+recall = 2∗TP

2∗TP+FP+FN . The generalized form is Fβ = (1 + β2) ∗ precision∗recall
(β2∗precision)+recall =
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(1+β2)∗TP
(1+β2)∗TP+β2∗FN+FP . The parameter β allows control over the balance between precision and

recall over the score. This can be used to model the balance in costs between false positives
and false negatives and optimize for a more realistic score of the detection method. Intuitively,
recall is β times as important as precision, or precision is 1

β times as important as recall. Note
that F0 = precision and F∞ = recall. However, The F1 metric does not take into account true
negatives and can result in over-optimistic scores.

Table 2.2 displays how the F1 score relates to the confusion matrix and other scoring metrics.

2.6.5 Matthews Correlation Coefficient

On most data sets, the Matthews Correlation Coefficient is similar to the F1 metric. The formula
is MCC = TP∗TN−FP∗FN√

(TP+FP )(TP+FN)(TN+FP )(TN+FN)
. It takes into account all four classification types

as well as any imbalances, and gives more information about the confusion matrix from a single
score. Imagine a classifier that classifies all actual positives as negatives, and all actual negatives
as positives. The Fβ score would be 0, which shows the lack of true positives but can not show
the performance on true negatives. The MCC would be -1, showing that the predictions are
perfectly inversely correlated to the actual classes. As another example, imagine a perfectly random
guessing on a perfectly balanced set of binary classes. The expected confusion matrix would be
TP = FP = FN = TN , which results in an Fβ score of 0.5. The MCC would be 0, which represents
the random nature of the classifier. As a final example, imagine TP = FP = FN, TN = 0. In this
case, Fβ would still be 0.5 while the MCC of -0.5 would correctly show the loose inverse correlation.
The drawback of the MCC is that there is no control over the influence of false positives and false
negatives, which might be desirable from a business perspective.

Table 2.2 displays how the Matthews Correlation Coefficient relates to the confusion matrix and
other scoring metrics.



Chapter 3

Methodology

This section describes the full process from collecting miner samples to the trained models. The
process is split into three steps. The first step is selecting the miners, described in Section 3.1.
The second step is the collection of data in Section 3.2. The third step is the preprocessing of the
gathered data in Section 3.3. The fourth step is the diversification by applying several scaling and
correlation methods in Section 3.4. The final step is the learning and validation of the models in
Section 3.5.

3.1 Sample Selection

Miner samples were provided by VirusTotal [76] through an academic agreement. Temporary
download access to an academic repository was granted, containing samples from October 2017 to
July 2018. Sample selection was performed by analysing all reports in the repository provided by
VirusTotal, using SQLite [68] and DB Browser for SQLite [54]. All detection names were extracted
from the reports, filtered for unique entries, filtered once more for mentions of the terms coin or
mine, and finally checked by hand for entries unrelated to cryptocurrency mining. The list of
manually removed names can be found in Appendix A. The resulting list of relevant detection
names was used to filter for reports mentioning any of the selected names. The corresponding
samples were used for data collection. All samples were provided as encrypted zipped (7z) files.

The results of the sample selection can be found in Section 4.1.

3.2 Data Collection

A Windows 10 laptop with an Intel Core i7-7600U processor and 32 GB DDR4 RAM was used
as host for the data collection lab. VirtualBox [48] was installed using instructions from VBox-
HardenedLoader [75] to harden the installation and make sandbox detection more difficult for the
samples. We refer the reader to Section 6.2.1 for remarks on the use of VBoxHardenedLoader.
Inside VirtualBox, an internal network was created for the VMs so that they can not connect to
the host system or the internet. Three VMs were created: a base analysis VM, an FTP server,
and a gateway. Each of these will be discussed in Sections 3.2.1- 3.2.3. An overview of the virtual
network is shown in Figure 3.1.

16
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Figure 3.1: The data collection lab is a virtual environment that is controlled by virtualization
software. A gateway and an FTP server provide infrastructure for the analysis VMs. Network
traffic is logged to PCAP files by the virtualization software. The gateway routes all traffic over a
VPN connection, to prevent reputation damage for the network that the host is connected to.

A script on the host system, called the controller, managed the virtual network and all VMs.
First, the gateway and FTP server were started and given time to finish loading. Then, n linked
clones of the base analysis VM were created (e.g. VM1, VM2, etc). VirtualBox was configured to
capture all traffic from the analysis VMs to unique local PCAP files on the host. This acted as a
virtual hardware tap on the virtual network interfaces, and was invisible to the VMs. Next, the
controller started the analysis VMs. After waiting for fifteen minutes, the analysis was assumed
to be complete and all analysis VMs were forcibly shutdown if they were still active. Finally, the
analysis VMs were deleted. The controller then restarted the cycle back at the cloning from the
base analysis VM. Refer to Section 6.2.2 for remarks on the PCAP collection.

The results of the data collection can be found in Section 4.2.

3.2.1 Analysis VM

A Windows 7 VM with two cores, 2 GB RAM, and a 100GB HDD was created as a base analysis
VM. These hardware specifications were based upon results from Al-Khaser [18], which will be
discussed later in this paragraph. Next, the VM was configured using instructions from VBox-
HardenedLoader [75], with one adaptation. The use of the Tsugumi driver was abandoned, and
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the hidevm script was edited to reflect this change, as the driver kept crashing. After applying the
script, the hardening was verified using Al-Khaser [18], which reports the results of typical VM
detection techniques. The results can be found in Section 4.2.1.

After installing Windows 7 on the VM, Windows Defender, Windows Updates, and User Account
Controls were disabled. 7-Zip [51] was installed to unpack the samples during analysis. A script
was set to run on startup. First, the script waited for the system to fully load. Then, the script
connected to the FTP server to download and delete a single sample. The script then closed the
FTP connection, unpacked the sample, and ran it. The script waited ten minutes, before forcibly
shutting down the VM. Finally, the script would disable itself before running the sample. This
prevented the script running twice and downloading a second sample, if the first sample would
restart the VM. Refer to Section 6.2.3 for remarks on the script.

Several frameworks were installed on the VM to help samples to run, and common applications
were installed to make the VM resemble a normal desktop. All frameworks and applications were
installed using Ninite [61]: 7-Zip, Adobe Air, Adobe Shockwave, Apache OpenOffice, Apple iTunes,
Document Foundation LibreOffice, Dropbox, GIMP, Google Backup and Sync, Google Chrome,
IrfanView, Microsoft OneDrive, Microsoft Silverlight, Microsoft Skype, Mozilla Firefox, Mozilla
Thunderbird, Notepad++, Spotify, TeamViewer 14, VideoLAN VLC Media Player, WinRAR, dot-
PDN Paint.NET, pdfforge PDFCreator.

3.2.2 FTP Server

A Windows 10 VM was created and updated to ensure all the latest security updates were installed
and Windows Defender was up-to-date. SMB was turned off, and the Internet Information Services,
FTP Server, and Web Management Tools were turned on. An FTP site was created and the site
folder was shared with a new local user. Credentials of this user were used by the analysis VMs
to log into the FTP site. A firewall exception was made for FTP connections. Finally, all miner
samples were placed in the FTP folder. A snapshot of the FTP server was made for debugging
purposes, resetting the lab, and bringing back samples that were taken during analysis. Refer to
Section 6.2.3 for remarks on the FTP server.

3.2.3 Gateway

The gateway was created using pfSense [40], and has two network interfaces. One interface is
connected to the internal network of VirtualBox, and the other interface is bridged to the network
interface of the host machine. All sample traffic was routed through an OpenVPN tunnel to a VPN
provider. This was done to prevent reputation damage for the network that hosted the lab because
of the malicious traffic that was generated. The gateway is visualized in Figure 3.2.

Note that the gateway was built to support UDP traffic. For example, Whonix [70] could be
used as an alternative to pfSense with out-of-the-box routing through Tor. However, Tor does not
support UDP traffic [31]. This could result in loss of traffic. In this experiment, VPN provider
Cryptostorm [12] and their pfSense tutorial were used. But any VPN provider with support for
OpenVPN connections could be used to set up the gateway.
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Figure 3.2: All traffic from the data collection lab was routed through a VPN tunnel interface,
created by OpenVPN [30]. Routes were set up to ensure no traffic could bypass the interface, and
all traffic on the outside of lab was encapsulated in the VPN tunnel. This prevented reputation
damage for the network that hosted the lab.

3.3 Preprocessing

Preprocessing was done as part of a pipeline built using Jupyter Notebooks [36] through the Ana-
conda Distribution [3]. The same holds true for the diversification in Section 3.4 and the modeling
in Section 3.5.

In the preprocessing steps, the gathered network traffic is converted into a format that can be
used in the model learning step. First, the labeling of the traffic is discussed in Section 3.3.1. It
is then split into flows, which is discussed in Section 3.3.2. Next, statistical features calculation is
discussed in Section 3.3.3. Finally, the mixing of sample traffic and a reference set is discussed in
Section 3.3.4. A visual explanation of Sections 3.3.1- 3.3.3 is shown in Figure 3.3.

The results of the preprocessing can be found in Section 4.4.

3.3.1 Labeling

To handle the labeling of the large volume of traffic, the Snort IDS [10] was used. To instruct
Snort on what traffic should be considered malicious, it was given two rulesets. The first is the
Snort Registered rules. This ruleset is available on the Snort website for all users who create an
account. The second is the Emerging Threats Ruleset [71], an open ruleset that is contributed to,
and maintained by, the security community.

For each original PCAP file, Snort generated a new PCAP file that contained only the packets
that triggered detection rules. All attributes were kept as the packets were copied by Snort. The
epoch timestamps, or the time logged by the network interface when the packet was received, was
used during feature generation in Section 3.3.3 to label the data.
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Figure 3.3: To gain insight into the preprocessing, the steps have been visualized. For convenience,
all packets are numbered by their original order and colored by flow. Packets flagged by Snort as
malicious are matched by number, or timestamp in the actual program. Flagged packets are used
to label the entire flow as malicious, which in turn is used as feature in the model learning step.
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3.3.2 Flow Separation

The PCAP files, consisting of network packets, were processed using the Python library Scapy [7].
Packets were separated into conversations and flows. Conversations were defined as the stream
of packets between two IP addresses. An example of a conversation might be (198.51.100.0,
203.0.113.0). Flows were defined as the stream of packets that shared a tuple of IP addresses,
ports and transport-layer protocol. An example of a flow might be (198.51.100.0, 9001, 203.0.113.0,
12345, TCP). Conversations represent two machines communicating with each other. However, it
could be the case that there are multiple applications talking to each other on those two machines.
Flows represent two applications communicating. Keep in mind that there are many scenarios
where these assumptions do not hold. As such, they should be treated as approximations.

Conversations and flows represent levels of looking at connections between two endpoints, which
means that there are two notations for the same tuple. For instance, conversation (198.51.100.0,
203.0.113.0) is the same as conversation (203.0.113.0, 198.51.100.0), as both show the same two
endpoints communicating. In the same way, flows (198.51.100.0, 9001, 203.0.113.0, 12345, TCP)
and (203.0.113.0, 12345, 198.51.100.0, 9001, TCP) are the same. For flows, the port numbers must
remain associated to the same IP addresses and the protocol must remain the same. If the ports
are switched, it could mean that two completely different pairs of applications are communicating.
This is also the case when the protocols do not match in two tuples.

The notation of the tuple was determined by whichever situation was observed first. The
first address belonged to the sender of the packet, who initiated the connection, and the second
address belonged to the receiver. Responses were matched to the existing tuple and added to the
corresponding flows. All packets belonging to a flow were grouped together. Similarly, all flows
belonging to a conversation were grouped together.

3.3.3 Feature Generation

To describe the characteristics of the conversations and flows, many different statistical features
were calculated. For instance, a flow could be described by the number of bytes received or the
duration of the connection. Some statistics could only be computed for conversations, such as the
total number of used ports or the average number of packets per flow. The features were based on
work by Bekerman et al. [5], but adapted to fit my definitions of flow and conversation, as well as
fit the scope of the project. A list of features is available in Appendix B.

Two non-statistical features were included. The detections from Section 3.3.1 were used to
label flows, indicating that one or more packets were flagged as malicious. Flows with and without
flagged packets were labeled with a one and a zero respectively. Similarly, conversations with or
without flagged flows were also labeled with a one or a zero.

3.3.4 Mixing with Reference Data

As the data collection lab from Section 3.2 did not simulate a realistic scenario with human interac-
tions, a reference data set was used. The Intrusion Detection Evaluation Dataset (CICIDS2017) [64]
provided data of a simulated small company network over the course of a week. The data set in-
cludes one day of activity without simulated attacks, to be used as reference. The PCAP file of
that day was preprocessed as described in Sections 3.3.1- 3.3.3.

The labeling step was also performed for the CICIDS2017 data. Simulated activity could have
resulted in malicious traffic. For instance, randomly browsing the web could have led to malicious
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advertisements being served to the machine, or even cryptominers in the browser. Although the
preprocessing was not guaranteed to catch all malicious traffic, it was used to successfully sanitize
the data further.

All benign conversations from the CICIDS2017 data set and all malicious conversations of the
data collection lab were combined into one data set for further use.

3.4 Diversification

Diversification was done as part of a pipeline built using Jupyter Notebooks [36] through the
Anaconda Distribution [3]. The same holds true for the preprocessing in Section 3.3 and the
modeling in Section 3.5.

After the preprocessing steps from Section 3.3, there were two decisions that could still have an
impact on the modeling steps in Section 3.5. The first decision to be made, was on how to scale
the data. The second, was on how to calculate correlation for the Correlation Feature Selection as
described in Section 2.5.3. Instead of picking any specific option based on intuition, the decisions
were incorporated as a diversification step to explore different combinations of choices.

The results of the diversification can be found in Section 4.5.

3.4.1 Scaling

Before the data was used, several scaling functions from scikit-learn [53] were applied to create
variations of the data set. This was done to be able to compare the impact on the final model
scores. The following functions, as defined by scikit-learn, were used:

• Unscaled: no scaling was applied.
• Min-Max: each feature was scaled to a range of [0, 1].
• Normalize: each record was transformed to a unit vector.
• Robust: each feature was centered on the mean, and the 25-75 percentile range was scaled to

unit variance.
• Scale: each feature was centered on the mean and scaled to unit variance.

Note that the normalization function applies to records and not to features. That means that
the number of generated features from Section 3.3.3 has an impact on this scaling method.

3.4.2 Correlation

For each of the scaling functions of Section 3.4.1, the data was stored in Pandas [42] DataFrame
objects. These have built-in functionality to calculate correlation using the Pearson correlation
coefficient [52], Kendall rank correlation coefficient [33], and Spearman’s rank correlation coeffi-
cient [67]. This resulted in a total of fifteen correlation matrices, that were used as input for the
feature selection in Section 3.4.3.

3.4.3 Feature Selection

Irrespective of the scaling method from Section 3.4.1, the number of generated features from Sec-
tion 3.3.3 can easily overwhelm machine learning algorithms and result in bad performance and/or
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extremely long computation times. Using the correlation matrices from Section 3.4.2, Correlation
Feature Selection was performed as described in Section 2.5.3. For each of correlation matrices, a
subset of features was selected. These subsets were used in Section 3.5.

3.5 Modeling

Modeling was done as part of a pipeline built using Jupyter Notebooks [36] through the Anaconda
Distribution [3]. The same holds true for the preprocessing in Section 3.3 and the diversification in
Section 3.4.

The classifiers as described in Section 2.4 were created using the scikit-learn [53] library. Each
classifier was trained on scaled data sets from Section 3.4.1, using each of the corresponding subsets
of features from Section 3.4.3. Each training session was repeated using K-Fold cross validation,
splitting the data set into 10 subsets and using each as a test set for the other 9. This process was
then repeated for hyperparameter training, where grid searching was used to test every combination
of parameters in predefined ranges. Both K-Fold cross validation and grid search were also taken
from scikit-learn. Finally, the results were plotted using the Matplotlib Python library [29]. The
plots are shown in Section 4.6, and discussed in Section 5.

For each of the classifiers, these parameters ranges were tested:

• K-Nearest Neighbors: [1, 50] neighbors
• Random Forest: [1, 100] trees, [1, 10] maximum tree depth
• AdaBoost: [1, 200] estimators
• Naive bayes: -
• Support Vector Machine: [10, 1000] maximum iterations
• SVM with Stochastic Gradient Descent: [10, 1000] maximum iterations

No undersampling or oversampling was performed to correct the imbalance between positives
and negatives in the data set, as this would intentionally skew results of the classifiers and most
often leads to worse results. The results of the modeling can be found in Section 4.6.
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Results

4.1 Sample Selection

Selecting samples was done in several steps, each time further narrowing down the number of
samples. The process is described in Section 3.1. The number of samples retained at each step is
displayed in Table 4.1.

When downloading the repository, there were many more reports than samples available. In
some cases, only the sample was available. But in many cases, only the report was available. All
samples that were missing either the report or the sample were excluded. Out of the 331.528 reports,
215.451 were selected because the corresponding samples were provided in the repository.

After extracting the 820.042 antivirus engine labels from these reports, they were explored for
terms that could help find all cryptominer samples. The terms coin and mine were chosen based
on the assumption that these could also be used to find terms such as bitcoin or miner, and initial
searches seemed to return relevant antivirus engine labels. The 5.077 found labels were checked for
irrelevant terms such as CoinStealer and Imminent, that do not relate to cryptocurrency miners.
For more on the excluded labels, we refer the reader to Appendix A. The 4.819 relevant labels
matched 16.928 reports. The corresponding samples were gathered and categorized, the result of
which is shown in Table 4.2. Of the 16.928 samples, 6.597 were executable file types.

Processing step Sample count
Reports in repository 331.528

... with sample 215.451
Unique detection labels 820.042
... using ‘coin’ or ‘mine’ 5.077
... after manual checks 4.819

Selected samples 16.928
Of executable types 6.597
Tested in sandbox 1.702

... that ran successfully 1.653

Table 4.1: Number of samples after each selection step as described in Section 3.1
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File type Sample count File type Sample count
7ZIP 3 Pascal 1
Android 11 RAR 35
C 2414 Text 3942
C++ 3219 Win32 DLL 360
CAB 1 Win32 EXE 1702
DOS EXE 22 Windows Installer 2
ELF 42 XML 10
GZIP 7 ZIP 90
HTML 4717 unknown 350

Total sample count: 16.928
Duplicate samples: 29

Table 4.2: The sample count per file type in the set of selected samples. Note that some samples
consist of source code that has not been compiled.

4.2 Data Collection

This section covers two separate results from the data collection phase described in Section 3.2.
First, the result of the hardening process as described in Section 3.2.1 is discussed in Section 4.2.1.
Second, a brief overview of the collected data is given in Section 4.3.

4.2.1 Sandbox Detection Mitigation & Verification

As described in Section 3.2.1, the analysis VMs were hardened using VBoxHardenedLoader [75]
to make sandbox detection more difficult for the miner samples. This process was verified using
Al-Khaser [18], of which the results have been recorded in Table 4.3. In the final setup, only the
script was used for stability reasons. Note that this did mitigate several detection methods, but
was still far from the score of a plain Windows 7 installation on a laptop. This meant that there
was a possibility that miner samples were able to detect that they were running in an isolated
environment, which potentially influenced the way in which the samples operated.

Mitigation Detection points
Baseline VM, no mitigation 45
Testing Only driver 39

Only script 31
Unstable setup Driver & script, base VM 25

Driver & script, linked clone 29
Final setup Only script, base VM 31

Only script, linked clone 35
Reference Windows 7 installed on laptop 9

Table 4.3: Number of sandbox detection triggers by Al-Khaser [18] after each step of detection
mitigation as described in Section 3.2.1 using VBoxHardenedLoader [75]. The driver used by
VBoxHardenedLoader was too unstable for the final data collection setup. For reference, Windows 7
installed on a laptop without any virtualization still produced 9 sandbox detection triggers.
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4.3 General Overview of Collected Data

Due to time constraints, only the Windows 32-bit executable samples of Section 4.1 could be tested,
limiting the experiment to 1.702 samples. Some samples crashed the testing environment repeatedly,
making it impossible to complete the data collection session. In the end, network traffic of 1.653
samples was collected using the methodology explained in Section 3.2. These generated a combined
total of 871 MB of network traffic.

4.4 Preprocessing

For a detailed description of the preprocessing process, we refer the reader to Section 3.3.
Snort labeled 1,44 MB of traffic as malicious, resulting in 3.222 flagged flows. These were

spread across 148 conversations that spanned a total of 16.820 flows. Of the flows, 569 used TCP
and 16.251 used UDP. For conversations with TCP flows, the average number of TCP flows was
14,23 with a standard deviation of 31,67. For conversations with UDP flows, the average number of
UDP flows was 118,62 with a standard deviation of 75,41. Yet the average number of source ports
in a conversation was 112,97 and the average number of destination ports was 2,41. This means the
analysis VMs opened a large number of ports, which connected to a small number of ports on the
server corresponding to each conversation. 107.468 packets were sent by initiating parties, while
50.767 packets were sent by responding parties.

The flagged conversations of the sandbox and the unflagged conversations of the CICIDS2017
data set resulted in 32,91 MB and 456,39 MB of features respectively. The combined set consisted
of 198.453 flows across 22.617 conversations. With 3.222 out of 198.453 flows having been flagged
as malicious, there were 60.6 times more benign flows than malicious ones.

4.5 Diversification

The data was scaled and correlation matrices were calculated following the functions from Sec-
tion 3.4. For each of the combinations of scaling and correlation, Correlation Feature Selection was
performed. The selected features for each combination are shown in this list:

• Unscaled & Pearson: flow bytes A var, flow bytes min
• Unscaled & Kendall: cw udp packets A thirdQ,

cw udp packets thirdQ, cw src ports flows ratio
• Unscaled & Spearman: cw udp packets A thirdQ, cw src ports flows ratio
• Min-Max & Pearson: flow bytes A var, flow bytes min
• Min-Max & Kendall: cw udp packets A thirdQ, cw udp packets thirdQ,

cw src ports flows ratio
• Min-Max & Spearman: cw udp packets A thirdQ, cw src ports flows ratio
• Normalize & Pearson: cw udp packets A stdev, cw udp packets A sum
• Normalize & Kendall: cw flow bytes stdev, cw flow duration thirdQ,

cw flow packets A var, cw udp packets stdev, cw udp flows, cw udp bytes A var
• Normalize & Spearman: cw flow bytes stdev, cw udp packets stdev
• Robust & Pearson: flow bytes A var, flow bytes min
• Robust & Kendall: cw udp packets A thirdQ, cw udp packets thirdQ,

cw src ports flows ratio
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• Robust & Spearman: cw udp packets A thirdQ, cw src ports flows ratio
• Scale & Pearson: flow bytes A var, flow bytes min
• Scale & Kendall: cw udp packets A thirdQ, cw udp packets thirdQ,

cw src ports flows ratio
• Scale & Spearman: cw udp packets A thirdQ, cw src ports flows ratio

To clarify the meaning of these features, they were listed below with a short explanation. The
full list of features is available in Appendix B.

• cw flow bytes stdev: The standard deviation of all bytes per flow in the conversation.
• cw flow duration thirdQ: The 75th percentile, or third quartile, of the durations per flow

in the conversation.
• cw flow packets A var: The variance of the packets sent by the initiator of each flow in

the conversation.
• cw src ports flows ratio: The number of unique source ports in the conversation divided

by the number of flows in the conversation.
• cw udp bytes A var: The variance of the bytes sent by the initiator per UDP flow in the

conversation.
• cw udp flows: The number of UDP flows in the conversation.
• cw udp packets A stdev: The standard deviation of the number of packets sent by the

initiator per flow in the conversation.
• cw udp packets A sum: The total number of UDP packets sent by the initiator in the

conversation.
• cw udp packets A thirdQ: The 75th percentile, or third quartile, of the number of packets

sent by the initiator per flow in the conversation.
• cw udp packets stdev: The standard deviation of the number of UDP packets sent per

flow in the conversation.
• cw udp packets thirdQ: The 75th percentile, or third quartile, of the number of UDP

packets sent per flow in the conversation.
• flow bytes A var: The variance in bytes per packet sent by the initiator in the flow.
• flow bytes min: The minimum number of bytes in a single packet of the flow.

4.6 Modeling

All six classifiers were trained as described in Section 3.5, with K-Fold cross validation and hyper-
parameter tuning for the specified parameter ranges. The results for each classifier were plotted as
follows: K-Nearest Neighbors in Figure 4.1, Random Forest in Figure 4.2, AdaBoost in Figure 4.3,
Naive Bayes in Figure 4.4, Support Vector Machine in Figure 4.5, and SVM using Stochastic Gra-
dient Descent in Figure 4.6.

For each classifier, the best performing combinations of scaling and correlating were:

• K-Nearest Neighbors: Scale & Pearson
• Random Forest: Robust & Pearson
• AdaBoost: Robust & Pearson
• Naive Bayes: Normalize & Pearson
• Support Vector Machine: Unscaled & Kendall
• SVM using SGD: Scale & Spearman
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Confusion matrices for the best performing combinations were constructed by letting each clas-
sifier make predictions for all records in the data set. The matrices can be found in Table 4.4.
Using the confusion matrices, the performance metrics of Section 2.6 have been calculated for the
convenience of the reader. The metrics can be found in Table 4.5. For convenience, the number of
errors per classifier are listed below:

• K-Nearest Neighbors: 6582 errors
• Random Forest: 2807 errors
• AdaBoost: 2839 errors
• Naive Bayes: 13069 errors
• Support Vector Machine: 15209 errors
• SVM using SGD: 20729 errors

The classifiers were compared in a pairwise manner to compute how many errors were made by
one out of the two classifiers, and how many errors were made by both classifiers. The results are
shown in Table 4.6 and Table 4.7 respectively. Out of the 3.222 malicious flows, sixteen flows were
never correctly classified by any of the six selected best performing classifiers.
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Figure 4.1: Scores for the K-Nearest Neighbors classifier. The Scale & Pearson set performed best
(first column, fifth row).
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Figure 4.2: Scores for the Random Forest classifier. The Robust & Pearson set performed best
(first column, fourth row).
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Figure 4.3: Scores for the AdaBoost classifier. The Robust & Pearson set performed best (first
column, fourth row.
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Figure 4.4: Scores for the Naive Bayes classifier. The Normalize & Pearson set performed best (first
column, third row).
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Figure 4.5: Scores for the Support Vector Machine classifier. The Unscaled & Kendall set performed
best (second column, first row).
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Figure 4.6: Scores for the SVM classifier using Stochastic Gradient Descent. The Scale & Spearman
set performed best (third column, fifth row). Note the negative score for this set, which means the
classifier performs better when inverting its predictions.
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K-Nearest Neighbors Random Forest AdaBoost
TP TN TP TN TP TN

PP 1972 5332 PP 1674 1259 PP 1642 1259
PN 1250 189899 PN 1548 193972 PN 1580 193972

Naive Bayes Support Vector Machine SVM using SGD
TP TN TP TN TP TN

PP 3161 13008 PP 3161 15148 PP 39 174541
PN 61 182223 PN 61 180083 PN 3183 20690

Table 4.4: Confusion matrices of the trained classifiers for the best set of scaling and correlation. The
terms True Positive (TP), True Negative (TN), Predicted Positive (PP) and Predicted Negative
(PN) have been shortened. Note that the SVM using SGD performs better when inverting its
predictions, essentially swapping the two rows.

Accuracy F1 Precision Recall Jaccard Matthews ROC AUC
KNN 0.9668 0.3747 0.2700 0.6120 0.9668 0.3925 0.8604

Random Forest 0.9859 0.5439 0.5707 0.5196 0.9859 0.5374 0.9796
AdaBoost 0.9857 0.5363 0.5660 0.5096 0.9857 0.5298 0.9784

Naive Bayes 0.9341 0.3260 0.1955 0.9811 0.9341 0.4225 0.9645
SVM 0.9234 0.2936 0.1726 0.9811 0.9234 0.3946 -

SVM using SGD 0.8955 0.2350 0.1333 0.9879 0.8955 0.3426 -

Table 4.5: Performance metrics of Section 2.6 calculated for each of the best performing classifiers.
Note that scores of the SVM using SGD use the inverted predictions as mentioned in Table 4.4.

KNN Random Forest AdaBoost Naive Bayes SVM SVM+SGD
KNN - 321 336 12282 14421 19941

Random Forest 4096 - 32 13053 15192 20712
AdaBoost 4079 0 - 13038 15177 20712

Naive Bayes 5795 2791 2808 - 2141 7682
SVM 5794 2790 2807 1 - 7261

SVM+SGD 5794 2790 2822 22 1741 -

Table 4.6: Comparison of errors between pairs of classifiers. Each value represents the number of
records that the classifier of that row classified correctly, but the classifier of that column classified
incorrectly.
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KNN Random Forest AdaBoost Naive Bayes SVM SVM+SGD
KNN - 2486 2503 787 788 788

Random Forest 2486 - 2807 16 17 17
AdaBoost 2503 2807 - 31 32 17

Naive Bayes 787 16 31 - 13068 13047
SVM 788 17 32 13068 - 13468

SVM+SGD 788 17 17 13047 13468 -

Table 4.7: Comparison of errors between pairs of classifiers. Each value represents the number of
records that both classifiers predicted incorrectly.
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Discussion

Although the results in Section 4.6 show that some classifiers do indeed correctly classify many
samples, it is important to take another look at Table 4.4. All classifiers generated over 1.000 false
positives, with half even generating over 10.000 false positives. In a business case, false positives
result in wasted effort trying to investigate whether an alert is a true positive. If we look at the
Random Forest and AdaBoost classifiers, we see that about half of all alerts in this scenario would
have been false positives.

Yet at the same time, false negatives could result in damages because infections were not spotted.
This should draw the reader’s attention to the confusion matrices of the Naive Bayes and Support
Vector Machine classifiers. These classifiers found almost all true positives, albeit at the cost of a
large number of false positives. If the cost of investigating false positives is relatively low, the Naive
Bayes classifier could provide a solution that is fast to train and leaves little false negatives.

However, if the cost of investigating false positives is relatively high, another solution would be
necessary. In this case, we can include Table 4.7 to search for an answer. The Naive Bayes classifier
and the Random Forest classifier rarely make the same mistakes, which suggests that they could be
used to complement each other. If we first take all positive predictions of the Naive Bayes classifier
to find almost all true positives, and then apply the Random Forest classifier to those samples to
reduce the number of false positives, we get confusion matrix in Table 5.1 and the performance
metrics in Table 5.2.

Naive Bayes before Random Forest
True Positive True Negative

Predicted Positive 1624 5
Predicted Negative 1598 195226

Table 5.1: Confusion table after using Naive Bayes to select potential positives, and using Random
Forest for the final decision.

Although there are ways to minimize the number of false positives or the number of false
negatives, there are two important factors to keep in mind. First, this data set only approximates
a real life scenario for companies looking to protect their networks. The CICIDS2017 data set
from Section 3.3.4 only contains a single day of traffic, simulating a small company network. In
reality, we could assume a network to be clean at some point in time, and monitor the network
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Accuracy F1 Precision Recall Jaccard Matthews
Combined 0.991923 0.669553 0.996931 0.504035 0.991923 0.705953

Table 5.2: Performance metrics after using Naive Bayes to select potential positives, and using
Random Forest for the final decision.

from that moment forward. If we monitor the network for 100 days without any cryptominers on
the network, the false positive rate in Table 5.1 would still generate 500 alerts. In addition, if the
company network would be larger than the simulated one, we would expect more than five alerts
to be generated per day. In such a small company as was simulated, one can easily imagine the
number of alerts being far too high to be taken seriously on a daily basis.

The second factor to keep in mind, concerns the imbalance in the data set. We have added the
results of 1.653 malicious samples, whether they successfully executed or not, to a single day worth
of traffic of a small company. Once again, the assumption that a network is relatively clean for
extended periods of time reinforces the principle that true company networks should generate far
more benign traffic than malicious traffic. In reality, we assume networks to generate more varied
traffic, which would only make training the classifiers more difficult. To approach the true balance
of networks in our data set, we would either have to add great amounts of benign traffic or greatly
reduce the number of miner samples. It is therefore highly likely that the current performance is
far from the performance seen outside a laboratory environment.

Naturally, it is also necessary to note that there are ways to improve upon the current framework.
There are many more features that could be computed in Section 3.3.3, some of which might greatly
improve the performance of the classifiers. We tried to refrain from using the typical malware
signatures that require pattern matching indicators, as malware could easily be altered to avoid
detection once more. However, one could imagine less static features, such as the top-level domains
in DNS requests, that might differ enough in malware traffic compared to normal company traffic.
Or perhaps the length of the domain name would be a good feature. Additionally, combining
multiple classifiers such as suggested earlier in this section, could prove to be useful as well. It
could even be beneficial to use one classifier as a filter, like the Naive Bayes classifier, and use the
output to train another classifier.
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Observations

This section documents observations made during the research, that did not fit anywhere else in the
thesis. Nevertheless, they could provide insight and information for readers interested in replicating
parts of this research.

6.1 Initial Exploration

Initially, a small malware lab was built and samples were randomly picked from reports that men-
tioned terms such as bitcoin or miner. This was done to explore the miner samples and gain general
insight into the network traffic produced by these samples. Within VirtualBox, a REMnux [82] VM
was created to serve as a simulated internet gateway. The internal network of VirtualBox was used
to all samples were contained within a virtualized environment without connections to the host
or the internet. VirtualBox was also configured to write all network traffic to a local PCAP file.
Building such a small and contained network provided an ideal learning environment to become
familiar with the malware and understand its behavior.

The small lab was not yet configured for automatic data collection. In order to create an initial
data set, the list of selected names from Section 3.1 was used to find the sample with the highest
detection rate per name, i.e. the sample that was detected by most antivirus engines. This sample
set was filtered for unique entries and submitted to a publicly available Cuckoo Sandbox [24] by
the Estonian CERT [9]. After the analysis was completed, the PCAP files were downloaded to test
the initial versions of the preprocessing (Section 3.3), diversification (Section 3.4), and modeling
(Section 3.5) stages with. Having a reasonably sized data set was useful in trying to debug the
Jupyter Notebook and quickly finding packet types that were not yet being handled.

6.2 Data Collection

During the data collection phase described in Section 3.2, there were a few remarks to be made
on the use of VBoxHardenedLoader (Section 6.2.1), the collection of PCAP files on the host sys-
tem (Section 6.2.2), and the workings of the collection lab during the execution of the samples
(Section 6.2.3).
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6.2.1 VBoxHardenedLoader

The driver that was provided with VBoxHardenedLoader did mitigate some VM detection methods,
as described in Section 4.2.1. However, the host machine would crash with a Windows blue screen.
Whether the problem was related to VBoxHardenedLoader, to VirtualBox, or to Windows, is
unknown. For stability reasons, the use of the driver was abandoned and only the provided scripts
to change the VM configurations were used.

6.2.2 PCAP Collection

The collection of network traffic was done using built-in functions of VirtualBox. As all hardware for
the VMs was emulated by VirtualBox, it was possible to let all traffic be logged to local PCAP files.
This functionality was only available through the commandline-interface VBoxManage: modifyvm

[--nictrace<1-N> on|off] [--nictracefile<1-N> <filename>]. As such, there was the added
advantage that this method of logging network traffic did not require scripts on the analysis VMs
or secure storage inside the virtualized network.

6.2.3 Data Collection Lab During Execution

Whilst running the data collection lab, the number of samples taken from the FTP server and the
number of PCAP files collected were not running in lockstep as anticipated. Upon investigation,
we noticed that some malware samples restarted the VM, which led to the automation script
accidentally collecting another sample from the FTP server. At the same time, an unknown file was
visible on the FTP server for a few seconds. This one incident revealed mistakes in our assumptions.
First, we assumed that VMs would not restart. This was fixed by making the automation script
remove itself at the same time as it started the miner sample. The second assumption, was that
a fully updated Windows 10 machine would be safe as the FTP server in the hostile network.
Fortunately, Windows Defender caught the file before it could be executed, and identified it as the
Bluteal trojan, which abused the SMB protocol to try and infect the FTP server. This was fixed
by disabling SMB on the FTP server, which we assume was turned on by default.

Having all infrastructure in the virtualized environment allowed us to take snapshots and quickly
debug and restart the lab. Since this research had to rely on given labels as described in Section 3.1,
there was no guarantee that the samples would indeed purely be cryptominers. This incident showed
that it was well worth being prepared for samples to be unpredictable.



Chapter 7

Future Work

The current framework can be improved in four ways. First, the number of samples can be expanded
by testing a wider variety of samples. As mentioned in Section 4.3, only the Windows 32-bit
executable samples were tested due to time constraints. But as shown in Table 4.1, there were
five times more executable files that could have been executed. Even then, that would only be
6.597 samples out of the 16.928 that were found in the academic repository. It would be interesting
to collect the data from the other samples too. For instance, there are 4.717 HTML samples left
unexplored, as well as 5.633 C and C++ samples that have yet to be compiled, and even 3.942
samples that were only labeled as being text.

The second improvement would be to try and create more realistic data sets. Section 5 already
mentioned that the current data set features a day worth of network activity of a simulated small
company, versus 1.653 malicious file samples. More benign traffic could provide a more diverse
baseline, as well as decrease the significance of the malicious samples that are currently over-
represented in the data set. This would likely make model learning significantly harder, but would
also more realistically represent the performance of the classifiers in a real-world scenario.

The third improvement lies in the features that are being generated. As the features are selected
using Correlation Feature Selection (Section 2.5.3), the most important features will be used to train
the classifiers. Finding new features that correlate well to the samples increases the performance
of the classifiers. However, unused features that have been implemented could still be useful in the
future. If miner samples shift their behavior to avoid detection, previously unused features could
become more important and get selected. And as mentioned in Section 5, features that rely less
heavily on statistics while not focusing on static signatures, could still be reused when retraining
the classifiers to account for changes in sample behavior.

The fourth and final improvement could be made by investigating the possibilities to combine
several classifiers. One approach would be to create a voting scheme where multiple classifiers
have to agree on the decision, as only sixteen flows were never correctly identified (Section 4.6).
Perhaps, a staged approach such as suggested in Section 5 would result in a better performance,
where classifiers are used to filter or split the data set before handing it off to the next classifier.
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Chapter 8

Related Work

For a gentle but thorough introduction to the intricacies of Bitcoin, including security and privacy
aspects, we refer the reader to Tschorsch & Scheuermann [72]. An in-depth investigation of illicit
mining practices was performed by Pastrana & Suarez-Tangil [50].

MineGuard [69] uses hardware performance signatures associated with proof-of-work computa-
tions, to detect cryptominers on CPUs and GPUs with minimal overhead. Solanas, Hernandez-
Castro & Dutta [66] used CPU, disk, and network utilization metrics to detect malicious behavior
on VMs in a cloud environment. Barbhuiya et al. [4] used anomaly detection with similar features
to detect the moment a VM started the illicit behavior.

Both Musch et al. [45] and Saad, Khormali & Mohaisen [60] show the wide-spread use of cryp-
tominers in websites, and conclude that blacklists provide insufficient protection. Kharraz et al. [34]
demonstrated that CPU utilization can be used in addition to other features, but generates a large
amount of false-positives on its own. SEISMIC [78] provided a semantic signature-matching method
by counting CPU instructions during the execution of WebAssembly modules. MineSweeper [37],
which builds upon this principle, adds the detection of cryptographic primitives and excessive cache
operations during execution.

BotHunter [22], BotSniffer [23] and BotMiner [21] are three similar methods for botnet detection.
BotHunter correlates network connections between machines inside and outside a network to five
infection phases. BotSniffer uses the principle that infected machines show strong similarities in
communication with C&C servers. It detects potentially infected machines through clustering traffic
characteristics, which means no prior knowledge of the malware is required. BotMiner takes this
one step further by applying layered clustering to connections and network activity, making it
capable of detecting both centralized C&C structures as well as P2P botnets. It also reduces the
data footprint by 90% before clustering. In contrast, Morales et al. [44] identified unusual network
behavior used by malware, with which it could be detected and classified. In 2011, Rossow et al. [59]
monitored traffic of malware families for an hour (contrary to the usual two to ten minutes) and
showed that it mainly generated DNS and HTTP traffic, which was further dissected. Bekerman
et al. [5] proposed a malware agnostic approach by looking at network traffic from three levels of
aggregation and generating 972 metrics, upon which part of this research was based. Their system
was able to detect new malware samples up to four weeks before community-made detection rules
appeared.
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Chapter 9

Conclusion

As shown in the results in Section 4 and discussed in Section 5, it is possible to do cryptomining
detection using only statistical features. The large feature set generated in Section 3.3.3 can be
reduced using Correlation Feature Selection in Section 3.4.3. Searching through all combinations
of scaling and correlating led to different optimal mutations for the various classifiers as shown in
Section 4.6. Although the individual classifiers might not be usable in real-life scenarios, as shown
in Table 4.4, combinations of classifiers could work towards usable systems as shown in Section 5.

Our framework does not need to be applied to all individual machines in a network, but can be
used to monitor all machines at once. Like MineGuard [69], SEISMIC [78], and MineSweeper [37],
we use behavior inherent to cryptominers that would be difficult to mask. However, we applied
this concept to network level behavior instead of machine level behavior. BotHunter, BotSniffer
and BotMiner need at least two machines in the network, where our framework is agnostic to the
number of machines. We based our statistical approach on Bekerman et al. [5], but avoided features
that could introduce static signatures. We showed that these additional features are not necessary
for reaching recall scores of 98.11% or precision scores of 99.69%. Finally, we tested a variety of
scaling and correlation methods to preprocess the data. Not only did we show the score graphs of
the hyperparameter tuning, but also demonstrated the effects of the preprocessing methods. As far
as the authors are aware, the effects of data preprocessing methods have never been discussed, or
shown, in related works.

Further improvements could be made to this work, as mentioned in Section 7. Not all available
samples could be tested, which leaves the question how well the framework performs on other
types of cryptominer samples. In addition, the CICIDS2017 data set that was used as reference
material to train the classifiers with, might not be sufficient to accurately simulate a real company
environment. Furthermore, there are many options to add more features, which could potentially
give better results. Finally, using combinations of classifiers as described in Section 5 shows potential
improvement gains that are worth investigating.
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Appendix A

Excluded Malware Detections

This list contains all manually removed names from Section 3.1. The reports in the VirusTotal
repository list the detection names (if detected) of up to 69 unique antivirus applications, most
using different naming conventions. For that reason, any detections using the following strings were
removed from the samples:

• BitCoinStealer
• CoinClipStealer
• CoinSteal
• CoinStealer
• Coinficon
• Coinge
• Coins
• Iminent
• Imminent
• Minecraftpe
• Minecru
• ProcessHijack.lrX@amiNEwoO

Note that a malware sample could still have been detected by another antivirus application with
a name that includes “coin” or “mine” that is not on this blacklist. In that case, the samples would
still be selected.
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Appendix B

Implemented Statistical Features

For all features marked with *, we calculated the average, 25th percentile, maximum, median,
minimum, standard deviation, sum, 75th percentile, and variance.

1. Flow: Was the flow flagged? (Used only as label)
2. Flow: Number of ACKs
3. Flow: ACKs by party A
4. Flow: ACKs by party B
5. Flow: Was the flow bidirectional?
6. Flow: *Bytes per packet
7. Flow: *Bytes per packet by party A
8. Flow: *Bytes per packet by party B
9. Flow: Ratio of total bytes A/B

10. Flow: *DNS response addresses
11. Flow: *DNS response additional records
12. Flow: *DNS response answer records
13. Flow: *DNS response authoritative records
14. Flow: *DNS response TTL
15. Flow: *DNS response errors
16. Flow: Duration
17. Flow: Number of packets
18. Flow: Packets by party A
19. Flow: Packets by party B
20. Flow: Ratio of packets A/B
21. Flow: Packets with PUSH flag
22. Flow: Packets by A with PUSH flag
23. Flow: Packets by B with PUSH flag
24. Flow: Packets with RESET flag
25. Flow: Packets by A with RESET flag
26. Flow: Packets by B with RESET flag
27. Flow: *TTL of packets
28. Flow: *TTL of packets by A
29. Flow: *TTL of packets by B
30. Flow: Packets with URGENT flag
31. Flow: Packets by A with URGENT flag
32. Flow: Packets by B with URGENT flag
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33. Conversation: Was the conversation flagged? (Not used during training)
34. Conversation: Number of flows
35. Conversation: Number of destination ports
36. Conversation: Average number of destination ports per flow
37. Conversation: Number of TCP destination ports
38. Conversation: Number of UDP destination ports
39. Conversation: Ratio of TCP/UDP destination ports
40. Conversation: Conversation duration
41. Conversation: *Total bytes per flow
42. Conversation: *Total bytes by A per flow
43. Conversation: *Total bytes by B per flow
44. Conversation: *Flow duration
45. Conversation: *Total packets per flow
46. Conversation: *Total packets by A per flow
47. Conversation: *Total packets by B per flow
48. Conversation: *Total PUSH packets per flow
49. Conversation: *Total PUSH packets by A per flow
50. Conversation: *Total PUSH packets by B per flow
51. Conversation: *Total RESET packets per flow
52. Conversation: *Total RESET packets by A per flow
53. Conversation: *Total RESET packets by B per flow
54. Conversation: *Total URGENT packets per flow
55. Conversation: *Total URGENT packets by A per flow
56. Conversation: *Total URGENT packets by B per flow
57. Conversation: Number of source ports
58. Conversation: Average number of source ports per flow
59. Conversation: Number of TCP source ports
60. Conversation: Number of UDP source ports
61. Conversation: Ratio of TCP/UDP source ports
62. Conversation: *Total TCP bytes per flow
63. Conversation: *Total TCP bytes by A per flow
64. Conversation: *Total TCP bytes by B per flow
65. Conversation: *TCP flow duration
66. Conversation: *Total TCP packets per flow
67. Conversation: *Total TCP packets by A per flow
68. Conversation: *Total TCP packets by B per flow
69. Conversation: *Total UDP bytes per flow
70. Conversation: *Total UDP bytes by A per flow
71. Conversation: *Total UDP bytes by B per flow
72. Conversation: *UDP flow duration
73. Conversation: *Total UDP packets per flow
74. Conversation: *Total UDP packets by A per flow
75. Conversation: *Total UDP packets by B per flow
76. Conversation: Number of TCP flows
77. Conversation: Number of UDP flows
78. Conversation: Ratio of TCP/UDP flows
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